aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2013-06-24 16:39:32 +0000
committerdos-reis <gdr@axiomatics.org>2013-06-24 16:39:32 +0000
commit36db462d3a02e5df058861589b60d1f9c808e7c3 (patch)
tree477a8c3be153d9ca4ba4fc085090e3f6c0a39b03 /src/share/algebra
parent0af724597cff0d9235a37223e46e6f9ffb804e0b (diff)
downloadopen-axiom-36db462d3a02e5df058861589b60d1f9c808e7c3.tar.gz
Simplify database construction.
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase3408
-rw-r--r--src/share/algebra/category.daase7038
-rw-r--r--src/share/algebra/compress.daase931
-rw-r--r--src/share/algebra/interp.daase8126
-rw-r--r--src/share/algebra/operation.daase37607
5 files changed, 35199 insertions, 21911 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 227263fd..f4e6e265 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,4788 +1,4788 @@
-(1966199 . 3581069279)
-(-15 A S)
+(1915153 . 3581079092)
+(|OneDimensionalArrayAggregate&| A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
-(-16 S)
+(|OneDimensionalArrayAggregate| S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
-(-17 S)
+(|AbelianGroup&| S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
NIL
NIL
-(-18)
+(|AbelianGroup|)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
NIL
NIL
-(-19 S)
+(|AbelianMonoid&| S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (|opposite?| (((|Boolean|) $ $) "\\spad{opposite?(x,y)} holds if the sum of \\spad{x} and \\spad{y} is \\spad{0}.")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element.")))
NIL
NIL
-(-20)
+(|AbelianMonoid|)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (|opposite?| (((|Boolean|) $ $) "\\spad{opposite?(x,y)} holds if the sum of \\spad{x} and \\spad{y} is \\spad{0}.")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element.")))
NIL
NIL
-(-21 S)
+(|AbelianSemiGroup&| S)
((|constructor| (NIL "the class of all additive (commutative) semigroups,{} \\spadignore{i.e.} a set with a commutative and associative operation \\spadop{+}. \\blankline")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n}. This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-22)
+(|AbelianSemiGroup|)
((|constructor| (NIL "the class of all additive (commutative) semigroups,{} \\spadignore{i.e.} a set with a commutative and associative operation \\spadop{+}. \\blankline")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n}. This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-23 S)
+(|AlgebraicallyClosedField&| S)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
NIL
NIL
-(-24)
+(|AlgebraicallyClosedField|)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-25 S R)
+(|AlgebraicallyClosedFunctionSpace&| S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
NIL
NIL
-(-26 R)
+(|AlgebraicallyClosedFunctionSpace| R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3994 . T) (-3992 . T) (-3991 . T) ((-3997 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T))
+((|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T))
NIL
-(-27)
+(|PlaneAlgebraicCurvePlot|)
((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-28)
+(|AddAst|)
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-29 R -3095)
+(|AlgebraicFunction| R F)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-951 (-485)))))
-(-30 S)
+((|HasCategory| |#1| (QUOTE (|RetractableTo| (|Integer|)))))
+(|Aggregate&| S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\"")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
NIL
-(-31)
+(|Aggregate|)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\"")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
NIL
-(-32)
+(|ArcHyperbolicFunctionCategory|)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
NIL
NIL
-(-33 |Key| |Entry|)
+(|AssociationListAggregate| |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}.")))
NIL
NIL
-(-34 S R)
+(|Algebra&| S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
NIL
NIL
-(-35 R)
+(|Algebra| R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-36 UP)
+(|AlgFactor| UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-37 -3095 UP UPUP -2617)
+(|AlgebraicFunctionField| F UP UPUP |modulus|)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-3990 |has| (-349 |#2|) (-311)) (-3995 |has| (-349 |#2|) (-311)) (-3989 |has| (-349 |#2|) (-311)) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-349 |#2|) (QUOTE (-115))) (|HasCategory| (-349 |#2|) (QUOTE (-117))) (|HasCategory| (-349 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-188))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-298))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091)))))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-349 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-349 (-485)))))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-319))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-188))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))))
-(-38 R -3095)
+((|noZeroDivisors| |has| #1=(|Fraction| |#2|) . #2=((|Field|))) (|canonicalUnitNormal| |has| #1# . #2#) (|canonicalsClosed| |has| #1# . #2#) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| #1=(|Fraction| |#2|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| #1# (QUOTE (|CharacteristicZero|))) #2=(|HasCategory| #1# (QUOTE (|FiniteFieldCategory|))) (OR #3=(|HasCategory| #1# #4=(QUOTE (|Field|))) #2#) #3# (|HasCategory| #1# #5=(QUOTE (|Finite|))) (OR #6=(AND (|HasCategory| #1# (QUOTE (|DifferentialRing|))) #3#) #2#) (OR #6# #7=(AND (|HasCategory| #1# (QUOTE (|DifferentialSpace|))) #3#) #2#) (OR #8=(AND #3# #9=(|HasCategory| #1# (QUOTE (|PartialDifferentialRing| #10=(|Symbol|))))) (AND #2# #9#)) (OR #8# #11=(AND #3# (|HasCategory| #1# (QUOTE (|PartialDifferentialSpace| #10#))))) (|HasCategory| #1# (QUOTE (|LinearlyExplicitRingOver| #12=(|Integer|)))) (OR #3# #13=(|HasCategory| #1# (QUOTE (|RetractableTo| (|Fraction| #12#))))) #13# (|HasCategory| #1# (QUOTE (|RetractableTo| #12#))) (|HasCategory| |#1| #4#) (|HasCategory| |#1| #5#) #7# #11# #6# #8#)
+(|AlgebraicManipulations| R F)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|)))))
-(-39 OV E P)
+((AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Integer|)))) (|HasCategory| |#2| (|%list| (QUOTE |FunctionSpace|) (|devaluate| |#1|)))))
+(|AlgebraicMultFact| OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
NIL
-(-40 R A)
+(|AlgebraPackage| R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-257))))
-(-41 R |n| |ls| |gamma|)
+((|HasCategory| |#1| (QUOTE (|EuclideanDomain|))))
+(|AlgebraGivenByStructuralConstants| R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496))))
-(-42 |Key| |Entry|)
+((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|AssociationList| |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
NIL
-((OR (-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))) (-11 (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))))
-(-43 S R E)
+((OR (AND #1=(|HasCategory| #2=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #3=(QUOTE |Evalable|) #4=(|%list| (QUOTE |Record|) (|%list| #5=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #5# (QUOTE |entry|) #6=(|devaluate| |#2|))))) #7=(|HasCategory| #2# #8=(QUOTE (|OrderedSet|)))) #9=(AND #1# #10=(|HasCategory| #2# #11=(QUOTE (|SetCategory|))))) (OR #12=(|HasCategory| #2# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #15=(|HasCategory| |#2| #11#) (|HasCategory| |#2| (|%list| #3# #6#))) (OR #15# #7# #10#) #7# (OR #16=(|HasCategory| |#2| #17=(QUOTE (|BasicType|))) #15# #18=(|HasCategory| #2# #17#) #7# #10#) (|HasCategory| |#1| #8#) #16# (|HasCategory| (|Integer|) #8#) #18# (OR #15# #10#) (OR #16# #18#) #15# #14# #12# #10# #9# (AND #16# (|HasCategory| $ (|%list| #19=(QUOTE |FiniteAggregate|) #6#))) (|HasCategory| $ (|%list| #20=(QUOTE |ShallowlyMutableAggregate|) #6#)) (AND #21=(|HasCategory| $ (|%list| #20# #4#)) #7#) (AND #22=(|HasCategory| $ (|%list| #19# #4#)) #18#) #22# #21#)
+(|AbelianMonoidRing&| S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311))))
-(-44 R E)
+((|HasCategory| |#2| (QUOTE (|Algebra| (|Fraction| (|Integer|))))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))))
+(|AbelianMonoidRing| R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-45)
+(|AlgebraicNumber|)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
-(-46)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (QUOTE (|RetractableTo| (|Integer|)))))
+(|AnonymousFunction|)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
-(-47 R |lVar|)
+(|AntiSymm| R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-48)
+(|Any|)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
-(-49 S)
+(|AnyFunctions1| S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
-(-50 R M P)
+(|ApplyUnivariateSkewPolynomial| R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-51 |Base| R -3095)
+(|ApplyRules| |Base| R F)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
-(-52)
+(|Arity|)
((|constructor| (NIL "This domain implements the arity of a function or an operator,{} \\spadignore{e.g.} the number of arguments that an operator can take. An arity is either a definition nonnegative integer,{} and the special value `arbitrary',{} signifying that an operation can take any number of arguments.")) (|one?| (((|Boolean|) $) "\\spad{one? a} holds if \\spad{a} is the arity of nullary function.")) (|zero?| (((|Boolean|) $) "\\spad{zero? a} holds if \\spad{a} is the arity of niladic function.")) (|arbitrary| (($) "aribitrary is the arity of a function that accepts any number of arguments.")))
NIL
NIL
-(-53 S R |Row| |Col|)
+(|TwoDimensionalArrayCategory&| S R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")))
NIL
NIL
-(-54 R |Row| |Col|)
+(|TwoDimensionalArrayCategory| R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")))
NIL
NIL
-(-55 S)
+(|OneDimensionalArray| S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-56 A B)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# (AND #7# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #8# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #9#))
+(|OneDimensionalArrayFunctions2| A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-57 R)
+(|TwoDimensionalArray| R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-58 R L)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|AssociatedEquations| R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
-(-59 S)
+((|HasCategory| |#1| (QUOTE (|Field|))))
+(|ArrayStack| S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-60 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|AbstractSyntaxCategory&| S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
NIL
-(-61)
+(|AbstractSyntaxCategory|)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
NIL
-(-62 S)
+(|ArcTrigonometricFunctionCategory&| S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
NIL
-(-63)
+(|ArcTrigonometricFunctionCategory|)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
NIL
-(-64)
+(|AttributeAst|)
((|constructor| (NIL "This domain represents the syntax of an attribute in \\indented{2}{a category expression.}")) (|name| (((|SpadAst|) $) "\\spad{name(a)} returns the name of the attribute `a'. Note,{} this name may be domain name,{} not just an identifier.")))
NIL
NIL
-(-65)
+(|AttributeRegistry|)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3997 "*") . T) (-3994 . T) (-3992 . T) (-3991 . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3993 . T) (-3996 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3984 . T))
+(((|commutative| "*") . T) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|arbitraryPrecision| . T) (|partiallyOrderedSet| . T) (|central| . T) (|noetherian| . T) (|additiveValuation| . T) (|multiplicativeValuation| . T) (|NullSquare| . T) (|JacobiIdentity| . T) (|canonical| . T))
NIL
-(-66 R)
+(|Automorphism| R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-67 R UP)
+(|BalancedFactorisation| R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
NIL
NIL
-(-68 S)
+(|BasicType&| S)
((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal.")))
NIL
NIL
-(-69)
+(|BasicType|)
((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (|before?| (((|Boolean|) $ $) "\\spad{before?(x,y)} holds if the system representation of \\spad{x} comes before that of \\spad{y} in a an implementation defined manner.")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal.")))
NIL
NIL
-(-70 S)
+(|BalancedBinaryTree| S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-71 R UP M |Row| |Col|)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|BezoutMatrix| R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
-(-72 A S)
+((|HasAttribute| |#1| (QUOTE (|commutative| "*"))))
+(|BagAggregate&| A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")))
NIL
NIL
-(-73 S)
+(|BagAggregate| S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")))
NIL
NIL
-(-74)
+(|BinaryExpansion|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-117))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-329)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-188))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-259 (-485)))) (|HasCategory| (-485) (QUOTE (-240 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-257))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-115)))))
-(-75)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #2#))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #2#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #2#)))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (QUOTE (|InnerEvalable| #3# #2#))) (|HasCategory| #2# (QUOTE (|Evalable| #2#))) (|HasCategory| #2# (QUOTE (|Eltable| #2# #2#))) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #2#))) #9=(AND (|HasCategory| $ #5#) #1#) (OR #9# #4#))
+(|Binding|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
-(-76 T$)
+(|BinaryOperation| T$)
((|constructor| (NIL "This domain implements binary operations.")) (|binaryOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{binaryOperation f} constructs a binary operation value out of any homogeneous mapping of arity 2.")))
NIL
NIL
-(-77 T$)
+(|BinaryOperatorCategory| T$)
((|constructor| (NIL "This is the category of all domains that implement binary operations.")))
NIL
NIL
-(-78)
+(|Bits|)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
NIL
-((-11 (|HasCategory| (-82) (QUOTE (-259 (-82)))) (|HasCategory| (-82) (QUOTE (-1014)))) (|HasCategory| (-82) (QUOTE (-554 (-474)))) (|HasCategory| (-82) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-82) (QUOTE (-69))) (|HasCategory| (-82) (QUOTE (-553 (-773)))) (|HasCategory| (-82) (QUOTE (-1014))) (-11 (|HasCategory| $ (QUOTE (-1036 (-82)))) (|HasCategory| (-82) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-317 (-82)))) (-11 (|HasCategory| $ (QUOTE (-317 (-82)))) (|HasCategory| (-82) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-1036 (-82)))))
-(-79 R S)
+((AND (|HasCategory| #1=(|Boolean|) (QUOTE (|Evalable| #1#))) #2=(|HasCategory| #1# (QUOTE (|SetCategory|)))) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| #1# #4=(QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) #4#) #5=(|HasCategory| #1# (QUOTE (|BasicType|))) (|HasCategory| #1# (QUOTE (|CoercibleTo| (|OutputForm|)))) #2# (AND #6=(|HasCategory| $ (QUOTE (|ShallowlyMutableAggregate| #1#))) #3#) #7=(|HasCategory| $ (QUOTE (|FiniteAggregate| #1#))) (AND #7# #5#) #6#)
+(|BiModule| R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-80 S)
+(|BooleanLogic&| S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
NIL
NIL
-(-81)
+(|BooleanLogic|)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
NIL
NIL
-(-82)
+(|Boolean|)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-83)
+(|BasicOperator|)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Maybe| (|Mapping| (|InputForm|) (|List| (|InputForm|)))) $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \\spad{nothing} otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Maybe| (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \\spad{nothing} otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-84 A)
+(|BasicOperatorFunctions1| A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-85 -3095 UP)
+(|BoundIntegerRoots| F UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
-(-86 |p|)
+(|BalancedPAdicInteger| |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-87 |p|)
+(|BalancedPAdicRational| |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-86 |#1|) (QUOTE (-822))) (|HasCategory| (-86 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-86 |#1|) (QUOTE (-115))) (|HasCategory| (-86 |#1|) (QUOTE (-117))) (|HasCategory| (-86 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-86 |#1|) (QUOTE (-934))) (|HasCategory| (-86 |#1|) (QUOTE (-741))) (|HasCategory| (-86 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-86 |#1|) (QUOTE (-741))) (|HasCategory| (-86 |#1|) (QUOTE (-757)))) (|HasCategory| (-86 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-86 |#1|) (QUOTE (-1067))) (|HasCategory| (-86 |#1|) (QUOTE (-797 (-329)))) (|HasCategory| (-86 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-86 |#1|) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-86 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-86 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-86 |#1|) (QUOTE (-188))) (|HasCategory| (-86 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-86 |#1|) (QUOTE (-189))) (|HasCategory| (-86 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-86 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -86) (|devaluate| |#1|)))) (|HasCategory| (-86 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -86) (|devaluate| |#1|)))) (|HasCategory| (-86 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -86) (|devaluate| |#1|)) (|%list| (QUOTE -86) (|devaluate| |#1|)))) (|HasCategory| (-86 |#1|) (QUOTE (-257))) (|HasCategory| (-86 |#1|) (QUOTE (-484))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-86 |#1|) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-86 |#1|) (QUOTE (-822)))) (|HasCategory| (-86 |#1|) (QUOTE (-115)))))
-(-88 A S)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #8=(|Integer|)))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #9=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (|%list| (QUOTE |InnerEvalable|) (QUOTE #3#) #10=(|%list| (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| #2# (|%list| (QUOTE |Evalable|) #10#)) (|HasCategory| #2# (|%list| (QUOTE |Eltable|) #10# #10#)) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) #11=(AND (|HasCategory| $ #5#) #1#) (OR #11# #4#))
+(|BinaryRecursiveAggregate&| A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-89 S)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#2|))))
+(|BinaryRecursiveAggregate| S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
NIL
-(-90 UP)
+(|BrillhartTests| UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} pp. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
NIL
NIL
-(-91 S)
+(|BinarySearchTree| S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-92 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|BitAggregate&| S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
-(-93)
+(|BitAggregate|)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
-(-94 A S)
+(|BinaryTreeCategory&| A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")))
NIL
NIL
-(-95 S)
+(|BinaryTreeCategory| S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")))
NIL
NIL
-(-96 S)
+(|BinaryTournament| S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-97 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|BinaryTree| S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-98)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|Byte|)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
-(-99)
+(|ByteBuffer|)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
NIL
-((OR (-11 (|HasCategory| (-98) (QUOTE (-259 (-98)))) (|HasCategory| (-98) (QUOTE (-757)))) (-11 (|HasCategory| (-98) (QUOTE (-259 (-98)))) (|HasCategory| (-98) (QUOTE (-1014))))) (|HasCategory| (-98) (QUOTE (-553 (-773)))) (|HasCategory| (-98) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-98) (QUOTE (-757))) (|HasCategory| (-98) (QUOTE (-1014)))) (|HasCategory| (-98) (QUOTE (-757))) (OR (|HasCategory| (-98) (QUOTE (-69))) (|HasCategory| (-98) (QUOTE (-757))) (|HasCategory| (-98) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-98) (QUOTE (-69))) (|HasCategory| (-98) (QUOTE (-1014))) (-11 (|HasCategory| (-98) (QUOTE (-259 (-98)))) (|HasCategory| (-98) (QUOTE (-1014)))) (-11 (|HasCategory| $ (QUOTE (-317 (-98)))) (|HasCategory| (-98) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-317 (-98)))) (|HasCategory| $ (QUOTE (-1036 (-98)))) (-11 (|HasCategory| $ (QUOTE (-1036 (-98)))) (|HasCategory| (-98) (QUOTE (-757)))))
-(-100)
+((OR (AND #1=(|HasCategory| #2=(|Byte|) (QUOTE (|Evalable| #2#))) #3=(|HasCategory| #2# #4=(QUOTE (|OrderedSet|)))) #5=(AND #1# #6=(|HasCategory| #2# (QUOTE (|SetCategory|))))) (|HasCategory| #2# (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #3# #6#) #3# (OR #7=(|HasCategory| #2# (QUOTE (|BasicType|))) #3# #6#) (|HasCategory| (|Integer|) #4#) #7# #6# #5# (AND #8=(|HasCategory| $ (QUOTE (|FiniteAggregate| #2#))) #7#) #8# #9=(|HasCategory| $ (QUOTE (|ShallowlyMutableAggregate| #2#))) (AND #9# #3#))
+(|ByteOrder|)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
NIL
-(-101)
+(|CancellationAbelianMonoid|)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
NIL
-(-102)
+(|CachableSet|)
((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}.")))
NIL
NIL
-(-103)
+(|CapsuleAst|)
((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in `c'.")))
NIL
NIL
-(-104)
+(|CardinalNumber|)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3997 "*") . T))
+(((|commutative| "*") . T))
NIL
-(-105 |minix| -2624 R)
+(|CartesianTensor| |minix| |dim| R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")))
NIL
NIL
-(-106 |minix| -2624 S T$)
+(|CartesianTensorFunctions2| |minix| |dim| S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-107)
+(|CaseAst|)
((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'.")))
NIL
NIL
-(-108)
+(|CategoryAst|)
((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax `c'.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'.")))
NIL
NIL
-(-109)
+(|CategoryConstructor|)
((|constructor| (NIL "This domain provides representations for category constructors.")))
NIL
NIL
-(-110)
+(|Category|)
((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category `c'.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category `c'.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category `c',{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object `c'.")))
NIL
NIL
-(-111)
+(|CharacterClass|)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-3987 . T))
-((OR (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-319)))) (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-1014))))) (|HasCategory| (-114) (QUOTE (-554 (-474)))) (|HasCategory| (-114) (QUOTE (-319))) (|HasCategory| (-114) (QUOTE (-757))) (|HasCategory| (-114) (QUOTE (-69))) (|HasCategory| (-114) (QUOTE (-553 (-773)))) (|HasCategory| (-114) (QUOTE (-1014))) (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-1014)))) (|HasCategory| $ (QUOTE (-317 (-114)))) (-11 (|HasCategory| $ (QUOTE (-317 (-114)))) (|HasCategory| (-114) (QUOTE (-69)))))
-(-112 R Q A)
+((|partiallyOrderedSet| . T))
+((OR (AND #1=(|HasCategory| #2=(|Character|) (QUOTE (|Evalable| #2#))) #3=(|HasCategory| #2# (QUOTE (|Finite|)))) #4=(AND #1# #5=(|HasCategory| #2# (QUOTE (|SetCategory|))))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) #3# (|HasCategory| #2# (QUOTE (|OrderedSet|))) #6=(|HasCategory| #2# (QUOTE (|BasicType|))) (|HasCategory| #2# (QUOTE (|CoercibleTo| (|OutputForm|)))) #5# #4# #7=(|HasCategory| $ (QUOTE (|FiniteAggregate| #2#))) (AND #7# #6#))
+(|CommonDenominator| R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-113)
+(|CombinatorialFunctionCategory|)
((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}.")))
NIL
NIL
-(-114)
+(|Character|)
((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} designate the escape character.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
NIL
NIL
-(-115)
+(|CharacteristicNonZero|)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-116 R)
+(|CharacteristicPolynomialPackage| R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
NIL
NIL
-(-117)
+(|CharacteristicZero|)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-118 -3095 UP UPUP)
+(|ChangeOfVariable| F UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
-(-119 R CR)
+(|ComplexIntegerSolveLinearPolynomialEquation| R CR)
((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod fj (\\spad{j} \\= \\spad{i}) or equivalently g/prod fj = sum (ai/fi) or returns \"failed\" if no such list exists")))
NIL
NIL
-(-120 A S)
+(|Collection&| A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#1| (|%list| (QUOTE -317) (|devaluate| |#2|))))
-(-121 S)
+((|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|BasicType|))) (|HasCategory| |#1| (|%list| (QUOTE |FiniteAggregate|) (|devaluate| |#2|))))
+(|Collection| S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
-(-122 |n| K Q)
+(|CliffordAlgebra| |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-3992 . T) (-3991 . T) (-3994 . T))
+((|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-123)
+(|TwoDimensionalPlotClipping|)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
NIL
NIL
-(-124)
+(|CollectAst|)
((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'.")))
NIL
NIL
-(-125 UP |Par|)
+(|ComplexRootPackage| UP |Par|)
((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps.")))
NIL
NIL
-(-126)
+(|ColonAst|)
((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'.")))
NIL
NIL
-(-127)
+(|Color|)
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-128 R -3095)
+(|CombinatorialFunction| R F)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
-(-129 I)
+(|IntegerCombinatoricFunctions| I)
((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.")))
NIL
NIL
-(-130)
+(|CombinatorialOpsCategory|)
((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")))
NIL
NIL
-(-131)
+(|Commutator|)
((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
-(-132)
+(|CommaAst|)
((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
-(-133)
+(|CommonOperators|)
((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics.")))
NIL
NIL
-(-134 R UP UPUP)
+(|CommuteUnivariatePolynomialCategory| R UP UPUP)
((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x}).")))
NIL
NIL
-(-135 T$)
+(|CommutativeOperation| T$)
((|constructor| (NIL "This domain implements commutative operations.")) (|commutativeOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{commutativeOperation f} constructs a commutative operation over \\spad{T},{} thus asserting a commutativity property.")))
-(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (-3059 (|f| |x| |y|) (|f| |y| |x|)))) . T))
+(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (= (|f| |x| |y|) (|f| |y| |x|)))) . T))
NIL
-(-136 T$)
+(|CommutativeOperatorCategory| T$)
((|constructor| (NIL "This is the category of all domains that implement commutative operations.")))
-(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (-3059 (|f| |x| |y|) (|f| |y| |x|)))) . T))
+(((|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|)) (= (|f| |x| |y|) (|f| |y| |x|)))) . T))
NIL
-(-137 S R)
+(|ComplexCategory&| S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-496))))
-(-138 R)
+((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|TranscendentalFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |additiveValuation|)) (|HasAttribute| |#2| (QUOTE |multiplicativeValuation|)) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))))
+(|ComplexCategory| R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-3990 OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-139 RR PR)
+(|ComplexFactorization| RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-140)
+(|CompilerPackage|)
((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution.")))
NIL
NIL
-(-141 R)
+(|Complex| R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-3990 OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-319))) (OR (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-11 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-188)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3996)) (-11 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-311)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-142 R S)
+((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| #2=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #3=(|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (OR #4=(|HasCategory| |#1| (QUOTE (|Field|))) #3#) #5=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #4# (|HasCategory| |#1| (QUOTE (|Finite|))) (OR #6=(|HasCategory| |#1| (QUOTE (|DifferentialRing|))) #3#) (OR #7=(AND #6# #4#) #8=(|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) #3#) #9=(|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #10=(|Symbol|)))) (OR #11=(AND #4# #9#) #12=(|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #10#)))) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #13=(|Integer|)))) (OR #4# #14=(|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #13#))))) #14# (|HasCategory| |#1| (QUOTE (|RetractableTo| #13#))) (OR #15=(AND #16=(|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) #17=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) #18=(AND #3# #17#) #4#) (OR #15# (AND #4# #17#) #18#) (OR #4# #5#) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) #19=(|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) #19# (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #16# #4# #3# #5#) (OR #16# #4# #3#) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #20=(|Float|))))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #13#)))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #20#))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #13#))) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE #10#) #21=(|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #21#)) (|HasCategory| |#1| (|%list| (QUOTE |Eltable|) #21# #21#)) #22=(|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (AND #22# #19#) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) #16# #17# (OR #15# #4#) (OR #15# #5#) (OR #7# #8#) #8# #12# #6# #15# (|HasAttribute| |#1| (QUOTE |additiveValuation|)) (|HasAttribute| |#1| (QUOTE |multiplicativeValuation|)) (AND #8# #4#) (AND #4# #12#) #7# #11# (OR #23=(AND #16# #17# (|HasCategory| $ #2#)) #3#) (OR #23# #1#))
+(|ComplexFunctions2| R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-143 R S CS)
+(|ComplexPattern| R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
NIL
-(-144)
+(|SubSpaceComponentProperty|)
((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")))
NIL
NIL
-(-145)
+(|CommutativeRing|)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-146)
+(|Conduit|)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
NIL
NIL
-(-147 R)
+(|ContinuedFraction| R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-3997 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-148)
+(|Contour|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
NIL
NIL
-(-149 R)
+(|CoordinateSystems| R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
NIL
NIL
-(-150 R |PolR| E)
+(|CharacteristicPolynomialInMonogenicalAlgebra| R |PolR| E)
((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants")))
NIL
NIL
-(-151 R S CS)
+(|ComplexPatternMatch| R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|))))
-(-152 R)
+((|HasCategory| (|Polynomial| |#2|) (|%list| (QUOTE |PatternMatchable|) (|devaluate| |#1|))))
+(|CRApackage| R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
NIL
-(-153)
+(|CoerceAst|)
((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-154 R UP)
+(|ComplexRootFindingPackage| R UP)
((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}.")))
NIL
NIL
-(-155 S ST)
+(|CyclicStreamTools| S ST)
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-156)
+(|Constructor|)
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-157 C)
+(|ConstructorCall| C)
((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
-(-158 S)
+(|ConstructorCategory&| S)
((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
-(-159)
+(|ConstructorCategory|)
((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
-(-160)
+(|ConstructorKind|)
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-161 R -3095)
+(|ComplexTrigonometricManipulations| R F)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-162 R)
+(|CoerceVectorMatrixPackage| R)
((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}")))
NIL
NIL
-(-163)
+(|CycleIndicators|)
((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}")))
NIL
NIL
-(-164)
+(|CyclotomicPolynomialPackage|)
((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}")))
NIL
NIL
-(-165 N T$)
+(|DataArray| N T$)
((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
NIL
NIL
-(-166 S)
+(|Database| S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-167 |vars|)
+(|DualBasis| |vars|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-168 -3095 UP UPUP R)
+(|DoubleResultantPackage| F UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-169 -3095 FP)
+(|DistinctDegreeFactorize| F FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
-(-170)
+(|DecimalExpansion|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-117))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-329)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-188))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-259 (-485)))) (|HasCategory| (-485) (QUOTE (-240 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-257))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-115)))))
-(-171)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #2#))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #2#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #2#)))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (QUOTE (|InnerEvalable| #3# #2#))) (|HasCategory| #2# (QUOTE (|Evalable| #2#))) (|HasCategory| #2# (QUOTE (|Eltable| #2# #2#))) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #2#))) #9=(AND (|HasCategory| $ #5#) #1#) (OR #9# #4#))
+(|DefinitionAst|)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-172 R -3095)
+(|ElementaryFunctionDefiniteIntegration| R F)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-173 R)
+(|RationalFunctionDefiniteIntegration| R)
((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-174 R1 R2)
+(|DegreeReductionPackage| R1 R2)
((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}")))
NIL
NIL
-(-175 S)
+(|Dequeue| S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-176 |CoefRing| |listIndVar|)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|DeRhamComplex| |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-177 R -3095)
+(|DefiniteIntegrationTools| R F)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
-(-178)
+(|DoubleFloat|)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3773 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-179)
+(|DoubleFloatSpecialFunctions|)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
NIL
NIL
-(-180 R)
+(|DenavitHartenbergMatrix| R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-69))))
-(-181 A S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|Field|))) #2#)
+(|Dictionary&| A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-182 S)
+(|Dictionary| S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-183 R)
+(|DifferentialExtension| R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-184 S T$)
+(|DifferentialDomain&| S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
NIL
NIL
-(-185 T$)
+(|DifferentialDomain| T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
NIL
NIL
-(-186 R)
+(|DifferentialModule| R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-187 S)
+(|DifferentialSpace&| S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
NIL
NIL
-(-188)
+(|DifferentialSpace|)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
NIL
NIL
-(-189)
+(|DifferentialRing|)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-190)
+(|Dioid|)
((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation.")))
NIL
NIL
-(-191 A S)
+(|DictionaryOperations&| A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -317) (|devaluate| |#2|))))
-(-192 S)
+((|HasCategory| |#1| (|%list| (QUOTE |FiniteAggregate|) (|devaluate| |#2|))))
+(|DictionaryOperations| S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
NIL
-(-193)
+(|DiophantineSolutionPackage|)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-194 S -2624 R)
+(|DirectProductCategory&| S |dim| R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
NIL
-((|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014))))
-(-195 -2624 R)
+((|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedSet|))) (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|AbelianGroup|))) (|HasCategory| |#3| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))
+(|DirectProductCategory| |dim| R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
+((|rightUnitary| |has| |#2| . #1=((|Ring|))) (|leftUnitary| |has| |#2| . #1#) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)))
NIL
-(-196 -2624 R)
+(|DirectProduct| |dim| R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-189))) (OR (|HasCategory| |#2| (QUOTE (-189))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-22))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-197 -2624 A B)
+((|rightUnitary| |has| |#2| . #1=((|Ring|))) (|leftUnitary| |has| |#2| . #1#) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)))
+((OR (AND #1=(|HasCategory| |#2| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#2|)))) (AND #4=(|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) #2#) (AND #5=(|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) #2#) (AND #6=(|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) #2#) (AND #7=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #2#) (AND #8=(|HasCategory| |#2| (QUOTE (|DifferentialRing|))) #2#) (AND #9=(|HasCategory| |#2| (QUOTE (|Field|))) #2#) (AND #10=(|HasCategory| |#2| (QUOTE (|Finite|))) #2#) (AND #11=(|HasCategory| |#2| (QUOTE (|Monoid|))) #2#) (AND #12=(|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #13=(|HasCategory| |#2| #14=(QUOTE (|OrderedSet|))) #2#) (AND #15=(|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #16=(|Symbol|)))) #2#) (AND #17=(|HasCategory| |#2| (QUOTE (|Ring|))) #2#) #18=(AND #19=(|HasCategory| |#2| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))) #9# (OR #7# #9# #17#) (OR #7# #9#) #1# #17# #11# #12# (OR #12# #13#) #13# #10# (OR (AND #7# #20=(|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #21=(|Integer|))))) (AND #8# #20#) (AND #9# #20#) (AND #20# #15#) #22=(AND #20# #17#)) #15# (OR #1# #4# #5# #23=(|HasCategory| |#2| (QUOTE (|BasicType|))) #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #15# #17#) (OR #1# #4# #6# #7# #8# #9# #15# #17#) (OR #1# #6# #7# #8# #9# #15# #17#) (OR #1# #7# #8# #9# #15# #17#) (OR #8# #15# #17#) #8# (OR #8# #24=(AND (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) #17#)) (OR #25=(AND (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #16#))) #17#) #15#) #19# (OR (AND #1# #26=(|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #21#))))) (AND #4# #26#) (AND #5# #26#) (AND #6# #26#) (AND #7# #26#) (AND #8# #26#) (AND #9# #26#) (AND #10# #26#) (AND #11# #26#) (AND #12# #26#) (AND #13# #26#) (AND #15# #26#) (AND #26# #17#) #27=(AND #26# #19#)) (OR #28=(AND #1# #29=(|HasCategory| |#2| (QUOTE (|RetractableTo| #21#)))) #30=(AND #4# #29#) #31=(AND #5# #29#) #32=(AND #6# #29#) #33=(AND #7# #29#) #34=(AND #8# #29#) #35=(AND #12# #29#) #36=(AND #13# #29#) #37=(AND #15# #29#) #38=(AND #29# #19#) #39=(AND #9# #29#) #40=(AND #10# #29#) #41=(AND #11# #29#) #17#) (OR #28# #30# #31# #32# #33# #34# #35# #36# #37# #38# #39# #40# #41# (AND #29# #17#)) #23# (|HasCategory| #21# #14#) #22# #24# #25# (OR #38# #17#) #38# #27# (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (AND #8# #17#) (AND #15# #17#) #7# #4# #6# #5# #18# (AND #23# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|DirectProductFunctions2| |dim| A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-198)
+(|DisplayPackage|)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-199 S)
+(|DivisionRing&| S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-200)
+(|DivisionRing|)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-201 S)
+(|DoublyLinkedAggregate| S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
NIL
NIL
-(-202 S)
+(|DataList| S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-203 M)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#)) (AND #7# #8#) (AND #1# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#))) #9#)
+(|DiscreteLogarithmPackage| M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-204 R)
+(|DifferentialModuleExtension| R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-205 |vl| R)
+(|DistributedMultivariatePolynomial| |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-145)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-496)))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-206)
+(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#2| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#2| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#2| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|OrderedVariableList| |#1|) #5#)) (AND (|HasCategory| |#2| #8=(QUOTE (|PatternMatchable| #9=(|Integer|)))) (|HasCategory| #7# #8#)) (AND (|HasCategory| |#2| #10=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #10#)) (AND (|HasCategory| |#2| #11=(QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#2| #12=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #12#)) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #9#))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) #13=(|HasCategory| |#2| #14=(QUOTE (|CharacteristicNonZero|))) #15=(|HasCategory| |#2| (QUOTE (|Algebra| #16=(|Fraction| #9#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #9#))) (OR #15# #17=(|HasCategory| |#2| (QUOTE (|RetractableTo| #16#)))) #17# (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #14#)) (OR #18# #13#))
+(|Domain|)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
NIL
-(-207)
+(|DomainConstructor|)
((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}.")))
NIL
NIL
-(-208)
+(|DomainTemplate|)
((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}.")))
NIL
NIL
-(-209 |n| R M S)
+(|DirectProductMatrixModule| |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-3994 OR (-2565 (|has| |#4| (-962)) (|has| |#4| (-189))) (|has| |#4| (-6 -3994)) (-2565 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3991 |has| |#4| (-962)) (-3992 |has| |#4| (-962)))
-((OR (-11 (|HasCategory| |#4| (QUOTE (-18))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-311))) (OR (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-311)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-319))) (OR (-11 (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-189))) (OR (|HasCategory| |#4| (QUOTE (-189))) (-11 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#4| (QUOTE (-18))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#4| (QUOTE (-18))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-11 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#4| (QUOTE (-18))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-11 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-11 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-11 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-962))))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-11 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-11 (|HasCategory| |#4| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-11 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3994)) (-11 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-11 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-962)))) (-11 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-18))) (|HasCategory| |#4| (QUOTE (-20))) (|HasCategory| |#4| (QUOTE (-101))) (|HasCategory| |#4| (QUOTE (-22))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#4|))))
-(-210 |n| R S)
+((|unitsKnown| OR (|and| #1=(|has| |#4| #2=(|Ring|)) (|has| |#4| (|DifferentialRing|))) (|has| |#4| (ATTRIBUTE |unitsKnown|)) (|and| #1# (|has| |#4| (|PartialDifferentialRing| (|Symbol|))))) (|rightUnitary| |has| |#4| . #3=(#2#)) (|leftUnitary| |has| |#4| . #3#))
+((OR (AND #1=(|HasCategory| |#4| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#4|)))) (AND #4=(|HasCategory| |#4| (QUOTE (|CommutativeRing|))) #2#) (AND #5=(|HasCategory| |#4| (QUOTE (|DifferentialRing|))) #2#) (AND #6=(|HasCategory| |#4| (QUOTE (|Field|))) #2#) (AND #7=(|HasCategory| |#4| (QUOTE (|Finite|))) #2#) (AND #8=(|HasCategory| |#4| (QUOTE (|Monoid|))) #2#) (AND #9=(|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #10=(|HasCategory| |#4| #11=(QUOTE (|OrderedSet|))) #2#) (AND #12=(|HasCategory| |#4| (QUOTE (|PartialDifferentialRing| #13=(|Symbol|)))) #2#) (AND #14=(|HasCategory| |#4| (QUOTE (|Ring|))) #2#) #15=(AND #16=(|HasCategory| |#4| (QUOTE (|SetCategory|))) #2#)) #6# (OR #4# #6# #14#) (OR #4# #6#) #14# #8# #9# (OR #9# #10#) #10# #7# (OR (AND #4# #17=(|HasCategory| |#4| (QUOTE (|LinearlyExplicitRingOver| #18=(|Integer|))))) (AND #5# #17#) (AND #6# #17#) (AND #17# #12#) #19=(AND #17# #14#)) #12# (OR #5# #12# #14#) #5# (OR #5# #20=(AND (|HasCategory| |#4| (QUOTE (|DifferentialSpace|))) #14#)) (OR #21=(AND (|HasCategory| |#4| (QUOTE (|PartialDifferentialSpace| #13#))) #14#) #12#) #16# (OR (AND #1# #22=(|HasCategory| |#4| (QUOTE (|RetractableTo| (|Fraction| #18#))))) (AND #4# #22#) (AND #5# #22#) (AND #6# #22#) (AND #7# #22#) (AND #8# #22#) (AND #9# #22#) (AND #10# #22#) (AND #12# #22#) (AND #22# #14#) #23=(AND #22# #16#)) (OR #24=(AND #1# #25=(|HasCategory| |#4| (QUOTE (|RetractableTo| #18#)))) #26=(AND #4# #25#) #27=(AND #5# #25#) #28=(AND #9# #25#) #29=(AND #10# #25#) #30=(AND #12# #25#) #31=(AND #25# #16#) #32=(AND #6# #25#) #33=(AND #7# #25#) #34=(AND #8# #25#) #14#) (OR #24# #26# #27# #28# #29# #30# #31# #32# #33# #34# (AND #25# #14#)) #35=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| #18# #11#) #19# (OR #36=(AND #12# #14#) #21#) (OR #37=(AND #5# #14#) #20#) #31# (OR #31# #14#) #23# (OR #36# (|HasAttribute| |#4| (QUOTE |unitsKnown|)) #37#) #20# #21# #4# #1# (|HasCategory| |#4| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#4| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#4| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #15# (AND #35# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|DirectProductModule| |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-3994 OR (-2565 (|has| |#3| (-962)) (|has| |#3| (-189))) (|has| |#3| (-6 -3994)) (-2565 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)))
-((OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-189))) (OR (|HasCategory| |#3| (QUOTE (-189))) (-11 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-962))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3994)) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-11 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#3|))))
-(-211 A R S V E)
+((|unitsKnown| OR (|and| #1=(|has| |#3| #2=(|Ring|)) (|has| |#3| (|DifferentialRing|))) (|has| |#3| (ATTRIBUTE |unitsKnown|)) (|and| #1# (|has| |#3| (|PartialDifferentialRing| (|Symbol|))))) (|rightUnitary| |has| |#3| . #3=(#2#)) (|leftUnitary| |has| |#3| . #3#))
+((OR (AND #1=(|HasCategory| |#3| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#3| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#3|)))) (AND #4=(|HasCategory| |#3| (QUOTE (|CommutativeRing|))) #2#) (AND #5=(|HasCategory| |#3| (QUOTE (|DifferentialRing|))) #2#) (AND #6=(|HasCategory| |#3| (QUOTE (|Field|))) #2#) (AND #7=(|HasCategory| |#3| (QUOTE (|Finite|))) #2#) (AND #8=(|HasCategory| |#3| (QUOTE (|Monoid|))) #2#) (AND #9=(|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #10=(|HasCategory| |#3| #11=(QUOTE (|OrderedSet|))) #2#) (AND #12=(|HasCategory| |#3| (QUOTE (|PartialDifferentialRing| #13=(|Symbol|)))) #2#) (AND #14=(|HasCategory| |#3| (QUOTE (|Ring|))) #2#) #15=(AND #16=(|HasCategory| |#3| (QUOTE (|SetCategory|))) #2#)) #6# (OR #4# #6# #14#) (OR #4# #6#) #14# #8# #9# (OR #9# #10#) #10# #7# (OR (AND #4# #17=(|HasCategory| |#3| (QUOTE (|LinearlyExplicitRingOver| #18=(|Integer|))))) (AND #5# #17#) (AND #6# #17#) (AND #17# #12#) #19=(AND #17# #14#)) #12# (OR #5# #12# #14#) #5# (OR #5# #20=(AND (|HasCategory| |#3| (QUOTE (|DifferentialSpace|))) #14#)) (OR #21=(AND (|HasCategory| |#3| (QUOTE (|PartialDifferentialSpace| #13#))) #14#) #12#) #16# (OR (AND #1# #22=(|HasCategory| |#3| (QUOTE (|RetractableTo| (|Fraction| #18#))))) (AND #4# #22#) (AND #5# #22#) (AND #6# #22#) (AND #7# #22#) (AND #8# #22#) (AND #9# #22#) (AND #10# #22#) (AND #12# #22#) (AND #22# #14#) #23=(AND #22# #16#)) (OR #24=(AND #1# #25=(|HasCategory| |#3| (QUOTE (|RetractableTo| #18#)))) #26=(AND #4# #25#) #27=(AND #5# #25#) #28=(AND #9# #25#) #29=(AND #10# #25#) #30=(AND #12# #25#) #31=(AND #25# #16#) #32=(AND #6# #25#) #33=(AND #7# #25#) #34=(AND #8# #25#) #14#) (OR #24# #26# #27# #28# #29# #30# #31# #32# #33# #34# (AND #25# #14#)) #35=(|HasCategory| |#3| (QUOTE (|BasicType|))) (|HasCategory| #18# #11#) #19# (OR #36=(AND #12# #14#) #21#) (OR #37=(AND #5# #14#) #20#) #31# (OR #31# #14#) #23# (OR #36# (|HasAttribute| |#3| (QUOTE |unitsKnown|)) #37#) #20# #21# #4# #1# (|HasCategory| |#3| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|CoercibleTo| (|OutputForm|)))) #15# (AND #35# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|DifferentialPolynomialCategory&| A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-189))))
-(-212 R S V E)
+((|HasCategory| |#2| (QUOTE (|DifferentialRing|))))
+(|DifferentialPolynomialCategory| R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-213 S)
+(|DequeueAggregate| S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
NIL
NIL
-(-214 |Ex|)
+(|TopLevelDrawFunctions| |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-215)
+(|TopLevelDrawFunctionsForCompiledFunctions|)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-216 R |Ex|)
+(|TopLevelDrawFunctionsForAlgebraicCurves| R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-217)
+(|DrawComplex|)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-218 R)
+(|DrawNumericHack| R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-219)
+(|TopLevelDrawFunctionsForPoints|)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-220)
+(|DrawOption|)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-221)
+(|DrawOptionFunctions0|)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-222 S)
+(|DrawOptionFunctions1| S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-223 S R)
+(|DifferentialSpaceExtension&| S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-188))))
-(-224 R)
+((|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))))
+(|DifferentialSpaceExtension| R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
-(-225 R S V)
+(|DifferentialSparseMultivariatePolynomial| R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#3| (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-226 A S)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| |#3| #5#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| |#3| #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| |#3| #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| |#3| #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#3| #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #16# (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #17=(|Symbol|)))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #17#))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #13#)) (OR #18# #12#))
+(|DifferentialVariableCategory&| A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-227 S)
+(|DifferentialVariableCategory| S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-228)
+(|ExtAlgBasis|)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-229 R -3095)
+(|ElementaryFunction| R F)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-230 R -3095)
+(|ElementaryFunctionStructurePackage| R F)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-231 |Coef| UTS ULS)
+(|ElementaryFunctionsUnivariateLaurentSeries| |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
-(-232 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (|Field|))))
+(|ElementaryFunctionsUnivariatePuiseuxSeries| |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
-(-233)
+((|HasCategory| |#1| (QUOTE (|Field|))))
+(|ElaboratedExpression|)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-234)
+(|Elaboration|)
((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}.")))
NIL
NIL
-(-235 A S)
+(|ExtensibleLinearAggregate&| A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))))
-(-236 S)
+((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|BasicType|))))
+(|ExtensibleLinearAggregate| S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
NIL
-(-237 S)
+(|ElementaryFunctionCategory&| S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-238)
+(|ElementaryFunctionCategory|)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-239 |Coef| UTS)
+(|EllipticFunctionsUnivariateTaylorSeries| |Coef| UTS)
((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-240 S T$)
+(|Eltable| S T$)
((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}.")))
NIL
NIL
-(-241 S |Dom| |Im|)
+(|EltableAggregate&| S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#3|))))
-(-242 |Dom| |Im|)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#3|))))
+(|EltableAggregate| |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-243 S R |Mod| -2039 -3521 |exactQuo|)
+(|EuclideanModularRing| S R |Mod| |reduction| |merge| |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-244 S)
+(|EntireRing&| S)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
NIL
NIL
-(-245)
+(|EntireRing|)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-246)
+(|Environment|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-247 R)
+(|EigenPackage| R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-248 S)
+(|Equation| S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-962)) (-3992 |has| |#1| (-962)))
-((|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-253))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664))))
-(-249 S R)
+((|unitsKnown| OR (|has| |#1| #1=(|Ring|)) (|has| |#1| (|Group|))) (|rightUnitary| |has| |#1| . #2=(#1#)) (|leftUnitary| |has| |#1| . #2#))
+(#1=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #1# #3=(|HasCategory| |#1| (QUOTE (|Ring|)))) (OR #2# #1#) #4=(|HasCategory| |#1| (QUOTE (|AbelianGroup|))) #3# #5=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #2# #6=(|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #7=(|Symbol|)))) (OR #6# #3#) (OR #4# #8=(|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) #2# #1# #6# #3#) (OR #4# #2# #1# #6# #3#) (OR #2# #3#) (OR #9=(|HasCategory| |#1| (QUOTE (|Group|))) #10=(|HasCategory| |#1| (QUOTE (|Monoid|)))) #9# (OR #4# #8# #2# #1# #9# #10# #6# #3# #11=(|HasCategory| |#1| (QUOTE (|SemiGroup|))) #5#) (OR #9# #10# #11#) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE #7#) #12=(|devaluate| |#1|))) (AND #5# (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #12#))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|ExpressionSpace|))) (OR #1# #9#) (OR #4# #10#) (OR #9# #3#) #8# #11# #10#)
+(|EquationFunctions2| S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-250 |Key| |Entry|)
+(|EqTable| |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-251)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|ErrorFunctions|)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-252 S)
+(|ExpressionSpace&| S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))
-(-253)
+((|HasCategory| |#1| (QUOTE (|RetractableTo| (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|))))
+(|ExpressionSpace|)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-254 -3095 S)
+(|ExpressionSpaceFunctions1| F S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-255 E -3095)
+(|ExpressionSpaceFunctions2| E F)
((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-256 S)
+(|EuclideanDomain&| S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-257)
+(|EuclideanDomain|)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-258 S R)
+(|Evalable&| S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-259 R)
+(|Evalable| R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-260 -3095)
+(|EvaluateCycleIndicators| F)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-261)
+(|Exit|)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-262)
+(|ExitAst|)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-263 R FE |var| |cen|)
+(|ExponentialExpansion| R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-115))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-117))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-329)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-188))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -259) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -240) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-257))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-115)))))
-(-264 R)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #8=(|Integer|)))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #9=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (|%list| (QUOTE |InnerEvalable|) (QUOTE #3#) #10=(|%list| (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| #2# (|%list| (QUOTE |Evalable|) #10#)) (|HasCategory| #2# (|%list| (QUOTE |Eltable|) #10# #10#)) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) #11=(AND (|HasCategory| $ #5#) #1#) (OR #11# #4#))
+(|Expression| R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-3994 OR (-11 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) ((-3997 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496)))
-((OR (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-18))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-11 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-18)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-22)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
-(-265 R S)
+((|unitsKnown| OR (AND (|has| |#1| #1=(|IntegralDomain|)) (OR #2=(|has| |#1| (|Ring|)) #3=(|has| |#1| (|Group|)))) #2# #3#) (|leftUnitary| |has| |#1| . #4=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #4#) ((|commutative| "*") |has| |#1| . #5=(#1#)) (|noZeroDivisors| |has| |#1| . #5#) (|canonicalUnitNormal| |has| |#1| . #5#) (|canonicalsClosed| |has| |#1| . #5#))
+((OR #1=(AND #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #3=(|HasCategory| |#1| #4=(QUOTE (|RetractableTo| #5=(|Integer|))))) #6=(|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #5#))))) #2# (OR #2# #7=(|HasCategory| |#1| #8=(QUOTE (|Ring|)))) #7# #9=(|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR #2# #6#) #10=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #11=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #12=(|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (OR #10# #7#) (OR (AND #11# #13=(|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #5#)))) (AND #12# #13#) (AND #10# #13#) (AND #2# #13#) #14=(AND #13# #7#)) (OR #15=(|HasCategory| |#1| (QUOTE (|Group|))) #16=(|HasCategory| |#1| (QUOTE (|SemiGroup|)))) #15# (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #3# #7#) #3# (|HasCategory| |#1| (QUOTE (|PatternMatchable| #17=(|Float|)))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #5#))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #17#)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #5#)))) #1# (OR #9# #18=(|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) #11# #12# #10# #2# #7#) (OR #9# #11# #12# #10# #2# #7#) (OR #11# #12# #10# #2# #7#) (AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) #2#) (OR #15# #2#) #14# (OR #14# #9#) (OR #14# #18# #16#) (OR #14# #18#) (OR #15# #7#) (OR (AND #2# #6#) #1#) #18# #16# #6# (|HasCategory| $ #8#) (|HasCategory| $ #4#))
+(|ExpressionFunctions2| R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-266 R FE)
+(|ExpressionToUnivariatePowerSeries| R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-267 R -3095)
+(|ExpressionSpaceODESolver| R F)
((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
-(-268)
+(|ExpressionTubePlot|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-269 FE |var| |cen|)
+(|ExponentialOfUnivariatePuiseuxSeries| FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-270 M)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #5# #4#) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #6=(|Symbol|)))) #7=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #8=(|devaluate| |#1|) #9=(|%list| (QUOTE |Fraction|) (QUOTE #3#)) #8#)))) #7# (|HasCategory| #2# (QUOTE (|SemiGroup|))) #10=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #5# #10# #4#) (OR #10# #4#) (AND #11=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #8# #8# #9#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #8# #12=(QUOTE #6#))))) #11# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #3#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #8# #8# #12#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #12#) #8#))))))
+(|FactoredFunctions| M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-271 E OV R P)
+(|FactoringUtilities| E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-272 S)
+(|FreeAbelianGroup| S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717))))
-(-273 S E)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedAbelianMonoid|))))
+(|FreeAbelianMonoidCategory| S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-274 S)
+(|FreeAbelianMonoid| S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-695) (QUOTE (-717))))
-(-275 S R E)
+((|HasCategory| (|NonNegativeInteger|) (QUOTE (|OrderedAbelianMonoid|))))
+(|FiniteAbelianMonoidRing&| S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))))
-(-276 R E)
+((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))))
+(|FiniteAbelianMonoidRing| R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-277 S)
+(|FlexibleArray| S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-278 S -3095)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# (AND #7# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #8# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #9#))
+(|FiniteAlgebraicExtensionField&| S F)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))))
-(-279 -3095)
+((|HasCategory| |#2| (QUOTE (|Finite|))))
+(|FiniteAlgebraicExtensionField| F)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-280 E)
+(|FourierComponent| E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-281)
+(|FunctorData|)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-282 -3095 UP UPUP R)
+(|FiniteDivisor| F UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-283 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(|FiniteDivisorFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-284 S -3095 UP UPUP R)
+(|FiniteDivisorCategory&| S F UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-285 -3095 UP UPUP R)
+(|FiniteDivisorCategory| F UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-286 S R)
+(|FullyEvalableOver&| S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-287 R)
+((|HasCategory| |#2| (|%list| (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) #1=(|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #1#)) (|HasCategory| |#2| (|%list| (QUOTE |Eltable|) #1# #1#)))
+(|FullyEvalableOver| R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")))
NIL
NIL
-(-288 |p| |n|)
+(|FiniteField| |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-115))) (|HasCategory| (-818 |#1|) (QUOTE (-319)))) (|HasCategory| (-818 |#1|) (QUOTE (-117))) (|HasCategory| (-818 |#1|) (QUOTE (-319))) (|HasCategory| (-818 |#1|) (QUOTE (-115))))
-(-289 S -3095 UP UPUP)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| #2=(|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) #3=(|HasCategory| #2# (QUOTE (|Finite|)))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) #3# #1#)
+(|FunctionFieldCategory&| S F UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-311))))
-(-290 -3095 UP UPUP)
+((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Field|))))
+(|FunctionFieldCategory| F UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-3990 |has| (-349 |#2|) (-311)) (-3995 |has| (-349 |#2|) (-311)) (-3989 |has| (-349 |#2|) (-311)) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| |has| (|Fraction| |#2|) . #1=((|Field|))) (|canonicalUnitNormal| |has| (|Fraction| |#2|) . #1#) (|canonicalsClosed| |has| (|Fraction| |#2|) . #1#) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-291 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(|FunctionFieldCategoryFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-292 |p| |extdeg|)
+(|FiniteFieldCyclicGroup| |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-115))) (|HasCategory| (-818 |#1|) (QUOTE (-319)))) (|HasCategory| (-818 |#1|) (QUOTE (-117))) (|HasCategory| (-818 |#1|) (QUOTE (-319))) (|HasCategory| (-818 |#1|) (QUOTE (-115))))
-(-293 GF |defpol|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| #2=(|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) #3=(|HasCategory| #2# (QUOTE (|Finite|)))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) #3# #1#)
+(|FiniteFieldCyclicGroupExtensionByPolynomial| GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-294 GF |extdeg|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FiniteFieldCyclicGroupExtension| GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-295 GF)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FiniteFieldFunctions| GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-296 F1 GF F2)
+(|FiniteFieldHomomorphisms| F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-297 S)
+(|FiniteFieldCategory&| S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-298)
+(|FiniteFieldCategory|)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-299 R UP -3095)
+(|FunctionFieldIntegralBasis| R UP F)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-300 |p| |extdeg|)
+(|FiniteFieldNormalBasis| |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-115))) (|HasCategory| (-818 |#1|) (QUOTE (-319)))) (|HasCategory| (-818 |#1|) (QUOTE (-117))) (|HasCategory| (-818 |#1|) (QUOTE (-319))) (|HasCategory| (-818 |#1|) (QUOTE (-115))))
-(-301 GF |uni|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| #2=(|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) #3=(|HasCategory| #2# (QUOTE (|Finite|)))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) #3# #1#)
+(|FiniteFieldNormalBasisExtensionByPolynomial| GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-302 GF |extdeg|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FiniteFieldNormalBasisExtension| GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-303 GF |defpol|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FiniteFieldExtensionByPolynomial| GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-304 GF)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FiniteFieldPolynomialPackage| GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-305 -3095 GF)
+(|FiniteFieldPolynomialPackage2| F GF)
((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-306 -3095 FP FPP)
+(|FiniteFieldSolveLinearPolynomialEquation| F FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-307 GF |n|)
+(|FiniteFieldExtension| GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-115))))
-(-308 R |ls|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) #2=(|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #2# #1#)
+(|FGLMIfCanPackage| R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
NIL
NIL
-(-309 S)
+(|FreeGroup| S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-310 S)
+(|Field&| S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-311)
+(|Field|)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-312 S)
+(|File| S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-313 |Name| S)
+(|FileCategory| |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-314 S R)
+(|FiniteRankNonAssociativeAlgebra&| S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-496))))
-(-315 R)
+((|HasCategory| |#2| (QUOTE (|IntegralDomain|))))
+(|FiniteRankNonAssociativeAlgebra| R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
+((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-316 A S)
+(|FiniteAggregate&| A S)
((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\spad{p(x)} is \\spad{true},{} and \\spad{\"failed\"} otherwise.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-69))))
-(-317 S)
+((|HasCategory| |#2| (QUOTE (|BasicType|))))
+(|FiniteAggregate| S)
((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\spad{p(x)} is \\spad{true},{} and \\spad{\"failed\"} otherwise.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
NIL
NIL
-(-318 S)
+(|Finite&| S)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-319)
+(|Finite|)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-320 S R UP)
+(|FiniteRankAlgebra&| S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-311))))
-(-321 R UP)
+((|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Field|))))
+(|FiniteRankAlgebra| R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-322 A S)
+(|FiniteLinearAggregate&| A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))))
-(-323 S)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|BasicType|))))
+(|FiniteLinearAggregate| S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
NIL
-(-324 S A R B)
+(|FiniteLinearAggregateFunctions2| S A R B)
((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-325 |VarSet| R)
+(|FreeLieAlgebra| |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-326 S V)
+(|FiniteLinearAggregateSort| S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-327 S R)
+(|FullyLinearlyExplicitRingOver&| S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (QUOTE (-581 (-485)))))
-(-328 R)
+((|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| (|Integer|)))))
+(|FullyLinearlyExplicitRingOver| R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
-(-329)
+(|Float|)
((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3981 . T) (-3988 . T) (-3773 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|arbitraryExponent| . T) (|arbitraryPrecision| . T) (|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-330 |Par|)
+(|FloatingComplexPackage| |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-331 |Par|)
+(|FloatingRealPackage| |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-332 R S)
+(|FreeModule| R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-333 R S)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|FreeModule1| R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-145))))
-(-334 R |Basis|)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))))
+(|FreeModuleCat| R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-335 S)
+(|FreeMonoidCategory| S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-336 S)
+(|FreeMonoid| S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-337)
+((|HasCategory| |#1| (QUOTE (|OrderedSet|))))
+(|FileName|)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-338)
+(|FileNameCategory|)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-339 |n| |class| R)
+(|FreeNilpotentLie| |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-340 -3095 UP UPUP R)
+(|FindOrderFinite| F UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-341 -3095 UP)
+(|FullPartialFractionExpansion| F UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-342 R)
+(|FullyPatternMatchable| R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-343 S)
+(|FieldOfPrimeCharacteristic&| S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-344)
+(|FieldOfPrimeCharacteristic|)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-345 S)
+(|FloatingPointSystem&| S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#1| (QUOTE -3988)))
-(-346)
+((|HasAttribute| |#1| (QUOTE |arbitraryExponent|)) (|HasAttribute| |#1| (QUOTE |arbitraryPrecision|)))
+(|FloatingPointSystem|)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3773 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-347 R)
+(|Factored| R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-456 (-1091) $))) (|HasCategory| |#1| (QUOTE (-259 $))) (|HasCategory| |#1| (QUOTE (-240 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392))))
-(-348 R S)
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|InnerEvalable| #1=(|Symbol|) $))) (|HasCategory| |#1| (QUOTE (|Evalable| $))) (|HasCategory| |#1| (QUOTE (|Eltable| $ $))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) #2=(|HasCategory| |#1| (QUOTE (|UniqueFactorizationDomain|))) (OR #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #2#) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #4=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #4#))) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE #1#) #5=(|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #5#)) (|HasCategory| |#1| (|%list| (QUOTE |Eltable|) #5# #5#)) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #1#))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #1#))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) #3#)
+(|FactoredFunctions2| R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-349 S)
+(|Fraction| S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-3984 -11 (|has| |#1| (-6 -3995)) (|has| |#1| (-392)) (|has| |#1| (-6 -3984))) (-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-484))) (-11 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392)))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-350 A B)
+((|canonical| AND (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (ATTRIBUTE |canonical|))) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #2=(|Symbol|)))) #3=(|HasCategory| |#1| #4=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) #5=(|HasCategory| |#1| (QUOTE (|OrderedIntegralDomain|))) #6=(|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR #5# #6#) (|HasCategory| |#1| (QUOTE (|RetractableTo| #7=(|Integer|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #7#))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #7#)))) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #7#))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #2#))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #2#))) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE #2#) #9=(|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #9#)) (|HasCategory| |#1| (|%list| (QUOTE |Eltable|) #9# #9#)) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (AND (|HasAttribute| |#1| (QUOTE |canonical|)) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasCategory| |#1| (QUOTE (|GcdDomain|)))) #10=(AND #1# (|HasCategory| $ #4#)) (OR #10# #3#))
+(|FractionFunctions2| A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-351 S R UP)
+(|FramedAlgebra&| S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-352 R UP)
+(|FramedAlgebra| R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-353 A S)
+(|FullyRetractableTo&| A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))
-(-354 S)
+((|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #1#))))
+(|FullyRetractableTo| S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-355 R -3095 UP A)
+(|FractionalIdeal| R F UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-356 R1 F1 U1 A1 R2 F2 U2 A2)
+(|FractionalIdealFunctions2| R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-357 R -3095 UP A |ibasis|)
+(|FramedModule| R F UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|))))
-(-358 AR R AS S)
+((|HasCategory| |#4| (|%list| (QUOTE |RetractableTo|) (|devaluate| |#2|))))
+(|FramedNonAssociativeAlgebraFunctions2| AR R AS S)
((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-359 S R)
+(|FramedNonAssociativeAlgebra&| S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))))
-(-360 R)
+((|HasCategory| |#2| (QUOTE (|Field|))))
+(|FramedNonAssociativeAlgebra| R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
+((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-361 R)
+(|FactoredFunctionUtilities| R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-362 S R)
+(|FunctionSpace&| S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
-(-363 R)
+((|HasCategory| |#2| (QUOTE (|RetractableTo| (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|SemiGroup|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))))
+(|FunctionSpace| R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) ((-3997 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496)))
+((|unitsKnown| OR (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) ((|commutative| "*") |has| |#1| . #2=((|IntegralDomain|))) (|noZeroDivisors| |has| |#1| . #2#) (|canonicalUnitNormal| |has| |#1| . #2#) (|canonicalsClosed| |has| |#1| . #2#))
NIL
-(-364 R A S B)
+(|FunctionSpaceFunctions2| R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-365 R FE |x| |cen|)
+(|FunctionSpaceToExponentialExpansion| R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-366 R FE |Expon| UPS TRAN |x|)
+(|FunctionSpaceToUnivariatePowerSeries| R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-367 A S)
+(|FiniteSetAggregate&| A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-319))))
-(-368 S)
+((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|))))
+(|FiniteSetAggregate| S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-3987 . T))
+((|partiallyOrderedSet| . T))
NIL
-(-369 S A R B)
+(|FiniteSetAggregateFunctions2| S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-370 R -3095)
+(|FunctionSpaceComplexIntegration| R F)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-371 R E)
+(|FourierSeries| R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-3984 -11 (|has| |#1| (-6 -3984)) (|has| |#2| (-6 -3984))) (-3991 . T) (-3992 . T) (-3994 . T))
-((-11 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#2| (QUOTE -3984))))
-(-372 R -3095)
+((|canonical| AND (|has| |#1| #1=(ATTRIBUTE |canonical|)) (|has| |#2| #1#)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((AND (|HasAttribute| |#1| #1=(QUOTE |canonical|)) (|HasAttribute| |#2| #1#)))
+(|FunctionSpaceIntegration| R F)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-373 R -3095)
+(|FunctionalSpecialFunction| R F)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-374 R -3095)
+(|FunctionSpacePrimitiveElement| R F)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-24))))
-(-375 R -3095)
+((|HasCategory| |#2| (QUOTE (|AlgebraicallyClosedField|))))
+(|FunctionSpaceReduce| R F)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-376)
+(|FortranScalarType|)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-377 R -3095 UP)
+(|FunctionSpaceUnivariatePolynomialFactor| R F UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-45)))))
-(-378)
+((|HasCategory| |#2| (QUOTE (|RetractableTo| (|AlgebraicNumber|)))))
+(|FortranType|)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-379 |f|)
+(|FunctionCalled| |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-380 S)
+(|Functorial| S)
((|constructor| (NIL "This category describes the class of structural objects that behave functorially in distinguished class of components.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,x)} returns an object with similar shape and structure as \\spad{x},{} where all \\spad{S}-items \\spad{s} in \\spad{x} have been replacement elementwise by \\spad{f s}.")))
NIL
NIL
-(-381)
+(|FunctionDescriptor|)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-382 UP)
+(|GaloisGroupFactorizer| UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-383 R UP -3095)
+(|GaloisGroupFactorizationUtilities| R UP F)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-384 R UP)
+(|GaloisGroupPolynomialUtilities| R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-385 R)
+(|GaloisGroupUtilities| R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-346))))
-(-386)
+((|HasCategory| |#1| (QUOTE (|FloatingPointSystem|))))
+(|GaussianFactorizationPackage|)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-387 |Dom| |Expon| |VarSet| |Dpol|)
+(|GroebnerPackage| |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
-(-388 |Dom| |Expon| |VarSet| |Dpol|)
+((|HasCategory| |#1| (QUOTE (|Field|))))
+(|EuclideanGroebnerBasisPackage| |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-389 |Dom| |Expon| |VarSet| |Dpol|)
+(|GroebnerFactorizationPackage| |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-390 |Dom| |Expon| |VarSet| |Dpol|)
+(|GroebnerInternalPackage| |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-391 S)
+(|GcdDomain&| S)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-392)
+(|GcdDomain|)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-393 R |n| |ls| |gamma|)
+(|GenericNonAssociativeAlgebra| R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-3994 |has| (-349 (-858 |#1|)) (-496)) (-3992 . T) (-3991 . T))
-((|HasCategory| (-349 (-858 |#1|)) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-349 (-858 |#1|)) (QUOTE (-496))))
-(-394 |vl| R E)
+((|unitsKnown| |has| (|Fraction| (|Polynomial| |#1|)) (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| #1=(|Fraction| (|Polynomial| |#1|)) (QUOTE (|Field|))) (|HasCategory| |#1| #2=(QUOTE (|IntegralDomain|))) (|HasCategory| #1# #2#))
+(|GeneralDistributedMultivariatePolynomial| |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-145)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-496)))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-395 R BP)
+(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#2| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#2| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#2| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|OrderedVariableList| |#1|) #5#)) (AND (|HasCategory| |#2| #8=(QUOTE (|PatternMatchable| #9=(|Integer|)))) (|HasCategory| #7# #8#)) (AND (|HasCategory| |#2| #10=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #10#)) (AND (|HasCategory| |#2| #11=(QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#2| #12=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #12#)) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #9#))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) #13=(|HasCategory| |#2| #14=(QUOTE (|CharacteristicNonZero|))) #15=(|HasCategory| |#2| (QUOTE (|Algebra| #16=(|Fraction| #9#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #9#))) (OR #15# #17=(|HasCategory| |#2| (QUOTE (|RetractableTo| #16#)))) #17# (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #14#)) (OR #18# #13#))
+(|GenExEuclid| R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
NIL
-(-396 OV E S R P)
+(|GeneralizedMultivariateFactorize| OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-397 E OV R P)
+(|GeneralPolynomialGcdPackage| E OV R P)
((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-398 R)
+(|GenUFactorize| R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-399 R FE)
+(|GenerateUnivariatePowerSeries| R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-400 RP TP)
+(|GeneralHenselPackage| RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-401 |vl| R IS E |ff| P)
+(|GeneralModulePolynomial| |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-402 E V R P Q)
+(|GosperSummationMethod| E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-403 R E |VarSet| P)
+(|GeneralPolynomialSet| R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
NIL
-((-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|))))
-(-404 S R E)
+((AND #1=(|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|GradedAlgebra&| S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-405 R E)
+(|GradedAlgebra| R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-406)
+(|GrayCode|)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-407)
+(|GraphicsDefaults|)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-408)
+(|GraphImage|)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-409 S R E)
+(|GradedModule&| S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-410 R E)
+(|GradedModule| R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-411 |lv| -3095 R)
+(|GroebnerSolve| |lv| F R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-412 S)
+(|Group&| S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-413)
+(|Group|)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-414 |Coef| |var| |cen|)
+(|GeneralUnivariatePowerSeries| |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-415 |Key| |Entry| |Tbl| |dent|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #5# #4#) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #6=(|Symbol|)))) #7=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #8=(|devaluate| |#1|) #9=(|%list| (QUOTE |Fraction|) (QUOTE #3#)) #8#)))) #7# (|HasCategory| #2# (QUOTE (|SemiGroup|))) #10=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #5# #10# #4#) (OR #10# #4#) (AND #11=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #8# #8# #9#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #8# #12=(QUOTE #6#))))) #11# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #3#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #8# #8# #12#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #12#) #8#))))))
+(|GeneralSparseTable| |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-416 R E V P)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|GeneralTriangularSet| R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
NIL
-((-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|))))
-(-417)
+((AND #1=(|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|Pi|)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-418)
+(|HasAst|)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-419 |Key| |Entry| |hashfn|)
+(|HashTable| |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-420)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|HallBasis|)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-421 |vl| R)
+(|HomogeneousDistributedMultivariatePolynomial| |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-145)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-496)))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-422 -2624 S)
+(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#2| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#2| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#2| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|OrderedVariableList| |#1|) #5#)) (AND (|HasCategory| |#2| #8=(QUOTE (|PatternMatchable| #9=(|Integer|)))) (|HasCategory| #7# #8#)) (AND (|HasCategory| |#2| #10=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #10#)) (AND (|HasCategory| |#2| #11=(QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#2| #12=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #12#)) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #9#))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) #13=(|HasCategory| |#2| #14=(QUOTE (|CharacteristicNonZero|))) #15=(|HasCategory| |#2| (QUOTE (|Algebra| #16=(|Fraction| #9#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #9#))) (OR #15# #17=(|HasCategory| |#2| (QUOTE (|RetractableTo| #16#)))) #17# (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #14#)) (OR #18# #13#))
+(|HomogeneousDirectProduct| |dim| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-189))) (OR (|HasCategory| |#2| (QUOTE (-189))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-22))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-423)
+((|rightUnitary| |has| |#2| . #1=((|Ring|))) (|leftUnitary| |has| |#2| . #1#) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)))
+((OR (AND #1=(|HasCategory| |#2| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#2|)))) (AND #4=(|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) #2#) (AND #5=(|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) #2#) (AND #6=(|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) #2#) (AND #7=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #2#) (AND #8=(|HasCategory| |#2| (QUOTE (|DifferentialRing|))) #2#) (AND #9=(|HasCategory| |#2| (QUOTE (|Field|))) #2#) (AND #10=(|HasCategory| |#2| (QUOTE (|Finite|))) #2#) (AND #11=(|HasCategory| |#2| (QUOTE (|Monoid|))) #2#) (AND #12=(|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #13=(|HasCategory| |#2| #14=(QUOTE (|OrderedSet|))) #2#) (AND #15=(|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #16=(|Symbol|)))) #2#) (AND #17=(|HasCategory| |#2| (QUOTE (|Ring|))) #2#) #18=(AND #19=(|HasCategory| |#2| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))) #9# (OR #7# #9# #17#) (OR #7# #9#) #1# #17# #11# #12# (OR #12# #13#) #13# #10# (OR (AND #7# #20=(|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #21=(|Integer|))))) (AND #8# #20#) (AND #9# #20#) (AND #20# #15#) #22=(AND #20# #17#)) #15# (OR #1# #4# #5# #23=(|HasCategory| |#2| (QUOTE (|BasicType|))) #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #15# #17#) (OR #1# #4# #6# #7# #8# #9# #15# #17#) (OR #1# #6# #7# #8# #9# #15# #17#) (OR #1# #7# #8# #9# #15# #17#) (OR #8# #15# #17#) #8# (OR #8# #24=(AND (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) #17#)) (OR #25=(AND (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #16#))) #17#) #15#) #19# (OR (AND #1# #26=(|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #21#))))) (AND #4# #26#) (AND #5# #26#) (AND #6# #26#) (AND #7# #26#) (AND #8# #26#) (AND #9# #26#) (AND #10# #26#) (AND #11# #26#) (AND #12# #26#) (AND #13# #26#) (AND #15# #26#) (AND #26# #17#) #27=(AND #26# #19#)) (OR #28=(AND #1# #29=(|HasCategory| |#2| (QUOTE (|RetractableTo| #21#)))) #30=(AND #4# #29#) #31=(AND #5# #29#) #32=(AND #6# #29#) #33=(AND #7# #29#) #34=(AND #8# #29#) #35=(AND #12# #29#) #36=(AND #13# #29#) #37=(AND #15# #29#) #38=(AND #29# #19#) #39=(AND #9# #29#) #40=(AND #10# #29#) #41=(AND #11# #29#) #17#) (OR #28# #30# #31# #32# #33# #34# #35# #36# #37# #38# #39# #40# #41# (AND #29# #17#)) #23# (|HasCategory| #21# #14#) #22# #24# #25# (OR #38# #17#) #38# #27# (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (AND #8# #17#) (AND #15# #17#) #7# #4# #6# #5# #18# (AND #23# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|HeadAst|)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-424 S)
+(|Heap| S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-425 -3095 UP UPUP R)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|HyperellipticFiniteDivisor| F UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-426 BP)
+(|HeuGcd| BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}.")))
NIL
NIL
-(-427)
+(|HexadecimalExpansion|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-117))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-329)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-188))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-259 (-485)))) (|HasCategory| (-485) (QUOTE (-240 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-257))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-115)))))
-(-428 A S)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #2#))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #2#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #2#)))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (QUOTE (|InnerEvalable| #3# #2#))) (|HasCategory| #2# (QUOTE (|Evalable| #2#))) (|HasCategory| #2# (QUOTE (|Eltable| #2# #2#))) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #2#))) #9=(AND (|HasCategory| $ #5#) #1#) (OR #9# #4#))
+(|HomogeneousAggregate&| A S)
((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
-(-429 S)
+((|HasCategory| |#2| (|%list| (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|BasicType|))) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))))
+(|HomogeneousAggregate| S)
((|constructor| (NIL "\\indented{2}{A homogeneous aggregate is an aggregate of elements all of the} \\indented{2}{same type,{} and is functorial in stored elements..} In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates.")))
NIL
NIL
-(-430 S)
+(|HomotopicTo| S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-431)
+(|Hostname|)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'.")))
NIL
NIL
-(-432 S)
+(|HyperbolicFunctionCategory&| S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-433)
+(|HyperbolicFunctionCategory|)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-434 -3095 UP |AlExt| |AlPol|)
+(|InnerAlgFactor| F UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-435)
+(|InnerAlgebraicNumber|)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
-(-436 S |mn|)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (QUOTE (|RetractableTo| (|Integer|)))))
+(|IndexedOneDimensionalArray| S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-437 R |Row| |Col|)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# (AND #7# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #8# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #9#))
+(|InnerTwoDimensionalArray| R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-438 K R UP)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|ChineseRemainderToolsForIntegralBases| K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-439 R UP -3095)
+(|IntegralBasisTools| R UP F)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-440 |mn|)
+(|IndexedBits| |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")))
NIL
-((-11 (|HasCategory| (-82) (QUOTE (-259 (-82)))) (|HasCategory| (-82) (QUOTE (-1014)))) (|HasCategory| (-82) (QUOTE (-554 (-474)))) (|HasCategory| (-82) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-82) (QUOTE (-69))) (|HasCategory| (-82) (QUOTE (-553 (-773)))) (|HasCategory| (-82) (QUOTE (-1014))) (-11 (|HasCategory| $ (QUOTE (-1036 (-82)))) (|HasCategory| (-82) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-317 (-82)))) (-11 (|HasCategory| $ (QUOTE (-317 (-82)))) (|HasCategory| (-82) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-1036 (-82)))))
-(-441 K R UP L)
+((AND (|HasCategory| #1=(|Boolean|) (QUOTE (|Evalable| #1#))) #2=(|HasCategory| #1# (QUOTE (|SetCategory|)))) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| #1# #4=(QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) #4#) #5=(|HasCategory| #1# (QUOTE (|BasicType|))) (|HasCategory| #1# (QUOTE (|CoercibleTo| (|OutputForm|)))) #2# (AND #6=(|HasCategory| $ (QUOTE (|ShallowlyMutableAggregate| #1#))) #3#) #7=(|HasCategory| $ (QUOTE (|FiniteAggregate| #1#))) (AND #7# #5#) #6#)
+(|IntegralBasisPolynomialTools| K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-442)
+(|IndexCard|)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-443 R Q A B)
+(|InnerCommonDenominator| R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-444 -3095 |Expon| |VarSet| |DPoly|)
+(|PolynomialIdeals| F |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (QUOTE (-554 (-1091)))))
-(-445 |vl| |nv|)
+((|HasCategory| |#3| (QUOTE (|ConvertibleTo| (|Symbol|)))))
+(|IdealDecompositionPackage| |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-446 T$)
+(|IdempotentOperatorCategory| T$)
((|constructor| (NIL "This is the category of all domains that implement idempotent operations.")))
-(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3059 (|f| |x| |x|) |x|))) . T))
+(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (= (|f| |x| |x|) |x|))) . T))
NIL
-(-447)
+(|Identifier|)
((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-448 A S)
+(|IndexedDirectProductAbelianGroup| A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-449 A S)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|IndexedDirectProductAbelianMonoid| A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-450 A S)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|IndexedDirectProductCategory| A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")))
NIL
NIL
-(-451 A S)
+(|IndexedDirectProductObject| A S)
((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-452 A S)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|IndexedDirectProductOrderedAbelianMonoid| A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-453 A S)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|IndexedDirectProductOrderedAbelianMonoidSup| A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-454 A S)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #1#)))
+(|IndexedProductTerm| A S)
((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}.")))
NIL
NIL
-(-455 S A B)
+(|InnerEvalable&| S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-456 A B)
+(|InnerEvalable| A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-457 S E |un|)
+(|InnerFreeAbelianMonoid| S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-717))))
-(-458 S |mn|)
+((|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoid|))))
+(|IndexedFlexibleArray| S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-459)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# (AND #7# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #8# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #9#))
+(|IfAst|)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-460 |p| |n|)
+(|InnerFiniteField| |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-518 |#1|) (QUOTE (-115))) (|HasCategory| (-518 |#1|) (QUOTE (-319)))) (|HasCategory| (-518 |#1|) (QUOTE (-117))) (|HasCategory| (-518 |#1|) (QUOTE (-319))) (|HasCategory| (-518 |#1|) (QUOTE (-115))))
-(-461 R |Row| |Col| M)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| #2=(|InnerPrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) #3=(|HasCategory| #2# (QUOTE (|Finite|)))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) #3# #1#)
+(|InnerMatrixLinearAlgebraFunctions| R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-462 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasCategory| |#3| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#1|))))
+(|InnerMatrixQuotientFieldFunctions| R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasCategory| |#7| (|%list| (QUOTE -1036) (|devaluate| |#5|))))
-(-463)
+((|HasCategory| |#7| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#5|))))
+(|ImportAst|)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-464)
+(|InAst|)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-465 S)
+(|InputByteConduit&| S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-466)
+(|InputByteConduit|)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-467 GF)
+(|InnerNormalBasisFieldFunctions| GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF.")))
NIL
NIL
-(-468)
+(|InputBinaryFile|)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-469 R)
+(|IncrementingMaps| R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-470 |Varset|)
+(|IndexedExponents| |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-695) (QUOTE (-1014)))))
-(-471 K -3095 |Par|)
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| (|NonNegativeInteger|) #1#)))
+(|InnerNumericEigenPackage| K F |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-472)
+(|InetClientStreamSocket|)
NIL
NIL
NIL
-(-473)
+(|Infinity|)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-474)
+(|InputForm|)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-475 R)
+(|InputFormFunctions1| R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-476 |Coef| UTS)
+(|InfiniteProductCharacteristicZero| |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-477 K -3095 |Par|)
+(|InnerNumericFloatSolvePackage| K F |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-478 R BP |pMod| |nextMod|)
+(|InnerModularGcd| R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-479 OV E R P)
+(|InnerMultFact| OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-480 K UP |Coef| UTS)
+(|InfiniteProductFiniteField| K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-481 |Coef| UTS)
+(|InfiniteProductPrimeField| |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-482 R UP)
+(|InnerPolySign| R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-483 S)
+(|IntegerNumberSystem&| S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-484)
+(|IntegerNumberSystem|)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-3995 . T) (-3996 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-485)
+(|Integer|)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-486)
+(|Int16|)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-487)
+(|Int32|)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-488)
+(|Int64|)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-489)
+(|Int8|)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-490 |Key| |Entry| |addDom|)
+(|InnerTable| |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-491 R -3095)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|AlgebraicIntegration| R F)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-492 R0 -3095 UP UPUP R)
+(|AlgebraicIntegrate| R0 F UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-493)
+(|IntegerBits|)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-494 R)
+(|IntervalCategory| R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3773 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-495 S)
+(|IntegralDomain&| S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-496)
+(|IntegralDomain|)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-497 R -3095)
+(|ElementaryIntegration| R F)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-498 I)
+(|IntegerFactorizationPackage| I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-499 R -3095 L)
+(|GenusZeroIntegration| R F L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
-(-500)
+((|HasCategory| |#3| (|%list| (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|))))
+(|IntegerNumberTheoryFunctions|)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-501 -3095 UP UPUP R)
+(|AlgebraicHermiteIntegration| F UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-502 -3095 UP)
+(|TranscendentalHermiteIntegration| F UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-503 R -3095 L)
+(|PureAlgebraicIntegration| R F L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
-(-504 R -3095)
+((|HasCategory| |#3| (|%list| (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|))))
+(|PatternMatchIntegration| R F)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570)))))
-(-505 -3095 UP)
+((AND #1=(|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|PatternMatchable| #2#))) (|HasCategory| |#2| (QUOTE (|SpecialFunctionCategory|)))) (AND #1# #3# (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|)))))
+(|RationalIntegration| F UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-506 S)
+(|IntegerRetractions| S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-507 -3095)
+(|RationalFunctionIntegration| F)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-508 R)
+(|Interval| R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3773 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-509)
+(|IntegerSolveLinearPolynomialEquation|)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-510 R -3095)
+(|IntegrationTools| R F)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-496))))
-(-511 -3095 UP)
+((AND (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| #1=(|Integer|))))) #2=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PatternMatchable| #1#))) #3=(|HasCategory| |#2| (QUOTE (|ElementaryFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Symbol|))))) (AND #2# #3#) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|TranscendentalIntegration| F UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-512 R -3095)
+(|InverseLaplaceTransform| R F)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-513)
+(|InputOutputByteConduit|)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-514)
+(|InputOutputBinaryFile|)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file.")))
NIL
NIL
-(-515)
+(|IOMode|)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-516)
+(|IP4Address|)
((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-517 |p| |unBalanced?|)
+(|InnerPAdicInteger| |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-518 |p|)
+(|InnerPrimeField| |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-117))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| $ (QUOTE (-319))))
-(-519)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|))))
+(|InternalPrintPackage|)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-520 -3095)
+(|IntegrationResult| F)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))))
-(-521 E -3095)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #1=(|Symbol|)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #1#))))
+(|IntegrationResultFunctions2| E F)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-522 R -3095)
+(|IntegrationResultToFunction| R F)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
-(-523)
+(|InternalRepresentationForm|)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-524 I)
+(|IntegerRoots| I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-525 GF)
+(|IrredPolyOverFiniteField| GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-526 R)
+(|IntegrationResultRFToFunction| R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-117))))
-(-527)
+((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))))
+(|IrrRepSymNatPackage|)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-528 R E V P TS)
+(|InternalRationalUnivariateRepresentationPackage| R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-529)
+(|IsAst|)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-530 E V R P)
+(|InnerPolySum| E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-531 |Coef|)
+(|InnerSparseUnivariatePowerSeries| |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))))
-(-532 |Coef|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #1=(|Integer|))))) #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR #3=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #2#) #3# (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #4=(|Symbol|)))) #5=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #6=(|devaluate| |#1|) #7=(QUOTE #1#) #6#)))) #5# (|HasCategory| #1# (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND #8=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #6# #6# #7#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #6# (QUOTE #4#))))) #8#)
+(|InnerTaylorSeries| |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-3997 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-496))))
-(-533)
+(((|commutative| "*") |has| |#1| . #1=((|IntegralDomain|))) (|noZeroDivisors| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|InternalTypeForm|)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-534 A B)
+(|InfiniteTupleFunctions2| A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-535 A B C)
+(|InfiniteTupleFunctions3| A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-536 R -3095 FG)
+(|InnerTrigonometricManipulations| R F FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-537 S)
+(|InfiniteTuple| S)
((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")))
NIL
NIL
-(-538 S |Index| |Entry|)
+(|IndexedAggregate&| S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-69))))
-(-539 |Index| |Entry|)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) #1=(|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (|%list| (QUOTE |FiniteAggregate|) #1#)) (|HasCategory| |#3| (QUOTE (|BasicType|))))
+(|IndexedAggregate| |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-540)
+(|JoinAst|)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-541 R A)
+(|AssociatedJordanAlgebra| R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-3994 OR (-2565 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
-(-542)
+((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) #1=(|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) #1#)) (|leftUnitary| . T) (|rightUnitary| . T))
+((OR #1=(|HasCategory| |#2| (|%list| (QUOTE |FiniteRankNonAssociativeAlgebra|) #2=(|devaluate| |#1|))) #3=(|HasCategory| |#2| (|%list| (QUOTE |FramedNonAssociativeAlgebra|) #2#))) #3# (AND (|HasCategory| |#1| (QUOTE (|Field|))) #3#) (OR (AND #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (AND #4# #3#)) #1#)
+(|JVMBytecode|)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
NIL
-(-543)
+(|JVMClassFileAccess|)
((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
NIL
NIL
-(-544)
+(|JVMConstantTag|)
((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant.")))
NIL
NIL
-(-545)
+(|JVMFieldAccess|)
((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-546)
+(|JVMMethodAccess|)
((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-547)
+(|JVMOpcode|)
((|constructor| (NIL "This is the datatype for the JVM opcodes.")))
NIL
NIL
-(-548 |Entry|)
+(|KeyedAccessFile| |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69)))))
-(-549 S |Key| |Entry|)
+((AND (|HasCategory| #1=(|Record| #2=(|:| |key| #3=(|String|)) (|:| |entry| |#1|)) (|%list| #4=(QUOTE |Evalable|) #5=(|%list| (QUOTE |Record|) (QUOTE #2#) (|%list| (QUOTE |:|) (QUOTE |entry|) #6=(|devaluate| |#1|))))) #7=(|HasCategory| #1# #8=(QUOTE (|SetCategory|)))) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #9=(|HasCategory| |#1| #8#) (|HasCategory| |#1| (|%list| #4# #6#))) #10=(|HasCategory| |#1| #11=(QUOTE (|BasicType|))) (|HasCategory| #3# (QUOTE (|OrderedSet|))) #12=(|HasCategory| #1# #11#) #9# (|HasCategory| |#1| #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| #1# #13#) #7# (AND #10# (|HasCategory| $ (|%list| #14=(QUOTE |FiniteAggregate|) #6#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #6#)) #15=(|HasCategory| $ (|%list| #14# #5#)) (AND #15# #12#))
+(|KeyedDictionary&| S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-550 |Key| |Entry|)
+(|KeyedDictionary| |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-551 S)
+(|Kernel| S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))))
-(-552 R S)
+((|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| (|Float|))))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|Pattern| (|Integer|))))))
+(|KernelFunctions2| R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-553 S)
+(|CoercibleTo| S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-554 S)
+(|ConvertibleTo| S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-555 -3095 UP)
+(|Kovacic| F UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-556 S)
+(|CoercibleFrom| S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-557)
+(|KleeneTrivalentLogic|)
((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-558 S)
+(|ConvertibleFrom| S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-559 A R S)
+(|LocalAlgebra| A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-756))))
-(-560 S R)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))))
+(|LeftAlgebra&| S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-561 R)
+(|LeftAlgebra| R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-562 R -3095)
+(|LaplaceTransform| R F)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-563 R UP)
+(|LaurentPolynomial| R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-3992 . T) (-3991 . T) ((-3997 "*") . T) (-3990 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
-(-564 R E V P TS ST)
+((|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|noZeroDivisors| . T) (|unitsKnown| . T))
+((|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #1=(|Symbol|)))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #1#))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #2=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #2#))))
+(|LazardSetSolvingPackage| R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
NIL
-(-565 OV E Z P)
+(|LeadingCoefDetermination| OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-566)
+(|LetAst|)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-567 |VarSet| R |Order|)
+(|LieExponentials| |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-568 R |ls|)
+(|LexTriangularPackage| R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-569 R -3095)
+(|LiouvillianFunction| R F)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-570)
+(|LiouvillianFunctionCategory|)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-571 |lv| -3095)
+(|LinGroebnerPackage| |lv| F)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-572)
+(|Library|)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-1014)))) (OR (|HasCategory| (-48) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-1014)))) (OR (|HasCategory| (-48) (QUOTE (-69))) (|HasCategory| (-48) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-553 (-773)))) (|HasCategory| (-48) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-554 (-474)))) (-11 (|HasCategory| (-48) (QUOTE (-259 (-48)))) (|HasCategory| (-48) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-69))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-48) (QUOTE (-69))) (OR (|HasCategory| (-48) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-69)))) (|HasCategory| (-48) (QUOTE (-1014))) (|HasCategory| (-48) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-1014))) (-11 (|HasCategory| $ (QUOTE (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))))) (-11 (|HasCategory| $ (QUOTE (-317 (-48)))) (|HasCategory| (-48) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-1036 (-48)))))
-(-573 R A)
+((AND (|HasCategory| #1=(|Record| (|:| |key| #2=(|String|)) (|:| |entry| #3=(|Any|))) (QUOTE (|Evalable| #1#))) #4=(|HasCategory| #1# #5=(QUOTE (|SetCategory|)))) (OR #6=(|HasCategory| #3# #5#) #4#) (OR #7=(|HasCategory| #3# #8=(QUOTE (|BasicType|))) #6# #9=(|HasCategory| #1# #8#) #4#) (OR #10=(|HasCategory| #1# #11=(QUOTE (|CoercibleTo| (|OutputForm|)))) #12=(|HasCategory| #3# #11#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND (|HasCategory| #3# (QUOTE (|Evalable| #3#))) #6#) #9# (|HasCategory| #2# (QUOTE (|OrderedSet|))) #7# (OR #7# #9#) #6# #12# #10# #4# (AND #13=(|HasCategory| $ (QUOTE (|FiniteAggregate| #1#))) #9#) #13# (AND (|HasCategory| $ (QUOTE (|FiniteAggregate| #3#))) #7#) (|HasCategory| $ (QUOTE (|ShallowlyMutableAggregate| #3#))))
+(|AssociatedLieAlgebra| R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-3994 OR (-2565 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
-(-574 S R)
+((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) #1=(|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) #1#)) (|leftUnitary| . T) (|rightUnitary| . T))
+((OR #1=(|HasCategory| |#2| (|%list| (QUOTE |FiniteRankNonAssociativeAlgebra|) #2=(|devaluate| |#1|))) #3=(|HasCategory| |#2| (|%list| (QUOTE |FramedNonAssociativeAlgebra|) #2#))) #3# (AND (|HasCategory| |#1| (QUOTE (|Field|))) #3#) (OR (AND #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (AND #4# #3#)) #1#)
+(|LieAlgebra&| S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))))
-(-575 R)
+((|HasCategory| |#2| (QUOTE (|Field|))))
+(|LieAlgebra| R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-576 R FE)
+(|PowerSeriesLimitPackage| R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-577 R)
+(|RationalFunctionLimitPackage| R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-578 |vars|)
+(|LinearBasis| |vars|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis.")))
NIL
NIL
-(-579 S R)
+(|LinearDependence| S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2563 (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-311))))
-(-580 K B)
+((|not| #1=(|HasCategory| |#1| (QUOTE (|Field|)))) #1#)
+(|LinearElement| K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-3992 . T) (-3991 . T))
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014)))))
-(-581 R)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((AND (|HasCategory| |#1| #1=(QUOTE (|SetCategory|))) (|HasCategory| (|LinearBasis| |#2|) #1#)))
+(|LinearlyExplicitRingOver| R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-582 K B)
+(|LinearForm| K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-583 S)
+(|LinearSet| S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-584 S)
+(|List| S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-585 A B)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#)) (AND #7# #8#) (AND #1# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#))) #9#)
+(|ListFunctions2| A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-586 A B)
+(|ListToMap| A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-587 A B C)
+(|ListFunctions3| A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-588 T$)
+(|Literal| T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-589 S)
+(|LeftLinearSet| S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-590 S)
+(|ListMultiDictionary| S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-69))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))))
-(-591 R)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|LeftModule| R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-592 S E |un|)
+(|ListMonoidOps| S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-593 A S)
+(|LinearAggregate&| A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-594 S)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#2|))))
+(|LinearAggregate| S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-595 M R S)
+(|Localize| M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-715))))
-(-596 R -3095 L)
+((|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|OrderedAbelianGroup|))))
+(|ElementaryFunctionLODESolver| R F L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-597 A -2495)
+(|LinearOrdinaryDifferentialOperator| A |diff|)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-311))))
-(-598 A)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #1#))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|LinearOrdinaryDifferentialOperator1| A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-311))))
-(-599 A M)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #1#))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|LinearOrdinaryDifferentialOperator2| A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-311))))
-(-600 S A)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #1#))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|LinearOrdinaryDifferentialOperatorCategory&| S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))))
-(-601 A)
+((|HasCategory| |#2| (QUOTE (|Field|))))
+(|LinearOrdinaryDifferentialOperatorCategory| A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-602 -3095 UP)
+(|LinearOrdinaryDifferentialOperatorFactorizer| F UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-24))))
-(-603 A L)
+((|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedField|))))
+(|LinearOrdinaryDifferentialOperatorsOps| A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-604 S)
+(|Logic&| S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spad{x\\/y} returns the logical `join',{} \\spadignore{e.g.} disjunction,{} or \\spad{x} and \\spad{y}.")) (|/\\| (($ $ $) "\\spad {x/\\y} returns the logical `meet',{} \\spadignore{e.g.} conjunction,{} of \\spad{x} and \\spad{y}.")) (~ (($ $) "\\spad{~x} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-605)
+(|Logic|)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spad{x\\/y} returns the logical `join',{} \\spadignore{e.g.} disjunction,{} or \\spad{x} and \\spad{y}.")) (|/\\| (($ $ $) "\\spad {x/\\y} returns the logical `meet',{} \\spadignore{e.g.} conjunction,{} of \\spad{x} and \\spad{y}.")) (~ (($ $) "\\spad{~x} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-606 R)
+(|LinearPolynomialEquationByFractions| R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-607 |VarSet| R)
+(|LiePolynomial| |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-145))))
-(-608 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))))
+(|ListAggregate&| A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-609 S)
+(|ListAggregate| S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-610 -3095 |Row| |Col| M)
+(|LinearSystemMatrixPackage| F |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-611 -3095)
+(|LinearSystemMatrixPackage1| F)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-612 R E OV P)
+(|LinearSystemPolynomialPackage| R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-613 |n| R)
+(|LieSquareMatrix| |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-3994 . T) (-3991 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-145))))
-(-614)
+((|unitsKnown| . T) (|rightUnitary| . T) (|leftUnitary| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #2=(|Symbol|)))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #2#))) #3=(|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) #4=(|HasAttribute| |#2| (QUOTE (|commutative| "*"))) #5=(|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #6=(|Integer|)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #6#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #6#))) (OR (AND #3# #7=(|HasCategory| |#2| (|%list| (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND #5# #7#) (AND #1# #7#) #8=(AND #9=(|HasCategory| |#2| (QUOTE (|SetCategory|))) #7#)) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (OR #4# #3# #1#) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#2| (QUOTE (|BasicType|))) #9# #8# (|HasCategory| |#2| (QUOTE (|CommutativeRing|))))
+(|ConstructAst|)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-615 |VarSet|)
+(|LyndonWord| |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-616 A S)
+(|LazyStreamAggregate&| A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-617 S)
+(|LazyStreamAggregate| S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-618)
+(|MacroAst|)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-619 |VarSet|)
+(|Magma| |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-620 A)
+(|MappingPackageInternalHacks1| A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-621 A C)
+(|MappingPackageInternalHacks2| A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-622 A B C)
+(|MappingPackageInternalHacks3| A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-623)
+(|MappingAst|)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-624 A)
+(|MappingPackage1| A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-625 A C)
+(|MappingPackage2| A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-626 A B C)
+(|MappingPackage3| A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-627 S R |Row| |Col|)
+(|MatrixCategory&| S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
NIL
-((|HasAttribute| |#2| (QUOTE (-3997 "*"))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-496))))
-(-628 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))))
+(|MatrixCategory| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
NIL
NIL
-(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(|MatrixCategoryFunctions2| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-630 R |Row| |Col| M)
+(|MatrixLinearAlgebraFunctions| R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-496))))
-(-631 R)
+((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|Matrix| R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-69))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-632 R)
+((OR (AND #1=(|HasCategory| |#1| (QUOTE (|Field|))) #2=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #3=(AND #4=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #2#)) #4# (OR #5=(|HasCategory| |#1| (QUOTE (|BasicType|))) #4#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) #1# #5# #3#)
+(|StorageEfficientMatrixOperations| R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-633 T$)
+(|Maybe| T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-634 R Q)
+(|MatrixCommonDenominator| R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-635 S)
+(|MultiDictionary| S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
NIL
NIL
-(-636 U)
+(|ModularDistinctDegreeFactorizer| U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-637)
+(|MeshCreationRoutinesForThreeDimensions|)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-638 OV E -3095 PG)
+(|MultFiniteFactorize| OV E F PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-639 R)
+(|ModularHermitianRowReduction| R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-640 S D1 D2 I)
+(|MakeBinaryCompiledFunction| S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-641 S)
+(|MakeFloatCompiledFunction| S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-642 S)
+(|MakeFunction| S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-643 S T$)
+(|MakeRecord| S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-644 S -2672 I)
+(|MakeUnaryCompiledFunction| S D I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-645 E OV R P)
+(|MultivariateLifting| E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-646 R)
+(|MonogenicLinearOperator| R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(|MultipleMap| R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-648)
+(|MathMLFormat|)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-649 R |Mod| -2039 -3521 |exactQuo|)
+(|ModularField| R |Mod| |reduction| |merge| |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-650 R P)
+(|ModMonic| R P)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-311)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-995) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-189))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-651 IS E |ff|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #3=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #3# #2#) (AND (|HasCategory| |#1| #4=(QUOTE (|PatternMatchable| #5=(|Float|)))) (|HasCategory| #6=(|SingletonAsOrderedSet|) #4#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| #6# #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #5#)))) (|HasCategory| #6# #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #6# #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #6# #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #16# (OR #3# #17=(|HasCategory| |#1| (QUOTE (|Field|))) #18=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #2# #1#) (OR #17# #18# #2# #1#) (OR #17# #18# #1#) #17# (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #19=(|Symbol|)))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #19#))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #18# #20=(AND #1# (|HasCategory| $ #13#)) (OR #20# #12#))
+(|ModuleMonomial| IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-652 R M)
+(|ModuleOperator| R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))))
-(-653 R |Mod| -2039 -3521 |exactQuo|)
+((|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))))
+(|ModularRing| R |Mod| |reduction| |merge| |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-654 S R)
+(|Module&| S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-655 R)
+(|Module| R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-656 -3095)
+(|MoebiusTransform| F)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-657 S)
+(|Monad&| S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-658)
+(|Monad|)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-659 S)
+(|MonadWithUnit&| S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-660)
+(|MonadWithUnit|)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-661 S R UP)
+(|MonogenicAlgebra&| S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))))
-(-662 R UP)
+((|HasCategory| |#2| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))))
+(|MonogenicAlgebra| R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-3990 |has| |#1| (-311)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| |has| |#1| . #1=((|Field|))) (|canonicalUnitNormal| |has| |#1| . #1#) (|canonicalsClosed| |has| |#1| . #1#) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-663 S)
+(|Monoid&| S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-664)
+(|Monoid|)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-665 T$)
+(|MonoidOperation| T$)
((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| #1=(|:| |f| $) #2=(|:| |x| |#1|)) (SEQ (= (|f| |x| #3=(|neutralValue| |f|)) |x|) (|exit| 1 (= (|f| #3# |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| #1# #2# (|:| |y| |#1|) (|:| |z| |#1|)) (= (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-666 T$)
+(|MonoidOperatorCategory| T$)
((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (= (|f| |x| (|neutralValue| |f|)) |x|) (|exit| 1 (= (|f| (|neutralValue| |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (= (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-667 -3095 UP)
+(|MonomialExtensionTools| F UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-668 |VarSet| E1 E2 R S PR PS)
+(|MPolyCatFunctions2| |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(|MPolyCatFunctions3| |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-670 E OV R PPR)
+(|MPolyCatPolyFactorizer| E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-671 |vl| R)
+(|MultivariatePolynomial| |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-3997 "*") |has| |#2| (-145)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-496)))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-672 E OV R PRF)
+(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#2| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#2| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#2| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|OrderedVariableList| |#1|) #5#)) (AND (|HasCategory| |#2| #8=(QUOTE (|PatternMatchable| #9=(|Integer|)))) (|HasCategory| #7# #8#)) (AND (|HasCategory| |#2| #10=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #10#)) (AND (|HasCategory| |#2| #11=(QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#2| #12=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #12#)) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #9#))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) #13=(|HasCategory| |#2| #14=(QUOTE (|CharacteristicNonZero|))) #15=(|HasCategory| |#2| (QUOTE (|Algebra| #16=(|Fraction| #9#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #9#))) (OR #15# #17=(|HasCategory| |#2| (QUOTE (|RetractableTo| #16#)))) #17# (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #14#)) (OR #18# #13#))
+(|MPolyCatRationalFunctionFactorizer| E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-673 E OV R P)
+(|MRationalFactorize| E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-674 R S M)
+(|MonoidRingFunctions2| R S M)
((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-675 R M)
+(|MonoidRing| R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) (-3994 . T))
-((-11 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-757))))
-(-676 S)
+((|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) (|unitsKnown| . T))
+((AND (|HasCategory| |#1| #1=(QUOTE (|Finite|))) (|HasCategory| |#2| #1#)) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))))
+(|Multiset| S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-3987 . T))
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))))
-(-677 S)
+((|partiallyOrderedSet| . T))
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|MultisetAggregate| S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-3987 . T))
+((|partiallyOrderedSet| . T))
NIL
-(-678)
+(|MoreSystemCommands|)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-679 S)
+(|MergeThing| S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-680 |Coef| |Var|)
+(|MultivariateTaylorSeriesCategory| |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-681 OV E R P)
+(|MultivariateFactorize| OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-682 E OV R P)
+(|MultivariateSquareFree| E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-683 S R)
+(|NonAssociativeAlgebra&| S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-684 R)
+(|NonAssociativeAlgebra| R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-685 S)
+(|NonAssociativeRng&| S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-686)
+(|NonAssociativeRng|)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-687 S)
+(|NonAssociativeRing&| S)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-688)
+(|NonAssociativeRing|)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-689 |Par|)
+(|NumericComplexEigenPackage| |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-690 -3095)
+(|NumericContinuedFraction| F)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-691 P -3095)
+(|NonCommutativeOperatorDivision| P F)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
-(-692 T$)
+(|NetworkClientSocket| T$)
NIL
NIL
NIL
-(-693 UP -3095)
+(|NumberFieldIntegralBasis| UP F)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-694 R)
+(|NonLinearSolvePackage| R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-695)
+(|NonNegativeInteger|)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-3997 "*") . T))
+(((|commutative| "*") . T))
NIL
-(-696 R -3095)
+(|NonLinearFirstOrderODESolver| R F)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-697)
+(|None|)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-698 S)
+(|NoneFunctions1| S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-699 R |PolR| E |PolE|)
+(|NormInMonogenicAlgebra| R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-700 R E V P TS)
+(|NormalizationPackage| R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-701 -3095 |ExtF| |SUEx| |ExtP| |n|)
+(|NormRetractPackage| F |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-702 BP E OV R P)
+(|NPCoef| BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-703 |Par|)
+(|NumericRealEigenPackage| |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable.")))
NIL
NIL
-(-704 R |VarSet|)
+(|NewSparseMultivariatePolynomial| R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#2| (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (|HasCategory| |#1| (QUOTE (-311))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2563 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2563 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485)))))) (-2563 (|HasCategory| |#1| (QUOTE (-35 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2563 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485)))))) (-2563 (|HasCategory| |#1| (QUOTE (-484))))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2563 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-705 R)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| |#2| #5#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| |#2| #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| |#2| #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| |#2| #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #17=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #17# (AND #16# #18=(|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|Symbol|))))) #18# (|HasCategory| |#1| (QUOTE (|Field|))) #19=(AND #14# #18#) (OR (AND #20=(|HasCategory| |#1| (QUOTE (|Algebra| #8#))) #18# #21=(|not| #14#)) #19#) (OR (AND #18# #21# (|not| #20#)) (AND #20# #18# #21# (|not| (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))) (AND #14# #18# (|not| (|HasCategory| |#1| (QUOTE (|QuotientFieldCategory| #8#)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #22=(AND #1# (|HasCategory| $ #13#)) (OR #22# #12#))
+(|NewSparseUnivariatePolynomial| R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-311)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-995) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-189))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-706 R S)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #3=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #3# #2#) (AND (|HasCategory| |#1| #4=(QUOTE (|PatternMatchable| #5=(|Float|)))) (|HasCategory| #6=(|SingletonAsOrderedSet|) #4#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| #6# #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #5#)))) (|HasCategory| #6# #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #6# #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #6# #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #16# (OR #3# #17=(|HasCategory| |#1| (QUOTE (|Field|))) #18=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #2# #1#) (OR #17# #18# #2# #1#) (OR #17# #18# #1#) #17# (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #19=(|Symbol|)))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #19#))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #18# #20=(AND #1# (|HasCategory| $ #13#)) (OR #20# #12#))
+(|NewSparseUnivariatePolynomialFunctions2| R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-707 R)
+(|NumberTheoreticPolynomialFunctions| R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))))
-(-708 R E V P)
+((|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| (|Integer|))))))
+(|NormalizedTriangularSetCategory| R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
NIL
NIL
-(-709 S)
+(|Numeric| S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-145))))
-(-710)
+((AND #1=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) #1# (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))))
+(|NumberFormats|)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-711)
+(|NumericalOrdinaryDifferentialEquations|)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-712)
+(|NumericalQuadrature|)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-713 |Curve|)
+(|NumericTubePlot| |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-714 S)
+(|OrderedAbelianGroup&| S)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-715)
+(|OrderedAbelianGroup|)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-716 S)
+(|OrderedAbelianMonoid&| S)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-717)
+(|OrderedAbelianMonoid|)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-718)
+(|OrderedAbelianMonoidSup|)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-719)
+(|OrderedAbelianSemiGroup|)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-720 S R)
+(|OctonionCategory&| S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-319))))
-(-721 R)
+((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|))))
+(|OctonionCategory| R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-722)
+(|OrderedCancellationAbelianMonoid|)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-723 R)
+(|Octonion| R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-349 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
-(-724 OR R OS S)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) #1=(|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #1#)) (|HasCategory| |#1| (|%list| (QUOTE |Eltable|) #1# #1#)) (OR #2=(|HasCategory| |#1| #3=(QUOTE (|RetractableTo| (|Fraction| #4=(|Integer|))))) #5=(|HasCategory| #6=(|Quaternion| |#1|) #3#)) (OR #7=(|HasCategory| |#1| #8=(QUOTE (|RetractableTo| #4#))) #9=(|HasCategory| #6# #8#)) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|))) #5# #9# #2# #7#)
+(|OctonionCategoryFunctions2| OR R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-725 R -3095 L)
+(|ConstantLODE| R F L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-726 R -3095)
+(|ElementaryFunctionODESolver| R F)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-727 R -3095)
+(|ODEIntegration| R F)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-728 -3095 UP UPUP R)
+(|PureAlgebraicLODE| F UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-729 -3095 UP L LQ)
+(|PrimitiveRatDE| F UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-730 -3095 UP L LQ)
+(|PrimitiveRatRicDE| F UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-731 -3095 UP)
+(|RationalLODE| F UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-732 -3095 L UP A LO)
+(|ReduceLODE| F L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-733 -3095 UP)
+(|RationalRicDE| F UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-24))))
-(-734 -3095 LO)
+((|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedField|))))
+(|SystemODESolver| F LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-735 -3095 LODO)
+(|ODETools| F LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-736 -2624 S |f|)
+(|OrderedDirectProduct| |dim| S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-189))) (OR (|HasCategory| |#2| (QUOTE (-189))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-22))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-11 (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-22))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-737 R)
+((|rightUnitary| |has| |#2| . #1=((|Ring|))) (|leftUnitary| |has| |#2| . #1#) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)))
+((OR (AND #1=(|HasCategory| |#2| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#2|)))) (AND #4=(|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) #2#) (AND #5=(|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) #2#) (AND #6=(|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) #2#) (AND #7=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) #2#) (AND #8=(|HasCategory| |#2| (QUOTE (|DifferentialRing|))) #2#) (AND #9=(|HasCategory| |#2| (QUOTE (|Field|))) #2#) (AND #10=(|HasCategory| |#2| (QUOTE (|Finite|))) #2#) (AND #11=(|HasCategory| |#2| (QUOTE (|Monoid|))) #2#) (AND #12=(|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #13=(|HasCategory| |#2| #14=(QUOTE (|OrderedSet|))) #2#) (AND #15=(|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #16=(|Symbol|)))) #2#) (AND #17=(|HasCategory| |#2| (QUOTE (|Ring|))) #2#) #18=(AND #19=(|HasCategory| |#2| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))) #9# (OR #7# #9# #17#) (OR #7# #9#) #1# #17# #11# #12# (OR #12# #13#) #13# #10# (OR (AND #7# #20=(|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #21=(|Integer|))))) (AND #8# #20#) (AND #9# #20#) (AND #20# #15#) #22=(AND #20# #17#)) #15# (OR #1# #4# #5# #23=(|HasCategory| |#2| (QUOTE (|BasicType|))) #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #15# #17#) (OR #1# #4# #6# #7# #8# #9# #15# #17#) (OR #1# #6# #7# #8# #9# #15# #17#) (OR #1# #7# #8# #9# #15# #17#) (OR #8# #15# #17#) #8# (OR #8# #24=(AND (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) #17#)) (OR #25=(AND (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #16#))) #17#) #15#) #19# (OR (AND #1# #26=(|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #21#))))) (AND #4# #26#) (AND #5# #26#) (AND #6# #26#) (AND #7# #26#) (AND #8# #26#) (AND #9# #26#) (AND #10# #26#) (AND #11# #26#) (AND #12# #26#) (AND #13# #26#) (AND #15# #26#) (AND #26# #17#) #27=(AND #26# #19#)) (OR #28=(AND #1# #29=(|HasCategory| |#2| (QUOTE (|RetractableTo| #21#)))) #30=(AND #4# #29#) #31=(AND #5# #29#) #32=(AND #6# #29#) #33=(AND #7# #29#) #34=(AND #8# #29#) #35=(AND #12# #29#) #36=(AND #13# #29#) #37=(AND #15# #29#) #38=(AND #29# #19#) #39=(AND #9# #29#) #40=(AND #10# #29#) #41=(AND #11# #29#) #17#) (OR #28# #30# #31# #32# #33# #34# #35# #36# #37# #38# #39# #40# #41# (AND #29# #17#)) #23# (|HasCategory| #21# #14#) #22# #24# #25# (OR #38# #17#) #38# #27# (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (AND #8# #17#) (AND #15# #17#) #7# #4# #6# #5# #18# (AND #23# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|OrderlyDifferentialPolynomial| R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-738 |Kernels| R |var|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|OrderlyDifferentialVariable| #8=(|Symbol|)) #5#)) (AND (|HasCategory| |#1| #9=(QUOTE (|PatternMatchable| #10=(|Integer|)))) (|HasCategory| #7# #9#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#1| #12=(QUOTE (|ConvertibleTo| (|Pattern| #10#)))) (|HasCategory| #7# #12#)) (AND (|HasCategory| |#1| #13=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #13#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #10#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #14=(|HasCategory| |#1| #15=(QUOTE (|CharacteristicNonZero|))) #16=(|HasCategory| |#1| (QUOTE (|Algebra| #17=(|Fraction| #10#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #10#))) (OR #16# #18=(|HasCategory| |#1| (QUOTE (|RetractableTo| #17#)))) #18# (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #8#))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #8#))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #19=(AND #1# (|HasCategory| $ #15#)) (OR #19# #14#))
+(|OrdinaryDifferentialRing| |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-3997 "*") |has| |#2| (-311)) (-3990 |has| |#2| (-311)) (-3995 |has| |#2| (-311)) (-3989 |has| |#2| (-311)) (-3994 . T) (-3992 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-311))))
-(-739 S)
+(((|commutative| "*") |has| |#2| . #1=((|Field|))) (|noZeroDivisors| |has| |#2| . #1#) (|canonicalUnitNormal| |has| |#2| . #1#) (|canonicalsClosed| |has| |#2| . #1#) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#2| (QUOTE (|Field|))))
+(|OrderlyDifferentialVariable| S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-740 S)
+(|OrderedFreeMonoid| S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-741)
+((|HasCategory| |#1| (QUOTE (|OrderedSet|))))
+(|OrderedIntegralDomain|)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-742 P R)
+(|OppositeMonogenicLinearOperator| P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-189))))
-(-743 S)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))))
+(|OrderedMultisetAggregate| S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-3987 . T))
+((|partiallyOrderedSet| . T))
NIL
-(-744 R)
+(|OnePointCompletion| R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-3994 |has| |#1| (-756)))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-18))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
-(-745 R S)
+((|unitsKnown| |has| |#1| (|OrderedRing|)))
+(#1=(|HasCategory| |#1| (QUOTE (|OrderedRing|))) #2=(|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR #2# #1#) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #3=(|Integer|))))) (OR #1# #4=(|HasCategory| |#1| (QUOTE (|RetractableTo| #3#)))) #4# (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))
+(|OnePointCompletionFunctions2| R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-746 R)
+(|Operator| R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))))
-(-747 A S)
+((|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))))
+(|OperatorCategory&| A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-748 S)
+(|OperatorCategory| S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-749)
+(|OperationsQuery|)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
-(-750)
+(|OperatorSignature|)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
-(-751 R)
+(|OrderedCompletion| R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-3994 |has| |#1| (-756)))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-18))) (OR (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
-(-752 R S)
+((|unitsKnown| |has| |#1| (|OrderedRing|)))
+(#1=(|HasCategory| |#1| (QUOTE (|OrderedRing|))) #2=(|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR #2# #1#) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #3=(|Integer|))))) (OR #1# #4=(|HasCategory| |#1| (QUOTE (|RetractableTo| #3#)))) #4# (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))
+(|OrderedCompletionFunctions2| R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-753)
+(|OrderedFinite|)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-754 -2624 S)
+(|OrderingFunctions| |dim| S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-755)
+(|OrderedMonoid|)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-756)
+(|OrderedRing|)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-757)
+(|OrderedSet|)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
NIL
NIL
-(-758 T$ |f|)
+(|OrderedStructure| T$ |f|)
((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-553 (-773)))))
-(-759 S)
+((|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))))
+(|OrderedType&| S)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-760)
+(|OrderedType|)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-761 S R)
+(|UnivariateSkewPolynomialCategory&| S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))))
-(-762 R)
+((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))))
+(|UnivariateSkewPolynomialCategory| R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-763 R C)
+(|UnivariateSkewPolynomialCategoryOps| R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496))))
-(-764 R |sigma| -3247)
+((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|SparseUnivariateSkewPolynomial| R |sigma| |delta|)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-311))))
-(-765 |x| R |sigma| -3247)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #1#))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|UnivariateSkewPolynomial| |x| R |sigma| |delta|)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-311))))
-(-766 R)
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #1=(|Integer|))))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #1#))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))))
+(|OrthogonalPolynomialFunctions| R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))))
-(-767)
+((|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| (|Integer|))))))
+(|OrderedSemiGroup|)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-768)
+(|OrdSetInts|)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-769)
+(|OutputPackage|)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-770 S)
+(|OutputByteConduit&| S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-771)
+(|OutputByteConduit|)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-772)
+(|OutputBinaryFile|)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-773)
+(|OutputForm|)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-774 |VariableList|)
+(|OrderedVariableList| |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-775)
+(|OverloadSet|)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-776 R |vl| |wl| |wtlevel|)
+(|OrdinaryWeightedPolynomials| R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))))
-(-777 R PS UP)
+((|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|PadeApproximants| R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-778 R |x| |pt|)
+(|PadeApproximantPackage| R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-779 |p|)
+(|PAdicInteger| |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-780 |p|)
+(|PAdicIntegerCategory| |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-781 |p|)
+(|PAdicRational| |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-115))) (|HasCategory| (-779 |#1|) (QUOTE (-117))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1067))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-329)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-188))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -240) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-257))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-115)))))
-(-782 |p| PADIC)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #8=(|Integer|)))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #9=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (|%list| (QUOTE |InnerEvalable|) (QUOTE #3#) #10=(|%list| (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| #2# (|%list| (QUOTE |Evalable|) #10#)) (|HasCategory| #2# (|%list| (QUOTE |Eltable|) #10# #10#)) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) #11=(AND (|HasCategory| $ #5#) #1#) (OR #11# #4#))
+(|PAdicRationalConstructor| |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-484))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-783 S T$)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #2=(|Symbol|)))) #3=(|HasCategory| |#2| #4=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) #5=(|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) #6=(|HasCategory| |#2| (QUOTE (|OrderedSet|))) (OR #5# #6#) (|HasCategory| |#2| (QUOTE (|RetractableTo| #7=(|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| |#2| (QUOTE (|PatternMatchable| #7#))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|Pattern| #7#)))) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #7#))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #2#))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #2#))) (|HasCategory| |#2| (|%list| (QUOTE |InnerEvalable|) (QUOTE #2#) #9=(|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #9#)) (|HasCategory| |#2| (|%list| (QUOTE |Eltable|) #9# #9#)) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) #10=(AND #1# (|HasCategory| $ #4#)) (OR #10# #3#))
+(|Pair| S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-11 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))))
-(-784)
+(#1=(AND (|HasCategory| |#1| #2=(QUOTE (|SetCategory|))) (|HasCategory| |#2| #2#)) (OR #3=(AND (|HasCategory| |#1| #4=(QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#2| #4#)) #1#) #3#)
+(|Palette|)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
-(-785)
+(|PolynomialAN2Expression|)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-786)
+(|ParameterAst|)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-787 CF1 CF2)
+(|ParametricPlaneCurveFunctions2| CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-788 |ComponentFunction|)
+(|ParametricPlaneCurve| |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-789 CF1 CF2)
+(|ParametricSpaceCurveFunctions2| CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-790 |ComponentFunction|)
+(|ParametricSpaceCurve| |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-791)
+(|Parser|)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-792 CF1 CF2)
+(|ParametricSurfaceFunctions2| CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-793 |ComponentFunction|)
+(|ParametricSurface| |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-794)
+(|PartitionsAndPermutations|)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-795 R)
+(|Patternable| R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-796 R S L)
+(|PatternMatchListResult| R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-797 S)
+(|PatternMatchable| S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-798 |Base| |Subject| |Pat|)
+(|PatternMatch| |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-11 (-2563 (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-2563 (|HasCategory| |#2| (QUOTE (-962))))) (-11 (|HasCategory| |#2| (QUOTE (-962))) (-2563 (|HasCategory| |#2| (QUOTE (-951 (-1091)))))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))))
-(-799 R S)
+((AND #1=(|not| #2=(|HasCategory| |#2| (QUOTE (|RetractableTo| (|Symbol|))))) (|not| #3=(|HasCategory| |#2| (QUOTE (|Ring|))))) (AND #3# #1#) #2#)
+(|PatternMatchResult| R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-800 R A B)
+(|PatternMatchResultFunctions2| R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
-(-801 R)
+(|Pattern| R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0")))
NIL
NIL
-(-802 R -2672)
+(|PatternFunctions1| R D)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-803 R S)
+(|PatternFunctions2| R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-804 |VarSet|)
+(|PoincareBirkhoffWittLyndonBasis| |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-805 UP R)
+(|PolynomialComposition| UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-806 A T$ S)
+(|PartialDifferentialDomain&| A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-807 T$ S)
+(|PartialDifferentialDomain| T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-808 UP -3095)
+(|PolynomialDecomposition| UP F)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-809 R S)
+(|PartialDifferentialModule| R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-810 S)
+(|PartialDifferentialRing| S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-811 A S)
+(|PartialDifferentialSpace&| A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-812 S)
+(|PartialDifferentialSpace| S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-813 S)
+(|PendantTree| S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-814 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|Permutation| S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-757))))
-(-815 |n| R)
+((|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| (QUOTE (|Finite|))) #2=(|HasCategory| |#1| (QUOTE (|OrderedSet|)))) #1# #2#)
+(|Permanent| |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-816 S)
+(|PermutationCategory| S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-817 S)
+(|PermutationGroup| S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-818 |p|)
+(|PrimeField| |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-117))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| $ (QUOTE (-319))))
-(-819 R E |VarSet| S)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|))))
+(|PolynomialFactorizationByRecursion| R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-820 R S)
+(|PolynomialFactorizationByRecursionUnivariate| R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-821 S)
+(|PolynomialFactorizationExplicit&| S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-115))))
-(-822)
+((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))
+(|PolynomialFactorizationExplicit|)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-823 R0 -3095 UP UPUP R)
+(|PointsOfFiniteOrder| R0 F UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-824 UP UPUP R)
+(|PointsOfFiniteOrderRational| UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-825 UP UPUP)
+(|PointsOfFiniteOrderTools| UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-826 R)
+(|PartialFraction| R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-827 R)
+(|PartialFractionPackage| R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-828 E OV R P)
+(|PolynomialGcdPackage| E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-829)
+(|PermutationGroupExamples|)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-830 -3095)
+(|PolyGroebner| F)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-831)
+(|PositiveInteger|)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-3997 "*") . T))
+(((|commutative| "*") . T))
NIL
-(-832 R)
+(|PiCoercions| R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-833)
+(|PrincipalIdealDomain|)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-834 |xx| -3095)
+(|PolynomialInterpolation| |xx| F)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-835 -3095 P)
+(|PolynomialInterpolationAlgorithms| F P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-836 R |Var| |Expon| GR)
+(|ParametricLinearEquations| R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-837)
+(|Plot|)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-838 S)
+(|PlotFunctions1| S)
((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-839)
+(|Plot3D|)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-840)
+(|PlotTools|)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-841)
+(|PatternMatchAssertions|)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-842 R -3095)
+(|FunctionSpaceAssertions| R F)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-843 S A B)
+(|PatternMatchPushDown| S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-844 S R -3095)
+(|PatternMatchFunctionSpace| S R F)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-845 I)
+(|PatternMatchIntegerNumberSystem| I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-846 S E)
+(|PatternMatchKernel| S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-847 S R L)
+(|PatternMatchListAggregate| S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-848 S E V R P)
+(|PatternMatchPolynomialCategory| S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|))))
-(-849 -2672)
+((|HasCategory| |#3| (|%list| (QUOTE |PatternMatchable|) (|devaluate| |#1|))))
+(|AttachPredicates| D)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-850 R -3095 -2672)
+(|FunctionSpaceAttachPredicates| R F D)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-851 S R Q)
+(|PatternMatchQuotientFieldCategory| S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-852 S)
+(|PatternMatchSymbol| S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-853 S R P)
+(|PatternMatchTools| S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-854)
+(|PolynomialNumberTheoryFunctions|)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-855 R)
+(|Point| R)
((|constructor| (NIL "This domain implements points in coordinate space")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-20))) (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-11 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-856 |lv| R)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) #8=(|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) #8#) #6# #5# (AND #7# #9=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #9# #10=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #10#))
+(|PolToPol| |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-857 |TheField| |ThePols|)
+(|RealPolynomialUtilitiesPackage| |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-858 R)
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))))
+(|Polynomial| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-1091) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1091) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1091) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-859 R S)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|Symbol|) #5#)) (AND (|HasCategory| |#1| #8=(QUOTE (|PatternMatchable| #9=(|Integer|)))) (|HasCategory| #7# #8#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|Pattern| #9#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#1| #12=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #12#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #9#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #13=(|HasCategory| |#1| #14=(QUOTE (|CharacteristicNonZero|))) #15=(|HasCategory| |#1| (QUOTE (|Algebra| #16=(|Fraction| #9#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #9#))) (OR #15# #17=(|HasCategory| |#1| (QUOTE (|RetractableTo| #16#)))) #17# (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #18=(AND #1# (|HasCategory| $ #14#)) (OR #18# #13#))
+(|PolynomialFunctions2| R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-860 |x| R)
+(|PolynomialToUnivariatePolynomial| |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-861 S R E |VarSet|)
+(|PolynomialCategory&| S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#4| (QUOTE (-797 (-329)))) (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
-(-862 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| #1=(QUOTE (|PatternMatchable| #2=(|Float|)))) (|HasCategory| |#2| #1#) (|HasCategory| |#4| #3=(QUOTE (|PatternMatchable| #4=(|Integer|)))) (|HasCategory| |#2| #3#) (|HasCategory| |#4| #5=(QUOTE (|ConvertibleTo| (|Pattern| #2#)))) (|HasCategory| |#2| #5#) (|HasCategory| |#4| #6=(QUOTE (|ConvertibleTo| (|Pattern| #4#)))) (|HasCategory| |#2| #6#) (|HasCategory| |#4| #7=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| #7#))
+(|PolynomialCategory| R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-863 E V R P -3095)
+(|PolynomialCategoryQuotientFunctions| E V R P F)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-864 E |Vars| R P S)
+(|PolynomialCategoryLifting| E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-865 E V R P -3095)
+(|PolynomialRoots| E V R P F)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-392))))
-(-866)
+((|HasCategory| |#3| (QUOTE (|GcdDomain|))))
+(|PortNumber|)
((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
-(-867)
+(|PlottablePlaneCurveCategory|)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-868 R E)
+(|PolynomialRing| R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-101)))) (|HasAttribute| |#1| (QUOTE -3995)))
-(-869 R L)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #4#) #5# (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (OR #1# #6=(|HasCategory| |#1| (QUOTE (|RetractableTo| #2#)))) #6# (|HasCategory| |#1| (QUOTE (|RetractableTo| #3#))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND #4# (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)))
+(|PrecomputedAssociatedEquations| R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-870 S)
+(|PrimitiveArray| S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-871 A B)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# #6# #5# (AND #7# #8=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #8# #9=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #9#))
+(|PrimitiveArrayFunctions2| A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-872)
+(|PrimitiveFunctionCategory|)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-873 -3095)
+(|PrimitiveElement| F)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-874 I)
+(|IntegerPrimesPackage| I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-875)
+(|PrintPackage|)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-876 A B)
+(|Product| A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-3994 -11 (|has| |#2| (-413)) (|has| |#1| (-413))))
-((OR (-11 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-11 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-101)))) (-11 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-11 (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-18))))) (-11 (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-18)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-101)))) (-11 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-11 (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-18)))) (-11 (|HasCategory| |#1| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-20))))) (-11 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-11 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-11 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-101)))) (-11 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-11 (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-18)))) (-11 (|HasCategory| |#1| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-20)))) (-11 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-11 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-11 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-11 (|HasCategory| |#1| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-20)))) (-11 (|HasCategory| |#1| (QUOTE (-101))) (|HasCategory| |#2| (QUOTE (-101)))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))))
-(-877)
+((|unitsKnown| AND (|has| |#2| #1=(|Group|)) (|has| |#1| #1#)))
+((OR #1=(AND (|HasCategory| |#1| #2=(QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| #2#)) #3=(AND (|HasCategory| |#1| #4=(QUOTE (|OrderedSet|))) (|HasCategory| |#2| #4#))) #1# (OR #5=(AND (|HasCategory| |#1| #6=(QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| #6#)) #1# #7=(AND (|HasCategory| |#1| #8=(QUOTE (|AbelianGroup|))) (|HasCategory| |#2| #8#))) #7# (OR #5# #1# #7# #9=(AND (|HasCategory| |#1| #10=(QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| #10#))) #11=(AND (|HasCategory| |#1| #12=(QUOTE (|Group|))) (|HasCategory| |#2| #12#)) (OR #11# #13=(AND (|HasCategory| |#1| #14=(QUOTE (|Monoid|))) (|HasCategory| |#2| #14#))) (AND (|HasCategory| |#1| #15=(QUOTE (|Finite|))) (|HasCategory| |#2| #15#)) (OR #5# #1# #7# #9# #11# #13#) #13# #9# #5# #3#)
+(|Property|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-878 T$)
+(|PropositionalFormula| T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-879 T$)
+(|PropositionalFormulaFunctions1| T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-880 S T$)
+(|PropositionalFormulaFunctions2| S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-881)
+(|PropositionalLogic|)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-882 S)
+(|PriorityQueueAggregate| S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
NIL
NIL
-(-883 R |polR|)
+(|PseudoRemainderSequence| R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-392))))
-(-884)
+((|HasCategory| |#1| (QUOTE (|GcdDomain|))))
+(|PretendAst|)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-885)
+(|Partition|)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-886 S |Coef| |Expon| |Var|)
+(|PowerSeriesCategory&| S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-887 |Coef| |Expon| |Var|)
+(|PowerSeriesCategory| |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-888)
+(|PlottableSpaceCurveCategory|)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-889 S R E |VarSet| P)
+(|PolynomialSetCategory&| S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-496))))
-(-890 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (|IntegralDomain|))))
+(|PolynomialSetCategory| R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
NIL
-(-891 R E V P)
+(|PolynomialSetUtilitiesPackage| R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-392))))
-(-892 K)
+((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))))
+(|PseudoLinearNormalForm| K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-893 |VarSet| E RC P)
+(|PolynomialSquareFree| |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-894 R)
+(|PointCategory| R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
NIL
NIL
-(-895 R1 R2)
+(|PointFunctions2| R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-896 R)
+(|PointPackage| R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-897 K)
+(|PartialTranscendentalFunctions| K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-898 R E OV PPR)
+(|PushVariables| R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-899 K R UP -3095)
+(|PAdicWildFunctionFieldIntegralBasis| K R UP F)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-900 R |Var| |Expon| |Dpoly|)
+(|QuasiAlgebraicSet| R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-257)))))
-(-901 |vl| |nv|)
+((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))))
+(|QuasiAlgebraicSet2| |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-902 R E V P TS)
+(|QuasiComponentPackage| R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-903)
+(|QueryEquation|)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-904 A S)
+(|QuotientFieldCategory&| A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))))
-(-905 S)
+((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))))
+(|QuotientFieldCategory| S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-906 A B R S)
+(|QuotientFieldCategoryFunctions2| A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-907 |n| K)
+(|QuadraticForm| |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-908)
+(|QuasiquoteAst|)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-909 S)
+(|QueueAggregate| S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
NIL
NIL
-(-910 R)
+(|Quaternion| R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-3990 |has| |#1| (-245)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -240) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))))
-(-911 S R)
+((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) #1=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #2=(|HasCategory| |#1| (QUOTE (|EntireRing|))) #1#) #2# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #3=(|Integer|)))) (|HasCategory| |#1| (|%list| (QUOTE |InnerEvalable|) (QUOTE #4=(|Symbol|)) #5=(|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #5#)) (|HasCategory| |#1| (|%list| (QUOTE |Eltable|) #5# #5#)) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #4#))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #4#))) (OR #1# #6=(|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #3#))))) #6# (|HasCategory| |#1| (QUOTE (|RetractableTo| #3#))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))
+(|QuaternionCategory&| S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-245))))
-(-912 R)
+((|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|EntireRing|))))
+(|QuaternionCategory| R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-3990 |has| |#1| (-245)) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-913 QR R QS S)
+(|QuaternionCategoryFunctions2| QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-914 S)
+(|Queue| S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-915 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|RadicalCategory&| S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-916)
+(|RadicalCategory|)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-917 -3095 UP UPUP |radicnd| |n|)
+(|RadicalFunctionField| F UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-3990 |has| (-349 |#2|) (-311)) (-3995 |has| (-349 |#2|) (-311)) (-3989 |has| (-349 |#2|) (-311)) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-349 |#2|) (QUOTE (-115))) (|HasCategory| (-349 |#2|) (QUOTE (-117))) (|HasCategory| (-349 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-188))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (|HasCategory| (-349 |#2|) (QUOTE (-298)))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-298))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091)))))) (OR (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-349 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-349 (-485)))))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-349 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-319))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-188))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-311)))) (-11 (|HasCategory| (-349 |#2|) (QUOTE (-311))) (|HasCategory| (-349 |#2|) (QUOTE (-810 (-1091))))))
-(-918 |bb|)
+((|noZeroDivisors| |has| #1=(|Fraction| |#2|) . #2=((|Field|))) (|canonicalUnitNormal| |has| #1# . #2#) (|canonicalsClosed| |has| #1# . #2#) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| #1=(|Fraction| |#2|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| #1# (QUOTE (|CharacteristicZero|))) #2=(|HasCategory| #1# (QUOTE (|FiniteFieldCategory|))) (OR #3=(|HasCategory| #1# #4=(QUOTE (|Field|))) #2#) #3# (|HasCategory| #1# #5=(QUOTE (|Finite|))) (OR #6=(AND (|HasCategory| #1# (QUOTE (|DifferentialRing|))) #3#) #2#) (OR #6# #7=(AND (|HasCategory| #1# (QUOTE (|DifferentialSpace|))) #3#) #2#) (OR #8=(AND #3# #9=(|HasCategory| #1# (QUOTE (|PartialDifferentialRing| #10=(|Symbol|))))) (AND #2# #9#)) (OR #8# #11=(AND #3# (|HasCategory| #1# (QUOTE (|PartialDifferentialSpace| #10#))))) (|HasCategory| #1# (QUOTE (|LinearlyExplicitRingOver| #12=(|Integer|)))) (OR #3# #13=(|HasCategory| #1# (QUOTE (|RetractableTo| (|Fraction| #12#))))) #13# (|HasCategory| #1# (QUOTE (|RetractableTo| #12#))) (|HasCategory| |#1| #4#) (|HasCategory| |#1| #5#) #7# #11# #6# #8#)
+(|RadixExpansion| |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-117))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-329)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-188))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-259 (-485)))) (|HasCategory| (-485) (QUOTE (-240 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-257))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-11 (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-115)))))
-(-919)
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| #2# (QUOTE (|RetractableTo| #3=(|Symbol|)))) #4=(|HasCategory| #2# #5=(QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #2# (QUOTE (|RealConstant|))) #6=(|HasCategory| #2# (QUOTE (|OrderedIntegralDomain|))) #7=(|HasCategory| #2# (QUOTE (|OrderedSet|))) (OR #6# #7#) (|HasCategory| #2# (QUOTE (|RetractableTo| #2#))) (|HasCategory| #2# (QUOTE (|StepThrough|))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #8=(|Float|)))) (|HasCategory| #2# (QUOTE (|PatternMatchable| #2#))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|Pattern| #2#)))) (|HasCategory| #2# (QUOTE (|DifferentialSpace|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialSpace| #3#))) (|HasCategory| #2# (QUOTE (|DifferentialRing|))) (|HasCategory| #2# (QUOTE (|PartialDifferentialRing| #3#))) (|HasCategory| #2# (QUOTE (|InnerEvalable| #3# #2#))) (|HasCategory| #2# (QUOTE (|Evalable| #2#))) (|HasCategory| #2# (QUOTE (|Eltable| #2# #2#))) (|HasCategory| #2# (QUOTE (|EuclideanDomain|))) (|HasCategory| #2# (QUOTE (|IntegerNumberSystem|))) (|HasCategory| #2# (QUOTE (|LinearlyExplicitRingOver| #2#))) #9=(AND (|HasCategory| $ #5#) #1#) (OR #9# #4#))
+(|RadixUtilities|)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-920)
+(|RandomNumberSource|)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-921 RP)
+(|RationalFactorize| RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-922 S)
+(|RationalRetractions| S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-923 A S)
+(|RecursiveAggregate&| A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-69))))
-(-924 S)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|BasicType|))))
+(|RecursiveAggregate| S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-925 S)
+(|RealClosedField&| S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-926)
+(|RealClosedField|)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3997 "*") . T) (-3994 . T))
+((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T))
NIL
-(-927 R -3095)
+(|ElementaryRischDE| R F)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-928 R -3095)
+(|ElementaryRischDESystem| R F)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-929 -3095 UP)
+(|TranscendentalRischDE| F UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-930 -3095 UP)
+(|TranscendentalRischDESystem| F UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-931 S)
+(|RandomDistributions| S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-932 F1 UP UPUP R F2)
+(|ReducedDivisor| F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-933)
+(|ReduceAst|)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-934)
+(|RealConstant|)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-935 |Pol|)
+(|RealZeroPackage| |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936 |Pol|)
+(|RealZeroPackageQ| |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-937)
+(|RealSolvePackage|)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-938 |TheField|)
+(|RealClosure| |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3997 "*") . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-349 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-349 (-485)) (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-349 (-485)) (QUOTE (-951 (-485)))))
-(-939 -3095 L)
+((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T))
+((OR #1=(|HasCategory| |#1| #2=(QUOTE (|RetractableTo| #3=(|Integer|)))) #4=(|HasCategory| #5=(|Fraction| #3#) #2#)) (|HasCategory| |#1| #6=(QUOTE (|RetractableTo| #5#))) #1# (|HasCategory| #5# #6#) #4#)
+(|ReductionOfOrder| F L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-940 S)
+(|Reference| S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}.")))
NIL
NIL
-(-941 R E V P)
+(|RegularTriangularSet| R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
NIL
-((-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|))))
-(-942)
+((AND #1=(|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|RadicalEigenPackage|)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-943 R)
+(|RepresentationPackage1| R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
-(-944 R)
+((|HasAttribute| |#1| (QUOTE (|commutative| "*"))))
+(|RepresentationPackage2| R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))))
-(-945 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) #1# (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))))
+(|RepeatedDoubling| S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946 S)
+(|RepeatedSquaring| S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-947 S)
+(|ResolveLatticeCompletion| S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-948 -3095 |Expon| |VarSet| |FPol| |LFPol|)
+(|ResidueRing| F |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-949)
+(|ReturnAst|)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-950 A S)
+(|RetractableTo&| A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-951 S)
+(|RetractableTo| S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-952 Q R)
+(|RetractSolvePackage| Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-953 R)
+(|RationalFunction| R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-954)
+(|RandomFloatDistributions|)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-955 UP)
+(|RationalFunctionFactor| UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-956 R)
+(|RationalFunctionFactorizer| R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-957 T$)
+(|RGBColorModel| T$)
((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
-(-958 T$)
+(|RGBColorSpace| T$)
((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-959 R |ls|)
+(|RegularChain| R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
NIL
-((-11 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-319))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))))
-(-960)
+((AND #1=(|HasCategory| #2=(|NewSparseMultivariatePolynomial| |#1| #3=(|OrderedVariableList| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| #2# (|%list| (QUOTE |Evalable|) #4=(|%list| (QUOTE |NewSparseMultivariatePolynomial|) (|devaluate| |#1|) (|%list| (QUOTE |OrderedVariableList|) (|devaluate| |#2|)))))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) #5=(|HasCategory| #2# (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| #3# (QUOTE (|Finite|))) (|HasCategory| #2# (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #6=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#)) #5#) #6#)
+(|RandomIntegerDistributions|)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-961 S)
+(|Ring&| S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-962)
+(|Ring|)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-3994 . T))
+((|unitsKnown| . T))
NIL
-(-963 |xx| -3095)
+(|RationalInterpolation| |xx| F)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-964 S)
+(|RightLinearSet| S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-965 S |m| |n| R |Row| |Col|)
+(|RectangularMatrixCategory&| S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
NIL
-((|HasCategory| |#4| (QUOTE (-257))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-145))))
-(-966 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|IntegralDomain|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|))))
+(|RectangularMatrixCategory| |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-967 |m| |n| R)
+(|RectangularMatrix| |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#3| (QUOTE (-145))) (OR (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-257))) (|HasCategory| |#3| (QUOTE (-496))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| |#3| (QUOTE (-553 (-773)))))
-(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|leftUnitary| . T) (|rightUnitary| . T))
+(#1=(|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (OR (AND #1# #2=(|HasCategory| |#3| (|%list| (QUOTE |Evalable|) (|devaluate| |#3|)))) (AND #3=(|HasCategory| |#3| (QUOTE (|Field|))) #2#) #4=(AND #5=(|HasCategory| |#3| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#3| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #3#) #3# (|HasCategory| |#3| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#3| (QUOTE (|IntegralDomain|))) #4# #5# (|HasCategory| |#3| (QUOTE (|BasicType|))) (|HasCategory| |#3| (QUOTE (|CoercibleTo| (|OutputForm|)))))
+(|RectangularMatrixCategoryFunctions2| |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-969 R)
+(|RightModule| R)
((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-970 S)
+(|Rng&| S)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-971)
+(|Rng|)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-972 S T$)
+(|RangeBinding| S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1014))))
-(-973 S)
+((|HasCategory| |#1| (QUOTE (|SetCategory|))))
+(|RealNumberSystem&| S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-974)
+(|RealNumberSystem|)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-975 |TheField| |ThePolDom|)
+(|RightOpenIntervalRootCharacterization| |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-976)
+(|RomanNumeral|)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-977 S R E V)
+(|RecursivePolynomialCategory&| S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-35 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1091)))))
-(-978 R E V)
+((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #1=(|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|Algebra| #1#))) (|HasCategory| |#2| (QUOTE (|QuotientFieldCategory| #1#))) (|HasCategory| |#2| (QUOTE (|Algebra| (|Fraction| #1#)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|Symbol|)))))
+(|RecursivePolynomialCategory| R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-979)
+(|RepeatAst|)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-980 S |TheField| |ThePols|)
+(|RealRootCharacterizationCategory&| S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-981 |TheField| |ThePols|)
+(|RealRootCharacterizationCategory| |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-982 R E V P TS)
+(|RegularSetDecompositionPackage| R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-983 S R E V P)
+(|RegularTriangularSetCategory&| S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-984 R E V P)
+(|RegularTriangularSetCategory| R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-985 R E V P TS)
+(|RegularTriangularSetGcdPackage| R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-986)
+(|RestrictAst|)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-987)
+(|RuntimeValue|)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-988 |Base| R -3095)
+(|RewriteRule| |Base| R F)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-989 |f|)
+(|RuleCalled| |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-990 |Base| R -3095)
+(|Ruleset| |Base| R F)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-991 R |ls|)
+(|RationalUnivariateRepresentationPackage| R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-992 R UP M)
+(|SimpleAlgebraicExtension| R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-3990 |has| |#1| (-311)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-319))) (OR (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-11 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-311)))) (-11 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))))
-(-993 UP SAE UPA)
+((|noZeroDivisors| |has| |#1| . #1=((|Field|))) (|canonicalUnitNormal| |has| |#1| . #1#) (|canonicalsClosed| |has| |#1| . #1#) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #1=(|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (OR #2=(|HasCategory| |#1| (QUOTE (|Field|))) #1#) #2# (|HasCategory| |#1| (QUOTE (|Finite|))) (OR #3=(AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) #2#) #1#) (OR #3# #4=(AND (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) #2#) #1#) (OR #5=(AND #2# #6=(|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #7=(|Symbol|))))) (AND #1# #6#)) (OR #5# #8=(AND #2# (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #7#))))) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #9=(|Integer|)))) (OR #2# #10=(|HasCategory| |#1| (QUOTE (|RetractableTo| (|Fraction| #9#))))) #10# (|HasCategory| |#1| (QUOTE (|RetractableTo| #9#))) (OR #4# #1#) #8# #4# #3# #5#)
+(|SimpleAlgebraicExtensionAlgFactor| UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-994 UP SAE UPA)
+(|SAERationalFunctionAlgFactor| UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-995)
+(|SingletonAsOrderedSet|)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-996)
+(|SpadSyntaxCategory|)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-997 S)
+(|SortedCache| S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-998)
+(|Scope|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-999 R)
+(|StructuralConstantsPackage| R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1000 R)
+(|SequentialDifferentialPolynomial| R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-1001 S)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| #7=(|SequentialDifferentialVariable| #8=(|Symbol|)) #5#)) (AND (|HasCategory| |#1| #9=(QUOTE (|PatternMatchable| #10=(|Integer|)))) (|HasCategory| #7# #9#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| #7# #11#)) (AND (|HasCategory| |#1| #12=(QUOTE (|ConvertibleTo| (|Pattern| #10#)))) (|HasCategory| #7# #12#)) (AND (|HasCategory| |#1| #13=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #7# #13#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #10#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #14=(|HasCategory| |#1| #15=(QUOTE (|CharacteristicNonZero|))) #16=(|HasCategory| |#1| (QUOTE (|Algebra| #17=(|Fraction| #10#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #10#))) (OR #16# #18=(|HasCategory| |#1| (QUOTE (|RetractableTo| #17#)))) #18# (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #8#))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #8#))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #19=(AND #1# (|HasCategory| $ #15#)) (OR #19# #14#))
+(|SequentialDifferentialVariable| S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1002 S)
+(|Segment| S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
-(-1003 R S)
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))
+(|SegmentFunctions2| R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1004)
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))))
+(|SegmentAst|)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1005 S)
+(|SegmentBinding| S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1002 |#1|) (QUOTE (-1014))))
-(-1006 R S)
+((|HasCategory| (|Segment| |#1|) (QUOTE (|SetCategory|))))
+(|SegmentBindingFunctions2| R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1007 S)
+(|SegmentCategory| S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1008 S L)
+(|SegmentExpansionCategory| S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1009)
+(|SequenceAst|)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1010 S)
+(|Set| S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the members function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-3987 . T))
-((OR (-11 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))))
-(-1011 A S)
+((|partiallyOrderedSet| . T))
+((OR (AND #1=(|HasCategory| |#1| (QUOTE (|Finite|))) #2=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#1|)))) #4=(AND #5=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) #1# #6=(|HasCategory| |#1| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #5# #4# (AND #6# #7=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) #7#)
+(|SetAggregate&| A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1012 S)
+(|SetAggregate| S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-3987 . T))
+((|partiallyOrderedSet| . T))
NIL
-(-1013 S)
+(|SetCategory&| S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1014)
+(|SetCategory|)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1015 |m| |n|)
+(|SetOfMIntegersInOneToN| |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1016)
+(|SExpression|)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
+(|SExpressionCategory| |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
-(-1018 |Str| |Sym| |Int| |Flt| |Expr|)
+(|SExpressionOf| |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1019 R E V P TS)
+(|SquareFreeQuasiComponentPackage| R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1020 R E V P TS)
+(|SquareFreeRegularTriangularSetGcdPackage| R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1021 R E V P)
+(|SquareFreeRegularTriangularSetCategory| R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1022)
+(|SymmetricGroupCombinatoricFunctions|)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1023 T$)
+(|SemiGroupOperation| T$)
((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative.")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (= (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1024 T$)
+(|SemiGroupOperatorCategory| T$)
((|constructor| (NIL "This is the category of all domains that implement semigroup operations")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (= (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1025 S)
+(|SemiGroup&| S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1026)
+(|SemiGroup|)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1027 |dimtot| |dim1| S)
+(|SplitHomogeneousDirectProduct| |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3994 |has| |#3| (-6 -3994)))
-((OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-189))) (OR (|HasCategory| |#3| (QUOTE (-189))) (-11 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-11 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-349 (-485)))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-18))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-22))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-11 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| (-485) (QUOTE (-757))) (-11 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-11 (|HasCategory| |#3| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3994)) (-11 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-11 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-145))) (|HasCategory| |#3| (QUOTE (-20))) (|HasCategory| |#3| (QUOTE (-101))) (|HasCategory| |#3| (QUOTE (-22))) (-11 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-11 (|HasCategory| |#3| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#3|))))
-(-1028 R |x|)
+((|rightUnitary| |has| |#3| . #1=((|Ring|))) (|leftUnitary| |has| |#3| . #1#) (|unitsKnown| |has| |#3| (ATTRIBUTE |unitsKnown|)))
+((OR (AND #1=(|HasCategory| |#3| (QUOTE (|AbelianGroup|))) #2=(|HasCategory| |#3| (|%list| (QUOTE |Evalable|) #3=(|devaluate| |#3|)))) (AND #4=(|HasCategory| |#3| (QUOTE (|AbelianMonoid|))) #2#) (AND #5=(|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) #2#) (AND #6=(|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) #2#) (AND #7=(|HasCategory| |#3| (QUOTE (|CommutativeRing|))) #2#) (AND #8=(|HasCategory| |#3| (QUOTE (|DifferentialRing|))) #2#) (AND #9=(|HasCategory| |#3| (QUOTE (|Field|))) #2#) (AND #10=(|HasCategory| |#3| (QUOTE (|Finite|))) #2#) (AND #11=(|HasCategory| |#3| (QUOTE (|Monoid|))) #2#) (AND #12=(|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) #2#) (AND #13=(|HasCategory| |#3| #14=(QUOTE (|OrderedSet|))) #2#) (AND #15=(|HasCategory| |#3| (QUOTE (|PartialDifferentialRing| #16=(|Symbol|)))) #2#) (AND #17=(|HasCategory| |#3| (QUOTE (|Ring|))) #2#) #18=(AND #19=(|HasCategory| |#3| (QUOTE (|SetCategory|))) #2#)) (|HasCategory| |#3| (QUOTE (|CoercibleTo| (|OutputForm|)))) #9# (OR #7# #9# #17#) (OR #7# #9#) #1# #17# #11# #12# (OR #12# #13#) #13# #10# (OR (AND #7# #20=(|HasCategory| |#3| (QUOTE (|LinearlyExplicitRingOver| #21=(|Integer|))))) (AND #8# #20#) (AND #9# #20#) (AND #20# #15#) #22=(AND #20# #17#)) #15# (OR #1# #4# #5# #23=(|HasCategory| |#3| (QUOTE (|BasicType|))) #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #10# #11# #12# #13# #15# #17# #19#) (OR #1# #4# #5# #6# #7# #8# #9# #15# #17#) (OR #1# #4# #6# #7# #8# #9# #15# #17#) (OR #1# #6# #7# #8# #9# #15# #17#) (OR #1# #7# #8# #9# #15# #17#) (OR #8# #15# #17#) #8# (OR #8# #24=(AND (|HasCategory| |#3| (QUOTE (|DifferentialSpace|))) #17#)) (OR #25=(AND (|HasCategory| |#3| (QUOTE (|PartialDifferentialSpace| #16#))) #17#) #15#) #19# (OR (AND #1# #26=(|HasCategory| |#3| (QUOTE (|RetractableTo| (|Fraction| #21#))))) (AND #4# #26#) (AND #5# #26#) (AND #6# #26#) (AND #7# #26#) (AND #8# #26#) (AND #9# #26#) (AND #10# #26#) (AND #11# #26#) (AND #12# #26#) (AND #13# #26#) (AND #15# #26#) (AND #26# #17#) #27=(AND #26# #19#)) (OR #28=(AND #1# #29=(|HasCategory| |#3| (QUOTE (|RetractableTo| #21#)))) #30=(AND #4# #29#) #31=(AND #5# #29#) #32=(AND #6# #29#) #33=(AND #7# #29#) #34=(AND #8# #29#) #35=(AND #12# #29#) #36=(AND #13# #29#) #37=(AND #15# #29#) #38=(AND #29# #19#) #39=(AND #9# #29#) #40=(AND #10# #29#) #41=(AND #11# #29#) #17#) (OR #28# #30# #31# #32# #33# #34# #35# #36# #37# #38# #39# #40# #41# (AND #29# #17#)) #23# (|HasCategory| #21# #14#) #22# #24# #25# (OR #38# #17#) #38# #27# (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (AND #8# #17#) (AND #15# #17#) #7# #4# #6# #5# #18# (AND #23# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #3#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #3#)))
+(|SturmHabichtPackage| R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-392))))
-(-1029)
+((|HasCategory| |#1| (QUOTE (|GcdDomain|))))
+(|Signature|)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
-(-1030)
+(|SignatureAst|)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1031 R -3095)
+(|ElementaryFunctionSign| R F)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1032 R)
+(|RationalFunctionSign| R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1033)
+(|SimplifyAlgebraicNumberConvertPackage|)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1034)
+(|SingleInteger|)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1035 S)
+(|StackAggregate| S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
NIL
NIL
-(-1036 S)
+(|ShallowlyMutableAggregate| S)
((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}")))
NIL
NIL
-(-1037 S |ndim| R |Row| |Col|)
+(|SquareMatrixCategory&| S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-311))) (|HasAttribute| |#3| (QUOTE (-3997 "*"))) (|HasCategory| |#3| (QUOTE (-145))))
-(-1038 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (|Field|))) (|HasAttribute| |#3| (QUOTE (|commutative| "*"))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))))
+(|SquareMatrixCategory| |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1039 R |Row| |Col| M)
+(|SmithNormalForm| R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1040 R |VarSet|)
+(|SparseMultivariatePolynomial| R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| |#2| (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-1041 |Coef| |Var| SMP)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (OR #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #1#) (OR #3# #4# #1#) (OR #3# #1#) #4# #2# (OR #2# #4#) (AND (|HasCategory| |#1| #5=(QUOTE (|PatternMatchable| #6=(|Float|)))) (|HasCategory| |#2| #5#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| |#2| #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #6#)))) (|HasCategory| |#2| #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| |#2| #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #16# (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #3# #17=(AND #1# (|HasCategory| $ #13#)) (OR #17# #12#))
+(|SparseMultivariateTaylorSeries| |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1042 R E V P)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| (|Integer|))))) #1=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR #1# #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) #2# (|HasCategory| |#1| (QUOTE (|Field|))))
+(|SquareFreeNormalizedTriangularSetCategory| R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
NIL
NIL
-(-1043 UP -3095)
+(|PolynomialSolveByFormulas| UP F)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1044 R)
+(|RadicalSolvePackage| R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1045 R)
+(|TransSolvePackageService| R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1046 R)
+(|TransSolvePackage| R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1047 S A)
+(|SortPackage| S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-1048 R)
+((|HasCategory| |#1| (QUOTE (|OrderedSet|))))
+(|ThreeSpace| R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1049 R)
+(|ThreeSpaceCategory| R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1050)
+(|SpadAst|)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1051)
+(|SpadParser|)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1052)
+(|SpadAstExports|)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1053)
+(|SpecialOutputPackage|)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1054)
+(|SpecialFunctionCategory|)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1055 V C)
+(|SplittingNode| V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1056 V C)
+(|SplittingTree| V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
NIL
-((-11 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -259) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-69))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))))
-(-1057 |ndim| R)
+((AND (|HasCategory| #1=(|SplittingNode| |#1| |#2|) (|%list| (QUOTE |Evalable|) #2=(|%list| (QUOTE |SplittingNode|) (|devaluate| |#1|) (|devaluate| |#2|)))) #3=(|HasCategory| #1# (QUOTE (|SetCategory|)))) #3# (OR #4=(|HasCategory| #1# (QUOTE (|BasicType|))) #3#) (|HasCategory| #1# (QUOTE (|CoercibleTo| (|OutputForm|)))) #4# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|SquareMatrix| |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-3994 . T) (-3986 |has| |#2| (-6 (-3997 "*"))) (-3991 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-145))))
-(-1058 S)
+((|unitsKnown| . T) (|central| |has| |#2| (ATTRIBUTE (|commutative| "*"))) (|rightUnitary| . T) (|leftUnitary| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #2=(|Symbol|)))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #2#))) #3=(|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) #4=(|HasAttribute| |#2| (QUOTE (|commutative| "*"))) #5=(|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #6=(|Integer|)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| (|Fraction| #6#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #6#))) (OR (AND #3# #7=(|HasCategory| |#2| (|%list| (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND #5# #7#) (AND #1# #7#) #8=(AND #9=(|HasCategory| |#2| (QUOTE (|SetCategory|))) #7#)) (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR #4# #3# #1#) (|HasCategory| |#2| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#2| (QUOTE (|BasicType|))) #9# #8# (|HasCategory| |#2| (QUOTE (|CommutativeRing|))))
+(|StringAggregate&| S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1059)
+(|StringAggregate|)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1060 R E V P TS)
+(|SquareFreeRegularSetDecompositionPackage| R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1061 R E V P)
+(|SquareFreeRegularTriangularSet| R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
NIL
-((-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|))))
-(-1062)
+((AND #1=(|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|SemiRing|)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1063 S)
+(|Stack| S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))))
-(-1064 A S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) (|devaluate| |#1|)))) #1# (OR #2=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #2#)
+(|StreamAggregate&| A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1065 S)
+(|StreamAggregate| S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1066 |Key| |Ent| |dent|)
+(|SparseTable| |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-1067)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|StepThrough|)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1068)
+(|StepAst|)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1069 |Coef|)
+(|StreamInfiniteProduct| |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1070 S)
+(|Stream| S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-1071 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) #3# (AND #3# (|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|StreamFunctions1| S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1072 A B)
+(|StreamFunctions2| A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1073 A B C)
+(|StreamFunctions3| A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1074)
+(|String|)
((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
NIL
-((OR (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-757)))) (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-1014))))) (|HasCategory| (-114) (QUOTE (-553 (-773)))) (|HasCategory| (-114) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-114) (QUOTE (-757))) (|HasCategory| (-114) (QUOTE (-1014)))) (|HasCategory| (-114) (QUOTE (-757))) (OR (|HasCategory| (-114) (QUOTE (-69))) (|HasCategory| (-114) (QUOTE (-757))) (|HasCategory| (-114) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-114) (QUOTE (-69))) (|HasCategory| (-114) (QUOTE (-1014))) (-11 (|HasCategory| (-114) (QUOTE (-259 (-114)))) (|HasCategory| (-114) (QUOTE (-1014)))) (-11 (|HasCategory| $ (QUOTE (-317 (-114)))) (|HasCategory| (-114) (QUOTE (-69)))) (|HasCategory| $ (QUOTE (-317 (-114)))) (|HasCategory| $ (QUOTE (-1036 (-114)))) (-11 (|HasCategory| $ (QUOTE (-1036 (-114)))) (|HasCategory| (-114) (QUOTE (-757)))))
-(-1075 |Entry|)
+((OR (AND #1=(|HasCategory| #2=(|Character|) (QUOTE (|Evalable| #2#))) #3=(|HasCategory| #2# #4=(QUOTE (|OrderedSet|)))) #5=(AND #1# #6=(|HasCategory| #2# (QUOTE (|SetCategory|))))) (|HasCategory| #2# (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| #2# (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #3# #6#) #3# (OR #7=(|HasCategory| #2# (QUOTE (|BasicType|))) #3# #6#) (|HasCategory| (|Integer|) #4#) #7# #6# #5# (AND #8=(|HasCategory| $ (QUOTE (|FiniteAggregate| #2#))) #7#) #8# #9=(|HasCategory| $ (QUOTE (|ShallowlyMutableAggregate| #2#))) (AND #9# #3#))
+(|StringTable| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (QUOTE (|:| -3864 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-1076 A)
+((AND (|HasCategory| #1=(|Record| #2=(|:| |key| #3=(|String|)) (|:| |entry| |#1|)) (|%list| #4=(QUOTE |Evalable|) #5=(|%list| (QUOTE |Record|) (QUOTE #2#) (|%list| (QUOTE |:|) (QUOTE |entry|) #6=(|devaluate| |#1|))))) #7=(|HasCategory| #1# #8=(QUOTE (|SetCategory|)))) (OR #9=(|HasCategory| |#1| #8#) #7#) (OR #10=(|HasCategory| |#1| #11=(QUOTE (|BasicType|))) #9# #12=(|HasCategory| #1# #11#) #7#) (OR #13=(|HasCategory| #1# #14=(QUOTE (|CoercibleTo| (|OutputForm|)))) #15=(|HasCategory| |#1| #14#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #9# (|HasCategory| |#1| (|%list| #4# #6#))) #12# (|HasCategory| #3# (QUOTE (|OrderedSet|))) #10# (OR #10# #12#) #9# #15# #13# #7# (AND #16=(|HasCategory| $ (|%list| #17=(QUOTE |FiniteAggregate|) #5#)) #12#) #16# (AND #10# (|HasCategory| $ (|%list| #17# #6#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #6#)))
+(|StreamTaylorSeriesOperations| A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))))
-(-1077 |Coef|)
+((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| (|Integer|))))))
+(|StreamTranscendentalFunctions| |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1078 |Coef|)
+(|StreamTranscendentalFunctionsNonCommutative| |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1079 R UP)
+(|SubResultantPackage| R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-257))))
-(-1080 |n| R)
+((|HasCategory| |#1| (QUOTE (|EuclideanDomain|))))
+(|SubSpace| |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1081 S1 S2)
+(|SuchThat| S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1082)
+(|SuchThatAst|)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1083 |Coef| |var| |cen|)
+(|SparseUnivariateLaurentSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3997 "*") OR (-2565 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-145)) (-2565 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2565 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2565 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-117)))) (|HasCategory| |#1| (QUOTE (-117)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-311))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-329))))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-115))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-145)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-188)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-117)))) (|HasCategory| |#1| (QUOTE (-117)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-115)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-1084 R -3095)
+(((|commutative| "*") OR #1=(|and| #2=(|has| |#1| #3=(|Field|)) (|has| #4=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) #5=(|and| #2# (|has| #4# (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR #1# (|has| |#1| (|IntegralDomain|)) #5#) (|canonicalUnitNormal| |has| |#1| . #6=(#3#)) (|canonicalsClosed| |has| |#1| . #6#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #4=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #4# #3#) (OR #5=(AND #6=(|HasCategory| |#1| (QUOTE (|Field|))) #7=(|HasCategory| #8=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) #9=(QUOTE (|CharacteristicNonZero|)))) #10=(|HasCategory| |#1| #9#)) (OR #11=(AND #6# (|HasCategory| #8# (QUOTE (|OrderedIntegralDomain|)))) #12=(AND #6# (|HasCategory| #8# #13=(QUOTE (|CharacteristicZero|)))) #14=(|HasCategory| |#1| #13#)) (OR #15=(AND #6# (|HasCategory| #8# #16=(QUOTE (|PartialDifferentialRing| #17=(|Symbol|))))) #18=(AND (|HasCategory| |#1| #16#) #19=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #20=(|devaluate| |#1|) #21=(QUOTE #2#) #20#))))) (OR #15# #22=(AND #6# (|HasCategory| #8# (QUOTE (|PartialDifferentialSpace| #17#)))) #18#) (OR #23=(AND #6# (|HasCategory| #8# (QUOTE (|DifferentialRing|)))) #19#) (OR #23# #24=(AND #6# (|HasCategory| #8# (QUOTE (|DifferentialSpace|)))) #19#) (|HasCategory| #2# (QUOTE (|SemiGroup|))) (OR #6# #3#) #6# #25=(AND #6# #26=(|HasCategory| #8# (QUOTE (|PolynomialFactorizationExplicit|)))) (AND #6# (|HasCategory| #8# (QUOTE (|RetractableTo| #17#)))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|InputForm|))))) (AND #6# (|HasCategory| #8# (QUOTE (|RealConstant|)))) (OR #4# #6# #3#) #11# (OR #11# #27=(AND #6# (|HasCategory| #8# (QUOTE (|OrderedSet|))))) (OR #28=(AND #6# (|HasCategory| #8# (QUOTE (|RetractableTo| #2#)))) #1#) #28# (AND #6# (|HasCategory| #8# (QUOTE (|StepThrough|)))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |Eltable|) #29=(|%list| (QUOTE |SparseUnivariateTaylorSeries|) #20# (|devaluate| |#2|) (|devaluate| |#3|)) #29#))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |Evalable|) #29#))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |InnerEvalable|) #30=(QUOTE #17#) #29#))) (AND #6# (|HasCategory| #8# (QUOTE (|LinearlyExplicitRingOver| #2#)))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|Pattern| #2#))))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|Pattern| #31=(|Float|)))))) (AND #6# (|HasCategory| #8# (QUOTE (|PatternMatchable| #2#)))) (AND #6# (|HasCategory| #8# (QUOTE (|PatternMatchable| #31#)))) (AND #32=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #20# #20# #21#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #20# #30#)))) #32# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #2#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #20# #20# #30#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #30#) #20#))))) (AND #6# (|HasCategory| #8# (QUOTE (|IntegerNumberSystem|)))) (AND #6# (|HasCategory| #8# (QUOTE (|EuclideanDomain|)))) #26# #7# #10# (OR #11# #25# #3#) (OR #11# #25# #4#) #22# #24# #27# (OR #12# #14#) #33=(AND #6# (|HasCategory| $ #9#) #26#) (OR #5# #33# #10#))
+(|FunctionSpaceSum| R F)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1085 R)
+(|RationalFunctionSum| R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1086 R)
+(|SparseUnivariatePolynomial| R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-311)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-329)))) (|HasCategory| (-995) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-189))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-1087 R S)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #3=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #3# #2#) (AND (|HasCategory| |#1| #4=(QUOTE (|PatternMatchable| #5=(|Float|)))) (|HasCategory| #6=(|SingletonAsOrderedSet|) #4#)) (AND (|HasCategory| |#1| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| #6# #7#)) (AND (|HasCategory| |#1| #9=(QUOTE (|ConvertibleTo| (|Pattern| #5#)))) (|HasCategory| #6# #9#)) (AND (|HasCategory| |#1| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #6# #10#)) (AND (|HasCategory| |#1| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #6# #11#)) (|HasCategory| |#1| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#1| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#1| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#1| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#1| (QUOTE (|RetractableTo| #15#)))) #16# (OR #3# #17=(|HasCategory| |#1| (QUOTE (|Field|))) #18=(|HasCategory| |#1| (QUOTE (|GcdDomain|))) #2# #1#) (OR #17# #18# #2# #1#) (OR #17# #18# #1#) #17# (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialSpace| #19=(|Symbol|)))) (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #19#))) (|HasCategory| |#1| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) #18# #20=(AND #1# (|HasCategory| $ #13#)) (OR #20# #12#))
+(|SparseUnivariatePolynomialFunctions2| R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1088 E OV R P)
+(|SupFractionFactorizer| E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1089 |Coef| |var| |cen|)
+(|SparseUnivariatePuiseuxSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1090 |Coef| |var| |cen|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #5# #4#) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #6=(|Symbol|)))) #7=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #8=(|devaluate| |#1|) #9=(|%list| (QUOTE |Fraction|) (QUOTE #3#)) #8#)))) #7# (|HasCategory| #2# (QUOTE (|SemiGroup|))) #10=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #5# #10# #4#) (OR #10# #4#) (AND #11=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #8# #8# #9#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #8# #12=(QUOTE #6#))))) #11# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #3#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #8# #8# #12#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #12#) #8#))))))
+(|SparseUnivariateTaylorSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1091)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR #4=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3#) #4# (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #5=(|Symbol|)))) #6=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #7=(|devaluate| |#1|) #8=(QUOTE #9=(|NonNegativeInteger|)) #7#)))) #6# (|HasCategory| #9# (QUOTE (|SemiGroup|))) (AND #10=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #7# #7# #8#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #7# #11=(QUOTE #5#))))) #10# (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #2#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #7# #7# #11#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #11#) #7#))))))
+(|Symbol|)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1092 R)
+(|SymmetricFunctions| R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1093 R)
+(|SymmetricPolynomial| R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-392))) (-11 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-101)))) (|HasAttribute| |#1| (QUOTE -3995)))
-(-1094)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #4#) #5# (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (OR #1# #6=(|HasCategory| |#1| (QUOTE (|RetractableTo| #2#)))) #6# (|HasCategory| |#1| (QUOTE (|RetractableTo| #3#))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND #4# (|HasCategory| (|Partition|) (QUOTE (|CancellationAbelianMonoid|)))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)))
+(|TheSymbolTable|)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1095)
+(|SymbolTable|)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1096)
+(|Syntax|)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1097 N)
+(|SystemInteger| N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1098 N)
+(|SystemNonNegativeInteger| N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1099)
+(|SystemPointer|)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1100 R)
+(|SystemSolvePackage| R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1101)
+(|System|)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1102 S)
+(|TableauxBumpers| S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1103 |Key| |Entry|)
+(|Table| |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
NIL
-((-11 (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-11 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-69))) (OR (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-11 (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (QUOTE (-69)))) (|HasCategory| $ (|%list| (QUOTE -317) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3864) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-11 (|HasCategory| |#2| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-1104 S)
+((AND (|HasCategory| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|%list| #2=(QUOTE |Evalable|) #3=(|%list| (QUOTE |Record|) (|%list| #4=(QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (|%list| #4# (QUOTE |entry|) #5=(|devaluate| |#2|))))) #6=(|HasCategory| #1# #7=(QUOTE (|SetCategory|)))) (OR #8=(|HasCategory| |#2| #7#) #6#) (OR #9=(|HasCategory| |#2| #10=(QUOTE (|BasicType|))) #8# #11=(|HasCategory| #1# #10#) #6#) (OR #12=(|HasCategory| #1# #13=(QUOTE (|CoercibleTo| (|OutputForm|)))) #14=(|HasCategory| |#2| #13#)) (|HasCategory| #1# (QUOTE (|ConvertibleTo| (|InputForm|)))) (AND #8# (|HasCategory| |#2| (|%list| #2# #5#))) #11# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) #9# (OR #9# #11#) #8# #14# #12# #6# (AND #15=(|HasCategory| $ (|%list| #16=(QUOTE |FiniteAggregate|) #3#)) #11#) #15# (AND #9# (|HasCategory| $ (|%list| #16# #5#))) (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #5#)))
+(|Tableau| S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1105 S)
+(|TermAlgebraOperator| S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1106 R)
+(|TangentExpansions| R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1107 S |Key| |Entry|)
+(|TableAggregate&| S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
NIL
NIL
-(-1108 |Key| |Entry|)
+(|TableAggregate| |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
NIL
NIL
-(-1109 |Key| |Entry|)
+(|TabulatedComputationPackage| |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1110)
+(|TexFormat|)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1111 S)
+(|TexFormat1| S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1112)
+(|TextFile|)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1113 R)
+(|ToolsForSign| R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1114)
+(|TopLevelThreeSpace|)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1115 S)
+(|TranscendentalFunctionCategory&| S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1116)
+(|TranscendentalFunctionCategory|)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1117 S)
+(|Tree| S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
NIL
-((-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-1118 S)
+((AND #1=(|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#1|)))) #1# (OR #3=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1#) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) #3# (|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #2#)))
+(|TrigonometricFunctionCategory&| S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1119)
+(|TrigonometricFunctionCategory|)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1120 R -3095)
+(|TrigonometricManipulations| R F)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1121 R |Row| |Col| M)
+(|TriangularMatrixOperations| R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1122 R -3095)
+(|TranscendentalManipulations| R F)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-11 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|)))))
-(-1123 |Coef|)
+((AND (|HasCategory| |#1| #1=(|%list| (QUOTE |ConvertibleTo|) (|%list| (QUOTE |Pattern|) #2=(|devaluate| |#1|)))) (|HasCategory| |#1| #3=(|%list| (QUOTE |PatternMatchable|) #2#)) (|HasCategory| |#2| #1#) (|HasCategory| |#2| #3#)))
+(|TaylorSeries| |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-117))) (|HasCategory| |#1| (QUOTE (-115))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1124 S R E V P)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| (|Integer|))))) #1=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR #1# #2=(|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) #2# (|HasCategory| |#1| (QUOTE (|Field|))))
+(|TriangularSetCategory&| S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-319))))
-(-1125 R E V P)
+((|HasCategory| |#4| (QUOTE (|Finite|))))
+(|TriangularSetCategory| R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
NIL
-(-1126 |Curve|)
+(|TubePlot| |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1127)
+(|TubePlotTools|)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1128 S)
+(|Tuple| S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))))
-(-1129 -3095)
+((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))))
+(|TwoFactorize| F)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1130)
+(|Type|)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1131)
+(|TypeAst|)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1132 S)
+(|UserDefinedPartialOrdering| S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-1133)
+((|HasCategory| |#1| (QUOTE (|OrderedSet|))))
+(|UserDefinedVariableOrdering|)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1134 S)
+(|UniqueFactorizationDomain&| S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1135)
+(|UniqueFactorizationDomain|)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1136)
+(|UInt16|)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1137)
+(|UInt32|)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1138)
+(|UInt64|)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1139)
+(|UInt8|)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1140 |Coef| |var| |cen|)
+(|UnivariateLaurentSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3997 "*") OR (-2565 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-145)) (-2565 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2565 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2565 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-117)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-117)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-311))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -240) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-329))))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-115))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-145)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-188)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-117)))) (|HasCategory| |#1| (QUOTE (-117)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-115)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-115))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-115)))))
-(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((|commutative| "*") OR #1=(|and| #2=(|has| |#1| #3=(|Field|)) (|has| #4=(|UnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) #5=(|and| #2# (|has| #4# (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR #1# (|has| |#1| (|IntegralDomain|)) #5#) (|canonicalUnitNormal| |has| |#1| . #6=(#3#)) (|canonicalsClosed| |has| |#1| . #6#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #4=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #4# #3#) (OR #5=(AND #6=(|HasCategory| |#1| (QUOTE (|Field|))) #7=(|HasCategory| #8=(|UnivariateTaylorSeries| |#1| |#2| |#3|) #9=(QUOTE (|CharacteristicNonZero|)))) #10=(|HasCategory| |#1| #9#)) (OR #11=(AND #6# (|HasCategory| #8# #12=(QUOTE (|CharacteristicZero|)))) #13=(AND #6# (|HasCategory| #8# (QUOTE (|OrderedIntegralDomain|)))) #14=(|HasCategory| |#1| #12#)) (OR #15=(AND #6# (|HasCategory| #8# #16=(QUOTE (|PartialDifferentialRing| #17=(|Symbol|))))) #18=(AND (|HasCategory| |#1| #16#) #19=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #20=(|devaluate| |#1|) #21=(QUOTE #2#) #20#))))) (OR #15# #22=(AND #6# (|HasCategory| #8# (QUOTE (|PartialDifferentialSpace| #17#)))) #18#) (OR #23=(AND #6# (|HasCategory| #8# (QUOTE (|DifferentialRing|)))) #19#) (OR #23# #24=(AND #6# (|HasCategory| #8# (QUOTE (|DifferentialSpace|)))) #19#) (|HasCategory| #2# (QUOTE (|SemiGroup|))) (OR #6# #3#) #6# #25=(AND #6# #26=(|HasCategory| #8# (QUOTE (|PolynomialFactorizationExplicit|)))) (AND #6# (|HasCategory| #8# (QUOTE (|RetractableTo| #17#)))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|InputForm|))))) (AND #6# (|HasCategory| #8# (QUOTE (|RealConstant|)))) (OR #4# #6# #3#) #13# (OR #13# #27=(AND #6# (|HasCategory| #8# (QUOTE (|OrderedSet|))))) (OR #28=(AND #6# (|HasCategory| #8# (QUOTE (|RetractableTo| #2#)))) #1#) #28# (AND #6# (|HasCategory| #8# (QUOTE (|StepThrough|)))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |Eltable|) #29=(|%list| (QUOTE |UnivariateTaylorSeries|) #20# (|devaluate| |#2|) (|devaluate| |#3|)) #29#))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |Evalable|) #29#))) (AND #6# (|HasCategory| #8# (|%list| (QUOTE |InnerEvalable|) #30=(QUOTE #17#) #29#))) (AND #6# (|HasCategory| #8# (QUOTE (|LinearlyExplicitRingOver| #2#)))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|Pattern| #2#))))) (AND #6# (|HasCategory| #8# (QUOTE (|ConvertibleTo| (|Pattern| #31=(|Float|)))))) (AND #6# (|HasCategory| #8# (QUOTE (|PatternMatchable| #2#)))) (AND #6# (|HasCategory| #8# (QUOTE (|PatternMatchable| #31#)))) (AND #32=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #20# #20# #21#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #20# #30#)))) #32# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #2#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #20# #20# #30#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #30#) #20#))))) (AND #6# (|HasCategory| #8# (QUOTE (|IntegerNumberSystem|)))) (AND #6# (|HasCategory| #8# (QUOTE (|EuclideanDomain|)))) #26# #7# #10# (OR #25# #13# #3#) (OR #25# #13# #4#) #22# #24# #27# (OR #11# #14#) #33=(AND #6# (|HasCategory| $ #9#) #26#) (OR #5# #33# #10#))
+(|UnivariateLaurentSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1142 |Coef|)
+(|UnivariateLaurentSeriesCategory| |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1143 S |Coef| UTS)
+(|UnivariateLaurentSeriesConstructorCategory&| S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))))
-(-1144 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (|Field|))))
+(|UnivariateLaurentSeriesConstructorCategory| |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1145 |Coef| UTS)
+(|UnivariateLaurentSeriesConstructor| |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-115))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-115))))) (OR (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-117)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-188))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-311))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1067)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -240) (|devaluate| |#2|) (|devaluate| |#2|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-329))))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-484)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-115))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-188))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-188)))) (OR (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-117))))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#1| (QUOTE (-115))) (-11 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-115))))))
-(-1146 ZP)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #4=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #4# #3#) (OR #5=(|HasCategory| |#1| #6=(QUOTE (|CharacteristicNonZero|))) #7=(AND #8=(|HasCategory| |#1| (QUOTE (|Field|))) #9=(|HasCategory| |#2| #6#))) (OR #10=(|HasCategory| |#1| #11=(QUOTE (|CharacteristicZero|))) #12=(AND #8# (|HasCategory| |#2| #11#)) #13=(AND #8# (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))))) (OR #14=(AND #8# (|HasCategory| |#2| #15=(QUOTE (|PartialDifferentialRing| #16=(|Symbol|))))) #17=(AND (|HasCategory| |#1| #15#) #18=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #19=(|devaluate| |#1|) #20=(QUOTE #2#) #19#))))) (OR #14# #21=(AND #8# (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #16#)))) #17#) (OR #18# #22=(AND #8# (|HasCategory| |#2| (QUOTE (|DifferentialRing|))))) (OR #18# #22# #23=(AND #8# (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))))) (|HasCategory| #2# (QUOTE (|SemiGroup|))) (OR #8# #3#) #8# (AND #8# #24=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND #8# (|HasCategory| |#2| (QUOTE (|RetractableTo| #16#)))) (AND #8# (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|InputForm|))))) (AND #8# (|HasCategory| |#2| (QUOTE (|RealConstant|)))) (OR #4# #8# #3#) #13# (OR #13# #25=(AND #8# (|HasCategory| |#2| (QUOTE (|OrderedSet|))))) (OR #1# #26=(AND #8# (|HasCategory| |#2| (QUOTE (|RetractableTo| #2#))))) #26# (AND #8# (|HasCategory| |#2| (QUOTE (|StepThrough|)))) (AND #8# (|HasCategory| |#2| (|%list| (QUOTE |Eltable|) #27=(|devaluate| |#2|) #27#))) (AND #8# (|HasCategory| |#2| (|%list| (QUOTE |Evalable|) #27#))) (AND #8# (|HasCategory| |#2| (|%list| (QUOTE |InnerEvalable|) #28=(QUOTE #16#) #27#))) (AND #8# (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #2#)))) (AND #8# (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|Pattern| #2#))))) (AND #8# (|HasCategory| |#2| (QUOTE (|ConvertibleTo| (|Pattern| #29=(|Float|)))))) (AND #8# (|HasCategory| |#2| (QUOTE (|PatternMatchable| #2#)))) (AND #8# (|HasCategory| |#2| (QUOTE (|PatternMatchable| #29#)))) (AND #30=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #19# #19# #20#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #19# #28#)))) #30# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #2#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #19# #19# #28#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #28#) #19#))))) #25# #24# (AND #8# (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|)))) (AND #8# (|HasCategory| |#2| (QUOTE (|EuclideanDomain|)))) #5# #9# (OR #18# #23#) (OR #21# #17#) #21# #23# (OR #10# #12#) #31=(AND #8# #24# (|HasCategory| $ #6#)) (OR #31# #5# #7#))
+(|UnivariateFactorize| ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1147 S)
+(|UniversalSegment| S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
-(-1148 R S)
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))
+(|UniversalSegmentFunctions2| R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1149 |x| R)
+((|HasCategory| |#1| (QUOTE (|OrderedRing|))))
+(|UnivariatePolynomial| |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3997 "*") |has| |#2| (-145)) (-3990 |has| |#2| (-496)) (-3993 |has| |#2| (-311)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-496)))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-329)))) (|HasCategory| (-995) (QUOTE (-797 (-329))))) (-11 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-329))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-329)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-11 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-117))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-349 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (OR (-11 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-115)))) (|HasCategory| |#2| (QUOTE (-115)))))
-(-1150 |x| R |y| S)
+(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|additiveValuation| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) #2=(|HasCategory| |#2| (QUOTE (|IntegralDomain|))) #3=(|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR #3# #2#) (AND (|HasCategory| |#2| #4=(QUOTE (|PatternMatchable| #5=(|Float|)))) (|HasCategory| #6=(|SingletonAsOrderedSet|) #4#)) (AND (|HasCategory| |#2| #7=(QUOTE (|PatternMatchable| #8=(|Integer|)))) (|HasCategory| #6# #7#)) (AND (|HasCategory| |#2| #9=(QUOTE (|ConvertibleTo| (|Pattern| #5#)))) (|HasCategory| #6# #9#)) (AND (|HasCategory| |#2| #10=(QUOTE (|ConvertibleTo| (|Pattern| #8#)))) (|HasCategory| #6# #10#)) (AND (|HasCategory| |#2| #11=(QUOTE (|ConvertibleTo| (|InputForm|)))) (|HasCategory| #6# #11#)) (|HasCategory| |#2| (QUOTE (|LinearlyExplicitRingOver| #8#))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) #12=(|HasCategory| |#2| #13=(QUOTE (|CharacteristicNonZero|))) #14=(|HasCategory| |#2| (QUOTE (|Algebra| #15=(|Fraction| #8#)))) (|HasCategory| |#2| (QUOTE (|RetractableTo| #8#))) (OR #14# #16=(|HasCategory| |#2| (QUOTE (|RetractableTo| #15#)))) #16# (OR #3# #17=(|HasCategory| |#2| (QUOTE (|Field|))) #18=(|HasCategory| |#2| (QUOTE (|GcdDomain|))) #2# #1#) (OR #17# #18# #2# #1#) (OR #17# #18# #1#) #17# (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialSpace| #19=(|Symbol|)))) (|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #19#))) (|HasCategory| |#2| (QUOTE (|DifferentialSpace|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) #18# #20=(AND #1# (|HasCategory| $ #13#)) (OR #20# #12#))
+(|UnivariatePolynomialFunctions2| |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1151 R Q UP)
+(|UnivariatePolynomialCommonDenominator| R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1152 R UP)
+(|UnivariatePolynomialDecompositionPackage| R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1153 R UP)
+(|UnivariatePolynomialDivisionPackage| R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1154 R U)
+(|UnivariatePolynomialMultiplicationPackage| R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1155 S R)
+(|UnivariatePolynomialCategory&| S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1067))))
-(-1156 R)
+((|HasCategory| |#2| (QUOTE (|Algebra| (|Fraction| (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|StepThrough|))))
+(|UnivariatePolynomialCategory| R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-311)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-1157 R PR S PS)
+(|UnivariatePolynomialCategoryFunctions2| R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1158 S |Coef| |Expon|)
+(|UnivariatePowerSeriesCategory&| S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#2|) (QUOTE (-1091))))))
-(-1159 |Coef| |Expon|)
+((|HasCategory| |#2| (QUOTE (|PartialDifferentialRing| #1=(|Symbol|)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| #2=(|devaluate| |#2|) #3=(|devaluate| |#3|) #2#))) (|HasCategory| |#3| (QUOTE (|SemiGroup|))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| #2# #2# #3#))) (|HasSignature| |#2| (|%list| (QUOTE |coerce|) (|%list| #2# (QUOTE #1#)))))
+(|UnivariatePowerSeriesCategory| |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1160 RC P)
+(|UnivariatePolynomialSquareFree| RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1161 |Coef| |var| |cen|)
+(|UnivariatePuiseuxSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| #2=(|Fraction| #3=(|Integer|))))) #4=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #5=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #5# #4#) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #6=(|Symbol|)))) #7=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #8=(|devaluate| |#1|) #9=(|%list| (QUOTE |Fraction|) (QUOTE #3#)) #8#)))) #7# (|HasCategory| #2# (QUOTE (|SemiGroup|))) #10=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #5# #10# #4#) (OR #10# #4#) (AND #11=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #8# #8# #9#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #8# #12=(QUOTE #6#))))) #11# (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #3#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #8# #8# #12#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #12#) #8#))))))
+(|UnivariatePuiseuxSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1163 |Coef|)
+(|UnivariatePuiseuxSeriesCategory| |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1164 S |Coef| ULS)
+(|UnivariatePuiseuxSeriesConstructorCategory&| S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1165 |Coef| ULS)
+(|UnivariatePuiseuxSeriesConstructorCategory| |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1166 |Coef| ULS)
+(|UnivariatePuiseuxSeriesConstructor| |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-145))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-496)))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-485)))))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))))
-(-1167 R FE |var| |cen|)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| . #1=((|Field|))) (|canonicalsClosed| |has| |#1| . #1#) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) #2=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR #2# #1#) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #3=(|Symbol|)))) #4=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #5=(|devaluate| |#1|) #6=(|%list| (QUOTE |Fraction|) (QUOTE #7=(|Integer|))) #5#)))) #4# (|HasCategory| #8=(|Fraction| #7#) (QUOTE (|SemiGroup|))) #9=(|HasCategory| |#1| (QUOTE (|Field|))) (OR #2# #9# #1#) (OR #9# #1#) (AND #10=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #5# #5# #6#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #5# #11=(QUOTE #3#))))) #10# (OR (AND #12=(|HasCategory| |#1| (QUOTE (|Algebra| #8#))) (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #7#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #12# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #5# #5# #11#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #11#) #5#))))) #12#)
+(|UnivariatePuiseuxSeriesWithExponentialSingularity| R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-3997 "*") |has| (-1161 |#2| |#3| |#4|) (-145)) (-3990 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-35 (-349 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-115))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-117))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-145))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-35 (-349 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-349 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-349 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496))))
-(-1168 A S)
+(((|commutative| "*") |has| #1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (|noZeroDivisors| |has| #1# (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| #2=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|Algebra| #3=(|Fraction| #4=(|Integer|))))) (|HasCategory| #2# (QUOTE (|CharacteristicNonZero|))) (|HasCategory| #2# (QUOTE (|CharacteristicZero|))) (|HasCategory| #2# (QUOTE (|CommutativeRing|))) (OR #1# #5=(|HasCategory| #2# (QUOTE (|RetractableTo| #3#)))) #5# (|HasCategory| #2# (QUOTE (|RetractableTo| #4#))) (|HasCategory| #2# (QUOTE (|Field|))) (|HasCategory| #2# (QUOTE (|GcdDomain|))) (|HasCategory| #2# (QUOTE (|IntegralDomain|))))
+(|UnaryRecursiveAggregate&| A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-1169 S)
+((|HasCategory| |#1| (|%list| (QUOTE |ShallowlyMutableAggregate|) (|devaluate| |#2|))))
+(|UnaryRecursiveAggregate| S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1170 |Coef| |var| |cen|)
+(|UnivariateTaylorSeries| |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-115))) (|HasCategory| |#1| (QUOTE (-117))) (-11 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-11 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3950) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#1| (QUOTE (-26 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-11 (|HasCategory| |#1| (QUOTE (-35 (-349 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1171 |Coef1| |Coef2| UTS1 UTS2)
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
+(#1=(|HasCategory| |#1| (QUOTE (|Algebra| (|Fraction| #2=(|Integer|))))) #3=(|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR #4=(|HasCategory| |#1| (QUOTE (|CommutativeRing|))) #3#) #4# (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|PartialDifferentialRing| #5=(|Symbol|)))) #6=(|HasSignature| |#1| (|%list| (QUOTE *) (|%list| #7=(|devaluate| |#1|) #8=(QUOTE #9=(|NonNegativeInteger|)) #7#)))) #6# (|HasCategory| #9# (QUOTE (|SemiGroup|))) (AND #10=(|HasSignature| |#1| (|%list| (QUOTE **) (|%list| #7# #7# #8#))) (|HasSignature| |#1| (|%list| (QUOTE |coerce|) (|%list| #7# #11=(QUOTE #5#))))) #10# (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND #1# (|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedFunctionSpace| #2#))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND #1# (|HasSignature| |#1| (|%list| (QUOTE |integrate|) (|%list| #7# #7# #11#))) (|HasSignature| |#1| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #11#) #7#))))))
+(|UnivariateTaylorSeriesFunctions2| |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1172 S |Coef|)
+(|UnivariateTaylorSeriesCategory&| S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-26 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3084) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3815) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-35 (-349 (-485))))) (|HasCategory| |#2| (QUOTE (-311))))
-(-1173 |Coef|)
+((|HasCategory| |#2| (QUOTE (|AlgebraicallyClosedFunctionSpace| #1=(|Integer|)))) (|HasCategory| |#2| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|TranscendentalFunctionCategory|))) (|HasSignature| |#2| (|%list| (QUOTE |variables|) (|%list| (|%list| (QUOTE |List|) #2=(QUOTE (|Symbol|))) #3=(|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE |integrate|) (|%list| #3# #3# #2#))) (|HasCategory| |#2| (QUOTE (|Algebra| (|Fraction| #1#)))) (|HasCategory| |#2| (QUOTE (|Field|))))
+(|UnivariateTaylorSeriesCategory| |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-145)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1174 |Coef| UTS)
+(|UnivariateTaylorSeriesODESolver| |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1175 -3095 UP L UTS)
+(|UTSodetools| F UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-496))))
-(-1176)
+((|HasCategory| |#1| (QUOTE (|IntegralDomain|))))
+(|UnionType|)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1177 |sym|)
+(|Variable| |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1178 S R)
+(|VectorCategory&| S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-18))) (|HasCategory| |#2| (QUOTE (-20))) (|HasCategory| |#2| (QUOTE (-22))))
-(-1179 R)
+((|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))))
+(|VectorCategory| R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
NIL
-(-1180 R)
+(|Vector| R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
NIL
-((OR (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-22))) (|HasCategory| |#1| (QUOTE (-20))) (|HasCategory| |#1| (QUOTE (-18))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-11 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-11 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-11 (|HasCategory| |#1| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-11 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-1181 A B)
+((OR (AND #1=(|HasCategory| |#1| #2=(QUOTE (|OrderedSet|))) #3=(|HasCategory| |#1| (|%list| (QUOTE |Evalable|) #4=(|devaluate| |#1|)))) #5=(AND #6=(|HasCategory| |#1| (QUOTE (|SetCategory|))) #3#)) (|HasCategory| |#1| (QUOTE (|CoercibleTo| (|OutputForm|)))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (OR #1# #6#) #1# (OR #7=(|HasCategory| |#1| (QUOTE (|BasicType|))) #1# #6#) (|HasCategory| (|Integer|) #2#) #7# (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) #8=(|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) #8#) #6# #5# (AND #7# #9=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #4#))) #9# #10=(|HasCategory| $ (|%list| (QUOTE |ShallowlyMutableAggregate|) #4#)) (AND #1# #10#))
+(|VectorFunctions2| A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1182)
+(|ViewportPackage|)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1183)
+(|TwoDimensionalViewport|)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1184)
+(|ThreeDimensionalViewport|)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1185)
+(|ViewDefaultsPackage|)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1186)
+(|Void|)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1187 A S)
+(|VectorSpace&| A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1188 S)
+(|VectorSpace| S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-3992 . T) (-3991 . T))
+((|leftUnitary| . T) (|rightUnitary| . T))
NIL
-(-1189 R)
+(|WeierstrassPreparation| R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1190 K R UP -3095)
+(|WildFunctionFieldIntegralBasis| K R UP F)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1191)
+(|WhereAst|)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1192)
+(|WhileAst|)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1193 R |VarSet| E P |vl| |wl| |wtlevel|)
+(|WeightedPolynomials| R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3992 |has| |#1| (-145)) (-3991 |has| |#1| (-145)) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1194 R E V P)
+((|leftUnitary| |has| |#1| . #1=((|CommutativeRing|))) (|rightUnitary| |has| |#1| . #1#) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))))
+(|WuWenTsunTriangularSet| R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
NIL
-((-11 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-11 (|HasCategory| |#4| (QUOTE (-69))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -317) (|devaluate| |#4|))))
-(-1195 R)
+((AND #1=(|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| |#4| (|%list| (QUOTE |Evalable|) #2=(|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (|ConvertibleTo| (|InputForm|)))) #3=(|HasCategory| |#4| (QUOTE (|BasicType|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#4| (QUOTE (|CoercibleTo| (|OutputForm|)))) #1# (AND #3# #4=(|HasCategory| $ (|%list| (QUOTE |FiniteAggregate|) #2#))) #4#)
+(|XAlgebra| R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1196 |vl| R)
+(|XDistributedPolynomial| |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-3994 . T) (-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-145))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1197 R |VarSet| XPOLY)
+((|unitsKnown| . T) (|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|)))
+(|XExponentialPackage| R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1198 S -3095)
+(|ExtensionField&| S F)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-115))) (|HasCategory| |#2| (QUOTE (-117))))
-(-1199 -3095)
+((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))))
+(|ExtensionField| F)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
-(-1200 |vl| R)
+(|XFreeAlgebra| |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
+((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-1201 |VarSet| R)
+(|XPBWPolynomial| |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-655 (-349 (-485))))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1202 R)
+((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Module| (|Fraction| (|Integer|))))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|)))
+(|XPolynomial| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasAttribute| |#1| (QUOTE -3990)))
-(-1203 |vl| R)
+((|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|)))
+(|XPolynomialsCat| |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
+((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
NIL
-(-1204 R E)
+(|XPolynomialRing| R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-3994 . T) (-3995 |has| |#1| (-6 -3995)) (-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3990)))
-(-1205 |VarSet| R)
+((|unitsKnown| . T) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T))
+((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |unitsKnown|)) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|)))
+(|XRecursivePolynomial| |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-145))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1206)
+((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T))
+((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|)))
+(|YoungDiagram|)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1207 A)
+(|ParadoxicalCombinatorsForStreams| A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1208 R |ls| |ls2|)
+(|ZeroDimensionalSolvePackage| R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1209 R)
+(|IntegerLinearDependence| R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1210 |p|)
+(|IntegerMod| |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-3997 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T))
NIL
NIL
NIL
@@ -4800,4 +4800,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 1966179 1966184 1966189 1966194) (-2 NIL 1966159 1966164 1966169 1966174) (-1 NIL 1966139 1966144 1966149 1966154) (0 NIL 1966119 1966124 1966129 1966134) (-1210 "ZMOD.spad" 1965928 1965941 1966057 1966114) (-1209 "ZLINDEP.spad" 1965026 1965037 1965918 1965923) (-1208 "ZDSOLVE.spad" 1954987 1955009 1965016 1965021) (-1207 "YSTREAM.spad" 1954482 1954493 1954977 1954982) (-1206 "YDIAGRAM.spad" 1954116 1954125 1954472 1954477) (-1205 "XRPOLY.spad" 1953336 1953356 1953972 1954041) (-1204 "XPR.spad" 1951264 1951277 1953054 1953153) (-1203 "XPOLYC.spad" 1950583 1950599 1951190 1951259) (-1202 "XPOLY.spad" 1950138 1950149 1950439 1950508) (-1201 "XPBWPOLY.spad" 1948609 1948629 1949944 1950013) (-1200 "XFALG.spad" 1945790 1945806 1948535 1948604) (-1199 "XF.spad" 1944253 1944268 1945692 1945785) (-1198 "XF.spad" 1942696 1942713 1944137 1944142) (-1197 "XEXPPKG.spad" 1941955 1941981 1942686 1942691) (-1196 "XDPOLY.spad" 1941569 1941585 1941811 1941880) (-1195 "XALG.spad" 1941237 1941248 1941525 1941564) (-1194 "WUTSET.spad" 1937101 1937118 1940732 1940737) (-1193 "WP.spad" 1936308 1936352 1936959 1937026) (-1192 "WHILEAST.spad" 1936106 1936115 1936298 1936303) (-1191 "WHEREAST.spad" 1935777 1935786 1936096 1936101) (-1190 "WFFINTBS.spad" 1933440 1933462 1935767 1935772) (-1189 "WEIER.spad" 1931662 1931673 1933430 1933435) (-1188 "VSPACE.spad" 1931335 1931346 1931630 1931657) (-1187 "VSPACE.spad" 1931028 1931041 1931325 1931330) (-1186 "VOID.spad" 1930705 1930714 1931018 1931023) (-1185 "VIEWDEF.spad" 1925906 1925915 1930695 1930700) (-1184 "VIEW3D.spad" 1909867 1909876 1925896 1925901) (-1183 "VIEW2D.spad" 1897766 1897775 1909857 1909862) (-1182 "VIEW.spad" 1895486 1895495 1897756 1897761) (-1181 "VECTOR2.spad" 1894125 1894138 1895476 1895481) (-1180 "VECTOR.spad" 1892541 1892552 1892792 1892797) (-1179 "VECTCAT.spad" 1890475 1890486 1892531 1892536) (-1178 "VECTCAT.spad" 1888196 1888209 1890254 1890259) (-1177 "VARIABLE.spad" 1887976 1887991 1888186 1888191) (-1176 "UTYPE.spad" 1887620 1887629 1887966 1887971) (-1175 "UTSODETL.spad" 1886915 1886939 1887576 1887581) (-1174 "UTSODE.spad" 1885131 1885151 1886905 1886910) (-1173 "UTSCAT.spad" 1882610 1882626 1885029 1885126) (-1172 "UTSCAT.spad" 1879757 1879775 1882178 1882183) (-1171 "UTS2.spad" 1879352 1879387 1879747 1879752) (-1170 "UTS.spad" 1874364 1874392 1877884 1877981) (-1169 "URAGG.spad" 1869085 1869096 1874354 1874359) (-1168 "URAGG.spad" 1863742 1863755 1869013 1869018) (-1167 "UPXSSING.spad" 1861510 1861536 1862946 1863079) (-1166 "UPXSCONS.spad" 1859328 1859348 1859701 1859850) (-1165 "UPXSCCA.spad" 1857899 1857919 1859174 1859323) (-1164 "UPXSCCA.spad" 1856612 1856634 1857889 1857894) (-1163 "UPXSCAT.spad" 1855201 1855217 1856458 1856607) (-1162 "UPXS2.spad" 1854744 1854797 1855191 1855196) (-1161 "UPXS.spad" 1852099 1852127 1852935 1853084) (-1160 "UPSQFREE.spad" 1850514 1850528 1852089 1852094) (-1159 "UPSCAT.spad" 1848309 1848333 1850412 1850509) (-1158 "UPSCAT.spad" 1845805 1845831 1847910 1847915) (-1157 "UPOLYC2.spad" 1845276 1845295 1845795 1845800) (-1156 "UPOLYC.spad" 1840356 1840367 1845118 1845271) (-1155 "UPOLYC.spad" 1835354 1835367 1840118 1840123) (-1154 "UPMP.spad" 1834286 1834299 1835344 1835349) (-1153 "UPDIVP.spad" 1833851 1833865 1834276 1834281) (-1152 "UPDECOMP.spad" 1832112 1832126 1833841 1833846) (-1151 "UPCDEN.spad" 1831329 1831345 1832102 1832107) (-1150 "UP2.spad" 1830693 1830714 1831319 1831324) (-1149 "UP.spad" 1828163 1828178 1828550 1828703) (-1148 "UNISEG2.spad" 1827660 1827673 1828119 1828124) (-1147 "UNISEG.spad" 1827013 1827024 1827579 1827584) (-1146 "UNIFACT.spad" 1826116 1826128 1827003 1827008) (-1145 "ULSCONS.spad" 1819962 1819982 1820332 1820481) (-1144 "ULSCCAT.spad" 1817699 1817719 1819808 1819957) (-1143 "ULSCCAT.spad" 1815544 1815566 1817655 1817660) (-1142 "ULSCAT.spad" 1813784 1813800 1815390 1815539) (-1141 "ULS2.spad" 1813298 1813351 1813774 1813779) (-1140 "ULS.spad" 1805331 1805359 1806276 1806699) (-1139 "UINT8.spad" 1805208 1805217 1805321 1805326) (-1138 "UINT64.spad" 1805084 1805093 1805198 1805203) (-1137 "UINT32.spad" 1804960 1804969 1805074 1805079) (-1136 "UINT16.spad" 1804836 1804845 1804950 1804955) (-1135 "UFD.spad" 1803901 1803910 1804762 1804831) (-1134 "UFD.spad" 1803028 1803039 1803891 1803896) (-1133 "UDVO.spad" 1801909 1801918 1803018 1803023) (-1132 "UDPO.spad" 1799490 1799501 1801865 1801870) (-1131 "TYPEAST.spad" 1799409 1799418 1799480 1799485) (-1130 "TYPE.spad" 1799341 1799350 1799399 1799404) (-1129 "TWOFACT.spad" 1797993 1798008 1799331 1799336) (-1128 "TUPLE.spad" 1797500 1797511 1797905 1797910) (-1127 "TUBETOOL.spad" 1794367 1794376 1797490 1797495) (-1126 "TUBE.spad" 1793014 1793031 1794357 1794362) (-1125 "TSETCAT.spad" 1781107 1781124 1793004 1793009) (-1124 "TSETCAT.spad" 1769164 1769183 1781063 1781068) (-1123 "TS.spad" 1767792 1767808 1768758 1768855) (-1122 "TRMANIP.spad" 1762156 1762173 1767480 1767485) (-1121 "TRIMAT.spad" 1761119 1761144 1762146 1762151) (-1120 "TRIGMNIP.spad" 1759646 1759663 1761109 1761114) (-1119 "TRIGCAT.spad" 1759158 1759167 1759636 1759641) (-1118 "TRIGCAT.spad" 1758668 1758679 1759148 1759153) (-1117 "TREE.spad" 1757269 1757280 1758301 1758306) (-1116 "TRANFUN.spad" 1757108 1757117 1757259 1757264) (-1115 "TRANFUN.spad" 1756945 1756956 1757098 1757103) (-1114 "TOPSP.spad" 1756619 1756628 1756935 1756940) (-1113 "TOOLSIGN.spad" 1756282 1756293 1756609 1756614) (-1112 "TEXTFILE.spad" 1754843 1754852 1756272 1756277) (-1111 "TEX1.spad" 1754399 1754410 1754833 1754838) (-1110 "TEX.spad" 1751593 1751602 1754389 1754394) (-1109 "TBCMPPK.spad" 1749694 1749717 1751583 1751588) (-1108 "TBAGG.spad" 1748959 1748982 1749684 1749689) (-1107 "TBAGG.spad" 1748222 1748247 1748949 1748954) (-1106 "TANEXP.spad" 1747630 1747641 1748212 1748217) (-1105 "TALGOP.spad" 1747354 1747365 1747620 1747625) (-1104 "TABLEAU.spad" 1746835 1746846 1747344 1747349) (-1103 "TABLE.spad" 1744545 1744568 1744815 1744820) (-1102 "TABLBUMP.spad" 1741324 1741335 1744535 1744540) (-1101 "SYSTEM.spad" 1740552 1740561 1741314 1741319) (-1100 "SYSSOLP.spad" 1738035 1738046 1740542 1740547) (-1099 "SYSPTR.spad" 1737934 1737943 1738025 1738030) (-1098 "SYSNNI.spad" 1737157 1737168 1737924 1737929) (-1097 "SYSINT.spad" 1736561 1736572 1737147 1737152) (-1096 "SYNTAX.spad" 1732895 1732904 1736551 1736556) (-1095 "SYMTAB.spad" 1730963 1730972 1732885 1732890) (-1094 "SYMS.spad" 1726992 1727001 1730953 1730958) (-1093 "SYMPOLY.spad" 1726125 1726136 1726207 1726334) (-1092 "SYMFUNC.spad" 1725626 1725637 1726115 1726120) (-1091 "SYMBOL.spad" 1723121 1723130 1725616 1725621) (-1090 "SUTS.spad" 1720234 1720262 1721653 1721750) (-1089 "SUPXS.spad" 1717576 1717604 1718425 1718574) (-1088 "SUPFRACF.spad" 1716681 1716699 1717566 1717571) (-1087 "SUP2.spad" 1716073 1716086 1716671 1716676) (-1086 "SUP.spad" 1713157 1713168 1713930 1714083) (-1085 "SUMRF.spad" 1712131 1712142 1713147 1713152) (-1084 "SUMFS.spad" 1711760 1711777 1712121 1712126) (-1083 "SULS.spad" 1703780 1703808 1704738 1705161) (-1082 "syntax.spad" 1703549 1703558 1703770 1703775) (-1081 "SUCH.spad" 1703239 1703254 1703539 1703544) (-1080 "SUBSPACE.spad" 1695370 1695385 1703229 1703234) (-1079 "SUBRESP.spad" 1694540 1694554 1695326 1695331) (-1078 "STTFNC.spad" 1691008 1691024 1694530 1694535) (-1077 "STTF.spad" 1687107 1687123 1690998 1691003) (-1076 "STTAYLOR.spad" 1679784 1679795 1687014 1687019) (-1075 "STRTBL.spad" 1677657 1677674 1677806 1677811) (-1074 "STRING.spad" 1676298 1676307 1676683 1676688) (-1073 "STREAM3.spad" 1675871 1675886 1676288 1676293) (-1072 "STREAM2.spad" 1674999 1675012 1675861 1675866) (-1071 "STREAM1.spad" 1674705 1674716 1674989 1674994) (-1070 "STREAM.spad" 1671665 1671676 1674156 1674161) (-1069 "STINPROD.spad" 1670601 1670617 1671655 1671660) (-1068 "STEPAST.spad" 1669835 1669844 1670591 1670596) (-1067 "STEP.spad" 1669152 1669161 1669825 1669830) (-1066 "STBL.spad" 1666965 1666993 1667132 1667137) (-1065 "STAGG.spad" 1665664 1665675 1666955 1666960) (-1064 "STAGG.spad" 1664361 1664374 1665654 1665659) (-1063 "STACK.spad" 1663805 1663816 1664055 1664060) (-1062 "SRING.spad" 1663565 1663574 1663795 1663800) (-1061 "SREGSET.spad" 1661158 1661175 1663060 1663065) (-1060 "SRDCMPK.spad" 1659735 1659755 1661148 1661153) (-1059 "SRAGG.spad" 1654940 1654949 1659725 1659730) (-1058 "SRAGG.spad" 1650143 1650154 1654930 1654935) (-1057 "SQMATRIX.spad" 1647832 1647850 1648748 1648823) (-1056 "SPLTREE.spad" 1642492 1642505 1647288 1647293) (-1055 "SPLNODE.spad" 1639112 1639125 1642482 1642487) (-1054 "SPFCAT.spad" 1637921 1637930 1639102 1639107) (-1053 "SPECOUT.spad" 1636473 1636482 1637911 1637916) (-1052 "SPADXPT.spad" 1628564 1628573 1636463 1636468) (-1051 "spad-parser.spad" 1628029 1628038 1628554 1628559) (-1050 "SPADAST.spad" 1627730 1627739 1628019 1628024) (-1049 "SPACEC.spad" 1611945 1611956 1627720 1627725) (-1048 "SPACE3.spad" 1611721 1611732 1611935 1611940) (-1047 "SORTPAK.spad" 1611270 1611283 1611677 1611682) (-1046 "SOLVETRA.spad" 1609033 1609044 1611260 1611265) (-1045 "SOLVESER.spad" 1607489 1607500 1609023 1609028) (-1044 "SOLVERAD.spad" 1603515 1603526 1607479 1607484) (-1043 "SOLVEFOR.spad" 1601977 1601995 1603505 1603510) (-1042 "SNTSCAT.spad" 1601599 1601616 1601967 1601972) (-1041 "SMTS.spad" 1599916 1599942 1601193 1601290) (-1040 "SMP.spad" 1597724 1597744 1598114 1598241) (-1039 "SMITH.spad" 1596569 1596594 1597714 1597719) (-1038 "SMATCAT.spad" 1594699 1594729 1596525 1596564) (-1037 "SMATCAT.spad" 1592749 1592781 1594577 1594582) (-1036 "aggcat.spad" 1592435 1592446 1592739 1592744) (-1035 "SKAGG.spad" 1591426 1591437 1592425 1592430) (-1034 "SINT.spad" 1590725 1590734 1591292 1591421) (-1033 "SIMPAN.spad" 1590453 1590462 1590715 1590720) (-1032 "SIGNRF.spad" 1589578 1589589 1590443 1590448) (-1031 "SIGNEF.spad" 1588864 1588881 1589568 1589573) (-1030 "syntax.spad" 1588281 1588290 1588854 1588859) (-1029 "SIG.spad" 1587643 1587652 1588271 1588276) (-1028 "SHP.spad" 1585587 1585602 1587599 1587604) (-1027 "SHDP.spad" 1574930 1574957 1575447 1575532) (-1026 "SGROUP.spad" 1574538 1574547 1574920 1574925) (-1025 "SGROUP.spad" 1574144 1574155 1574528 1574533) (-1024 "catdef.spad" 1573854 1573866 1573965 1574139) (-1023 "catdef.spad" 1573410 1573422 1573675 1573849) (-1022 "SGCF.spad" 1566549 1566558 1573400 1573405) (-1021 "SFRTCAT.spad" 1565517 1565534 1566539 1566544) (-1020 "SFRGCD.spad" 1564580 1564600 1565507 1565512) (-1019 "SFQCMPK.spad" 1559393 1559413 1564570 1564575) (-1018 "SEXOF.spad" 1559236 1559276 1559383 1559388) (-1017 "SEXCAT.spad" 1557064 1557104 1559226 1559231) (-1016 "SEX.spad" 1556956 1556965 1557054 1557059) (-1015 "SETMN.spad" 1555416 1555433 1556946 1556951) (-1014 "SETCAT.spad" 1554901 1554910 1555406 1555411) (-1013 "SETCAT.spad" 1554384 1554395 1554891 1554896) (-1012 "SETAGG.spad" 1550933 1550944 1554364 1554379) (-1011 "SETAGG.spad" 1547490 1547503 1550923 1550928) (-1010 "SET.spad" 1545660 1545671 1546759 1546774) (-1009 "syntax.spad" 1545363 1545372 1545650 1545655) (-1008 "SEGXCAT.spad" 1544519 1544532 1545353 1545358) (-1007 "SEGCAT.spad" 1543444 1543455 1544509 1544514) (-1006 "SEGBIND2.spad" 1543142 1543155 1543434 1543439) (-1005 "SEGBIND.spad" 1542900 1542911 1543089 1543094) (-1004 "SEGAST.spad" 1542630 1542639 1542890 1542895) (-1003 "SEG2.spad" 1542065 1542078 1542586 1542591) (-1002 "SEG.spad" 1541878 1541889 1541984 1541989) (-1001 "SDVAR.spad" 1541154 1541165 1541868 1541873) (-1000 "SDPOL.spad" 1538846 1538857 1539137 1539264) (-999 "SCPKG.spad" 1536936 1536946 1538836 1538841) (-998 "SCOPE.spad" 1536114 1536122 1536926 1536931) (-997 "SCACHE.spad" 1534811 1534821 1536104 1536109) (-996 "SASTCAT.spad" 1534721 1534729 1534801 1534806) (-995 "SAOS.spad" 1534594 1534602 1534711 1534716) (-994 "SAERFFC.spad" 1534308 1534327 1534584 1534589) (-993 "SAEFACT.spad" 1534010 1534029 1534298 1534303) (-992 "SAE.spad" 1531661 1531676 1532271 1532406) (-991 "RURPK.spad" 1529321 1529336 1531651 1531656) (-990 "RULESET.spad" 1528775 1528798 1529311 1529316) (-989 "RULECOLD.spad" 1528628 1528640 1528765 1528770) (-988 "RULE.spad" 1526877 1526900 1528618 1528623) (-987 "RTVALUE.spad" 1526613 1526621 1526867 1526872) (-986 "syntax.spad" 1526331 1526339 1526603 1526608) (-985 "RSETGCD.spad" 1522774 1522793 1526321 1526326) (-984 "RSETCAT.spad" 1512765 1512781 1522764 1522769) (-983 "RSETCAT.spad" 1502754 1502772 1512755 1512760) (-982 "RSDCMPK.spad" 1501255 1501274 1502744 1502749) (-981 "RRCC.spad" 1499640 1499669 1501245 1501250) (-980 "RRCC.spad" 1498023 1498054 1499630 1499635) (-979 "RPTAST.spad" 1497726 1497734 1498013 1498018) (-978 "RPOLCAT.spad" 1477231 1477245 1497594 1497721) (-977 "RPOLCAT.spad" 1456529 1456545 1476894 1476899) (-976 "ROMAN.spad" 1455858 1455866 1456395 1456524) (-975 "ROIRC.spad" 1454939 1454970 1455848 1455853) (-974 "RNS.spad" 1453916 1453924 1454841 1454934) (-973 "RNS.spad" 1452979 1452989 1453906 1453911) (-972 "RNGBIND.spad" 1452140 1452153 1452934 1452939) (-971 "RNG.spad" 1451749 1451757 1452130 1452135) (-970 "RNG.spad" 1451356 1451366 1451739 1451744) (-969 "RMODULE.spad" 1451138 1451148 1451346 1451351) (-968 "RMCAT2.spad" 1450559 1450615 1451128 1451133) (-967 "RMATRIX.spad" 1449381 1449399 1449723 1449750) (-966 "RMATCAT.spad" 1445163 1445193 1449349 1449376) (-965 "RMATCAT.spad" 1440823 1440855 1445011 1445016) (-964 "RLINSET.spad" 1440528 1440538 1440813 1440818) (-963 "RINTERP.spad" 1440417 1440436 1440518 1440523) (-962 "RING.spad" 1439888 1439896 1440397 1440412) (-961 "RING.spad" 1439367 1439377 1439878 1439883) (-960 "RIDIST.spad" 1438760 1438768 1439357 1439362) (-959 "RGCHAIN.spad" 1437027 1437042 1437920 1437925) (-958 "RGBCSPC.spad" 1436817 1436828 1437017 1437022) (-957 "RGBCMDL.spad" 1436380 1436391 1436807 1436812) (-956 "RFFACTOR.spad" 1435843 1435853 1436370 1436375) (-955 "RFFACT.spad" 1435579 1435590 1435833 1435838) (-954 "RFDIST.spad" 1434576 1434584 1435569 1435574) (-953 "RF.spad" 1432251 1432261 1434566 1434571) (-952 "RETSOL.spad" 1431671 1431683 1432241 1432246) (-951 "RETRACT.spad" 1431100 1431110 1431661 1431666) (-950 "RETRACT.spad" 1430527 1430539 1431090 1431095) (-949 "RETAST.spad" 1430340 1430348 1430517 1430522) (-948 "RESRING.spad" 1429688 1429734 1430278 1430335) (-947 "RESLATC.spad" 1429013 1429023 1429678 1429683) (-946 "REPSQ.spad" 1428745 1428755 1429003 1429008) (-945 "REPDB.spad" 1428453 1428463 1428735 1428740) (-944 "REP2.spad" 1418168 1418178 1428295 1428300) (-943 "REP1.spad" 1412389 1412399 1418118 1418123) (-942 "REP.spad" 1409944 1409952 1412379 1412384) (-941 "REGSET.spad" 1407631 1407647 1409439 1409444) (-940 "REF.spad" 1407150 1407160 1407621 1407626) (-939 "REDORDER.spad" 1406357 1406373 1407140 1407145) (-938 "RECLOS.spad" 1405254 1405273 1405957 1406050) (-937 "REALSOLV.spad" 1404395 1404403 1405244 1405249) (-936 "REAL0Q.spad" 1401694 1401708 1404385 1404390) (-935 "REAL0.spad" 1398539 1398553 1401684 1401689) (-934 "REAL.spad" 1398412 1398420 1398529 1398534) (-933 "RDUCEAST.spad" 1398134 1398142 1398402 1398407) (-932 "RDIV.spad" 1397790 1397814 1398124 1398129) (-931 "RDIST.spad" 1397358 1397368 1397780 1397785) (-930 "RDETRS.spad" 1396223 1396240 1397348 1397353) (-929 "RDETR.spad" 1394363 1394380 1396213 1396218) (-928 "RDEEFS.spad" 1393463 1393479 1394353 1394358) (-927 "RDEEF.spad" 1392474 1392490 1393453 1393458) (-926 "RCFIELD.spad" 1389693 1389701 1392376 1392469) (-925 "RCFIELD.spad" 1386998 1387008 1389683 1389688) (-924 "RCAGG.spad" 1384935 1384945 1386988 1386993) (-923 "RCAGG.spad" 1382773 1382785 1384828 1384833) (-922 "RATRET.spad" 1382134 1382144 1382763 1382768) (-921 "RATFACT.spad" 1381827 1381838 1382124 1382129) (-920 "RANDSRC.spad" 1381147 1381155 1381817 1381822) (-919 "RADUTIL.spad" 1380904 1380912 1381137 1381142) (-918 "RADIX.spad" 1377949 1377962 1379494 1379587) (-917 "RADFF.spad" 1375866 1375902 1375984 1376140) (-916 "RADCAT.spad" 1375462 1375470 1375856 1375861) (-915 "RADCAT.spad" 1375056 1375066 1375452 1375457) (-914 "QUEUE.spad" 1374492 1374502 1374750 1374755) (-913 "QUATCT2.spad" 1374113 1374131 1374482 1374487) (-912 "QUATCAT.spad" 1372284 1372294 1374043 1374108) (-911 "QUATCAT.spad" 1370220 1370232 1371981 1371986) (-910 "QUAT.spad" 1368827 1368837 1369169 1369234) (-909 "QUAGG.spad" 1367683 1367693 1368817 1368822) (-908 "QQUTAST.spad" 1367452 1367460 1367673 1367678) (-907 "QFORM.spad" 1367071 1367085 1367442 1367447) (-906 "QFCAT2.spad" 1366764 1366780 1367061 1367066) (-905 "QFCAT.spad" 1365467 1365477 1366666 1366759) (-904 "QFCAT.spad" 1363803 1363815 1365004 1365009) (-903 "QEQUAT.spad" 1363362 1363370 1363793 1363798) (-902 "QCMPACK.spad" 1358277 1358296 1363352 1363357) (-901 "QALGSET2.spad" 1356273 1356291 1358267 1358272) (-900 "QALGSET.spad" 1352378 1352410 1356187 1356192) (-899 "PWFFINTB.spad" 1349794 1349815 1352368 1352373) (-898 "PUSHVAR.spad" 1349133 1349152 1349784 1349789) (-897 "PTRANFN.spad" 1345269 1345279 1349123 1349128) (-896 "PTPACK.spad" 1342357 1342367 1345259 1345264) (-895 "PTFUNC2.spad" 1342180 1342194 1342347 1342352) (-894 "PTCAT.spad" 1341457 1341467 1342170 1342175) (-893 "PSQFR.spad" 1340772 1340796 1341447 1341452) (-892 "PSEUDLIN.spad" 1339658 1339668 1340762 1340767) (-891 "PSETPK.spad" 1326363 1326379 1339536 1339541) (-890 "PSETCAT.spad" 1320773 1320796 1326353 1326358) (-889 "PSETCAT.spad" 1315147 1315172 1320729 1320734) (-888 "PSCURVE.spad" 1314146 1314154 1315137 1315142) (-887 "PSCAT.spad" 1312929 1312958 1314044 1314141) (-886 "PSCAT.spad" 1311802 1311833 1312919 1312924) (-885 "PRTITION.spad" 1310500 1310508 1311792 1311797) (-884 "PRTDAST.spad" 1310219 1310227 1310490 1310495) (-883 "PRS.spad" 1299837 1299854 1310175 1310180) (-882 "PRQAGG.spad" 1299294 1299304 1299827 1299832) (-881 "PROPLOG.spad" 1298898 1298906 1299284 1299289) (-880 "PROPFUN2.spad" 1298521 1298534 1298888 1298893) (-879 "PROPFUN1.spad" 1297927 1297938 1298511 1298516) (-878 "PROPFRML.spad" 1296495 1296506 1297917 1297922) (-877 "PROPERTY.spad" 1295991 1295999 1296485 1296490) (-876 "PRODUCT.spad" 1293688 1293700 1293972 1294027) (-875 "PRINT.spad" 1293440 1293448 1293678 1293683) (-874 "PRIMES.spad" 1291701 1291711 1293430 1293435) (-873 "PRIMELT.spad" 1289822 1289836 1291691 1291696) (-872 "PRIMCAT.spad" 1289465 1289473 1289812 1289817) (-871 "PRIMARR2.spad" 1288232 1288244 1289455 1289460) (-870 "PRIMARR.spad" 1286984 1286994 1287154 1287159) (-869 "PREASSOC.spad" 1286366 1286378 1286974 1286979) (-868 "PR.spad" 1284884 1284896 1285583 1285710) (-867 "PPCURVE.spad" 1284021 1284029 1284874 1284879) (-866 "PORTNUM.spad" 1283812 1283820 1284011 1284016) (-865 "POLYROOT.spad" 1282661 1282683 1283768 1283773) (-864 "POLYLIFT.spad" 1281926 1281949 1282651 1282656) (-863 "POLYCATQ.spad" 1280052 1280074 1281916 1281921) (-862 "POLYCAT.spad" 1273554 1273575 1279920 1280047) (-861 "POLYCAT.spad" 1266576 1266599 1272944 1272949) (-860 "POLY2UP.spad" 1266028 1266042 1266566 1266571) (-859 "POLY2.spad" 1265625 1265637 1266018 1266023) (-858 "POLY.spad" 1263293 1263303 1263808 1263935) (-857 "POLUTIL.spad" 1262258 1262287 1263249 1263254) (-856 "POLTOPOL.spad" 1261006 1261021 1262248 1262253) (-855 "POINT.spad" 1259586 1259596 1259673 1259678) (-854 "PNTHEORY.spad" 1256288 1256296 1259576 1259581) (-853 "PMTOOLS.spad" 1255063 1255077 1256278 1256283) (-852 "PMSYM.spad" 1254612 1254622 1255053 1255058) (-851 "PMQFCAT.spad" 1254203 1254217 1254602 1254607) (-850 "PMPREDFS.spad" 1253665 1253687 1254193 1254198) (-849 "PMPRED.spad" 1253152 1253166 1253655 1253660) (-848 "PMPLCAT.spad" 1252229 1252247 1253081 1253086) (-847 "PMLSAGG.spad" 1251814 1251828 1252219 1252224) (-846 "PMKERNEL.spad" 1251393 1251405 1251804 1251809) (-845 "PMINS.spad" 1250973 1250983 1251383 1251388) (-844 "PMFS.spad" 1250550 1250568 1250963 1250968) (-843 "PMDOWN.spad" 1249840 1249854 1250540 1250545) (-842 "PMASSFS.spad" 1248815 1248831 1249830 1249835) (-841 "PMASS.spad" 1247833 1247841 1248805 1248810) (-840 "PLOTTOOL.spad" 1247613 1247621 1247823 1247828) (-839 "PLOT3D.spad" 1244077 1244085 1247603 1247608) (-838 "PLOT1.spad" 1243250 1243260 1244067 1244072) (-837 "PLOT.spad" 1238173 1238181 1243240 1243245) (-836 "PLEQN.spad" 1225575 1225602 1238163 1238168) (-835 "PINTERPA.spad" 1225359 1225375 1225565 1225570) (-834 "PINTERP.spad" 1224981 1225000 1225349 1225354) (-833 "PID.spad" 1223955 1223963 1224907 1224976) (-832 "PICOERCE.spad" 1223612 1223622 1223945 1223950) (-831 "PI.spad" 1223229 1223237 1223586 1223607) (-830 "PGROEB.spad" 1221838 1221852 1223219 1223224) (-829 "PGE.spad" 1213511 1213519 1221828 1221833) (-828 "PGCD.spad" 1212465 1212482 1213501 1213506) (-827 "PFRPAC.spad" 1211614 1211624 1212455 1212460) (-826 "PFR.spad" 1208317 1208327 1211516 1211609) (-825 "PFOTOOLS.spad" 1207575 1207591 1208307 1208312) (-824 "PFOQ.spad" 1206945 1206963 1207565 1207570) (-823 "PFO.spad" 1206364 1206391 1206935 1206940) (-822 "PFECAT.spad" 1204074 1204082 1206290 1206359) (-821 "PFECAT.spad" 1201812 1201822 1204030 1204035) (-820 "PFBRU.spad" 1199700 1199712 1201802 1201807) (-819 "PFBR.spad" 1197260 1197283 1199690 1199695) (-818 "PF.spad" 1196834 1196846 1197065 1197158) (-817 "PERMGRP.spad" 1191604 1191614 1196824 1196829) (-816 "PERMCAT.spad" 1190265 1190275 1191584 1191599) (-815 "PERMAN.spad" 1188821 1188835 1190255 1190260) (-814 "PERM.spad" 1184631 1184641 1188654 1188669) (-813 "PENDTREE.spad" 1183984 1183994 1184264 1184269) (-812 "PDSPC.spad" 1182797 1182807 1183974 1183979) (-811 "PDSPC.spad" 1181608 1181620 1182787 1182792) (-810 "PDRING.spad" 1181450 1181460 1181588 1181603) (-809 "PDMOD.spad" 1181266 1181278 1181418 1181445) (-808 "PDECOMP.spad" 1180736 1180753 1181256 1181261) (-807 "PDDOM.spad" 1180174 1180187 1180726 1180731) (-806 "PDDOM.spad" 1179610 1179625 1180164 1180169) (-805 "PCOMP.spad" 1179463 1179476 1179600 1179605) (-804 "PBWLB.spad" 1178061 1178078 1179453 1179458) (-803 "PATTERN2.spad" 1177799 1177811 1178051 1178056) (-802 "PATTERN1.spad" 1176143 1176159 1177789 1177794) (-801 "PATTERN.spad" 1170718 1170728 1176133 1176138) (-800 "PATRES2.spad" 1170390 1170404 1170708 1170713) (-799 "PATRES.spad" 1167973 1167985 1170380 1170385) (-798 "PATMATCH.spad" 1166214 1166245 1167725 1167730) (-797 "PATMAB.spad" 1165643 1165653 1166204 1166209) (-796 "PATLRES.spad" 1164729 1164743 1165633 1165638) (-795 "PATAB.spad" 1164493 1164503 1164719 1164724) (-794 "PARTPERM.spad" 1162549 1162557 1164483 1164488) (-793 "PARSURF.spad" 1161983 1162011 1162539 1162544) (-792 "PARSU2.spad" 1161780 1161796 1161973 1161978) (-791 "script-parser.spad" 1161300 1161308 1161770 1161775) (-790 "PARSCURV.spad" 1160734 1160762 1161290 1161295) (-789 "PARSC2.spad" 1160525 1160541 1160724 1160729) (-788 "PARPCURV.spad" 1159987 1160015 1160515 1160520) (-787 "PARPC2.spad" 1159778 1159794 1159977 1159982) (-786 "PARAMAST.spad" 1158906 1158914 1159768 1159773) (-785 "PAN2EXPR.spad" 1158318 1158326 1158896 1158901) (-784 "PALETTE.spad" 1157432 1157440 1158308 1158313) (-783 "PAIR.spad" 1156506 1156519 1157075 1157080) (-782 "PADICRC.spad" 1153911 1153929 1155074 1155167) (-781 "PADICRAT.spad" 1151971 1151983 1152184 1152277) (-780 "PADICCT.spad" 1150520 1150532 1151897 1151966) (-779 "PADIC.spad" 1150223 1150235 1150446 1150515) (-778 "PADEPAC.spad" 1148912 1148931 1150213 1150218) (-777 "PADE.spad" 1147664 1147680 1148902 1148907) (-776 "OWP.spad" 1146912 1146942 1147522 1147589) (-775 "OVERSET.spad" 1146485 1146493 1146902 1146907) (-774 "OVAR.spad" 1146266 1146289 1146475 1146480) (-773 "OUTFORM.spad" 1135674 1135682 1146256 1146261) (-772 "OUTBFILE.spad" 1135108 1135116 1135664 1135669) (-771 "OUTBCON.spad" 1134178 1134186 1135098 1135103) (-770 "OUTBCON.spad" 1133246 1133256 1134168 1134173) (-769 "OUT.spad" 1132364 1132372 1133236 1133241) (-768 "OSI.spad" 1131839 1131847 1132354 1132359) (-767 "OSGROUP.spad" 1131757 1131765 1131829 1131834) (-766 "ORTHPOL.spad" 1130268 1130278 1131700 1131705) (-765 "OREUP.spad" 1129762 1129790 1129989 1130028) (-764 "ORESUP.spad" 1129104 1129128 1129483 1129522) (-763 "OREPCTO.spad" 1126993 1127005 1129024 1129029) (-762 "OREPCAT.spad" 1121180 1121190 1126949 1126988) (-761 "OREPCAT.spad" 1115257 1115269 1121028 1121033) (-760 "ORDTYPE.spad" 1114494 1114502 1115247 1115252) (-759 "ORDTYPE.spad" 1113729 1113739 1114484 1114489) (-758 "ORDSTRCT.spad" 1113515 1113530 1113678 1113683) (-757 "ORDSET.spad" 1113215 1113223 1113505 1113510) (-756 "ORDRING.spad" 1113032 1113040 1113195 1113210) (-755 "ORDMON.spad" 1112887 1112895 1113022 1113027) (-754 "ORDFUNS.spad" 1112019 1112035 1112877 1112882) (-753 "ORDFIN.spad" 1111839 1111847 1112009 1112014) (-752 "ORDCOMP2.spad" 1111132 1111144 1111829 1111834) (-751 "ORDCOMP.spad" 1109658 1109668 1110740 1110769) (-750 "OPSIG.spad" 1109320 1109328 1109648 1109653) (-749 "OPQUERY.spad" 1108901 1108909 1109310 1109315) (-748 "OPERCAT.spad" 1108367 1108377 1108891 1108896) (-747 "OPERCAT.spad" 1107831 1107843 1108357 1108362) (-746 "OP.spad" 1107573 1107583 1107653 1107720) (-745 "ONECOMP2.spad" 1106997 1107009 1107563 1107568) (-744 "ONECOMP.spad" 1105803 1105813 1106605 1106634) (-743 "OMSAGG.spad" 1105615 1105625 1105783 1105798) (-742 "OMLO.spad" 1105048 1105060 1105501 1105540) (-741 "OINTDOM.spad" 1104811 1104819 1104974 1105043) (-740 "OFMONOID.spad" 1102950 1102960 1104767 1104772) (-739 "ODVAR.spad" 1102211 1102221 1102940 1102945) (-738 "ODR.spad" 1101855 1101881 1102023 1102172) (-737 "ODPOL.spad" 1099503 1099513 1099843 1099970) (-736 "ODP.spad" 1088990 1089010 1089363 1089448) (-735 "ODETOOLS.spad" 1087639 1087658 1088980 1088985) (-734 "ODESYS.spad" 1085333 1085350 1087629 1087634) (-733 "ODERTRIC.spad" 1081366 1081383 1085290 1085295) (-732 "ODERED.spad" 1080765 1080789 1081356 1081361) (-731 "ODERAT.spad" 1078398 1078415 1080755 1080760) (-730 "ODEPRRIC.spad" 1075491 1075513 1078388 1078393) (-729 "ODEPRIM.spad" 1072889 1072911 1075481 1075486) (-728 "ODEPAL.spad" 1072275 1072299 1072879 1072884) (-727 "ODEINT.spad" 1071710 1071726 1072265 1072270) (-726 "ODEEF.spad" 1067205 1067221 1071700 1071705) (-725 "ODECONST.spad" 1066750 1066768 1067195 1067200) (-724 "OCTCT2.spad" 1066391 1066409 1066740 1066745) (-723 "OCT.spad" 1064706 1064716 1065420 1065459) (-722 "OCAMON.spad" 1064554 1064562 1064696 1064701) (-721 "OC.spad" 1062350 1062360 1064510 1064549) (-720 "OC.spad" 1059885 1059897 1062047 1062052) (-719 "OASGP.spad" 1059700 1059708 1059875 1059880) (-718 "OAMONS.spad" 1059222 1059230 1059690 1059695) (-717 "OAMON.spad" 1058980 1058988 1059212 1059217) (-716 "OAMON.spad" 1058736 1058746 1058970 1058975) (-715 "OAGROUP.spad" 1058274 1058282 1058726 1058731) (-714 "OAGROUP.spad" 1057810 1057820 1058264 1058269) (-713 "NUMTUBE.spad" 1057401 1057417 1057800 1057805) (-712 "NUMQUAD.spad" 1045377 1045385 1057391 1057396) (-711 "NUMODE.spad" 1036729 1036737 1045367 1045372) (-710 "NUMFMT.spad" 1035569 1035577 1036719 1036724) (-709 "NUMERIC.spad" 1027684 1027694 1035375 1035380) (-708 "NTSCAT.spad" 1026214 1026230 1027674 1027679) (-707 "NTPOLFN.spad" 1025791 1025801 1026157 1026162) (-706 "NSUP2.spad" 1025183 1025195 1025781 1025786) (-705 "NSUP.spad" 1018620 1018630 1023040 1023193) (-704 "NSMP.spad" 1015532 1015551 1015824 1015951) (-703 "NREP.spad" 1013934 1013948 1015522 1015527) (-702 "NPCOEF.spad" 1013180 1013200 1013924 1013929) (-701 "NORMRETR.spad" 1012778 1012817 1013170 1013175) (-700 "NORMPK.spad" 1010720 1010739 1012768 1012773) (-699 "NORMMA.spad" 1010408 1010434 1010710 1010715) (-698 "NONE1.spad" 1010084 1010094 1010398 1010403) (-697 "NONE.spad" 1009825 1009833 1010074 1010079) (-696 "NODE1.spad" 1009312 1009328 1009815 1009820) (-695 "NNI.spad" 1008207 1008215 1009286 1009307) (-694 "NLINSOL.spad" 1006833 1006843 1008197 1008202) (-693 "NFINTBAS.spad" 1004393 1004410 1006823 1006828) (-692 "NETCLT.spad" 1004367 1004378 1004383 1004388) (-691 "NCODIV.spad" 1002591 1002607 1004357 1004362) (-690 "NCNTFRAC.spad" 1002233 1002247 1002581 1002586) (-689 "NCEP.spad" 1000399 1000413 1002223 1002228) (-688 "NASRING.spad" 1000003 1000011 1000389 1000394) (-687 "NASRING.spad" 999605 999615 999993 999998) (-686 "NARNG.spad" 999005 999013 999595 999600) (-685 "NARNG.spad" 998403 998413 998995 999000) (-684 "NAALG.spad" 997968 997978 998371 998398) (-683 "NAALG.spad" 997553 997565 997958 997963) (-682 "MULTSQFR.spad" 994511 994528 997543 997548) (-681 "MULTFACT.spad" 993894 993911 994501 994506) (-680 "MTSCAT.spad" 991988 992009 993792 993889) (-679 "MTHING.spad" 991647 991657 991978 991983) (-678 "MSYSCMD.spad" 991081 991089 991637 991642) (-677 "MSETAGG.spad" 990938 990948 991061 991076) (-676 "MSET.spad" 988748 988758 990495 990510) (-675 "MRING.spad" 985870 985882 988456 988523) (-674 "MRF2.spad" 985432 985446 985860 985865) (-673 "MRATFAC.spad" 984978 984995 985422 985427) (-672 "MPRFF.spad" 983018 983037 984968 984973) (-671 "MPOLY.spad" 980822 980837 981181 981308) (-670 "MPCPF.spad" 980086 980105 980812 980817) (-669 "MPC3.spad" 979903 979943 980076 980081) (-668 "MPC2.spad" 979557 979590 979893 979898) (-667 "MONOTOOL.spad" 977908 977925 979547 979552) (-666 "catdef.spad" 977341 977352 977562 977903) (-665 "catdef.spad" 976739 976750 976995 977336) (-664 "MONOID.spad" 976060 976068 976729 976734) (-663 "MONOID.spad" 975379 975389 976050 976055) (-662 "MONOGEN.spad" 974127 974140 975239 975374) (-661 "MONOGEN.spad" 972897 972912 974011 974016) (-660 "MONADWU.spad" 970977 970985 972887 972892) (-659 "MONADWU.spad" 969055 969065 970967 970972) (-658 "MONAD.spad" 968215 968223 969045 969050) (-657 "MONAD.spad" 967373 967383 968205 968210) (-656 "MOEBIUS.spad" 966109 966123 967353 967368) (-655 "MODULE.spad" 965979 965989 966077 966104) (-654 "MODULE.spad" 965869 965881 965969 965974) (-653 "MODRING.spad" 965204 965243 965849 965864) (-652 "MODOP.spad" 963861 963873 965026 965093) (-651 "MODMONOM.spad" 963592 963610 963851 963856) (-650 "MODMON.spad" 960662 960674 961377 961530) (-649 "MODFIELD.spad" 960024 960063 960564 960657) (-648 "MMLFORM.spad" 958884 958892 960014 960019) (-647 "MMAP.spad" 958626 958660 958874 958879) (-646 "MLO.spad" 957085 957095 958582 958621) (-645 "MLIFT.spad" 955697 955714 957075 957080) (-644 "MKUCFUNC.spad" 955232 955250 955687 955692) (-643 "MKRECORD.spad" 954820 954833 955222 955227) (-642 "MKFUNC.spad" 954227 954237 954810 954815) (-641 "MKFLCFN.spad" 953195 953205 954217 954222) (-640 "MKBCFUNC.spad" 952690 952708 953185 953190) (-639 "MHROWRED.spad" 951201 951211 952680 952685) (-638 "MFINFACT.spad" 950601 950623 951191 951196) (-637 "MESH.spad" 948396 948404 950591 950596) (-636 "MDDFACT.spad" 946615 946625 948386 948391) (-635 "MDAGG.spad" 945916 945926 946605 946610) (-634 "MCDEN.spad" 945126 945138 945906 945911) (-633 "MAYBE.spad" 944426 944437 945116 945121) (-632 "MATSTOR.spad" 941742 941752 944416 944421) (-631 "MATRIX.spad" 940543 940553 941027 941032) (-630 "MATLIN.spad" 937911 937935 940427 940432) (-629 "MATCAT2.spad" 937193 937241 937901 937906) (-628 "MATCAT.spad" 928911 928933 937183 937188) (-627 "MATCAT.spad" 920479 920503 928753 928758) (-626 "MAPPKG3.spad" 919394 919408 920469 920474) (-625 "MAPPKG2.spad" 918732 918744 919384 919389) (-624 "MAPPKG1.spad" 917560 917570 918722 918727) (-623 "MAPPAST.spad" 916899 916907 917550 917555) (-622 "MAPHACK3.spad" 916711 916725 916889 916894) (-621 "MAPHACK2.spad" 916480 916492 916701 916706) (-620 "MAPHACK1.spad" 916124 916134 916470 916475) (-619 "MAGMA.spad" 913930 913947 916114 916119) (-618 "MACROAST.spad" 913525 913533 913920 913925) (-617 "LZSTAGG.spad" 910779 910789 913515 913520) (-616 "LZSTAGG.spad" 908031 908043 910769 910774) (-615 "LWORD.spad" 904776 904793 908021 908026) (-614 "LSTAST.spad" 904560 904568 904766 904771) (-613 "LSQM.spad" 902850 902864 903244 903283) (-612 "LSPP.spad" 902385 902402 902840 902845) (-611 "LSMP1.spad" 900228 900242 902375 902380) (-610 "LSMP.spad" 899085 899113 900218 900223) (-609 "LSAGG.spad" 898776 898786 899075 899080) (-608 "LSAGG.spad" 898465 898477 898766 898771) (-607 "LPOLY.spad" 897427 897446 898321 898390) (-606 "LPEFRAC.spad" 896698 896708 897417 897422) (-605 "LOGIC.spad" 896240 896248 896688 896693) (-604 "LOGIC.spad" 895780 895790 896230 896235) (-603 "LODOOPS.spad" 894710 894722 895770 895775) (-602 "LODOF.spad" 893756 893773 894667 894672) (-601 "LODOCAT.spad" 892422 892432 893712 893751) (-600 "LODOCAT.spad" 891086 891098 892378 892383) (-599 "LODO2.spad" 890400 890412 890807 890846) (-598 "LODO1.spad" 889841 889851 890121 890160) (-597 "LODO.spad" 889266 889282 889562 889601) (-596 "LODEEF.spad" 888068 888086 889256 889261) (-595 "LO.spad" 887469 887483 888002 888029) (-594 "LNAGG.spad" 883656 883666 887459 887464) (-593 "LNAGG.spad" 879779 879791 883584 883589) (-592 "LMOPS.spad" 876547 876564 879769 879774) (-591 "LMODULE.spad" 876331 876341 876537 876542) (-590 "LMDICT.spad" 875573 875583 875821 875826) (-589 "LLINSET.spad" 875280 875290 875563 875568) (-588 "LITERAL.spad" 875186 875197 875270 875275) (-587 "LIST3.spad" 874497 874511 875176 875181) (-586 "LIST2MAP.spad" 871424 871436 874487 874492) (-585 "LIST2.spad" 870126 870138 871414 871419) (-584 "LIST.spad" 867705 867715 869048 869053) (-583 "LINSET.spad" 867484 867494 867695 867700) (-582 "LINFORM.spad" 866947 866959 867452 867479) (-581 "LINEXP.spad" 865690 865700 866937 866942) (-580 "LINELT.spad" 865061 865073 865573 865600) (-579 "LINDEP.spad" 863910 863922 864973 864978) (-578 "LINBASIS.spad" 863546 863561 863900 863905) (-577 "LIMITRF.spad" 861493 861503 863536 863541) (-576 "LIMITPS.spad" 860403 860416 861483 861488) (-575 "LIECAT.spad" 859887 859897 860329 860398) (-574 "LIECAT.spad" 859399 859411 859843 859848) (-573 "LIE.spad" 857403 857415 858677 858819) (-572 "LIB.spad" 855226 855234 855672 855677) (-571 "LGROBP.spad" 852579 852598 855216 855221) (-570 "LFCAT.spad" 851638 851646 852569 852574) (-569 "LF.spad" 850593 850609 851628 851633) (-568 "LEXTRIPK.spad" 846216 846231 850583 850588) (-567 "LEXP.spad" 844235 844262 846196 846211) (-566 "LETAST.spad" 843934 843942 844225 844230) (-565 "LEADCDET.spad" 842340 842357 843924 843929) (-564 "LAZM3PK.spad" 841084 841106 842330 842335) (-563 "LAUPOL.spad" 839751 839764 840651 840720) (-562 "LAPLACE.spad" 839334 839350 839741 839746) (-561 "LALG.spad" 839110 839120 839314 839329) (-560 "LALG.spad" 838894 838906 839100 839105) (-559 "LA.spad" 838334 838348 838816 838855) (-558 "KVTFROM.spad" 838077 838087 838324 838329) (-557 "KTVLOGIC.spad" 837621 837629 838067 838072) (-556 "KRCFROM.spad" 837367 837377 837611 837616) (-555 "KOVACIC.spad" 836098 836115 837357 837362) (-554 "KONVERT.spad" 835820 835830 836088 836093) (-553 "KOERCE.spad" 835557 835567 835810 835815) (-552 "KERNEL2.spad" 835260 835272 835547 835552) (-551 "KERNEL.spad" 833980 833990 835109 835114) (-550 "KDAGG.spad" 833099 833121 833970 833975) (-549 "KDAGG.spad" 832216 832240 833089 833094) (-548 "KAFILE.spad" 830592 830608 830827 830832) (-547 "JVMOP.spad" 830505 830513 830582 830587) (-546 "JVMMDACC.spad" 829559 829567 830495 830500) (-545 "JVMFDACC.spad" 828875 828883 829549 829554) (-544 "JVMCSTTG.spad" 827604 827612 828865 828870) (-543 "JVMCFACC.spad" 827050 827058 827594 827599) (-542 "JVMBCODE.spad" 826961 826969 827040 827045) (-541 "JORDAN.spad" 824778 824790 826239 826381) (-540 "JOINAST.spad" 824480 824488 824768 824773) (-539 "IXAGG.spad" 822613 822637 824470 824475) (-538 "IXAGG.spad" 820548 820574 822407 822412) (-537 "ITUPLE.spad" 819840 819850 820538 820543) (-536 "ITRIGMNP.spad" 818687 818706 819830 819835) (-535 "ITFUN3.spad" 818193 818207 818677 818682) (-534 "ITFUN2.spad" 817937 817949 818183 818188) (-533 "ITFORM.spad" 817292 817300 817927 817932) (-532 "ITAYLOR.spad" 815286 815301 817156 817253) (-531 "ISUPS.spad" 807735 807750 814272 814369) (-530 "ISUMP.spad" 807236 807252 807725 807730) (-529 "ISAST.spad" 806955 806963 807226 807231) (-528 "IRURPK.spad" 805672 805691 806945 806950) (-527 "IRSN.spad" 803676 803684 805662 805667) (-526 "IRRF2F.spad" 802169 802179 803632 803637) (-525 "IRREDFFX.spad" 801770 801781 802159 802164) (-524 "IROOT.spad" 800109 800119 801760 801765) (-523 "IRFORM.spad" 799433 799441 800099 800104) (-522 "IR2F.spad" 798647 798663 799423 799428) (-521 "IR2.spad" 797675 797691 798637 798642) (-520 "IR.spad" 795511 795525 797557 797584) (-519 "IPRNTPK.spad" 795271 795279 795501 795506) (-518 "IPF.spad" 794836 794848 795076 795169) (-517 "IPADIC.spad" 794605 794631 794762 794831) (-516 "IP4ADDR.spad" 794162 794170 794595 794600) (-515 "IOMODE.spad" 793684 793692 794152 794157) (-514 "IOBFILE.spad" 793069 793077 793674 793679) (-513 "IOBCON.spad" 792934 792942 793059 793064) (-512 "INVLAPLA.spad" 792583 792599 792924 792929) (-511 "INTTR.spad" 785977 785994 792573 792578) (-510 "INTTOOLS.spad" 783785 783801 785604 785609) (-509 "INTSLPE.spad" 783113 783121 783775 783780) (-508 "INTRVL.spad" 782679 782689 783027 783108) (-507 "INTRF.spad" 781111 781125 782669 782674) (-506 "INTRET.spad" 780543 780553 781101 781106) (-505 "INTRAT.spad" 779278 779295 780533 780538) (-504 "INTPM.spad" 777741 777757 778999 779004) (-503 "INTPAF.spad" 775617 775635 777670 777675) (-502 "INTHERTR.spad" 774891 774908 775607 775612) (-501 "INTHERAL.spad" 774561 774585 774881 774886) (-500 "INTHEORY.spad" 771000 771008 774551 774556) (-499 "INTG0.spad" 764764 764782 770929 770934) (-498 "INTFACT.spad" 763831 763841 764754 764759) (-497 "INTEF.spad" 762242 762258 763821 763826) (-496 "INTDOM.spad" 760865 760873 762168 762237) (-495 "INTDOM.spad" 759550 759560 760855 760860) (-494 "INTCAT.spad" 757817 757827 759464 759545) (-493 "INTBIT.spad" 757324 757332 757807 757812) (-492 "INTALG.spad" 756512 756539 757314 757319) (-491 "INTAF.spad" 756012 756028 756502 756507) (-490 "INTABL.spad" 753829 753860 753992 753997) (-489 "INT8.spad" 753709 753717 753819 753824) (-488 "INT64.spad" 753588 753596 753699 753704) (-487 "INT32.spad" 753467 753475 753578 753583) (-486 "INT16.spad" 753346 753354 753457 753462) (-485 "INT.spad" 752872 752880 753212 753341) (-484 "INS.spad" 750375 750383 752774 752867) (-483 "INS.spad" 747964 747974 750365 750370) (-482 "INPSIGN.spad" 747434 747447 747954 747959) (-481 "INPRODPF.spad" 746530 746549 747424 747429) (-480 "INPRODFF.spad" 745618 745642 746520 746525) (-479 "INNMFACT.spad" 744593 744610 745608 745613) (-478 "INMODGCD.spad" 744097 744127 744583 744588) (-477 "INFSP.spad" 742394 742416 744087 744092) (-476 "INFPROD0.spad" 741474 741493 742384 742389) (-475 "INFORM1.spad" 741099 741109 741464 741469) (-474 "INFORM.spad" 738310 738318 741089 741094) (-473 "INFINITY.spad" 737862 737870 738300 738305) (-472 "INETCLTS.spad" 737839 737847 737852 737857) (-471 "INEP.spad" 736385 736407 737829 737834) (-470 "INDE.spad" 736034 736051 736295 736300) (-469 "INCRMAPS.spad" 735471 735481 736024 736029) (-468 "INBFILE.spad" 734567 734575 735461 735466) (-467 "INBFF.spad" 730417 730428 734557 734562) (-466 "INBCON.spad" 728683 728691 730407 730412) (-465 "INBCON.spad" 726947 726957 728673 728678) (-464 "INAST.spad" 726608 726616 726937 726942) (-463 "IMPTAST.spad" 726316 726324 726598 726603) (-462 "IMATQF.spad" 725382 725426 726244 726249) (-461 "IMATLIN.spad" 723975 723999 725310 725315) (-460 "IFF.spad" 723388 723404 723659 723752) (-459 "IFAST.spad" 723002 723010 723378 723383) (-458 "IFARRAY.spad" 720226 720241 721924 721929) (-457 "IFAMON.spad" 720088 720105 720182 720187) (-456 "IEVALAB.spad" 719501 719513 720078 720083) (-455 "IEVALAB.spad" 718912 718926 719491 719496) (-454 "indexedp.spad" 718468 718480 718902 718907) (-453 "IDPOAMS.spad" 718146 718158 718380 718385) (-452 "IDPOAM.spad" 717788 717800 718058 718063) (-451 "IDPO.spad" 717202 717214 717700 717705) (-450 "IDPC.spad" 716100 716112 717192 717197) (-449 "IDPAM.spad" 715767 715779 716012 716017) (-448 "IDPAG.spad" 715436 715448 715679 715684) (-447 "IDENT.spad" 715088 715096 715426 715431) (-446 "catdef.spad" 714859 714870 714971 715083) (-445 "IDECOMP.spad" 712098 712116 714849 714854) (-444 "IDEAL.spad" 707060 707099 712046 712051) (-443 "ICDEN.spad" 706273 706289 707050 707055) (-442 "ICARD.spad" 705666 705674 706263 706268) (-441 "IBPTOOLS.spad" 704273 704290 705656 705661) (-440 "boolean.spad" 703565 703578 703698 703703) (-439 "IBATOOL.spad" 700550 700569 703555 703560) (-438 "IBACHIN.spad" 699057 699072 700540 700545) (-437 "array2.spad" 698564 698586 698751 698756) (-436 "IARRAY1.spad" 697340 697355 697486 697491) (-435 "IAN.spad" 695722 695730 697171 697264) (-434 "IALGFACT.spad" 695333 695366 695712 695717) (-433 "HYPCAT.spad" 694757 694765 695323 695328) (-432 "HYPCAT.spad" 694179 694189 694747 694752) (-431 "HOSTNAME.spad" 693995 694003 694169 694174) (-430 "HOMOTOP.spad" 693738 693748 693985 693990) (-429 "HOAGG.spad" 693438 693448 693728 693733) (-428 "HOAGG.spad" 692960 692972 693252 693257) (-427 "HEXADEC.spad" 691185 691193 691550 691643) (-426 "HEUGCD.spad" 690276 690287 691175 691180) (-425 "HELLFDIV.spad" 689882 689906 690266 690271) (-424 "HEAP.spad" 689361 689371 689576 689581) (-423 "HEADAST.spad" 688902 688910 689351 689356) (-422 "HDP.spad" 678385 678401 678762 678847) (-421 "HDMP.spad" 675932 675947 676548 676675) (-420 "HB.spad" 674207 674215 675922 675927) (-419 "HASHTBL.spad" 671976 672007 672187 672192) (-418 "HASAST.spad" 671692 671700 671966 671971) (-417 "HACKPI.spad" 671183 671191 671594 671687) (-416 "GTSET.spad" 669971 669987 670678 670683) (-415 "GSTBL.spad" 667777 667812 667951 667956) (-414 "GSERIES.spad" 665149 665176 665968 666117) (-413 "GROUP.spad" 664422 664430 665129 665144) (-412 "GROUP.spad" 663703 663713 664412 664417) (-411 "GROEBSOL.spad" 662197 662218 663693 663698) (-410 "GRMOD.spad" 660778 660790 662187 662192) (-409 "GRMOD.spad" 659357 659371 660768 660773) (-408 "GRIMAGE.spad" 652270 652278 659347 659352) (-407 "GRDEF.spad" 650649 650657 652260 652265) (-406 "GRAY.spad" 649120 649128 650639 650644) (-405 "GRALG.spad" 648215 648227 649110 649115) (-404 "GRALG.spad" 647308 647322 648205 648210) (-403 "GPOLSET.spad" 646627 646650 646839 646844) (-402 "GOSPER.spad" 645904 645922 646617 646622) (-401 "GMODPOL.spad" 645052 645079 645872 645899) (-400 "GHENSEL.spad" 644135 644149 645042 645047) (-399 "GENUPS.spad" 640428 640441 644125 644130) (-398 "GENUFACT.spad" 640005 640015 640418 640423) (-397 "GENPGCD.spad" 639607 639624 639995 640000) (-396 "GENMFACT.spad" 639059 639078 639597 639602) (-395 "GENEEZ.spad" 637018 637031 639049 639054) (-394 "GDMP.spad" 634407 634424 635181 635308) (-393 "GCNAALG.spad" 628330 628357 634201 634268) (-392 "GCDDOM.spad" 627522 627530 628256 628325) (-391 "GCDDOM.spad" 626776 626786 627512 627517) (-390 "GBINTERN.spad" 622796 622834 626766 626771) (-389 "GBF.spad" 618579 618617 622786 622791) (-388 "GBEUCLID.spad" 616461 616499 618569 618574) (-387 "GB.spad" 613987 614025 616417 616422) (-386 "GAUSSFAC.spad" 613300 613308 613977 613982) (-385 "GALUTIL.spad" 611626 611636 613256 613261) (-384 "GALPOLYU.spad" 610080 610093 611616 611621) (-383 "GALFACTU.spad" 608293 608312 610070 610075) (-382 "GALFACT.spad" 598506 598517 608283 608288) (-381 "FUNDESC.spad" 598184 598192 598496 598501) (-380 "catdef.spad" 597795 597805 598174 598179) (-379 "FUNCTION.spad" 597644 597656 597785 597790) (-378 "FT.spad" 595944 595952 597634 597639) (-377 "FSUPFACT.spad" 594858 594877 595894 595899) (-376 "FST.spad" 592944 592952 594848 594853) (-375 "FSRED.spad" 592424 592440 592934 592939) (-374 "FSPRMELT.spad" 591290 591306 592381 592386) (-373 "FSPECF.spad" 589381 589397 591280 591285) (-372 "FSINT.spad" 589041 589057 589371 589376) (-371 "FSERIES.spad" 588232 588244 588861 588960) (-370 "FSCINT.spad" 587549 587565 588222 588227) (-369 "FSAGG2.spad" 586284 586300 587539 587544) (-368 "FSAGG.spad" 585425 585435 586264 586279) (-367 "FSAGG.spad" 584504 584516 585345 585350) (-366 "FS2UPS.spad" 579019 579053 584494 584499) (-365 "FS2EXPXP.spad" 578160 578183 579009 579014) (-364 "FS2.spad" 577815 577831 578150 578155) (-363 "FS.spad" 572087 572097 577594 577810) (-362 "FS.spad" 566161 566173 571670 571675) (-361 "FRUTIL.spad" 565115 565125 566151 566156) (-360 "FRNAALG.spad" 560392 560402 565057 565110) (-359 "FRNAALG.spad" 555681 555693 560348 560353) (-358 "FRNAAF2.spad" 555129 555147 555671 555676) (-357 "FRMOD.spad" 554537 554567 555058 555063) (-356 "FRIDEAL2.spad" 554141 554173 554527 554532) (-355 "FRIDEAL.spad" 553366 553387 554121 554136) (-354 "FRETRCT.spad" 552885 552895 553356 553361) (-353 "FRETRCT.spad" 552311 552323 552784 552789) (-352 "FRAMALG.spad" 550691 550704 552267 552306) (-351 "FRAMALG.spad" 549103 549118 550681 550686) (-350 "FRAC2.spad" 548708 548720 549093 549098) (-349 "FRAC.spad" 546695 546705 547082 547255) (-348 "FR2.spad" 546031 546043 546685 546690) (-347 "FR.spad" 540135 540145 545092 545161) (-346 "FPS.spad" 536974 536982 540025 540130) (-345 "FPS.spad" 533841 533851 536894 536899) (-344 "FPC.spad" 532887 532895 533743 533836) (-343 "FPC.spad" 532019 532029 532877 532882) (-342 "FPATMAB.spad" 531781 531791 532009 532014) (-341 "FPARFRAC.spad" 530623 530640 531771 531776) (-340 "FORDER.spad" 530314 530338 530613 530618) (-339 "FNLA.spad" 529738 529760 530282 530309) (-338 "FNCAT.spad" 528333 528341 529728 529733) (-337 "FNAME.spad" 528225 528233 528323 528328) (-336 "FMONOID.spad" 527906 527916 528181 528186) (-335 "FMONCAT.spad" 525075 525085 527896 527901) (-334 "FMCAT.spad" 522911 522929 525043 525070) (-333 "FM1.spad" 522276 522288 522845 522872) (-332 "FM.spad" 521891 521903 522130 522157) (-331 "FLOATRP.spad" 519634 519648 521881 521886) (-330 "FLOATCP.spad" 517073 517087 519624 519629) (-329 "FLOAT.spad" 514164 514172 516939 517068) (-328 "FLINEXP.spad" 513886 513896 514154 514159) (-327 "FLINEXP.spad" 513565 513577 513835 513840) (-326 "FLASORT.spad" 512891 512903 513555 513560) (-325 "FLALG.spad" 510561 510580 512817 512886) (-324 "FLAGG2.spad" 509278 509294 510551 510556) (-323 "FLAGG.spad" 506354 506364 509268 509273) (-322 "FLAGG.spad" 503295 503307 506211 506216) (-321 "FINRALG.spad" 501380 501393 503251 503290) (-320 "FINRALG.spad" 499391 499406 501264 501269) (-319 "FINITE.spad" 498543 498551 499381 499386) (-318 "FINITE.spad" 497693 497703 498533 498538) (-317 "aggcat.spad" 494418 494428 497683 497688) (-316 "FINAGG.spad" 491108 491120 494375 494380) (-315 "FINAALG.spad" 480293 480303 491050 491103) (-314 "FINAALG.spad" 469490 469502 480249 480254) (-313 "FILECAT.spad" 468024 468041 469480 469485) (-312 "FILE.spad" 467607 467617 468014 468019) (-311 "FIELD.spad" 467013 467021 467509 467602) (-310 "FIELD.spad" 466505 466515 467003 467008) (-309 "FGROUP.spad" 465168 465178 466485 466500) (-308 "FGLMICPK.spad" 463963 463978 465158 465163) (-307 "FFX.spad" 463349 463364 463682 463775) (-306 "FFSLPE.spad" 462860 462881 463339 463344) (-305 "FFPOLY2.spad" 461920 461937 462850 462855) (-304 "FFPOLY.spad" 453262 453273 461910 461915) (-303 "FFP.spad" 452670 452690 452981 453074) (-302 "FFNBX.spad" 451193 451213 452389 452482) (-301 "FFNBP.spad" 449717 449734 450912 451005) (-300 "FFNB.spad" 448185 448206 449401 449494) (-299 "FFINTBAS.spad" 445699 445718 448175 448180) (-298 "FFIELDC.spad" 443284 443292 445601 445694) (-297 "FFIELDC.spad" 440955 440965 443274 443279) (-296 "FFHOM.spad" 439727 439744 440945 440950) (-295 "FFF.spad" 437170 437181 439717 439722) (-294 "FFCGX.spad" 436028 436048 436889 436982) (-293 "FFCGP.spad" 434928 434948 435747 435840) (-292 "FFCG.spad" 433723 433744 434612 434705) (-291 "FFCAT2.spad" 433470 433510 433713 433718) (-290 "FFCAT.spad" 426635 426657 433309 433465) (-289 "FFCAT.spad" 419879 419903 426555 426560) (-288 "FF.spad" 419330 419346 419563 419656) (-287 "FEVALAB.spad" 419167 419177 419320 419325) (-286 "FEVALAB.spad" 418780 418792 418935 418940) (-285 "FDIVCAT.spad" 416876 416900 418770 418775) (-284 "FDIVCAT.spad" 414970 414996 416866 416871) (-283 "FDIV2.spad" 414626 414666 414960 414965) (-282 "FDIV.spad" 414084 414108 414616 414621) (-281 "FCTRDATA.spad" 413092 413100 414074 414079) (-280 "FCOMP.spad" 412471 412481 413082 413087) (-279 "FAXF.spad" 405506 405520 412373 412466) (-278 "FAXF.spad" 398593 398609 405462 405467) (-277 "FARRAY.spad" 396482 396492 397515 397520) (-276 "FAMR.spad" 394626 394638 396380 396477) (-275 "FAMR.spad" 392754 392768 394510 394515) (-274 "FAMONOID.spad" 392438 392448 392708 392713) (-273 "FAMONC.spad" 390758 390770 392428 392433) (-272 "FAGROUP.spad" 390398 390408 390654 390681) (-271 "FACUTIL.spad" 388610 388627 390388 390393) (-270 "FACTFUNC.spad" 387812 387822 388600 388605) (-269 "EXPUPXS.spad" 384704 384727 386003 386152) (-268 "EXPRTUBE.spad" 381992 382000 384694 384699) (-267 "EXPRODE.spad" 379160 379176 381982 381987) (-266 "EXPR2UPS.spad" 375282 375295 379150 379155) (-265 "EXPR2.spad" 374987 374999 375272 375277) (-264 "EXPR.spad" 370632 370642 371346 371633) (-263 "EXPEXPAN.spad" 367577 367602 368209 368302) (-262 "EXITAST.spad" 367313 367321 367567 367572) (-261 "EXIT.spad" 366984 366992 367303 367308) (-260 "EVALCYC.spad" 366444 366458 366974 366979) (-259 "EVALAB.spad" 366024 366034 366434 366439) (-258 "EVALAB.spad" 365602 365614 366014 366019) (-257 "EUCDOM.spad" 363192 363200 365528 365597) (-256 "EUCDOM.spad" 360844 360854 363182 363187) (-255 "ES2.spad" 360357 360373 360834 360839) (-254 "ES1.spad" 359927 359943 360347 360352) (-253 "ES.spad" 352798 352806 359917 359922) (-252 "ES.spad" 345590 345600 352711 352716) (-251 "ERROR.spad" 342917 342925 345580 345585) (-250 "EQTBL.spad" 340688 340710 340897 340902) (-249 "EQ2.spad" 340406 340418 340678 340683) (-248 "EQ.spad" 335449 335459 338107 338213) (-247 "EP.spad" 331775 331785 335439 335444) (-246 "ENV.spad" 330453 330461 331765 331770) (-245 "ENTIRER.spad" 330121 330129 330397 330448) (-244 "ENTIRER.spad" 329833 329843 330111 330116) (-243 "EMR.spad" 329121 329162 329759 329828) (-242 "ELTAGG.spad" 327375 327394 329111 329116) (-241 "ELTAGG.spad" 325565 325586 327303 327308) (-240 "ELTAB.spad" 325040 325053 325555 325560) (-239 "ELFUTS.spad" 324475 324494 325030 325035) (-238 "ELEMFUN.spad" 324164 324172 324465 324470) (-237 "ELEMFUN.spad" 323851 323861 324154 324159) (-236 "ELAGG.spad" 321832 321842 323841 323846) (-235 "ELAGG.spad" 319742 319754 321753 321758) (-234 "ELABOR.spad" 319088 319096 319732 319737) (-233 "ELABEXPR.spad" 318020 318028 319078 319083) (-232 "EFUPXS.spad" 314796 314826 317976 317981) (-231 "EFULS.spad" 311632 311655 314752 314757) (-230 "EFSTRUC.spad" 309647 309663 311622 311627) (-229 "EF.spad" 304423 304439 309637 309642) (-228 "EAB.spad" 302723 302731 304413 304418) (-227 "DVARCAT.spad" 299729 299739 302713 302718) (-226 "DVARCAT.spad" 296733 296745 299719 299724) (-225 "DSMP.spad" 294466 294480 294771 294898) (-224 "DSEXT.spad" 293768 293778 294456 294461) (-223 "DSEXT.spad" 292990 293002 293680 293685) (-222 "DROPT1.spad" 292655 292665 292980 292985) (-221 "DROPT0.spad" 287520 287528 292645 292650) (-220 "DROPT.spad" 281479 281487 287510 287515) (-219 "DRAWPT.spad" 279652 279660 281469 281474) (-218 "DRAWHACK.spad" 278960 278970 279642 279647) (-217 "DRAWCX.spad" 276438 276446 278950 278955) (-216 "DRAWCURV.spad" 275985 276000 276428 276433) (-215 "DRAWCFUN.spad" 265517 265525 275975 275980) (-214 "DRAW.spad" 258393 258406 265507 265512) (-213 "DQAGG.spad" 256593 256603 258383 258388) (-212 "DPOLCAT.spad" 251950 251966 256461 256588) (-211 "DPOLCAT.spad" 247393 247411 251906 251911) (-210 "DPMO.spad" 239946 239962 240084 240278) (-209 "DPMM.spad" 232512 232530 232637 232831) (-208 "DOMTMPLT.spad" 232283 232291 232502 232507) (-207 "DOMCTOR.spad" 232038 232046 232273 232278) (-206 "DOMAIN.spad" 231149 231157 232028 232033) (-205 "DMP.spad" 228742 228757 229312 229439) (-204 "DMEXT.spad" 228609 228619 228710 228737) (-203 "DLP.spad" 227969 227979 228599 228604) (-202 "DLIST.spad" 226287 226297 226891 226896) (-201 "DLAGG.spad" 224704 224714 226277 226282) (-200 "DIVRING.spad" 224246 224254 224648 224699) (-199 "DIVRING.spad" 223832 223842 224236 224241) (-198 "DISPLAY.spad" 222022 222030 223822 223827) (-197 "DIRPROD2.spad" 220840 220858 222012 222017) (-196 "DIRPROD.spad" 210060 210076 210700 210785) (-195 "DIRPCAT.spad" 209355 209371 209970 210055) (-194 "DIRPCAT.spad" 208264 208282 208881 208886) (-193 "DIOSP.spad" 207089 207097 208254 208259) (-192 "DIOPS.spad" 206095 206105 207079 207084) (-191 "DIOPS.spad" 205038 205050 206024 206029) (-190 "catdef.spad" 204896 204904 205028 205033) (-189 "DIFRING.spad" 204734 204742 204876 204891) (-188 "DIFFSPC.spad" 204313 204321 204724 204729) (-187 "DIFFSPC.spad" 203890 203900 204303 204308) (-186 "DIFFMOD.spad" 203379 203389 203858 203885) (-185 "DIFFDOM.spad" 202544 202555 203369 203374) (-184 "DIFFDOM.spad" 201707 201720 202534 202539) (-183 "DIFEXT.spad" 201526 201536 201687 201702) (-182 "DIAGG.spad" 201166 201176 201516 201521) (-181 "DIAGG.spad" 200804 200816 201156 201161) (-180 "DHMATRIX.spad" 199203 199213 200348 200353) (-179 "DFSFUN.spad" 192843 192851 199193 199198) (-178 "DFLOAT.spad" 189450 189458 192733 192838) (-177 "DFINTTLS.spad" 187681 187697 189440 189445) (-176 "DERHAM.spad" 185768 185800 187661 187676) (-175 "DEQUEUE.spad" 185179 185189 185462 185467) (-174 "DEGRED.spad" 184796 184810 185169 185174) (-173 "DEFINTRF.spad" 182378 182388 184786 184791) (-172 "DEFINTEF.spad" 180916 180932 182368 182373) (-171 "DEFAST.spad" 180300 180308 180906 180911) (-170 "DECIMAL.spad" 178529 178537 178890 178983) (-169 "DDFACT.spad" 176350 176367 178519 178524) (-168 "DBLRESP.spad" 175950 175974 176340 176345) (-167 "DBASIS.spad" 175576 175591 175940 175945) (-166 "DBASE.spad" 174240 174250 175566 175571) (-165 "DATAARY.spad" 173726 173739 174230 174235) (-164 "CYCLOTOM.spad" 173232 173240 173716 173721) (-163 "CYCLES.spad" 170015 170023 173222 173227) (-162 "CVMP.spad" 169432 169442 170005 170010) (-161 "CTRIGMNP.spad" 167932 167948 169422 169427) (-160 "CTORKIND.spad" 167535 167543 167922 167927) (-159 "CTORCAT.spad" 166776 166784 167525 167530) (-158 "CTORCAT.spad" 166015 166025 166766 166771) (-157 "CTORCALL.spad" 165604 165614 166005 166010) (-156 "CTOR.spad" 165295 165303 165594 165599) (-155 "CSTTOOLS.spad" 164540 164553 165285 165290) (-154 "CRFP.spad" 158312 158325 164530 164535) (-153 "CRCEAST.spad" 158032 158040 158302 158307) (-152 "CRAPACK.spad" 157099 157109 158022 158027) (-151 "CPMATCH.spad" 156600 156615 157021 157026) (-150 "CPIMA.spad" 156305 156324 156590 156595) (-149 "COORDSYS.spad" 151314 151324 156295 156300) (-148 "CONTOUR.spad" 150741 150749 151304 151309) (-147 "CONTFRAC.spad" 146491 146501 150643 150736) (-146 "CONDUIT.spad" 146249 146257 146481 146486) (-145 "COMRING.spad" 145923 145931 146187 146244) (-144 "COMPPROP.spad" 145441 145449 145913 145918) (-143 "COMPLPAT.spad" 145208 145223 145431 145436) (-142 "COMPLEX2.spad" 144923 144935 145198 145203) (-141 "COMPLEX.spad" 140629 140639 140873 141131) (-140 "COMPILER.spad" 140178 140186 140619 140624) (-139 "COMPFACT.spad" 139780 139794 140168 140173) (-138 "COMPCAT.spad" 137855 137865 139517 139775) (-137 "COMPCAT.spad" 135671 135683 137335 137340) (-136 "catdef.spad" 135414 135425 135527 135666) (-135 "/home/gdr/build/1.5.x/x86_64-unknown-linux-gnu/src/algebra/catdef.spad" 135000 135011 135270 135409) (-134 "COMMUPC.spad" 134748 134766 134990 134995) (-133 "COMMONOP.spad" 134281 134289 134738 134743) (-132 "COMMAAST.spad" 134044 134052 134271 134276) (-131 "COMM.spad" 133855 133863 134034 134039) (-130 "COMBOPC.spad" 132778 132786 133845 133850) (-129 "COMBINAT.spad" 131545 131555 132768 132773) (-128 "COMBF.spad" 128967 128983 131535 131540) (-127 "COLOR.spad" 127804 127812 128957 128962) (-126 "COLONAST.spad" 127470 127478 127794 127799) (-125 "CMPLXRT.spad" 127181 127198 127460 127465) (-124 "CLLCTAST.spad" 126843 126851 127171 127176) (-123 "CLIP.spad" 122951 122959 126833 126838) (-122 "CLIF.spad" 121606 121622 122907 122946) (-121 "CLAGG.spad" 119812 119822 121596 121601) (-120 "CLAGG.spad" 117877 117889 119663 119668) (-119 "CINTSLPE.spad" 117232 117245 117867 117872) (-118 "CHVAR.spad" 115370 115392 117222 117227) (-117 "CHARZ.spad" 115285 115293 115350 115365) (-116 "CHARPOL.spad" 114811 114821 115275 115280) (-115 "CHARNZ.spad" 114573 114581 114791 114806) (-114 "CHAR.spad" 111941 111949 114563 114568) (-113 "CFCAT.spad" 111269 111277 111931 111936) (-112 "CDEN.spad" 110489 110503 111259 111264) (-111 "CCLASS.spad" 108570 108578 109832 109847) (-110 "CATEGORY.spad" 107644 107652 108560 108565) (-109 "CATCTOR.spad" 107535 107543 107634 107639) (-108 "CATAST.spad" 107161 107169 107525 107530) (-107 "CASEAST.spad" 106875 106883 107151 107156) (-106 "CARTEN2.spad" 106265 106292 106865 106870) (-105 "CARTEN.spad" 102017 102041 106255 106260) (-104 "CARD.spad" 99312 99320 101991 102012) (-103 "CAPSLAST.spad" 99094 99102 99302 99307) (-102 "CACHSET.spad" 98718 98726 99084 99089) (-101 "CABMON.spad" 98273 98281 98708 98713) (-100 "BYTEORD.spad" 97948 97956 98263 98268) (-99 "BYTEBUF.spad" 95794 95801 96999 97004) (-98 "BYTE.spad" 95270 95277 95784 95789) (-97 "BTREE.spad" 94370 94379 94903 94908) (-96 "BTOURN.spad" 93402 93411 94003 94008) (-95 "BTCAT.spad" 92982 92991 93392 93397) (-94 "BTCAT.spad" 92560 92571 92972 92977) (-93 "BTAGG.spad" 92049 92056 92550 92555) (-92 "BTAGG.spad" 91536 91545 92039 92044) (-91 "BSTREE.spad" 90304 90313 91169 91174) (-90 "BRILL.spad" 88510 88520 90294 90299) (-89 "BRAGG.spad" 87467 87476 88500 88505) (-88 "BRAGG.spad" 86360 86371 87395 87400) (-87 "BPADICRT.spad" 84420 84431 84666 84759) (-86 "BPADIC.spad" 84093 84104 84346 84415) (-85 "BOUNDZRO.spad" 83750 83766 84083 84088) (-84 "BOP1.spad" 81209 81218 83740 83745) (-83 "BOP.spad" 76352 76359 81199 81204) (-82 "BOOLEAN.spad" 75901 75908 76342 76347) (-81 "BOOLE.spad" 75552 75559 75891 75896) (-80 "BOOLE.spad" 75201 75210 75542 75547) (-79 "BMODULE.spad" 74914 74925 75169 75196) (-78 "BITS.spad" 74125 74132 74339 74344) (-77 "catdef.spad" 74008 74018 74115 74120) (-76 "catdef.spad" 73759 73769 73998 74003) (-75 "BINDING.spad" 73181 73188 73749 73754) (-74 "BINARY.spad" 71416 71423 71771 71864) (-73 "BGAGG.spad" 70746 70755 71406 71411) (-72 "BGAGG.spad" 70074 70085 70736 70741) (-71 "BEZOUT.spad" 69215 69241 70024 70029) (-70 "BBTREE.spad" 66119 66128 68848 68853) (-69 "BASTYPE.spad" 65619 65626 66109 66114) (-68 "BASTYPE.spad" 65117 65126 65609 65614) (-67 "BALFACT.spad" 64577 64589 65107 65112) (-66 "AUTOMOR.spad" 64028 64037 64557 64572) (-65 "ATTREG.spad" 61160 61167 63804 64023) (-64 "ATTRAST.spad" 60877 60884 61150 61155) (-63 "ATRIG.spad" 60347 60354 60867 60872) (-62 "ATRIG.spad" 59815 59824 60337 60342) (-61 "ASTCAT.spad" 59719 59726 59805 59810) (-60 "ASTCAT.spad" 59621 59630 59709 59714) (-59 "ASTACK.spad" 59047 59056 59315 59320) (-58 "ASSOCEQ.spad" 57881 57892 59003 59008) (-57 "ARRAY2.spad" 57426 57435 57575 57580) (-56 "ARRAY12.spad" 56139 56150 57416 57421) (-55 "ARRAY1.spad" 54715 54724 55061 55066) (-54 "ARR2CAT.spad" 51024 51045 54705 54710) (-53 "ARR2CAT.spad" 47331 47354 51014 51019) (-52 "ARITY.spad" 46703 46710 47321 47326) (-51 "APPRULE.spad" 45987 46009 46693 46698) (-50 "APPLYORE.spad" 45606 45619 45977 45982) (-49 "ANY1.spad" 44677 44686 45596 45601) (-48 "ANY.spad" 43528 43535 44667 44672) (-47 "ANTISYM.spad" 42101 42117 43508 43523) (-46 "ANON.spad" 41810 41817 42091 42096) (-45 "AN.spad" 40278 40285 41641 41734) (-44 "AMR.spad" 38608 38619 40176 40273) (-43 "AMR.spad" 36801 36814 38371 38376) (-42 "ALIST.spad" 33046 33067 33396 33401) (-41 "ALGSC.spad" 32181 32207 32918 32971) (-40 "ALGPKG.spad" 27964 27975 32137 32142) (-39 "ALGMFACT.spad" 27157 27171 27954 27959) (-38 "ALGMANIP.spad" 24658 24673 27001 27006) (-37 "ALGFF.spad" 22476 22503 22693 22849) (-36 "ALGFACT.spad" 21595 21605 22466 22471) (-35 "ALGEBRA.spad" 21428 21437 21551 21590) (-34 "ALGEBRA.spad" 21293 21304 21418 21423) (-33 "ALAGG.spad" 20831 20852 21283 21288) (-32 "AHYP.spad" 20212 20219 20821 20826) (-31 "AGG.spad" 19119 19126 20202 20207) (-30 "AGG.spad" 18024 18033 19109 19114) (-29 "AF.spad" 16469 16484 17973 17978) (-28 "ADDAST.spad" 16155 16162 16459 16464) (-27 "ACPLOT.spad" 15032 15039 16145 16150) (-26 "ACFS.spad" 12889 12898 14934 15027) (-25 "ACFS.spad" 10832 10843 12879 12884) (-24 "ACF.spad" 7586 7593 10734 10827) (-23 "ACF.spad" 4426 4435 7576 7581) (-22 "ABELSG.spad" 3967 3974 4416 4421) (-21 "ABELSG.spad" 3506 3515 3957 3962) (-20 "ABELMON.spad" 2934 2941 3496 3501) (-19 "ABELMON.spad" 2360 2369 2924 2929) (-18 "ABELGRP.spad" 2025 2032 2350 2355) (-17 "ABELGRP.spad" 1688 1697 2015 2020) (-16 "A1AGG.spad" 860 869 1678 1683) (-15 "A1AGG.spad" 30 41 850 855)) \ No newline at end of file
+((|Union| NIL 1915133 1915138 1915143 1915148) (|Record| NIL 1915113 1915118 1915123 1915128) (|Mapping| NIL 1915093 1915098 1915103 1915108) (|Enumeration| NIL 1915073 1915078 1915083 1915088) (|IntegerMod| "ZMOD.spad" 1914843 1914863 1914979 1915068) (|IntegerLinearDependence| "ZLINDEP.spad" 1913921 1913952 1914833 1914838) (|ZeroDimensionalSolvePackage| "ZDSOLVE.spad" 1903858 1903904 1913911 1913916) (|ParadoxicalCombinatorsForStreams| "YSTREAM.spad" 1903324 1903364 1903848 1903853) (|YoungDiagram| "YDIAGRAM.spad" 1902949 1902967 1903314 1903319) (|XRecursivePolynomial| "XRPOLY.spad" 1902075 1902112 1902728 1902850) (|XPolynomialRing| "XPR.spad" 1899849 1899874 1901651 1901842) (|XPolynomialsCat| "XPOLYC.spad" 1899103 1899131 1899722 1899844) (|XPolynomial| "XPOLY.spad" 1898573 1898592 1898882 1899004) (|XPBWPolynomial| "XPBWPOLY.spad" 1896941 1896972 1898287 1898409) (|XFreeAlgebra| "XFALG.spad" 1894060 1894085 1896814 1896936) (|ExtensionField| "XF.spad" 1892444 1892466 1893890 1894055) (|ExtensionField&| "XF.spad" 1890840 1890865 1892289 1892294) (|XExponentialPackage| "XEXPPKG.spad" 1890083 1890125 1890830 1890835) (|XDistributedPolynomial| "XDPOLY.spad" 1889601 1889636 1889862 1889984) (|XAlgebra| "XALG.spad" 1889240 1889256 1889533 1889596) (|WuWenTsunTriangularSet| "WUTSET.spad" 1885122 1885158 1888772 1888777) (|WeightedPolynomials| "WP.spad" 1884254 1884314 1884921 1885031) (|WhileAst| "WHILEAST.spad" 1884047 1884061 1884244 1884249) (|WhereAst| "WHEREAST.spad" 1883713 1883727 1884037 1884042) (|WildFunctionFieldIntegralBasis| "WFFINTBS.spad" 1881353 1881398 1883703 1883708) (|WeierstrassPreparation| "WEIER.spad" 1879556 1879586 1881343 1881348) (|VectorSpace| "VSPACE.spad" 1879204 1879223 1879507 1879551) (|VectorSpace&| "VSPACE.spad" 1878888 1878910 1879194 1879199) (|Void| "VOID.spad" 1878564 1878574 1878878 1878883) (|ViewDefaultsPackage| "VIEWDEF.spad" 1873749 1873774 1878554 1878559) (|ThreeDimensionalViewport| "VIEW3D.spad" 1857689 1857719 1873739 1873744) (|TwoDimensionalViewport| "VIEW2D.spad" 1845569 1845597 1857679 1857684) (|ViewportPackage| "VIEW.spad" 1843277 1843298 1845559 1845564) (|VectorFunctions2| "VECTOR2.spad" 1841903 1841929 1843267 1843272) (|Vector| "VECTOR.spad" 1840758 1840772 1841012 1841017) (|VectorCategory| "VECTCAT.spad" 1838681 1838703 1840748 1840753) (|VectorCategory&| "VECTCAT.spad" 1836333 1836358 1838403 1838408) (|Variable| "VARIABLE.spad" 1836108 1836128 1836323 1836328) (|UnionType| "UTYPE.spad" 1835746 1835761 1836098 1836103) (|UTSodetools| "UTSODETL.spad" 1835025 1835053 1835690 1835695) (|UnivariateTaylorSeriesODESolver| "UTSODE.spad" 1833213 1833261 1835015 1835020) (|UnivariateTaylorSeriesCategory| "UTSCAT.spad" 1830597 1830640 1833043 1833208) (|UnivariateTaylorSeriesCategory&| "UTSCAT.spad" 1827634 1827680 1830083 1830088) (|UnivariateTaylorSeriesFunctions2| "UTS2.spad" 1827200 1827264 1827624 1827629) (|UnivariateTaylorSeries| "UTS.spad" 1822370 1822417 1825909 1826074) (|UnaryRecursiveAggregate| "URAGG.spad" 1817071 1817102 1822360 1822365) (|UnaryRecursiveAggregate&| "URAGG.spad" 1811685 1811719 1816977 1816982) (|UnivariatePuiseuxSeriesWithExponentialSingularity| "UPXSSING.spad" 1809483 1809555 1810965 1811170) (|UnivariatePuiseuxSeriesConstructor| "UPXSCONS.spad" 1807652 1807703 1808056 1808311) (|UnivariatePuiseuxSeriesConstructorCategory| "UPXSCCA.spad" 1806078 1806137 1807392 1807647) (|UnivariatePuiseuxSeriesConstructorCategory&| "UPXSCCA.spad" 1804751 1804813 1806068 1806073) (|UnivariatePuiseuxSeriesCategory| "UPXSCAT.spad" 1803206 1803250 1804491 1804746) (|UnivariatePuiseuxSeriesFunctions2| "UPXS2.spad" 1802719 1802802 1803196 1803201) (|UnivariatePuiseuxSeries| "UPXS.spad" 1800436 1800484 1801292 1801547) (|UnivariatePolynomialSquareFree| "UPSQFREE.spad" 1798824 1798865 1800426 1800431) (|UnivariatePowerSeriesCategory| "UPSCAT.spad" 1796525 1796575 1798654 1798819) (|UnivariatePowerSeriesCategory&| "UPSCAT.spad" 1794031 1794084 1796163 1796168) (|UnivariatePolynomialCategoryFunctions2| "UPOLYC2.spad" 1793467 1793521 1794021 1794026) (|UnivariatePolynomialCategory| "UPOLYC.spad" 1788398 1788434 1793185 1793462) (|UnivariatePolynomialCategory&| "UPOLYC.spad" 1783310 1783349 1788100 1788105) (|UnivariatePolynomialMultiplicationPackage| "UPMP.spad" 1782204 1782255 1783300 1783305) (|UnivariatePolynomialDivisionPackage| "UPDIVP.spad" 1781737 1781783 1782194 1782199) (|UnivariatePolynomialDecompositionPackage| "UPDECOMP.spad" 1779961 1780012 1781727 1781732) (|UnivariatePolynomialCommonDenominator| "UPCDEN.spad" 1779144 1779194 1779951 1779956) (|UnivariatePolynomialFunctions2| "UP2.spad" 1778481 1778529 1779134 1779139) (|UnivariatePolynomial| "UP.spad" 1776195 1776227 1776599 1776876) (|UniversalSegmentFunctions2| "UNISEG2.spad" 1775660 1775696 1776142 1776147) (|UniversalSegment| "UNISEG.spad" 1774983 1775007 1775562 1775567) (|UnivariateFactorize| "UNIFACT.spad" 1774070 1774098 1774973 1774978) (|UnivariateLaurentSeriesConstructor| "ULSCONS.spad" 1770482 1770533 1770883 1771138) (|UnivariateLaurentSeriesConstructorCategory| "ULSCCAT.spad" 1768074 1768133 1770222 1770477) (|UnivariateLaurentSeriesConstructorCategory&| "ULSCCAT.spad" 1765876 1765938 1768027 1768032) (|UnivariateLaurentSeriesCategory| "ULSCAT.spad" 1763982 1764026 1765616 1765871) (|UnivariateLaurentSeriesFunctions2| "ULS2.spad" 1763466 1763549 1763972 1763977) (|UnivariateLaurentSeries| "ULS.spad" 1759021 1759069 1759986 1760435) (|UInt8| "UINT8.spad" 1758896 1758907 1759011 1759016) (|UInt64| "UINT64.spad" 1758769 1758781 1758886 1758891) (|UInt32| "UINT32.spad" 1758642 1758654 1758759 1758764) (|UInt16| "UINT16.spad" 1758515 1758527 1758632 1758637) (|UniqueFactorizationDomain| "UFD.spad" 1757515 1757546 1758398 1758510) (|UniqueFactorizationDomain&| "UFD.spad" 1756619 1756653 1757505 1757510) (|UserDefinedVariableOrdering| "UDVO.spad" 1755476 1755509 1756609 1756614) (|UserDefinedPartialOrdering| "UDPO.spad" 1753026 1753060 1755424 1755429) (|TypeAst| "TYPEAST.spad" 1752941 1752954 1753016 1753021) (|Type| "TYPE.spad" 1752872 1752882 1752931 1752936) (|TwoFactorize| "TWOFACT.spad" 1751519 1751539 1752862 1752867) (|Tuple| "TUPLE.spad" 1750999 1751012 1751406 1751411) (|TubePlotTools| "TUBETOOL.spad" 1747856 1747875 1750989 1750994) (|TubePlot| "TUBE.spad" 1746498 1746520 1747846 1747851) (|TriangularSetCategory| "TSETCAT.spad" 1734573 1734608 1746488 1746493) (|TriangularSetCategory&| "TSETCAT.spad" 1722607 1722645 1734525 1734530) (|TaylorSeries| "TS.spad" 1721136 1721161 1722111 1722276) (|TranscendentalManipulations| "TRMANIP.spad" 1715555 1715592 1720899 1720904) (|TriangularMatrixOperations| "TRIMAT.spad" 1714495 1714543 1715545 1715550) (|TrigonometricManipulations| "TRIGMNIP.spad" 1713003 1713039 1714485 1714490) (|TrigonometricFunctionCategory| "TRIGCAT.spad" 1712489 1712524 1712993 1712998) (|TrigonometricFunctionCategory&| "TRIGCAT.spad" 1711972 1712010 1712479 1712484) (|Tree| "TREE.spad" 1710614 1710626 1711647 1711652) (|TranscendentalFunctionCategory| "TRANFUN.spad" 1710426 1710462 1710604 1710609) (|TranscendentalFunctionCategory&| "TRANFUN.spad" 1710235 1710274 1710416 1710421) (|TopLevelThreeSpace| "TOPSP.spad" 1709894 1709918 1710225 1710230) (|ToolsForSign| "TOOLSIGN.spad" 1709548 1709568 1709884 1709889) (|TextFile| "TEXTFILE.spad" 1708104 1708118 1709538 1709543) (|TexFormat1| "TEX1.spad" 1707653 1707671 1708094 1708099) (|TexFormat| "TEX.spad" 1704841 1704856 1707643 1707648) (|TabulatedComputationPackage| "TBCMPPK.spad" 1702918 1702965 1704831 1704836) (|TableAggregate| "TBAGG.spad" 1702172 1702206 1702908 1702913) (|TableAggregate&| "TBAGG.spad" 1701423 1701460 1702162 1702167) (|TangentExpansions| "TANEXP.spad" 1700817 1700842 1701413 1701418) (|TermAlgebraOperator| "TALGOP.spad" 1700525 1700552 1700807 1700812) (|Tableau| "TABLEAU.spad" 1700002 1700017 1700515 1700520) (|Table| "TABLE.spad" 1698806 1698831 1699078 1699083) (|TableauxBumpers| "TABLBUMP.spad" 1695573 1695596 1698796 1698801) (|System| "SYSTEM.spad" 1694798 1694810 1695563 1695568) (|SystemSolvePackage| "SYSSOLP.spad" 1692266 1692292 1694788 1694793) (|SystemPointer| "SYSPTR.spad" 1692155 1692174 1692256 1692261) (|SystemNonNegativeInteger| "SYSNNI.spad" 1691357 1691389 1692145 1692150) (|SystemInteger| "SYSINT.spad" 1690751 1690772 1691347 1691352) (|Syntax| "SYNTAX.spad" 1687082 1687094 1690741 1690746) (|SymbolTable| "SYMTAB.spad" 1685142 1685159 1687072 1687077) (|TheSymbolTable| "SYMS.spad" 1681160 1681180 1685132 1685137) (|SymmetricPolynomial| "SYMPOLY.spad" 1680197 1680224 1680295 1680529) (|SymmetricFunctions| "SYMFUNC.spad" 1679683 1679709 1680187 1680192) (|Symbol| "SYMBOL.spad" 1677175 1677187 1679673 1679678) (|SparseUnivariateTaylorSeries| "SUTS.spad" 1674440 1674493 1675884 1676049) (|SparseUnivariatePuiseuxSeries| "SUPXS.spad" 1672138 1672192 1673013 1673268) (|SupFractionFactorizer| "SUPFRACF.spad" 1671225 1671261 1672128 1672133) (|SparseUnivariatePolynomialFunctions2| "SUP2.spad" 1670584 1670630 1671215 1671220) (|SparseUnivariatePolynomial| "SUP.spad" 1667906 1667940 1668702 1668979) (|RationalFunctionSum| "SUMRF.spad" 1666864 1666891 1667896 1667901) (|FunctionSpaceSum| "SUMFS.spad" 1666484 1666510 1666854 1666859) (|SparseUnivariateLaurentSeries| "SULS.spad" 1662002 1662056 1662986 1663441) (|SuchThatAst| "syntax.spad" 1661763 1661780 1661992 1661997) (|SuchThat| "SUCH.spad" 1661448 1661468 1661753 1661758) (|SubSpace| "SUBSPACE.spad" 1653574 1653594 1661438 1661443) (|SubResultantPackage| "SUBRESP.spad" 1652715 1652745 1653517 1653522) (|StreamTranscendentalFunctionsNonCommutative| "STTFNC.spad" 1649143 1649199 1652705 1652710) (|StreamTranscendentalFunctions| "STTF.spad" 1645216 1645258 1649133 1649138) (|StreamTaylorSeriesOperations| "STTAYLOR.spad" 1637848 1637884 1645103 1645108) (|StringTable| "STRTBL.spad" 1636790 1636815 1636947 1636952) (|String| "STRING.spad" 1635831 1635843 1636219 1636224) (|StreamFunctions3| "STREAM3.spad" 1635391 1635419 1635821 1635826) (|StreamFunctions2| "STREAM2.spad" 1634506 1634532 1635381 1635386) (|StreamFunctions1| "STREAM1.spad" 1634199 1634223 1634496 1634501) (|Stream| "STREAM.spad" 1631200 1631214 1633694 1633699) (|StreamInfiniteProduct| "STINPROD.spad" 1630118 1630152 1631190 1631195) (|StepAst| "STEPAST.spad" 1629348 1629361 1630108 1630113) (|StepThrough| "STEP.spad" 1628657 1628674 1629338 1629343) (|SparseTable| "STBL.spad" 1627558 1627594 1627733 1627738) (|StreamAggregate| "STAGG.spad" 1626245 1626268 1627548 1627553) (|StreamAggregate&| "STAGG.spad" 1624929 1624955 1626235 1626240) (|Stack| "STACK.spad" 1624423 1624436 1624675 1624680) (|SemiRing| "SRING.spad" 1624178 1624192 1624413 1624418) (|SquareFreeRegularTriangularSet| "SREGSET.spad" 1621781 1621825 1623710 1623715) (|SquareFreeRegularSetDecompositionPackage| "SRDCMPK.spad" 1620321 1620378 1621771 1621776) (|StringAggregate| "SRAGG.spad" 1615514 1615535 1620311 1620316) (|StringAggregate&| "SRAGG.spad" 1610704 1610728 1615504 1615509) (|SquareMatrix| "SQMATRIX.spad" 1608624 1608651 1609549 1609667) (|SplittingTree| "SPLTREE.spad" 1603417 1603440 1608223 1608228) (|SplittingNode| "SPLNODE.spad" 1600027 1600050 1603407 1603412) (|SpecialFunctionCategory| "SPFCAT.spad" 1598816 1598845 1600017 1600022) (|SpecialOutputPackage| "SPECOUT.spad" 1597351 1597377 1598806 1598811) (|SpadAstExports| "SPADXPT.spad" 1589431 1589451 1597341 1597346) (|SpadParser| "spad-parser.spad" 1588889 1588905 1589421 1589426) (|SpadAst| "SPADAST.spad" 1588586 1588599 1588879 1588884) (|ThreeSpaceCategory| "SPACEC.spad" 1572786 1572812 1588576 1588581) (|ThreeSpace| "SPACE3.spad" 1572555 1572573 1572776 1572781) (|SortPackage| "SORTPAK.spad" 1572088 1572109 1572503 1572508) (|TransSolvePackage| "SOLVETRA.spad" 1569837 1569862 1572078 1572083) (|TransSolvePackageService| "SOLVESER.spad" 1568272 1568304 1569827 1569832) (|RadicalSolvePackage| "SOLVERAD.spad" 1564282 1564309 1568262 1568267) (|PolynomialSolveByFormulas| "SOLVEFOR.spad" 1562726 1562762 1564272 1564277) (|SquareFreeNormalizedTriangularSetCategory| "SNTSCAT.spad" 1562310 1562365 1562716 1562721) (|SparseMultivariateTaylorSeries| "SMTS.spad" 1560510 1560563 1561814 1561979) (|SparseMultivariatePolynomial| "SMP.spad" 1558580 1558625 1558995 1559229) (|SmithNormalForm| "SMITH.spad" 1557413 1557450 1558570 1558575) (|SquareMatrixCategory| "SMATCAT.spad" 1555502 1555549 1557345 1557408) (|SquareMatrixCategory&| "SMATCAT.spad" 1553510 1553560 1555356 1555361) (|ShallowlyMutableAggregate| "aggcat.spad" 1553174 1553207 1553500 1553505) (|StackAggregate| "SKAGG.spad" 1552154 1552176 1553164 1553169) (|SingleInteger| "SINT.spad" 1551338 1551357 1551915 1552149) (|SimplifyAlgebraicNumberConvertPackage| "SIMPAN.spad" 1551032 1551075 1551328 1551333) (|RationalFunctionSign| "SIGNRF.spad" 1550140 1550168 1551022 1551027) (|ElementaryFunctionSign| "SIGNEF.spad" 1549411 1549443 1550130 1550135) (|SignatureAst| "syntax.spad" 1548819 1548837 1549401 1549406) (|Signature| "SIG.spad" 1548175 1548190 1548809 1548814) (|SturmHabichtPackage| "SHP.spad" 1546096 1546127 1548124 1548129) (|SplitHomogeneousDirectProduct| "SHDP.spad" 1542652 1542705 1543195 1543326) (|SemiGroup| "SGROUP.spad" 1542254 1542269 1542642 1542647) (|SemiGroup&| "SGROUP.spad" 1541853 1541871 1542244 1542249) (|SemiGroupOperatorCategory| "catdef.spad" 1541545 1541579 1541678 1541848) (|SemiGroupOperation| "catdef.spad" 1541090 1541117 1541370 1541540) (|SymmetricGroupCombinatoricFunctions| "SGCF.spad" 1534197 1534238 1541080 1541085) (|SquareFreeRegularTriangularSetCategory| "SFRTCAT.spad" 1533130 1533182 1534187 1534192) (|SquareFreeRegularTriangularSetGcdPackage| "SFRGCD.spad" 1532156 1532213 1533120 1533125) (|SquareFreeQuasiComponentPackage| "SFQCMPK.spad" 1526941 1526989 1532146 1532151) (|SExpressionOf| "SEXOF.spad" 1526774 1526824 1526931 1526936) (|SExpressionCategory| "SEXCAT.spad" 1524586 1524642 1526764 1526769) (|SExpression| "SEX.spad" 1524470 1524487 1524576 1524581) (|SetOfMIntegersInOneToN| "SETMN.spad" 1522911 1522947 1524460 1524465) (|SetCategory| "SETCAT.spad" 1522388 1522405 1522901 1522906) (|SetCategory&| "SETCAT.spad" 1521862 1521882 1522378 1522383) (|SetAggregate| "SETAGG.spad" 1518386 1518406 1521826 1521857) (|SetAggregate&| "SETAGG.spad" 1514933 1514956 1518376 1518381) (|Set| "SET.spad" 1513312 1513323 1514411 1514442) (|SequenceAst| "syntax.spad" 1513007 1513024 1513302 1513307) (|SegmentExpansionCategory| "SEGXCAT.spad" 1512142 1512176 1512997 1513002) (|SegmentCategory| "SEGCAT.spad" 1511055 1511078 1512132 1512137) (|SegmentBindingFunctions2| "SEGBIND2.spad" 1510732 1510766 1511045 1511050) (|SegmentBinding| "SEGBIND.spad" 1510467 1510489 1510667 1510672) (|SegmentAst| "SEGAST.spad" 1510190 1510206 1510457 1510462) (|SegmentFunctions2| "SEG2.spad" 1509602 1509629 1510137 1510142) (|Segment| "SEG.spad" 1509394 1509409 1509504 1509509) (|SequentialDifferentialVariable| "SDVAR.spad" 1508643 1508681 1509384 1509389) (|SequentialDifferentialPolynomial| "SDPOL.spad" 1506534 1506574 1506854 1507088) (|StructuralConstantsPackage| "SCPKG.spad" 1504600 1504634 1506524 1506529) (|Scope| "SCOPE.spad" 1503775 1503786 1504590 1504595) (|SortedCache| "SCACHE.spad" 1502463 1502482 1503765 1503770) (|SpadSyntaxCategory| "SASTCAT.spad" 1502357 1502381 1502453 1502458) (|SingletonAsOrderedSet| "SAOS.spad" 1502211 1502238 1502347 1502352) (|SAERationalFunctionAlgFactor| "SAERFFC.spad" 1501899 1501944 1502201 1502206) (|SimpleAlgebraicExtensionAlgFactor| "SAEFACT.spad" 1501570 1501620 1501889 1501894) (|SimpleAlgebraicExtension| "SAE.spad" 1499888 1499925 1500520 1500735) (|RationalUnivariateRepresentationPackage| "RURPK.spad" 1497511 1497563 1499878 1499883) (|Ruleset| "RULESET.spad" 1496964 1496988 1497501 1497506) (|RuleCalled| "RULECOLD.spad" 1496809 1496829 1496954 1496959) (|RewriteRule| "RULE.spad" 1495053 1495081 1496799 1496804) (|RuntimeValue| "RTVALUE.spad" 1494779 1494797 1495043 1495048) (|RestrictAst| "syntax.spad" 1494488 1494505 1494769 1494774) (|RegularTriangularSetGcdPackage| "RSETGCD.spad" 1490903 1490950 1494478 1494483) (|RegularTriangularSetCategory| "RSETCAT.spad" 1480868 1480910 1490893 1490898) (|RegularTriangularSetCategory&| "RSETCAT.spad" 1470830 1470875 1480858 1480863) (|RegularSetDecompositionPackage| "RSDCMPK.spad" 1469303 1469350 1470820 1470825) (|RealRootCharacterizationCategory| "RRCC.spad" 1467658 1467717 1469293 1469298) (|RealRootCharacterizationCategory&| "RRCC.spad" 1466010 1466072 1467648 1467653) (|RepeatAst| "RPTAST.spad" 1465706 1465721 1466000 1466005) (|RecursivePolynomialCategory| "RPOLCAT.spad" 1445079 1445118 1465467 1465701) (|RecursivePolynomialCategory&| "RPOLCAT.spad" 1424254 1424296 1444645 1444650) (|RomanNumeral| "ROMAN.spad" 1423468 1423486 1424015 1424249) (|RightOpenIntervalRootCharacterization| "ROIRC.spad" 1422514 1422580 1423458 1423463) (|RealNumberSystem| "RNS.spad" 1421405 1421427 1422344 1422509) (|RealNumberSystem&| "RNS.spad" 1420453 1420478 1421395 1421400) (|RangeBinding| "RNGBIND.spad" 1419596 1419619 1420400 1420405) (|Rng| "RNG.spad" 1419204 1419213 1419586 1419591) (|Rng&| "RNG.spad" 1418809 1418821 1419194 1419199) (|RightModule| "RMODULE.spad" 1418582 1418601 1418799 1418804) (|RectangularMatrixCategoryFunctions2| "RMCAT2.spad" 1417970 1418059 1418572 1418577) (|RectangularMatrix| "RMATRIX.spad" 1417028 1417061 1417385 1417429) (|RectangularMatrixCategory| "RMATCAT.spad" 1412770 1412823 1416979 1417023) (|RectangularMatrixCategory&| "RMATCAT.spad" 1408365 1408421 1412577 1412582) (|RightLinearSet| "RLINSET.spad" 1408058 1408080 1408355 1408360) (|RationalInterpolation| "RINTERP.spad" 1407932 1407966 1408048 1408053) (|Ring| "RING.spad" 1407394 1407404 1407905 1407927) (|Ring&| "RING.spad" 1406870 1406883 1407384 1407389) (|RandomIntegerDistributions| "RIDIST.spad" 1406239 1406271 1406860 1406865) (|RegularChain| "RGCHAIN.spad" 1404691 1404716 1405594 1405599) (|RGBColorSpace| "RGBCSPC.spad" 1404470 1404492 1404681 1404686) (|RGBColorModel| "RGBCMDL.spad" 1404022 1404044 1404460 1404465) (|RationalFunctionFactorizer| "RFFACTOR.spad" 1403461 1403495 1404012 1404017) (|RationalFunctionFactor| "RFFACT.spad" 1403177 1403208 1403451 1403456) (|RandomFloatDistributions| "RFDIST.spad" 1402152 1402182 1403167 1403172) (|RationalFunction| "RF.spad" 1399813 1399837 1402142 1402147) (|RetractSolvePackage| "RETSOL.spad" 1399216 1399245 1399803 1399808) (|RetractableTo| "RETRACT.spad" 1398634 1398655 1399206 1399211) (|RetractableTo&| "RETRACT.spad" 1398049 1398073 1398624 1398629) (|ReturnAst| "RETAST.spad" 1397855 1397870 1398039 1398044) (|ResidueRing| "RESRING.spad" 1397166 1397217 1397761 1397850) (|ResolveLatticeCompletion| "RESLATC.spad" 1396469 1396501 1397156 1397161) (|RepeatedSquaring| "REPSQ.spad" 1396187 1396211 1396459 1396464) (|RepeatedDoubling| "REPDB.spad" 1395881 1395905 1396177 1396182) (|RepresentationPackage2| "REP2.spad" 1385585 1385615 1395732 1395737) (|RepresentationPackage1| "REP1.spad" 1379778 1379808 1385527 1385532) (|RadicalEigenPackage| "REP.spad" 1377316 1377341 1379768 1379773) (|RegularTriangularSet| "REGSET.spad" 1375022 1375056 1376848 1376853) (|Reference| "REF.spad" 1374534 1374551 1375012 1375017) (|ReductionOfOrder| "REDORDER.spad" 1373731 1373757 1374524 1374529) (|RealClosure| "RECLOS.spad" 1372649 1372677 1373361 1373526) (|RealSolvePackage| "REALSOLV.spad" 1371776 1371798 1372639 1372644) (|RealZeroPackageQ| "REAL0Q.spad" 1369061 1369089 1371766 1371771) (|RealZeroPackage| "REAL0.spad" 1365893 1365920 1369051 1369056) (|RealConstant| "REAL.spad" 1365756 1365774 1365883 1365888) (|ReduceAst| "RDUCEAST.spad" 1365471 1365486 1365746 1365751) (|ReducedDivisor| "RDIV.spad" 1365115 1365151 1365461 1365466) (|RandomDistributions| "RDIST.spad" 1364666 1364693 1365105 1365110) (|TranscendentalRischDESystem| "RDETRS.spad" 1363510 1363548 1364656 1364661) (|TranscendentalRischDE| "RDETR.spad" 1361635 1361667 1363500 1363505) (|ElementaryRischDESystem| "RDEEFS.spad" 1360718 1360751 1361625 1361630) (|ElementaryRischDE| "RDEEF.spad" 1359718 1359745 1360708 1360713) (|RealClosedField| "RCFIELD.spad" 1356852 1356873 1359548 1359713) (|RealClosedField&| "RCFIELD.spad" 1354143 1354167 1356842 1356847) (|RecursiveAggregate| "RCAGG.spad" 1352064 1352090 1354133 1354138) (|RecursiveAggregate&| "RCAGG.spad" 1349855 1349884 1351927 1351932) (|RationalRetractions| "RATRET.spad" 1349199 1349226 1349845 1349850) (|RationalFactorize| "RATFACT.spad" 1348877 1348903 1349189 1349194) (|RandomNumberSource| "RANDSRC.spad" 1348181 1348205 1348867 1348872) (|RadixUtilities| "RADUTIL.spad" 1347926 1347946 1348171 1348176) (|RadixExpansion| "RADIX.spad" 1344822 1344847 1346379 1346544) (|RadicalFunctionField| "RADFF.spad" 1343571 1343621 1343703 1343932) (|RadicalCategory| "RADCAT.spad" 1343154 1343175 1343561 1343566) (|RadicalCategory&| "RADCAT.spad" 1342734 1342758 1343144 1343149) (|Queue| "QUEUE.spad" 1342219 1342232 1342480 1342485) (|QuaternionCategoryFunctions2| "QUATCT2.spad" 1341814 1341858 1342209 1342214) (|QuaternionCategory| "QUATCAT.spad" 1339926 1339952 1341701 1341809) (|QuaternionCategory&| "QUATCAT.spad" 1337742 1337771 1339520 1339525) (|Quaternion| "QUAT.spad" 1336226 1336244 1336576 1336684) (|QueueAggregate| "QUAGG.spad" 1335070 1335092 1336216 1336221) (|QuasiquoteAst| "QQUTAST.spad" 1334828 1334847 1335060 1335065) (|QuadraticForm| "QFORM.spad" 1334436 1334461 1334818 1334823) (|QuotientFieldCategoryFunctions2| "QFCAT2.spad" 1334100 1334145 1334426 1334431) (|QuotientFieldCategory| "QFCAT.spad" 1332712 1332741 1333930 1334095) (|QuotientFieldCategory&| "QFCAT.spad" 1330841 1330873 1332062 1332067) (|QueryEquation| "QEQUAT.spad" 1330389 1330408 1330831 1330836) (|QuasiComponentPackage| "QCMPACK.spad" 1325285 1325323 1330379 1330384) (|QuasiAlgebraicSet2| "QALGSET2.spad" 1323265 1323299 1325275 1325280) (|QuasiAlgebraicSet| "QALGSET.spad" 1319326 1319373 1323150 1323155) (|PAdicWildFunctionFieldIntegralBasis| "PWFFINTB.spad" 1316713 1316763 1319316 1319321) (|PushVariables| "PUSHVAR.spad" 1316041 1316071 1316703 1316708) (|PartialTranscendentalFunctions| "PTRANFN.spad" 1312149 1312187 1316031 1316036) (|PointPackage| "PTPACK.spad" 1309227 1309247 1312139 1312144) (|PointFunctions2| "PTFUNC2.spad" 1309037 1309064 1309217 1309222) (|PointCategory| "PTCAT.spad" 1308303 1308324 1309027 1309032) (|PolynomialSquareFree| "PSQFR.spad" 1307600 1307642 1308293 1308298) (|PseudoLinearNormalForm| "PSEUDLIN.spad" 1306466 1306496 1307590 1307595) (|PolynomialSetUtilitiesPackage| "PSETPK.spad" 1293108 1293151 1306308 1306313) (|PolynomialSetCategory| "PSETCAT.spad" 1287499 1287541 1293098 1293103) (|PolynomialSetCategory&| "PSETCAT.spad" 1281841 1281886 1287443 1287448) (|PlottableSpaceCurveCategory| "PSCURVE.spad" 1280815 1280848 1281831 1281836) (|PowerSeriesCategory| "PSCAT.spad" 1279513 1279559 1280645 1280810) (|PowerSeriesCategory&| "PSCAT.spad" 1278368 1278417 1279503 1279508) (|Partition| "PRTITION.spad" 1277059 1277074 1278358 1278363) (|PretendAst| "PRTDAST.spad" 1276770 1276786 1277049 1277054) (|PseudoRemainderSequence| "PRS.spad" 1266360 1266398 1276719 1276724) (|PriorityQueueAggregate| "PRQAGG.spad" 1265797 1265827 1266350 1266355) (|PropositionalLogic| "PROPLOG.spad" 1265385 1265409 1265787 1265792) (|PropositionalFormulaFunctions2| "PROPFUN2.spad" 1264980 1265021 1265375 1265380) (|PropositionalFormulaFunctions1| "PROPFUN1.spad" 1264358 1264397 1264970 1264975) (|PropositionalFormula| "PROPFRML.spad" 1262908 1262937 1264348 1264353) (|Property| "PROPERTY.spad" 1262398 1262412 1262898 1262903) (|Product| "PRODUCT.spad" 1261269 1261286 1261558 1261623) (|PrintPackage| "PRINT.spad" 1261011 1261029 1261259 1261264) (|IntegerPrimesPackage| "PRIMES.spad" 1259254 1259282 1261001 1261006) (|PrimitiveElement| "PRIMELT.spad" 1257365 1257389 1259244 1259249) (|PrimitiveFunctionCategory| "PRIMCAT.spad" 1256985 1257016 1257355 1257360) (|PrimitiveArrayFunctions2| "PRIMARR2.spad" 1255730 1255764 1256975 1256980) (|PrimitiveArray| "PRIMARR.spad" 1254942 1254964 1255124 1255129) (|PrecomputedAssociatedEquations| "PREASSOC.spad" 1254296 1254336 1254932 1254937) (|PolynomialRing| "PR.spad" 1252729 1252753 1253440 1253674) (|PlottablePlaneCurveCategory| "PPCURVE.spad" 1251841 1251874 1252719 1252724) (|PortNumber| "PORTNUM.spad" 1251624 1251640 1251831 1251836) (|PolynomialRoots| "POLYROOT.spad" 1250457 1250488 1251573 1251578) (|PolynomialCategoryLifting| "POLYLIFT.spad" 1249699 1249745 1250447 1250452) (|PolynomialCategoryQuotientFunctions| "POLYCATQ.spad" 1247796 1247847 1249689 1249694) (|PolynomialCategory| "POLYCAT.spad" 1241175 1241212 1247557 1247791) (|PolynomialCategory&| "POLYCAT.spad" 1234118 1234158 1240503 1240508) (|PolynomialToUnivariatePolynomial| "POLY2UP.spad" 1233540 1233584 1234108 1234113) (|PolynomialFunctions2| "POLY2.spad" 1233119 1233149 1233530 1233535) (|Polynomial| "POLY.spad" 1231074 1231092 1231597 1231831) (|RealPolynomialUtilitiesPackage| "POLUTIL.spad" 1230002 1230059 1231021 1231026) (|PolToPol| "POLTOPOL.spad" 1228744 1228765 1229992 1229997) (|Point| "POINT.spad" 1227763 1227776 1227853 1227858) (|PolynomialNumberTheoryFunctions| "PNTHEORY.spad" 1224436 1224473 1227753 1227758) (|PatternMatchTools| "PMTOOLS.spad" 1223196 1223225 1224426 1224431) (|PatternMatchSymbol| "PMSYM.spad" 1222729 1222755 1223186 1223191) (|PatternMatchQuotientFieldCategory| "PMQFCAT.spad" 1222289 1222334 1222719 1222724) (|FunctionSpaceAttachPredicates| "PMPREDFS.spad" 1221732 1221773 1222279 1222284) (|AttachPredicates| "PMPRED.spad" 1221209 1221233 1221722 1221727) (|PatternMatchPolynomialCategory| "PMPLCAT.spad" 1220244 1220290 1221124 1221129) (|PatternMatchListAggregate| "PMLSAGG.spad" 1219806 1219843 1220234 1220239) (|PatternMatchKernel| "PMKERNEL.spad" 1219369 1219397 1219796 1219801) (|PatternMatchIntegerNumberSystem| "PMINS.spad" 1218920 1218959 1219359 1219364) (|PatternMatchFunctionSpace| "PMFS.spad" 1218478 1218515 1218910 1218915) (|PatternMatchPushDown| "PMDOWN.spad" 1217750 1217782 1218468 1218473) (|FunctionSpaceAssertions| "PMASSFS.spad" 1216708 1216741 1217740 1217745) (|PatternMatchAssertions| "PMASS.spad" 1215706 1215734 1216698 1216703) (|PlotTools| "PLOTTOOL.spad" 1215479 1215494 1215696 1215701) (|Plot3D| "PLOT3D.spad" 1211939 1211951 1215469 1215474) (|PlotFunctions1| "PLOT1.spad" 1211100 1211122 1211929 1211934) (|Plot| "PLOT.spad" 1206021 1206031 1211090 1211095) (|ParametricLinearEquations| "PLEQN.spad" 1193400 1193450 1206011 1206016) (|PolynomialInterpolationAlgorithms| "PINTERPA.spad" 1193157 1193200 1193390 1193395) (|PolynomialInterpolation| "PINTERP.spad" 1192762 1192798 1193147 1193152) (|PrincipalIdealDomain| "PID.spad" 1191675 1191701 1192645 1192757) (|PiCoercions| "PICOERCE.spad" 1191323 1191342 1191665 1191670) (|PositiveInteger| "PI.spad" 1190919 1190940 1191289 1191318) (|PolyGroebner| "PGROEB.spad" 1189522 1189542 1190909 1190914) (|PermutationGroupExamples| "PGE.spad" 1181173 1181203 1189512 1189517) (|PolynomialGcdPackage| "PGCD.spad" 1180109 1180144 1181163 1181168) (|PartialFractionPackage| "PFRPAC.spad" 1179238 1179268 1180099 1180104) (|PartialFraction| "PFR.spad" 1175856 1175879 1179068 1179233) (|PointsOfFiniteOrderTools| "PFOTOOLS.spad" 1175092 1175130 1175846 1175851) (|PointsOfFiniteOrderRational| "PFOQ.spad" 1174437 1174480 1175082 1175087) (|PointsOfFiniteOrder| "PFO.spad" 1173843 1173883 1174427 1174432) (|PolynomialFactorizationExplicit| "PFECAT.spad" 1171481 1171518 1173726 1173838) (|PolynomialFactorizationExplicit&| "PFECAT.spad" 1169170 1169210 1171418 1171423) (|PolynomialFactorizationByRecursionUnivariate| "PFBRU.spad" 1167016 1167070 1169160 1169165) (|PolynomialFactorizationByRecursion| "PFBR.spad" 1164544 1164599 1167006 1167011) (|PrimeField| "PF.spad" 1163999 1164019 1164238 1164403) (|PermutationGroup| "PERMGRP.spad" 1158755 1158779 1163989 1163994) (|PermutationCategory| "PERMCAT.spad" 1157392 1157419 1158728 1158750) (|Permanent| "PERMAN.spad" 1155941 1155962 1157382 1157387) (|Permutation| "PERM.spad" 1151781 1151800 1155813 1155835) (|PendantTree| "PENDTREE.spad" 1151167 1151186 1151456 1151461) (|PartialDifferentialSpace| "PDSPC.spad" 1149958 1149990 1151157 1151162) (|PartialDifferentialSpace&| "PDSPC.spad" 1148746 1148781 1149948 1149953) (|PartialDifferentialRing| "PDRING.spad" 1148560 1148591 1148719 1148741) (|PartialDifferentialModule| "PDMOD.spad" 1148336 1148371 1148511 1148555) (|PolynomialDecomposition| "PDECOMP.spad" 1147789 1147823 1148326 1148331) (|PartialDifferentialDomain| "PDDOM.spad" 1147204 1147240 1147779 1147784) (|PartialDifferentialDomain&| "PDDOM.spad" 1146616 1146655 1147194 1147199) (|PolynomialComposition| "PCOMP.spad" 1146450 1146482 1146606 1146611) (|PoincareBirkhoffWittLyndonBasis| "PBWLB.spad" 1145019 1145065 1146440 1146445) (|PatternFunctions2| "PATTERN2.spad" 1144742 1144769 1145009 1145014) (|PatternFunctions1| "PATTERN1.spad" 1143075 1143102 1144732 1144737) (|Pattern| "PATTERN.spad" 1137645 1137660 1143065 1143070) (|PatternMatchResultFunctions2| "PATRES2.spad" 1137291 1137331 1137635 1137640) (|PatternMatchResult| "PATRES.spad" 1134858 1134886 1137281 1137286) (|PatternMatch| "PATMATCH.spad" 1133184 1133225 1134705 1134710) (|PatternMatchable| "PATMAB.spad" 1132599 1132623 1133174 1133179) (|PatternMatchListResult| "PATLRES.spad" 1131665 1131699 1132589 1132594) (|Patternable| "PATAB.spad" 1131420 1131439 1131655 1131660) (|PartitionsAndPermutations| "PARTPERM.spad" 1129453 1129484 1131410 1131415) (|ParametricSurface| "PARSURF.spad" 1128872 1128915 1129443 1129448) (|ParametricSurfaceFunctions2| "PARSU2.spad" 1128644 1128685 1128862 1128867) (|Parser| "script-parser.spad" 1128160 1128172 1128634 1128639) (|ParametricSpaceCurve| "PARSCURV.spad" 1127576 1127622 1128150 1128155) (|ParametricSpaceCurveFunctions2| "PARSC2.spad" 1127339 1127383 1127566 1127571) (|ParametricPlaneCurve| "PARPCURV.spad" 1126783 1126829 1127329 1127334) (|ParametricPlaneCurveFunctions2| "PARPC2.spad" 1126546 1126590 1126773 1126778) (|ParameterAst| "PARAMAST.spad" 1125664 1125682 1126536 1126541) (|PolynomialAN2Expression| "PAN2EXPR.spad" 1125055 1125084 1125654 1125659) (|Palette| "PALETTE.spad" 1124164 1124177 1125045 1125050) (|Pair| "PAIR.spad" 1123393 1123408 1123964 1123969) (|PAdicRationalConstructor| "PADICRC.spad" 1120585 1120625 1121770 1121935) (|PAdicRational| "PADICRAT.spad" 1118704 1118727 1118928 1119093) (|PAdicIntegerCategory| "PADICCT.spad" 1117192 1117222 1118587 1118699) (|PAdicInteger| "PADIC.spad" 1116842 1116864 1117075 1117187) (|PadeApproximantPackage| "PADEPAC.spad" 1115511 1115550 1116832 1116837) (|PadeApproximants| "PADE.spad" 1114249 1114279 1115501 1115506) (|OrdinaryWeightedPolynomials| "OWP.spad" 1113413 1113468 1114048 1114158) (|OverloadSet| "OVERSET.spad" 1112977 1112994 1113403 1113408) (|OrderedVariableList| "OVAR.spad" 1112741 1112781 1112967 1112972) (|OutputForm| "OUTFORM.spad" 1102141 1102157 1112731 1112736) (|OutputBinaryFile| "OUTBFILE.spad" 1101561 1101583 1102131 1102136) (|OutputByteConduit| "OUTBCON.spad" 1100616 1100639 1101551 1101556) (|OutputByteConduit&| "OUTBCON.spad" 1099668 1099694 1100606 1100611) (|OutputPackage| "OUT.spad" 1098775 1098794 1099658 1099663) (|OrdSetInts| "OSI.spad" 1098242 1098258 1098765 1098770) (|OrderedSemiGroup| "OSGROUP.spad" 1098146 1098168 1098232 1098237) (|OrthogonalPolynomialFunctions| "ORTHPOL.spad" 1096613 1096650 1098072 1098077) (|UnivariateSkewPolynomial| "OREUP.spad" 1095991 1096043 1096242 1096305) (|SparseUnivariateSkewPolynomial| "ORESUP.spad" 1095211 1095265 1095620 1095683) (|UnivariateSkewPolynomialCategoryOps| "OREPCTO.spad" 1093052 1093097 1095116 1095121) (|UnivariateSkewPolynomialCategory| "OREPCAT.spad" 1087185 1087225 1092984 1093047) (|UnivariateSkewPolynomialCategory&| "OREPCAT.spad" 1081196 1081239 1086998 1087003) (|OrderedType| "ORDTYPE.spad" 1080424 1080441 1081186 1081191) (|OrderedType&| "ORDTYPE.spad" 1079649 1079669 1080414 1080419) (|OrderedStructure| "ORDSTRCT.spad" 1079404 1079433 1079581 1079586) (|OrderedSet| "ORDSET.spad" 1079096 1079112 1079394 1079399) (|OrderedRing| "ORDRING.spad" 1078897 1078914 1079069 1079091) (|OrderedMonoid| "ORDMON.spad" 1078741 1078760 1078887 1078892) (|OrderingFunctions| "ORDFUNS.spad" 1077858 1077889 1078731 1078736) (|OrderedFinite| "ORDFIN.spad" 1077667 1077686 1077848 1077853) (|OrderedCompletionFunctions2| "ORDCOMP2.spad" 1076935 1076972 1077657 1077662) (|OrderedCompletion| "ORDCOMP.spad" 1075485 1075510 1076582 1076627) (|OperatorSignature| "OPSIG.spad" 1075132 1075155 1075475 1075480) (|OperationsQuery| "OPQUERY.spad" 1074700 1074721 1075122 1075127) (|OperatorCategory| "OPERCAT.spad" 1074152 1074176 1074690 1074695) (|OperatorCategory&| "OPERCAT.spad" 1073601 1073628 1074142 1074147) (|Operator| "OP.spad" 1073246 1073262 1073332 1073442) (|OnePointCompletionFunctions2| "ONECOMP2.spad" 1072644 1072682 1073236 1073241) (|OnePointCompletion| "ONECOMP.spad" 1071473 1071499 1072291 1072336) (|OrderedMultisetAggregate| "OMSAGG.spad" 1071247 1071279 1071437 1071468) (|OppositeMonogenicLinearOperator| "OMLO.spad" 1070600 1070641 1071082 1071145) (|OrderedIntegralDomain| "OINTDOM.spad" 1070301 1070328 1070483 1070595) (|OrderedFreeMonoid| "OFMONOID.spad" 1068417 1068442 1070249 1070254) (|OrderlyDifferentialVariable| "ODVAR.spad" 1067653 1067688 1068407 1068412) (|OrdinaryDifferentialRing| "ODR.spad" 1067193 1067241 1067383 1067611) (|OrderlyDifferentialPolynomial| "ODPOL.spad" 1065040 1065077 1065407 1065641) (|OrderedDirectProduct| "ODP.spad" 1061748 1061786 1062139 1062270) (|ODETools| "ODETOOLS.spad" 1060395 1060416 1061738 1061743) (|SystemODESolver| "ODESYS.spad" 1058080 1058106 1060385 1060390) (|RationalRicDE| "ODERTRIC.spad" 1054083 1054107 1058014 1058019) (|ReduceLODE| "ODERED.spad" 1053478 1053506 1054073 1054078) (|RationalLODE| "ODERAT.spad" 1051105 1051128 1053468 1053473) (|PrimitiveRatRicDE| "ODEPRRIC.spad" 1048187 1048220 1051095 1051100) (|PrimitiveRatDE| "ODEPRIM.spad" 1045577 1045607 1048177 1048182) (|PureAlgebraicLODE| "ODEPAL.spad" 1044952 1044987 1045567 1045572) (|ODEIntegration| "ODEINT.spad" 1044379 1044403 1044942 1044947) (|ElementaryFunctionODESolver| "ODEEF.spad" 1039853 1039890 1044369 1044374) (|ConstantLODE| "ODECONST.spad" 1039392 1039416 1039843 1039848) (|OctonionCategoryFunctions2| "OCTCT2.spad" 1039009 1039051 1039382 1039387) (|Octonion| "OCT.spad" 1037385 1037401 1038105 1038168) (|OrderedCancellationAbelianMonoid| "OCAMON.spad" 1037203 1037241 1037375 1037380) (|OctonionCategory| "OC.spad" 1034961 1034985 1037135 1037198) (|OctonionCategory&| "OC.spad" 1032382 1032409 1034559 1034564) (|OrderedAbelianSemiGroup| "OASGP.spad" 1032176 1032205 1032372 1032377) (|OrderedAbelianMonoidSup| "OAMONS.spad" 1031677 1031706 1032166 1032171) (|OrderedAbelianMonoid| "OAMON.spad" 1031417 1031443 1031667 1031672) (|OrderedAbelianMonoid&| "OAMON.spad" 1031154 1031183 1031407 1031412) (|OrderedAbelianGroup| "OAGROUP.spad" 1030675 1030700 1031144 1031149) (|OrderedAbelianGroup&| "OAGROUP.spad" 1030193 1030221 1030665 1030670) (|NumericTubePlot| "NUMTUBE.spad" 1029771 1029800 1030183 1030188) (|NumericalQuadrature| "NUMQUAD.spad" 1017730 1017755 1029761 1029766) (|NumericalOrdinaryDifferentialEquations| "NUMODE.spad" 1009046 1009090 1017720 1017725) (|NumberFormats| "NUMFMT.spad" 1007875 1007894 1009036 1009041) (|Numeric| "NUMERIC.spad" 999979 999994 1007675 1007680) (|NormalizedTriangularSetCategory| "NTSCAT.spad" 998480 998525 999969 999974) (|NumberTheoreticPolynomialFunctions| "NTPOLFN.spad" 998008 998050 998406 998411) (|NewSparseUnivariatePolynomialFunctions2| "NSUP2.spad" 997363 997412 997998 998003) (|NewSparseUnivariatePolynomial| "NSUP.spad" 991034 991071 995481 995758) (|NewSparseMultivariatePolynomial| "NSMP.spad" 988810 988858 989131 989365) (|NumericRealEigenPackage| "NREP.spad" 987191 987226 988800 988805) (|NPCoef| "NPCOEF.spad" 986433 986457 987181 987186) (|NormRetractPackage| "NORMRETR.spad" 986019 986070 986423 986428) (|NormalizationPackage| "NORMPK.spad" 983943 983980 986009 986014) (|NormInMonogenicAlgebra| "NORMMA.spad" 983611 983657 983933 983938) (|NoneFunctions1| "NONE1.spad" 983275 983297 983601 983606) (|None| "NONE.spad" 983014 983024 983265 983270) (|NonLinearFirstOrderODESolver| "NODE1.spad" 982479 982517 983004 983009) (|NonNegativeInteger| "NNI.spad" 981350 981374 982445 982474) (|NonLinearSolvePackage| "NLINSOL.spad" 979957 979986 981340 981345) (|NumberFieldIntegralBasis| "NFINTBAS.spad" 977499 977534 979947 979952) (|NetworkClientSocket| "NETCLT.spad" 977456 977484 977489 977494) (|NonCommutativeOperatorDivision| "NCODIV.spad" 975656 975696 977446 977451) (|NumericContinuedFraction| "NCNTFRAC.spad" 975280 975312 975646 975651) (|NumericComplexEigenPackage| "NCEP.spad" 973422 973460 975270 975275) (|NonAssociativeRing| "NASRING.spad" 973010 973034 973412 973417) (|NonAssociativeRing&| "NASRING.spad" 972595 972622 973000 973005) (|NonAssociativeRng| "NARNG.spad" 971980 972003 972585 972590) (|NonAssociativeRng&| "NARNG.spad" 971362 971388 971970 971975) (|NonAssociativeAlgebra| "NAALG.spad" 970891 970920 971313 971357) (|NonAssociativeAlgebra&| "NAALG.spad" 970456 970488 970881 970886) (|MultivariateSquareFree| "MULTSQFR.spad" 967394 967431 970446 970451) (|MultivariateFactorize| "MULTFACT.spad" 966758 966794 967384 967389) (|MultivariateTaylorSeriesCategory| "MTSCAT.spad" 964754 964805 966588 966753) (|MergeThing| "MTHING.spad" 964405 964423 964744 964749) (|MoreSystemCommands| "MSYSCMD.spad" 963823 963847 964395 964400) (|MultisetAggregate| "MSETAGG.spad" 963649 963674 963787 963818) (|Multiset| "MSET.spad" 961490 961506 963243 963274) (|MonoidRing| "MRING.spad" 958509 958529 961103 961213) (|MonoidRingFunctions2| "MRF2.spad" 958053 958085 958499 958504) (|MRationalFactorize| "MRATFAC.spad" 957583 957616 958043 958048) (|MPolyCatRationalFunctionFactorizer| "MPRFF.spad" 955591 955642 957573 957578) (|MultivariatePolynomial| "MPOLY.spad" 953672 953707 954051 954285) (|MPolyCatPolyFactorizer| "MPCPF.spad" 952916 952955 953662 953667) (|MPolyCatFunctions3| "MPC3.spad" 952717 952773 952906 952911) (|MPolyCatFunctions2| "MPC2.spad" 952355 952404 952707 952712) (|MonomialExtensionTools| "MONOTOOL.spad" 950690 950723 952345 952350) (|MonoidOperatorCategory| "catdef.spad" 950097 950128 950338 950685) (|MonoidOperation| "catdef.spad" 949503 949527 949772 950092) (|Monoid| "MONOID.spad" 948820 948832 949493 949498) (|Monoid&| "MONOID.spad" 948134 948149 948810 948815) (|MonogenicAlgebra| "MONOGEN.spad" 946788 946815 947914 948129) (|MonogenicAlgebra&| "MONOGEN.spad" 945519 945549 946648 946653) (|MonadWithUnit| "MONADWU.spad" 943588 943607 945509 945514) (|MonadWithUnit&| "MONADWU.spad" 941654 941676 943578 943583) (|Monad| "MONAD.spad" 940811 940822 941644 941649) (|Monad&| "MONAD.spad" 939965 939979 940801 940806) (|MoebiusTransform| "MOEBIUS.spad" 938684 938708 939938 939960) (|Module| "MODULE.spad" 938533 938547 938635 938679) (|Module&| "MODULE.spad" 938418 938435 938523 938528) (|ModularRing| "MODRING.spad" 937729 937785 938391 938413) (|ModuleOperator| "MODOP.spad" 936283 936307 937460 937570) (|ModuleMonomial| "MODMONOM.spad" 936002 936032 936273 936278) (|ModMonic| "MODMON.spad" 933306 933324 934027 934304) (|ModularField| "MODFIELD.spad" 932578 932635 933136 933301) (|MathMLFormat| "MMLFORM.spad" 931428 931446 932568 932573) (|MultipleMap| "MMAP.spad" 931161 931204 931418 931423) (|MonogenicLinearOperator| "MLO.spad" 929575 929606 931093 931156) (|MultivariateLifting| "MLIFT.spad" 928170 928204 929565 929570) (|MakeUnaryCompiledFunction| "MKUCFUNC.spad" 927686 927723 928160 928165) (|MakeRecord| "MKRECORD.spad" 927266 927287 927676 927681) (|MakeFunction| "MKFUNC.spad" 926663 926683 927256 927261) (|MakeFloatCompiledFunction| "MKFLCFN.spad" 925608 925641 926653 926658) (|MakeBinaryCompiledFunction| "MKBCFUNC.spad" 925079 925121 925598 925603) (|ModularHermitianRowReduction| "MHROWRED.spad" 923564 923600 925069 925074) (|MultFiniteFactorize| "MFINFACT.spad" 922951 922986 923554 923559) (|MeshCreationRoutinesForThreeDimensions| "MESH.spad" 920710 920754 922941 922946) (|ModularDistinctDegreeFactorizer| "MDDFACT.spad" 918900 918939 920700 920705) (|MultiDictionary| "MDAGG.spad" 918188 918211 918890 918895) (|MatrixCommonDenominator| "MCDEN.spad" 917377 917410 918178 918183) (|Maybe| "MAYBE.spad" 916674 916688 917367 917372) (|StorageEfficientMatrixOperations| "MATSTOR.spad" 913960 914000 916664 916669) (|Matrix| "MATRIX.spad" 912939 912953 913427 913432) (|MatrixLinearAlgebraFunctions| "MATLIN.spad" 910253 910303 912795 912800) (|MatrixCategoryFunctions2| "MATCAT2.spad" 909513 909583 910243 910248) (|MatrixCategory| "MATCAT.spad" 901219 901253 909503 909508) (|MatrixCategory&| "MATCAT.spad" 892738 892775 901025 901030) (|MappingPackage3| "MAPPKG3.spad" 891640 891667 892728 892733) (|MappingPackage2| "MAPPKG2.spad" 890965 890990 891630 891635) (|MappingPackage1| "MAPPKG1.spad" 889780 889803 890955 890960) (|MappingAst| "MAPPAST.spad" 889111 889127 889770 889775) (|MappingPackageInternalHacks3| "MAPHACK3.spad" 888897 888937 889101 889106) (|MappingPackageInternalHacks2| "MAPHACK2.spad" 888640 888678 888887 888892) (|MappingPackageInternalHacks1| "MAPHACK1.spad" 888258 888294 888630 888635) (|Magma| "MAGMA.spad" 886061 886081 888248 888253) (|MacroAst| "MACROAST.spad" 885650 885664 886051 886056) (|LazyStreamAggregate| "LZSTAGG.spad" 882887 882914 885640 885645) (|LazyStreamAggregate&| "LZSTAGG.spad" 880121 880151 882877 882882) (|LyndonWord| "LWORD.spad" 876858 876883 880111 880116) (|ConstructAst| "LSTAST.spad" 876632 876650 876848 876853) (|LieSquareMatrix| "LSQM.spad" 875186 875213 875593 875656) (|LinearSystemPolynomialPackage| "LSPP.spad" 874694 874738 875176 875181) (|LinearSystemMatrixPackage1| "LSMP1.spad" 872517 872551 874684 874689) (|LinearSystemMatrixPackage| "LSMP.spad" 871355 871402 872507 872512) (|ListAggregate| "LSAGG.spad" 871035 871056 871345 871350) (|ListAggregate&| "LSAGG.spad" 870712 870736 871025 871030) (|LiePolynomial| "LPOLY.spad" 869630 869660 870535 870621) (|LinearPolynomialEquationByFractions| "LPEFRAC.spad" 868868 868911 869620 869625) (|Logic| "LOGIC.spad" 868407 868418 868858 868863) (|Logic&| "LOGIC.spad" 867943 867957 868397 868402) (|LinearOrdinaryDifferentialOperatorsOps| "LODOOPS.spad" 866837 866885 867933 867938) (|LinearOrdinaryDifferentialOperatorFactorizer| "LODOF.spad" 865822 865877 866771 866776) (|LinearOrdinaryDifferentialOperatorCategory| "LODOCAT.spad" 864424 864474 865754 865817) (|LinearOrdinaryDifferentialOperatorCategory&| "LODOCAT.spad" 863044 863097 864377 864382) (|LinearOrdinaryDifferentialOperator2| "LODO2.spad" 862233 862278 862673 862736) (|LinearOrdinaryDifferentialOperator1| "LODO1.spad" 861549 861592 861862 861925) (|LinearOrdinaryDifferentialOperator| "LODO.spad" 860849 860898 861178 861241) (|ElementaryFunctionLODESolver| "LODEEF.spad" 859629 859669 860839 860844) (|Localize| "LO.spad" 858990 859010 859529 859573) (|LinearAggregate| "LNAGG.spad" 855164 855187 858980 858985) (|LinearAggregate&| "LNAGG.spad" 851251 851277 855070 855075) (|ListMonoidOps| "LMOPS.spad" 848008 848036 851241 851246) (|LeftModule| "LMODULE.spad" 847784 847802 847998 848003) (|ListMultiDictionary| "LMDICT.spad" 847126 847153 847391 847396) (|LeftLinearSet| "LLINSET.spad" 846822 846843 847116 847121) (|Literal| "LITERAL.spad" 846723 846739 846812 846817) (|ListFunctions3| "LIST3.spad" 846022 846048 846713 846718) (|ListToMap| "LIST2MAP.spad" 842942 842961 846012 846017) (|ListFunctions2| "LIST2.spad" 841632 841656 842932 842937) (|List| "LIST.spad" 839681 839693 841026 841031) (|LinearSet| "LINSET.spad" 839453 839470 839671 839676) (|LinearForm| "LINFORM.spad" 838891 838911 839404 839448) (|LinearlyExplicitRingOver| "LINEXP.spad" 837612 837644 838881 838886) (|LinearElement| "LINELT.spad" 836947 836970 837470 837514) (|LinearDependence| "LINDEP.spad" 835808 835834 836885 836890) (|LinearBasis| "LINBASIS.spad" 835435 835459 835798 835803) (|RationalFunctionLimitPackage| "LIMITRF.spad" 833356 833392 835425 835430) (|PowerSeriesLimitPackage| "LIMITPS.spad" 832245 832279 833346 833351) (|LieAlgebra| "LIECAT.spad" 831704 831722 832154 832240) (|LieAlgebra&| "LIECAT.spad" 831204 831225 831657 831662) (|AssociatedLieAlgebra| "LIE.spad" 829374 829404 830666 830885) (|Library| "LIB.spad" 828142 828155 828593 828598) (|LinGroebnerPackage| "LGROBP.spad" 825483 825514 828132 828137) (|LiouvillianFunctionCategory| "LFCAT.spad" 824517 824550 825473 825478) (|LiouvillianFunction| "LF.spad" 823459 823488 824507 824512) (|LexTriangularPackage| "LEXTRIPK.spad" 819064 819097 823449 823454) (|LieExponentials| "LEXP.spad" 817063 817103 819037 819059) (|LetAst| "LETAST.spad" 816758 816770 817053 817058) (|LeadingCoefDetermination| "LEADCDET.spad" 815142 815181 816748 816753) (|LazardSetSolvingPackage| "LAZM3PK.spad" 813865 813908 815132 815137) (|LaurentPolynomial| "LAUPOL.spad" 812329 812357 813244 813356) (|LaplaceTransform| "LAPLACE.spad" 811902 811928 812319 812324) (|LeftAlgebra| "LALG.spad" 811662 811681 811875 811897) (|LeftAlgebra&| "LALG.spad" 811436 811458 811652 811657) (|LocalAlgebra| "LA.spad" 810833 810857 811325 811388) (|ConvertibleFrom| "KVTFROM.spad" 810563 810586 810823 810828) (|KleeneTrivalentLogic| "KTVLOGIC.spad" 810089 810115 810553 810558) (|CoercibleFrom| "KRCFROM.spad" 809824 809845 810079 810084) (|Kovacic| "KOVACIC.spad" 808554 808572 809814 809819) (|ConvertibleTo| "KONVERT.spad" 808265 808286 808544 808549) (|CoercibleTo| "KOERCE.spad" 807993 808012 808255 808260) (|KernelFunctions2| "KERNEL2.spad" 807682 807708 807983 807988) (|Kernel| "KERNEL.spad" 806340 806354 807473 807478) (|KeyedDictionary| "KDAGG.spad" 805446 805481 806330 806335) (|KeyedDictionary&| "KDAGG.spad" 804549 804587 805436 805441) (|KeyedAccessFile| "KAFILE.spad" 803474 803503 803722 803727) (|JVMOpcode| "JVMOP.spad" 803380 803395 803464 803469) (|JVMMethodAccess| "JVMMDACC.spad" 802421 802442 803370 803375) (|JVMFieldAccess| "JVMFDACC.spad" 801725 801745 802411 802416) (|JVMConstantTag| "JVMCSTTG.spad" 800442 800462 801715 801720) (|JVMClassFileAccess| "JVMCFACC.spad" 799872 799896 800432 800437) (|JVMBytecode| "JVMBCODE.spad" 799774 799791 799862 799867) (|AssociatedJordanAlgebra| "JORDAN.spad" 797754 797787 799236 799455) (|JoinAst| "JOINAST.spad" 797451 797464 797744 797749) (|IndexedAggregate| "IXAGG.spad" 795570 795608 797441 797446) (|IndexedAggregate&| "IXAGG.spad" 793451 793492 795325 795330) (|InfiniteTuple| "ITUPLE.spad" 792732 792753 793441 793446) (|InnerTrigonometricManipulations| "ITRIGMNP.spad" 791554 791598 792722 792727) (|InfiniteTupleFunctions3| "ITFUN3.spad" 791039 791074 791544 791549) (|InfiniteTupleFunctions2| "ITFUN2.spad" 790762 790795 791029 791034) (|InternalTypeForm| "ITFORM.spad" 790103 790125 790752 790757) (|InnerTaylorSeries| "ITAYLOR.spad" 788009 788039 789894 790052) (|InnerSparseUnivariatePowerSeries| "ISUPS.spad" 780571 780616 787138 787303) (|InnerPolySum| "ISUMP.spad" 780062 780088 780561 780566) (|IsAst| "ISAST.spad" 779778 779789 780052 780057) (|InternalRationalUnivariateRepresentationPackage| "IRURPK.spad" 778450 778514 779768 779773) (|IrrRepSymNatPackage| "IRSN.spad" 776437 776462 778440 778445) (|IntegrationResultRFToFunction| "IRRF2F.spad" 774887 774924 776377 776382) (|IrredPolyOverFiniteField| "IRREDFFX.spad" 774466 774499 774877 774882) (|IntegerRoots| "IROOT.spad" 772795 772815 774456 774461) (|InternalRepresentationForm| "IRFORM.spad" 772095 772127 772785 772790) (|IntegrationResultToFunction| "IR2F.spad" 771288 771325 772085 772090) (|IntegrationResultFunctions2| "IR2.spad" 770295 770332 771278 771283) (|IntegrationResult| "IR.spad" 768069 768094 770126 770170) (|InternalPrintPackage| "IPRNTPK.spad" 767811 767837 768059 768064) (|InnerPrimeField| "IPF.spad" 767252 767277 767505 767670) (|InnerPAdicInteger| "IPADIC.spad" 766963 767004 767135 767247) (|IP4Address| "IP4ADDR.spad" 766512 766528 766953 766958) (|IOMode| "IOMODE.spad" 766030 766042 766502 766507) (|InputOutputBinaryFile| "IOBFILE.spad" 765396 765423 766020 766025) (|InputOutputByteConduit| "IOBCON.spad" 765241 765269 765386 765391) (|InverseLaplaceTransform| "INVLAPLA.spad" 764873 764906 765231 765236) (|TranscendentalIntegration| "INTTR.spad" 758248 758284 764863 764868) (|IntegrationTools| "INTTOOLS.spad" 755987 756013 757816 757821) (|IntegerSolveLinearPolynomialEquation| "INTSLPE.spad" 755281 755323 755977 755982) (|Interval| "INTRVL.spad" 754790 754806 755144 755276) (|RationalFunctionIntegration| "INTRF.spad" 753201 753236 754780 754785) (|IntegerRetractions| "INTRET.spad" 752617 752643 753191 753196) (|RationalIntegration| "INTRAT.spad" 751339 751369 752607 752612) (|PatternMatchIntegration| "INTPM.spad" 749784 749817 751059 751064) (|PureAlgebraicIntegration| "INTPAF.spad" 747602 747638 749673 749678) (|TranscendentalHermiteIntegration| "INTHERTR.spad" 746850 746893 747592 747597) (|AlgebraicHermiteIntegration| "INTHERAL.spad" 746499 746544 746840 746845) (|IntegerNumberTheoryFunctions| "INTHEORY.spad" 742912 742946 746489 746494) (|GenusZeroIntegration| "INTG0.spad" 736622 736654 742801 742806) (|IntegerFactorizationPackage| "INTFACT.spad" 735664 735699 736612 736617) (|ElementaryIntegration| "INTEF.spad" 734060 734091 735654 735659) (|IntegralDomain| "INTDOM.spad" 732628 732648 733943 734055) (|IntegralDomain&| "INTDOM.spad" 731300 731323 732618 732623) (|IntervalCategory| "INTCAT.spad" 729502 729526 731163 731295) (|IntegerBits| "INTBIT.spad" 729000 729017 729492 729497) (|AlgebraicIntegrate| "INTALG.spad" 728176 728215 728990 728995) (|AlgebraicIntegration| "INTAF.spad" 727662 727692 728166 728171) (|InnerTable| "INTABL.spad" 726567 726606 726738 726743) (|Int8| "INT8.spad" 726445 726455 726557 726562) (|Int64| "INT64.spad" 726321 726332 726435 726440) (|Int32| "INT32.spad" 726197 726208 726311 726316) (|Int16| "INT16.spad" 726073 726084 726187 726192) (|Integer| "INT.spad" 725489 725502 725834 726068) (|IntegerNumberSystem| "INS.spad" 722896 722921 725312 725484) (|IntegerNumberSystem&| "INS.spad" 720467 720495 722886 722891) (|InnerPolySign| "INPSIGN.spad" 719926 719950 720457 720462) (|InfiniteProductPrimeField| "INPRODPF.spad" 718999 719041 719916 719921) (|InfiniteProductFiniteField| "INPRODFF.spad" 718063 718111 718989 718994) (|InnerMultFact| "INNMFACT.spad" 717027 717055 718053 718058) (|InnerModularGcd| "INMODGCD.spad" 716518 716561 717017 717022) (|InnerNumericFloatSolvePackage| "INFSP.spad" 714792 714837 716508 716513) (|InfiniteProductCharacteristicZero| "INFPROD0.spad" 713841 713891 714782 714787) (|InputFormFunctions1| "INFORM1.spad" 713449 713476 713831 713836) (|InputForm| "INFORM.spad" 710653 710668 713439 713444) (|Infinity| "INFINITY.spad" 710199 710213 710643 710648) (|InetClientStreamSocket| "INETCLTS.spad" 710156 710184 710189 710194) (|InnerNumericEigenPackage| "INEP.spad" 708684 708724 710146 710151) (|IndexedExponents| "INDE.spad" 708304 708335 708579 708584) (|IncrementingMaps| "INCRMAPS.spad" 707727 707751 708294 708299) (|InputBinaryFile| "INBFILE.spad" 706810 706831 707717 707722) (|InnerNormalBasisFieldFunctions| "INBFF.spad" 702632 702671 706800 706805) (|InputByteConduit| "INBCON.spad" 700884 700906 702622 702627) (|InputByteConduit&| "INBCON.spad" 699133 699158 700874 700879) (|InAst| "INAST.spad" 698791 698802 699123 699128) (|ImportAst| "IMPTAST.spad" 698492 698507 698781 698786) (|InnerMatrixQuotientFieldFunctions| "IMATQF.spad" 697505 697580 698398 698403) (|InnerMatrixLinearAlgebraFunctions| "IMATLIN.spad" 696045 696100 697411 697416) (|InnerFiniteField| "IFF.spad" 695405 695435 695690 695855) (|IfAst| "IFAST.spad" 695016 695027 695395 695400) (|IndexedFlexibleArray| "IFARRAY.spad" 692694 692727 694410 694415) (|InnerFreeAbelianMonoid| "IFAMON.spad" 692518 692555 692632 692637) (|InnerEvalable| "IEVALAB.spad" 691920 691943 692508 692513) (|InnerEvalable&| "IEVALAB.spad" 691319 691345 691910 691915) (|IndexedProductTerm| "indexedp.spad" 690859 690887 691309 691314) (|IndexedDirectProductOrderedAbelianMonoidSup| "IDPOAMS.spad" 690497 690550 690772 690777) (|IndexedDirectProductOrderedAbelianMonoid| "IDPOAM.spad" 690102 690152 690410 690415) (|IndexedDirectProductObject| "IDPO.spad" 689493 689529 690015 690020) (|IndexedDirectProductCategory| "IDPC.spad" 688365 688403 689483 689488) (|IndexedDirectProductAbelianMonoid| "IDPAM.spad" 688002 688045 688278 688283) (|IndexedDirectProductAbelianGroup| "IDPAG.spad" 687642 687684 687915 687920) (|Identifier| "IDENT.spad" 687286 687302 687632 687637) (|IdempotentOperatorCategory| "catdef.spad" 687037 687072 687173 687281) (|IdealDecompositionPackage| "IDECOMP.spad" 684253 684294 687027 687032) (|PolynomialIdeals| "IDEAL.spad" 679191 679240 684187 684192) (|InnerCommonDenominator| "ICDEN.spad" 678384 678420 679181 679186) (|IndexCard| "ICARD.spad" 677770 677785 678374 678379) (|IntegralBasisPolynomialTools| "IBPTOOLS.spad" 676351 676394 677760 677765) (|IndexedBits| "boolean.spad" 675699 675721 675841 675846) (|IntegralBasisTools| "IBATOOL.spad" 672672 672703 675689 675694) (|ChineseRemainderToolsForIntegralBases| "IBACHIN.spad" 671144 671194 672662 672667) (|InnerTwoDimensionalArray| "array2.spad" 670681 670725 670890 670895) (|IndexedOneDimensionalArray| "IARRAY1.spad" 669905 669944 670075 670080) (|InnerAlgebraicNumber| "IAN.spad" 668179 668205 669646 669811) (|InnerAlgFactor| "IALGFACT.spad" 667782 667823 668169 668174) (|HyperbolicFunctionCategory| "HYPCAT.spad" 667182 667214 667772 667777) (|HyperbolicFunctionCategory&| "HYPCAT.spad" 666579 666614 667172 667177) (|Hostname| "HOSTNAME.spad" 666389 666403 666569 666574) (|HomotopicTo| "HOMOTOP.spad" 666123 666142 666379 666384) (|HomogeneousAggregate| "HOAGG.spad" 665805 665833 666113 666118) (|HomogeneousAggregate&| "HOAGG.spad" 665269 665300 665580 665585) (|HexadecimalExpansion| "HEXADEC.spad" 663339 663365 663722 663887) (|HeuGcd| "HEUGCD.spad" 662426 662441 663329 663334) (|HyperellipticFiniteDivisor| "HELLFDIV.spad" 662012 662056 662416 662421) (|Heap| "HEAP.spad" 661541 661553 661758 661763) (|HeadAst| "HEADAST.spad" 661077 661090 661531 661536) (|HomogeneousDirectProduct| "HDP.spad" 657777 657815 658176 658307) (|HomogeneousDistributedMultivariatePolynomial| "HDMP.spad" 655579 655636 656237 656471) (|HallBasis| "HB.spad" 653847 653862 655569 655574) (|HashTable| "HASHTBL.spad" 652705 652743 652923 652928) (|HasAst| "HASAST.spad" 652417 652429 652695 652700) (|Pi| "HACKPI.spad" 651836 651844 652247 652412) (|GeneralTriangularSet| "GTSET.spad" 650643 650677 651368 651373) (|GeneralSparseTable| "GSTBL.spad" 649529 649580 649719 649724) (|GeneralUnivariatePowerSeries| "GSERIES.spad" 647257 647310 648102 648357) (|Group| "GROUP.spad" 646520 646531 647230 647252) (|Group&| "GROUP.spad" 645797 645811 646510 646515) (|GroebnerSolve| "GROEBSOL.spad" 644284 644312 645787 645792) (|GradedModule| "GRMOD.spad" 642855 642877 644274 644279) (|GradedModule&| "GRMOD.spad" 641423 641448 642845 642850) (|GraphImage| "GRIMAGE.spad" 634328 634344 641413 641418) (|GraphicsDefaults| "GRDEF.spad" 632693 632715 634318 634323) (|GrayCode| "GRAY.spad" 631158 631172 632683 632688) (|GradedAlgebra| "GRALG.spad" 630242 630265 631148 631153) (|GradedAlgebra&| "GRALG.spad" 629323 629349 630232 630237) (|GeneralPolynomialSet| "GPOLSET.spad" 628665 628706 628895 628900) (|GosperSummationMethod| "GOSPER.spad" 627923 627960 628655 628660) (|GeneralModulePolynomial| "GMODPOL.spad" 627033 627081 627874 627918) (|GeneralHenselPackage| "GHENSEL.spad" 626098 626130 627023 627028) (|GenerateUnivariatePowerSeries| "GENUPS.spad" 622364 622404 626088 626093) (|GenUFactorize| "GENUFACT.spad" 621930 621951 622354 622359) (|GeneralPolynomialGcdPackage| "GENPGCD.spad" 621507 621549 621920 621925) (|GeneralizedMultivariateFactorize| "GENMFACT.spad" 620929 620978 621497 621502) (|GenExEuclid| "GENEEZ.spad" 618879 618901 620919 620924) (|GeneralDistributedMultivariatePolynomial| "GDMP.spad" 616527 616582 617339 617573) (|GenericNonAssociativeAlgebra| "GCNAALG.spad" 610365 610418 616262 616379) (|GcdDomain| "GCDDOM.spad" 609507 609522 610248 610360) (|GcdDomain&| "GCDDOM.spad" 608753 608771 609497 609502) (|GroebnerInternalPackage| "GBINTERN.spad" 604752 604811 608743 608748) (|GroebnerFactorizationPackage| "GBF.spad" 600509 600573 604742 604747) (|EuclideanGroebnerBasisPackage| "GBEUCLID.spad" 598364 598429 600499 600504) (|GroebnerPackage| "GB.spad" 595874 595925 598317 598322) (|GaussianFactorizationPackage| "GAUSSFAC.spad" 595161 595195 595864 595869) (|GaloisGroupUtilities| "GALUTIL.spad" 593452 593480 595100 595105) (|GaloisGroupPolynomialUtilities| "GALPOLYU.spad" 591878 591919 593442 593447) (|GaloisGroupFactorizationUtilities| "GALFACTU.spad" 590064 590110 591868 591873) (|GaloisGroupFactorizer| "GALFACT.spad" 580258 580288 590054 590059) (|FunctionDescriptor| "FUNDESC.spad" 579920 579944 580248 580253) (|Functorial| "catdef.spad" 579523 579541 579910 579915) (|FunctionCalled| "FUNCTION.spad" 579360 579384 579513 579518) (|FortranType| "FT.spad" 577651 577668 579350 579355) (|FunctionSpaceUnivariatePolynomialFactor| "FSUPFACT.spad" 576507 576559 577576 577581) (|FortranScalarType| "FST.spad" 574578 574601 576497 576502) (|FunctionSpaceReduce| "FSRED.spad" 574045 574074 574568 574573) (|FunctionSpacePrimitiveElement| "FSPRMELT.spad" 572865 572904 573979 573984) (|FunctionalSpecialFunction| "FSPECF.spad" 570937 570972 572855 572860) (|FunctionSpaceIntegration| "FSINT.spad" 570579 570613 570927 570932) (|FourierSeries| "FSERIES.spad" 569721 569744 570361 570499) (|FunctionSpaceComplexIntegration| "FSCINT.spad" 569013 569054 569711 569716) (|FiniteSetAggregateFunctions2| "FSAGG2.spad" 567722 567764 569003 569008) (|FiniteSetAggregate| "FSAGG.spad" 566831 566857 567686 567717) (|FiniteSetAggregate&| "FSAGG.spad" 565881 565910 566739 566744) (|FunctionSpaceToUnivariatePowerSeries| "FS2UPS.spad" 560362 560430 565871 565876) (|FunctionSpaceToExponentialExpansion| "FS2EXPXP.spad" 559470 559526 560352 560357) (|FunctionSpaceFunctions2| "FS2.spad" 559104 559141 559460 559465) (|FunctionSpace| "FS.spad" 553253 553274 558771 559099) (|FunctionSpace&| "FS.spad" 547184 547208 552705 552710) (|FactoredFunctionUtilities| "FRUTIL.spad" 546115 546148 547174 547179) (|FramedNonAssociativeAlgebra| "FRNAALG.spad" 541331 541366 546021 546110) (|FramedNonAssociativeAlgebra&| "FRNAALG.spad" 536591 536629 541284 541289) (|FramedNonAssociativeAlgebraFunctions2| "FRNAAF2.spad" 536004 536057 536581 536586) (|FramedModule| "FRMOD.spad" 535395 535431 535922 535927) (|FractionalIdealFunctions2| "FRIDEAL2.spad" 534976 535031 535385 535390) (|FractionalIdeal| "FRIDEAL.spad" 534185 534215 534949 534971) (|FullyRetractableTo| "FRETRCT.spad" 533688 533714 534175 534180) (|FullyRetractableTo&| "FRETRCT.spad" 533064 533093 533554 533559) (|FramedAlgebra| "FRAMALG.spad" 531409 531433 532996 533059) (|FramedAlgebra&| "FRAMALG.spad" 529809 529836 531399 531404) (|FractionFunctions2| "FRAC2.spad" 529398 529426 529799 529804) (|Fraction| "FRAC.spad" 527110 527126 527503 527797) (|FactoredFunctions2| "FR2.spad" 526430 526458 527100 527105) (|Factored| "FR.spad" 520369 520385 525332 525444) (|FloatingPointSystem| "FPS.spad" 517111 517136 520179 520364) (|FloatingPointSystem&| "FPS.spad" 513931 513959 517002 517007) (|FieldOfPrimeCharacteristic| "FPC.spad" 512881 512913 513761 513926) (|FieldOfPrimeCharacteristic&| "FPC.spad" 511988 512023 512871 512876) (|FullyPatternMatchable| "FPATMAB.spad" 511731 511760 511978 511983) (|FullPartialFractionExpansion| "FPARFRAC.spad" 510551 510590 511721 511726) (|FindOrderFinite| "FORDER.spad" 510233 510266 510541 510546) (|FreeNilpotentLie| "FNLA.spad" 509626 509662 510184 510228) (|FileNameCategory| "FNCAT.spad" 508207 508229 509616 509621) (|FileName| "FNAME.spad" 508093 508107 508197 508202) (|FreeMonoid| "FMONOID.spad" 507758 507776 508041 508046) (|FreeMonoidCategory| "FMONCAT.spad" 504911 504937 507748 507753) (|FreeModuleCat| "FMCAT.spad" 502719 502748 504862 504906) (|FreeModule1| "FM1.spad" 502045 502066 502623 502667) (|FreeModule| "FM.spad" 501623 501643 501870 501914) (|FloatingRealPackage| "FLOATRP.spad" 499349 499380 501613 501618) (|FloatingComplexPackage| "FLOATCP.spad" 496768 496802 499339 499344) (|Float| "FLOAT.spad" 493747 493758 496525 496763) (|FullyLinearlyExplicitRingOver| "FLINEXP.spad" 493442 493479 493737 493742) (|FullyLinearlyExplicitRingOver&| "FLINEXP.spad" 493066 493106 493364 493369) (|FiniteLinearAggregateSort| "FLASORT.spad" 492369 492404 493056 493061) (|FreeLieAlgebra| "FLALG.spad" 490010 490041 492278 492364) (|FiniteLinearAggregateFunctions2| "FLAGG2.spad" 488698 488743 490000 490005) (|FiniteLinearAggregate| "FLAGG.spad" 485755 485784 488688 488693) (|FiniteLinearAggregate&| "FLAGG.spad" 482638 482670 485574 485579) (|FiniteRankAlgebra| "FINRALG.spad" 480684 480712 482570 482633) (|FiniteRankAlgebra&| "FINRALG.spad" 478641 478672 480530 480535) (|Finite| "FINITE.spad" 477789 477801 478631 478636) (|Finite&| "FINITE.spad" 476934 476949 477779 477784) (|FiniteAggregate| "aggcat.spad" 473646 473669 476924 476929) (|FiniteAggregate&| "FINAGG.spad" 470314 470340 473595 473600) (|FiniteRankNonAssociativeAlgebra| "FINAALG.spad" 459434 459473 470220 470309) (|FiniteRankNonAssociativeAlgebra&| "FINAALG.spad" 448589 448631 459378 459383) (|FileCategory| "FILECAT.spad" 447113 447140 448579 448584) (|File| "FILE.spad" 446694 446706 447103 447108) (|Field| "FIELD.spad" 446025 446036 446524 446689) (|Field&| "FIELD.spad" 445513 445527 446015 446020) (|FreeGroup| "FGROUP.spad" 444162 444179 445486 445508) (|FGLMIfCanPackage| "FGLMICPK.spad" 442943 442972 444152 444157) (|FiniteFieldExtension| "FFX.spad" 442258 442291 442609 442774) (|FiniteFieldSolveLinearPolynomialEquation| "FFSLPE.spad" 441735 441790 442248 442253) (|FiniteFieldPolynomialPackage2| "FFPOLY2.spad" 440772 440812 441725 441730) (|FiniteFieldPolynomialPackage| "FFPOLY.spad" 432088 432125 440762 440767) (|FiniteFieldExtensionByPolynomial| "FFP.spad" 431413 431463 431754 431919) (|FiniteFieldNormalBasisExtension| "FFNBX.spad" 429854 429903 431079 431244) (|FiniteFieldNormalBasisExtensionByPolynomial| "FFNBP.spad" 428284 428342 429520 429685) (|FiniteFieldNormalBasis| "FFNB.spad" 426698 426739 427934 428099) (|FunctionFieldIntegralBasis| "FFINTBAS.spad" 424192 424231 426688 426693) (|FiniteFieldCategory| "FFIELDC.spad" 421688 421713 424022 424187) (|FiniteFieldCategory&| "FFIELDC.spad" 419341 419369 421678 421683) (|FiniteFieldHomomorphisms| "FFHOM.spad" 418091 418130 419331 419336) (|FiniteFieldFunctions| "FFF.spad" 415516 415545 418081 418086) (|FiniteFieldCyclicGroupExtension| "FFCGX.spad" 414292 414341 415182 415347) (|FiniteFieldCyclicGroupExtensionByPolynomial| "FFCGP.spad" 413098 413159 413958 414123) (|FiniteFieldCyclicGroup| "FFCG.spad" 411839 411880 412748 412913) (|FunctionFieldCategoryFunctions2| "FFCAT2.spad" 411557 411626 411829 411834) (|FunctionFieldCategory| "FFCAT.spad" 404609 404646 411298 411552) (|FunctionFieldCategory&| "FFCAT.spad" 397830 397870 404522 404527) (|FiniteField| "FF.spad" 397238 397263 397480 397645) (|FullyEvalableOver| "FEVALAB.spad" 397060 397085 397228 397233) (|FullyEvalableOver&| "FEVALAB.spad" 396674 396702 396845 396850) (|FiniteDivisorCategory| "FDIVCAT.spad" 394755 394794 396664 396669) (|FiniteDivisorCategory&| "FDIVCAT.spad" 392833 392875 394745 394750) (|FiniteDivisorFunctions2| "FDIV2.spad" 392468 392529 392823 392828) (|FiniteDivisor| "FDIV.spad" 391919 391950 392458 392463) (|FunctorData| "FCTRDATA.spad" 390918 390935 391909 391914) (|FourierComponent| "FCOMP.spad" 390283 390307 390908 390913) (|FiniteAlgebraicExtensionField| "FAXF.spad" 383223 383260 390113 390278) (|FiniteAlgebraicExtensionField&| "FAXF.spad" 376282 376322 383175 383180) (|FlexibleArray| "FARRAY.spad" 374632 374653 375676 375681) (|FiniteAbelianMonoidRing| "FAMR.spad" 372687 372720 374462 374627) (|FiniteAbelianMonoidRing&| "FAMR.spad" 370761 370797 372539 372544) (|FreeAbelianMonoid| "FAMONOID.spad" 370396 370421 370681 370686) (|FreeAbelianMonoidCategory| "FAMONC.spad" 368693 368728 370386 370391) (|FreeAbelianGroup| "FAGROUP.spad" 368271 368295 368541 368585) (|FactoringUtilities| "FACUTIL.spad" 366467 366500 368261 368266) (|FactoredFunctions| "FACTFUNC.spad" 365654 365679 366457 366462) (|ExponentialOfUnivariatePuiseuxSeries| "EXPUPXS.spad" 362894 362951 364227 364482) (|ExpressionTubePlot| "EXPRTUBE.spad" 360166 360190 362884 362889) (|ExpressionSpaceODESolver| "EXPRODE.spad" 357316 357350 360156 360161) (|ExpressionToUnivariatePowerSeries| "EXPR2UPS.spad" 353407 353451 357306 357311) (|ExpressionFunctions2| "EXPR2.spad" 353094 353124 353397 353402) (|Expression| "EXPR.spad" 350554 350572 351276 351649) (|ExponentialExpansion| "EXPEXPAN.spad" 348101 348144 348751 348916) (|ExitAst| "EXITAST.spad" 347832 347845 348091 348096) (|Exit| "EXIT.spad" 347501 347511 347822 347827) (|EvaluateCycleIndicators| "EVALCYC.spad" 346944 346975 347491 347496) (|Evalable| "EVALAB.spad" 346518 346534 346934 346939) (|Evalable&| "EVALAB.spad" 346089 346108 346508 346513) (|EuclideanDomain| "EUCDOM.spad" 343623 343644 345972 346084) (|EuclideanDomain&| "EUCDOM.spad" 341261 341285 343613 343618) (|ExpressionSpaceFunctions2| "ES2.spad" 340755 340790 341251 341256) (|ExpressionSpaceFunctions1| "ES1.spad" 340306 340341 340745 340750) (|ExpressionSpace| "ES.spad" 333164 333185 340296 340301) (|ExpressionSpace&| "ES.spad" 325924 325948 333059 333064) (|ErrorFunctions| "ERROR.spad" 323239 323259 325914 325919) (|EqTable| "EQTBL.spad" 322101 322128 322315 322320) (|EquationFunctions2| "EQ2.spad" 321803 321831 322091 322096) (|Equation| "EQ.spad" 318021 318037 320685 320826) (|EigenPackage| "EP.spad" 314337 314357 318011 318016) (|Environment| "ENV.spad" 313006 313023 314327 314332) (|EntireRing| "ENTIRER.spad" 312631 312647 312915 313001) (|EntireRing&| "ENTIRER.spad" 312334 312353 312621 312626) (|EuclideanModularRing| "EMR.spad" 311553 311620 312217 312329) (|EltableAggregate| "ELTAGG.spad" 309793 309826 311543 311548) (|EltableAggregate&| "ELTAGG.spad" 307946 307982 309699 309704) (|Eltable| "ELTAB.spad" 307416 307434 307936 307941) (|EllipticFunctionsUnivariateTaylorSeries| "ELFUTS.spad" 306814 306870 307406 307411) (|ElementaryFunctionCategory| "ELEMFUN.spad" 306479 306511 306804 306809) (|ElementaryFunctionCategory&| "ELEMFUN.spad" 306141 306176 306469 306474) (|ExtensibleLinearAggregate| "ELAGG.spad" 304099 304132 306131 306136) (|ExtensibleLinearAggregate&| "ELAGG.spad" 301969 302005 304004 304009) (|Elaboration| "ELABOR.spad" 301306 301323 301959 301964) (|ElaboratedExpression| "ELABEXPR.spad" 300220 300246 301296 301301) (|ElementaryFunctionsUnivariatePuiseuxSeries| "EFUPXS.spad" 296953 297023 300173 300178) (|ElementaryFunctionsUnivariateLaurentSeries| "EFULS.spad" 293746 293809 296906 296911) (|ElementaryFunctionStructurePackage| "EFSTRUC.spad" 291733 291777 293736 293741) (|ElementaryFunction| "EF.spad" 286497 286525 291723 291728) (|ExtAlgBasis| "EAB.spad" 284788 284805 286487 286492) (|DifferentialVariableCategory| "DVARCAT.spad" 281768 281804 284778 284783) (|DifferentialVariableCategory&| "DVARCAT.spad" 278745 278784 281758 281763) (|DifferentialSparseMultivariatePolynomial| "DSMP.spad" 276651 276703 276994 277228) (|DifferentialSpaceExtension| "DSEXT.spad" 275929 275963 276641 276646) (|DifferentialSpaceExtension&| "DSEXT.spad" 275086 275123 275801 275806) (|DrawOptionFunctions1| "DROPT1.spad" 274733 274761 275076 275081) (|DrawOptionFunctions0| "DROPT0.spad" 269580 269606 274723 274728) (|DrawOption| "DROPT.spad" 263531 263547 269570 269575) (|TopLevelDrawFunctionsForPoints| "DRAWPT.spad" 261676 261712 263521 263526) (|DrawNumericHack| "DRAWHACK.spad" 260971 260994 261666 261671) (|DrawComplex| "DRAWCX.spad" 258440 258457 260961 260966) (|TopLevelDrawFunctionsForAlgebraicCurves| "DRAWCURV.spad" 257950 258002 258430 258435) (|TopLevelDrawFunctionsForCompiledFunctions| "DRAWCFUN.spad" 247443 247490 257940 257945) (|TopLevelDrawFunctions| "DRAW.spad" 240300 240332 247433 247438) (|DequeueAggregate| "DQAGG.spad" 238486 238510 240290 240295) (|DifferentialPolynomialCategory| "DPOLCAT.spad" 233708 233752 238247 238481) (|DifferentialPolynomialCategory&| "DPOLCAT.spad" 229108 229155 233650 233655) (|DirectProductModule| "DPMO.spad" 226345 226378 226500 226765) (|DirectProductMatrixModule| "DPMM.spad" 223589 223630 223737 224002) (|DomainTemplate| "DOMTMPLT.spad" 223348 223368 223579 223584) (|DomainConstructor| "DOMCTOR.spad" 223088 223111 223338 223343) (|Domain| "DOMAIN.spad" 222195 222207 223078 223083) (|DistributedMultivariatePolynomial| "DMP.spad" 220054 220100 220655 220889) (|DifferentialModuleExtension| "DMEXT.spad" 219879 219914 220005 220049) (|DiscreteLogarithmPackage| "DLP.spad" 219217 219249 219869 219874) (|DataList| "DLIST.spad" 218001 218017 218611 218616) (|DoublyLinkedAggregate| "DLAGG.spad" 216399 216428 217991 217996) (|DivisionRing| "DIVRING.spad" 215896 215914 216308 216394) (|DivisionRing&| "DIVRING.spad" 215471 215492 215886 215891) (|DisplayPackage| "DISPLAY.spad" 213649 213669 215461 215466) (|DirectProductFunctions2| "DIRPROD2.spad" 212446 212485 213639 213644) (|DirectProduct| "DIRPROD.spad" 208894 208921 209545 209676) (|DirectProductCategory| "DIRPCAT.spad" 208124 208159 208758 208889) (|DirectProductCategory&| "DIRPCAT.spad" 206882 206920 207519 207524) (|DiophantineSolutionPackage| "DIOSP.spad" 205683 205715 206872 206877) (|DictionaryOperations| "DIOPS.spad" 204671 204699 205673 205678) (|DictionaryOperations&| "DIOPS.spad" 203582 203613 204587 204592) (|Dioid| "catdef.spad" 203437 203448 203572 203577) (|DifferentialRing| "DIFRING.spad" 203254 203276 203410 203432) (|DifferentialSpace| "DIFFSPC.spad" 202818 202841 203244 203249) (|DifferentialSpace&| "DIFFSPC.spad" 202379 202405 202808 202813) (|DifferentialModule| "DIFFMOD.spad" 201835 201861 202330 202374) (|DifferentialDomain| "DIFFDOM.spad" 200984 201011 201825 201830) (|DifferentialDomain&| "DIFFDOM.spad" 200130 200160 200974 200979) (|DifferentialExtension| "DIFEXT.spad" 199923 199952 200103 200125) (|Dictionary| "DIAGG.spad" 199555 199573 199913 199918) (|Dictionary&| "DIAGG.spad" 199184 199205 199545 199550) (|DenavitHartenbergMatrix| "DHMATRIX.spad" 197578 197609 198744 198749) (|DoubleFloatSpecialFunctions| "DFSFUN.spad" 191193 191226 197568 197573) (|DoubleFloat| "DFLOAT.spad" 187711 187728 191003 191188) (|DefiniteIntegrationTools| "DFINTTLS.spad" 185924 185958 187701 187706) (|DeRhamComplex| "DERHAM.spad" 183993 184036 185897 185919) (|Dequeue| "DEQUEUE.spad" 183451 183466 183739 183744) (|DegreeReductionPackage| "DEGRED.spad" 183048 183082 183441 183446) (|RationalFunctionDefiniteIntegration| "DEFINTRF.spad" 180597 180640 183038 183043) (|ElementaryFunctionDefiniteIntegration| "DEFINTEF.spad" 179104 179151 180587 180592) (|DefinitionAst| "DEFAST.spad" 178477 178496 179094 179099) (|DecimalExpansion| "DECIMAL.spad" 176555 176577 176930 177095) (|DistinctDegreeFactorize| "DDFACT.spad" 174359 174393 176545 176550) (|DoubleResultantPackage| "DBLRESP.spad" 173943 173983 174349 174354) (|DualBasis| "DBASIS.spad" 173562 173584 173933 173938) (|Database| "DBASE.spad" 172220 172236 173552 173557) (|DataArray| "DATAARY.spad" 171699 171719 172210 172215) (|CyclotomicPolynomialPackage| "CYCLOTOM.spad" 171180 171213 171689 171694) (|CycleIndicators| "CYCLES.spad" 167950 167971 171170 171175) (|CoerceVectorMatrixPackage| "CVMP.spad" 167344 167377 167940 167945) (|ComplexTrigonometricManipulations| "CTRIGMNP.spad" 165817 165860 167334 167339) (|ConstructorKind| "CTORKIND.spad" 165407 165428 165807 165812) (|ConstructorCategory| "CTORCAT.spad" 164631 164656 165397 165402) (|ConstructorCategory&| "CTORCAT.spad" 163852 163880 164621 164626) (|ConstructorCall| "CTORCALL.spad" 163428 163451 163842 163847) (|Constructor| "CTOR.spad" 163110 163127 163418 163423) (|CyclicStreamTools| "CSTTOOLS.spad" 162340 162368 163100 163105) (|ComplexRootFindingPackage| "CRFP.spad" 156089 156125 162330 162335) (|CoerceAst| "CRCEAST.spad" 155802 155817 156079 156084) (|CRApackage| "CRAPACK.spad" 154861 154879 155792 155797) (|ComplexPatternMatch| "CPMATCH.spad" 154323 154355 154761 154766) (|CharacteristicPolynomialInMonogenicalAlgebra| "CPIMA.spad" 153986 154047 154313 154318) (|CoordinateSystems| "COORDSYS.spad" 148980 149005 153976 153981) (|Contour| "CONTOUR.spad" 148402 148415 148970 148975) (|ContinuedFraction| "CONTFRAC.spad" 144065 144090 148232 148397) (|Conduit| "CONDUIT.spad" 143818 143831 144055 144060) (|CommutativeRing| "COMRING.spad" 143447 143468 143724 143813) (|SubSpaceComponentProperty| "COMPPROP.spad" 142942 142973 143437 143442) (|ComplexPattern| "COMPLPAT.spad" 142697 142724 142932 142937) (|ComplexFunctions2| "COMPLEX2.spad" 142397 142424 142687 142692) (|Complex| "COMPLEX.spad" 139504 139519 139753 140232) (|CompilerPackage| "COMPILER.spad" 139040 139061 139494 139499) (|ComplexFactorization| "COMPFACT.spad" 138624 138656 139030 139035) (|ComplexCategory| "COMPCAT.spad" 136465 136488 138140 138619) (|ComplexCategory&| "COMPCAT.spad" 134042 134068 135720 135725) (|CommutativeOperatorCategory| "catdef.spad" 133764 133800 133902 134037) (|CommutativeOperation| "/home/gdr/build/1.5.x/x86_64-unknown-linux-gnu/src/algebra/catdef.spad" 133336 133365 133624 133759) (|CommuteUnivariatePolynomialCategory| "COMMUPC.spad" 133051 133102 133326 133331) (|CommonOperators| "COMMONOP.spad" 132571 132592 133041 133046) (|CommaAst| "COMMAAST.spad" 132328 132342 132561 132566) (|Commutator| "COMM.spad" 132131 132147 132318 132323) (|CombinatorialOpsCategory| "COMBOPC.spad" 131032 131062 132121 132126) (|IntegerCombinatoricFunctions| "COMBINAT.spad" 129773 129809 131022 131027) (|CombinatorialFunction| "COMBF.spad" 127180 127211 129763 129768) (|Color| "COLOR.spad" 126014 126025 127170 127175) (|ColonAst| "COLONAST.spad" 125674 125688 126004 126009) (|ComplexRootPackage| "CMPLXRT.spad" 125369 125402 125664 125669) (|CollectAst| "CLLCTAST.spad" 125023 125039 125359 125364) (|TwoDimensionalPlotClipping| "CLIP.spad" 121107 121139 125013 125018) (|CliffordAlgebra| "CLIF.spad" 119725 119754 121039 121102) (|Collection| "CLAGG.spad" 117923 117941 119715 119720) (|Collection&| "CLAGG.spad" 115940 115961 117735 117740) (|ComplexIntegerSolveLinearPolynomialEquation| "CINTSLPE.spad" 115254 115308 115930 115935) (|ChangeOfVariable| "CHVAR.spad" 113382 113414 115244 115249) (|CharacteristicZero| "CHARZ.spad" 113274 113298 113355 113377) (|CharacteristicPolynomialPackage| "CHARPOL.spad" 112771 112810 113264 113269) (|CharacteristicNonZero| "CHARNZ.spad" 112507 112534 112744 112766) (|Character| "CHAR.spad" 109868 109883 112497 112502) (|CombinatorialFunctionCategory| "CFCAT.spad" 109169 109204 109858 109863) (|CommonDenominator| "CDEN.spad" 108374 108403 109159 109164) (|CharacterClass| "CCLASS.spad" 106606 106626 107880 107911) (|Category| "CATEGORY.spad" 105674 105688 106596 106601) (|CategoryConstructor| "CATCTOR.spad" 105548 105573 105664 105669) (|CategoryAst| "CATAST.spad" 105165 105182 105538 105543) (|CaseAst| "CASEAST.spad" 104874 104887 105155 105160) (|CartesianTensorFunctions2| "CARTEN2.spad" 104241 104291 104864 104869) (|CartesianTensor| "CARTEN.spad" 99980 100017 104231 104236) (|CardinalNumber| "CARD.spad" 97255 97275 99946 99975) (|CapsuleAst| "CAPSLAST.spad" 97029 97045 97245 97250) (|CachableSet| "CACHSET.spad" 96644 96661 97019 97024) (|CancellationAbelianMonoid| "CABMON.spad" 96176 96207 96634 96639) (|ByteOrder| "BYTEORD.spad" 95844 95859 96166 96171) (|ByteBuffer| "BYTEBUF.spad" 94064 94080 95278 95283) (|Byte| "BYTE.spad" 93537 93547 94054 94059) (|BinaryTree| "BTREE.spad" 92670 92688 93212 93217) (|BinaryTournament| "BTOURN.spad" 91729 91753 92345 92350) (|BinaryTreeCategory| "BTCAT.spad" 91292 91318 91719 91724) (|BinaryTreeCategory&| "BTCAT.spad" 90852 90881 91282 91287) (|BitAggregate| "BTAGG.spad" 90330 90348 90842 90847) (|BitAggregate&| "BTAGG.spad" 89805 89826 90320 90325) (|BinarySearchTree| "BSTREE.spad" 88600 88624 89480 89485) (|BrillhartTests| "BRILL.spad" 86793 86816 88590 88595) (|BinaryRecursiveAggregate| "BRAGG.spad" 85727 85759 86783 86788) (|BinaryRecursiveAggregate&| "BRAGG.spad" 84574 84609 85633 85638) (|BalancedPAdicRational| "BPADICRT.spad" 82635 82666 82901 83066) (|BalancedPAdicInteger| "BPADIC.spad" 82246 82276 82518 82630) (|BoundIntegerRoots| "BOUNDZRO.spad" 81891 81919 82236 82241) (|BasicOperatorFunctions1| "BOP1.spad" 79328 79359 81881 81886) (|BasicOperator| "BOP.spad" 74459 74478 79318 79323) (|Boolean| "BOOLEAN.spad" 74002 74015 74449 74454) (|BooleanLogic| "BOOLE.spad" 73642 73660 73992 73997) (|BooleanLogic&| "BOOLE.spad" 73279 73300 73632 73637) (|BiModule| "BMODULE.spad" 72968 72986 73230 73274) (|Bits| "BITS.spad" 72241 72251 72458 72463) (|BinaryOperatorCategory| "catdef.spad" 72103 72134 72231 72236) (|BinaryOperation| "catdef.spad" 71840 71864 72093 72098) (|Binding| "BINDING.spad" 71256 71269 71830 71835) (|BinaryExpansion| "BINARY.spad" 69340 69361 69709 69874) (|BagAggregate| "BGAGG.spad" 68659 68679 69330 69335) (|BagAggregate&| "BGAGG.spad" 67975 67998 68649 68654) (|BezoutMatrix| "BEZOUT.spad" 67097 67134 67917 67922) (|BalancedBinaryTree| "BBTREE.spad" 64026 64052 66772 66777) (|BasicType| "BASTYPE.spad" 63518 63533 64016 64021) (|BasicType&| "BASTYPE.spad" 63007 63025 63508 63513) (|BalancedFactorisation| "BALFACT.spad" 62447 62479 62997 63002) (|Automorphism| "AUTOMOR.spad" 61880 61900 62420 62442) (|AttributeRegistry| "ATTREG.spad" 58842 58865 61502 61875) (|AttributeAst| "ATTRAST.spad" 58548 58566 58832 58837) (|ArcTrigonometricFunctionCategory| "ATRIG.spad" 57987 58025 58538 58543) (|ArcTrigonometricFunctionCategory&| "ATRIG.spad" 57423 57464 57977 57982) (|AbstractSyntaxCategory| "ASTCAT.spad" 57306 57334 57413 57418) (|AbstractSyntaxCategory&| "ASTCAT.spad" 57186 57217 57296 57301) (|ArrayStack| "ASTACK.spad" 56655 56673 56932 56937) (|AssociatedEquations| "ASSOCEQ.spad" 55468 55497 56608 56613) (|TwoDimensionalArray| "ARRAY2.spad" 55047 55074 55214 55219) (|OneDimensionalArrayFunctions2| "ARRAY12.spad" 53732 53771 55037 55042) (|OneDimensionalArray| "ARRAY1.spad" 52762 52789 53126 53131) (|TwoDimensionalArrayCategory| "ARR2CAT.spad" 49045 49092 52752 52757) (|TwoDimensionalArrayCategory&| "ARR2CAT.spad" 45325 45375 49035 49040) (|Arity| "ARITY.spad" 44693 44704 45315 45320) (|ApplyRules| "APPRULE.spad" 43972 43999 44683 44688) (|ApplyUnivariateSkewPolynomial| "APPLYORE.spad" 43563 43604 43962 43967) (|AnyFunctions1| "ANY1.spad" 42622 42643 43553 43558) (|Any| "ANY.spad" 41471 41480 42612 42617) (|AntiSymm| "ANTISYM.spad" 40030 40053 41444 41466) (|AnonymousFunction| "ANON.spad" 39723 39746 40020 40025) (|AlgebraicNumber| "AN.spad" 38087 38108 39464 39629) (|AbelianMonoidRing| "AMR.spad" 36333 36360 37917 38082) (|AbelianMonoidRing&| "AMR.spad" 34429 34459 36016 36021) (|AssociationList| "ALIST.spad" 32953 32988 33317 33322) (|AlgebraGivenByStructuralConstants| "ALGSC.spad" 32005 32063 32774 32863) (|AlgebraPackage| "ALGPKG.spad" 27762 27786 31948 31953) (|AlgebraicMultFact| "ALGMFACT.spad" 26939 26969 27752 27757) (|AlgebraicManipulations| "ALGMANIP.spad" 24389 24421 26749 26754) (|AlgebraicFunctionField| "ALGFF.spad" 23032 23080 23270 23499) (|AlgFactor| "ALGFACT.spad" 22143 22161 23022 23027) (|Algebra| "ALGEBRA.spad" 21946 21961 22075 22138) (|Algebra&| "ALGEBRA.spad" 21804 21822 21936 21941) (|AssociationListAggregate| "ALAGG.spad" 21319 21363 21794 21799) (|ArcHyperbolicFunctionCategory| "AHYP.spad" 20672 20707 21309 21314) (|Aggregate| "AGG.spad" 19571 19586 20662 20667) (|Aggregate&| "AGG.spad" 18467 18485 19561 19566) (|AlgebraicFunction| "AF.spad" 16884 16911 18400 18405) (|AddAst| "ADDAST.spad" 16565 16577 16874 16879) (|PlaneAlgebraicCurvePlot| "ACPLOT.spad" 15420 15449 16555 16560) (|AlgebraicallyClosedFunctionSpace| "ACFS.spad" 13174 13214 15250 15415) (|AlgebraicallyClosedFunctionSpace&| "ACFS.spad" 11085 11128 13164 13169) (|AlgebraicallyClosedField| "ACF.spad" 7744 7774 10915 11080) (|AlgebraicallyClosedField&| "ACF.spad" 4560 4593 7734 7739) (|AbelianSemiGroup| "ABELSG.spad" 4086 4108 4550 4555) (|AbelianSemiGroup&| "ABELSG.spad" 3609 3634 4076 4081) (|AbelianMonoid| "ABELMON.spad" 3025 3044 3599 3604) (|AbelianMonoid&| "ABELMON.spad" 2438 2460 3015 3020) (|AbelianGroup| "ABELGRP.spad" 2092 2110 2428 2433) (|AbelianGroup&| "ABELGRP.spad" 1743 1764 2082 2087) (|OneDimensionalArrayAggregate| "A1AGG.spad" 888 924 1733 1738) (|OneDimensionalArrayAggregate&| "A1AGG.spad" 30 69 878 883)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index fc3ceb42..e1dabd36 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,325 +1,325 @@
-(203854 . 3581069282)
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-349 |#2|) |#3|) . T))
-((((-349 (-485))) |has| (-349 |#2|) (-951 (-349 (-485)))) (((-485)) |has| (-349 |#2|) (-951 (-485))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-485)) |has| (-349 |#2|) (-581 (-485))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-117))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-115))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-(|has| (-349 |#2|) (-189))
-((($) OR (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-188))))
-(OR (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-188)))
-((((-349 |#2|)) . T))
-((($ (-1091)) OR (|has| (-349 |#2|) (-810 (-1091))) (|has| (-349 |#2|) (-812 (-1091)))))
-((((-1091)) OR (|has| (-349 |#2|) (-810 (-1091))) (|has| (-349 |#2|) (-812 (-1091)))))
-((((-1091)) |has| (-349 |#2|) (-810 (-1091))))
-((((-349 |#2|)) . T))
+(283263 . 3581079094)
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Fraction| |#2|) |#3|) . T))
+((((|Fraction| (|Integer|))) |has| #1=(|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| #1# (|RetractableTo| (|Integer|))) ((#1#) . T))
+((((|Fraction| |#2|)) . T))
+((((|Integer|)) |has| #1=(|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((#1#) . T))
+((((|Fraction| |#2|)) . T))
+((((|Fraction| |#2|) |#3|) . T))
+(|has| (|Fraction| |#2|) (|CharacteristicZero|))
+((((|Fraction| |#2|) |#3|) . T))
+(|has| (|Fraction| |#2|) (|CharacteristicNonZero|))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(|has| (|Fraction| |#2|) (|DifferentialRing|))
+((($) OR (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|DifferentialSpace|))))
+(OR (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|DifferentialSpace|)))
+((((|Fraction| |#2|)) . T))
+((($ (|Symbol|)) OR (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) OR (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) |has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))
+((((|Fraction| |#2|)) . T))
(((|#3|) . T))
-((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-485)) |has| (-349 |#2|) (-581 (-485))) (((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
+(((#1=(|Fraction| |#2|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Integer|)) |has| #1=(|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((#1#) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
(((|#1| |#2| |#3|) . T))
-((((-485) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1057 |#2| |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-1057 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T))
+((((|SquareMatrix| |#2| |#1|)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|SquareMatrix| |#2| |#1|)) . T) ((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) (((-1147 (-485)) $) . T) ((|#1| |#2|) . T))
-((((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) (((|UniversalSegment| (|Integer|)) $) . T) ((|#1| |#2|) . T))
+((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((($) . T))
-((((-141 (-329))) . T) (((-178)) . T) (((-329)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
+((((|Complex| (|Float|))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T))
+((((|Fraction| #1=(|Integer|))) . T) ((#1#) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) . T) (($ $) . T))
((($) . T))
-((($ $) . T) (((-551 $) $) . T))
-((((-349 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
-((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-349 (-485))) . T) (((-551 $)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((($ $) . T) (((|Kernel| $) $) . T))
+((((|Fraction| #1=(|Integer|))) . T) ((#1#) . T) (((|Kernel| $)) . T))
+((((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) . T) (($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (((|Kernel| $)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-695)) . T))
-((((-695)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|NonNegativeInteger|)) . T))
+((((|NonNegativeInteger|)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-55 |#1|) (-55 |#1|)) . T))
+(((|#1| #1=(|OneDimensionalArray| |#1|) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1| |#1|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-918 2)) . T) (((-349 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((|RadixExpansion| 2)) . T) (((|Fraction| (|Integer|))) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Integer|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-773)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-485) (-82)) . T))
-((((-485) (-82)) . T))
-((((-485) (-82)) . T) (((-1147 (-485)) $) . T))
-((((-474)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-474)) . T))
-((((-773)) . T))
-((((-1091)) . T))
-((((-773)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|OutputForm|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T) (((|UniversalSegment| (|Integer|)) $) . T))
+((((|InputForm|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|InputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Symbol|)) . T))
+((((|OutputForm|)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
+((((|Integer|)) . T) (($) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-86 |#1|)) . T) (((-349 (-485))) . T))
-((((-86 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-86 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-86 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-86 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-86 |#1|) (-86 |#1|)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T))
-((((-1091) (-86 |#1|)) |has| (-86 |#1|) (-456 (-1091) (-86 |#1|))) (((-86 |#1|) (-86 |#1|)) |has| (-86 |#1|) (-259 (-86 |#1|))))
-((((-86 |#1|)) |has| (-86 |#1|) (-259 (-86 |#1|))))
-((((-86 |#1|) $) |has| (-86 |#1|) (-240 (-86 |#1|) (-86 |#1|))))
-((((-86 |#1|)) . T))
-((($) . T) (((-86 |#1|)) . T) (((-349 (-485))) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T))
-((((-485)) . T) (((-86 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-86 |#1|)) . T))
-((((-86 |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|BalancedPAdicInteger| |#1|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|Symbol|) #1=(|BalancedPAdicInteger| |#1|)) |has| #1# (|InnerEvalable| (|Symbol|) #1#)) ((#1# #1#) |has| #1# (|Evalable| #1#)))
+(((#1=(|BalancedPAdicInteger| |#1|)) |has| #1# (|Evalable| #1#)))
+(((#1=(|BalancedPAdicInteger| |#1|) $) |has| #1# (|Eltable| #1# #1#)))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((($) . T) (((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|Integer|)) . T) (((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
+((((|BalancedPAdicInteger| |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-485) (-98)) . T))
-((((-1147 (-485)) $) . T) (((-485) (-98)) . T))
-((((-485) (-98)) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-1074)) . T) (((-870 (-98))) . T) (((-773)) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-695)) . T))
-((((-695)) . T))
-((((-773)) . T))
-((((-485) |#3|) . T))
-((((-485) (-695)) . T) ((|#3| (-695)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|Integer|) (|Byte|)) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) (|Byte|)) . T))
+((((|Integer|) (|Byte|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|String|)) . T) (((|PrimitiveArray| (|Byte|))) . T) (((|OutputForm|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|NonNegativeInteger|)) . T))
+((((|NonNegativeInteger|)) . T))
+((((|OutputForm|)) . T))
+((((|Integer|) |#3|) . T))
+((((|Integer|) #1=(|NonNegativeInteger|)) . T) ((|#3| #1#) . T))
+((((|OutputForm|)) . T))
(((|#3|) . T))
-((((-584 $)) . T) (((-584 |#3|)) . T) (((-1057 |#2| |#3|)) . T) (((-196 |#2| |#3|)) . T) ((|#3|) . T))
-(((|#3| (-695)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-447)) . T))
-((((-156)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-584 (-114))) . T) (((-1074)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|List| $)) . T) (((|List| |#3|)) . T) (((|SquareMatrix| |#2| |#3|)) . T) (((|DirectProduct| |#2| |#3|)) . T) ((|#3|) . T))
+(((|#3| (|NonNegativeInteger|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Identifier|)) . T))
+((((|Constructor|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|List| (|Character|))) . T) (((|String|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -327,1411 +327,1411 @@
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
-(((|#2|) . T) (((-485)) . T))
+(((|#2|) . T) (((|Integer|)) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-76 |#1|)) . T))
+((((|OutputForm|)) . T))
+(((|#2|) . T) (($) . T) (((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|BinaryOperation| |#1|)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-298)))
-((((-773)) . T))
-(|has| |#1| (-117))
-(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)) (|has| |#1| (-298)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188)) (|has| |#1| (-298))))
-(OR (|has| |#1| (-189)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
-(((|#1|) |has| |#1| (-259 |#1|)))
-(((|#1| $) |has| |#1| (-240 |#1| |#1|)))
-(((|#1|) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-329)) |has| |#1| (-797 (-329))))
-(((|#1|) . T))
-((((-485)) . T) (($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-349 (-485))))) ((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-1086 |#1|)) . T))
-(((|#1| (-1086 |#1|)) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-(((|#1| (-1086 |#1|)) . T))
-(|has| |#1| (-298))
-(|has| |#1| (-298))
-(|has| |#1| (-298))
-(OR (|has| |#1| (-319)) (|has| |#1| (-298)))
-(((|#1|) . T))
-((((-141 (-178))) |has| |#1| (-934)) (((-141 (-329))) |has| |#1| (-934)) (((-474)) |has| |#1| (-554 (-474))) (((-1086 |#1|)) . T) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-329))) |has| |#1| (-554 (-801 (-329)))))
-(-11 (|has| |#1| (-257)) (|has| |#1| (-822)))
-(-11 (|has| |#1| (-916)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-((((-773)) . T))
-((((-349 (-485))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-349 (-485))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-349 (-485))) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-349 (-485))) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T) (((-349 |#1|) (-349 |#1|)) . T) ((|#1| |#1|) . T))
-((((-349 (-485))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T))
-((((-349 (-485))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-485)) . T))
-((((-349 (-485))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-447)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 |#1|)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-918 10)) . T) (((-349 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|FiniteFieldCategory|)))
+((((|OutputForm|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(((|#1|) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+(((|#1|) . T))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|FiniteFieldCategory|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|FiniteFieldCategory|))))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1| $) |has| |#1| (|Eltable| |#1| |#1|)))
+(((|#1|) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T))
+((((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#1| (|PatternMatchable| (|Float|))))
+(((|#1|) . T))
+((((|Integer|)) . T) (($) OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1|) . T))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|SparseUnivariatePolynomial| |#1|)) . T))
+(((|#1| (|SparseUnivariatePolynomial| |#1|)) . T))
+((($) OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+(((|#1| (|SparseUnivariatePolynomial| |#1|)) . T))
+(|has| |#1| (|FiniteFieldCategory|))
+(|has| |#1| (|FiniteFieldCategory|))
+(|has| |#1| (|FiniteFieldCategory|))
+(OR (|has| |#1| (|Finite|)) (|has| |#1| (|FiniteFieldCategory|)))
+(((|#1|) . T))
+((((|Complex| (|DoubleFloat|))) |has| |#1| . #1=((|RealConstant|))) (((|Complex| (|Float|))) |has| |#1| . #1#) (((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|SparseUnivariatePolynomial| |#1|)) . T) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))
+(AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(|has| |#1| (|TranscendentalFunctionCategory|))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T) ((#2=(|Fraction| |#1|) #2#) . T) ((|#1| |#1|) . T))
+((((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T) (((|Integer|)) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T) (((|Integer|)) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Identifier|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|List| |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|RadixExpansion| 10)) . T) (((|Fraction| (|Integer|))) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-264 |#1|)) . T))
-((((-264 |#1|)) . T))
-((((-773)) . T))
-((((-264 |#1|)) . T) (((-485)) . T) (($) . T))
-((((-264 |#1|)) . T) (($) . T))
-((((-264 |#1|)) . T) (((-485)) . T))
-((((-264 |#1|)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Integer|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (|SetCategory|))
+(((|#1|) . T))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Expression| |#1|)) . T))
+((((|Expression| |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|Expression| |#1|)) . T) (((|Integer|)) . T) (($) . T))
+((((|Expression| |#1|)) . T) (($) . T))
+((((|Expression| |#1|)) . T) (((|Integer|)) . T))
+((((|Expression| |#1|)) . T))
((($) . T))
-((((-485)) . T) (((-349 (-485))) . T))
-((((-329)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-474)) . T) (((-178)) . T) (((-329)) . T) (((-801 (-329))) . T))
-((((-773)) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-(OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-69)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-553 (-773))) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962))))
-((($) OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-11 (|has| |#2| (-189)) (|has| |#2| (-962)))
-(|has| |#2| (-319))
+(((#1=(|Integer|)) . T) (((|Fraction| #1#)) . T))
+((((|Float|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|InputForm|)) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T) (((|Pattern| (|Float|))) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(((|#1| #1=(|Vector| |#1|) #1#) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (|SetCategory|))
+(((|#1|) . T))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1| #1=(|Vector| |#1|) #1#) . T))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|BasicType|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(((|#2| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+((((|OutputForm|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) (((|Vector| |#2|)) . T))
+(((|#2|) |has| |#2| (|Ring|)))
+((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+(((|#2|) |has| |#2| (|Ring|)))
+(OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|))))
+((($) OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|)))))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+((((|Integer|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) ((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)))
+(AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))
+(|has| |#2| (|Finite|))
(((|#2|) . T))
-(((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(((|#2|) |has| |#2| (-311)))
+(((|#2|) |has| |#2| (|Ring|)))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|))) ((|#2|) |has| |#2| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+(((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|))))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(((|#2|) |has| |#2| (|Field|)))
(((|#1| |#2|) . T))
-((((-584 |#1|)) . T))
-((((-584 |#1|)) . T))
+((((|List| |#1|)) . T))
+((((|List| |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+((((|List| |#1|)) . T) (((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-329))) |has| |#2| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))
((($) . T))
-(((|#2| (-196 (-3961 |#1|) (-695))) . T))
+(((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T))
-(|has| |#2| (-115))
-(|has| |#2| (-117))
-(OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T))
+(|has| |#2| (|CharacteristicNonZero|))
+(|has| |#2| (|CharacteristicZero|))
+(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
(((|#2|) . T))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-196 (-3961 |#1|) (-695))) . T))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T))
(((|#2|) . T))
-((($) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-349 (-485))) |has| |#2| (-951 (-349 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-196 (-3961 |#1|) (-695)) (-774 |#1|)) . T))
-((((-773)) . T))
-((((-447)) . T))
-((((-156)) . T) (((-773)) . T))
-((((-695) (-1096)) . T))
-((((-773)) . T))
-(((|#4| |#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-962))))
-(((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962))))
-(((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-962))))
-((((-773)) . T) (((-1180 |#4|)) . T))
-(((|#4|) |has| |#4| (-962)))
-((((-1091)) -11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))))
-((((-1091)) OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))))
-(((|#4|) |has| |#4| (-962)))
-(OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962))))
-((($) OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962)))))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962)))
-(-11 (|has| |#4| (-189)) (|has| |#4| (-962)))
-(|has| |#4| (-319))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((($ $) . T) ((#1=(|OrderedVariableList| |#1|) $) . T) ((#1# |#2|) . T))
+((((|OrderedVariableList| |#1|)) . T))
+((($ (|OrderedVariableList| |#1|)) . T))
+((((|OrderedVariableList| |#1|)) . T))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2|) . T) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (((|OrderedVariableList| |#1|)) . T))
+(((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|Identifier|)) . T))
+((((|Constructor|)) . T) (((|OutputForm|)) . T))
+((((|NonNegativeInteger|) (|Syntax|)) . T))
+((((|OutputForm|)) . T))
+(((|#4| |#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))))
+(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Monoid|)) (|has| |#4| (|Ring|))))
+(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))))
+((((|OutputForm|)) . T) (((|Vector| |#4|)) . T))
+(((|#4|) |has| |#4| (|Ring|)))
+((((|Symbol|)) AND (|has| |#4| (|PartialDifferentialRing| (|Symbol|))) (|has| |#4| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#4| (|PartialDifferentialRing| (|Symbol|))) (|has| |#4| (|Ring|))) (AND (|has| |#4| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#4| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#4| (|PartialDifferentialRing| (|Symbol|))) (|has| |#4| (|Ring|))) (AND (|has| |#4| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#4| (|Ring|)))))
+(((|#4|) |has| |#4| (|Ring|)))
+(OR (AND (|has| |#4| (|DifferentialRing|)) (|has| |#4| (|Ring|))) (AND (|has| |#4| (|DifferentialSpace|)) (|has| |#4| (|Ring|))))
+((($) OR (AND (|has| |#4| (|DifferentialRing|)) (|has| |#4| (|Ring|))) (AND (|has| |#4| (|DifferentialSpace|)) (|has| |#4| (|Ring|)))))
+(|has| |#4| (|Ring|))
+(|has| |#4| (|Ring|))
+(|has| |#4| (|Ring|))
+(|has| |#4| (|Ring|))
+(|has| |#4| (|Ring|))
+(((|#3|) . T) ((|#2|) . T) (((|Integer|)) . T) ((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Monoid|)) (|has| |#4| (|Ring|))) (($) |has| |#4| (|Ring|)))
+(AND (|has| |#4| (|DifferentialRing|)) (|has| |#4| (|Ring|)))
+(|has| |#4| (|Finite|))
(((|#4|) . T))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
(((|#4|) . T))
-(((|#4|) |has| |#4| (-962)))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-485)) -11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
-(((|#4|) |has| |#4| (-962)) (((-485)) -11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
-(((|#4|) |has| |#4| (-1014)))
-((((-485)) OR (-11 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1014)) (((-349 (-485))) -11 (|has| |#4| (-951 (-349 (-485)))) (|has| |#4| (-1014))))
-(((|#4|) |has| |#4| (-1014)) (((-485)) -11 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (((-349 (-485))) -11 (|has| |#4| (-951 (-349 (-485)))) (|has| |#4| (-1014))))
-((((-485) |#4|) . T))
-((((-485) |#4|) . T))
-((((-485) |#4|) . T))
-(((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311)) (|has| |#4| (-664))))
-(((|#4|) OR (|has| |#4| (-145)) (|has| |#4| (-311))))
-(|has| |#4| (-718))
-(|has| |#4| (-718))
-(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
-(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
-(|has| |#4| (-718))
-(|has| |#4| (-718))
-(((|#4|) |has| |#4| (-311)))
+(((|#4|) |has| |#4| (|Ring|)))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))) (($) |has| |#4| (|Ring|)) (((|Integer|)) AND (|has| |#4| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#4| (|Ring|))))
+(((|#4|) |has| |#4| (|Ring|)) (((|Integer|)) AND (|has| |#4| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#4| (|Ring|))))
+(((|#4|) |has| |#4| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#4| (|RetractableTo| (|Integer|))) (|has| |#4| (|SetCategory|))) (|has| |#4| (|Ring|))) ((|#4|) |has| |#4| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#4| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#4| (|SetCategory|))))
+(((|#4|) |has| |#4| (|SetCategory|)) (((|Integer|)) AND (|has| |#4| (|RetractableTo| (|Integer|))) (|has| |#4| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#4| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#4| (|SetCategory|))))
+((((|Integer|) |#4|) . T))
+((((|Integer|) |#4|) . T))
+((((|Integer|) |#4|) . T))
+(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Monoid|))))
+(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|))))
+(|has| |#4| (|OrderedAbelianMonoidSup|))
+(|has| |#4| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedSet|)))
+(OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedSet|)))
+(|has| |#4| (|OrderedAbelianMonoidSup|))
+(|has| |#4| (|OrderedAbelianMonoidSup|))
+(((|#4|) |has| |#4| (|Field|)))
(((|#1| |#4|) . T))
-(((|#3| |#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))))
-((((-773)) . T) (((-1180 |#3|)) . T))
-(((|#3|) |has| |#3| (-962)))
-((((-1091)) -11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))))
-((((-1091)) OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-(((|#3|) |has| |#3| (-962)))
-(OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962))))
-((($) OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
-(-11 (|has| |#3| (-189)) (|has| |#3| (-962)))
-(|has| |#3| (-319))
+(((|#3| |#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|Ring|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))))
+((((|OutputForm|)) . T) (((|Vector| |#3|)) . T))
+(((|#3|) |has| |#3| (|Ring|)))
+((((|Symbol|)) AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#3| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#3| (|Ring|)))))
+(((|#3|) |has| |#3| (|Ring|)))
+(OR (AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|DifferentialSpace|)) (|has| |#3| (|Ring|))))
+((($) OR (AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|DifferentialSpace|)) (|has| |#3| (|Ring|)))))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(((|#2|) . T) (((|Integer|)) . T) ((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|Ring|)))
+(AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|)))
+(|has| |#3| (|Finite|))
(((|#3|) . T))
-(((|#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
+(((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-962)))
-(((|#2|) . T) ((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-962)) (((-485)) -11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-1014)))
-((((-485)) OR (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-349 (-485))) -11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))))
-(((|#3|) |has| |#3| (-1014)) (((-485)) -11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-349 (-485))) -11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311))))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(((|#3|) |has| |#3| (-311)))
+(((|#3|) |has| |#3| (|Ring|)))
+(((|#2|) . T) ((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|))))
+(((|#3|) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|))))
+(((|#3|) |has| |#3| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (|has| |#3| (|Ring|))) ((|#3|) |has| |#3| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|))))
+(((|#3|) |has| |#3| (|SetCategory|)) (((|Integer|)) AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|))))
+((((|Integer|) |#3|) . T))
+((((|Integer|) |#3|) . T))
+((((|Integer|) |#3|) . T))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|))))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)))
+(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(((|#3|) |has| |#3| (|Field|)))
(((|#1| |#3|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-((((-773)) . T))
-(|has| |#1| (-189))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+((((|OutputForm|)) . T))
+(|has| |#1| (|DifferentialRing|))
((($) . T))
-(((|#1| (-470 |#3|) |#3|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) (((-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#3| (-797 (-329)))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) ((|#3|) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ |#3|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) ((|#3|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-189)) ((|#2| |#1|) |has| |#1| (-189)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 |#3|)) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 |#3|)) . T))
-((((-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) (((-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#3| (-554 (-801 (-329))))) (((-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))))
-((((-1040 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#2|) . T))
-((((-1040 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-470 |#3|)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
+(((|#1| (|IndexedExponents| |#3|) |#3|) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) (((|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) ((|#3|) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ |#3|) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|#3|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| . #1=((|DifferentialRing|))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| |#3|)) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| |#3|)) . T))
+((((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))))
+((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#2|) . T))
+((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) (((|Integer|)) . T) ((|#3|) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (|IndexedExponents| |#3|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#2| |#2|) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($) . T))
((($ $) . T))
-((($) . T) (((-485)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-311)))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((($ (-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) |has| |#1| (-810 (-1091))))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311))))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311))))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-962))))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-962))))
-(((|#1| |#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-962))))
-((((-485)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(|has| |#1| (-413))
-(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) (((-485)) OR (|has| |#1| (-18)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(OR (|has| |#1| (-18)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
-((((-82)) |has| |#1| (-1014)) (((-773)) OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)))
-(((|#1|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|Field|)))
+(((#1=(|Symbol|)) |has| |#1| (|PartialDifferentialRing| #1#)))
+((($ #1=(|Symbol|)) |has| |#1| (|PartialDifferentialRing| #1#)))
+((#1=((|Symbol|)) |has| |#1| (|PartialDifferentialRing| . #1#)))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|))))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|))))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))))
+(((|#1| |#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))))
+((((|Integer|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))) (($) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))))
+(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(|has| |#1| (|Group|))
+(OR (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))) (($) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) (((|Integer|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|)))
+((((|Boolean|)) |has| |#1| (|SetCategory|)) (((|OutputForm|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|)))
+((#1=((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| . #1#)))
+(((|#1|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-115))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-117))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-349 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1091) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) (((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|) $) |has| (-1167 |#1| |#2| |#3| |#4|) (-240 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-349 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-496)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-((((-773)) . T))
-(OR (|has| |#1| (-18)) (|has| |#1| (-22)) (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-((((-551 $) $) . T) (($ $) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+(|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|CharacteristicNonZero|))
+(|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|CharacteristicZero|))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|Symbol|) #1=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) |has| #1# (|InnerEvalable| (|Symbol|) #1#)) ((#1# #1#) |has| #1# (|Evalable| #1#)))
+(((#1=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) |has| #1# (|Evalable| #1#)))
+(((#1=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) |has| #1# (|Eltable| #1# #1#)))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((($) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Integer|)) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) |has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+((((|OutputForm|)) . T))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+((((|Kernel| $) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)) (((-349 (-485))) |has| |#1| (-496)))
-((((-485)) OR (|has| |#1| (-18)) (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-962))) (((-349 (-485))) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)) (((-349 (-485))) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)) (((-349 (-485))) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
-(((|#1| |#1|) |has| |#1| (-145)) (((-349 (-485)) (-349 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-962)))
-((($) OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-145)) (|has| |#1| (-962))) (((-349 (-485))) |has| |#1| (-496)) (((-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
-(((|#1|) |has| |#1| (-962)) (((-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
-(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-329)) |has| |#1| (-797 (-329))))
-(((|#1|) . T))
-(|has| |#1| (-413))
-((((-1091)) |has| |#1| (-962)))
-((($ (-1091)) |has| |#1| (-962)))
-((((-1091)) |has| |#1| (-962)))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-329))) |has| |#1| (-554 (-801 (-329)))))
-((((-45)) -11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-551 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) OR (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-349 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T))
-((((-45)) -11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-485)) OR (|has| |#1| (-115)) (|has| |#1| (-117)) (|has| |#1| (-145)) (|has| |#1| (-496)) (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-496)) (((-349 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-951 (-349 (-485))))) (((-349 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T))
-(((|#1|) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-((((-773)) . T))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-349 (-485))) . T))
-(((|#1| (-349 (-485))) . T))
-(((|#1|) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-(((|#1| (-349 (-485)) (-995)) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-349 (-485)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-485)) . T))
-((((-485) (-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-773)) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)))
+((((|Integer|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) (($) OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) ((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Ring|))) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) (($) |has| |#1| (|IntegralDomain|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) (($) |has| |#1| (|IntegralDomain|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|IntegralDomain|)) (($ $) |has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) |has| |#1| (|Ring|)))
+((($) OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) ((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Ring|))) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) (((|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))))
+(((|#1|) |has| |#1| (|Ring|)) (((|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))))
+(((|#1|) . T))
+((((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#1| (|PatternMatchable| (|Float|))))
+(((|#1|) . T))
+(|has| |#1| (|Group|))
+((((|Symbol|)) |has| |#1| (|Ring|)))
+((($ (|Symbol|)) |has| |#1| (|Ring|)))
+((((|Symbol|)) |has| |#1| (|Ring|)))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))
+((((|AlgebraicNumber|)) AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Kernel| $)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) OR (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) (((|Polynomial| |#1|)) |has| |#1| (|Ring|)) (((|Symbol|)) . T))
+((((|AlgebraicNumber|)) AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Integer|)) OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|Ring|))) ((|#1|) . T) (((|Kernel| $)) . T) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) (((|Polynomial| |#1|)) |has| |#1| (|Ring|)) (((|Symbol|)) . T))
+(((|#1|) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+((((|OutputForm|)) . T))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Fraction| (|Integer|)) |#1|) . T) (($ $) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|Integer|)) . T))
+(((#1=(|Integer|) #1#) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| $ (-117))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((#1=(|PrimeField| |#1|) #1#) . T) (($ $) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| $ (-117))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((#1=(|PrimeField| |#1|) #1#) . T) (($ $) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-818 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| $ (-117))
+((((|PrimeField| |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((#1=(|PrimeField| |#1|) #1#) . T) (($ $) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-818 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(OR (|has| |#1| (-115)) (|has| |#1| (-319)))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-(|has| |#1| (-319))
-((($) |has| |#1| (-319)))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-337) |#1|) . T))
-((((-178)) . T))
+((((|PrimeField| |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+(|has| |#1| (|Finite|))
+((($) |has| |#1| (|Finite|)))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|FileName|) |#1|) . T))
+((((|DoubleFloat|)) . T))
((($) . T))
-((((-485)) . T) (((-349 (-485))) . T))
-((((-329)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-474)) . T) (((-1074)) . T) (((-178)) . T) (((-329)) . T) (((-801 (-329))) . T))
-((((-178)) . T) (((-773)) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-((((-584 (-454 |#1| |#2|))) . T))
+(((#1=(|Integer|)) . T) (((|Fraction| #1#)) . T))
+((((|Float|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|InputForm|)) . T) (((|String|)) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T) (((|Pattern| (|Float|))) . T))
+((((|DoubleFloat|)) . T) (((|OutputForm|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+((((|OutputForm|)) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1074)) . T))
-((((-1074)) . T))
-((((-1074)) . T) (((-773)) . T))
+((((|String|)) . T))
+((((|String|)) . T))
+((((|String|)) . T) (((|OutputForm|)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-773)) . T))
-(((|#3|) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+(((|#3|) . T) (((|Integer|)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3| |#3|) . T))
(((|#3|) . T))
-((((-349 |#2|)) . T))
+((((|Fraction| |#2|)) . T))
((($) . T))
-((((-773)) . T))
-(|has| |#1| (-1135))
-((((-474)) |has| |#1| (-554 (-474))) (((-178)) |has| |#1| (-934)) (((-329)) |has| |#1| (-934)))
-(|has| |#1| (-934))
-(OR (|has| |#1| (-392)) (|has| |#1| (-1135)))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((|OutputForm|)) . T))
+(|has| |#1| (|UniqueFactorizationDomain|))
+((#1=((|InputForm|)) |has| |#1| (|ConvertibleTo| . #1#)) (((|DoubleFloat|)) . #2=(|has| |#1| (|RealConstant|))) (((|Float|)) . #2#))
+(|has| |#1| (|RealConstant|))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|UniqueFactorizationDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
(((|#1|) . T))
-((($ $) |has| |#1| (-240 $ $)) ((|#1| $) |has| |#1| (-240 |#1| |#1|)))
-((($) |has| |#1| (-259 $)) ((|#1|) |has| |#1| (-259 |#1|)))
+((#1=($ $) |has| |#1| (|Eltable| . #1#)) ((|#1| $) |has| |#1| (|Eltable| |#1| |#1|)))
+((#1=($) |has| |#1| (|Evalable| . #1#)) ((|#1|) |has| |#1| (|Evalable| |#1|)))
(((|#1|) . T))
-((((-1091) $) |has| |#1| (-456 (-1091) $)) (($ $) |has| |#1| (-259 $)) ((|#1| |#1|) |has| |#1| (-259 |#1|)) (((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)))
+((#1=((|Symbol|) $) |has| |#1| (|InnerEvalable| . #1#)) (($ $) |has| |#1| (|Evalable| $)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)) (((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))
(((|#1|) . T))
-(|has| |#1| (-189))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
+(|has| |#1| (|DifferentialRing|))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
(((|#1|) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((((-1091)) |has| |#1| (-810 (-1091))))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T))
-((((-773)) . T))
-(|has| |#1| (-115))
-(OR (|has| |#1| (-117)) (|has| |#1| (-741)))
-(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-(|has| |#1| (-189))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
-(((|#1|) |has| |#1| (-259 |#1|)))
-(((|#1| $) |has| |#1| (-240 |#1| |#1|)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-349 (-485))) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-329)) |has| |#1| (-797 (-329))))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
-(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(((|#1|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-934))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-329))) |has| |#1| (-554 (-801 (-329)))) (((-329)) |has| |#1| (-934)) (((-178)) |has| |#1| (-934)))
-((((-485)) . T) ((|#1|) . T) (($) . T) (((-349 (-485))) . T) (((-1091)) |has| |#1| (-951 (-1091))))
-((((-349 (-485))) |has| |#1| (-951 (-485))) (((-485)) |has| |#1| (-951 (-485))) (((-1091)) |has| |#1| (-951 (-1091))) ((|#1|) . T))
-(|has| |#1| (-1067))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) . T) (($) . T))
+((((|OutputForm|)) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(OR (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|OrderedIntegralDomain|)))
+(((|#1|) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+(((|#1|) . T))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+(|has| |#1| (|DifferentialRing|))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1| $) |has| |#1| (|Eltable| |#1| |#1|)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T))
+((((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#1| (|PatternMatchable| (|Float|))))
+(|has| |#1| (|OrderedIntegralDomain|))
+(|has| |#1| (|OrderedIntegralDomain|))
+(|has| |#1| (|OrderedIntegralDomain|))
+(OR (|has| |#1| (|OrderedIntegralDomain|)) (|has| |#1| (|OrderedSet|)))
+(OR (|has| |#1| (|OrderedIntegralDomain|)) (|has| |#1| (|OrderedSet|)))
+(|has| |#1| (|OrderedIntegralDomain|))
+(|has| |#1| (|OrderedIntegralDomain|))
+(|has| |#1| (|OrderedIntegralDomain|))
+(((|#1|) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|RealConstant|))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Float|)) . #1=(|has| |#1| (|RealConstant|))) (((|DoubleFloat|)) . #1#))
+((((|Integer|)) . T) ((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T) (((|Symbol|)) |has| |#1| (|RetractableTo| (|Symbol|))))
+((((|Fraction| (|Integer|))) |has| |#1| . #1=((|RetractableTo| (|Integer|)))) (((|Integer|)) |has| |#1| . #1#) (((|Symbol|)) |has| |#1| (|RetractableTo| (|Symbol|))) ((|#1|) . T))
+(|has| |#1| (|StepThrough|))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-485) (-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-1057 |#2| (-349 (-858 |#1|)))) . T) (((-349 (-858 |#1|))) . T))
-((((-773)) . T))
-((((-1057 |#2| (-349 (-858 |#1|)))) . T) (((-349 (-858 |#1|))) . T) (((-485)) . T))
-((((-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|)) (-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-349 (-858 |#1|))) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-329))) |has| |#2| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+(((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Integer|) (|Fraction| (|Polynomial| |#1|))) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|SquareMatrix| |#2| #1=(|Fraction| (|Polynomial| |#1|)))) . T) ((#1#) . T))
+((((|OutputForm|)) . T))
+((((|SquareMatrix| |#2| #1=(|Fraction| (|Polynomial| |#1|)))) . T) ((#1#) . T) (((|Integer|)) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+(((#1=(|Fraction| (|Polynomial| |#1|)) #1#) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|Fraction| (|Polynomial| |#1|))) . T))
+((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))
((($) . T))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T))
-(|has| |#2| (-115))
-(|has| |#2| (-117))
-(OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T))
+(|has| |#2| (|CharacteristicNonZero|))
+(|has| |#2| (|CharacteristicZero|))
+(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
(((|#2|) . T))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((($) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-349 (-485))) |has| |#2| (-951 (-349 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| |#3| (-774 |#1|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((($ $) . T) ((#1=(|OrderedVariableList| |#1|) $) . T) ((#1# |#2|) . T))
+((((|OrderedVariableList| |#1|)) . T))
+((($ (|OrderedVariableList| |#1|)) . T))
+((((|OrderedVariableList| |#1|)) . T))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2|) . T) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (((|OrderedVariableList| |#1|)) . T))
+(((|#2| |#3| (|OrderedVariableList| |#1|)) . T))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
-((((-773)) . T))
-(((|#2|) . T) (((-485)) . T) ((|#6|) . T))
+((((|OutputForm|)) . T))
+(((|#2|) . T) (((|Integer|)) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#4|) . T))
(((|#4|) . T))
-((((-584 |#4|)) . T) (((-773)) . T))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+((((|List| |#4|)) . T) (((|OutputForm|)) . T))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-773)) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-((((-773)) . T))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-349 (-485))) . T))
-(((|#1| (-349 (-485))) . T))
-(((|#1|) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-145)))
-(((|#1| (-349 (-485)) (-995)) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-349 (-485)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-(((|#1|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+((((|OutputForm|)) . T))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Fraction| (|Integer|)) |#1|) . T) (($ $) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+(((|#1|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))))
(((|#4|) . T))
(((|#4|) . T))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((|OutputForm|)) . T) (((|List| |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-474)) . T) (((-349 (-1086 (-485)))) . T) (((-178)) . T) (((-329)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((((-329)) . T) (((-178)) . T) (((-773)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((|InputForm|)) . T) (((|Fraction| (|SparseUnivariatePolynomial| (|Integer|)))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T))
+((((|Fraction| #1=(|Integer|))) . T) ((#1#) . T))
+((((|Float|)) . T) (((|DoubleFloat|)) . T) (((|OutputForm|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-329))) |has| |#2| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))
((($) . T))
-(((|#2| (-422 (-3961 |#1|) (-695))) . T))
+(((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T))
-(|has| |#2| (-115))
-(|has| |#2| (-117))
-(OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T))
+(|has| |#2| (|CharacteristicNonZero|))
+(|has| |#2| (|CharacteristicZero|))
+(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
(((|#2|) . T))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-422 (-3961 |#1|) (-695))) . T))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T))
(((|#2|) . T))
-((($) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-349 (-485))) |has| |#2| (-951 (-349 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-422 (-3961 |#1|) (-695)) (-774 |#1|)) . T))
-(OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-69)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-553 (-773))) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962))))
-((($) OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-11 (|has| |#2| (-189)) (|has| |#2| (-962)))
-(|has| |#2| (-319))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((($ $) . T) ((#1=(|OrderedVariableList| |#1|) $) . T) ((#1# |#2|) . T))
+((((|OrderedVariableList| |#1|)) . T))
+((($ (|OrderedVariableList| |#1|)) . T))
+((((|OrderedVariableList| |#1|)) . T))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2|) . T) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (((|OrderedVariableList| |#1|)) . T))
+(((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) . T))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|BasicType|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(((|#2| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+((((|OutputForm|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) (((|Vector| |#2|)) . T))
+(((|#2|) |has| |#2| (|Ring|)))
+((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+(((|#2|) |has| |#2| (|Ring|)))
+(OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|))))
+((($) OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|)))))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+((((|Integer|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) ((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)))
+(AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))
+(|has| |#2| (|Finite|))
(((|#2|) . T))
-(((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(((|#2|) |has| |#2| (-311)))
+(((|#2|) |has| |#2| (|Ring|)))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|))) ((|#2|) |has| |#2| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+(((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|))))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(((|#2|) |has| |#2| (|Field|)))
(((|#1| |#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-485)) . T))
-((((-773)) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-918 16)) . T) (((-349 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((|RadixExpansion| 16)) . T) (((|Fraction| (|Integer|))) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T))
-((((-1074)) . T) (((-773)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Integer|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T))
+((((|String|)) . T) (((|OutputForm|)) . T))
((($) . T))
-((((-141 (-329))) . T) (((-178)) . T) (((-329)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
+((((|Complex| (|Float|))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T))
+((((|Fraction| #1=(|Integer|))) . T) ((#1#) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) . T) (($ $) . T))
((($) . T))
-((($ $) . T) (((-551 $) $) . T))
-((((-349 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
-((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-349 (-485))) . T) (((-551 $)) . T))
-((((-773)) . T))
+((($ $) . T) (((|Kernel| $) $) . T))
+((((|Fraction| #1=(|Integer|))) . T) ((#1#) . T) (((|Kernel| $)) . T))
+((((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) . T) (($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (((|Kernel| $)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2| |#3|) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-773)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-485) (-82)) . T))
-((((-485) (-82)) . T))
-((((-485) (-82)) . T) (((-1147 (-485)) $) . T))
-((((-474)) . T))
-((((-82)) . T))
-((((-82)) . T))
-((((-1074)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|OutputForm|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T))
+((((|Integer|) (|Boolean|)) . T) (((|UniversalSegment| (|Integer|)) $) . T))
+((((|InputForm|)) . T))
+((((|Boolean|)) . T))
+((((|Boolean|)) . T))
+((((|String|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((|OutputForm|)) . T))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
-(-11 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-((((-773)) -11 (|has| |#1| (-1014)) (|has| |#2| (-1014))))
+(AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|)))
+((((|OutputForm|)) AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((|OutputForm|)) . T))
+((((|List| (|IndexedProductTerm| |#1| |#2|))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-783 |#2| |#1|)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|Pair| |#2| |#1|)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-518 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-518 |#1|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-518 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
-(|has| $ (-117))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|InnerPrimeField| |#1|)) . T))
+((((|InnerPrimeField| |#1|)) . T))
+((((|InnerPrimeField| |#1|)) . T))
+((((|InnerPrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|InnerPrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((#1=(|InnerPrimeField| |#1|) #1#) . T) (($ $) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-518 |#1|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-584 (-454 (-695) |#1|))) . T))
-((((-695)) . T))
-((((-695) |#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-516)) . T))
-((((-1016)) . T))
-((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-178)) . T) (((-773)) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
-((((-1074) (-1091) (-485) (-178) (-773)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|InnerPrimeField| |#1|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((((|List| (|IndexedProductTerm| (|NonNegativeInteger|) |#1|))) . T))
+((((|NonNegativeInteger|)) . T))
+((((|NonNegativeInteger|) |#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|IP4Address|)) . T))
+((((|SExpression|)) . T))
+((((|List| $)) . T) (((|String|)) . T) (((|Symbol|)) . T) (((|Integer|)) . T) (((|DoubleFloat|)) . T) (((|OutputForm|)) . T))
+((((|Integer|) $) . T) (((|List| (|Integer|)) $) . T))
+((((|OutputForm|)) . T))
+((((|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -1739,278 +1739,278 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((|Integer|)) . T) (($) . T))
+((((|Integer|)) . T))
+((($) . T) (((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) ((#1=(|Integer|)) . T) (((|Pattern| #1#)) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Integer|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((((-485)) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) (($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
+((((|Integer|)) . T) (($) . T))
+((((|Integer|)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
+((((|Integer|)) . T) (($) . T))
(((|#1|) . T))
-((((-485)) . T))
+((((|Integer|)) . T))
((($) . T))
((($) . T))
((($) . T))
-(|has| $ (-117))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
((($) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T))
-((((-349 (-485))) . T))
-((((-773)) . T))
-((((-485)) . T) (((-349 (-485))) . T))
-((((-349 (-485))) . T))
-((((-349 (-485))) . T))
-((((-349 (-485))) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(|has| |#1| (-14 * (|#1| (-485) |#1|)))
-((((-773)) . T))
-((($) |has| |#1| (-14 * (|#1| (-485) |#1|))))
-(|has| |#1| (-14 * (|#1| (-485) |#1|)))
-((($ $) . T) (((-485) |#1|) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-((($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-(((|#1| (-485) (-995)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-(((|#1|) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-((($) |has| |#1| (-496)))
-((($) |has| |#1| (-496)))
-((($) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((($) |has| |#1| (-496)) ((|#1|) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T))
-((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T))
-((($) |has| |#1| (-496)) (((-485)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T))
+((((|Fraction| (|Integer|))) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T) (((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))
+((((|OutputForm|)) . T))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))
+((($ $) . T) (((|Integer|) |#1|) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+((($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+(((|#1| (|Integer|)) . T))
+(((|#1| (|Integer|)) . T))
+((($) |has| |#1| (|IntegralDomain|)))
+((($) |has| |#1| (|IntegralDomain|)))
+((($) |has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) . T))
+((($ $) |has| |#1| (|IntegralDomain|)) ((|#1| |#1|) . T))
+((($) |has| |#1| (|IntegralDomain|)) (((|Integer|)) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) . T) (((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-1131)) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-485) |#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-360 |#1|))))
-(((|#1|) |has| |#2| (-360 |#1|)))
+((((|Syntax|)) . T))
+((((|TypeAst|)) . T) (((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Integer|) |#1|) |has| |#2| (|FramedNonAssociativeAlgebra| |#1|)))
+(((|#1|) OR (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|))))
+((#1=(|#1|) |has| |#2| (|FramedNonAssociativeAlgebra| . #1#)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+(((|#2|) . T) (((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-98)) . T))
-((((-98)) . T))
-((((-98)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-98)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-98)) . T) (((-542)) . T))
-((((-98)) . T) (((-542)) . T))
-((((-98)) . T) (((-542)) . T) (((-773)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-773)) . T))
-((((-337) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-329))) |has| |#1| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+((((|Byte|)) . T))
+((((|Byte|)) . T))
+((((|Byte|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Byte|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Byte|)) . T) (((|JVMBytecode|)) . T))
+((((|Byte|)) . T) (((|JVMBytecode|)) . T))
+((((|Byte|)) . T) (((|JVMBytecode|)) . T) (((|OutputForm|)) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|String|) |#1|) . T))
+((((|String|) |#1|) . T))
+((((|String|) |#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+(((#1=(|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) #1#) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) ((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) ((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|String|) |#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+(((|#1|) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|String|) |#1|) . T))
+((((|OutputForm|)) . T))
+((((|FileName|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((#1=((|InputForm|)) |has| |#1| (|ConvertibleTo| . #1#)) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
-(((|#2|) . T) (((-485)) . T) (($) . T))
+(((|#2|) . T) (((|Integer|)) . T) (($) . T))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-485)) . T))
+(((|#2|) . T) (((|Integer|)) . T))
(((|#2|) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(((|#2|) . T) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-((((-349 |#2|)) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+((((|Fraction| |#2|)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-(|has| |#2| (-189))
-(((|#2|) . T) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T))
+(|has| |#2| (|DifferentialRing|))
+(((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) . T) (((|Integer|)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
-((($) OR (|has| |#2| (-189)) (|has| |#2| (-188))))
-(OR (|has| |#2| (-189)) (|has| |#2| (-188)))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
+((($) OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|))))
+(OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|)))
(((|#2|) . T))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((((-1091)) |has| |#2| (-810 (-1091))))
+((($ (|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))))
(((|#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-773)) . T))
-((((-1074) (-48)) . T))
-((((-1074) (-48)) . T))
-((((-1091) (-48)) . T) (((-1074) (-48)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T) (((-48)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T) (((-48)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))))
-((((-1074) (-48)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-48)) . T) (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) . T))
-((((-1074) (-48)) . T))
-((((-485) |#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-360 |#1|))))
-(((|#1|) |has| |#2| (-360 |#1|)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T))
+((((|OutputForm|)) . T))
+((((|String|) (|Any|)) . T))
+((((|String|) (|Any|)) . T))
+((((|Symbol|) #1=(|Any|)) . T) (((|String|) #1#) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| #1=(|Any|)))) . T) ((#1#) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| #1=(|Any|)))) . T) ((#1#) . T))
+(((#1=(|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) #1#) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))))))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))))))
+((((|String|) (|Any|)) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T))
+(((#1=(|Any|)) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| #1#))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T))
+((((|String|) (|Any|)) . T))
+((((|Integer|) |#1|) |has| |#2| (|FramedNonAssociativeAlgebra| |#1|)))
+(((|#1|) OR (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|))))
+((#1=(|#1|) |has| |#2| (|FramedNonAssociativeAlgebra| . #1#)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-774 |#1|)) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| (-578 |#2|)))) . T))
+((((|OrderedVariableList| |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|List| (|IndexedProductTerm| |#1| (|LinearBasis| |#2|)))) . T))
(((|#1|) . T))
-(((|#1| (-578 |#2|)) . T))
-((((-578 |#2|)) . T))
+(((|#1| (|LinearBasis| |#2|)) . T))
+((((|LinearBasis| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-580 |#1| |#2|) |#1|) . T))
+((((|LinearElement| |#1| |#2|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
@@ -2018,1046 +2018,1046 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-(((|#1|) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((|Syntax|)) . T))
+(((|#1|) . T) (((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
+((((|OutputForm|)) . T))
+(|has| |#1| (|OrderedAbelianGroup|))
+(|has| |#1| (|OrderedAbelianGroup|))
+(|has| |#1| (|OrderedAbelianGroup|))
+(|has| |#1| (|OrderedAbelianGroup|))
+(|has| |#1| (|OrderedAbelianGroup|))
+(|has| |#1| (|OrderedAbelianGroup|))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-((((-773)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#1|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-((((-773)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#1|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-((((-773)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((|#1|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
(((|#2|) . T))
-((((-615 |#1|)) . T))
-((((-615 |#1|)) . T))
-(((|#2| (-615 |#1|)) . T))
+((((|LyndonWord| |#1|)) . T))
+((((|LyndonWord| |#1|)) . T))
+(((|#2| (|LyndonWord| |#1|)) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-485) |#2|) . T))
+((((|Integer|) |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-3997 "*"))))
+(((|#2|) |has| |#2| (ATTRIBUTE (|commutative| "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-631 |#2|)) . T) (((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((|Matrix| |#2|)) . T) (((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
(((|#2|) . T))
-(OR (|has| |#2| (-189)) (|has| |#2| (-188)))
-((($) OR (|has| |#2| (-189)) (|has| |#2| (-188))))
-(|has| |#2| (-189))
+(OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|)))
+((($) OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|))))
+(|has| |#2| (|DifferentialRing|))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
(((|#2|) . T))
-((((-485)) . T) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T))
+((((|Integer|)) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| |#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-(((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#2|) . T))
-(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+(((|#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-1131)) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|TypeAst|)) . T) (((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((#1=((|InputForm|)) |has| |#1| (|ConvertibleTo| . #1#)))
+(((|#1| #1=(|Vector| |#1|) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-((((-773)) . T))
+(((|#1| #1=(|Vector| |#1|) #1#) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(|has| |#1| (-319))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(|has| |#1| (|Finite|))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-773)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-311))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
-(((|#1|) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|Field|))
+(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (((|SingletonAsOrderedSet|)) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+(((|#2|) . T) (((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+((((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((#1=(|SingletonAsOrderedSet|) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
-(((|#1|) . T))
-((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T))
-((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T))
-((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T) (((-773)) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1| |#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
+(|has| |#1| (|StepThrough|))
+(((|#1|) . T))
+((((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) . T))
+((((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) . T))
+((((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) . T) (((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
(((|#2| |#2|) . T))
-((((-83)) . T) ((|#1|) . T))
-((((-83)) . T) ((|#1|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T) (((-485)) . T))
-((((-485)) . T))
+((((|BasicOperator|)) . T) ((|#1|) . T))
+((((|BasicOperator|)) . T) ((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T) (((|Integer|)) . T))
+((((|Integer|)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
-((((-773)) . T))
-((((-1023 |#1|)) . T) (((-773)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
+((((|OutputForm|)) . T))
+((((|SemiGroupOperation| |#1|)) . T) (((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-329))) |has| |#2| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))
((($) . T))
-(((|#2| (-470 (-774 |#1|))) . T))
+(((|#2| (|IndexedExponents| (|OrderedVariableList| |#1|))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T))
-(|has| |#2| (-115))
-(|has| |#2| (-117))
-(OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-145)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T))
+(|has| |#2| (|CharacteristicNonZero|))
+(|has| |#2| (|CharacteristicZero|))
+(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
(((|#2|) . T))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) |has| |#2| (-145)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-470 (-774 |#1|))) . T))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))
+(((|#2| (|IndexedExponents| (|OrderedVariableList| |#1|))) . T))
(((|#2|) . T))
-((($) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-349 (-485))) |has| |#2| (-951 (-349 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-470 (-774 |#1|)) (-774 |#1|)) . T))
-(-11 (|has| |#1| (-319)) (|has| |#2| (-319)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1| |#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+((($ $) . T) ((#1=(|OrderedVariableList| |#1|) $) . T) ((#1# |#2|) . T))
+((((|OrderedVariableList| |#1|)) . T))
+((($ (|OrderedVariableList| |#1|)) . T))
+((((|OrderedVariableList| |#1|)) . T))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2|) . T) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (((|OrderedVariableList| |#1|)) . T))
+(((|#2| (|IndexedExponents| #1=(|OrderedVariableList| |#1|)) #1#) . T))
+(AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
(((|#1|) . T))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) ((|#2|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T) (((-485)) . T))
+(((|#1|) . T) ((|#2|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T) (((|Integer|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+((((|OutputForm|)) . T))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) (((-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#2| (-797 (-329)))))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+(((|#1| (|IndexedExponents| |#2|) |#2|) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))) (((|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|)))))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 |#2|)) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-1040 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-773)) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (($) . T))
-((((-1040 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-485)) . T))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-((((-1040 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-470 |#2|)) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| |#2|)) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) (((|Polynomial| |#1|)) |has| |#2| (|ConvertibleTo| (|Symbol|))) (((|OutputForm|)) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|)) . T))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|IndexedExponents| |#2|)) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-((((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-1074)) -11 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) (((-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) (((-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) (((-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))))
-(((|#1| (-470 |#2|) |#2|) . T))
+((((|Polynomial| |#1|)) |has| |#2| (|ConvertibleTo| (|Symbol|))) (((|String|)) AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))))
+(((|#1| (|IndexedExponents| |#2|) |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-1086 |#1|)) . T) (((-773)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-311))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
-(((|#1|) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((((-1086 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-((((-1086 |#1|)) . T) (((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((((|SparseUnivariatePolynomial| |#1|)) . T) (((|OutputForm|)) . T))
+((((|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|Field|))
+(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (((|SingletonAsOrderedSet|)) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((((|SparseUnivariatePolynomial| |#1|)) . T) (((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+((((|SparseUnivariatePolynomial| |#1|)) . T) (((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((#1=(|SingletonAsOrderedSet|) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
+(|has| |#1| (|StepThrough|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-((((-474)) |has| |#1| (-554 (-474))))
-(|has| |#1| (-319))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
-(((|#1|) |has| |#1| (-259 |#1|)))
-(((|#1| $) |has| |#1| (-240 |#1| |#1|)))
-((((-910 |#1|)) . T) ((|#1|) . T))
-((((-910 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| (-910 |#1|) (-951 (-349 (-485))))))
-((((-910 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-910 |#1|) (-951 (-485)))) (((-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| (-910 |#1|) (-951 (-349 (-485))))))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-69)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-18)) (|has| |#2| (-101)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-18)) (|has| |#2| (-20)) (|has| |#2| (-22)) (|has| |#2| (-101)) (|has| |#2| (-553 (-773))) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-319)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962))))
-((($) OR (-11 (|has| |#2| (-189)) (|has| |#2| (-962))) (-11 (|has| |#2| (-188)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-18)) (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-11 (|has| |#2| (-189)) (|has| |#2| (-962)))
-(|has| |#2| (-319))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+(|has| |#1| (|Finite|))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1| $) |has| |#1| (|Eltable| |#1| |#1|)))
+((((|Quaternion| |#1|)) . T) ((|#1|) . T))
+((((|Quaternion| |#1|)) . T) (((|Integer|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| (|Quaternion| |#1|) (|RetractableTo| (|Fraction| (|Integer|))))))
+((((|Quaternion| |#1|)) . T) ((|#1|) . T) (((|Integer|)) OR (|has| |#1| (|RetractableTo| (|Integer|))) (|has| (|Quaternion| |#1|) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| (|Quaternion| |#1|) (|RetractableTo| (|Fraction| (|Integer|))))))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|BasicType|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Ring|)))
+(((|#2| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))))
+((((|OutputForm|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) (((|Vector| |#2|)) . T))
+(((|#2|) |has| |#2| (|Ring|)))
+((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|)))))
+(((|#2|) |has| |#2| (|Ring|)))
+(OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|))))
+((($) OR (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|)))))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+(|has| |#2| (|Ring|))
+((((|Integer|)) OR (|has| |#2| (|AbelianGroup|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) ((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)))
+(AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))
+(|has| |#2| (|Finite|))
(((|#2|) . T))
-(((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-664))))
-(((|#2|) OR (|has| |#2| (-145)) (|has| |#2| (-311))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(((|#2|) |has| |#2| (-311)))
+(((|#2|) |has| |#2| (|Ring|)))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))))
+(((|#2|) |has| |#2| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|))) ((|#2|) |has| |#2| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+(((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+((((|Integer|) |#2|) . T))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Monoid|))))
+(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|))))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedSet|)))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(|has| |#2| (|OrderedAbelianMonoidSup|))
+(((|#2|) |has| |#2| (|Field|)))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-((((-773)) . T))
-(|has| |#1| (-189))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+((((|OutputForm|)) . T))
+(|has| |#1| (|DifferentialRing|))
((($) . T))
-(((|#1| (-470 (-739 (-1091))) (-739 (-1091))) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-739 (-1091))) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-739 (-1091))) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-739 (-1091))) . T))
-((($ $) . T) (((-1091) $) |has| |#1| (-189)) (((-1091) |#1|) |has| |#1| (-189)) (((-739 (-1091)) |#1|) . T) (((-739 (-1091)) $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 (-739 (-1091)))) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 (-739 (-1091)))) . T))
-((((-1040 |#1| (-1091))) . T) (((-739 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-1091)) . T))
-((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-739 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-1091)) . T))
-(((|#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) . T))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-((((-349 (-485))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
-((((-349 (-485))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
-((((-349 (-485))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
-(|has| |#2| (-311))
+(((|#1| (|IndexedExponents| #1=(|OrderlyDifferentialVariable| (|Symbol|))) #1#) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (((|OrderlyDifferentialVariable| (|Symbol|))) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|OrderlyDifferentialVariable| (|Symbol|))) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|OrderlyDifferentialVariable| (|Symbol|))) . T))
+((($ $) . T) ((#1=(|Symbol|) $) |has| |#1| . #2=((|DifferentialRing|))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(|OrderlyDifferentialVariable| #1#) |#1|) . T) ((#3# $) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T))
+((((|SparseMultivariatePolynomial| |#1| #1=(|Symbol|))) . T) (((|OrderlyDifferentialVariable| #1#)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((#1#) . T))
+((((|SparseMultivariatePolynomial| |#1| #1=(|Symbol|))) . T) (((|Integer|)) . T) (((|OrderlyDifferentialVariable| #1#)) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((#1#) . T))
+(((|#1| #1=(|Symbol|) #2=(|OrderlyDifferentialVariable| #1#) (|IndexedExponents| #2#)) . T))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+((((|Fraction| (|Integer|))) . #1=(|has| |#2| (|Field|))) (($) . #1#))
+((((|Fraction| (|Integer|))) . #1=(|has| |#2| (|Field|))) (($) . #1#))
+((((|Fraction| (|Integer|))) . #1=(|has| |#2| (|Field|))) (($) . #1#))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
+(|has| |#2| (|Field|))
(((|#2|) . T))
((($) . T))
-((((-349 (-485))) |has| |#2| (-311)) (($) |has| |#2| (-311)) ((|#2|) . T) (((-485)) . T))
-((((-349 (-485))) |has| |#2| (-311)) (($) . T))
-(((|#2|) . T) (((-773)) . T))
-((((-349 (-485))) |has| |#2| (-311)) (($) . T) (((-485)) . T))
-((((-349 (-485))) |has| |#2| (-311)) (($) . T))
-((((-349 (-485))) |has| |#2| (-311)) (($) . T))
-((((-349 (-485)) (-349 (-485))) |has| |#2| (-311)) (($ $) . T))
+((((|Fraction| (|Integer|))) . #1=(|has| |#2| (|Field|))) (($) . #1#) ((|#2|) . T) (((|Integer|)) . T))
+((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T))
+(((|#2|) . T) (((|OutputForm|)) . T))
+((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T) (((|Integer|)) . T))
+((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T))
+((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Field|)) (($ $) . T))
((($) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-189))
-((($) |has| |#1| (-189)))
-(|has| |#1| (-189))
-(((|#2|) |has| |#2| (-145)))
+(|has| |#1| (|DifferentialRing|))
+((($) |has| |#1| (|DifferentialRing|)))
+(|has| |#1| (|DifferentialRing|))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-145)))
-(((|#2|) |has| |#2| (-145)))
-((((-485)) . T) ((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+((((|Integer|)) . T) ((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2|) . T))
-(|has| |#1| (-756))
-((($) |has| |#1| (-756)))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-18)) (|has| |#1| (-756))))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1| |#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
+(|has| |#1| (|OrderedRing|))
+((($) |has| |#1| (|OrderedRing|)))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+((($) |has| |#1| (|OrderedRing|)) (((|Integer|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) OR (|has| |#1| (|OrderedRing|)) (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
(((|#1| |#1|) . T))
-((((-83)) . T) ((|#1|) . T))
-((((-83)) . T) ((|#1|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T) (((-485)) . T))
-((((-773)) . T))
-((((-447)) . T))
-(|has| |#1| (-756))
-((($) |has| |#1| (-756)))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-18)) (|has| |#1| (-756))))
-(OR (|has| |#1| (-18)) (|has| |#1| (-756)))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
+((((|BasicOperator|)) . T) ((|#1|) . T))
+((((|BasicOperator|)) . T) ((|#1|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T) (((|Integer|)) . T))
+((((|OutputForm|)) . T))
+((((|Identifier|)) . T))
+(|has| |#1| (|OrderedRing|))
+((($) |has| |#1| (|OrderedRing|)))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(|has| |#1| (|OrderedRing|))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+((($) |has| |#1| (|OrderedRing|)) (((|Integer|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))))
+(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) OR (|has| |#1| (|OrderedRing|)) (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+((#1=((|OutputForm|)) |has| |#1| (|CoercibleTo| . #1#)) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
-((((-485)) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
+((((|Integer|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
-(((|#2|) |has| |#2| (-145)))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2|) . T))
-((((-1177 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
+((((|Variable| |#1|)) . T) (((|Integer|)) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
(((|#2|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-801 (-485))) . T) (((-801 (-329))) . T) (((-474)) . T) (((-1091)) . T))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1| |#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-((((-858 |#1|)) . T))
-(((|#1|) |has| |#1| (-145)) (((-858 |#1|)) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T))
-((((-858 |#1|)) . T) (((-773)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Pattern| (|Integer|))) . T) (((|Pattern| (|Float|))) . T) (((|InputForm|)) . T) (((|Symbol|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|Polynomial| |#1|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Polynomial| |#1|)) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T))
+((((|Polynomial| |#1|)) . T) (((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T) (((|Integer|)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-779 |#1|)) . T) (((-349 (-485))) . T))
-((((-779 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-779 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-779 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-779 |#1|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-779 |#1|) (-779 |#1|)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-1091) (-779 |#1|)) |has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|))))
-((((-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|))))
-((((-779 |#1|) $) |has| (-779 |#1|) (-240 (-779 |#1|) (-779 |#1|))))
-((((-779 |#1|)) . T))
-((($) . T) (((-779 |#1|)) . T) (((-349 (-485))) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-485)) . T) (((-779 |#1|)) . T) (($) . T) (((-349 (-485))) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-773)) . T))
-(|has| |#2| (-115))
-(OR (|has| |#2| (-117)) (|has| |#2| (-741)))
+((((|Integer|)) . T) (($) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|PAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|PAdicInteger| |#1|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|Symbol|) #1=(|PAdicInteger| |#1|)) |has| #1# (|InnerEvalable| (|Symbol|) #1#)) ((#1# #1#) |has| #1# (|Evalable| #1#)))
+(((#1=(|PAdicInteger| |#1|)) |has| #1# (|Evalable| #1#)))
+(((#1=(|PAdicInteger| |#1|) $) |has| #1# (|Eltable| #1# #1#)))
+((((|PAdicInteger| |#1|)) . T))
+((($) . T) (((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|Integer|)) . T) (((|PAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|PAdicInteger| |#1|)) . T))
+((((|OutputForm|)) . T))
+(|has| |#2| (|CharacteristicNonZero|))
+(OR (|has| |#2| (|CharacteristicZero|)) (|has| |#2| (|OrderedIntegralDomain|)))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
(((|#2|) . T))
-(OR (|has| |#2| (-189)) (|has| |#2| (-188)))
-((($) OR (|has| |#2| (-189)) (|has| |#2| (-188))))
-(|has| |#2| (-189))
-(((|#2|) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T) (((-349 (-485))) . T))
-(((|#2|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#2|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#2|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#2|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#2| |#2|) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
+(OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|)))
+((($) OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|))))
+(|has| |#2| (|DifferentialRing|))
+(((|#2|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) . T))
+(((|#2|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#2|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#2|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#2|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#2| |#2|) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T) (($ $) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1091) |#2|) |has| |#2| (-456 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-259 |#2|)))
-(((|#2|) |has| |#2| (-259 |#2|)))
-(((|#2| $) |has| |#2| (-240 |#2| |#2|)))
+((((|Symbol|) |#2|) |has| |#2| (|InnerEvalable| (|Symbol|) |#2|)) ((|#2| |#2|) |has| |#2| (|Evalable| |#2|)))
+(((|#2|) |has| |#2| (|Evalable| |#2|)))
+(((|#2| $) |has| |#2| (|Eltable| |#2| |#2|)))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-349 (-485))) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
(((|#2|) . T))
-((((-485)) |has| |#2| (-797 (-485))) (((-329)) |has| |#2| (-797 (-329))))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
+((((|Integer|)) |has| |#2| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#2| (|PatternMatchable| (|Float|))))
+(|has| |#2| (|OrderedIntegralDomain|))
+(|has| |#2| (|OrderedIntegralDomain|))
+(|has| |#2| (|OrderedIntegralDomain|))
+(OR (|has| |#2| (|OrderedIntegralDomain|)) (|has| |#2| (|OrderedSet|)))
+(OR (|has| |#2| (|OrderedIntegralDomain|)) (|has| |#2| (|OrderedSet|)))
+(|has| |#2| (|OrderedIntegralDomain|))
+(|has| |#2| (|OrderedIntegralDomain|))
+(|has| |#2| (|OrderedIntegralDomain|))
(((|#2|) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-934))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))) (((-801 (-329))) |has| |#2| (-554 (-801 (-329)))) (((-329)) |has| |#2| (-934)) (((-178)) |has| |#2| (-934)))
-((((-485)) . T) ((|#2|) . T) (($) . T) (((-349 (-485))) . T) (((-1091)) |has| |#2| (-951 (-1091))))
-((((-349 (-485))) |has| |#2| (-951 (-485))) (((-485)) |has| |#2| (-951 (-485))) (((-1091)) |has| |#2| (-951 (-1091))) ((|#2|) . T))
-(|has| |#2| (-1067))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|RealConstant|))
+((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Float|)) . #1=(|has| |#2| (|RealConstant|))) (((|DoubleFloat|)) . #1#))
+((((|Integer|)) . T) ((|#2|) . T) (($) . T) (((|Fraction| (|Integer|))) . T) (((|Symbol|)) |has| |#2| (|RetractableTo| (|Symbol|))))
+((((|Fraction| (|Integer|))) |has| |#2| . #1=((|RetractableTo| (|Integer|)))) (((|Integer|)) |has| |#2| . #1#) (((|Symbol|)) |has| |#2| (|RetractableTo| (|Symbol|))) ((|#2|) . T))
+(|has| |#2| (|StepThrough|))
(((|#2|) . T))
-(-11 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-(-11 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-((((-773)) OR (-11 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))
-((((-127)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1091)) . T) ((|#1|) . T))
-((((-1091)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-615 |#1|)) . T))
-((((-615 |#1|)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-1117 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) . T))
-(|has| |#1| (-1014))
+(AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|)))
+(AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|)))
+((((|OutputForm|)) OR (AND (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|CoercibleTo| (|OutputForm|)))) (AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|)))))
+((((|Color|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Symbol|)) . T) ((|#1|) . T))
+((((|Symbol|)) . T) ((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|LyndonWord| |#1|)) . T))
+((((|LyndonWord| |#1|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|Tree| |#1|)) . T) (((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) . T))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-773)) . T))
-(OR (|has| |#1| (-319)) (|has| |#1| (-757)))
-(OR (|has| |#1| (-319)) (|has| |#1| (-757)))
+((((|OutputForm|)) . T))
+(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|)))
+(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|)))
(((|#1|) . T))
-((((-773)) . T))
-((((-485)) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T))
((($) . T))
((($) . T))
((($) . T))
-(|has| $ (-117))
+(|has| $ (|CharacteristicZero|))
((($) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
((($) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($) . T) (((-349 (-485))) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-349 (-485)) (-349 (-485))) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-329))) |has| |#1| (-554 (-801 (-329)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Fraction| (|Integer|))) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|List| |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))
((($) . T))
-(((|#1| (-470 (-1091))) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1|) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1| (-470 (-1091))) . T))
-(((|#1|) . T))
-((($) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((($ $) . T) (((-1091) $) . T) (((-1091) |#1|) . T))
-((((-1091)) . T))
-((($ (-1091)) . T))
-((((-1091)) . T))
-((((-329)) |has| |#1| (-797 (-329))) (((-485)) |has| |#1| (-797 (-485))))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) (((-1091)) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-1091)) . T))
-(((|#1| (-470 (-1091)) (-1091)) . T))
-((((-1034)) . T) (((-773)) . T))
+(((|#1| (|IndexedExponents| (|Symbol|))) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((|#1|) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((|#1| (|IndexedExponents| (|Symbol|))) . T))
+(((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((($ $) . T) ((#1=(|Symbol|) $) . T) ((#1# |#1|) . T))
+((((|Symbol|)) . T))
+((($ (|Symbol|)) . T))
+((((|Symbol|)) . T))
+((((|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) (((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T) (((|Symbol|)) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1|) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (((|Symbol|)) . T))
+(((|#1| (|IndexedExponents| #1=(|Symbol|)) #1#) . T))
+((((|SingleInteger|)) . T) (((|OutputForm|)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-773)) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-485)) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|OutputForm|)) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|)) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-11 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(-11 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757))))
-(OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757))))
-(-11 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(-11 (|has| |#1| (-718)) (|has| |#2| (-718)))
-((((-485)) -11 (|has| |#1| (-18)) (|has| |#2| (-18))))
-(-11 (|has| |#1| (-18)) (|has| |#2| (-18)))
-(-11 (|has| |#1| (-413)) (|has| |#2| (-413)))
-(OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664))))
-(OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664))))
-(-11 (|has| |#1| (-319)) (|has| |#2| (-319)))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-584 (-831))) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-196 |#1| |#2|) |#2|) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-((((-474)) |has| |#1| (-554 (-474))))
-(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-(|has| |#1| (-189))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-245)) (|has| |#1| (-311)))
-((((-485)) . T) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-311)))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-311)))
-((($) . T) (((-485)) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-311)))
-(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-349 (-485))) |has| |#1| (-311)))
-(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-349 (-485))) |has| |#1| (-311)))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-349 (-485)) (-349 (-485))) |has| |#1| (-311)))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-311)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
-(((|#1|) |has| |#1| (-259 |#1|)))
-(((|#1| $) |has| |#1| (-240 |#1| |#1|)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-311)) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-349 |#2|) |#3|) . T))
-((((-349 (-485))) |has| (-349 |#2|) (-951 (-349 (-485)))) (((-485)) |has| (-349 |#2|) (-951 (-485))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-485)) |has| (-349 |#2|) (-581 (-485))) (((-349 |#2|)) . T))
-((((-349 |#2|)) . T))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-117))
-((((-349 |#2|) |#3|) . T))
-(|has| (-349 |#2|) (-115))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-(|has| (-349 |#2|) (-189))
-((($) OR (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-188))))
-(OR (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-188)))
-((((-349 |#2|)) . T))
-((($ (-1091)) OR (|has| (-349 |#2|) (-810 (-1091))) (|has| (-349 |#2|) (-812 (-1091)))))
-((((-1091)) OR (|has| (-349 |#2|) (-810 (-1091))) (|has| (-349 |#2|) (-812 (-1091)))))
-((((-1091)) |has| (-349 |#2|) (-810 (-1091))))
-((((-349 |#2|)) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))
+(AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))
+(OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|))))
+(OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|))))
+(AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))
+(AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))
+((((|Integer|)) AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))))
+(AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|)))
+(AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|)))
+(OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))
+(OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))
+(OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))
+(OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))))
+(OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))))
+(AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|)))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|List| (|PositiveInteger|))) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|DirectProduct| |#1| |#2|) |#2|) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+(((|#1|) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))))
+(((|#1|) . T))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+(|has| |#1| (|DifferentialRing|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|)))
+((((|Integer|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+((($) . T) (((|Integer|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+(((|#1|) . T) (($) OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|))) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+(((|#1|) . T) (($) OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|))) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|))) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Field|)))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1|) |has| |#1| (|Evalable| |#1|)))
+(((|#1| $) |has| |#1| (|Eltable| |#1| |#1|)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|)) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) . T))
+(|has| |#1| (|SetCategory|))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Fraction| |#2|) |#3|) . T))
+((((|Fraction| (|Integer|))) |has| #1=(|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| #1# (|RetractableTo| (|Integer|))) ((#1#) . T))
+((((|Fraction| |#2|)) . T))
+((((|Integer|)) |has| #1=(|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((#1#) . T))
+((((|Fraction| |#2|)) . T))
+((((|Fraction| |#2|) |#3|) . T))
+(|has| (|Fraction| |#2|) (|CharacteristicZero|))
+((((|Fraction| |#2|) |#3|) . T))
+(|has| (|Fraction| |#2|) (|CharacteristicNonZero|))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(|has| (|Fraction| |#2|) (|DifferentialRing|))
+((($) OR (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|DifferentialSpace|))))
+(OR (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|DifferentialSpace|)))
+((((|Fraction| |#2|)) . T))
+((($ (|Symbol|)) OR (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) OR (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))))
+((((|Symbol|)) |has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))
+((((|Fraction| |#2|)) . T))
(((|#3|) . T))
-((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-((((-485)) |has| (-349 |#2|) (-581 (-485))) (((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T))
-((((-349 |#2|)) . T) (((-349 (-485))) . T) (($) . T) (((-485)) . T))
+(((#1=(|Fraction| |#2|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+((((|Integer|)) |has| #1=(|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((#1#) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T) (((|Integer|)) . T))
(((|#1| |#2| |#3|) . T))
-((((-349 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((|Fraction| (|Integer|))) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485)) . T) (((-349 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-349 (-485)) (-349 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-349 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-349 (-485))) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-349 (-485))) . T) (((-485)) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) . T) (((-485) (-485)) . T) (($ $) . T))
-(((|#1|) . T) (((-485)) . T) (((-349 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) . T))
-(((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-349 (-485)) (-951 (-485)))) (((-349 (-485))) . T))
-((((-773)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((#1=(|Integer|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) . T) (($ $) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T))
+((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T))
+((((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) . T) ((#2=(|Integer|) #2#) . T) (($ $) . T))
+(((|#1|) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) . T))
+(((|#1|) . T) (((|Integer|)) OR (|has| |#1| (|RetractableTo| (|Integer|))) (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
(((|#4|) . T))
-((((-584 |#4|)) . T) (((-773)) . T))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+((((|List| |#4|)) . T) (((|OutputForm|)) . T))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -3067,49 +3067,49 @@
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Integer|)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T))
-((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))))
-((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-474)) |has| (-704 |#1| (-774 |#2|)) (-554 (-474))))
-((((-704 |#1| (-774 |#2|))) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-((((-474)) |has| |#3| (-554 (-474))))
-(((|#3|) |has| |#3| (-311)))
+(((|#1|) . T) (((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(((|#1| (|IndexedExponents| #1=(|OrderedVariableList| |#2|)) #1# (|NewSparseMultivariatePolynomial| |#1| #1#)) . T))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T))
+((((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) . T) (((|OutputForm|)) . T))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) |has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))))
+(((#1=(|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) #1#) |has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T))
+((((|InputForm|)) |has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|ConvertibleTo| (|InputForm|))))
+((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T))
+(((|#1| (|IndexedExponents| #1=(|OrderedVariableList| |#2|)) #1# (|NewSparseMultivariatePolynomial| |#1| #1#)) . T))
+(((|#1| (|IndexedExponents| #1=(|OrderedVariableList| |#2|)) #1# (|NewSparseMultivariatePolynomial| |#1| #1#)) . T))
+((#1=((|InputForm|)) |has| |#3| (|ConvertibleTo| . #1#)))
+(((|#3|) |has| |#3| (|Field|)))
(((|#3| |#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-631 |#3|)) . T) (((-773)) . T))
-((((-485)) . T) ((|#3|) . T))
+((((|Matrix| |#3|)) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T) ((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
+(((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311))))
-(((|#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) . T))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
-((((-773)) . T))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|))))
+(((|#1| |#2| |#3| (|DirectProduct| |#2| |#3|) (|DirectProduct| |#1| |#3|)) . T))
+(|has| |#1| (|SetCategory|))
+((((|OutputForm|)) |has| |#1| (|SetCategory|)))
+(|has| |#1| (|SetCategory|))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|Symbol|)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3117,210 +3117,210 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-248 |#3|)) . T))
-((((-248 |#3|)) . T))
+((((|Integer|)) . T) (($) . T))
+((((|Integer|)) . T))
+((($) . T) (((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) ((#1=(|Integer|)) . T) (((|Pattern| #1#)) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Integer|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Equation| |#3|)) . T))
+((((|Equation| |#3|)) . T))
(((|#3| |#3|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#3| |#3|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#2|) . T))
-(((|#1|) |has| |#1| (-311)))
-((((-1091)) -11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091))))))
-((($ (-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091))))))
-(((|#1|) |has| |#1| (-311)))
-(OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298)))
-((($) OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))))
-(OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-319)) (|has| |#1| (-298)))
-(|has| |#1| (-298))
-(|has| |#1| (-298))
-(OR (|has| |#1| (-115)) (|has| |#1| (-298)))
-(|has| |#1| (-298))
+(((|#1|) |has| |#1| (|Field|)))
+((((|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))))))
+((($ (|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))))))
+(((|#1|) |has| |#1| (|Field|)))
+(OR (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|))) (AND (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|Field|))) (|has| |#1| (|FiniteFieldCategory|)))
+((($) OR (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|))) (AND (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|Field|))) (|has| |#1| (|FiniteFieldCategory|))))
+(OR (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|))) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)))
+(OR (|has| |#1| (|Finite|)) (|has| |#1| (|FiniteFieldCategory|)))
+(|has| |#1| (|FiniteFieldCategory|))
+(|has| |#1| (|FiniteFieldCategory|))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|FiniteFieldCategory|)))
+(|has| |#1| (|FiniteFieldCategory|))
(((|#1| |#2|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($ $) . T) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-349 (-485))))) ((|#1|) . T))
-(|has| |#1| (-117))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($ $) . T) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1| |#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T))
+((((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((($) . T) (((-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
(((|#1| |#2|) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((|Symbol|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-189)) (|has| |#1| (-188)))
-((($) OR (|has| |#1| (-189)) (|has| |#1| (-188))))
-((((-773)) . T))
-(|has| |#1| (-189))
+(OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|)))
+((($) OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|DifferentialSpace|))))
+((((|OutputForm|)) . T))
+(|has| |#1| (|DifferentialRing|))
((($) . T))
-(((|#1| (-470 (-1001 (-1091))) (-1001 (-1091))) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-1001 (-1091))) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-1001 (-1091))) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-1001 (-1091))) . T))
-((($ $) . T) (((-1091) $) |has| |#1| (-189)) (((-1091) |#1|) |has| |#1| (-189)) (((-1001 (-1091)) |#1|) . T) (((-1001 (-1091)) $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 (-1001 (-1091)))) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 (-1001 (-1091)))) . T))
-((((-1040 |#1| (-1091))) . T) (((-1001 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-1091)) . T))
-((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-1001 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-1091)) . T))
-(((|#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) . T))
+(((|#1| (|IndexedExponents| #1=(|SequentialDifferentialVariable| (|Symbol|))) #1#) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (((|SequentialDifferentialVariable| (|Symbol|))) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|SequentialDifferentialVariable| (|Symbol|))) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SequentialDifferentialVariable| (|Symbol|))) . T))
+((($ $) . T) ((#1=(|Symbol|) $) |has| |#1| . #2=((|DifferentialRing|))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(|SequentialDifferentialVariable| #1#) |#1|) . T) ((#3# $) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+(((|#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) . T))
+((((|SparseMultivariatePolynomial| |#1| #1=(|Symbol|))) . T) (((|SequentialDifferentialVariable| #1#)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((#1#) . T))
+((((|SparseMultivariatePolynomial| |#1| #1=(|Symbol|))) . T) (((|Integer|)) . T) (((|SequentialDifferentialVariable| #1#)) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((#1#) . T))
+(((|#1| #1=(|Symbol|) #2=(|SequentialDifferentialVariable| #1#) (|IndexedExponents| #2#)) . T))
((($) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-584 |#1|)) |has| |#1| (-756)))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
+(((|#1| (|List| |#1|)) |has| |#1| (|OrderedRing|)))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+((((|OutputForm|)) |has| |#1| (|SetCategory|)))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(|has| (-1002 |#1|) (-1014))
-((((-773)) |has| (-1002 |#1|) (-1014)))
-(|has| (-1002 |#1|) (-1014))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(|has| (|Segment| |#1|) (|SetCategory|))
+((((|OutputForm|)) |has| (|Segment| |#1|) (|SetCategory|)))
+(|has| (|Segment| |#1|) (|SetCategory|))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+((((|OutputForm|)) . T))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
(((|#1|) . T))
-(|has| |#1| (-319))
+(|has| |#1| (|Finite|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-178)) . T) (((-773)) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
-((((-1074) (-1091) (-485) (-178) (-773)) . T))
-((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
+((((|List| $)) . T) (((|String|)) . T) (((|Symbol|)) . T) (((|Integer|)) . T) (((|DoubleFloat|)) . T) (((|OutputForm|)) . T))
+((((|Integer|) $) . T) (((|List| (|Integer|)) $) . T))
+((((|OutputForm|)) . T))
+((((|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) . T))
+((((|List| $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((|Integer|) $) . T) (((|List| (|Integer|)) $) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-(OR (|has| |#3| (-18)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-18)) (|has| |#3| (-20)) (|has| |#3| (-101)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-18)) (|has| |#3| (-20)) (|has| |#3| (-22)) (|has| |#3| (-101)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-319)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
-(OR (|has| |#3| (-18)) (|has| |#3| (-20)) (|has| |#3| (-22)) (|has| |#3| (-69)) (|has| |#3| (-101)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-319)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
-(OR (|has| |#3| (-18)) (|has| |#3| (-20)) (|has| |#3| (-22)) (|has| |#3| (-101)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-18)) (|has| |#3| (-101)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(((|#3| |#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))))
-((((-773)) OR (|has| |#3| (-18)) (|has| |#3| (-20)) (|has| |#3| (-22)) (|has| |#3| (-101)) (|has| |#3| (-553 (-773))) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-319)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) (((-1180 |#3|)) . T))
-(((|#3|) |has| |#3| (-962)))
-((((-1091)) -11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))))
-((((-1091)) OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-((($ (-1091)) OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-(((|#3|) |has| |#3| (-962)))
-(OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962))))
-((($) OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-((((-485)) OR (|has| |#3| (-18)) (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
-(-11 (|has| |#3| (-189)) (|has| |#3| (-962)))
-(|has| |#3| (-319))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|)))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|AbelianMonoid|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|Ring|)))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|AbelianMonoid|)) (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|)))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|AbelianMonoid|)) (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|BasicType|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|)))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|AbelianMonoid|)) (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|Ring|)))
+(OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|Ring|)))
+(((|#3| |#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|Ring|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))))
+((((|OutputForm|)) OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|AbelianMonoid|)) (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CoercibleTo| (|OutputForm|))) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|))) (((|Vector| |#3|)) . T))
+(((|#3|) |has| |#3| (|Ring|)))
+((((|Symbol|)) AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))))
+((((|Symbol|)) OR (AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#3| (|Ring|)))))
+((($ (|Symbol|)) OR (AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#3| (|Ring|)))))
+(((|#3|) |has| |#3| (|Ring|)))
+(OR (AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|DifferentialSpace|)) (|has| |#3| (|Ring|))))
+((($) OR (AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|))) (AND (|has| |#3| (|DifferentialSpace|)) (|has| |#3| (|Ring|)))))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+(|has| |#3| (|Ring|))
+((((|Integer|)) OR (|has| |#3| (|AbelianGroup|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) ((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|Ring|)))
+(AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|)))
+(|has| |#3| (|Finite|))
(((|#3|) . T))
-(((|#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
+(((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-962)))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-962)) (((-485)) -11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-1014)))
-((((-485)) OR (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-349 (-485))) -11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))))
-(((|#3|) |has| |#3| (-1014)) (((-485)) -11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-349 (-485))) -11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311)) (|has| |#3| (-664))))
-(((|#3|) OR (|has| |#3| (-145)) (|has| |#3| (-311))))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(((|#3|) |has| |#3| (-311)))
+(((|#3|) |has| |#3| (|Ring|)))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|))))
+(((|#3|) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|))))
+(((|#3|) |has| |#3| (|SetCategory|)))
+((((|Integer|)) OR (AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (|has| |#3| (|Ring|))) ((|#3|) |has| |#3| (|SetCategory|)) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|))))
+(((|#3|) |has| |#3| (|SetCategory|)) (((|Integer|)) AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|))))
+((((|Integer|) |#3|) . T))
+((((|Integer|) |#3|) . T))
+((((|Integer|) |#3|) . T))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Monoid|))))
+(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|))))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)))
+(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedSet|)))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(|has| |#3| (|OrderedAbelianMonoidSup|))
+(((|#3|) |has| |#3| (|Field|)))
(((|#1| |#3|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3328,928 +3328,928 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-329)) . T) (((-178)) . T))
-((((-485)) . T))
-((((-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) (((-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) (((-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))))
+((((|Integer|)) . T) (($) . T))
+((((|Integer|)) . T))
+((($) . T) (((|Integer|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) . T) ((#1=(|Integer|)) . T) (((|Pattern| #1#)) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T))
+((((|Integer|)) . T))
+((((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))))
((($) . T))
-(((|#1| (-470 |#2|)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1|) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1| (-470 |#2|)) . T))
-(((|#1|) . T))
-((($) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+(((|#1| (|IndexedExponents| |#2|)) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((|#1|) . T))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))
+(((|#1| (|IndexedExponents| |#2|)) . T))
+(((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))
+(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-((((-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#2| (-797 (-329)))) (((-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-349 (-485))) |has| |#1| (-951 (-349 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) ((|#2|) . T))
-((((-485)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#2|) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
+((((|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|)))) (((|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T) ((|#2|) . T))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1|) . T) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#2|) . T))
+(((|#1| (|IndexedExponents| |#2|) |#2|) . T))
((($) . T))
((($ $) . T) ((|#2| $) . T))
(((|#2|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-(((|#1|) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-(((|#1| (-470 |#2|)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
+(((|#1| (|IndexedExponents| |#2|) |#2|) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+(((|#1| (|IndexedExponents| |#2|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
(((|#1| |#2|) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|) (-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))))
-((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))))
-((((-773)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-474)) |has| |#2| (-554 (-474))))
-(((|#2|) |has| |#2| (-6 (-3997 "*"))))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|SplittingNode| |#1| |#2|)) . T))
+((((|SplittingNode| |#1| |#2|)) . T))
+((((|SplittingNode| |#1| |#2|)) . T))
+((((|SplittingNode| |#1| |#2|)) . T))
+(((#1=(|SplittingNode| |#1| |#2|) #1#) |has| (|SplittingNode| |#1| |#2|) (|Evalable| (|SplittingNode| |#1| |#2|))))
+((((|SplittingNode| |#1| |#2|)) |has| (|SplittingNode| |#1| |#2|) (|Evalable| (|SplittingNode| |#1| |#2|))))
+((((|OutputForm|)) . T))
+((((|SplittingNode| |#1| |#2|)) . T))
+((#1=((|InputForm|)) |has| |#2| (|ConvertibleTo| . #1#)))
+(((|#2|) |has| |#2| (ATTRIBUTE (|commutative| "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-631 |#2|)) . T) (((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
-(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-145))))
-(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-145))))
+((((|Matrix| |#2|)) . T) (((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T))
+(((|#2|) OR (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (|has| |#2| (|CommutativeRing|))))
+(((|#2|) OR (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (|has| |#2| (|CommutativeRing|))))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))))
+((((|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
+((($ (|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))))
(((|#2|) . T))
-(OR (|has| |#2| (-189)) (|has| |#2| (-188)))
-((($) OR (|has| |#2| (-189)) (|has| |#2| (-188))))
-(|has| |#2| (-189))
+(OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|)))
+((($) OR (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|DifferentialSpace|))))
+(|has| |#2| (|DifferentialRing|))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))))
(((|#2|) . T))
-((((-485)) . T) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#1| |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T))
+((((|Integer|)) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| |#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-(((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#2|) . T))
-(((|#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) . T))
+(((|#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))))
(((|#4|) . T))
(((|#4|) . T))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((|OutputForm|)) . T) (((|List| |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) . T))
-((((-584 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-773)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-485) (-114)) . T))
-((((-485) (-114)) . T))
-((((-485) (-114)) . T) (((-1147 (-485)) $) . T))
-((((-114)) . T))
-((((-114)) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-773)) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1090 |#1| |#2| |#3|)) . T))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1090 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|)))))
-((((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|)))) (((-1091) (-1090 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|)))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-((($) OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-(OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(OR (|has| |#1| (-117)) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-117))))
-(OR (|has| |#1| (-115)) (-11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-115))))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1090 |#1| |#2| |#3|) $) -11 (|has| |#1| (-311)) (|has| (-1090 |#1| |#2| |#3|) (-240 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((((-1090 |#1| |#2| |#3|)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-145)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-1090 |#1| |#2| |#3|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(((|#1|) . T))
+((((|List| |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) . T))
+(|has| |#1| (|SetCategory|))
+(((|#1|) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+((((|Integer|) |#1|) . T))
+((((|UniversalSegment| (|Integer|)) $) . T) (((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|OutputForm|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Integer|) (|Character|)) . T))
+((((|Integer|) (|Character|)) . T))
+((((|Integer|) (|Character|)) . T) (((|UniversalSegment| (|Integer|)) $) . T))
+((((|Character|)) . T))
+((((|Character|)) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|OutputForm|)) . T))
+((((|String|) |#1|) . T))
+((((|String|) |#1|) . T))
+((((|String|) |#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+(((#1=(|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) #1#) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) ((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) ((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|String|) |#1|) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+(((|#1|) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T))
+((((|String|) |#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)))))
+(((#1=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) #1#) AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)))) (((|Symbol|) #1#) AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|InnerEvalable| (|Symbol|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)))))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+((($) OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+(OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+(OR (|has| |#1| (|CharacteristicZero|)) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicZero|))))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicNonZero|))))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) $) AND (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Eltable| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)))) (($ $) . T) (((|Integer|) |#1|) . T))
+(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((#2=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) #2#) |has| |#1| (|Field|)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (((|Integer|)) . T) (($) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Integer|)) . T) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+(((|#1| (|Integer|)) . T))
+(((|#1| (|Integer|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-773)) . T))
-((((-349 $) (-349 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(|has| |#1| (-311))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
-(((|#1|) . T))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))
+(|has| |#1| (|Field|))
+(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+(|has| |#1| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (((|SingletonAsOrderedSet|)) . T))
+((($ (|Symbol|)) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T))
+((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1|) . T))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+((((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((#1=(|SingletonAsOrderedSet|) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
-(((|#1|) . T))
-((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($ $) . T) (((-349 (-485)) |#1|) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-(((|#1| (-349 (-485)) (-995)) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(((|#1|) . T))
-(((|#1| (-349 (-485))) . T))
-(((|#1| (-349 (-485))) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-((((-1177 |#2|)) . T) (((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(((|#1| (-1083 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-695)) . T))
-(((|#1| (-695)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1| (-695) (-995)) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((((-695) |#1|) . T) (($ $) . T))
-(|has| |#1| (-14 * (|#1| (-695) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-695) |#1|))))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T))
-(|has| |#1| (-14 * (|#1| (-695) |#1|)))
-(((|#1|) . T))
-((((-329)) . T) (((-485)) . T))
-((((-447)) . T))
-((((-447)) . T) (((-1074)) . T))
-((((-801 (-329))) . T) (((-801 (-485))) . T) (((-1091)) . T) (((-474)) . T))
-((((-773)) . T))
-(((|#1| (-885)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((((-773)) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) (((-485)) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-349 (-485))) |has| |#1| (-951 (-349 (-485)))))
-(((|#1| (-885)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1074)) . T) (((-447)) . T) (((-178)) . T) (((-485)) . T))
-((((-1074)) . T) (((-447)) . T) (((-178)) . T) (((-485)) . T))
-((((-474)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+(|has| |#1| (|StepThrough|))
+(((|#1|) . T))
+((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($ $) . T) (((|Fraction| (|Integer|)) |#1|) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+(((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(((|#1|) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+((((|Variable| |#2|)) . T) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(((|#1| (|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((((|NonNegativeInteger|) |#1|) . T) (($ $) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))
+(((|#1|) . T))
+((((|Float|)) . T) (((|Integer|)) . T))
+((((|Identifier|)) . T))
+((((|Identifier|)) . T) (((|String|)) . T))
+((((|Pattern| (|Float|))) . T) (((|Pattern| (|Integer|))) . T) (((|Symbol|)) . T) (((|InputForm|)) . T))
+((((|OutputForm|)) . T))
+(((|#1| (|Partition|)) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((((|OutputForm|)) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|)) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1|) . T))
+(((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#1| (|Partition|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|String|)) . T) (((|Identifier|)) . T) (((|DoubleFloat|)) . T) (((|Integer|)) . T))
+((((|String|)) . T) (((|Identifier|)) . T) (((|DoubleFloat|)) . T) (((|Integer|)) . T))
+((((|InputForm|)) . T) (((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|OutputForm|)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ((|#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+(((#1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #1#) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
+((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
+((((|OutputForm|)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-337) (-1074)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|FileName|) (|String|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-69)) (|has| |#1| (-1014)))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|SetCategory|))))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|SetCategory|)))
(((|#1|) . T))
((($) . T))
-((($ $) . T) (((-1091) $) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((($ (-1091)) . T))
-((((-1091)) . T))
-(((|#1| (-470 (-1091)) (-1091)) . T))
-((($) . T) (((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-((($) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-((((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))))
-(((|#1|) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-((((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((|#1|) |has| |#1| (-145)) (($) |has| |#1| (-496)))
-(((|#1| (-470 (-1091))) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-1091)) . T))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-870 |#1|)) . T))
-((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T))
-((((-870 |#1|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1170 |#1| |#2| |#3|)) . T))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1170 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|)))))
-((((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|)))) (((-1091) (-1170 |#1| |#2| |#3|)) -11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|)))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-((($) OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-(OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(OR (|has| |#1| (-117)) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-117))))
-(OR (|has| |#1| (-115)) (-11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-115))))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1170 |#1| |#2| |#3|) $) -11 (|has| |#1| (-311)) (|has| (-1170 |#1| |#2| |#3|) (-240 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((((-1170 |#1| |#2| |#3|)) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-145)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-1170 |#1| |#2| |#3|)) . T))
-(((|#2|) |has| |#1| (-311)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-1067)))
-(((|#2|) . T) (((-1091)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) (((-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) (((-349 (-485))) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-934)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-822)))
-(((|#2|) |has| |#1| (-311)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-(OR (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) (-11 (|has| |#1| (-311)) (|has| |#2| (-757))))
-(OR (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) (-11 (|has| |#1| (-311)) (|has| |#2| (-757))))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-(-11 (|has| |#1| (-311)) (|has| |#2| (-741)))
-((((-329)) -11 (|has| |#1| (-311)) (|has| |#2| (-797 (-329)))) (((-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-797 (-485)))))
-(((|#2|) |has| |#1| (-311)))
-((((-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ((|#2|) |has| |#1| (-311)))
-(((|#2|) |has| |#1| (-311)))
-(((|#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))))
-(((|#2| |#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) (((-1091) |#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-456 (-1091) |#2|))))
-(((|#2|) |has| |#1| (-311)))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(OR (-11 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-((($) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-189))) (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))))
-(OR (-11 (|has| |#1| (-311)) (|has| |#2| (-189))) (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))
-(((|#2|) |has| |#1| (-311)))
-((($ (-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091)))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))))
-(((|#2|) |has| |#1| (-311)))
-((((-178)) -11 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-329)) -11 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-801 (-329))) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-329))))) (((-801 (-485))) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-485))))) (((-474)) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-474)))))
-(OR (|has| |#1| (-117)) (-11 (|has| |#1| (-311)) (|has| |#2| (-117))) (-11 (|has| |#1| (-311)) (|has| |#2| (-741))))
-(OR (|has| |#1| (-115)) (-11 (|has| |#1| (-311)) (|has| |#2| (-115))))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#2| $) -11 (|has| |#1| (-311)) (|has| |#2| (-240 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#2| |#2|) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-((((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-145)))
-(((|#2|) . T) (((-1091)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-145)))
-(((|#2|) |has| |#1| (-311)) ((|#1|) . T))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
+((($ $) . T) (((|Symbol|) $) . T))
+((((|Symbol|)) . T))
+((((|OutputForm|)) . T))
+((($ (|Symbol|)) . T))
+((((|Symbol|)) . T))
+(((|#1| (|IndexedExponents| #1=(|Symbol|)) #1#) . T))
+((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+((((|Integer|)) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)))
+(((|#1| (|IndexedExponents| (|Symbol|))) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|Symbol|)) . T))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+((((|PrimitiveArray| |#1|)) . T))
+((#1=((|OutputForm|)) |has| |#1| (|CoercibleTo| . #1#)) (((|PrimitiveArray| |#1|)) . T))
+((((|PrimitiveArray| |#1|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|UnivariateTaylorSeries| |#1| |#2| |#3|)))))
+(((#1=(|UnivariateTaylorSeries| |#1| |#2| |#3|) #1#) AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|UnivariateTaylorSeries| |#1| |#2| |#3|)))) (((|Symbol|) #1#) AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|InnerEvalable| (|Symbol|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)))))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+((($) OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+(OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)))
+(OR (|has| |#1| (|CharacteristicZero|)) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicZero|))))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicNonZero|))))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|) $) AND (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Eltable| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)))) (($ $) . T) (((|Integer|) |#1|) . T))
+(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((#2=(|UnivariateTaylorSeries| |#1| |#2| |#3|) #2#) |has| |#1| (|Field|)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (((|Integer|)) . T) (($) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Integer|)) . T) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T))
+(((|#1| (|Integer|)) . T))
+(((|#1| (|Integer|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T))
+(((|#2|) |has| |#1| (|Field|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|StepThrough|)))
+(((|#2|) . T) (((|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Symbol|)))) (((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|)))))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(((|#2|) |has| |#1| (|Field|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+(OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedSet|))))
+(OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedSet|))))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))
+((((|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Float|)))) (((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Integer|)))))
+(((|#2|) |has| |#1| (|Field|)))
+((((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) ((|#2|) |has| |#1| (|Field|)))
+(((|#2|) |has| |#1| (|Field|)))
+(((|#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|))))
+(((|#2| |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|))) (((|Symbol|) |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|InnerEvalable| (|Symbol|) |#2|))))
+(((|#2|) |has| |#1| (|Field|)))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+((($) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))
+(OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialSpace|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))
+(((|#2|) |has| |#1| (|Field|)))
+((($ (|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+((((|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))))
+(((|#2|) |has| |#1| (|Field|)))
+((((|DoubleFloat|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) (((|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) (((|Pattern| (|Float|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|InputForm|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|InputForm|)))))
+(OR (|has| |#1| (|CharacteristicZero|)) (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicZero|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))))
+(OR (|has| |#1| (|CharacteristicNonZero|)) (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicNonZero|))))
+((((|OutputForm|)) . T))
+(((|#1|) . T))
+(((|#2| $) AND (|has| |#1| (|Field|)) (|has| |#2| (|Eltable| |#2| |#2|))) (($ $) . T) (((|Integer|) |#1|) . T))
+(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2| |#2|) |has| |#1| (|Field|)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) . T))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) (((|Integer|)) . T) (($) . T) ((|#1|) . T))
+((((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#2|) . T) (((|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Integer|)) . T) ((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#2|) |has| |#1| (|Field|)) ((|#1|) . T))
+(((|#1| (|Integer|)) . T))
+(((|#1| (|Integer|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
(((|#1| |#2|) . T))
-(((|#1| (-1070 |#1|)) |has| |#1| (-756)))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
+(((|#1| (|Stream| |#1|)) |has| |#1| (|OrderedRing|)))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+(|has| |#1| (|SetCategory|))
+((((|OutputForm|)) |has| |#1| (|SetCategory|)))
+(|has| |#1| (|SetCategory|))
(((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
((($) . T))
-((((-773)) . T))
-((((-349 $) (-349 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T))
-(|has| |#2| (-311))
-(OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(|has| |#2| (-311))
-(((|#2| (-695) (-995)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#2| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((((|Fraction| $) (|Fraction| $)) |has| |#2| (|IntegralDomain|)) (($ $) . T) ((|#2| |#2|) . T))
+(|has| |#2| (|Field|))
+(OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))
+(|has| |#2| (|Field|))
+(((|#2| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+(|has| |#2| (|PolynomialFactorizationExplicit|))
+((((|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (((|SingletonAsOrderedSet|)) . T))
+((($ (|Symbol|)) OR (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (($ (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T))
+((((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|#2|) . T))
(((|#2|) . T))
-(((|#2| (-695)) . T))
+(((|#2| (|NonNegativeInteger|)) . T))
(((|#2|) . T))
-(|has| |#2| (-117))
-(|has| |#2| (-115))
-((((-1177 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-995)) . T) ((|#2|) . T) (((-349 (-485))) OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-145)) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-145)) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($) . T) (((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((((-485)) . T) (($) . T) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#2| (-145)) (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-349 (-485)) (-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-145)) (((-349 (-485))) |has| |#2| (-35 (-349 (-485)))))
+(|has| |#2| (|CharacteristicZero|))
+(|has| |#2| (|CharacteristicNonZero|))
+((((|Variable| |#1|)) . T) (((|Integer|)) . T) (($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (((|SingletonAsOrderedSet|)) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))))
+((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((((|Integer|)) . T) (($) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2| |#2|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))))
(((|#2|) . T))
-((((-995)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-349 (-485))) |has| |#2| (-951 (-349 (-485)))))
-(((|#2| (-695)) . T))
-((((-995) |#2|) . T) (((-995) $) . T) (($ $) . T))
+((((|SingletonAsOrderedSet|)) . T) ((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))
+(((|#2| (|NonNegativeInteger|)) . T))
+(((#1=(|SingletonAsOrderedSet|) |#2|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#2| (-1067))
+(|has| |#2| (|StepThrough|))
(((|#2|) . T))
-((((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($ $) . T) (((-349 (-485)) |#1|) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-(((|#1| (-349 (-485)) (-995)) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(((|#1|) . T))
-(((|#1| (-349 (-485))) . T))
-(((|#1| (-349 (-485))) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-((((-1177 |#2|)) . T) (((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(((|#1| (-1140 |#1| |#2| |#3|)) . T))
+((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($ $) . T) (((|Fraction| (|Integer|)) |#1|) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+(((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(((|#1|) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+((((|Variable| |#2|)) . T) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(((|#1| (|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T))
(((|#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))))
-(|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))
-((($ $) . T) (((-349 (-485)) |#1|) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))))
-(((|#1| (-349 (-485)) (-995)) . T))
-(|has| |#1| (-115))
-(|has| |#1| (-117))
-(((|#1|) . T))
-(((|#1| (-349 (-485))) . T))
-(((|#1| (-349 (-485))) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496))) (((-349 (-485)) (-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) . T))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(((|#2|) . T) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-311))) (((-485)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-145)) (|has| |#1| (-311)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-496)))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
-(|has| |#1| (-311))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))
+(|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))
+((($ $) . T) (((|Fraction| (|Integer|)) |#1|) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))))
+(((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T))
+(|has| |#1| (|CharacteristicNonZero|))
+(|has| |#1| (|CharacteristicZero|))
+(((|#1|) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(((|#1| (|Fraction| (|Integer|))) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Field|))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((#1=(|Fraction| (|Integer|)) #1#) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) . T))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(((|#2|) . T) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|Integer|)) . T) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
+(|has| |#1| (|Field|))
(((|#1| |#2|) . T))
-((((-1161 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|)) . T))
-(|has| (-1161 |#2| |#3| |#4|) (-117))
-(|has| (-1161 |#2| |#3| |#4|) (-115))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-145)) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-145)) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((((-773)) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((($ $) . T) (((-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) . T) (((-349 (-485)) (-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((((-1161 |#2| |#3| |#4|)) . T) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))) (($) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))) (((-485)) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-145)) (((-349 (-485))) |has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))))
-((((-1161 |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(|has| |#1| (-35 (-349 (-485))))
-(((|#1| (-695)) . T))
-(((|#1| (-695)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) . T))
-(OR (|has| |#1| (-145)) (|has| |#1| (-496)))
-(|has| |#1| (-117))
-(|has| |#1| (-115))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($ $) OR (|has| |#1| (-145)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))))
-(((|#1| (-695) (-995)) . T))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((((-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))))
-((((-695) |#1|) . T) (($ $) . T))
-(|has| |#1| (-14 * (|#1| (-695) |#1|)))
-((($) |has| |#1| (-14 * (|#1| (-695) |#1|))))
-((((-773)) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-145)) (((-349 (-485))) |has| |#1| (-35 (-349 (-485)))) (((-485)) . T))
-(|has| |#1| (-14 * (|#1| (-695) |#1|)))
-(((|#1|) . T))
-((((-1091)) . T) (((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-69)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-485) |#1|) . T))
-((((-485) |#1|) . T))
-((((-485) |#1|) . T) (((-1147 (-485)) $) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
-(((|#1| |#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T))
+(|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CharacteristicZero|))
+(|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CharacteristicNonZero|))
+((($) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| #1# (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| #1# (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+((((|OutputForm|)) . T))
+((($) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+((($) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) #1#) . T) ((#2=(|Fraction| (|Integer|)) #2#) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+(((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+(((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T))
+((($) . T) ((#1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| #1# (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| #1# (|Algebra| (|Fraction| (|Integer|)))))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T))
+((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(|has| |#1| (|Algebra| (|Fraction| (|Integer|))))
+(((|#1| (|NonNegativeInteger|)) . T))
+(((|#1| (|NonNegativeInteger|)) . T))
+(|has| |#1| (|IntegralDomain|))
+(|has| |#1| (|IntegralDomain|))
+(((|#1|) . T))
+(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))
+(|has| |#1| (|CharacteristicZero|))
+(|has| |#1| (|CharacteristicNonZero|))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) ((#1=(|Fraction| (|Integer|)) #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))))
+(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((($ (|Variable| |#2|)) . T) (($ (|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((((|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))))
+((((|NonNegativeInteger|) |#1|) . T) (($ $) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))
+((($) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T) (($) . T))
+(((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T))
+((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (((|Integer|)) . T))
+(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))
+(((|#1|) . T))
+((((|Symbol|)) . T) (((|OutputForm|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (|BasicType|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+((((|OutputForm|)) OR (|has| |#1| (|CoercibleTo| (|OutputForm|))) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))
+(((|#1|) . T))
+(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T))
+((((|Integer|) |#1|) . T) (((|UniversalSegment| (|Integer|)) $) . T))
+((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))))
+(((|#1|) . T))
+(|has| |#1| (|OrderedSet|))
+(|has| |#1| (|OrderedSet|))
+(((|#1|) . T))
+(((|#1|) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|OutputForm|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|Syntax|)) . T))
+((((|OutputForm|)) . T) (((|Syntax|)) . T))
+((((|Syntax|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1| |#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#4|) . T))
-(((|#1|) |has| |#1| (-145)) ((|#4|) . T) (((-485)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T))
-(((|#4|) . T) (((-773)) . T))
-(((|#1|) |has| |#1| (-145)) (($) . T) (((-485)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) ((|#4|) . T) (((|Integer|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T))
+(((|#4|) . T) (((|OutputForm|)) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T) (((|Integer|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))))
(((|#4|) . T))
(((|#4|) . T))
-(((|#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
+(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((|OutputForm|)) . T) (((|List| |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2|) . T))
(((|#1| |#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((|OutputForm|)) . T))
+((($) . T) (((|Integer|)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-145)))
-(((|#2|) |has| |#2| (-145)))
-((((-740 |#1|)) . T))
-(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-(((|#2| (-740 |#1|)) . T))
-(((|#2| (-804 |#1|)) . T))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+((((|OrderedFreeMonoid| |#1|)) . T))
+(((|#2|) . T) (((|Integer|)) . T) (((|OrderedFreeMonoid| |#1|)) . T))
+(((|#2| (|OrderedFreeMonoid| |#1|)) . T))
+(((|#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) . T))
(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-145)))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-((((-804 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-((((-804 |#1|)) . T) (((-740 |#1|)) . T))
+((((|OutputForm|)) . T))
+(((|#2|) . T) (($) . T) (((|Integer|)) . T))
+((((|PoincareBirkhoffWittLyndonBasis| |#1|)) . T) ((|#2|) . T) (((|Integer|)) . T) (((|OrderedFreeMonoid| |#1|)) . T))
+((((|PoincareBirkhoffWittLyndonBasis| |#1|)) . T) (((|OrderedFreeMonoid| |#1|)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-1091) |#1|) . T))
-(((|#1|) |has| |#1| (-145)))
+((((|Symbol|) |#1|) . T))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
-(((|#1|) . T) (((-485)) . T) (((-740 (-1091))) . T))
-((((-740 (-1091))) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) . T) (((|Integer|)) . T))
+(((|#1|) . T) (((|Integer|)) . T) (((|OrderedFreeMonoid| (|Symbol|))) . T))
+((((|OrderedFreeMonoid| (|Symbol|))) . T))
(((|#1|) . T))
-((((-1091) |#1|) . T))
+((((|Symbol|) |#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-145)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-145)))
-(((|#1|) |has| |#1| (-145)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
+(((|#1|) |has| |#1| (|CommutativeRing|)))
(((|#1|) . T))
-(((|#2|) . T) ((|#1|) . T) (((-485)) . T))
+(((|#2|) . T) ((|#1|) . T) (((|Integer|)) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
+((((|OutputForm|)) . T))
+(((|#1|) . T) (($) . T) (((|Integer|)) . T))
(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-145)))
-(((|#2|) |has| |#2| (-145)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
+(((|#2|) |has| |#2| (|CommutativeRing|)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-((((-740 |#1|)) . T))
+((((|OutputForm|)) . T))
+(((|#2|) . T) (($) . T) (((|Integer|)) . T))
+(((|#2|) . T) (((|Integer|)) . T) (((|OrderedFreeMonoid| |#1|)) . T))
+((((|OrderedFreeMonoid| |#1|)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-885)) . T))
-((((-885)) . T))
-((((-885)) . T) (((-773)) . T))
-((((-485)) . T))
+((((|Partition|)) . T))
+((((|Partition|)) . T))
+((((|Partition|)) . T) (((|OutputForm|)) . T))
+((((|Integer|)) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((((-485)) . T) (($) . T))
+((((|OutputForm|)) . T))
+((((|Integer|)) . T) (($) . T))
((($) . T))
-((((-485)) . T))
-(((-1210 . -145) T) ((-1210 . -556) 203836) ((-1210 . -971) T) ((-1210 . -1026) T) ((-1210 . -1062) T) ((-1210 . -664) T) ((-1210 . -962) T) ((-1210 . -591) 203823) ((-1210 . -589) 203795) ((-1210 . -101) T) ((-1210 . -22) T) ((-1210 . -69) T) ((-1210 . -12) T) ((-1210 . -1130) T) ((-1210 . -553) 203777) ((-1210 . -1014) T) ((-1210 . -20) T) ((-1210 . -18) T) ((-1210 . -969) 203764) ((-1210 . -964) 203751) ((-1210 . -79) 203736) ((-1210 . -319) T) ((-1210 . -554) 203718) ((-1210 . -1067) T) ((-1206 . -1014) T) ((-1206 . -553) 203685) ((-1206 . -1130) T) ((-1206 . -12) T) ((-1206 . -69) T) ((-1206 . -430) 203667) ((-1206 . -556) 203649) ((-1205 . -1203) 203628) ((-1205 . -380) 203612) ((-1205 . -12) T) ((-1205 . -1130) T) ((-1205 . -951) 203589) ((-1205 . -556) 203538) ((-1205 . -962) T) ((-1205 . -664) T) ((-1205 . -1062) T) ((-1205 . -1026) T) ((-1205 . -971) T) ((-1205 . -18) T) ((-1205 . -589) 203497) ((-1205 . -20) T) ((-1205 . -1014) T) ((-1205 . -553) 203479) ((-1205 . -69) T) ((-1205 . -22) T) ((-1205 . -101) T) ((-1205 . -591) 203453) ((-1205 . -1195) 203437) ((-1205 . -655) 203407) ((-1205 . -583) 203377) ((-1205 . -969) 203361) ((-1205 . -964) 203345) ((-1205 . -79) 203324) ((-1205 . -35) 203294) ((-1205 . -1200) 203273) ((-1204 . -962) T) ((-1204 . -664) T) ((-1204 . -1062) T) ((-1204 . -1026) T) ((-1204 . -971) T) ((-1204 . -18) T) ((-1204 . -589) 203232) ((-1204 . -20) T) ((-1204 . -1014) T) ((-1204 . -553) 203214) ((-1204 . -1130) T) ((-1204 . -12) T) ((-1204 . -69) T) ((-1204 . -22) T) ((-1204 . -101) T) ((-1204 . -591) 203188) ((-1204 . -556) 203144) ((-1204 . -1195) 203128) ((-1204 . -655) 203098) ((-1204 . -583) 203068) ((-1204 . -969) 203052) ((-1204 . -964) 203036) ((-1204 . -79) 203015) ((-1204 . -35) 202985) ((-1204 . -334) 202964) ((-1204 . -951) 202948) ((-1204 . -380) 202932) ((-1202 . -1203) 202908) ((-1202 . -380) 202892) ((-1202 . -12) T) ((-1202 . -1130) T) ((-1202 . -951) 202866) ((-1202 . -556) 202812) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1062) T) ((-1202 . -1026) T) ((-1202 . -971) T) ((-1202 . -18) T) ((-1202 . -589) 202771) ((-1202 . -20) T) ((-1202 . -1014) T) ((-1202 . -553) 202753) ((-1202 . -69) T) ((-1202 . -22) T) ((-1202 . -101) T) ((-1202 . -591) 202727) ((-1202 . -1195) 202711) ((-1202 . -655) 202681) ((-1202 . -583) 202651) ((-1202 . -969) 202635) ((-1202 . -964) 202619) ((-1202 . -79) 202598) ((-1202 . -35) 202568) ((-1202 . -1200) 202544) ((-1201 . -1203) 202523) ((-1201 . -380) 202507) ((-1201 . -12) T) ((-1201 . -1130) T) ((-1201 . -951) 202464) ((-1201 . -556) 202393) ((-1201 . -962) T) ((-1201 . -664) T) ((-1201 . -1062) T) ((-1201 . -1026) T) ((-1201 . -971) T) ((-1201 . -18) T) ((-1201 . -589) 202352) ((-1201 . -20) T) ((-1201 . -1014) T) ((-1201 . -553) 202334) ((-1201 . -69) T) ((-1201 . -22) T) ((-1201 . -101) T) ((-1201 . -591) 202308) ((-1201 . -1195) 202292) ((-1201 . -655) 202262) ((-1201 . -583) 202232) ((-1201 . -969) 202216) ((-1201 . -964) 202200) ((-1201 . -79) 202179) ((-1201 . -35) 202149) ((-1201 . -1200) 202128) ((-1201 . -334) 202100) ((-1196 . -334) 202072) ((-1196 . -556) 202021) ((-1196 . -951) 201998) ((-1196 . -583) 201968) ((-1196 . -655) 201938) ((-1196 . -380) 201922) ((-1196 . -591) 201896) ((-1196 . -589) 201855) ((-1196 . -101) T) ((-1196 . -22) T) ((-1196 . -69) T) ((-1196 . -12) T) ((-1196 . -1130) T) ((-1196 . -553) 201837) ((-1196 . -1014) T) ((-1196 . -20) T) ((-1196 . -18) T) ((-1196 . -969) 201821) ((-1196 . -964) 201805) ((-1196 . -79) 201784) ((-1196 . -1203) 201763) ((-1196 . -962) T) ((-1196 . -664) T) ((-1196 . -1062) T) ((-1196 . -1026) T) ((-1196 . -971) T) ((-1196 . -1195) 201747) ((-1196 . -35) 201717) ((-1196 . -1200) 201696) ((-1194 . -1125) 201665) ((-1194 . -1036) 201649) ((-1194 . -553) 201611) ((-1194 . -121) 201595) ((-1194 . -31) T) ((-1194 . -12) T) ((-1194 . -1130) T) ((-1194 . -69) T) ((-1194 . -259) 201533) ((-1194 . -456) 201466) ((-1194 . -380) 201450) ((-1194 . -1014) T) ((-1194 . -429) 201434) ((-1194 . -554) 201395) ((-1194 . -317) 201379) ((-1194 . -890) 201348) ((-1193 . -962) T) ((-1193 . -664) T) ((-1193 . -1062) T) ((-1193 . -1026) T) ((-1193 . -971) T) ((-1193 . -18) T) ((-1193 . -589) 201293) ((-1193 . -20) T) ((-1193 . -1014) T) ((-1193 . -553) 201262) ((-1193 . -1130) T) ((-1193 . -12) T) ((-1193 . -69) T) ((-1193 . -22) T) ((-1193 . -101) T) ((-1193 . -591) 201222) ((-1193 . -556) 201164) ((-1193 . -430) 201148) ((-1193 . -35) 201118) ((-1193 . -79) 201083) ((-1193 . -964) 201053) ((-1193 . -969) 201023) ((-1193 . -583) 200993) ((-1193 . -655) 200963) ((-1192 . -996) T) ((-1192 . -430) 200944) ((-1192 . -553) 200910) ((-1192 . -556) 200891) ((-1192 . -1014) T) ((-1192 . -1130) T) ((-1192 . -12) T) ((-1192 . -69) T) ((-1192 . -61) T) ((-1191 . -996) T) ((-1191 . -430) 200872) ((-1191 . -553) 200838) ((-1191 . -556) 200819) ((-1191 . -1014) T) ((-1191 . -1130) T) ((-1191 . -12) T) ((-1191 . -69) T) ((-1191 . -61) T) ((-1186 . -553) 200801) ((-1184 . -1014) T) ((-1184 . -553) 200783) ((-1184 . -1130) T) ((-1184 . -12) T) ((-1184 . -69) T) ((-1183 . -1014) T) ((-1183 . -553) 200765) ((-1183 . -1130) T) ((-1183 . -12) T) ((-1183 . -69) T) ((-1180 . -1179) 200749) ((-1180 . -323) 200733) ((-1180 . -760) 200712) ((-1180 . -757) 200691) ((-1180 . -121) 200675) ((-1180 . -554) 200636) ((-1180 . -240) 200588) ((-1180 . -539) 200565) ((-1180 . -242) 200542) ((-1180 . -594) 200526) ((-1180 . -429) 200510) ((-1180 . -1014) 200463) ((-1180 . -380) 200447) ((-1180 . -456) 200380) ((-1180 . -259) 200318) ((-1180 . -553) 200233) ((-1180 . -69) 200167) ((-1180 . -1130) T) ((-1180 . -12) T) ((-1180 . -31) T) ((-1180 . -317) 200151) ((-1180 . -1036) 200135) ((-1180 . -16) 200119) ((-1177 . -1014) T) ((-1177 . -553) 200085) ((-1177 . -1130) T) ((-1177 . -12) T) ((-1177 . -69) T) ((-1170 . -1173) 200069) ((-1170 . -189) 200028) ((-1170 . -556) 199910) ((-1170 . -591) 199835) ((-1170 . -589) 199745) ((-1170 . -101) T) ((-1170 . -22) T) ((-1170 . -69) T) ((-1170 . -553) 199727) ((-1170 . -1014) T) ((-1170 . -20) T) ((-1170 . -18) T) ((-1170 . -971) T) ((-1170 . -1026) T) ((-1170 . -1062) T) ((-1170 . -664) T) ((-1170 . -962) T) ((-1170 . -185) 199680) ((-1170 . -12) T) ((-1170 . -1130) T) ((-1170 . -188) 199639) ((-1170 . -240) 199604) ((-1170 . -810) 199517) ((-1170 . -807) 199405) ((-1170 . -812) 199318) ((-1170 . -887) 199288) ((-1170 . -35) 199185) ((-1170 . -79) 199050) ((-1170 . -964) 198936) ((-1170 . -969) 198822) ((-1170 . -583) 198719) ((-1170 . -655) 198616) ((-1170 . -115) 198595) ((-1170 . -117) 198574) ((-1170 . -145) 198528) ((-1170 . -380) 198512) ((-1170 . -496) 198491) ((-1170 . -245) 198470) ((-1170 . -44) 198447) ((-1170 . -1159) 198424) ((-1170 . -32) 198390) ((-1170 . -63) 198356) ((-1170 . -238) 198322) ((-1170 . -433) 198288) ((-1170 . -1119) 198254) ((-1170 . -1116) 198220) ((-1170 . -916) 198186) ((-1167 . -276) 198130) ((-1167 . -951) 198096) ((-1167 . -354) 198062) ((-1167 . -35) 197919) ((-1167 . -556) 197793) ((-1167 . -591) 197682) ((-1167 . -589) 197556) ((-1167 . -971) T) ((-1167 . -1026) T) ((-1167 . -1062) T) ((-1167 . -664) T) ((-1167 . -962) T) ((-1167 . -79) 197406) ((-1167 . -964) 197295) ((-1167 . -969) 197184) ((-1167 . -18) T) ((-1167 . -20) T) ((-1167 . -1014) T) ((-1167 . -553) 197166) ((-1167 . -1130) T) ((-1167 . -12) T) ((-1167 . -69) T) ((-1167 . -22) T) ((-1167 . -101) T) ((-1167 . -583) 197023) ((-1167 . -655) 196880) ((-1167 . -115) 196841) ((-1167 . -117) 196802) ((-1167 . -145) T) ((-1167 . -380) 196768) ((-1167 . -496) T) ((-1167 . -245) T) ((-1167 . -44) 196712) ((-1166 . -1165) 196691) ((-1166 . -311) 196670) ((-1166 . -1135) 196649) ((-1166 . -833) 196628) ((-1166 . -496) 196582) ((-1166 . -145) 196516) ((-1166 . -556) 196335) ((-1166 . -655) 196182) ((-1166 . -583) 196029) ((-1166 . -35) 195876) ((-1166 . -392) 195855) ((-1166 . -257) 195834) ((-1166 . -591) 195734) ((-1166 . -589) 195619) ((-1166 . -971) T) ((-1166 . -1026) T) ((-1166 . -1062) T) ((-1166 . -664) T) ((-1166 . -962) T) ((-1166 . -79) 195439) ((-1166 . -964) 195280) ((-1166 . -969) 195121) ((-1166 . -18) T) ((-1166 . -20) T) ((-1166 . -1014) T) ((-1166 . -553) 195103) ((-1166 . -1130) T) ((-1166 . -12) T) ((-1166 . -69) T) ((-1166 . -22) T) ((-1166 . -101) T) ((-1166 . -245) 195057) ((-1166 . -200) 195036) ((-1166 . -916) 195002) ((-1166 . -1116) 194968) ((-1166 . -1119) 194934) ((-1166 . -433) 194900) ((-1166 . -238) 194866) ((-1166 . -63) 194832) ((-1166 . -32) 194798) ((-1166 . -1159) 194768) ((-1166 . -44) 194738) ((-1166 . -380) 194722) ((-1166 . -117) 194701) ((-1166 . -115) 194680) ((-1166 . -887) 194643) ((-1166 . -812) 194549) ((-1166 . -807) 194453) ((-1166 . -810) 194359) ((-1166 . -240) 194317) ((-1166 . -188) 194269) ((-1166 . -185) 194215) ((-1166 . -189) 194167) ((-1166 . -1163) 194151) ((-1166 . -951) 194135) ((-1161 . -1165) 194096) ((-1161 . -311) 194075) ((-1161 . -1135) 194054) ((-1161 . -833) 194033) ((-1161 . -496) 193987) ((-1161 . -145) 193921) ((-1161 . -556) 193670) ((-1161 . -655) 193517) ((-1161 . -583) 193364) ((-1161 . -35) 193211) ((-1161 . -392) 193190) ((-1161 . -257) 193169) ((-1161 . -591) 193069) ((-1161 . -589) 192954) ((-1161 . -971) T) ((-1161 . -1026) T) ((-1161 . -1062) T) ((-1161 . -664) T) ((-1161 . -962) T) ((-1161 . -79) 192774) ((-1161 . -964) 192615) ((-1161 . -969) 192456) ((-1161 . -18) T) ((-1161 . -20) T) ((-1161 . -1014) T) ((-1161 . -553) 192438) ((-1161 . -1130) T) ((-1161 . -12) T) ((-1161 . -69) T) ((-1161 . -22) T) ((-1161 . -101) T) ((-1161 . -245) 192392) ((-1161 . -200) 192371) ((-1161 . -916) 192337) ((-1161 . -1116) 192303) ((-1161 . -1119) 192269) ((-1161 . -433) 192235) ((-1161 . -238) 192201) ((-1161 . -63) 192167) ((-1161 . -32) 192133) ((-1161 . -1159) 192103) ((-1161 . -44) 192073) ((-1161 . -380) 192057) ((-1161 . -117) 192036) ((-1161 . -115) 192015) ((-1161 . -887) 191978) ((-1161 . -812) 191884) ((-1161 . -807) 191765) ((-1161 . -810) 191671) ((-1161 . -240) 191629) ((-1161 . -188) 191581) ((-1161 . -185) 191527) ((-1161 . -189) 191479) ((-1161 . -1163) 191463) ((-1161 . -951) 191398) ((-1149 . -1156) 191382) ((-1149 . -1067) 191360) ((-1149 . -554) NIL) ((-1149 . -259) 191347) ((-1149 . -456) 191295) ((-1149 . -276) 191272) ((-1149 . -951) 191155) ((-1149 . -354) 191139) ((-1149 . -35) 190971) ((-1149 . -79) 190776) ((-1149 . -964) 190602) ((-1149 . -969) 190428) ((-1149 . -589) 190338) ((-1149 . -591) 190227) ((-1149 . -583) 190059) ((-1149 . -655) 189891) ((-1149 . -556) 189647) ((-1149 . -115) 189626) ((-1149 . -117) 189605) ((-1149 . -380) 189589) ((-1149 . -44) 189566) ((-1149 . -328) 189550) ((-1149 . -581) 189498) ((-1149 . -810) 189442) ((-1149 . -807) 189349) ((-1149 . -812) 189260) ((-1149 . -797) NIL) ((-1149 . -822) 189239) ((-1149 . -1135) 189218) ((-1149 . -862) 189188) ((-1149 . -833) 189167) ((-1149 . -496) 189081) ((-1149 . -245) 188995) ((-1149 . -145) 188889) ((-1149 . -392) 188823) ((-1149 . -257) 188802) ((-1149 . -240) 188729) ((-1149 . -189) T) ((-1149 . -101) T) ((-1149 . -22) T) ((-1149 . -69) T) ((-1149 . -553) 188711) ((-1149 . -1014) T) ((-1149 . -20) T) ((-1149 . -18) T) ((-1149 . -971) T) ((-1149 . -1026) T) ((-1149 . -1062) T) ((-1149 . -664) T) ((-1149 . -962) T) ((-1149 . -185) 188698) ((-1149 . -12) T) ((-1149 . -1130) T) ((-1149 . -188) T) ((-1149 . -224) 188682) ((-1149 . -183) 188666) ((-1147 . -1007) 188650) ((-1147 . -558) 188634) ((-1147 . -1014) 188612) ((-1147 . -553) 188579) ((-1147 . -1130) 188557) ((-1147 . -12) 188535) ((-1147 . -69) 188513) ((-1147 . -1008) 188470) ((-1145 . -1144) 188449) ((-1145 . -916) 188415) ((-1145 . -1116) 188381) ((-1145 . -1119) 188347) ((-1145 . -433) 188313) ((-1145 . -238) 188279) ((-1145 . -63) 188245) ((-1145 . -32) 188211) ((-1145 . -1159) 188188) ((-1145 . -44) 188165) ((-1145 . -380) 188122) ((-1145 . -556) 187877) ((-1145 . -655) 187697) ((-1145 . -583) 187517) ((-1145 . -591) 187328) ((-1145 . -589) 187186) ((-1145 . -969) 187000) ((-1145 . -964) 186814) ((-1145 . -79) 186602) ((-1145 . -35) 186422) ((-1145 . -887) 186392) ((-1145 . -240) 186292) ((-1145 . -1142) 186276) ((-1145 . -971) T) ((-1145 . -1026) T) ((-1145 . -1062) T) ((-1145 . -664) T) ((-1145 . -962) T) ((-1145 . -18) T) ((-1145 . -20) T) ((-1145 . -1014) T) ((-1145 . -553) 186258) ((-1145 . -1130) T) ((-1145 . -12) T) ((-1145 . -69) T) ((-1145 . -22) T) ((-1145 . -101) T) ((-1145 . -115) 186186) ((-1145 . -117) 186068) ((-1145 . -554) 185741) ((-1145 . -183) 185711) ((-1145 . -810) 185565) ((-1145 . -812) 185365) ((-1145 . -807) 185163) ((-1145 . -224) 185133) ((-1145 . -188) 184995) ((-1145 . -185) 184851) ((-1145 . -189) 184759) ((-1145 . -311) 184738) ((-1145 . -1135) 184717) ((-1145 . -833) 184696) ((-1145 . -496) 184650) ((-1145 . -145) 184584) ((-1145 . -392) 184563) ((-1145 . -257) 184542) ((-1145 . -245) 184496) ((-1145 . -200) 184475) ((-1145 . -287) 184445) ((-1145 . -456) 184305) ((-1145 . -259) 184244) ((-1145 . -328) 184214) ((-1145 . -581) 184122) ((-1145 . -342) 184092) ((-1145 . -797) 183965) ((-1145 . -741) 183918) ((-1145 . -715) 183871) ((-1145 . -717) 183824) ((-1145 . -757) 183726) ((-1145 . -760) 183628) ((-1145 . -719) 183581) ((-1145 . -722) 183534) ((-1145 . -756) 183487) ((-1145 . -795) 183457) ((-1145 . -822) 183410) ((-1145 . -934) 183363) ((-1145 . -951) 183152) ((-1145 . -1067) 183104) ((-1145 . -905) 183074) ((-1140 . -1144) 183035) ((-1140 . -916) 183001) ((-1140 . -1116) 182967) ((-1140 . -1119) 182933) ((-1140 . -433) 182899) ((-1140 . -238) 182865) ((-1140 . -63) 182831) ((-1140 . -32) 182797) ((-1140 . -1159) 182774) ((-1140 . -44) 182751) ((-1140 . -380) 182690) ((-1140 . -556) 182491) ((-1140 . -655) 182293) ((-1140 . -583) 182095) ((-1140 . -591) 181950) ((-1140 . -589) 181790) ((-1140 . -969) 181586) ((-1140 . -964) 181382) ((-1140 . -79) 181134) ((-1140 . -35) 180936) ((-1140 . -887) 180906) ((-1140 . -240) 180734) ((-1140 . -1142) 180718) ((-1140 . -971) T) ((-1140 . -1026) T) ((-1140 . -1062) T) ((-1140 . -664) T) ((-1140 . -962) T) ((-1140 . -18) T) ((-1140 . -20) T) ((-1140 . -1014) T) ((-1140 . -553) 180700) ((-1140 . -1130) T) ((-1140 . -12) T) ((-1140 . -69) T) ((-1140 . -22) T) ((-1140 . -101) T) ((-1140 . -115) 180610) ((-1140 . -117) 180520) ((-1140 . -554) NIL) ((-1140 . -183) 180472) ((-1140 . -810) 180308) ((-1140 . -812) 180072) ((-1140 . -807) 179811) ((-1140 . -224) 179763) ((-1140 . -188) 179589) ((-1140 . -185) 179409) ((-1140 . -189) 179299) ((-1140 . -311) 179278) ((-1140 . -1135) 179257) ((-1140 . -833) 179236) ((-1140 . -496) 179190) ((-1140 . -145) 179124) ((-1140 . -392) 179103) ((-1140 . -257) 179082) ((-1140 . -245) 179036) ((-1140 . -200) 179015) ((-1140 . -287) 178967) ((-1140 . -456) 178701) ((-1140 . -259) 178586) ((-1140 . -328) 178538) ((-1140 . -581) 178490) ((-1140 . -342) 178442) ((-1140 . -797) NIL) ((-1140 . -741) NIL) ((-1140 . -715) NIL) ((-1140 . -717) NIL) ((-1140 . -757) NIL) ((-1140 . -760) NIL) ((-1140 . -719) NIL) ((-1140 . -722) NIL) ((-1140 . -756) NIL) ((-1140 . -795) 178394) ((-1140 . -822) NIL) ((-1140 . -934) NIL) ((-1140 . -951) 178360) ((-1140 . -1067) NIL) ((-1140 . -905) 178312) ((-1139 . -753) T) ((-1139 . -760) T) ((-1139 . -757) T) ((-1139 . -1014) T) ((-1139 . -553) 178294) ((-1139 . -1130) T) ((-1139 . -12) T) ((-1139 . -69) T) ((-1139 . -319) T) ((-1139 . -605) T) ((-1138 . -753) T) ((-1138 . -760) T) ((-1138 . -757) T) ((-1138 . -1014) T) ((-1138 . -553) 178276) ((-1138 . -1130) T) ((-1138 . -12) T) ((-1138 . -69) T) ((-1138 . -319) T) ((-1138 . -605) T) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1014) T) ((-1137 . -553) 178258) ((-1137 . -1130) T) ((-1137 . -12) T) ((-1137 . -69) T) ((-1137 . -319) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1014) T) ((-1136 . -553) 178240) ((-1136 . -1130) T) ((-1136 . -12) T) ((-1136 . -69) T) ((-1136 . -319) T) ((-1136 . -605) T) ((-1131 . -996) T) ((-1131 . -430) 178221) ((-1131 . -553) 178187) ((-1131 . -556) 178168) ((-1131 . -1014) T) ((-1131 . -1130) T) ((-1131 . -12) T) ((-1131 . -69) T) ((-1131 . -61) T) ((-1128 . -430) 178145) ((-1128 . -553) 178086) ((-1128 . -556) 178063) ((-1128 . -1014) 178041) ((-1128 . -1130) 178019) ((-1128 . -12) 177997) ((-1128 . -69) 177975) ((-1123 . -680) 177951) ((-1123 . -32) 177917) ((-1123 . -63) 177883) ((-1123 . -238) 177849) ((-1123 . -433) 177815) ((-1123 . -1119) 177781) ((-1123 . -1116) 177747) ((-1123 . -916) 177713) ((-1123 . -44) 177682) ((-1123 . -35) 177579) ((-1123 . -583) 177476) ((-1123 . -655) 177373) ((-1123 . -556) 177255) ((-1123 . -245) 177234) ((-1123 . -496) 177213) ((-1123 . -380) 177197) ((-1123 . -79) 177062) ((-1123 . -964) 176948) ((-1123 . -969) 176834) ((-1123 . -145) 176788) ((-1123 . -117) 176767) ((-1123 . -115) 176746) ((-1123 . -591) 176671) ((-1123 . -589) 176581) ((-1123 . -887) 176542) ((-1123 . -812) 176523) ((-1123 . -1130) T) ((-1123 . -12) T) ((-1123 . -807) 176502) ((-1123 . -962) T) ((-1123 . -664) T) ((-1123 . -1062) T) ((-1123 . -1026) T) ((-1123 . -971) T) ((-1123 . -18) T) ((-1123 . -20) T) ((-1123 . -1014) T) ((-1123 . -553) 176484) ((-1123 . -69) T) ((-1123 . -22) T) ((-1123 . -101) T) ((-1123 . -810) 176465) ((-1123 . -456) 176432) ((-1123 . -259) 176419) ((-1117 . -924) 176403) ((-1117 . -31) T) ((-1117 . -12) T) ((-1117 . -1130) T) ((-1117 . -69) 176357) ((-1117 . -553) 176292) ((-1117 . -259) 176230) ((-1117 . -456) 176163) ((-1117 . -380) 176147) ((-1117 . -1014) 176125) ((-1117 . -429) 176109) ((-1117 . -317) 176093) ((-1117 . -1036) 176077) ((-1112 . -313) 176051) ((-1112 . -69) T) ((-1112 . -12) T) ((-1112 . -1130) T) ((-1112 . -553) 176033) ((-1112 . -1014) T) ((-1110 . -1014) T) ((-1110 . -553) 176015) ((-1110 . -1130) T) ((-1110 . -12) T) ((-1110 . -69) T) ((-1110 . -556) 175997) ((-1105 . -748) 175981) ((-1105 . -69) T) ((-1105 . -12) T) ((-1105 . -1130) T) ((-1105 . -553) 175963) ((-1105 . -1014) T) ((-1103 . -1108) 175942) ((-1103 . -182) 175890) ((-1103 . -73) 175838) ((-1103 . -1036) 175773) ((-1103 . -121) 175721) ((-1103 . -554) NIL) ((-1103 . -192) 175669) ((-1103 . -539) 175648) ((-1103 . -259) 175446) ((-1103 . -456) 175198) ((-1103 . -380) 175133) ((-1103 . -429) 175068) ((-1103 . -240) 175047) ((-1103 . -242) 175026) ((-1103 . -550) 175005) ((-1103 . -1014) T) ((-1103 . -553) 174987) ((-1103 . -69) T) ((-1103 . -1130) T) ((-1103 . -12) T) ((-1103 . -31) T) ((-1103 . -317) 174935) ((-1099 . -1014) T) ((-1099 . -553) 174917) ((-1099 . -1130) T) ((-1099 . -12) T) ((-1099 . -69) T) ((-1098 . -753) T) ((-1098 . -760) T) ((-1098 . -757) T) ((-1098 . -1014) T) ((-1098 . -553) 174899) ((-1098 . -1130) T) ((-1098 . -12) T) ((-1098 . -69) T) ((-1098 . -319) T) ((-1098 . -605) T) ((-1097 . -753) T) ((-1097 . -760) T) ((-1097 . -757) T) ((-1097 . -1014) T) ((-1097 . -553) 174881) ((-1097 . -1130) T) ((-1097 . -12) T) ((-1097 . -69) T) ((-1097 . -319) T) ((-1096 . -1176) T) ((-1096 . -1014) T) ((-1096 . -553) 174848) ((-1096 . -1130) T) ((-1096 . -12) T) ((-1096 . -69) T) ((-1096 . -951) 174784) ((-1096 . -556) 174720) ((-1095 . -553) 174702) ((-1094 . -553) 174684) ((-1093 . -276) 174661) ((-1093 . -951) 174559) ((-1093 . -354) 174543) ((-1093 . -35) 174440) ((-1093 . -556) 174297) ((-1093 . -591) 174222) ((-1093 . -589) 174132) ((-1093 . -971) T) ((-1093 . -1026) T) ((-1093 . -1062) T) ((-1093 . -664) T) ((-1093 . -962) T) ((-1093 . -79) 173997) ((-1093 . -964) 173883) ((-1093 . -969) 173769) ((-1093 . -18) T) ((-1093 . -20) T) ((-1093 . -1014) T) ((-1093 . -553) 173751) ((-1093 . -1130) T) ((-1093 . -12) T) ((-1093 . -69) T) ((-1093 . -22) T) ((-1093 . -101) T) ((-1093 . -583) 173648) ((-1093 . -655) 173545) ((-1093 . -115) 173524) ((-1093 . -117) 173503) ((-1093 . -145) 173457) ((-1093 . -380) 173441) ((-1093 . -496) 173420) ((-1093 . -245) 173399) ((-1093 . -44) 173376) ((-1091 . -757) T) ((-1091 . -553) 173358) ((-1091 . -1014) T) ((-1091 . -69) T) ((-1091 . -12) T) ((-1091 . -1130) T) ((-1091 . -760) T) ((-1091 . -554) 173280) ((-1091 . -556) 173246) ((-1091 . -951) 173228) ((-1091 . -797) 173195) ((-1090 . -1173) 173179) ((-1090 . -189) 173138) ((-1090 . -556) 173020) ((-1090 . -591) 172945) ((-1090 . -589) 172855) ((-1090 . -101) T) ((-1090 . -22) T) ((-1090 . -69) T) ((-1090 . -553) 172837) ((-1090 . -1014) T) ((-1090 . -20) T) ((-1090 . -18) T) ((-1090 . -971) T) ((-1090 . -1026) T) ((-1090 . -1062) T) ((-1090 . -664) T) ((-1090 . -962) T) ((-1090 . -185) 172790) ((-1090 . -12) T) ((-1090 . -1130) T) ((-1090 . -188) 172749) ((-1090 . -240) 172714) ((-1090 . -810) 172627) ((-1090 . -807) 172515) ((-1090 . -812) 172428) ((-1090 . -887) 172398) ((-1090 . -35) 172295) ((-1090 . -79) 172160) ((-1090 . -964) 172046) ((-1090 . -969) 171932) ((-1090 . -583) 171829) ((-1090 . -655) 171726) ((-1090 . -115) 171705) ((-1090 . -117) 171684) ((-1090 . -145) 171638) ((-1090 . -380) 171622) ((-1090 . -496) 171601) ((-1090 . -245) 171580) ((-1090 . -44) 171557) ((-1090 . -1159) 171534) ((-1090 . -32) 171500) ((-1090 . -63) 171466) ((-1090 . -238) 171432) ((-1090 . -433) 171398) ((-1090 . -1119) 171364) ((-1090 . -1116) 171330) ((-1090 . -916) 171296) ((-1089 . -1165) 171257) ((-1089 . -311) 171236) ((-1089 . -1135) 171215) ((-1089 . -833) 171194) ((-1089 . -496) 171148) ((-1089 . -145) 171082) ((-1089 . -556) 170831) ((-1089 . -655) 170678) ((-1089 . -583) 170525) ((-1089 . -35) 170372) ((-1089 . -392) 170351) ((-1089 . -257) 170330) ((-1089 . -591) 170230) ((-1089 . -589) 170115) ((-1089 . -971) T) ((-1089 . -1026) T) ((-1089 . -1062) T) ((-1089 . -664) T) ((-1089 . -962) T) ((-1089 . -79) 169935) ((-1089 . -964) 169776) ((-1089 . -969) 169617) ((-1089 . -18) T) ((-1089 . -20) T) ((-1089 . -1014) T) ((-1089 . -553) 169599) ((-1089 . -1130) T) ((-1089 . -12) T) ((-1089 . -69) T) ((-1089 . -22) T) ((-1089 . -101) T) ((-1089 . -245) 169553) ((-1089 . -200) 169532) ((-1089 . -916) 169498) ((-1089 . -1116) 169464) ((-1089 . -1119) 169430) ((-1089 . -433) 169396) ((-1089 . -238) 169362) ((-1089 . -63) 169328) ((-1089 . -32) 169294) ((-1089 . -1159) 169264) ((-1089 . -44) 169234) ((-1089 . -380) 169218) ((-1089 . -117) 169197) ((-1089 . -115) 169176) ((-1089 . -887) 169139) ((-1089 . -812) 169045) ((-1089 . -807) 168926) ((-1089 . -810) 168832) ((-1089 . -240) 168790) ((-1089 . -188) 168742) ((-1089 . -185) 168688) ((-1089 . -189) 168640) ((-1089 . -1163) 168624) ((-1089 . -951) 168559) ((-1086 . -1156) 168543) ((-1086 . -1067) 168521) ((-1086 . -554) NIL) ((-1086 . -259) 168508) ((-1086 . -456) 168456) ((-1086 . -276) 168433) ((-1086 . -951) 168316) ((-1086 . -354) 168300) ((-1086 . -35) 168132) ((-1086 . -79) 167937) ((-1086 . -964) 167763) ((-1086 . -969) 167589) ((-1086 . -589) 167499) ((-1086 . -591) 167388) ((-1086 . -583) 167220) ((-1086 . -655) 167052) ((-1086 . -556) 166829) ((-1086 . -115) 166808) ((-1086 . -117) 166787) ((-1086 . -380) 166771) ((-1086 . -44) 166748) ((-1086 . -328) 166732) ((-1086 . -581) 166680) ((-1086 . -810) 166624) ((-1086 . -807) 166531) ((-1086 . -812) 166442) ((-1086 . -797) NIL) ((-1086 . -822) 166421) ((-1086 . -1135) 166400) ((-1086 . -862) 166370) ((-1086 . -833) 166349) ((-1086 . -496) 166263) ((-1086 . -245) 166177) ((-1086 . -145) 166071) ((-1086 . -392) 166005) ((-1086 . -257) 165984) ((-1086 . -240) 165911) ((-1086 . -189) T) ((-1086 . -101) T) ((-1086 . -22) T) ((-1086 . -69) T) ((-1086 . -553) 165893) ((-1086 . -1014) T) ((-1086 . -20) T) ((-1086 . -18) T) ((-1086 . -971) T) ((-1086 . -1026) T) ((-1086 . -1062) T) ((-1086 . -664) T) ((-1086 . -962) T) ((-1086 . -185) 165880) ((-1086 . -12) T) ((-1086 . -1130) T) ((-1086 . -188) T) ((-1086 . -224) 165864) ((-1086 . -183) 165848) ((-1083 . -1144) 165809) ((-1083 . -916) 165775) ((-1083 . -1116) 165741) ((-1083 . -1119) 165707) ((-1083 . -433) 165673) ((-1083 . -238) 165639) ((-1083 . -63) 165605) ((-1083 . -32) 165571) ((-1083 . -1159) 165548) ((-1083 . -44) 165525) ((-1083 . -380) 165464) ((-1083 . -556) 165265) ((-1083 . -655) 165067) ((-1083 . -583) 164869) ((-1083 . -591) 164724) ((-1083 . -589) 164564) ((-1083 . -969) 164360) ((-1083 . -964) 164156) ((-1083 . -79) 163908) ((-1083 . -35) 163710) ((-1083 . -887) 163680) ((-1083 . -240) 163508) ((-1083 . -1142) 163492) ((-1083 . -971) T) ((-1083 . -1026) T) ((-1083 . -1062) T) ((-1083 . -664) T) ((-1083 . -962) T) ((-1083 . -18) T) ((-1083 . -20) T) ((-1083 . -1014) T) ((-1083 . -553) 163474) ((-1083 . -1130) T) ((-1083 . -12) T) ((-1083 . -69) T) ((-1083 . -22) T) ((-1083 . -101) T) ((-1083 . -115) 163384) ((-1083 . -117) 163294) ((-1083 . -554) NIL) ((-1083 . -183) 163246) ((-1083 . -810) 163082) ((-1083 . -812) 162846) ((-1083 . -807) 162585) ((-1083 . -224) 162537) ((-1083 . -188) 162363) ((-1083 . -185) 162183) ((-1083 . -189) 162073) ((-1083 . -311) 162052) ((-1083 . -1135) 162031) ((-1083 . -833) 162010) ((-1083 . -496) 161964) ((-1083 . -145) 161898) ((-1083 . -392) 161877) ((-1083 . -257) 161856) ((-1083 . -245) 161810) ((-1083 . -200) 161789) ((-1083 . -287) 161741) ((-1083 . -456) 161475) ((-1083 . -259) 161360) ((-1083 . -328) 161312) ((-1083 . -581) 161264) ((-1083 . -342) 161216) ((-1083 . -797) NIL) ((-1083 . -741) NIL) ((-1083 . -715) NIL) ((-1083 . -717) NIL) ((-1083 . -757) NIL) ((-1083 . -760) NIL) ((-1083 . -719) NIL) ((-1083 . -722) NIL) ((-1083 . -756) NIL) ((-1083 . -795) 161168) ((-1083 . -822) NIL) ((-1083 . -934) NIL) ((-1083 . -951) 161134) ((-1083 . -1067) NIL) ((-1083 . -905) 161086) ((-1082 . -996) T) ((-1082 . -430) 161067) ((-1082 . -553) 161033) ((-1082 . -556) 161014) ((-1082 . -1014) T) ((-1082 . -1130) T) ((-1082 . -12) T) ((-1082 . -69) T) ((-1082 . -61) T) ((-1081 . -1014) T) ((-1081 . -553) 160996) ((-1081 . -1130) T) ((-1081 . -12) T) ((-1081 . -69) T) ((-1080 . -1014) T) ((-1080 . -553) 160978) ((-1080 . -1130) T) ((-1080 . -12) T) ((-1080 . -69) T) ((-1075 . -1108) 160954) ((-1075 . -182) 160899) ((-1075 . -73) 160844) ((-1075 . -1036) 160776) ((-1075 . -121) 160721) ((-1075 . -554) NIL) ((-1075 . -192) 160666) ((-1075 . -539) 160642) ((-1075 . -259) 160431) ((-1075 . -456) 160171) ((-1075 . -380) 160103) ((-1075 . -429) 160035) ((-1075 . -240) 160011) ((-1075 . -242) 159987) ((-1075 . -550) 159963) ((-1075 . -1014) T) ((-1075 . -553) 159945) ((-1075 . -69) T) ((-1075 . -1130) T) ((-1075 . -12) T) ((-1075 . -31) T) ((-1075 . -317) 159890) ((-1074 . -1059) T) ((-1074 . -323) 159872) ((-1074 . -760) T) ((-1074 . -757) T) ((-1074 . -121) 159854) ((-1074 . -554) NIL) ((-1074 . -240) 159804) ((-1074 . -539) 159779) ((-1074 . -242) 159754) ((-1074 . -594) 159736) ((-1074 . -429) 159718) ((-1074 . -1014) T) ((-1074 . -380) 159700) ((-1074 . -456) NIL) ((-1074 . -259) NIL) ((-1074 . -553) 159682) ((-1074 . -69) T) ((-1074 . -1130) T) ((-1074 . -12) T) ((-1074 . -31) T) ((-1074 . -317) 159664) ((-1074 . -1036) 159646) ((-1074 . -16) 159628) ((-1070 . -617) 159612) ((-1070 . -594) 159596) ((-1070 . -242) 159573) ((-1070 . -240) 159525) ((-1070 . -539) 159502) ((-1070 . -554) 159463) ((-1070 . -429) 159447) ((-1070 . -1014) 159425) ((-1070 . -380) 159409) ((-1070 . -456) 159342) ((-1070 . -259) 159280) ((-1070 . -553) 159215) ((-1070 . -69) 159169) ((-1070 . -1130) T) ((-1070 . -12) T) ((-1070 . -31) T) ((-1070 . -121) 159153) ((-1070 . -1169) 159137) ((-1070 . -924) 159121) ((-1070 . -1065) 159105) ((-1070 . -556) 159082) ((-1070 . -1036) 159066) ((-1068 . -996) T) ((-1068 . -430) 159047) ((-1068 . -553) 159013) ((-1068 . -556) 158994) ((-1068 . -1014) T) ((-1068 . -1130) T) ((-1068 . -12) T) ((-1068 . -69) T) ((-1068 . -61) T) ((-1066 . -1108) 158973) ((-1066 . -182) 158921) ((-1066 . -73) 158869) ((-1066 . -1036) 158804) ((-1066 . -121) 158752) ((-1066 . -554) NIL) ((-1066 . -192) 158700) ((-1066 . -539) 158679) ((-1066 . -259) 158477) ((-1066 . -456) 158229) ((-1066 . -380) 158164) ((-1066 . -429) 158099) ((-1066 . -240) 158078) ((-1066 . -242) 158057) ((-1066 . -550) 158036) ((-1066 . -1014) T) ((-1066 . -553) 158018) ((-1066 . -69) T) ((-1066 . -1130) T) ((-1066 . -12) T) ((-1066 . -31) T) ((-1066 . -317) 157966) ((-1063 . -1035) 157950) ((-1063 . -317) 157934) ((-1063 . -429) 157918) ((-1063 . -1014) 157896) ((-1063 . -380) 157880) ((-1063 . -456) 157813) ((-1063 . -259) 157751) ((-1063 . -553) 157686) ((-1063 . -69) 157640) ((-1063 . -1130) T) ((-1063 . -12) T) ((-1063 . -31) T) ((-1063 . -1036) 157624) ((-1063 . -73) 157608) ((-1061 . -1021) 157577) ((-1061 . -1125) 157546) ((-1061 . -1036) 157530) ((-1061 . -553) 157492) ((-1061 . -121) 157476) ((-1061 . -31) T) ((-1061 . -12) T) ((-1061 . -1130) T) ((-1061 . -69) T) ((-1061 . -259) 157414) ((-1061 . -456) 157347) ((-1061 . -380) 157331) ((-1061 . -1014) T) ((-1061 . -429) 157315) ((-1061 . -554) 157276) ((-1061 . -317) 157260) ((-1061 . -890) 157229) ((-1061 . -984) 157198) ((-1057 . -1038) 157143) ((-1057 . -317) 157127) ((-1057 . -31) T) ((-1057 . -259) 157065) ((-1057 . -456) 156998) ((-1057 . -380) 156982) ((-1057 . -429) 156966) ((-1057 . -966) 156906) ((-1057 . -951) 156804) ((-1057 . -556) 156723) ((-1057 . -354) 156707) ((-1057 . -581) 156655) ((-1057 . -591) 156593) ((-1057 . -328) 156577) ((-1057 . -189) 156556) ((-1057 . -185) 156504) ((-1057 . -188) 156458) ((-1057 . -224) 156442) ((-1057 . -807) 156366) ((-1057 . -812) 156292) ((-1057 . -810) 156251) ((-1057 . -183) 156235) ((-1057 . -655) 156170) ((-1057 . -583) 156105) ((-1057 . -589) 156064) ((-1057 . -101) T) ((-1057 . -22) T) ((-1057 . -69) T) ((-1057 . -12) T) ((-1057 . -1130) T) ((-1057 . -553) 156026) ((-1057 . -1014) T) ((-1057 . -20) T) ((-1057 . -18) T) ((-1057 . -969) 156010) ((-1057 . -964) 155994) ((-1057 . -79) 155973) ((-1057 . -962) T) ((-1057 . -664) T) ((-1057 . -1062) T) ((-1057 . -1026) T) ((-1057 . -971) T) ((-1057 . -35) 155933) ((-1057 . -554) 155894) ((-1056 . -924) 155865) ((-1056 . -31) T) ((-1056 . -12) T) ((-1056 . -1130) T) ((-1056 . -69) T) ((-1056 . -553) 155847) ((-1056 . -259) 155773) ((-1056 . -456) 155681) ((-1056 . -380) 155652) ((-1056 . -1014) T) ((-1056 . -429) 155623) ((-1056 . -317) 155594) ((-1056 . -1036) 155565) ((-1055 . -1014) T) ((-1055 . -553) 155547) ((-1055 . -1130) T) ((-1055 . -12) T) ((-1055 . -69) T) ((-1050 . -1052) T) ((-1050 . -1176) T) ((-1050 . -61) T) ((-1050 . -69) T) ((-1050 . -12) T) ((-1050 . -1130) T) ((-1050 . -553) 155513) ((-1050 . -1014) T) ((-1050 . -556) 155494) ((-1050 . -430) 155475) ((-1050 . -996) T) ((-1048 . -1049) 155459) ((-1048 . -69) T) ((-1048 . -12) T) ((-1048 . -1130) T) ((-1048 . -553) 155441) ((-1048 . -1014) T) ((-1041 . -680) 155420) ((-1041 . -32) 155386) ((-1041 . -63) 155352) ((-1041 . -238) 155318) ((-1041 . -433) 155284) ((-1041 . -1119) 155250) ((-1041 . -1116) 155216) ((-1041 . -916) 155182) ((-1041 . -44) 155154) ((-1041 . -35) 155051) ((-1041 . -583) 154948) ((-1041 . -655) 154845) ((-1041 . -556) 154727) ((-1041 . -245) 154706) ((-1041 . -496) 154685) ((-1041 . -380) 154669) ((-1041 . -79) 154534) ((-1041 . -964) 154420) ((-1041 . -969) 154306) ((-1041 . -145) 154260) ((-1041 . -117) 154239) ((-1041 . -115) 154218) ((-1041 . -591) 154143) ((-1041 . -589) 154053) ((-1041 . -887) 154020) ((-1041 . -812) 154004) ((-1041 . -1130) T) ((-1041 . -12) T) ((-1041 . -807) 153986) ((-1041 . -962) T) ((-1041 . -664) T) ((-1041 . -1062) T) ((-1041 . -1026) T) ((-1041 . -971) T) ((-1041 . -18) T) ((-1041 . -20) T) ((-1041 . -1014) T) ((-1041 . -553) 153968) ((-1041 . -69) T) ((-1041 . -22) T) ((-1041 . -101) T) ((-1041 . -810) 153952) ((-1041 . -456) 153922) ((-1041 . -259) 153909) ((-1040 . -862) 153876) ((-1040 . -556) 153675) ((-1040 . -951) 153560) ((-1040 . -1135) 153539) ((-1040 . -822) 153518) ((-1040 . -797) 153377) ((-1040 . -812) 153361) ((-1040 . -807) 153343) ((-1040 . -810) 153327) ((-1040 . -456) 153279) ((-1040 . -392) 153233) ((-1040 . -581) 153181) ((-1040 . -591) 153070) ((-1040 . -328) 153054) ((-1040 . -44) 153026) ((-1040 . -35) 152878) ((-1040 . -583) 152730) ((-1040 . -655) 152582) ((-1040 . -245) 152516) ((-1040 . -496) 152450) ((-1040 . -380) 152434) ((-1040 . -79) 152259) ((-1040 . -964) 152105) ((-1040 . -969) 151951) ((-1040 . -145) 151865) ((-1040 . -117) 151844) ((-1040 . -115) 151823) ((-1040 . -589) 151733) ((-1040 . -101) T) ((-1040 . -22) T) ((-1040 . -69) T) ((-1040 . -12) T) ((-1040 . -1130) T) ((-1040 . -553) 151715) ((-1040 . -1014) T) ((-1040 . -20) T) ((-1040 . -18) T) ((-1040 . -962) T) ((-1040 . -664) T) ((-1040 . -1062) T) ((-1040 . -1026) T) ((-1040 . -971) T) ((-1040 . -354) 151699) ((-1040 . -276) 151671) ((-1040 . -259) 151658) ((-1040 . -554) 151406) ((-1034 . -484) T) ((-1034 . -1135) T) ((-1034 . -1067) T) ((-1034 . -951) 151388) ((-1034 . -554) 151303) ((-1034 . -934) T) ((-1034 . -797) 151285) ((-1034 . -756) T) ((-1034 . -722) T) ((-1034 . -719) T) ((-1034 . -760) T) ((-1034 . -757) T) ((-1034 . -717) T) ((-1034 . -715) T) ((-1034 . -741) T) ((-1034 . -591) 151257) ((-1034 . -581) 151239) ((-1034 . -833) T) ((-1034 . -496) T) ((-1034 . -245) T) ((-1034 . -145) T) ((-1034 . -556) 151211) ((-1034 . -655) 151198) ((-1034 . -583) 151185) ((-1034 . -969) 151172) ((-1034 . -964) 151159) ((-1034 . -79) 151144) ((-1034 . -35) 151131) ((-1034 . -392) T) ((-1034 . -257) T) ((-1034 . -188) T) ((-1034 . -185) 151118) ((-1034 . -189) T) ((-1034 . -113) T) ((-1034 . -962) T) ((-1034 . -664) T) ((-1034 . -1062) T) ((-1034 . -1026) T) ((-1034 . -971) T) ((-1034 . -18) T) ((-1034 . -589) 151090) ((-1034 . -20) T) ((-1034 . -1014) T) ((-1034 . -553) 151072) ((-1034 . -1130) T) ((-1034 . -12) T) ((-1034 . -69) T) ((-1034 . -22) T) ((-1034 . -101) T) ((-1034 . -117) T) ((-1034 . -753) T) ((-1034 . -319) T) ((-1034 . -81) T) ((-1034 . -605) T) ((-1030 . -996) T) ((-1030 . -430) 151053) ((-1030 . -553) 151019) ((-1030 . -556) 151000) ((-1030 . -1014) T) ((-1030 . -1130) T) ((-1030 . -12) T) ((-1030 . -69) T) ((-1030 . -61) T) ((-1029 . -1014) T) ((-1029 . -553) 150982) ((-1029 . -1130) T) ((-1029 . -12) T) ((-1029 . -69) T) ((-1027 . -195) 150961) ((-1027 . -1188) 150931) ((-1027 . -722) 150910) ((-1027 . -719) 150889) ((-1027 . -760) 150843) ((-1027 . -757) 150797) ((-1027 . -717) 150776) ((-1027 . -718) 150755) ((-1027 . -655) 150700) ((-1027 . -583) 150625) ((-1027 . -242) 150602) ((-1027 . -240) 150579) ((-1027 . -539) 150556) ((-1027 . -951) 150385) ((-1027 . -556) 150189) ((-1027 . -354) 150158) ((-1027 . -581) 150066) ((-1027 . -591) 149905) ((-1027 . -328) 149875) ((-1027 . -429) 149859) ((-1027 . -380) 149843) ((-1027 . -456) 149776) ((-1027 . -259) 149714) ((-1027 . -31) T) ((-1027 . -317) 149698) ((-1027 . -319) 149677) ((-1027 . -189) 149630) ((-1027 . -589) 149418) ((-1027 . -971) 149397) ((-1027 . -1026) 149376) ((-1027 . -1062) 149355) ((-1027 . -664) 149334) ((-1027 . -962) 149313) ((-1027 . -185) 149209) ((-1027 . -188) 149111) ((-1027 . -224) 149081) ((-1027 . -807) 148953) ((-1027 . -812) 148827) ((-1027 . -810) 148760) ((-1027 . -183) 148730) ((-1027 . -553) 148427) ((-1027 . -969) 148352) ((-1027 . -964) 148257) ((-1027 . -79) 148177) ((-1027 . -101) 148052) ((-1027 . -22) 147889) ((-1027 . -69) 147626) ((-1027 . -12) T) ((-1027 . -1130) T) ((-1027 . -1014) 147382) ((-1027 . -20) 147238) ((-1027 . -18) 147153) ((-1023 . -1024) 147137) ((-1023 . |MappingCategory|) 147111) ((-1023 . -1130) T) ((-1023 . -77) 147095) ((-1023 . -1014) T) ((-1023 . -553) 147077) ((-1023 . -12) T) ((-1023 . -69) T) ((-1018 . -1017) 147041) ((-1018 . -69) T) ((-1018 . -553) 147023) ((-1018 . -1014) T) ((-1018 . -240) 146979) ((-1018 . -1130) T) ((-1018 . -12) T) ((-1018 . -558) 146894) ((-1016 . -1017) 146846) ((-1016 . -69) T) ((-1016 . -553) 146828) ((-1016 . -1014) T) ((-1016 . -240) 146784) ((-1016 . -1130) T) ((-1016 . -12) T) ((-1016 . -558) 146687) ((-1015 . -319) T) ((-1015 . -69) T) ((-1015 . -12) T) ((-1015 . -1130) T) ((-1015 . -553) 146669) ((-1015 . -1014) T) ((-1010 . -368) 146653) ((-1010 . -1012) 146637) ((-1010 . -317) 146621) ((-1010 . -319) 146600) ((-1010 . -192) 146584) ((-1010 . -554) 146545) ((-1010 . -121) 146529) ((-1010 . -429) 146513) ((-1010 . -1014) T) ((-1010 . -380) 146497) ((-1010 . -456) 146430) ((-1010 . -259) 146368) ((-1010 . -553) 146350) ((-1010 . -69) T) ((-1010 . -1130) T) ((-1010 . -12) T) ((-1010 . -31) T) ((-1010 . -1036) 146334) ((-1010 . -73) 146318) ((-1010 . -182) 146302) ((-1009 . -996) T) ((-1009 . -430) 146283) ((-1009 . -553) 146249) ((-1009 . -556) 146230) ((-1009 . -1014) T) ((-1009 . -1130) T) ((-1009 . -12) T) ((-1009 . -69) T) ((-1009 . -61) T) ((-1005 . -1130) T) ((-1005 . -12) T) ((-1005 . -1014) 146200) ((-1005 . -553) 146159) ((-1005 . -69) 146129) ((-1004 . -996) T) ((-1004 . -430) 146110) ((-1004 . -553) 146076) ((-1004 . -556) 146057) ((-1004 . -1014) T) ((-1004 . -1130) T) ((-1004 . -12) T) ((-1004 . -69) T) ((-1004 . -61) T) ((-1002 . -1007) 146041) ((-1002 . -558) 146025) ((-1002 . -1014) 146003) ((-1002 . -553) 145970) ((-1002 . -1130) 145948) ((-1002 . -12) 145926) ((-1002 . -69) 145904) ((-1002 . -1008) 145862) ((-1001 . -227) 145846) ((-1001 . -556) 145830) ((-1001 . -951) 145814) ((-1001 . -760) T) ((-1001 . -69) T) ((-1001 . -1014) T) ((-1001 . -553) 145796) ((-1001 . -757) T) ((-1001 . -185) 145783) ((-1001 . -12) T) ((-1001 . -1130) T) ((-1001 . -188) T) ((-1000 . -212) 145720) ((-1000 . -556) 145463) ((-1000 . -951) 145292) ((-1000 . -554) NIL) ((-1000 . -276) 145253) ((-1000 . -354) 145237) ((-1000 . -35) 145089) ((-1000 . -79) 144914) ((-1000 . -964) 144760) ((-1000 . -969) 144606) ((-1000 . -589) 144516) ((-1000 . -591) 144405) ((-1000 . -583) 144257) ((-1000 . -655) 144109) ((-1000 . -115) 144088) ((-1000 . -117) 144067) ((-1000 . -145) 143981) ((-1000 . -380) 143965) ((-1000 . -496) 143899) ((-1000 . -245) 143833) ((-1000 . -44) 143794) ((-1000 . -328) 143778) ((-1000 . -581) 143726) ((-1000 . -392) 143680) ((-1000 . -456) 143543) ((-1000 . -810) 143478) ((-1000 . -807) 143376) ((-1000 . -812) 143278) ((-1000 . -797) NIL) ((-1000 . -822) 143257) ((-1000 . -1135) 143236) ((-1000 . -862) 143181) ((-1000 . -259) 143168) ((-1000 . -189) 143147) ((-1000 . -101) T) ((-1000 . -22) T) ((-1000 . -69) T) ((-1000 . -553) 143129) ((-1000 . -1014) T) ((-1000 . -20) T) ((-1000 . -18) T) ((-1000 . -971) T) ((-1000 . -1026) T) ((-1000 . -1062) T) ((-1000 . -664) T) ((-1000 . -962) T) ((-1000 . -185) 143077) ((-1000 . -12) T) ((-1000 . -1130) T) ((-1000 . -188) 143031) ((-1000 . -224) 143015) ((-1000 . -183) 142999) ((-998 . -553) 142981) ((-995 . -757) T) ((-995 . -553) 142963) ((-995 . -1014) T) ((-995 . -69) T) ((-995 . -12) T) ((-995 . -1130) T) ((-995 . -760) T) ((-995 . -554) 142944) ((-992 . -662) 142923) ((-992 . -951) 142821) ((-992 . -354) 142805) ((-992 . -581) 142753) ((-992 . -591) 142630) ((-992 . -328) 142614) ((-992 . -321) 142593) ((-992 . -117) 142572) ((-992 . -556) 142397) ((-992 . -655) 142271) ((-992 . -583) 142145) ((-992 . -589) 142043) ((-992 . -969) 141956) ((-992 . -964) 141869) ((-992 . -79) 141761) ((-992 . -35) 141635) ((-992 . -352) 141614) ((-992 . -344) 141593) ((-992 . -115) 141547) ((-992 . -1067) 141526) ((-992 . -298) 141505) ((-992 . -319) 141459) ((-992 . -200) 141413) ((-992 . -245) 141367) ((-992 . -257) 141321) ((-992 . -392) 141275) ((-992 . -496) 141229) ((-992 . -833) 141183) ((-992 . -1135) 141137) ((-992 . -311) 141091) ((-992 . -189) 141019) ((-992 . -185) 140895) ((-992 . -188) 140777) ((-992 . -224) 140747) ((-992 . -807) 140619) ((-992 . -812) 140493) ((-992 . -810) 140426) ((-992 . -183) 140396) ((-992 . -554) 140380) ((-992 . -18) T) ((-992 . -20) T) ((-992 . -1014) T) ((-992 . -553) 140362) ((-992 . -1130) T) ((-992 . -12) T) ((-992 . -69) T) ((-992 . -22) T) ((-992 . -101) T) ((-992 . -962) T) ((-992 . -664) T) ((-992 . -1062) T) ((-992 . -1026) T) ((-992 . -971) T) ((-992 . -145) T) ((-990 . -1014) T) ((-990 . -553) 140344) ((-990 . -1130) T) ((-990 . -12) T) ((-990 . -69) T) ((-990 . -240) 140323) ((-989 . -1014) T) ((-989 . -553) 140305) ((-989 . -1130) T) ((-989 . -12) T) ((-989 . -69) T) ((-988 . -1014) T) ((-988 . -553) 140287) ((-988 . -1130) T) ((-988 . -12) T) ((-988 . -69) T) ((-988 . -240) 140266) ((-988 . -951) 140243) ((-988 . -556) 140220) ((-987 . -1130) T) ((-987 . -12) T) ((-986 . -996) T) ((-986 . -430) 140201) ((-986 . -553) 140167) ((-986 . -556) 140148) ((-986 . -1014) T) ((-986 . -1130) T) ((-986 . -12) T) ((-986 . -69) T) ((-986 . -61) T) ((-979 . -996) T) ((-979 . -430) 140129) ((-979 . -553) 140095) ((-979 . -556) 140076) ((-979 . -1014) T) ((-979 . -1130) T) ((-979 . -12) T) ((-979 . -69) T) ((-979 . -61) T) ((-976 . -484) T) ((-976 . -1135) T) ((-976 . -1067) T) ((-976 . -951) 140058) ((-976 . -554) 139973) ((-976 . -934) T) ((-976 . -797) 139955) ((-976 . -756) T) ((-976 . -722) T) ((-976 . -719) T) ((-976 . -760) T) ((-976 . -757) T) ((-976 . -717) T) ((-976 . -715) T) ((-976 . -741) T) ((-976 . -591) 139927) ((-976 . -581) 139909) ((-976 . -833) T) ((-976 . -496) T) ((-976 . -245) T) ((-976 . -145) T) ((-976 . -556) 139881) ((-976 . -655) 139868) ((-976 . -583) 139855) ((-976 . -969) 139842) ((-976 . -964) 139829) ((-976 . -79) 139814) ((-976 . -35) 139801) ((-976 . -392) T) ((-976 . -257) T) ((-976 . -188) T) ((-976 . -185) 139788) ((-976 . -189) T) ((-976 . -113) T) ((-976 . -962) T) ((-976 . -664) T) ((-976 . -1062) T) ((-976 . -1026) T) ((-976 . -971) T) ((-976 . -18) T) ((-976 . -589) 139760) ((-976 . -20) T) ((-976 . -1014) T) ((-976 . -553) 139742) ((-976 . -1130) T) ((-976 . -12) T) ((-976 . -69) T) ((-976 . -22) T) ((-976 . -101) T) ((-976 . -117) T) ((-976 . -558) 139723) ((-975 . -981) 139702) ((-975 . -69) T) ((-975 . -12) T) ((-975 . -1130) T) ((-975 . -553) 139684) ((-975 . -1014) T) ((-972 . -1130) T) ((-972 . -12) T) ((-972 . -1014) 139662) ((-972 . -553) 139629) ((-972 . -69) 139607) ((-967 . -966) 139547) ((-967 . -583) 139492) ((-967 . -655) 139437) ((-967 . -429) 139421) ((-967 . -380) 139405) ((-967 . -456) 139338) ((-967 . -259) 139276) ((-967 . -31) T) ((-967 . -317) 139260) ((-967 . -591) 139244) ((-967 . -589) 139213) ((-967 . -101) T) ((-967 . -22) T) ((-967 . -69) T) ((-967 . -12) T) ((-967 . -1130) T) ((-967 . -553) 139175) ((-967 . -1014) T) ((-967 . -20) T) ((-967 . -18) T) ((-967 . -969) 139159) ((-967 . -964) 139143) ((-967 . -79) 139122) ((-967 . -1188) 139092) ((-967 . -554) 139053) ((-959 . -984) 138982) ((-959 . -890) 138911) ((-959 . -317) 138876) ((-959 . -554) 138818) ((-959 . -429) 138783) ((-959 . -1014) T) ((-959 . -380) 138748) ((-959 . -456) 138632) ((-959 . -259) 138540) ((-959 . -553) 138483) ((-959 . -69) T) ((-959 . -1130) T) ((-959 . -12) T) ((-959 . -31) T) ((-959 . -121) 138448) ((-959 . -1036) 138413) ((-959 . -1125) 138342) ((-949 . -996) T) ((-949 . -430) 138323) ((-949 . -553) 138289) ((-949 . -556) 138270) ((-949 . -1014) T) ((-949 . -1130) T) ((-949 . -12) T) ((-949 . -69) T) ((-949 . -61) T) ((-948 . -145) T) ((-948 . -556) 138239) ((-948 . -971) T) ((-948 . -1026) T) ((-948 . -1062) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 138213) ((-948 . -589) 138172) ((-948 . -101) T) ((-948 . -22) T) ((-948 . -69) T) ((-948 . -12) T) ((-948 . -1130) T) ((-948 . -553) 138154) ((-948 . -1014) T) ((-948 . -20) T) ((-948 . -18) T) ((-948 . -969) 138128) ((-948 . -964) 138102) ((-948 . -79) 138069) ((-948 . -35) 138053) ((-948 . -583) 138037) ((-948 . -655) 138021) ((-941 . -984) 137990) ((-941 . -890) 137959) ((-941 . -317) 137943) ((-941 . -554) 137904) ((-941 . -429) 137888) ((-941 . -1014) T) ((-941 . -380) 137872) ((-941 . -456) 137805) ((-941 . -259) 137743) ((-941 . -553) 137705) ((-941 . -69) T) ((-941 . -1130) T) ((-941 . -12) T) ((-941 . -31) T) ((-941 . -121) 137689) ((-941 . -1036) 137673) ((-941 . -1125) 137642) ((-940 . -1014) T) ((-940 . -553) 137624) ((-940 . -1130) T) ((-940 . -12) T) ((-940 . -69) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 137509) ((-938 . -354) 137471) ((-938 . -200) T) ((-938 . -245) T) ((-938 . -257) T) ((-938 . -392) T) ((-938 . -35) 137408) ((-938 . -583) 137345) ((-938 . -655) 137282) ((-938 . -556) 137219) ((-938 . -496) T) ((-938 . -833) T) ((-938 . -1135) T) ((-938 . -311) T) ((-938 . -79) 137128) ((-938 . -964) 137065) ((-938 . -969) 137002) ((-938 . -145) T) ((-938 . -117) T) ((-938 . -591) 136939) ((-938 . -589) 136876) ((-938 . -101) T) ((-938 . -22) T) ((-938 . -69) T) ((-938 . -12) T) ((-938 . -1130) T) ((-938 . -553) 136858) ((-938 . -1014) T) ((-938 . -20) T) ((-938 . -18) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1062) T) ((-938 . -1026) T) ((-938 . -971) T) ((-933 . -996) T) ((-933 . -430) 136839) ((-933 . -553) 136805) ((-933 . -556) 136786) ((-933 . -1014) T) ((-933 . -1130) T) ((-933 . -12) T) ((-933 . -69) T) ((-933 . -61) T) ((-918 . -905) 136768) ((-918 . -1067) T) ((-918 . -556) 136718) ((-918 . -951) 136678) ((-918 . -554) 136608) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 136590) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 136572) ((-918 . -342) 136554) ((-918 . -581) 136536) ((-918 . -328) 136518) ((-918 . -240) NIL) ((-918 . -259) NIL) ((-918 . -456) NIL) ((-918 . -380) 136500) ((-918 . -287) 136482) ((-918 . -200) T) ((-918 . -79) 136409) ((-918 . -964) 136359) ((-918 . -969) 136309) ((-918 . -245) T) ((-918 . -655) 136259) ((-918 . -583) 136209) ((-918 . -591) 136159) ((-918 . -589) 136109) ((-918 . -35) 136059) ((-918 . -257) T) ((-918 . -392) T) ((-918 . -145) T) ((-918 . -496) T) ((-918 . -833) T) ((-918 . -1135) T) ((-918 . -311) T) ((-918 . -189) T) ((-918 . -185) 136046) ((-918 . -188) T) ((-918 . -224) 136028) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -183) 136010) ((-918 . -117) T) ((-918 . -115) NIL) ((-918 . -101) T) ((-918 . -22) T) ((-918 . -69) T) ((-918 . -12) T) ((-918 . -1130) T) ((-918 . -553) 135970) ((-918 . -1014) T) ((-918 . -20) T) ((-918 . -18) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1062) T) ((-918 . -1026) T) ((-918 . -971) T) ((-917 . -290) 135944) ((-917 . -145) T) ((-917 . -556) 135874) ((-917 . -971) T) ((-917 . -1026) T) ((-917 . -1062) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 135776) ((-917 . -589) 135706) ((-917 . -101) T) ((-917 . -22) T) ((-917 . -69) T) ((-917 . -12) T) ((-917 . -1130) T) ((-917 . -553) 135688) ((-917 . -1014) T) ((-917 . -20) T) ((-917 . -18) T) ((-917 . -969) 135633) ((-917 . -964) 135578) ((-917 . -79) 135495) ((-917 . -554) 135479) ((-917 . -183) 135456) ((-917 . -810) 135408) ((-917 . -812) 135320) ((-917 . -807) 135230) ((-917 . -224) 135207) ((-917 . -188) 135147) ((-917 . -185) 135081) ((-917 . -189) 135053) ((-917 . -311) T) ((-917 . -1135) T) ((-917 . -833) T) ((-917 . -496) T) ((-917 . -655) 134998) ((-917 . -583) 134943) ((-917 . -35) 134888) ((-917 . -392) T) ((-917 . -257) T) ((-917 . -245) T) ((-917 . -200) T) ((-917 . -319) NIL) ((-917 . -298) NIL) ((-917 . -1067) NIL) ((-917 . -115) 134860) ((-917 . -344) NIL) ((-917 . -352) 134832) ((-917 . -117) 134804) ((-917 . -321) 134776) ((-917 . -328) 134753) ((-917 . -581) 134687) ((-917 . -354) 134664) ((-917 . -951) 134541) ((-917 . -662) 134513) ((-914 . -909) 134497) ((-914 . -317) 134481) ((-914 . -429) 134465) ((-914 . -1014) 134443) ((-914 . -380) 134427) ((-914 . -456) 134360) ((-914 . -259) 134298) ((-914 . -553) 134233) ((-914 . -69) 134187) ((-914 . -1130) T) ((-914 . -12) T) ((-914 . -31) T) ((-914 . -1036) 134171) ((-914 . -73) 134155) ((-910 . -912) 134139) ((-910 . -760) 134118) ((-910 . -757) 134097) ((-910 . -951) 133995) ((-910 . -354) 133979) ((-910 . -581) 133927) ((-910 . -591) 133829) ((-910 . -328) 133813) ((-910 . -240) 133771) ((-910 . -259) 133736) ((-910 . -456) 133648) ((-910 . -380) 133632) ((-910 . -287) 133616) ((-910 . -35) 133564) ((-910 . -79) 133442) ((-910 . -964) 133341) ((-910 . -969) 133240) ((-910 . -589) 133163) ((-910 . -583) 133111) ((-910 . -655) 133059) ((-910 . -556) 132953) ((-910 . -245) 132907) ((-910 . -200) 132886) ((-910 . -189) 132865) ((-910 . -185) 132813) ((-910 . -188) 132767) ((-910 . -224) 132751) ((-910 . -807) 132675) ((-910 . -812) 132601) ((-910 . -810) 132560) ((-910 . -183) 132544) ((-910 . -554) 132505) ((-910 . -117) 132484) ((-910 . -115) 132463) ((-910 . -101) T) ((-910 . -22) T) ((-910 . -69) T) ((-910 . -12) T) ((-910 . -1130) T) ((-910 . -553) 132445) ((-910 . -1014) T) ((-910 . -20) T) ((-910 . -18) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1062) T) ((-910 . -1026) T) ((-910 . -971) T) ((-908 . -996) T) ((-908 . -430) 132426) ((-908 . -553) 132392) ((-908 . -556) 132373) ((-908 . -1014) T) ((-908 . -1130) T) ((-908 . -12) T) ((-908 . -69) T) ((-908 . -61) T) ((-907 . -18) T) ((-907 . -589) 132355) ((-907 . -20) T) ((-907 . -1014) T) ((-907 . -553) 132337) ((-907 . -1130) T) ((-907 . -12) T) ((-907 . -69) T) ((-907 . -22) T) ((-907 . -101) T) ((-907 . -240) 132304) ((-903 . -553) 132286) ((-900 . -1014) T) ((-900 . -553) 132268) ((-900 . -1130) T) ((-900 . -12) T) ((-900 . -69) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -20) T) ((-885 . -1014) T) ((-885 . -553) 132228) ((-885 . -1130) T) ((-885 . -12) T) ((-885 . -69) T) ((-885 . -22) T) ((-885 . -101) T) ((-884 . -996) T) ((-884 . -430) 132209) ((-884 . -553) 132175) ((-884 . -556) 132156) ((-884 . -1014) T) ((-884 . -1130) T) ((-884 . -12) T) ((-884 . -69) T) ((-884 . -61) T) ((-878 . -881) T) ((-878 . -69) T) ((-878 . -553) 132138) ((-878 . -1014) T) ((-878 . -605) T) ((-878 . -12) T) ((-878 . -1130) T) ((-878 . -81) T) ((-878 . -556) 132122) ((-877 . -553) 132104) ((-876 . -1014) T) ((-876 . -553) 132086) ((-876 . -1130) T) ((-876 . -12) T) ((-876 . -69) T) ((-876 . -319) 132039) ((-876 . -664) 131941) ((-876 . -1026) 131843) ((-876 . -20) 131657) ((-876 . -22) 131471) ((-876 . -101) 131329) ((-876 . -413) 131282) ((-876 . -18) 131237) ((-876 . -589) 131181) ((-876 . -718) 131134) ((-876 . -717) 131087) ((-876 . -757) 130989) ((-876 . -760) 130891) ((-876 . -719) 130844) ((-876 . -722) 130797) ((-870 . -16) 130781) ((-870 . -1036) 130765) ((-870 . -317) 130749) ((-870 . -31) T) ((-870 . -12) T) ((-870 . -1130) T) ((-870 . -69) 130683) ((-870 . -553) 130598) ((-870 . -259) 130536) ((-870 . -456) 130469) ((-870 . -380) 130453) ((-870 . -1014) 130406) ((-870 . -429) 130390) ((-870 . -594) 130374) ((-870 . -242) 130351) ((-870 . -240) 130303) ((-870 . -539) 130280) ((-870 . -554) 130241) ((-870 . -121) 130225) ((-870 . -757) 130204) ((-870 . -760) 130183) ((-870 . -323) 130167) ((-868 . -276) 130146) ((-868 . -951) 130044) ((-868 . -354) 130028) ((-868 . -35) 129925) ((-868 . -556) 129782) ((-868 . -591) 129707) ((-868 . -589) 129617) ((-868 . -971) T) ((-868 . -1026) T) ((-868 . -1062) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -79) 129482) ((-868 . -964) 129368) ((-868 . -969) 129254) ((-868 . -18) T) ((-868 . -20) T) ((-868 . -1014) T) ((-868 . -553) 129236) ((-868 . -1130) T) ((-868 . -12) T) ((-868 . -69) T) ((-868 . -22) T) ((-868 . -101) T) ((-868 . -583) 129133) ((-868 . -655) 129030) ((-868 . -115) 129009) ((-868 . -117) 128988) ((-868 . -145) 128942) ((-868 . -380) 128926) ((-868 . -496) 128905) ((-868 . -245) 128884) ((-868 . -44) 128863) ((-866 . -1014) T) ((-866 . -553) 128829) ((-866 . -1130) T) ((-866 . -12) T) ((-866 . -69) T) ((-858 . -862) 128790) ((-858 . -556) 128586) ((-858 . -951) 128468) ((-858 . -1135) 128447) ((-858 . -822) 128426) ((-858 . -797) 128351) ((-858 . -812) 128332) ((-858 . -807) 128311) ((-858 . -810) 128292) ((-858 . -456) 128238) ((-858 . -392) 128192) ((-858 . -581) 128140) ((-858 . -591) 128029) ((-858 . -328) 128013) ((-858 . -44) 127982) ((-858 . -35) 127834) ((-858 . -583) 127686) ((-858 . -655) 127538) ((-858 . -245) 127472) ((-858 . -496) 127406) ((-858 . -380) 127390) ((-858 . -79) 127215) ((-858 . -964) 127061) ((-858 . -969) 126907) ((-858 . -145) 126821) ((-858 . -117) 126800) ((-858 . -115) 126779) ((-858 . -589) 126689) ((-858 . -101) T) ((-858 . -22) T) ((-858 . -69) T) ((-858 . -12) T) ((-858 . -1130) T) ((-858 . -553) 126671) ((-858 . -1014) T) ((-858 . -20) T) ((-858 . -18) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1062) T) ((-858 . -1026) T) ((-858 . -971) T) ((-858 . -354) 126655) ((-858 . -276) 126624) ((-858 . -259) 126611) ((-858 . -554) 126472) ((-855 . -894) 126456) ((-855 . -16) 126440) ((-855 . -1036) 126424) ((-855 . -317) 126408) ((-855 . -31) T) ((-855 . -12) T) ((-855 . -1130) T) ((-855 . -69) 126342) ((-855 . -553) 126257) ((-855 . -259) 126195) ((-855 . -456) 126128) ((-855 . -380) 126112) ((-855 . -1014) 126065) ((-855 . -429) 126049) ((-855 . -594) 126033) ((-855 . -242) 126010) ((-855 . -240) 125962) ((-855 . -539) 125939) ((-855 . -554) 125900) ((-855 . -121) 125884) ((-855 . -757) 125863) ((-855 . -760) 125842) ((-855 . -323) 125826) ((-855 . -1179) 125810) ((-855 . -558) 125787) ((-839 . -888) T) ((-839 . -553) 125769) ((-837 . -867) T) ((-837 . -553) 125751) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1014) T) ((-831 . -553) 125733) ((-831 . -1130) T) ((-831 . -12) T) ((-831 . -69) T) ((-831 . -22) T) ((-831 . -664) T) ((-831 . -1026) T) ((-826 . -311) T) ((-826 . -1135) T) ((-826 . -833) T) ((-826 . -496) T) ((-826 . -145) T) ((-826 . -556) 125670) ((-826 . -655) 125622) ((-826 . -583) 125574) ((-826 . -35) 125526) ((-826 . -392) T) ((-826 . -257) T) ((-826 . -591) 125478) ((-826 . -589) 125415) ((-826 . -971) T) ((-826 . -1026) T) ((-826 . -1062) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -79) 125346) ((-826 . -964) 125298) ((-826 . -969) 125250) ((-826 . -18) T) ((-826 . -20) T) ((-826 . -1014) T) ((-826 . -553) 125232) ((-826 . -1130) T) ((-826 . -12) T) ((-826 . -69) T) ((-826 . -22) T) ((-826 . -101) T) ((-826 . -245) T) ((-826 . -200) T) ((-818 . -298) T) ((-818 . -1067) T) ((-818 . -319) T) ((-818 . -115) T) ((-818 . -311) T) ((-818 . -1135) T) ((-818 . -833) T) ((-818 . -496) T) ((-818 . -145) T) ((-818 . -556) 125182) ((-818 . -655) 125147) ((-818 . -583) 125112) ((-818 . -35) 125077) ((-818 . -392) T) ((-818 . -257) T) ((-818 . -79) 125026) ((-818 . -964) 124991) ((-818 . -969) 124956) ((-818 . -589) 124906) ((-818 . -591) 124871) ((-818 . -245) T) ((-818 . -200) T) ((-818 . -344) T) ((-818 . -188) T) ((-818 . -1130) T) ((-818 . -12) T) ((-818 . -185) 124858) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1062) T) ((-818 . -1026) T) ((-818 . -971) T) ((-818 . -18) T) ((-818 . -20) T) ((-818 . -1014) T) ((-818 . -553) 124840) ((-818 . -69) T) ((-818 . -22) T) ((-818 . -101) T) ((-818 . -189) T) ((-818 . -279) 124827) ((-818 . -117) 124809) ((-818 . -951) 124796) ((-818 . -1188) 124783) ((-818 . -1199) 124770) ((-818 . -554) 124752) ((-817 . -1014) T) ((-817 . -553) 124734) ((-817 . -1130) T) ((-817 . -12) T) ((-817 . -69) T) ((-814 . -816) 124718) ((-814 . -760) 124672) ((-814 . -757) 124626) ((-814 . -664) T) ((-814 . -1014) T) ((-814 . -553) 124608) ((-814 . -69) T) ((-814 . -1026) T) ((-814 . -413) T) ((-814 . -1130) T) ((-814 . -12) T) ((-814 . -240) 124587) ((-813 . -89) 124571) ((-813 . -429) 124555) ((-813 . -1014) 124533) ((-813 . -380) 124517) ((-813 . -456) 124450) ((-813 . -259) 124388) ((-813 . -553) 124302) ((-813 . -69) 124256) ((-813 . -1130) T) ((-813 . -12) T) ((-813 . -31) T) ((-813 . -924) 124240) ((-804 . -757) T) ((-804 . -553) 124222) ((-804 . -1014) T) ((-804 . -69) T) ((-804 . -12) T) ((-804 . -1130) T) ((-804 . -760) T) ((-804 . -951) 124199) ((-804 . -556) 124176) ((-801 . -1014) T) ((-801 . -553) 124158) ((-801 . -1130) T) ((-801 . -12) T) ((-801 . -69) T) ((-801 . -951) 124126) ((-801 . -556) 124094) ((-799 . -1014) T) ((-799 . -553) 124076) ((-799 . -1130) T) ((-799 . -12) T) ((-799 . -69) T) ((-796 . -1014) T) ((-796 . -553) 124058) ((-796 . -1130) T) ((-796 . -12) T) ((-796 . -69) T) ((-786 . -996) T) ((-786 . -430) 124039) ((-786 . -553) 124005) ((-786 . -556) 123986) ((-786 . -1014) T) ((-786 . -1130) T) ((-786 . -12) T) ((-786 . -69) T) ((-786 . -61) T) ((-786 . -1176) T) ((-784 . -1014) T) ((-784 . -553) 123968) ((-784 . -1130) T) ((-784 . -12) T) ((-784 . -69) T) ((-784 . -556) 123950) ((-783 . -1130) T) ((-783 . -12) T) ((-783 . -553) 123825) ((-783 . -1014) 123776) ((-783 . -69) 123727) ((-782 . -905) 123711) ((-782 . -1067) 123689) ((-782 . -951) 123556) ((-782 . -556) 123455) ((-782 . -554) 123258) ((-782 . -934) 123237) ((-782 . -822) 123216) ((-782 . -795) 123200) ((-782 . -756) 123179) ((-782 . -722) 123158) ((-782 . -719) 123137) ((-782 . -760) 123091) ((-782 . -757) 123045) ((-782 . -717) 123024) ((-782 . -715) 123003) ((-782 . -741) 122982) ((-782 . -797) 122907) ((-782 . -342) 122891) ((-782 . -581) 122839) ((-782 . -591) 122755) ((-782 . -328) 122739) ((-782 . -240) 122697) ((-782 . -259) 122662) ((-782 . -456) 122574) ((-782 . -380) 122558) ((-782 . -287) 122542) ((-782 . -200) T) ((-782 . -79) 122473) ((-782 . -964) 122425) ((-782 . -969) 122377) ((-782 . -245) T) ((-782 . -655) 122329) ((-782 . -583) 122281) ((-782 . -589) 122218) ((-782 . -35) 122170) ((-782 . -257) T) ((-782 . -392) T) ((-782 . -145) T) ((-782 . -496) T) ((-782 . -833) T) ((-782 . -1135) T) ((-782 . -311) T) ((-782 . -189) 122149) ((-782 . -185) 122097) ((-782 . -188) 122051) ((-782 . -224) 122035) ((-782 . -807) 121959) ((-782 . -812) 121885) ((-782 . -810) 121844) ((-782 . -183) 121828) ((-782 . -117) 121782) ((-782 . -115) 121761) ((-782 . -101) T) ((-782 . -22) T) ((-782 . -69) T) ((-782 . -12) T) ((-782 . -1130) T) ((-782 . -553) 121743) ((-782 . -1014) T) ((-782 . -20) T) ((-782 . -18) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1062) T) ((-782 . -1026) T) ((-782 . -971) T) ((-781 . -905) 121720) ((-781 . -1067) NIL) ((-781 . -951) 121697) ((-781 . -556) 121627) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 121604) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -342) 121581) ((-781 . -581) 121558) ((-781 . -591) 121503) ((-781 . -328) 121480) ((-781 . -240) 121410) ((-781 . -259) 121354) ((-781 . -456) 121217) ((-781 . -380) 121194) ((-781 . -287) 121171) ((-781 . -200) T) ((-781 . -79) 121088) ((-781 . -964) 121033) ((-781 . -969) 120978) ((-781 . -245) T) ((-781 . -655) 120923) ((-781 . -583) 120868) ((-781 . -589) 120798) ((-781 . -35) 120743) ((-781 . -257) T) ((-781 . -392) T) ((-781 . -145) T) ((-781 . -496) T) ((-781 . -833) T) ((-781 . -1135) T) ((-781 . -311) T) ((-781 . -189) NIL) ((-781 . -185) NIL) ((-781 . -188) NIL) ((-781 . -224) 120720) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -183) 120697) ((-781 . -117) T) ((-781 . -115) NIL) ((-781 . -101) T) ((-781 . -22) T) ((-781 . -69) T) ((-781 . -12) T) ((-781 . -1130) T) ((-781 . -553) 120679) ((-781 . -1014) T) ((-781 . -20) T) ((-781 . -18) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1062) T) ((-781 . -1026) T) ((-781 . -971) T) ((-779 . -780) 120663) ((-779 . -833) T) ((-779 . -496) T) ((-779 . -245) T) ((-779 . -145) T) ((-779 . -556) 120635) ((-779 . -655) 120622) ((-779 . -583) 120609) ((-779 . -969) 120596) ((-779 . -964) 120583) ((-779 . -79) 120568) ((-779 . -35) 120555) ((-779 . -392) T) ((-779 . -257) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1062) T) ((-779 . -1026) T) ((-779 . -971) T) ((-779 . -18) T) ((-779 . -589) 120527) ((-779 . -20) T) ((-779 . -1014) T) ((-779 . -553) 120509) ((-779 . -1130) T) ((-779 . -12) T) ((-779 . -69) T) ((-779 . -22) T) ((-779 . -101) T) ((-779 . -591) 120496) ((-779 . -117) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1062) T) ((-776 . -1026) T) ((-776 . -971) T) ((-776 . -18) T) ((-776 . -589) 120441) ((-776 . -20) T) ((-776 . -1014) T) ((-776 . -553) 120403) ((-776 . -1130) T) ((-776 . -12) T) ((-776 . -69) T) ((-776 . -22) T) ((-776 . -101) T) ((-776 . -591) 120363) ((-776 . -556) 120298) ((-776 . -430) 120275) ((-776 . -35) 120245) ((-776 . -79) 120210) ((-776 . -964) 120180) ((-776 . -969) 120150) ((-776 . -583) 120120) ((-776 . -655) 120090) ((-775 . -1014) T) ((-775 . -553) 120072) ((-775 . -1130) T) ((-775 . -12) T) ((-775 . -69) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1014) T) ((-774 . -553) 120054) ((-774 . -1130) T) ((-774 . -12) T) ((-774 . -69) T) ((-774 . -319) T) ((-774 . -554) 119976) ((-773 . -1014) T) ((-773 . -553) 119958) ((-773 . -1130) T) ((-773 . -12) T) ((-773 . -69) T) ((-772 . -771) T) ((-772 . -146) T) ((-772 . -553) 119940) ((-768 . -757) T) ((-768 . -553) 119922) ((-768 . -1014) T) ((-768 . -69) T) ((-768 . -12) T) ((-768 . -1130) T) ((-768 . -760) T) ((-765 . -762) 119906) ((-765 . -951) 119804) ((-765 . -556) 119702) ((-765 . -354) 119686) ((-765 . -655) 119656) ((-765 . -583) 119626) ((-765 . -591) 119600) ((-765 . -589) 119559) ((-765 . -101) T) ((-765 . -22) T) ((-765 . -69) T) ((-765 . -12) T) ((-765 . -1130) T) ((-765 . -553) 119541) ((-765 . -1014) T) ((-765 . -20) T) ((-765 . -18) T) ((-765 . -969) 119525) ((-765 . -964) 119509) ((-765 . -79) 119488) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1062) T) ((-765 . -1026) T) ((-765 . -971) T) ((-765 . -35) 119458) ((-764 . -762) 119442) ((-764 . -951) 119340) ((-764 . -556) 119259) ((-764 . -354) 119243) ((-764 . -655) 119213) ((-764 . -583) 119183) ((-764 . -591) 119157) ((-764 . -589) 119116) ((-764 . -101) T) ((-764 . -22) T) ((-764 . -69) T) ((-764 . -12) T) ((-764 . -1130) T) ((-764 . -553) 119098) ((-764 . -1014) T) ((-764 . -20) T) ((-764 . -18) T) ((-764 . -969) 119082) ((-764 . -964) 119066) ((-764 . -79) 119045) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1062) T) ((-764 . -1026) T) ((-764 . -971) T) ((-764 . -35) 119015) ((-758 . -760) T) ((-758 . -1130) T) ((-758 . -12) T) ((-758 . -69) T) ((-758 . -430) 118999) ((-758 . -553) 118947) ((-758 . -556) 118931) ((-751 . -1014) T) ((-751 . -553) 118913) ((-751 . -1130) T) ((-751 . -12) T) ((-751 . -69) T) ((-751 . -354) 118897) ((-751 . -556) 118770) ((-751 . -951) 118668) ((-751 . -18) 118623) ((-751 . -589) 118543) ((-751 . -20) 118498) ((-751 . -22) 118453) ((-751 . -101) 118408) ((-751 . -756) 118387) ((-751 . -722) 118366) ((-751 . -719) 118345) ((-751 . -760) 118324) ((-751 . -757) 118303) ((-751 . -717) 118282) ((-751 . -715) 118261) ((-751 . -962) 118240) ((-751 . -664) 118219) ((-751 . -1062) 118198) ((-751 . -1026) 118177) ((-751 . -971) 118156) ((-751 . -591) 118129) ((-751 . -117) 118108) ((-750 . -748) 118090) ((-750 . -69) T) ((-750 . -12) T) ((-750 . -1130) T) ((-750 . -553) 118072) ((-750 . -1014) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1062) T) ((-746 . -1026) T) ((-746 . -971) T) ((-746 . -18) T) ((-746 . -589) 118017) ((-746 . -20) T) ((-746 . -1014) T) ((-746 . -553) 117999) ((-746 . -1130) T) ((-746 . -12) T) ((-746 . -69) T) ((-746 . -22) T) ((-746 . -101) T) ((-746 . -591) 117959) ((-746 . -556) 117914) ((-746 . -951) 117884) ((-746 . -240) 117863) ((-746 . -117) 117842) ((-746 . -115) 117821) ((-746 . -35) 117791) ((-746 . -79) 117756) ((-746 . -964) 117726) ((-746 . -969) 117696) ((-746 . -583) 117666) ((-746 . -655) 117636) ((-744 . -1014) T) ((-744 . -553) 117618) ((-744 . -1130) T) ((-744 . -12) T) ((-744 . -69) T) ((-744 . -354) 117602) ((-744 . -556) 117475) ((-744 . -951) 117373) ((-744 . -18) 117328) ((-744 . -589) 117248) ((-744 . -20) 117203) ((-744 . -22) 117158) ((-744 . -101) 117113) ((-744 . -756) 117092) ((-744 . -722) 117071) ((-744 . -719) 117050) ((-744 . -760) 117029) ((-744 . -757) 117008) ((-744 . -717) 116987) ((-744 . -715) 116966) ((-744 . -962) 116945) ((-744 . -664) 116924) ((-744 . -1062) 116903) ((-744 . -1026) 116882) ((-744 . -971) 116861) ((-744 . -591) 116834) ((-744 . -117) 116813) ((-742 . -646) 116797) ((-742 . -556) 116752) ((-742 . -655) 116722) ((-742 . -583) 116692) ((-742 . -591) 116666) ((-742 . -589) 116625) ((-742 . -101) T) ((-742 . -22) T) ((-742 . -69) T) ((-742 . -12) T) ((-742 . -1130) T) ((-742 . -553) 116607) ((-742 . -1014) T) ((-742 . -20) T) ((-742 . -18) T) ((-742 . -969) 116591) ((-742 . -964) 116575) ((-742 . -79) 116554) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1062) T) ((-742 . -1026) T) ((-742 . -971) T) ((-742 . -35) 116524) ((-742 . -189) 116503) ((-742 . -185) 116476) ((-742 . -188) 116455) ((-740 . -335) 116439) ((-740 . -556) 116423) ((-740 . -951) 116407) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1026) T) ((-740 . -69) T) ((-740 . -12) T) ((-740 . -1130) T) ((-740 . -553) 116389) ((-740 . -1014) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -227) 116373) ((-739 . -556) 116357) ((-739 . -951) 116341) ((-739 . -760) T) ((-739 . -69) T) ((-739 . -1014) T) ((-739 . -553) 116323) ((-739 . -757) T) ((-739 . -185) 116310) ((-739 . -12) T) ((-739 . -1130) T) ((-739 . -188) T) ((-738 . -79) 116245) ((-738 . -964) 116196) ((-738 . -969) 116147) ((-738 . -18) T) ((-738 . -589) 116083) ((-738 . -20) T) ((-738 . -1014) T) ((-738 . -553) 116052) ((-738 . -1130) T) ((-738 . -12) T) ((-738 . -69) T) ((-738 . -22) T) ((-738 . -101) T) ((-738 . -591) 116003) ((-738 . -189) T) ((-738 . -556) 115912) ((-738 . -971) T) ((-738 . -1026) T) ((-738 . -1062) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -185) 115899) ((-738 . -188) T) ((-738 . -430) 115883) ((-738 . -311) 115862) ((-738 . -1135) 115841) ((-738 . -833) 115820) ((-738 . -496) 115799) ((-738 . -145) 115778) ((-738 . -655) 115715) ((-738 . -583) 115652) ((-738 . -35) 115589) ((-738 . -392) 115568) ((-738 . -257) 115547) ((-738 . -245) 115526) ((-738 . -200) 115505) ((-737 . -212) 115444) ((-737 . -556) 115188) ((-737 . -951) 115018) ((-737 . -554) NIL) ((-737 . -276) 114980) ((-737 . -354) 114964) ((-737 . -35) 114816) ((-737 . -79) 114641) ((-737 . -964) 114487) ((-737 . -969) 114333) ((-737 . -589) 114243) ((-737 . -591) 114132) ((-737 . -583) 113984) ((-737 . -655) 113836) ((-737 . -115) 113815) ((-737 . -117) 113794) ((-737 . -145) 113708) ((-737 . -380) 113692) ((-737 . -496) 113626) ((-737 . -245) 113560) ((-737 . -44) 113522) ((-737 . -328) 113506) ((-737 . -581) 113454) ((-737 . -392) 113408) ((-737 . -456) 113273) ((-737 . -810) 113209) ((-737 . -807) 113108) ((-737 . -812) 113011) ((-737 . -797) NIL) ((-737 . -822) 112990) ((-737 . -1135) 112969) ((-737 . -862) 112916) ((-737 . -259) 112903) ((-737 . -189) 112882) ((-737 . -101) T) ((-737 . -22) T) ((-737 . -69) T) ((-737 . -553) 112864) ((-737 . -1014) T) ((-737 . -20) T) ((-737 . -18) T) ((-737 . -971) T) ((-737 . -1026) T) ((-737 . -1062) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -185) 112812) ((-737 . -12) T) ((-737 . -1130) T) ((-737 . -188) 112766) ((-737 . -224) 112750) ((-737 . -183) 112734) ((-736 . -195) 112713) ((-736 . -1188) 112683) ((-736 . -722) 112662) ((-736 . -719) 112641) ((-736 . -760) 112595) ((-736 . -757) 112549) ((-736 . -717) 112528) ((-736 . -718) 112507) ((-736 . -655) 112452) ((-736 . -583) 112377) ((-736 . -242) 112354) ((-736 . -240) 112331) ((-736 . -539) 112308) ((-736 . -951) 112137) ((-736 . -556) 111941) ((-736 . -354) 111910) ((-736 . -581) 111818) ((-736 . -591) 111657) ((-736 . -328) 111627) ((-736 . -429) 111611) ((-736 . -380) 111595) ((-736 . -456) 111528) ((-736 . -259) 111466) ((-736 . -31) T) ((-736 . -317) 111450) ((-736 . -319) 111429) ((-736 . -189) 111382) ((-736 . -589) 111170) ((-736 . -971) 111149) ((-736 . -1026) 111128) ((-736 . -1062) 111107) ((-736 . -664) 111086) ((-736 . -962) 111065) ((-736 . -185) 110961) ((-736 . -188) 110863) ((-736 . -224) 110833) ((-736 . -807) 110705) ((-736 . -812) 110579) ((-736 . -810) 110512) ((-736 . -183) 110482) ((-736 . -553) 110179) ((-736 . -969) 110104) ((-736 . -964) 110009) ((-736 . -79) 109929) ((-736 . -101) 109804) ((-736 . -22) 109641) ((-736 . -69) 109378) ((-736 . -12) T) ((-736 . -1130) T) ((-736 . -1014) 109134) ((-736 . -20) 108990) ((-736 . -18) 108905) ((-723 . -721) 108889) ((-723 . -760) 108868) ((-723 . -757) 108847) ((-723 . -951) 108640) ((-723 . -556) 108493) ((-723 . -354) 108457) ((-723 . -240) 108415) ((-723 . -259) 108380) ((-723 . -456) 108292) ((-723 . -380) 108276) ((-723 . -287) 108260) ((-723 . -319) 108239) ((-723 . -554) 108200) ((-723 . -117) 108179) ((-723 . -115) 108158) ((-723 . -655) 108142) ((-723 . -583) 108126) ((-723 . -591) 108100) ((-723 . -589) 108059) ((-723 . -101) T) ((-723 . -22) T) ((-723 . -69) T) ((-723 . -12) T) ((-723 . -1130) T) ((-723 . -553) 108041) ((-723 . -1014) T) ((-723 . -20) T) ((-723 . -18) T) ((-723 . -969) 108025) ((-723 . -964) 108009) ((-723 . -79) 107988) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1062) T) ((-723 . -1026) T) ((-723 . -971) T) ((-723 . -35) 107972) ((-705 . -1156) 107956) ((-705 . -1067) 107934) ((-705 . -554) NIL) ((-705 . -259) 107921) ((-705 . -456) 107869) ((-705 . -276) 107846) ((-705 . -951) 107708) ((-705 . -354) 107692) ((-705 . -35) 107524) ((-705 . -79) 107329) ((-705 . -964) 107155) ((-705 . -969) 106981) ((-705 . -589) 106891) ((-705 . -591) 106780) ((-705 . -583) 106612) ((-705 . -655) 106444) ((-705 . -556) 106200) ((-705 . -115) 106179) ((-705 . -117) 106158) ((-705 . -380) 106142) ((-705 . -44) 106119) ((-705 . -328) 106103) ((-705 . -581) 106051) ((-705 . -810) 105995) ((-705 . -807) 105902) ((-705 . -812) 105813) ((-705 . -797) NIL) ((-705 . -822) 105792) ((-705 . -1135) 105771) ((-705 . -862) 105741) ((-705 . -833) 105720) ((-705 . -496) 105634) ((-705 . -245) 105548) ((-705 . -145) 105442) ((-705 . -392) 105376) ((-705 . -257) 105355) ((-705 . -240) 105282) ((-705 . -189) T) ((-705 . -101) T) ((-705 . -22) T) ((-705 . -69) T) ((-705 . -553) 105243) ((-705 . -1014) T) ((-705 . -20) T) ((-705 . -18) T) ((-705 . -971) T) ((-705 . -1026) T) ((-705 . -1062) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -185) 105230) ((-705 . -12) T) ((-705 . -1130) T) ((-705 . -188) T) ((-705 . -224) 105214) ((-705 . -183) 105198) ((-704 . -978) 105165) ((-704 . -554) 104800) ((-704 . -259) 104787) ((-704 . -456) 104739) ((-704 . -276) 104711) ((-704 . -951) 104570) ((-704 . -354) 104554) ((-704 . -35) 104406) ((-704 . -556) 104179) ((-704 . -591) 104068) ((-704 . -589) 103978) ((-704 . -971) T) ((-704 . -1026) T) ((-704 . -1062) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -79) 103803) ((-704 . -964) 103649) ((-704 . -969) 103495) ((-704 . -18) T) ((-704 . -20) T) ((-704 . -1014) T) ((-704 . -553) 103409) ((-704 . -1130) T) ((-704 . -12) T) ((-704 . -69) T) ((-704 . -22) T) ((-704 . -101) T) ((-704 . -583) 103261) ((-704 . -655) 103113) ((-704 . -115) 103092) ((-704 . -117) 103071) ((-704 . -145) 102985) ((-704 . -380) 102969) ((-704 . -496) 102903) ((-704 . -245) 102837) ((-704 . -44) 102809) ((-704 . -328) 102793) ((-704 . -581) 102741) ((-704 . -392) 102695) ((-704 . -810) 102679) ((-704 . -807) 102661) ((-704 . -812) 102645) ((-704 . -797) 102504) ((-704 . -822) 102483) ((-704 . -1135) 102462) ((-704 . -862) 102429) ((-697 . -1014) T) ((-697 . -553) 102411) ((-697 . -1130) T) ((-697 . -12) T) ((-697 . -69) T) ((-695 . -718) T) ((-695 . -101) T) ((-695 . -22) T) ((-695 . -69) T) ((-695 . -12) T) ((-695 . -1130) T) ((-695 . -553) 102393) ((-695 . -1014) T) ((-695 . -20) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1026) T) ((-676 . -677) 102377) ((-676 . -1012) 102361) ((-676 . -192) 102345) ((-676 . -554) 102306) ((-676 . -121) 102290) ((-676 . -429) 102274) ((-676 . -1014) T) ((-676 . -380) 102258) ((-676 . -456) 102191) ((-676 . -259) 102129) ((-676 . -553) 102111) ((-676 . -69) T) ((-676 . -1130) T) ((-676 . -12) T) ((-676 . -31) T) ((-676 . -1036) 102095) ((-676 . -73) 102079) ((-676 . -635) 102063) ((-676 . -317) 102047) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1062) T) ((-675 . -1026) T) ((-675 . -971) T) ((-675 . -18) T) ((-675 . -589) 101992) ((-675 . -20) T) ((-675 . -1014) T) ((-675 . -553) 101974) ((-675 . -1130) T) ((-675 . -12) T) ((-675 . -69) T) ((-675 . -22) T) ((-675 . -101) T) ((-675 . -591) 101934) ((-675 . -556) 101890) ((-675 . -951) 101861) ((-675 . -380) 101845) ((-675 . -117) 101824) ((-675 . -115) 101803) ((-675 . -35) 101773) ((-675 . -79) 101738) ((-675 . -964) 101708) ((-675 . -969) 101678) ((-675 . -583) 101648) ((-675 . -655) 101618) ((-675 . -319) 101571) ((-671 . -862) 101524) ((-671 . -556) 101316) ((-671 . -951) 101194) ((-671 . -1135) 101173) ((-671 . -822) 101152) ((-671 . -797) NIL) ((-671 . -812) 101129) ((-671 . -807) 101104) ((-671 . -810) 101081) ((-671 . -456) 101019) ((-671 . -392) 100973) ((-671 . -581) 100921) ((-671 . -591) 100810) ((-671 . -328) 100794) ((-671 . -44) 100759) ((-671 . -35) 100611) ((-671 . -583) 100463) ((-671 . -655) 100315) ((-671 . -245) 100249) ((-671 . -496) 100183) ((-671 . -380) 100167) ((-671 . -79) 99992) ((-671 . -964) 99838) ((-671 . -969) 99684) ((-671 . -145) 99598) ((-671 . -117) 99577) ((-671 . -115) 99556) ((-671 . -589) 99466) ((-671 . -101) T) ((-671 . -22) T) ((-671 . -69) T) ((-671 . -12) T) ((-671 . -1130) T) ((-671 . -553) 99448) ((-671 . -1014) T) ((-671 . -20) T) ((-671 . -18) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1062) T) ((-671 . -1026) T) ((-671 . -971) T) ((-671 . -354) 99432) ((-671 . -276) 99397) ((-671 . -259) 99384) ((-671 . -554) 99245) ((-665 . -666) 99229) ((-665 . -77) 99213) ((-665 . -1130) T) ((-665 . |MappingCategory|) 99187) ((-665 . -1024) 99171) ((-665 . -1014) T) ((-665 . -553) 99132) ((-665 . -12) T) ((-665 . -69) T) ((-656 . -413) T) ((-656 . -1026) T) ((-656 . -69) T) ((-656 . -12) T) ((-656 . -1130) T) ((-656 . -553) 99114) ((-656 . -1014) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1062) T) ((-653 . -1026) T) ((-653 . -971) T) ((-653 . -18) T) ((-653 . -589) 99086) ((-653 . -20) T) ((-653 . -1014) T) ((-653 . -553) 99068) ((-653 . -1130) T) ((-653 . -12) T) ((-653 . -69) T) ((-653 . -22) T) ((-653 . -101) T) ((-653 . -591) 99055) ((-653 . -556) 99037) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1062) T) ((-652 . -1026) T) ((-652 . -971) T) ((-652 . -18) T) ((-652 . -589) 98982) ((-652 . -20) T) ((-652 . -1014) T) ((-652 . -553) 98964) ((-652 . -1130) T) ((-652 . -12) T) ((-652 . -69) T) ((-652 . -22) T) ((-652 . -101) T) ((-652 . -591) 98924) ((-652 . -556) 98879) ((-652 . -951) 98849) ((-652 . -240) 98828) ((-652 . -117) 98807) ((-652 . -115) 98786) ((-652 . -35) 98756) ((-652 . -79) 98721) ((-652 . -964) 98691) ((-652 . -969) 98661) ((-652 . -583) 98631) ((-652 . -655) 98601) ((-651 . -757) T) ((-651 . -553) 98536) ((-651 . -1014) T) ((-651 . -69) T) ((-651 . -12) T) ((-651 . -1130) T) ((-651 . -760) T) ((-651 . -430) 98486) ((-651 . -556) 98436) ((-650 . -1156) 98420) ((-650 . -1067) 98398) ((-650 . -554) NIL) ((-650 . -259) 98385) ((-650 . -456) 98333) ((-650 . -276) 98310) ((-650 . -951) 98193) ((-650 . -354) 98177) ((-650 . -35) 98009) ((-650 . -79) 97814) ((-650 . -964) 97640) ((-650 . -969) 97466) ((-650 . -589) 97376) ((-650 . -591) 97265) ((-650 . -583) 97097) ((-650 . -655) 96929) ((-650 . -556) 96693) ((-650 . -115) 96672) ((-650 . -117) 96651) ((-650 . -380) 96635) ((-650 . -44) 96612) ((-650 . -328) 96596) ((-650 . -581) 96544) ((-650 . -810) 96488) ((-650 . -807) 96395) ((-650 . -812) 96306) ((-650 . -797) NIL) ((-650 . -822) 96285) ((-650 . -1135) 96264) ((-650 . -862) 96234) ((-650 . -833) 96213) ((-650 . -496) 96127) ((-650 . -245) 96041) ((-650 . -145) 95935) ((-650 . -392) 95869) ((-650 . -257) 95848) ((-650 . -240) 95775) ((-650 . -189) T) ((-650 . -101) T) ((-650 . -22) T) ((-650 . -69) T) ((-650 . -553) 95757) ((-650 . -1014) T) ((-650 . -20) T) ((-650 . -18) T) ((-650 . -971) T) ((-650 . -1026) T) ((-650 . -1062) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -185) 95744) ((-650 . -12) T) ((-650 . -1130) T) ((-650 . -188) T) ((-650 . -224) 95728) ((-650 . -183) 95712) ((-650 . -319) 95691) ((-649 . -311) T) ((-649 . -1135) T) ((-649 . -833) T) ((-649 . -496) T) ((-649 . -145) T) ((-649 . -556) 95641) ((-649 . -655) 95606) ((-649 . -583) 95571) ((-649 . -35) 95536) ((-649 . -392) T) ((-649 . -257) T) ((-649 . -591) 95501) ((-649 . -589) 95451) ((-649 . -971) T) ((-649 . -1026) T) ((-649 . -1062) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -79) 95400) ((-649 . -964) 95365) ((-649 . -969) 95330) ((-649 . -18) T) ((-649 . -20) T) ((-649 . -1014) T) ((-649 . -553) 95312) ((-649 . -1130) T) ((-649 . -12) T) ((-649 . -69) T) ((-649 . -22) T) ((-649 . -101) T) ((-649 . -245) T) ((-649 . -200) T) ((-648 . -1014) T) ((-648 . -553) 95294) ((-648 . -1130) T) ((-648 . -12) T) ((-648 . -69) T) ((-633 . -1176) T) ((-633 . -951) 95278) ((-633 . -556) 95262) ((-633 . -553) 95244) ((-631 . -628) 95202) ((-631 . -317) 95186) ((-631 . -31) T) ((-631 . -12) T) ((-631 . -1130) T) ((-631 . -69) 95140) ((-631 . -553) 95075) ((-631 . -259) 95013) ((-631 . -456) 94946) ((-631 . -380) 94930) ((-631 . -1014) 94908) ((-631 . -429) 94892) ((-631 . -1036) 94876) ((-631 . -54) 94834) ((-631 . -554) 94795) ((-623 . -996) T) ((-623 . -430) 94776) ((-623 . -553) 94726) ((-623 . -556) 94707) ((-623 . -1014) T) ((-623 . -1130) T) ((-623 . -12) T) ((-623 . -69) T) ((-623 . -61) T) ((-619 . -757) T) ((-619 . -553) 94689) ((-619 . -1014) T) ((-619 . -69) T) ((-619 . -12) T) ((-619 . -1130) T) ((-619 . -760) T) ((-619 . -951) 94673) ((-619 . -556) 94657) ((-618 . -996) T) ((-618 . -430) 94638) ((-618 . -553) 94604) ((-618 . -556) 94585) ((-618 . -1014) T) ((-618 . -1130) T) ((-618 . -12) T) ((-618 . -69) T) ((-618 . -61) T) ((-615 . -757) T) ((-615 . -553) 94567) ((-615 . -1014) T) ((-615 . -69) T) ((-615 . -12) T) ((-615 . -1130) T) ((-615 . -760) T) ((-615 . -951) 94551) ((-615 . -556) 94535) ((-614 . -996) T) ((-614 . -430) 94516) ((-614 . -553) 94482) ((-614 . -556) 94463) ((-614 . -1014) T) ((-614 . -1130) T) ((-614 . -12) T) ((-614 . -69) T) ((-614 . -61) T) ((-613 . -1038) 94408) ((-613 . -317) 94392) ((-613 . -31) T) ((-613 . -259) 94330) ((-613 . -456) 94263) ((-613 . -380) 94247) ((-613 . -429) 94231) ((-613 . -966) 94171) ((-613 . -951) 94069) ((-613 . -556) 93988) ((-613 . -354) 93972) ((-613 . -581) 93920) ((-613 . -591) 93858) ((-613 . -328) 93842) ((-613 . -189) 93821) ((-613 . -185) 93769) ((-613 . -188) 93723) ((-613 . -224) 93707) ((-613 . -807) 93631) ((-613 . -812) 93557) ((-613 . -810) 93516) ((-613 . -183) 93500) ((-613 . -655) 93484) ((-613 . -583) 93468) ((-613 . -589) 93427) ((-613 . -101) T) ((-613 . -22) T) ((-613 . -69) T) ((-613 . -12) T) ((-613 . -1130) T) ((-613 . -553) 93389) ((-613 . -1014) T) ((-613 . -20) T) ((-613 . -18) T) ((-613 . -969) 93373) ((-613 . -964) 93357) ((-613 . -79) 93336) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1062) T) ((-613 . -1026) T) ((-613 . -971) T) ((-613 . -35) 93296) ((-613 . -360) 93280) ((-613 . -684) 93264) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -315) 93248) ((-613 . -240) 93225) ((-607 . -325) 93204) ((-607 . -655) 93188) ((-607 . -583) 93172) ((-607 . -591) 93156) ((-607 . -589) 93125) ((-607 . -101) T) ((-607 . -22) T) ((-607 . -69) T) ((-607 . -12) T) ((-607 . -1130) T) ((-607 . -553) 93107) ((-607 . -1014) T) ((-607 . -20) T) ((-607 . -18) T) ((-607 . -969) 93091) ((-607 . -964) 93075) ((-607 . -79) 93054) ((-607 . -575) 93038) ((-607 . -334) 93010) ((-607 . -556) 92987) ((-607 . -951) 92964) ((-607 . -380) 92948) ((-599 . -601) 92932) ((-599 . -35) 92902) ((-599 . -556) 92821) ((-599 . -591) 92795) ((-599 . -589) 92754) ((-599 . -971) T) ((-599 . -1026) T) ((-599 . -1062) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -79) 92733) ((-599 . -964) 92717) ((-599 . -969) 92701) ((-599 . -18) T) ((-599 . -20) T) ((-599 . -1014) T) ((-599 . -553) 92683) ((-599 . -69) T) ((-599 . -22) T) ((-599 . -101) T) ((-599 . -583) 92653) ((-599 . -655) 92623) ((-599 . -354) 92607) ((-599 . -951) 92505) ((-599 . -762) 92489) ((-599 . -1130) T) ((-599 . -12) T) ((-599 . -240) 92450) ((-598 . -601) 92434) ((-598 . -35) 92404) ((-598 . -556) 92323) ((-598 . -591) 92297) ((-598 . -589) 92256) ((-598 . -971) T) ((-598 . -1026) T) ((-598 . -1062) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -79) 92235) ((-598 . -964) 92219) ((-598 . -969) 92203) ((-598 . -18) T) ((-598 . -20) T) ((-598 . -1014) T) ((-598 . -553) 92185) ((-598 . -69) T) ((-598 . -22) T) ((-598 . -101) T) ((-598 . -583) 92155) ((-598 . -655) 92125) ((-598 . -354) 92109) ((-598 . -951) 92007) ((-598 . -762) 91991) ((-598 . -1130) T) ((-598 . -12) T) ((-598 . -240) 91970) ((-597 . -601) 91954) ((-597 . -35) 91924) ((-597 . -556) 91843) ((-597 . -591) 91817) ((-597 . -589) 91776) ((-597 . -971) T) ((-597 . -1026) T) ((-597 . -1062) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -79) 91755) ((-597 . -964) 91739) ((-597 . -969) 91723) ((-597 . -18) T) ((-597 . -20) T) ((-597 . -1014) T) ((-597 . -553) 91705) ((-597 . -69) T) ((-597 . -22) T) ((-597 . -101) T) ((-597 . -583) 91675) ((-597 . -655) 91645) ((-597 . -354) 91629) ((-597 . -951) 91527) ((-597 . -762) 91511) ((-597 . -1130) T) ((-597 . -12) T) ((-597 . -240) 91490) ((-595 . -655) 91474) ((-595 . -583) 91458) ((-595 . -591) 91442) ((-595 . -589) 91411) ((-595 . -101) T) ((-595 . -22) T) ((-595 . -69) T) ((-595 . -12) T) ((-595 . -1130) T) ((-595 . -553) 91393) ((-595 . -1014) T) ((-595 . -20) T) ((-595 . -18) T) ((-595 . -969) 91377) ((-595 . -964) 91361) ((-595 . -79) 91340) ((-595 . -715) 91319) ((-595 . -717) 91298) ((-595 . -757) 91277) ((-595 . -760) 91256) ((-595 . -719) 91235) ((-595 . -722) 91214) ((-592 . -1014) T) ((-592 . -553) 91196) ((-592 . -1130) T) ((-592 . -12) T) ((-592 . -69) T) ((-592 . -951) 91180) ((-592 . -556) 91164) ((-590 . -635) 91148) ((-590 . -73) 91132) ((-590 . -1036) 91116) ((-590 . -31) T) ((-590 . -12) T) ((-590 . -1130) T) ((-590 . -69) 91070) ((-590 . -553) 91005) ((-590 . -259) 90943) ((-590 . -456) 90876) ((-590 . -380) 90860) ((-590 . -1014) 90838) ((-590 . -429) 90822) ((-590 . -121) 90806) ((-590 . -554) 90767) ((-590 . -192) 90751) ((-590 . -317) 90735) ((-588 . -996) T) ((-588 . -430) 90716) ((-588 . -553) 90669) ((-588 . -556) 90650) ((-588 . -1014) T) ((-588 . -1130) T) ((-588 . -12) T) ((-588 . -69) T) ((-588 . -61) T) ((-584 . -609) 90634) ((-584 . -1169) 90618) ((-584 . -924) 90602) ((-584 . -1065) 90586) ((-584 . -317) 90570) ((-584 . -757) 90549) ((-584 . -760) 90528) ((-584 . -323) 90512) ((-584 . -594) 90496) ((-584 . -242) 90473) ((-584 . -240) 90425) ((-584 . -539) 90402) ((-584 . -554) 90363) ((-584 . -429) 90347) ((-584 . -1014) 90300) ((-584 . -380) 90284) ((-584 . -456) 90217) ((-584 . -259) 90155) ((-584 . -553) 90070) ((-584 . -69) 90004) ((-584 . -1130) T) ((-584 . -12) T) ((-584 . -31) T) ((-584 . -121) 89988) ((-584 . -1036) 89972) ((-584 . -236) 89956) ((-582 . -1188) 89940) ((-582 . -79) 89919) ((-582 . -964) 89903) ((-582 . -969) 89887) ((-582 . -18) T) ((-582 . -589) 89856) ((-582 . -20) T) ((-582 . -1014) T) ((-582 . -553) 89838) ((-582 . -1130) T) ((-582 . -12) T) ((-582 . -69) T) ((-582 . -22) T) ((-582 . -101) T) ((-582 . -591) 89822) ((-582 . -583) 89806) ((-582 . -655) 89790) ((-582 . -240) 89757) ((-580 . -1188) 89741) ((-580 . -79) 89720) ((-580 . -964) 89704) ((-580 . -969) 89688) ((-580 . -18) T) ((-580 . -589) 89657) ((-580 . -20) T) ((-580 . -1014) T) ((-580 . -553) 89639) ((-580 . -1130) T) ((-580 . -12) T) ((-580 . -69) T) ((-580 . -22) T) ((-580 . -101) T) ((-580 . -591) 89623) ((-580 . -583) 89607) ((-580 . -655) 89591) ((-580 . -556) 89568) ((-580 . -450) 89540) ((-580 . -380) 89524) ((-580 . -558) 89482) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1014) T) ((-578 . -553) 89464) ((-578 . -1130) T) ((-578 . -12) T) ((-578 . -69) T) ((-578 . -319) T) ((-578 . -556) 89441) ((-573 . -684) 89425) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -79) 89404) ((-573 . -964) 89388) ((-573 . -969) 89372) ((-573 . -18) T) ((-573 . -589) 89341) ((-573 . -20) T) ((-573 . -1014) T) ((-573 . -553) 89310) ((-573 . -1130) T) ((-573 . -12) T) ((-573 . -69) T) ((-573 . -22) T) ((-573 . -101) T) ((-573 . -591) 89294) ((-573 . -583) 89278) ((-573 . -655) 89262) ((-573 . -360) 89227) ((-573 . -315) 89162) ((-573 . -240) 89120) ((-572 . -1108) 89095) ((-572 . -182) 89039) ((-572 . -73) 88983) ((-572 . -1036) 88913) ((-572 . -121) 88857) ((-572 . -554) NIL) ((-572 . -192) 88801) ((-572 . -539) 88776) ((-572 . -259) 88621) ((-572 . -456) 88421) ((-572 . -380) 88351) ((-572 . -429) 88281) ((-572 . -240) 88234) ((-572 . -242) 88209) ((-572 . -550) 88184) ((-572 . -1014) T) ((-572 . -553) 88166) ((-572 . -69) T) ((-572 . -1130) T) ((-572 . -12) T) ((-572 . -31) T) ((-572 . -317) 88110) ((-567 . -413) T) ((-567 . -1026) T) ((-567 . -69) T) ((-567 . -12) T) ((-567 . -1130) T) ((-567 . -553) 88092) ((-567 . -1014) T) ((-567 . -664) T) ((-566 . -996) T) ((-566 . -430) 88073) ((-566 . -553) 88039) ((-566 . -556) 88020) ((-566 . -1014) T) ((-566 . -1130) T) ((-566 . -12) T) ((-566 . -69) T) ((-566 . -61) T) ((-563 . -183) 88004) ((-563 . -810) 87963) ((-563 . -812) 87889) ((-563 . -807) 87813) ((-563 . -224) 87797) ((-563 . -188) 87751) ((-563 . -1130) T) ((-563 . -12) T) ((-563 . -185) 87699) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1062) T) ((-563 . -1026) T) ((-563 . -971) T) ((-563 . -18) T) ((-563 . -589) 87671) ((-563 . -20) T) ((-563 . -1014) T) ((-563 . -553) 87653) ((-563 . -69) T) ((-563 . -22) T) ((-563 . -101) T) ((-563 . -591) 87640) ((-563 . -556) 87536) ((-563 . -189) 87515) ((-563 . -496) T) ((-563 . -245) T) ((-563 . -145) T) ((-563 . -655) 87502) ((-563 . -583) 87489) ((-563 . -969) 87476) ((-563 . -964) 87463) ((-563 . -79) 87448) ((-563 . -35) 87435) ((-563 . -554) 87412) ((-563 . -354) 87396) ((-563 . -951) 87281) ((-563 . -117) 87260) ((-563 . -115) 87239) ((-563 . -257) 87218) ((-563 . -392) 87197) ((-563 . -833) 87176) ((-559 . -35) 87160) ((-559 . -556) 87129) ((-559 . -591) 87103) ((-559 . -589) 87062) ((-559 . -971) T) ((-559 . -1026) T) ((-559 . -1062) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -79) 87041) ((-559 . -964) 87025) ((-559 . -969) 87009) ((-559 . -18) T) ((-559 . -20) T) ((-559 . -1014) T) ((-559 . -553) 86991) ((-559 . -1130) T) ((-559 . -12) T) ((-559 . -69) T) ((-559 . -22) T) ((-559 . -101) T) ((-559 . -583) 86975) ((-559 . -655) 86959) ((-559 . -756) 86938) ((-559 . -722) 86917) ((-559 . -719) 86896) ((-559 . -760) 86875) ((-559 . -757) 86854) ((-559 . -717) 86833) ((-559 . -715) 86812) ((-559 . -117) 86791) ((-557 . -881) T) ((-557 . -69) T) ((-557 . -553) 86773) ((-557 . -1014) T) ((-557 . -605) T) ((-557 . -12) T) ((-557 . -1130) T) ((-557 . -81) T) ((-557 . -319) T) ((-551 . -102) T) ((-551 . -69) T) ((-551 . -12) T) ((-551 . -1130) T) ((-551 . -553) 86755) ((-551 . -1014) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 86739) ((-551 . -554) 86600) ((-548 . -313) 86538) ((-548 . -69) T) ((-548 . -12) T) ((-548 . -1130) T) ((-548 . -553) 86520) ((-548 . -1014) T) ((-548 . -1108) 86496) ((-548 . -182) 86441) ((-548 . -73) 86386) ((-548 . -1036) 86318) ((-548 . -121) 86263) ((-548 . -554) NIL) ((-548 . -192) 86208) ((-548 . -539) 86184) ((-548 . -259) 85973) ((-548 . -456) 85713) ((-548 . -380) 85645) ((-548 . -429) 85577) ((-548 . -240) 85553) ((-548 . -242) 85529) ((-548 . -550) 85505) ((-548 . -31) T) ((-548 . -317) 85450) ((-547 . -1014) T) ((-547 . -553) 85403) ((-547 . -1130) T) ((-547 . -12) T) ((-547 . -69) T) ((-547 . -430) 85371) ((-547 . -556) 85339) ((-546 . -1014) T) ((-546 . -553) 85321) ((-546 . -1130) T) ((-546 . -12) T) ((-546 . -69) T) ((-546 . -605) T) ((-545 . -1014) T) ((-545 . -553) 85303) ((-545 . -1130) T) ((-545 . -12) T) ((-545 . -69) T) ((-545 . -605) T) ((-544 . -1014) T) ((-544 . -553) 85271) ((-544 . -1130) T) ((-544 . -12) T) ((-544 . -69) T) ((-543 . -1014) T) ((-543 . -553) 85253) ((-543 . -1130) T) ((-543 . -12) T) ((-543 . -69) T) ((-543 . -605) T) ((-542 . -1014) T) ((-542 . -553) 85221) ((-542 . -1130) T) ((-542 . -12) T) ((-542 . -69) T) ((-542 . -430) 85204) ((-542 . -556) 85187) ((-541 . -684) 85171) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -79) 85150) ((-541 . -964) 85134) ((-541 . -969) 85118) ((-541 . -18) T) ((-541 . -589) 85087) ((-541 . -20) T) ((-541 . -1014) T) ((-541 . -553) 85056) ((-541 . -1130) T) ((-541 . -12) T) ((-541 . -69) T) ((-541 . -22) T) ((-541 . -101) T) ((-541 . -591) 85040) ((-541 . -583) 85024) ((-541 . -655) 85008) ((-541 . -360) 84973) ((-541 . -315) 84908) ((-541 . -240) 84866) ((-540 . -996) T) ((-540 . -430) 84847) ((-540 . -553) 84797) ((-540 . -556) 84778) ((-540 . -1014) T) ((-540 . -1130) T) ((-540 . -12) T) ((-540 . -69) T) ((-540 . -61) T) ((-537 . -380) 84762) ((-537 . -12) T) ((-537 . -1130) T) ((-537 . -553) 84744) ((-533 . -1014) T) ((-533 . -553) 84710) ((-533 . -1130) T) ((-533 . -12) T) ((-533 . -69) T) ((-533 . -430) 84691) ((-533 . -556) 84672) ((-532 . -962) T) ((-532 . -664) T) ((-532 . -1062) T) ((-532 . -1026) T) ((-532 . -971) T) ((-532 . -18) T) ((-532 . -589) 84631) ((-532 . -20) T) ((-532 . -1014) T) ((-532 . -553) 84613) ((-532 . -1130) T) ((-532 . -12) T) ((-532 . -69) T) ((-532 . -22) T) ((-532 . -101) T) ((-532 . -591) 84587) ((-532 . -556) 84545) ((-532 . -79) 84498) ((-532 . -964) 84458) ((-532 . -969) 84418) ((-532 . -496) 84397) ((-532 . -245) 84376) ((-532 . -145) 84355) ((-532 . -655) 84328) ((-532 . -583) 84301) ((-532 . -35) 84274) ((-531 . -1159) 84251) ((-531 . -44) 84228) ((-531 . -35) 84125) ((-531 . -583) 84022) ((-531 . -655) 83919) ((-531 . -556) 83801) ((-531 . -245) 83780) ((-531 . -496) 83759) ((-531 . -380) 83743) ((-531 . -79) 83608) ((-531 . -964) 83494) ((-531 . -969) 83380) ((-531 . -145) 83334) ((-531 . -117) 83313) ((-531 . -115) 83292) ((-531 . -591) 83217) ((-531 . -589) 83127) ((-531 . -887) 83097) ((-531 . -812) 83010) ((-531 . -807) 82921) ((-531 . -810) 82834) ((-531 . -240) 82799) ((-531 . -188) 82758) ((-531 . -1130) T) ((-531 . -12) T) ((-531 . -185) 82711) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1062) T) ((-531 . -1026) T) ((-531 . -971) T) ((-531 . -18) T) ((-531 . -20) T) ((-531 . -1014) T) ((-531 . -553) 82693) ((-531 . -69) T) ((-531 . -22) T) ((-531 . -101) T) ((-531 . -189) 82652) ((-529 . -996) T) ((-529 . -430) 82633) ((-529 . -553) 82599) ((-529 . -556) 82580) ((-529 . -1014) T) ((-529 . -1130) T) ((-529 . -12) T) ((-529 . -69) T) ((-529 . -61) T) ((-523 . -1014) T) ((-523 . -553) 82546) ((-523 . -1130) T) ((-523 . -12) T) ((-523 . -69) T) ((-523 . -430) 82527) ((-523 . -556) 82508) ((-520 . -655) 82483) ((-520 . -583) 82458) ((-520 . -591) 82433) ((-520 . -589) 82393) ((-520 . -101) T) ((-520 . -22) T) ((-520 . -69) T) ((-520 . -12) T) ((-520 . -1130) T) ((-520 . -553) 82375) ((-520 . -1014) T) ((-520 . -20) T) ((-520 . -18) T) ((-520 . -969) 82350) ((-520 . -964) 82325) ((-520 . -79) 82286) ((-520 . -951) 82270) ((-520 . -556) 82254) ((-518 . -298) T) ((-518 . -1067) T) ((-518 . -319) T) ((-518 . -115) T) ((-518 . -311) T) ((-518 . -1135) T) ((-518 . -833) T) ((-518 . -496) T) ((-518 . -145) T) ((-518 . -556) 82204) ((-518 . -655) 82169) ((-518 . -583) 82134) ((-518 . -35) 82099) ((-518 . -392) T) ((-518 . -257) T) ((-518 . -79) 82048) ((-518 . -964) 82013) ((-518 . -969) 81978) ((-518 . -589) 81928) ((-518 . -591) 81893) ((-518 . -245) T) ((-518 . -200) T) ((-518 . -344) T) ((-518 . -188) T) ((-518 . -1130) T) ((-518 . -12) T) ((-518 . -185) 81880) ((-518 . -962) T) ((-518 . -664) T) ((-518 . -1062) T) ((-518 . -1026) T) ((-518 . -971) T) ((-518 . -18) T) ((-518 . -20) T) ((-518 . -1014) T) ((-518 . -553) 81862) ((-518 . -69) T) ((-518 . -22) T) ((-518 . -101) T) ((-518 . -189) T) ((-518 . -279) 81849) ((-518 . -117) 81831) ((-518 . -951) 81818) ((-518 . -1188) 81805) ((-518 . -1199) 81792) ((-518 . -554) 81774) ((-517 . -780) 81758) ((-517 . -833) T) ((-517 . -496) T) ((-517 . -245) T) ((-517 . -145) T) ((-517 . -556) 81730) ((-517 . -655) 81717) ((-517 . -583) 81704) ((-517 . -969) 81691) ((-517 . -964) 81678) ((-517 . -79) 81663) ((-517 . -35) 81650) ((-517 . -392) T) ((-517 . -257) T) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1062) T) ((-517 . -1026) T) ((-517 . -971) T) ((-517 . -18) T) ((-517 . -589) 81622) ((-517 . -20) T) ((-517 . -1014) T) ((-517 . -553) 81604) ((-517 . -1130) T) ((-517 . -12) T) ((-517 . -69) T) ((-517 . -22) T) ((-517 . -101) T) ((-517 . -591) 81591) ((-517 . -117) T) ((-516 . -1014) T) ((-516 . -553) 81573) ((-516 . -1130) T) ((-516 . -12) T) ((-516 . -69) T) ((-515 . -1014) T) ((-515 . -553) 81555) ((-515 . -1130) T) ((-515 . -12) T) ((-515 . -69) T) ((-514 . -513) T) ((-514 . -771) T) ((-514 . -146) T) ((-514 . -466) T) ((-514 . -553) 81537) ((-508 . -494) 81521) ((-508 . -32) T) ((-508 . -63) T) ((-508 . -238) T) ((-508 . -433) T) ((-508 . -1119) T) ((-508 . -1116) T) ((-508 . -951) 81503) ((-508 . -916) T) ((-508 . -760) T) ((-508 . -757) T) ((-508 . -496) T) ((-508 . -245) T) ((-508 . -145) T) ((-508 . -556) 81475) ((-508 . -655) 81462) ((-508 . -583) 81449) ((-508 . -591) 81436) ((-508 . -589) 81408) ((-508 . -101) T) ((-508 . -22) T) ((-508 . -69) T) ((-508 . -12) T) ((-508 . -1130) T) ((-508 . -553) 81390) ((-508 . -1014) T) ((-508 . -20) T) ((-508 . -18) T) ((-508 . -969) 81377) ((-508 . -964) 81364) ((-508 . -79) 81349) ((-508 . -962) T) ((-508 . -664) T) ((-508 . -1062) T) ((-508 . -1026) T) ((-508 . -971) T) ((-508 . -35) 81336) ((-508 . -392) T) ((-490 . -1108) 81315) ((-490 . -182) 81263) ((-490 . -73) 81211) ((-490 . -1036) 81146) ((-490 . -121) 81094) ((-490 . -554) NIL) ((-490 . -192) 81042) ((-490 . -539) 81021) ((-490 . -259) 80819) ((-490 . -456) 80571) ((-490 . -380) 80506) ((-490 . -429) 80441) ((-490 . -240) 80420) ((-490 . -242) 80399) ((-490 . -550) 80378) ((-490 . -1014) T) ((-490 . -553) 80360) ((-490 . -69) T) ((-490 . -1130) T) ((-490 . -12) T) ((-490 . -31) T) ((-490 . -317) 80308) ((-489 . -753) T) ((-489 . -760) T) ((-489 . -757) T) ((-489 . -1014) T) ((-489 . -553) 80290) ((-489 . -1130) T) ((-489 . -12) T) ((-489 . -69) T) ((-489 . -319) T) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1014) T) ((-488 . -553) 80272) ((-488 . -1130) T) ((-488 . -12) T) ((-488 . -69) T) ((-488 . -319) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1014) T) ((-487 . -553) 80254) ((-487 . -1130) T) ((-487 . -12) T) ((-487 . -69) T) ((-487 . -319) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1014) T) ((-486 . -553) 80236) ((-486 . -1130) T) ((-486 . -12) T) ((-486 . -69) T) ((-486 . -319) T) ((-485 . -484) T) ((-485 . -1135) T) ((-485 . -1067) T) ((-485 . -951) 80218) ((-485 . -554) 80133) ((-485 . -934) T) ((-485 . -797) 80115) ((-485 . -756) T) ((-485 . -722) T) ((-485 . -719) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -717) T) ((-485 . -715) T) ((-485 . -741) T) ((-485 . -591) 80087) ((-485 . -581) 80069) ((-485 . -833) T) ((-485 . -496) T) ((-485 . -245) T) ((-485 . -145) T) ((-485 . -556) 80041) ((-485 . -655) 80028) ((-485 . -583) 80015) ((-485 . -969) 80002) ((-485 . -964) 79989) ((-485 . -79) 79974) ((-485 . -35) 79961) ((-485 . -392) T) ((-485 . -257) T) ((-485 . -188) T) ((-485 . -185) 79948) ((-485 . -189) T) ((-485 . -113) T) ((-485 . -962) T) ((-485 . -664) T) ((-485 . -1062) T) ((-485 . -1026) T) ((-485 . -971) T) ((-485 . -18) T) ((-485 . -589) 79920) ((-485 . -20) T) ((-485 . -1014) T) ((-485 . -553) 79902) ((-485 . -1130) T) ((-485 . -12) T) ((-485 . -69) T) ((-485 . -22) T) ((-485 . -101) T) ((-485 . -117) T) ((-474 . -1017) 79854) ((-474 . -69) T) ((-474 . -553) 79836) ((-474 . -1014) T) ((-474 . -240) 79792) ((-474 . -1130) T) ((-474 . -12) T) ((-474 . -558) 79695) ((-474 . -554) 79676) ((-472 . -692) 79658) ((-472 . -466) T) ((-472 . -146) T) ((-472 . -771) T) ((-472 . -513) T) ((-472 . -553) 79640) ((-470 . -718) T) ((-470 . -101) T) ((-470 . -22) T) ((-470 . -69) T) ((-470 . -12) T) ((-470 . -1130) T) ((-470 . -553) 79622) ((-470 . -1014) T) ((-470 . -20) T) ((-470 . -717) T) ((-470 . -757) T) ((-470 . -760) T) ((-470 . -719) T) ((-470 . -722) T) ((-470 . -450) 79599) ((-470 . -380) 79581) ((-470 . -558) 79544) ((-468 . -466) T) ((-468 . -146) T) ((-468 . -553) 79526) ((-464 . -996) T) ((-464 . -430) 79507) ((-464 . -553) 79473) ((-464 . -556) 79454) ((-464 . -1014) T) ((-464 . -1130) T) ((-464 . -12) T) ((-464 . -69) T) ((-464 . -61) T) ((-463 . -996) T) ((-463 . -430) 79435) ((-463 . -553) 79401) ((-463 . -556) 79382) ((-463 . -1014) T) ((-463 . -1130) T) ((-463 . -12) T) ((-463 . -69) T) ((-463 . -61) T) ((-460 . -279) 79359) ((-460 . -189) T) ((-460 . -185) 79346) ((-460 . -188) T) ((-460 . -319) T) ((-460 . -1067) T) ((-460 . -298) T) ((-460 . -117) 79328) ((-460 . -556) 79258) ((-460 . -591) 79203) ((-460 . -589) 79133) ((-460 . -101) T) ((-460 . -22) T) ((-460 . -69) T) ((-460 . -12) T) ((-460 . -1130) T) ((-460 . -553) 79115) ((-460 . -1014) T) ((-460 . -20) T) ((-460 . -18) T) ((-460 . -971) T) ((-460 . -1026) T) ((-460 . -1062) T) ((-460 . -664) T) ((-460 . -962) T) ((-460 . -311) T) ((-460 . -1135) T) ((-460 . -833) T) ((-460 . -496) T) ((-460 . -145) T) ((-460 . -655) 79060) ((-460 . -583) 79005) ((-460 . -35) 78970) ((-460 . -392) T) ((-460 . -257) T) ((-460 . -79) 78887) ((-460 . -964) 78832) ((-460 . -969) 78777) ((-460 . -245) T) ((-460 . -200) T) ((-460 . -344) T) ((-460 . -115) T) ((-460 . -951) 78754) ((-460 . -1188) 78731) ((-460 . -1199) 78708) ((-459 . -996) T) ((-459 . -430) 78689) ((-459 . -553) 78655) ((-459 . -556) 78636) ((-459 . -1014) T) ((-459 . -1130) T) ((-459 . -12) T) ((-459 . -69) T) ((-459 . -61) T) ((-458 . -16) 78620) ((-458 . -1036) 78604) ((-458 . -317) 78588) ((-458 . -31) T) ((-458 . -12) T) ((-458 . -1130) T) ((-458 . -69) 78522) ((-458 . -553) 78437) ((-458 . -259) 78375) ((-458 . -456) 78308) ((-458 . -380) 78292) ((-458 . -1014) 78245) ((-458 . -429) 78229) ((-458 . -594) 78213) ((-458 . -242) 78190) ((-458 . -240) 78142) ((-458 . -539) 78119) ((-458 . -554) 78080) ((-458 . -121) 78064) ((-458 . -757) 78043) ((-458 . -760) 78022) ((-458 . -323) 78006) ((-458 . -236) 77990) ((-457 . -273) 77969) ((-457 . -556) 77953) ((-457 . -951) 77937) ((-457 . -20) T) ((-457 . -1014) T) ((-457 . -553) 77919) ((-457 . -1130) T) ((-457 . -12) T) ((-457 . -69) T) ((-457 . -22) T) ((-457 . -101) T) ((-454 . -69) T) ((-454 . -12) T) ((-454 . -1130) T) ((-454 . -553) 77891) ((-453 . -718) T) ((-453 . -101) T) ((-453 . -22) T) ((-453 . -69) T) ((-453 . -12) T) ((-453 . -1130) T) ((-453 . -553) 77873) ((-453 . -1014) T) ((-453 . -20) T) ((-453 . -717) T) ((-453 . -757) T) ((-453 . -760) T) ((-453 . -719) T) ((-453 . -722) T) ((-453 . -450) 77852) ((-453 . -380) 77836) ((-453 . -558) 77801) ((-452 . -717) T) ((-452 . -757) T) ((-452 . -760) T) ((-452 . -719) T) ((-452 . -22) T) ((-452 . -69) T) ((-452 . -12) T) ((-452 . -1130) T) ((-452 . -553) 77783) ((-452 . -1014) T) ((-452 . -20) T) ((-452 . -450) 77762) ((-452 . -380) 77746) ((-452 . -558) 77711) ((-451 . -450) 77690) ((-451 . -553) 77630) ((-451 . -1014) 77581) ((-451 . -380) 77565) ((-451 . -558) 77530) ((-451 . -1130) T) ((-451 . -12) T) ((-451 . -69) T) ((-449 . -20) T) ((-449 . -1014) T) ((-449 . -553) 77512) ((-449 . -1130) T) ((-449 . -12) T) ((-449 . -69) T) ((-449 . -22) T) ((-449 . -450) 77491) ((-449 . -380) 77475) ((-449 . -558) 77440) ((-448 . -18) T) ((-448 . -589) 77422) ((-448 . -20) T) ((-448 . -1014) T) ((-448 . -553) 77404) ((-448 . -1130) T) ((-448 . -12) T) ((-448 . -69) T) ((-448 . -22) T) ((-448 . -101) T) ((-448 . -450) 77383) ((-448 . -380) 77367) ((-448 . -558) 77332) ((-447 . -1014) T) ((-447 . -553) 77314) ((-447 . -1130) T) ((-447 . -12) T) ((-447 . -69) T) ((-444 . -1014) T) ((-444 . -553) 77296) ((-444 . -1130) T) ((-444 . -12) T) ((-444 . -69) T) ((-442 . -757) T) ((-442 . -553) 77278) ((-442 . -1014) T) ((-442 . -69) T) ((-442 . -12) T) ((-442 . -1130) T) ((-442 . -760) T) ((-442 . -556) 77259) ((-440 . -93) T) ((-440 . -323) 77242) ((-440 . -760) T) ((-440 . -757) T) ((-440 . -121) 77225) ((-440 . -554) 77207) ((-440 . -240) 77158) ((-440 . -539) 77134) ((-440 . -242) 77110) ((-440 . -594) 77093) ((-440 . -429) 77076) ((-440 . -1014) T) ((-440 . -380) 77059) ((-440 . -456) NIL) ((-440 . -259) NIL) ((-440 . -553) 77041) ((-440 . -69) T) ((-440 . -31) T) ((-440 . -317) 77024) ((-440 . -1036) 77007) ((-440 . -16) 76990) ((-440 . -605) T) ((-440 . -12) T) ((-440 . -1130) T) ((-440 . -81) T) ((-437 . -54) 76964) ((-437 . -1036) 76948) ((-437 . -429) 76932) ((-437 . -1014) 76910) ((-437 . -380) 76894) ((-437 . -456) 76827) ((-437 . -259) 76765) ((-437 . -553) 76700) ((-437 . -69) 76654) ((-437 . -1130) T) ((-437 . -12) T) ((-437 . -31) T) ((-437 . -317) 76638) ((-436 . -16) 76622) ((-436 . -1036) 76606) ((-436 . -317) 76590) ((-436 . -31) T) ((-436 . -12) T) ((-436 . -1130) T) ((-436 . -69) 76524) ((-436 . -553) 76439) ((-436 . -259) 76377) ((-436 . -456) 76310) ((-436 . -380) 76294) ((-436 . -1014) 76247) ((-436 . -429) 76231) ((-436 . -594) 76215) ((-436 . -242) 76192) ((-436 . -240) 76144) ((-436 . -539) 76121) ((-436 . -554) 76082) ((-436 . -121) 76066) ((-436 . -757) 76045) ((-436 . -760) 76024) ((-436 . -323) 76008) ((-435 . -253) T) ((-435 . -69) T) ((-435 . -12) T) ((-435 . -1130) T) ((-435 . -553) 75990) ((-435 . -1014) T) ((-435 . -556) 75891) ((-435 . -951) 75834) ((-435 . -456) 75800) ((-435 . -259) 75787) ((-435 . -24) T) ((-435 . -916) T) ((-435 . -200) T) ((-435 . -79) 75736) ((-435 . -964) 75701) ((-435 . -969) 75666) ((-435 . -245) T) ((-435 . -655) 75631) ((-435 . -583) 75596) ((-435 . -591) 75546) ((-435 . -589) 75496) ((-435 . -101) T) ((-435 . -22) T) ((-435 . -20) T) ((-435 . -18) T) ((-435 . -962) T) ((-435 . -664) T) ((-435 . -1062) T) ((-435 . -1026) T) ((-435 . -971) T) ((-435 . -35) 75461) ((-435 . -257) T) ((-435 . -392) T) ((-435 . -145) T) ((-435 . -496) T) ((-435 . -833) T) ((-435 . -1135) T) ((-435 . -311) T) ((-435 . -581) 75421) ((-435 . -934) T) ((-435 . -554) 75366) ((-435 . -117) T) ((-435 . -189) T) ((-435 . -185) 75353) ((-435 . -188) T) ((-431 . -1014) T) ((-431 . -553) 75319) ((-431 . -1130) T) ((-431 . -12) T) ((-431 . -69) T) ((-427 . -905) 75301) ((-427 . -1067) T) ((-427 . -556) 75251) ((-427 . -951) 75211) ((-427 . -554) 75141) ((-427 . -934) T) ((-427 . -822) NIL) ((-427 . -795) 75123) ((-427 . -756) T) ((-427 . -722) T) ((-427 . -719) T) ((-427 . -760) T) ((-427 . -757) T) ((-427 . -717) T) ((-427 . -715) T) ((-427 . -741) T) ((-427 . -797) 75105) ((-427 . -342) 75087) ((-427 . -581) 75069) ((-427 . -328) 75051) ((-427 . -240) NIL) ((-427 . -259) NIL) ((-427 . -456) NIL) ((-427 . -380) 75033) ((-427 . -287) 75015) ((-427 . -200) T) ((-427 . -79) 74942) ((-427 . -964) 74892) ((-427 . -969) 74842) ((-427 . -245) T) ((-427 . -655) 74792) ((-427 . -583) 74742) ((-427 . -591) 74692) ((-427 . -589) 74642) ((-427 . -35) 74592) ((-427 . -257) T) ((-427 . -392) T) ((-427 . -145) T) ((-427 . -496) T) ((-427 . -833) T) ((-427 . -1135) T) ((-427 . -311) T) ((-427 . -189) T) ((-427 . -185) 74579) ((-427 . -188) T) ((-427 . -224) 74561) ((-427 . -807) NIL) ((-427 . -812) NIL) ((-427 . -810) NIL) ((-427 . -183) 74543) ((-427 . -117) T) ((-427 . -115) NIL) ((-427 . -101) T) ((-427 . -22) T) ((-427 . -69) T) ((-427 . -12) T) ((-427 . -1130) T) ((-427 . -553) 74485) ((-427 . -1014) T) ((-427 . -20) T) ((-427 . -18) T) ((-427 . -962) T) ((-427 . -664) T) ((-427 . -1062) T) ((-427 . -1026) T) ((-427 . -971) T) ((-425 . -285) 74454) ((-425 . -101) T) ((-425 . -22) T) ((-425 . -69) T) ((-425 . -12) T) ((-425 . -1130) T) ((-425 . -553) 74436) ((-425 . -1014) T) ((-425 . -20) T) ((-425 . -589) 74418) ((-425 . -18) T) ((-424 . -882) 74402) ((-424 . -317) 74386) ((-424 . -429) 74370) ((-424 . -1014) 74348) ((-424 . -380) 74332) ((-424 . -456) 74265) ((-424 . -259) 74203) ((-424 . -553) 74138) ((-424 . -69) 74092) ((-424 . -1130) T) ((-424 . -12) T) ((-424 . -31) T) ((-424 . -1036) 74076) ((-424 . -73) 74060) ((-423 . -996) T) ((-423 . -430) 74041) ((-423 . -553) 74007) ((-423 . -556) 73988) ((-423 . -1014) T) ((-423 . -1130) T) ((-423 . -12) T) ((-423 . -69) T) ((-423 . -61) T) ((-422 . -195) 73967) ((-422 . -1188) 73937) ((-422 . -722) 73916) ((-422 . -719) 73895) ((-422 . -760) 73849) ((-422 . -757) 73803) ((-422 . -717) 73782) ((-422 . -718) 73761) ((-422 . -655) 73706) ((-422 . -583) 73631) ((-422 . -242) 73608) ((-422 . -240) 73585) ((-422 . -539) 73562) ((-422 . -951) 73391) ((-422 . -556) 73195) ((-422 . -354) 73164) ((-422 . -581) 73072) ((-422 . -591) 72911) ((-422 . -328) 72881) ((-422 . -429) 72865) ((-422 . -380) 72849) ((-422 . -456) 72782) ((-422 . -259) 72720) ((-422 . -31) T) ((-422 . -317) 72704) ((-422 . -319) 72683) ((-422 . -189) 72636) ((-422 . -589) 72424) ((-422 . -971) 72403) ((-422 . -1026) 72382) ((-422 . -1062) 72361) ((-422 . -664) 72340) ((-422 . -962) 72319) ((-422 . -185) 72215) ((-422 . -188) 72117) ((-422 . -224) 72087) ((-422 . -807) 71959) ((-422 . -812) 71833) ((-422 . -810) 71766) ((-422 . -183) 71736) ((-422 . -553) 71433) ((-422 . -969) 71358) ((-422 . -964) 71263) ((-422 . -79) 71183) ((-422 . -101) 71058) ((-422 . -22) 70895) ((-422 . -69) 70632) ((-422 . -12) T) ((-422 . -1130) T) ((-422 . -1014) 70388) ((-422 . -20) 70244) ((-422 . -18) 70159) ((-421 . -862) 70104) ((-421 . -556) 69896) ((-421 . -951) 69774) ((-421 . -1135) 69753) ((-421 . -822) 69732) ((-421 . -797) NIL) ((-421 . -812) 69709) ((-421 . -807) 69684) ((-421 . -810) 69661) ((-421 . -456) 69599) ((-421 . -392) 69553) ((-421 . -581) 69501) ((-421 . -591) 69390) ((-421 . -328) 69374) ((-421 . -44) 69331) ((-421 . -35) 69183) ((-421 . -583) 69035) ((-421 . -655) 68887) ((-421 . -245) 68821) ((-421 . -496) 68755) ((-421 . -380) 68739) ((-421 . -79) 68564) ((-421 . -964) 68410) ((-421 . -969) 68256) ((-421 . -145) 68170) ((-421 . -117) 68149) ((-421 . -115) 68128) ((-421 . -589) 68038) ((-421 . -101) T) ((-421 . -22) T) ((-421 . -69) T) ((-421 . -12) T) ((-421 . -1130) T) ((-421 . -553) 68020) ((-421 . -1014) T) ((-421 . -20) T) ((-421 . -18) T) ((-421 . -962) T) ((-421 . -664) T) ((-421 . -1062) T) ((-421 . -1026) T) ((-421 . -971) T) ((-421 . -354) 68004) ((-421 . -276) 67961) ((-421 . -259) 67948) ((-421 . -554) 67809) ((-419 . -1108) 67788) ((-419 . -182) 67736) ((-419 . -73) 67684) ((-419 . -1036) 67619) ((-419 . -121) 67567) ((-419 . -554) NIL) ((-419 . -192) 67515) ((-419 . -539) 67494) ((-419 . -259) 67292) ((-419 . -456) 67044) ((-419 . -380) 66979) ((-419 . -429) 66914) ((-419 . -240) 66893) ((-419 . -242) 66872) ((-419 . -550) 66851) ((-419 . -1014) T) ((-419 . -553) 66833) ((-419 . -69) T) ((-419 . -1130) T) ((-419 . -12) T) ((-419 . -31) T) ((-419 . -317) 66781) ((-418 . -996) T) ((-418 . -430) 66762) ((-418 . -553) 66728) ((-418 . -556) 66709) ((-418 . -1014) T) ((-418 . -1130) T) ((-418 . -12) T) ((-418 . -69) T) ((-418 . -61) T) ((-417 . -311) T) ((-417 . -1135) T) ((-417 . -833) T) ((-417 . -496) T) ((-417 . -145) T) ((-417 . -556) 66659) ((-417 . -655) 66624) ((-417 . -583) 66589) ((-417 . -35) 66554) ((-417 . -392) T) ((-417 . -257) T) ((-417 . -591) 66519) ((-417 . -589) 66469) ((-417 . -971) T) ((-417 . -1026) T) ((-417 . -1062) T) ((-417 . -664) T) ((-417 . -962) T) ((-417 . -79) 66418) ((-417 . -964) 66383) ((-417 . -969) 66348) ((-417 . -18) T) ((-417 . -20) T) ((-417 . -1014) T) ((-417 . -553) 66300) ((-417 . -1130) T) ((-417 . -12) T) ((-417 . -69) T) ((-417 . -22) T) ((-417 . -101) T) ((-417 . -245) T) ((-417 . -200) T) ((-417 . -117) T) ((-417 . -951) 66260) ((-417 . -934) T) ((-417 . -554) 66182) ((-416 . -1125) 66151) ((-416 . -1036) 66135) ((-416 . -553) 66097) ((-416 . -121) 66081) ((-416 . -31) T) ((-416 . -12) T) ((-416 . -1130) T) ((-416 . -69) T) ((-416 . -259) 66019) ((-416 . -456) 65952) ((-416 . -380) 65936) ((-416 . -1014) T) ((-416 . -429) 65920) ((-416 . -554) 65881) ((-416 . -317) 65865) ((-416 . -890) 65834) ((-415 . -1108) 65813) ((-415 . -182) 65761) ((-415 . -73) 65709) ((-415 . -1036) 65644) ((-415 . -121) 65592) ((-415 . -554) NIL) ((-415 . -192) 65540) ((-415 . -539) 65519) ((-415 . -259) 65317) ((-415 . -456) 65069) ((-415 . -380) 65004) ((-415 . -429) 64939) ((-415 . -240) 64918) ((-415 . -242) 64897) ((-415 . -550) 64876) ((-415 . -1014) T) ((-415 . -553) 64858) ((-415 . -69) T) ((-415 . -1130) T) ((-415 . -12) T) ((-415 . -31) T) ((-415 . -317) 64806) ((-414 . -1163) 64790) ((-414 . -189) 64742) ((-414 . -185) 64688) ((-414 . -188) 64640) ((-414 . -240) 64598) ((-414 . -810) 64504) ((-414 . -807) 64385) ((-414 . -812) 64291) ((-414 . -887) 64254) ((-414 . -35) 64101) ((-414 . -79) 63921) ((-414 . -964) 63762) ((-414 . -969) 63603) ((-414 . -589) 63488) ((-414 . -591) 63388) ((-414 . -583) 63235) ((-414 . -655) 63082) ((-414 . -556) 62914) ((-414 . -115) 62893) ((-414 . -117) 62872) ((-414 . -380) 62856) ((-414 . -44) 62826) ((-414 . -1159) 62796) ((-414 . -32) 62762) ((-414 . -63) 62728) ((-414 . -238) 62694) ((-414 . -433) 62660) ((-414 . -1119) 62626) ((-414 . -1116) 62592) ((-414 . -916) 62558) ((-414 . -200) 62537) ((-414 . -245) 62491) ((-414 . -101) T) ((-414 . -22) T) ((-414 . -69) T) ((-414 . -12) T) ((-414 . -1130) T) ((-414 . -553) 62473) ((-414 . -1014) T) ((-414 . -20) T) ((-414 . -18) T) ((-414 . -962) T) ((-414 . -664) T) ((-414 . -1062) T) ((-414 . -1026) T) ((-414 . -971) T) ((-414 . -257) 62452) ((-414 . -392) 62431) ((-414 . -145) 62365) ((-414 . -496) 62319) ((-414 . -833) 62298) ((-414 . -1135) 62277) ((-414 . -311) 62256) ((-408 . -1014) T) ((-408 . -553) 62238) ((-408 . -1130) T) ((-408 . -12) T) ((-408 . -69) T) ((-403 . -890) 62207) ((-403 . -317) 62191) ((-403 . -554) 62152) ((-403 . -429) 62136) ((-403 . -1014) T) ((-403 . -380) 62120) ((-403 . -456) 62053) ((-403 . -259) 61991) ((-403 . -553) 61953) ((-403 . -69) T) ((-403 . -1130) T) ((-403 . -12) T) ((-403 . -31) T) ((-403 . -121) 61937) ((-403 . -1036) 61921) ((-401 . -655) 61892) ((-401 . -583) 61863) ((-401 . -591) 61834) ((-401 . -589) 61790) ((-401 . -101) T) ((-401 . -22) T) ((-401 . -69) T) ((-401 . -12) T) ((-401 . -1130) T) ((-401 . -553) 61772) ((-401 . -1014) T) ((-401 . -20) T) ((-401 . -18) T) ((-401 . -969) 61743) ((-401 . -964) 61714) ((-401 . -79) 61675) ((-394 . -862) 61642) ((-394 . -556) 61434) ((-394 . -951) 61312) ((-394 . -1135) 61291) ((-394 . -822) 61270) ((-394 . -797) NIL) ((-394 . -812) 61247) ((-394 . -807) 61222) ((-394 . -810) 61199) ((-394 . -456) 61137) ((-394 . -392) 61091) ((-394 . -581) 61039) ((-394 . -591) 60928) ((-394 . -328) 60912) ((-394 . -44) 60891) ((-394 . -35) 60743) ((-394 . -583) 60595) ((-394 . -655) 60447) ((-394 . -245) 60381) ((-394 . -496) 60315) ((-394 . -380) 60299) ((-394 . -79) 60124) ((-394 . -964) 59970) ((-394 . -969) 59816) ((-394 . -145) 59730) ((-394 . -117) 59709) ((-394 . -115) 59688) ((-394 . -589) 59598) ((-394 . -101) T) ((-394 . -22) T) ((-394 . -69) T) ((-394 . -12) T) ((-394 . -1130) T) ((-394 . -553) 59580) ((-394 . -1014) T) ((-394 . -20) T) ((-394 . -18) T) ((-394 . -962) T) ((-394 . -664) T) ((-394 . -1062) T) ((-394 . -1026) T) ((-394 . -971) T) ((-394 . -354) 59564) ((-394 . -276) 59543) ((-394 . -259) 59530) ((-394 . -554) 59391) ((-393 . -360) 59361) ((-393 . -684) 59331) ((-393 . -658) T) ((-393 . -686) T) ((-393 . -79) 59282) ((-393 . -964) 59252) ((-393 . -969) 59222) ((-393 . -18) T) ((-393 . -589) 59137) ((-393 . -20) T) ((-393 . -1014) T) ((-393 . -553) 59119) ((-393 . -69) T) ((-393 . -22) T) ((-393 . -101) T) ((-393 . -591) 59049) ((-393 . -583) 59019) ((-393 . -655) 58989) ((-393 . -315) 58959) ((-393 . -1130) T) ((-393 . -12) T) ((-393 . -240) 58922) ((-381 . -1014) T) ((-381 . -553) 58904) ((-381 . -1130) T) ((-381 . -12) T) ((-381 . -69) T) ((-379 . -1014) T) ((-379 . -553) 58886) ((-379 . -1130) T) ((-379 . -12) T) ((-379 . -69) T) ((-378 . -1014) T) ((-378 . -553) 58868) ((-378 . -1130) T) ((-378 . -12) T) ((-378 . -69) T) ((-376 . -553) 58850) ((-371 . -35) 58834) ((-371 . -556) 58803) ((-371 . -591) 58777) ((-371 . -589) 58736) ((-371 . -971) T) ((-371 . -1026) T) ((-371 . -1062) T) ((-371 . -664) T) ((-371 . -962) T) ((-371 . -79) 58715) ((-371 . -964) 58699) ((-371 . -969) 58683) ((-371 . -18) T) ((-371 . -20) T) ((-371 . -1014) T) ((-371 . -553) 58665) ((-371 . -1130) T) ((-371 . -12) T) ((-371 . -69) T) ((-371 . -22) T) ((-371 . -101) T) ((-371 . -583) 58649) ((-371 . -655) 58633) ((-357 . -664) T) ((-357 . -1014) T) ((-357 . -553) 58615) ((-357 . -1130) T) ((-357 . -12) T) ((-357 . -69) T) ((-357 . -1026) T) ((-355 . -413) T) ((-355 . -1026) T) ((-355 . -69) T) ((-355 . -12) T) ((-355 . -1130) T) ((-355 . -553) 58597) ((-355 . -1014) T) ((-355 . -664) T) ((-349 . -905) 58581) ((-349 . -1067) 58559) ((-349 . -951) 58426) ((-349 . -556) 58325) ((-349 . -554) 58128) ((-349 . -934) 58107) ((-349 . -822) 58086) ((-349 . -795) 58070) ((-349 . -756) 58049) ((-349 . -722) 58028) ((-349 . -719) 58007) ((-349 . -760) 57961) ((-349 . -757) 57915) ((-349 . -717) 57894) ((-349 . -715) 57873) ((-349 . -741) 57852) ((-349 . -797) 57777) ((-349 . -342) 57761) ((-349 . -581) 57709) ((-349 . -591) 57625) ((-349 . -328) 57609) ((-349 . -240) 57567) ((-349 . -259) 57532) ((-349 . -456) 57444) ((-349 . -380) 57428) ((-349 . -287) 57412) ((-349 . -200) T) ((-349 . -79) 57343) ((-349 . -964) 57295) ((-349 . -969) 57247) ((-349 . -245) T) ((-349 . -655) 57199) ((-349 . -583) 57151) ((-349 . -589) 57088) ((-349 . -35) 57040) ((-349 . -257) T) ((-349 . -392) T) ((-349 . -145) T) ((-349 . -496) T) ((-349 . -833) T) ((-349 . -1135) T) ((-349 . -311) T) ((-349 . -189) 57019) ((-349 . -185) 56967) ((-349 . -188) 56921) ((-349 . -224) 56905) ((-349 . -807) 56829) ((-349 . -812) 56755) ((-349 . -810) 56714) ((-349 . -183) 56698) ((-349 . -117) 56652) ((-349 . -115) 56631) ((-349 . -101) T) ((-349 . -22) T) ((-349 . -69) T) ((-349 . -12) T) ((-349 . -1130) T) ((-349 . -553) 56613) ((-349 . -1014) T) ((-349 . -20) T) ((-349 . -18) T) ((-349 . -962) T) ((-349 . -664) T) ((-349 . -1062) T) ((-349 . -1026) T) ((-349 . -971) T) ((-347 . -496) T) ((-347 . -245) T) ((-347 . -145) T) ((-347 . -556) 56522) ((-347 . -655) 56496) ((-347 . -583) 56470) ((-347 . -591) 56444) ((-347 . -589) 56403) ((-347 . -101) T) ((-347 . -22) T) ((-347 . -69) T) ((-347 . -12) T) ((-347 . -1130) T) ((-347 . -553) 56385) ((-347 . -1014) T) ((-347 . -20) T) ((-347 . -18) T) ((-347 . -969) 56359) ((-347 . -964) 56333) ((-347 . -79) 56300) ((-347 . -962) T) ((-347 . -664) T) ((-347 . -1062) T) ((-347 . -1026) T) ((-347 . -971) T) ((-347 . -35) 56274) ((-347 . -183) 56258) ((-347 . -810) 56217) ((-347 . -812) 56143) ((-347 . -807) 56067) ((-347 . -224) 56051) ((-347 . -188) 56005) ((-347 . -185) 55953) ((-347 . -189) 55932) ((-347 . -287) 55916) ((-347 . -456) 55758) ((-347 . -380) 55742) ((-347 . -259) 55681) ((-347 . -240) 55609) ((-347 . -354) 55593) ((-347 . -951) 55491) ((-347 . -392) 55444) ((-347 . -934) 55423) ((-347 . -554) 55326) ((-347 . -1135) 55304) ((-341 . -1014) T) ((-341 . -553) 55286) ((-341 . -1130) T) ((-341 . -12) T) ((-341 . -69) T) ((-341 . -188) T) ((-341 . -185) 55273) ((-341 . -554) 55250) ((-339 . -684) 55234) ((-339 . -658) T) ((-339 . -686) T) ((-339 . -79) 55213) ((-339 . -964) 55197) ((-339 . -969) 55181) ((-339 . -18) T) ((-339 . -589) 55150) ((-339 . -20) T) ((-339 . -1014) T) ((-339 . -553) 55132) ((-339 . -1130) T) ((-339 . -12) T) ((-339 . -69) T) ((-339 . -22) T) ((-339 . -101) T) ((-339 . -591) 55116) ((-339 . -583) 55100) ((-339 . -655) 55084) ((-337 . -338) T) ((-337 . -69) T) ((-337 . -12) T) ((-337 . -1130) T) ((-337 . -553) 55050) ((-337 . -1014) T) ((-337 . -556) 55031) ((-337 . -430) 55012) ((-336 . -335) 54996) ((-336 . -556) 54980) ((-336 . -951) 54964) ((-336 . -760) 54943) ((-336 . -757) 54922) ((-336 . -1026) T) ((-336 . -69) T) ((-336 . -12) T) ((-336 . -1130) T) ((-336 . -553) 54904) ((-336 . -1014) T) ((-336 . -664) T) ((-333 . -334) 54883) ((-333 . -556) 54867) ((-333 . -951) 54851) ((-333 . -583) 54821) ((-333 . -655) 54791) ((-333 . -380) 54775) ((-333 . -591) 54759) ((-333 . -589) 54728) ((-333 . -101) T) ((-333 . -22) T) ((-333 . -69) T) ((-333 . -12) T) ((-333 . -1130) T) ((-333 . -553) 54710) ((-333 . -1014) T) ((-333 . -20) T) ((-333 . -18) T) ((-333 . -969) 54694) ((-333 . -964) 54678) ((-333 . -79) 54657) ((-332 . -79) 54636) ((-332 . -964) 54620) ((-332 . -969) 54604) ((-332 . -18) T) ((-332 . -589) 54573) ((-332 . -20) T) ((-332 . -1014) T) ((-332 . -553) 54555) ((-332 . -1130) T) ((-332 . -12) T) ((-332 . -69) T) ((-332 . -22) T) ((-332 . -101) T) ((-332 . -591) 54539) ((-332 . -450) 54518) ((-332 . -380) 54502) ((-332 . -558) 54467) ((-332 . -655) 54437) ((-332 . -583) 54407) ((-329 . -346) T) ((-329 . -117) T) ((-329 . -556) 54357) ((-329 . -591) 54322) ((-329 . -589) 54272) ((-329 . -101) T) ((-329 . -22) T) ((-329 . -69) T) ((-329 . -12) T) ((-329 . -1130) T) ((-329 . -553) 54239) ((-329 . -1014) T) ((-329 . -20) T) ((-329 . -18) T) ((-329 . -971) T) ((-329 . -1026) T) ((-329 . -1062) T) ((-329 . -664) T) ((-329 . -962) T) ((-329 . -554) 54153) ((-329 . -311) T) ((-329 . -1135) T) ((-329 . -833) T) ((-329 . -496) T) ((-329 . -145) T) ((-329 . -655) 54118) ((-329 . -583) 54083) ((-329 . -35) 54048) ((-329 . -392) T) ((-329 . -257) T) ((-329 . -79) 53997) ((-329 . -964) 53962) ((-329 . -969) 53927) ((-329 . -245) T) ((-329 . -200) T) ((-329 . -756) T) ((-329 . -722) T) ((-329 . -719) T) ((-329 . -760) T) ((-329 . -757) T) ((-329 . -717) T) ((-329 . -715) T) ((-329 . -797) 53909) ((-329 . -916) T) ((-329 . -934) T) ((-329 . -951) 53869) ((-329 . -974) T) ((-329 . -189) T) ((-329 . -185) 53856) ((-329 . -188) T) ((-329 . -1116) T) ((-329 . -1119) T) ((-329 . -433) T) ((-329 . -238) T) ((-329 . -63) T) ((-329 . -32) T) ((-329 . -558) 53838) ((-312 . -313) 53815) ((-312 . -69) T) ((-312 . -12) T) ((-312 . -1130) T) ((-312 . -553) 53797) ((-312 . -1014) T) ((-309 . -413) T) ((-309 . -1026) T) ((-309 . -69) T) ((-309 . -12) T) ((-309 . -1130) T) ((-309 . -553) 53779) ((-309 . -1014) T) ((-309 . -664) T) ((-309 . -951) 53763) ((-309 . -556) 53747) ((-307 . -279) 53731) ((-307 . -189) 53710) ((-307 . -185) 53683) ((-307 . -188) 53662) ((-307 . -319) 53641) ((-307 . -1067) 53620) ((-307 . -298) 53599) ((-307 . -117) 53578) ((-307 . -556) 53515) ((-307 . -591) 53467) ((-307 . -589) 53404) ((-307 . -101) T) ((-307 . -22) T) ((-307 . -69) T) ((-307 . -12) T) ((-307 . -1130) T) ((-307 . -553) 53386) ((-307 . -1014) T) ((-307 . -20) T) ((-307 . -18) T) ((-307 . -971) T) ((-307 . -1026) T) ((-307 . -1062) T) ((-307 . -664) T) ((-307 . -962) T) ((-307 . -311) T) ((-307 . -1135) T) ((-307 . -833) T) ((-307 . -496) T) ((-307 . -145) T) ((-307 . -655) 53338) ((-307 . -583) 53290) ((-307 . -35) 53255) ((-307 . -392) T) ((-307 . -257) T) ((-307 . -79) 53186) ((-307 . -964) 53138) ((-307 . -969) 53090) ((-307 . -245) T) ((-307 . -200) T) ((-307 . -344) 53044) ((-307 . -115) 52998) ((-307 . -951) 52982) ((-307 . -1188) 52966) ((-307 . -1199) 52950) ((-303 . -279) 52934) ((-303 . -189) 52913) ((-303 . -185) 52886) ((-303 . -188) 52865) ((-303 . -319) 52844) ((-303 . -1067) 52823) ((-303 . -298) 52802) ((-303 . -117) 52781) ((-303 . -556) 52718) ((-303 . -591) 52670) ((-303 . -589) 52607) ((-303 . -101) T) ((-303 . -22) T) ((-303 . -69) T) ((-303 . -12) T) ((-303 . -1130) T) ((-303 . -553) 52589) ((-303 . -1014) T) ((-303 . -20) T) ((-303 . -18) T) ((-303 . -971) T) ((-303 . -1026) T) ((-303 . -1062) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -311) T) ((-303 . -1135) T) ((-303 . -833) T) ((-303 . -496) T) ((-303 . -145) T) ((-303 . -655) 52541) ((-303 . -583) 52493) ((-303 . -35) 52458) ((-303 . -392) T) ((-303 . -257) T) ((-303 . -79) 52389) ((-303 . -964) 52341) ((-303 . -969) 52293) ((-303 . -245) T) ((-303 . -200) T) ((-303 . -344) 52247) ((-303 . -115) 52201) ((-303 . -951) 52185) ((-303 . -1188) 52169) ((-303 . -1199) 52153) ((-302 . -279) 52137) ((-302 . -189) 52116) ((-302 . -185) 52089) ((-302 . -188) 52068) ((-302 . -319) 52047) ((-302 . -1067) 52026) ((-302 . -298) 52005) ((-302 . -117) 51984) ((-302 . -556) 51921) ((-302 . -591) 51873) ((-302 . -589) 51810) ((-302 . -101) T) ((-302 . -22) T) ((-302 . -69) T) ((-302 . -12) T) ((-302 . -1130) T) ((-302 . -553) 51792) ((-302 . -1014) T) ((-302 . -20) T) ((-302 . -18) T) ((-302 . -971) T) ((-302 . -1026) T) ((-302 . -1062) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -311) T) ((-302 . -1135) T) ((-302 . -833) T) ((-302 . -496) T) ((-302 . -145) T) ((-302 . -655) 51744) ((-302 . -583) 51696) ((-302 . -35) 51661) ((-302 . -392) T) ((-302 . -257) T) ((-302 . -79) 51592) ((-302 . -964) 51544) ((-302 . -969) 51496) ((-302 . -245) T) ((-302 . -200) T) ((-302 . -344) 51450) ((-302 . -115) 51404) ((-302 . -951) 51388) ((-302 . -1188) 51372) ((-302 . -1199) 51356) ((-301 . -279) 51340) ((-301 . -189) 51319) ((-301 . -185) 51292) ((-301 . -188) 51271) ((-301 . -319) 51250) ((-301 . -1067) 51229) ((-301 . -298) 51208) ((-301 . -117) 51187) ((-301 . -556) 51124) ((-301 . -591) 51076) ((-301 . -589) 51013) ((-301 . -101) T) ((-301 . -22) T) ((-301 . -69) T) ((-301 . -12) T) ((-301 . -1130) T) ((-301 . -553) 50995) ((-301 . -1014) T) ((-301 . -20) T) ((-301 . -18) T) ((-301 . -971) T) ((-301 . -1026) T) ((-301 . -1062) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -311) T) ((-301 . -1135) T) ((-301 . -833) T) ((-301 . -496) T) ((-301 . -145) T) ((-301 . -655) 50947) ((-301 . -583) 50899) ((-301 . -35) 50864) ((-301 . -392) T) ((-301 . -257) T) ((-301 . -79) 50795) ((-301 . -964) 50747) ((-301 . -969) 50699) ((-301 . -245) T) ((-301 . -200) T) ((-301 . -344) 50653) ((-301 . -115) 50607) ((-301 . -951) 50591) ((-301 . -1188) 50575) ((-301 . -1199) 50559) ((-300 . -279) 50536) ((-300 . -189) T) ((-300 . -185) 50523) ((-300 . -188) T) ((-300 . -319) T) ((-300 . -1067) T) ((-300 . -298) T) ((-300 . -117) 50505) ((-300 . -556) 50435) ((-300 . -591) 50380) ((-300 . -589) 50310) ((-300 . -101) T) ((-300 . -22) T) ((-300 . -69) T) ((-300 . -12) T) ((-300 . -1130) T) ((-300 . -553) 50292) ((-300 . -1014) T) ((-300 . -20) T) ((-300 . -18) T) ((-300 . -971) T) ((-300 . -1026) T) ((-300 . -1062) T) ((-300 . -664) T) ((-300 . -962) T) ((-300 . -311) T) ((-300 . -1135) T) ((-300 . -833) T) ((-300 . -496) T) ((-300 . -145) T) ((-300 . -655) 50237) ((-300 . -583) 50182) ((-300 . -35) 50147) ((-300 . -392) T) ((-300 . -257) T) ((-300 . -79) 50064) ((-300 . -964) 50009) ((-300 . -969) 49954) ((-300 . -245) T) ((-300 . -200) T) ((-300 . -344) T) ((-300 . -115) T) ((-300 . -951) 49931) ((-300 . -1188) 49908) ((-300 . -1199) 49885) ((-294 . -279) 49869) ((-294 . -189) 49848) ((-294 . -185) 49821) ((-294 . -188) 49800) ((-294 . -319) 49779) ((-294 . -1067) 49758) ((-294 . -298) 49737) ((-294 . -117) 49716) ((-294 . -556) 49653) ((-294 . -591) 49605) ((-294 . -589) 49542) ((-294 . -101) T) ((-294 . -22) T) ((-294 . -69) T) ((-294 . -12) T) ((-294 . -1130) T) ((-294 . -553) 49524) ((-294 . -1014) T) ((-294 . -20) T) ((-294 . -18) T) ((-294 . -971) T) ((-294 . -1026) T) ((-294 . -1062) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -311) T) ((-294 . -1135) T) ((-294 . -833) T) ((-294 . -496) T) ((-294 . -145) T) ((-294 . -655) 49476) ((-294 . -583) 49428) ((-294 . -35) 49393) ((-294 . -392) T) ((-294 . -257) T) ((-294 . -79) 49324) ((-294 . -964) 49276) ((-294 . -969) 49228) ((-294 . -245) T) ((-294 . -200) T) ((-294 . -344) 49182) ((-294 . -115) 49136) ((-294 . -951) 49120) ((-294 . -1188) 49104) ((-294 . -1199) 49088) ((-293 . -279) 49072) ((-293 . -189) 49051) ((-293 . -185) 49024) ((-293 . -188) 49003) ((-293 . -319) 48982) ((-293 . -1067) 48961) ((-293 . -298) 48940) ((-293 . -117) 48919) ((-293 . -556) 48856) ((-293 . -591) 48808) ((-293 . -589) 48745) ((-293 . -101) T) ((-293 . -22) T) ((-293 . -69) T) ((-293 . -12) T) ((-293 . -1130) T) ((-293 . -553) 48727) ((-293 . -1014) T) ((-293 . -20) T) ((-293 . -18) T) ((-293 . -971) T) ((-293 . -1026) T) ((-293 . -1062) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -311) T) ((-293 . -1135) T) ((-293 . -833) T) ((-293 . -496) T) ((-293 . -145) T) ((-293 . -655) 48679) ((-293 . -583) 48631) ((-293 . -35) 48596) ((-293 . -392) T) ((-293 . -257) T) ((-293 . -79) 48527) ((-293 . -964) 48479) ((-293 . -969) 48431) ((-293 . -245) T) ((-293 . -200) T) ((-293 . -344) 48385) ((-293 . -115) 48339) ((-293 . -951) 48323) ((-293 . -1188) 48307) ((-293 . -1199) 48291) ((-292 . -279) 48268) ((-292 . -189) T) ((-292 . -185) 48255) ((-292 . -188) T) ((-292 . -319) T) ((-292 . -1067) T) ((-292 . -298) T) ((-292 . -117) 48237) ((-292 . -556) 48167) ((-292 . -591) 48112) ((-292 . -589) 48042) ((-292 . -101) T) ((-292 . -22) T) ((-292 . -69) T) ((-292 . -12) T) ((-292 . -1130) T) ((-292 . -553) 48024) ((-292 . -1014) T) ((-292 . -20) T) ((-292 . -18) T) ((-292 . -971) T) ((-292 . -1026) T) ((-292 . -1062) T) ((-292 . -664) T) ((-292 . -962) T) ((-292 . -311) T) ((-292 . -1135) T) ((-292 . -833) T) ((-292 . -496) T) ((-292 . -145) T) ((-292 . -655) 47969) ((-292 . -583) 47914) ((-292 . -35) 47879) ((-292 . -392) T) ((-292 . -257) T) ((-292 . -79) 47796) ((-292 . -964) 47741) ((-292 . -969) 47686) ((-292 . -245) T) ((-292 . -200) T) ((-292 . -344) T) ((-292 . -115) T) ((-292 . -951) 47663) ((-292 . -1188) 47640) ((-292 . -1199) 47617) ((-288 . -279) 47594) ((-288 . -189) T) ((-288 . -185) 47581) ((-288 . -188) T) ((-288 . -319) T) ((-288 . -1067) T) ((-288 . -298) T) ((-288 . -117) 47563) ((-288 . -556) 47493) ((-288 . -591) 47438) ((-288 . -589) 47368) ((-288 . -101) T) ((-288 . -22) T) ((-288 . -69) T) ((-288 . -12) T) ((-288 . -1130) T) ((-288 . -553) 47350) ((-288 . -1014) T) ((-288 . -20) T) ((-288 . -18) T) ((-288 . -971) T) ((-288 . -1026) T) ((-288 . -1062) T) ((-288 . -664) T) ((-288 . -962) T) ((-288 . -311) T) ((-288 . -1135) T) ((-288 . -833) T) ((-288 . -496) T) ((-288 . -145) T) ((-288 . -655) 47295) ((-288 . -583) 47240) ((-288 . -35) 47205) ((-288 . -392) T) ((-288 . -257) T) ((-288 . -79) 47122) ((-288 . -964) 47067) ((-288 . -969) 47012) ((-288 . -245) T) ((-288 . -200) T) ((-288 . -344) T) ((-288 . -115) T) ((-288 . -951) 46989) ((-288 . -1188) 46966) ((-288 . -1199) 46943) ((-282 . -285) 46912) ((-282 . -101) T) ((-282 . -22) T) ((-282 . -69) T) ((-282 . -12) T) ((-282 . -1130) T) ((-282 . -553) 46894) ((-282 . -1014) T) ((-282 . -20) T) ((-282 . -589) 46876) ((-282 . -18) T) ((-281 . -1014) T) ((-281 . -553) 46858) ((-281 . -1130) T) ((-281 . -12) T) ((-281 . -69) T) ((-280 . -757) T) ((-280 . -553) 46840) ((-280 . -1014) T) ((-280 . -69) T) ((-280 . -12) T) ((-280 . -1130) T) ((-280 . -760) T) ((-277 . -16) 46824) ((-277 . -1036) 46808) ((-277 . -317) 46792) ((-277 . -31) T) ((-277 . -12) T) ((-277 . -1130) T) ((-277 . -69) 46726) ((-277 . -553) 46641) ((-277 . -259) 46579) ((-277 . -456) 46512) ((-277 . -380) 46496) ((-277 . -1014) 46449) ((-277 . -429) 46433) ((-277 . -594) 46417) ((-277 . -242) 46394) ((-277 . -240) 46346) ((-277 . -539) 46323) ((-277 . -554) 46284) ((-277 . -121) 46268) ((-277 . -757) 46247) ((-277 . -760) 46226) ((-277 . -323) 46210) ((-277 . -236) 46194) ((-274 . -273) 46171) ((-274 . -556) 46155) ((-274 . -951) 46139) ((-274 . -20) T) ((-274 . -1014) T) ((-274 . -553) 46121) ((-274 . -1130) T) ((-274 . -12) T) ((-274 . -69) T) ((-274 . -22) T) ((-274 . -101) T) ((-272 . -18) T) ((-272 . -589) 46103) ((-272 . -20) T) ((-272 . -1014) T) ((-272 . -553) 46085) ((-272 . -1130) T) ((-272 . -12) T) ((-272 . -69) T) ((-272 . -22) T) ((-272 . -101) T) ((-272 . -655) 46067) ((-272 . -583) 46049) ((-272 . -591) 46031) ((-272 . -969) 46013) ((-272 . -964) 45995) ((-272 . -79) 45970) ((-272 . -273) 45947) ((-272 . -556) 45931) ((-272 . -951) 45915) ((-272 . -757) 45894) ((-272 . -760) 45873) ((-269 . -1163) 45857) ((-269 . -189) 45809) ((-269 . -185) 45755) ((-269 . -188) 45707) ((-269 . -240) 45665) ((-269 . -810) 45571) ((-269 . -807) 45475) ((-269 . -812) 45381) ((-269 . -887) 45344) ((-269 . -35) 45191) ((-269 . -79) 45011) ((-269 . -964) 44852) ((-269 . -969) 44693) ((-269 . -589) 44578) ((-269 . -591) 44478) ((-269 . -583) 44325) ((-269 . -655) 44172) ((-269 . -556) 44004) ((-269 . -115) 43983) ((-269 . -117) 43962) ((-269 . -380) 43946) ((-269 . -44) 43916) ((-269 . -1159) 43886) ((-269 . -32) 43852) ((-269 . -63) 43818) ((-269 . -238) 43784) ((-269 . -433) 43750) ((-269 . -1119) 43716) ((-269 . -1116) 43682) ((-269 . -916) 43648) ((-269 . -200) 43627) ((-269 . -245) 43581) ((-269 . -101) T) ((-269 . -22) T) ((-269 . -69) T) ((-269 . -12) T) ((-269 . -1130) T) ((-269 . -553) 43563) ((-269 . -1014) T) ((-269 . -20) T) ((-269 . -18) T) ((-269 . -962) T) ((-269 . -664) T) ((-269 . -1062) T) ((-269 . -1026) T) ((-269 . -971) T) ((-269 . -257) 43542) ((-269 . -392) 43521) ((-269 . -145) 43455) ((-269 . -496) 43409) ((-269 . -833) 43388) ((-269 . -1135) 43367) ((-269 . -311) 43346) ((-269 . -717) T) ((-269 . -757) T) ((-269 . -760) T) ((-269 . -719) T) ((-264 . -363) 43330) ((-264 . -556) 42905) ((-264 . -951) 42576) ((-264 . -554) 42437) ((-264 . -795) 42421) ((-264 . -812) 42388) ((-264 . -807) 42353) ((-264 . -810) 42320) ((-264 . -413) 42299) ((-264 . -354) 42283) ((-264 . -797) 42208) ((-264 . -342) 42192) ((-264 . -581) 42100) ((-264 . -591) 41838) ((-264 . -328) 41808) ((-264 . -200) 41787) ((-264 . -79) 41676) ((-264 . -964) 41586) ((-264 . -969) 41496) ((-264 . -245) 41475) ((-264 . -655) 41385) ((-264 . -583) 41295) ((-264 . -589) 40962) ((-264 . -35) 40872) ((-264 . -257) 40851) ((-264 . -392) 40830) ((-264 . -145) 40809) ((-264 . -496) 40788) ((-264 . -833) 40767) ((-264 . -1135) 40746) ((-264 . -311) 40725) ((-264 . -259) 40712) ((-264 . -456) 40678) ((-264 . -253) T) ((-264 . -117) 40657) ((-264 . -115) 40636) ((-264 . -962) 40530) ((-264 . -664) 40383) ((-264 . -1062) 40277) ((-264 . -1026) 40130) ((-264 . -971) 40024) ((-264 . -101) 39899) ((-264 . -22) 39755) ((-264 . -69) T) ((-264 . -12) T) ((-264 . -1130) T) ((-264 . -553) 39737) ((-264 . -1014) T) ((-264 . -20) 39593) ((-264 . -18) 39468) ((-264 . -26) 39438) ((-264 . -916) 39417) ((-264 . -24) 39396) ((-264 . -1116) 39375) ((-264 . -1119) 39354) ((-264 . -433) 39333) ((-264 . -238) 39312) ((-264 . -63) 39291) ((-264 . -32) 39270) ((-264 . -130) 39249) ((-264 . -113) 39228) ((-264 . -570) 39207) ((-264 . -872) 39186) ((-264 . -1054) 39165) ((-263 . -905) 39126) ((-263 . -1067) NIL) ((-263 . -951) 39056) ((-263 . -556) 38939) ((-263 . -554) NIL) ((-263 . -934) NIL) ((-263 . -822) NIL) ((-263 . -795) 38900) ((-263 . -756) NIL) ((-263 . -722) NIL) ((-263 . -719) NIL) ((-263 . -760) NIL) ((-263 . -757) NIL) ((-263 . -717) NIL) ((-263 . -715) NIL) ((-263 . -741) NIL) ((-263 . -797) NIL) ((-263 . -342) 38861) ((-263 . -581) 38822) ((-263 . -591) 38751) ((-263 . -328) 38712) ((-263 . -240) 38578) ((-263 . -259) 38474) ((-263 . -456) 38225) ((-263 . -380) 38186) ((-263 . -287) 38147) ((-263 . -200) T) ((-263 . -79) 38032) ((-263 . -964) 37961) ((-263 . -969) 37890) ((-263 . -245) T) ((-263 . -655) 37819) ((-263 . -583) 37748) ((-263 . -589) 37662) ((-263 . -35) 37591) ((-263 . -257) T) ((-263 . -392) T) ((-263 . -145) T) ((-263 . -496) T) ((-263 . -833) T) ((-263 . -1135) T) ((-263 . -311) T) ((-263 . -189) NIL) ((-263 . -185) NIL) ((-263 . -188) NIL) ((-263 . -224) 37552) ((-263 . -807) NIL) ((-263 . -812) NIL) ((-263 . -810) NIL) ((-263 . -183) 37513) ((-263 . -117) 37469) ((-263 . -115) 37425) ((-263 . -101) T) ((-263 . -22) T) ((-263 . -69) T) ((-263 . -12) T) ((-263 . -1130) T) ((-263 . -553) 37407) ((-263 . -1014) T) ((-263 . -20) T) ((-263 . -18) T) ((-263 . -962) T) ((-263 . -664) T) ((-263 . -1062) T) ((-263 . -1026) T) ((-263 . -971) T) ((-262 . -996) T) ((-262 . -430) 37388) ((-262 . -553) 37354) ((-262 . -556) 37335) ((-262 . -1014) T) ((-262 . -1130) T) ((-262 . -12) T) ((-262 . -69) T) ((-262 . -61) T) ((-261 . -1014) T) ((-261 . -553) 37317) ((-261 . -1130) T) ((-261 . -12) T) ((-261 . -69) T) ((-250 . -1108) 37296) ((-250 . -182) 37244) ((-250 . -73) 37192) ((-250 . -1036) 37127) ((-250 . -121) 37075) ((-250 . -554) NIL) ((-250 . -192) 37023) ((-250 . -539) 37002) ((-250 . -259) 36800) ((-250 . -456) 36552) ((-250 . -380) 36487) ((-250 . -429) 36422) ((-250 . -240) 36401) ((-250 . -242) 36380) ((-250 . -550) 36359) ((-250 . -1014) T) ((-250 . -553) 36341) ((-250 . -69) T) ((-250 . -1130) T) ((-250 . -12) T) ((-250 . -31) T) ((-250 . -317) 36289) ((-248 . -380) 36273) ((-248 . -12) T) ((-248 . -1130) T) ((-248 . -456) 36222) ((-248 . -1014) 36008) ((-248 . -553) 35754) ((-248 . -69) 35540) ((-248 . -22) 35408) ((-248 . -18) 35295) ((-248 . -589) 35042) ((-248 . -20) 34929) ((-248 . -101) 34816) ((-248 . -1026) 34701) ((-248 . -664) 34607) ((-248 . -413) 34586) ((-248 . -962) 34532) ((-248 . -1062) 34478) ((-248 . -971) 34424) ((-248 . -591) 34292) ((-248 . -556) 34227) ((-248 . -79) 34147) ((-248 . -964) 34072) ((-248 . -969) 33997) ((-248 . -655) 33942) ((-248 . -583) 33887) ((-248 . -810) 33846) ((-248 . -807) 33803) ((-248 . -812) 33762) ((-248 . -1188) 33732) ((-246 . -553) 33714) ((-243 . -257) T) ((-243 . -392) T) ((-243 . -35) 33701) ((-243 . -556) 33673) ((-243 . -971) T) ((-243 . -1026) T) ((-243 . -1062) T) ((-243 . -664) T) ((-243 . -962) T) ((-243 . -79) 33658) ((-243 . -964) 33645) ((-243 . -969) 33632) ((-243 . -18) T) ((-243 . -589) 33604) ((-243 . -20) T) ((-243 . -1014) T) ((-243 . -553) 33586) ((-243 . -1130) T) ((-243 . -12) T) ((-243 . -69) T) ((-243 . -22) T) ((-243 . -101) T) ((-243 . -591) 33573) ((-243 . -583) 33560) ((-243 . -655) 33547) ((-243 . -145) T) ((-243 . -245) T) ((-243 . -496) T) ((-243 . -833) T) ((-243 . -240) 33526) ((-234 . -553) 33508) ((-233 . -553) 33490) ((-228 . -757) T) ((-228 . -553) 33472) ((-228 . -1014) T) ((-228 . -69) T) ((-228 . -12) T) ((-228 . -1130) T) ((-228 . -760) T) ((-225 . -212) 33434) ((-225 . -556) 33194) ((-225 . -951) 33040) ((-225 . -554) 32788) ((-225 . -276) 32760) ((-225 . -354) 32744) ((-225 . -35) 32596) ((-225 . -79) 32421) ((-225 . -964) 32267) ((-225 . -969) 32113) ((-225 . -589) 32023) ((-225 . -591) 31912) ((-225 . -583) 31764) ((-225 . -655) 31616) ((-225 . -115) 31595) ((-225 . -117) 31574) ((-225 . -145) 31488) ((-225 . -380) 31472) ((-225 . -496) 31406) ((-225 . -245) 31340) ((-225 . -44) 31312) ((-225 . -328) 31296) ((-225 . -581) 31244) ((-225 . -392) 31198) ((-225 . -456) 31089) ((-225 . -810) 31035) ((-225 . -807) 30944) ((-225 . -812) 30857) ((-225 . -797) 30716) ((-225 . -822) 30695) ((-225 . -1135) 30674) ((-225 . -862) 30641) ((-225 . -259) 30628) ((-225 . -189) 30607) ((-225 . -101) T) ((-225 . -22) T) ((-225 . -69) T) ((-225 . -553) 30589) ((-225 . -1014) T) ((-225 . -20) T) ((-225 . -18) T) ((-225 . -971) T) ((-225 . -1026) T) ((-225 . -1062) T) ((-225 . -664) T) ((-225 . -962) T) ((-225 . -185) 30537) ((-225 . -12) T) ((-225 . -1130) T) ((-225 . -188) 30491) ((-225 . -224) 30475) ((-225 . -183) 30459) ((-220 . -1014) T) ((-220 . -553) 30441) ((-220 . -1130) T) ((-220 . -12) T) ((-220 . -69) T) ((-210 . -195) 30420) ((-210 . -1188) 30390) ((-210 . -722) 30369) ((-210 . -719) 30348) ((-210 . -760) 30302) ((-210 . -757) 30256) ((-210 . -717) 30235) ((-210 . -718) 30214) ((-210 . -655) 30159) ((-210 . -583) 30084) ((-210 . -242) 30061) ((-210 . -240) 30038) ((-210 . -539) 30015) ((-210 . -951) 29844) ((-210 . -556) 29648) ((-210 . -354) 29617) ((-210 . -581) 29525) ((-210 . -591) 29351) ((-210 . -328) 29321) ((-210 . -429) 29305) ((-210 . -380) 29289) ((-210 . -456) 29222) ((-210 . -259) 29160) ((-210 . -31) T) ((-210 . -317) 29144) ((-210 . -319) 29123) ((-210 . -189) 29076) ((-210 . -589) 28929) ((-210 . -971) 28908) ((-210 . -1026) 28887) ((-210 . -1062) 28866) ((-210 . -664) 28845) ((-210 . -962) 28824) ((-210 . -185) 28720) ((-210 . -188) 28622) ((-210 . -224) 28592) ((-210 . -807) 28464) ((-210 . -812) 28338) ((-210 . -810) 28271) ((-210 . -183) 28241) ((-210 . -553) 28202) ((-210 . -969) 28127) ((-210 . -964) 28032) ((-210 . -79) 27952) ((-210 . -101) T) ((-210 . -22) T) ((-210 . -69) T) ((-210 . -12) T) ((-210 . -1130) T) ((-210 . -1014) T) ((-210 . -20) T) ((-210 . -18) T) ((-209 . -195) 27931) ((-209 . -1188) 27901) ((-209 . -722) 27880) ((-209 . -719) 27859) ((-209 . -760) 27813) ((-209 . -757) 27767) ((-209 . -717) 27746) ((-209 . -718) 27725) ((-209 . -655) 27670) ((-209 . -583) 27595) ((-209 . -242) 27572) ((-209 . -240) 27549) ((-209 . -539) 27526) ((-209 . -951) 27355) ((-209 . -556) 27159) ((-209 . -354) 27128) ((-209 . -581) 27036) ((-209 . -591) 26849) ((-209 . -328) 26819) ((-209 . -429) 26803) ((-209 . -380) 26787) ((-209 . -456) 26720) ((-209 . -259) 26658) ((-209 . -31) T) ((-209 . -317) 26642) ((-209 . -319) 26621) ((-209 . -189) 26574) ((-209 . -589) 26414) ((-209 . -971) 26393) ((-209 . -1026) 26372) ((-209 . -1062) 26351) ((-209 . -664) 26330) ((-209 . -962) 26309) ((-209 . -185) 26205) ((-209 . -188) 26107) ((-209 . -224) 26077) ((-209 . -807) 25949) ((-209 . -812) 25823) ((-209 . -810) 25756) ((-209 . -183) 25726) ((-209 . -553) 25687) ((-209 . -969) 25612) ((-209 . -964) 25517) ((-209 . -79) 25437) ((-209 . -101) T) ((-209 . -22) T) ((-209 . -69) T) ((-209 . -12) T) ((-209 . -1130) T) ((-209 . -1014) T) ((-209 . -20) T) ((-209 . -18) T) ((-208 . -1014) T) ((-208 . -553) 25419) ((-208 . -1130) T) ((-208 . -12) T) ((-208 . -69) T) ((-208 . -240) 25393) ((-207 . -159) T) ((-207 . -1014) T) ((-207 . -553) 25360) ((-207 . -1130) T) ((-207 . -12) T) ((-207 . -69) T) ((-207 . -748) 25342) ((-206 . -1014) T) ((-206 . -553) 25324) ((-206 . -1130) T) ((-206 . -12) T) ((-206 . -69) T) ((-205 . -862) 25269) ((-205 . -556) 25061) ((-205 . -951) 24939) ((-205 . -1135) 24918) ((-205 . -822) 24897) ((-205 . -797) NIL) ((-205 . -812) 24874) ((-205 . -807) 24849) ((-205 . -810) 24826) ((-205 . -456) 24764) ((-205 . -392) 24718) ((-205 . -581) 24666) ((-205 . -591) 24555) ((-205 . -328) 24539) ((-205 . -44) 24496) ((-205 . -35) 24348) ((-205 . -583) 24200) ((-205 . -655) 24052) ((-205 . -245) 23986) ((-205 . -496) 23920) ((-205 . -380) 23904) ((-205 . -79) 23729) ((-205 . -964) 23575) ((-205 . -969) 23421) ((-205 . -145) 23335) ((-205 . -117) 23314) ((-205 . -115) 23293) ((-205 . -589) 23203) ((-205 . -101) T) ((-205 . -22) T) ((-205 . -69) T) ((-205 . -12) T) ((-205 . -1130) T) ((-205 . -553) 23185) ((-205 . -1014) T) ((-205 . -20) T) ((-205 . -18) T) ((-205 . -962) T) ((-205 . -664) T) ((-205 . -1062) T) ((-205 . -1026) T) ((-205 . -971) T) ((-205 . -354) 23169) ((-205 . -276) 23126) ((-205 . -259) 23113) ((-205 . -554) 22974) ((-202 . -609) 22958) ((-202 . -1169) 22942) ((-202 . -924) 22926) ((-202 . -1065) 22910) ((-202 . -317) 22894) ((-202 . -757) 22873) ((-202 . -760) 22852) ((-202 . -323) 22836) ((-202 . -594) 22820) ((-202 . -242) 22797) ((-202 . -240) 22749) ((-202 . -539) 22726) ((-202 . -554) 22687) ((-202 . -429) 22671) ((-202 . -1014) 22624) ((-202 . -380) 22608) ((-202 . -456) 22541) ((-202 . -259) 22479) ((-202 . -553) 22374) ((-202 . -69) 22308) ((-202 . -1130) T) ((-202 . -12) T) ((-202 . -31) T) ((-202 . -121) 22292) ((-202 . -1036) 22276) ((-202 . -236) 22260) ((-202 . -430) 22237) ((-202 . -556) 22214) ((-196 . -195) 22193) ((-196 . -1188) 22163) ((-196 . -722) 22142) ((-196 . -719) 22121) ((-196 . -760) 22075) ((-196 . -757) 22029) ((-196 . -717) 22008) ((-196 . -718) 21987) ((-196 . -655) 21932) ((-196 . -583) 21857) ((-196 . -242) 21834) ((-196 . -240) 21811) ((-196 . -539) 21788) ((-196 . -951) 21617) ((-196 . -556) 21421) ((-196 . -354) 21390) ((-196 . -581) 21298) ((-196 . -591) 21137) ((-196 . -328) 21107) ((-196 . -429) 21091) ((-196 . -380) 21075) ((-196 . -456) 21008) ((-196 . -259) 20946) ((-196 . -31) T) ((-196 . -317) 20930) ((-196 . -319) 20909) ((-196 . -189) 20862) ((-196 . -589) 20650) ((-196 . -971) 20629) ((-196 . -1026) 20608) ((-196 . -1062) 20587) ((-196 . -664) 20566) ((-196 . -962) 20545) ((-196 . -185) 20441) ((-196 . -188) 20343) ((-196 . -224) 20313) ((-196 . -807) 20185) ((-196 . -812) 20059) ((-196 . -810) 19992) ((-196 . -183) 19962) ((-196 . -553) 19659) ((-196 . -969) 19584) ((-196 . -964) 19489) ((-196 . -79) 19409) ((-196 . -101) 19284) ((-196 . -22) 19121) ((-196 . -69) 18858) ((-196 . -12) T) ((-196 . -1130) T) ((-196 . -1014) 18614) ((-196 . -20) 18470) ((-196 . -18) 18385) ((-180 . -628) 18343) ((-180 . -317) 18327) ((-180 . -31) T) ((-180 . -12) T) ((-180 . -1130) T) ((-180 . -69) 18281) ((-180 . -553) 18216) ((-180 . -259) 18154) ((-180 . -456) 18087) ((-180 . -380) 18071) ((-180 . -1014) 18049) ((-180 . -429) 18033) ((-180 . -1036) 18017) ((-180 . -54) 17975) ((-178 . -346) T) ((-178 . -117) T) ((-178 . -556) 17925) ((-178 . -591) 17890) ((-178 . -589) 17840) ((-178 . -101) T) ((-178 . -22) T) ((-178 . -69) T) ((-178 . -12) T) ((-178 . -1130) T) ((-178 . -553) 17822) ((-178 . -1014) T) ((-178 . -20) T) ((-178 . -18) T) ((-178 . -971) T) ((-178 . -1026) T) ((-178 . -1062) T) ((-178 . -664) T) ((-178 . -962) T) ((-178 . -554) 17752) ((-178 . -311) T) ((-178 . -1135) T) ((-178 . -833) T) ((-178 . -496) T) ((-178 . -145) T) ((-178 . -655) 17717) ((-178 . -583) 17682) ((-178 . -35) 17647) ((-178 . -392) T) ((-178 . -257) T) ((-178 . -79) 17596) ((-178 . -964) 17561) ((-178 . -969) 17526) ((-178 . -245) T) ((-178 . -200) T) ((-178 . -756) T) ((-178 . -722) T) ((-178 . -719) T) ((-178 . -760) T) ((-178 . -757) T) ((-178 . -717) T) ((-178 . -715) T) ((-178 . -797) 17508) ((-178 . -916) T) ((-178 . -934) T) ((-178 . -951) 17468) ((-178 . -974) T) ((-178 . -189) T) ((-178 . -185) 17455) ((-178 . -188) T) ((-178 . -1116) T) ((-178 . -1119) T) ((-178 . -433) T) ((-178 . -238) T) ((-178 . -63) T) ((-178 . -32) T) ((-176 . -561) 17432) ((-176 . -556) 17394) ((-176 . -591) 17361) ((-176 . -589) 17313) ((-176 . -971) T) ((-176 . -1026) T) ((-176 . -1062) T) ((-176 . -664) T) ((-176 . -962) T) ((-176 . -18) T) ((-176 . -20) T) ((-176 . -1014) T) ((-176 . -553) 17295) ((-176 . -1130) T) ((-176 . -12) T) ((-176 . -69) T) ((-176 . -22) T) ((-176 . -101) T) ((-176 . -951) 17272) ((-176 . -380) 17249) ((-175 . -213) 17233) ((-175 . -1035) 17217) ((-175 . -73) 17201) ((-175 . -1036) 17185) ((-175 . -31) T) ((-175 . -12) T) ((-175 . -1130) T) ((-175 . -69) 17139) ((-175 . -553) 17074) ((-175 . -259) 17012) ((-175 . -456) 16945) ((-175 . -380) 16929) ((-175 . -1014) 16907) ((-175 . -429) 16891) ((-175 . -317) 16875) ((-175 . -909) 16859) ((-171 . -996) T) ((-171 . -430) 16840) ((-171 . -553) 16806) ((-171 . -556) 16787) ((-171 . -1014) T) ((-171 . -1130) T) ((-171 . -12) T) ((-171 . -69) T) ((-171 . -61) T) ((-170 . -905) 16769) ((-170 . -1067) T) ((-170 . -556) 16719) ((-170 . -951) 16679) ((-170 . -554) 16609) ((-170 . -934) T) ((-170 . -822) NIL) ((-170 . -795) 16591) ((-170 . -756) T) ((-170 . -722) T) ((-170 . -719) T) ((-170 . -760) T) ((-170 . -757) T) ((-170 . -717) T) ((-170 . -715) T) ((-170 . -741) T) ((-170 . -797) 16573) ((-170 . -342) 16555) ((-170 . -581) 16537) ((-170 . -328) 16519) ((-170 . -240) NIL) ((-170 . -259) NIL) ((-170 . -456) NIL) ((-170 . -380) 16501) ((-170 . -287) 16483) ((-170 . -200) T) ((-170 . -79) 16410) ((-170 . -964) 16360) ((-170 . -969) 16310) ((-170 . -245) T) ((-170 . -655) 16260) ((-170 . -583) 16210) ((-170 . -591) 16160) ((-170 . -589) 16110) ((-170 . -35) 16060) ((-170 . -257) T) ((-170 . -392) T) ((-170 . -145) T) ((-170 . -496) T) ((-170 . -833) T) ((-170 . -1135) T) ((-170 . -311) T) ((-170 . -189) T) ((-170 . -185) 16047) ((-170 . -188) T) ((-170 . -224) 16029) ((-170 . -807) NIL) ((-170 . -812) NIL) ((-170 . -810) NIL) ((-170 . -183) 16011) ((-170 . -117) T) ((-170 . -115) NIL) ((-170 . -101) T) ((-170 . -22) T) ((-170 . -69) T) ((-170 . -12) T) ((-170 . -1130) T) ((-170 . -553) 15953) ((-170 . -1014) T) ((-170 . -20) T) ((-170 . -18) T) ((-170 . -962) T) ((-170 . -664) T) ((-170 . -1062) T) ((-170 . -1026) T) ((-170 . -971) T) ((-167 . -753) T) ((-167 . -760) T) ((-167 . -757) T) ((-167 . -1014) T) ((-167 . -553) 15935) ((-167 . -1130) T) ((-167 . -12) T) ((-167 . -69) T) ((-167 . -319) T) ((-166 . -1014) T) ((-166 . -553) 15917) ((-166 . -1130) T) ((-166 . -12) T) ((-166 . -69) T) ((-166 . -556) 15894) ((-165 . -1014) T) ((-165 . -553) 15876) ((-165 . -1130) T) ((-165 . -12) T) ((-165 . -69) T) ((-160 . -1014) T) ((-160 . -553) 15858) ((-160 . -1130) T) ((-160 . -12) T) ((-160 . -69) T) ((-157 . -1014) T) ((-157 . -553) 15840) ((-157 . -1130) T) ((-157 . -12) T) ((-157 . -69) T) ((-156 . -159) T) ((-156 . -1014) T) ((-156 . -553) 15822) ((-156 . -1130) T) ((-156 . -12) T) ((-156 . -69) T) ((-156 . -748) 15804) ((-153 . -996) T) ((-153 . -430) 15785) ((-153 . -553) 15751) ((-153 . -556) 15732) ((-153 . -1014) T) ((-153 . -1130) T) ((-153 . -12) T) ((-153 . -69) T) ((-153 . -61) T) ((-148 . -553) 15714) ((-147 . -35) 15646) ((-147 . -556) 15563) ((-147 . -591) 15495) ((-147 . -589) 15412) ((-147 . -971) T) ((-147 . -1026) T) ((-147 . -1062) T) ((-147 . -664) T) ((-147 . -962) T) ((-147 . -79) 15311) ((-147 . -964) 15243) ((-147 . -969) 15175) ((-147 . -18) T) ((-147 . -20) T) ((-147 . -1014) T) ((-147 . -553) 15157) ((-147 . -1130) T) ((-147 . -12) T) ((-147 . -69) T) ((-147 . -22) T) ((-147 . -101) T) ((-147 . -583) 15089) ((-147 . -655) 15021) ((-147 . -311) T) ((-147 . -1135) T) ((-147 . -833) T) ((-147 . -496) T) ((-147 . -145) T) ((-147 . -392) T) ((-147 . -257) T) ((-147 . -245) T) ((-147 . -200) T) ((-144 . -1014) T) ((-144 . -553) 15003) ((-144 . -1130) T) ((-144 . -12) T) ((-144 . -69) T) ((-141 . -138) 14987) ((-141 . -32) 14965) ((-141 . -63) 14943) ((-141 . -238) 14921) ((-141 . -433) 14899) ((-141 . -1119) 14877) ((-141 . -1116) 14855) ((-141 . -916) 14807) ((-141 . -822) 14760) ((-141 . -554) 14528) ((-141 . -795) 14512) ((-141 . -319) 14466) ((-141 . -298) 14445) ((-141 . -1067) 14424) ((-141 . -344) 14403) ((-141 . -352) 14374) ((-141 . -35) 14208) ((-141 . -79) 14100) ((-141 . -964) 14013) ((-141 . -969) 13926) ((-141 . -583) 13760) ((-141 . -655) 13594) ((-141 . -321) 13565) ((-141 . -662) 13536) ((-141 . -951) 13434) ((-141 . -556) 13219) ((-141 . -354) 13203) ((-141 . -797) 13128) ((-141 . -342) 13112) ((-141 . -581) 13060) ((-141 . -591) 12937) ((-141 . -589) 12835) ((-141 . -328) 12819) ((-141 . -240) 12777) ((-141 . -259) 12742) ((-141 . -456) 12654) ((-141 . -380) 12638) ((-141 . -287) 12622) ((-141 . -200) 12576) ((-141 . -1135) 12484) ((-141 . -311) 12438) ((-141 . -833) 12372) ((-141 . -496) 12286) ((-141 . -245) 12200) ((-141 . -392) 12134) ((-141 . -257) 12068) ((-141 . -189) 12022) ((-141 . -185) 11950) ((-141 . -188) 11884) ((-141 . -224) 11868) ((-141 . -807) 11792) ((-141 . -812) 11718) ((-141 . -810) 11677) ((-141 . -183) 11661) ((-141 . -145) T) ((-141 . -117) 11640) ((-141 . -962) T) ((-141 . -664) T) ((-141 . -1062) T) ((-141 . -1026) T) ((-141 . -971) T) ((-141 . -18) T) ((-141 . -20) T) ((-141 . -1014) T) ((-141 . -553) 11622) ((-141 . -1130) T) ((-141 . -12) T) ((-141 . -69) T) ((-141 . -22) T) ((-141 . -101) T) ((-141 . -115) 11576) ((-135 . -136) 11560) ((-135 . |MappingCategory|) 11534) ((-135 . -1130) T) ((-135 . -77) 11518) ((-135 . -553) 11496) ((-132 . -996) T) ((-132 . -430) 11477) ((-132 . -553) 11443) ((-132 . -556) 11424) ((-132 . -1014) T) ((-132 . -1130) T) ((-132 . -12) T) ((-132 . -69) T) ((-132 . -61) T) ((-131 . -1014) T) ((-131 . -553) 11406) ((-131 . -1130) T) ((-131 . -12) T) ((-131 . -69) T) ((-127 . -22) T) ((-127 . -69) T) ((-127 . -12) T) ((-127 . -1130) T) ((-127 . -553) 11388) ((-127 . -1014) T) ((-126 . -996) T) ((-126 . -430) 11369) ((-126 . -553) 11335) ((-126 . -556) 11316) ((-126 . -1014) T) ((-126 . -1130) T) ((-126 . -12) T) ((-126 . -69) T) ((-126 . -61) T) ((-124 . -996) T) ((-124 . -430) 11297) ((-124 . -553) 11263) ((-124 . -556) 11244) ((-124 . -1014) T) ((-124 . -1130) T) ((-124 . -12) T) ((-124 . -69) T) ((-124 . -61) T) ((-122 . -962) T) ((-122 . -664) T) ((-122 . -1062) T) ((-122 . -1026) T) ((-122 . -971) T) ((-122 . -18) T) ((-122 . -589) 11203) ((-122 . -20) T) ((-122 . -1014) T) ((-122 . -553) 11185) ((-122 . -1130) T) ((-122 . -12) T) ((-122 . -69) T) ((-122 . -22) T) ((-122 . -101) T) ((-122 . -591) 11159) ((-122 . -556) 11128) ((-122 . -35) 11112) ((-122 . -79) 11091) ((-122 . -964) 11075) ((-122 . -969) 11059) ((-122 . -583) 11043) ((-122 . -655) 11027) ((-122 . -1188) 11011) ((-114 . -753) T) ((-114 . -760) T) ((-114 . -757) T) ((-114 . -1014) T) ((-114 . -553) 10993) ((-114 . -1130) T) ((-114 . -12) T) ((-114 . -69) T) ((-114 . -319) T) ((-111 . -1014) T) ((-111 . -553) 10975) ((-111 . -1130) T) ((-111 . -12) T) ((-111 . -69) T) ((-111 . -554) 10934) ((-111 . -368) 10916) ((-111 . -1012) 10898) ((-111 . -317) 10880) ((-111 . -319) T) ((-111 . -192) 10862) ((-111 . -121) 10844) ((-111 . -429) 10826) ((-111 . -380) 10808) ((-111 . -456) NIL) ((-111 . -259) NIL) ((-111 . -31) T) ((-111 . -1036) 10790) ((-111 . -73) 10772) ((-111 . -182) 10754) ((-110 . -553) 10736) ((-109 . -159) T) ((-109 . -1014) T) ((-109 . -553) 10703) ((-109 . -1130) T) ((-109 . -12) T) ((-109 . -69) T) ((-109 . -748) 10685) ((-108 . -996) T) ((-108 . -430) 10666) ((-108 . -553) 10632) ((-108 . -556) 10613) ((-108 . -1014) T) ((-108 . -1130) T) ((-108 . -12) T) ((-108 . -69) T) ((-108 . -61) T) ((-107 . -996) T) ((-107 . -430) 10594) ((-107 . -553) 10560) ((-107 . -556) 10541) ((-107 . -1014) T) ((-107 . -1130) T) ((-107 . -12) T) ((-107 . -69) T) ((-107 . -61) T) ((-105 . -405) 10518) ((-105 . -556) 10414) ((-105 . -951) 10398) ((-105 . -1014) T) ((-105 . -553) 10380) ((-105 . -1130) T) ((-105 . -12) T) ((-105 . -69) T) ((-105 . -410) 10335) ((-105 . -240) 10312) ((-104 . -757) T) ((-104 . -553) 10294) ((-104 . -1014) T) ((-104 . -69) T) ((-104 . -12) T) ((-104 . -1130) T) ((-104 . -760) T) ((-104 . -20) T) ((-104 . -22) T) ((-104 . -664) T) ((-104 . -1026) T) ((-104 . -951) 10276) ((-104 . -556) 10258) ((-103 . -996) T) ((-103 . -430) 10239) ((-103 . -553) 10205) ((-103 . -556) 10186) ((-103 . -1014) T) ((-103 . -1130) T) ((-103 . -12) T) ((-103 . -69) T) ((-103 . -61) T) ((-100 . -1014) T) ((-100 . -553) 10168) ((-100 . -1130) T) ((-100 . -12) T) ((-100 . -69) T) ((-99 . -16) 10151) ((-99 . -1036) 10134) ((-99 . -317) 10117) ((-99 . -31) T) ((-99 . -12) T) ((-99 . -1130) T) ((-99 . -69) T) ((-99 . -553) 10062) ((-99 . -259) NIL) ((-99 . -456) NIL) ((-99 . -380) 10045) ((-99 . -1014) T) ((-99 . -429) 10028) ((-99 . -594) 10011) ((-99 . -242) 9987) ((-99 . -240) 9938) ((-99 . -539) 9914) ((-99 . -554) NIL) ((-99 . -121) 9897) ((-99 . -757) T) ((-99 . -760) T) ((-99 . -323) 9880) ((-98 . -753) T) ((-98 . -760) T) ((-98 . -757) T) ((-98 . -1014) T) ((-98 . -553) 9862) ((-98 . -1130) T) ((-98 . -12) T) ((-98 . -69) T) ((-98 . -319) T) ((-98 . -605) T) ((-97 . -95) 9846) ((-97 . -1036) 9830) ((-97 . -317) 9814) ((-97 . -924) 9798) ((-97 . -31) T) ((-97 . -12) T) ((-97 . -1130) T) ((-97 . -69) 9752) ((-97 . -553) 9687) ((-97 . -259) 9625) ((-97 . -456) 9558) ((-97 . -380) 9542) ((-97 . -1014) 9520) ((-97 . -429) 9504) ((-97 . -89) 9488) ((-96 . -95) 9472) ((-96 . -1036) 9456) ((-96 . -317) 9440) ((-96 . -924) 9424) ((-96 . -31) T) ((-96 . -12) T) ((-96 . -1130) T) ((-96 . -69) 9378) ((-96 . -553) 9313) ((-96 . -259) 9251) ((-96 . -456) 9184) ((-96 . -380) 9168) ((-96 . -1014) 9146) ((-96 . -429) 9130) ((-96 . -89) 9114) ((-91 . -95) 9098) ((-91 . -1036) 9082) ((-91 . -317) 9066) ((-91 . -924) 9050) ((-91 . -31) T) ((-91 . -12) T) ((-91 . -1130) T) ((-91 . -69) 9004) ((-91 . -553) 8939) ((-91 . -259) 8877) ((-91 . -456) 8810) ((-91 . -380) 8794) ((-91 . -1014) 8772) ((-91 . -429) 8756) ((-91 . -89) 8740) ((-87 . -905) 8718) ((-87 . -1067) NIL) ((-87 . -951) 8696) ((-87 . -556) 8627) ((-87 . -554) NIL) ((-87 . -934) NIL) ((-87 . -822) NIL) ((-87 . -795) 8605) ((-87 . -756) NIL) ((-87 . -722) NIL) ((-87 . -719) NIL) ((-87 . -760) NIL) ((-87 . -757) NIL) ((-87 . -717) NIL) ((-87 . -715) NIL) ((-87 . -741) NIL) ((-87 . -797) NIL) ((-87 . -342) 8583) ((-87 . -581) 8561) ((-87 . -591) 8507) ((-87 . -328) 8485) ((-87 . -240) 8419) ((-87 . -259) 8366) ((-87 . -456) 8236) ((-87 . -380) 8214) ((-87 . -287) 8192) ((-87 . -200) T) ((-87 . -79) 8111) ((-87 . -964) 8057) ((-87 . -969) 8003) ((-87 . -245) T) ((-87 . -655) 7949) ((-87 . -583) 7895) ((-87 . -589) 7826) ((-87 . -35) 7772) ((-87 . -257) T) ((-87 . -392) T) ((-87 . -145) T) ((-87 . -496) T) ((-87 . -833) T) ((-87 . -1135) T) ((-87 . -311) T) ((-87 . -189) NIL) ((-87 . -185) NIL) ((-87 . -188) NIL) ((-87 . -224) 7750) ((-87 . -807) NIL) ((-87 . -812) NIL) ((-87 . -810) NIL) ((-87 . -183) 7728) ((-87 . -117) T) ((-87 . -115) NIL) ((-87 . -101) T) ((-87 . -22) T) ((-87 . -69) T) ((-87 . -12) T) ((-87 . -1130) T) ((-87 . -553) 7710) ((-87 . -1014) T) ((-87 . -20) T) ((-87 . -18) T) ((-87 . -962) T) ((-87 . -664) T) ((-87 . -1062) T) ((-87 . -1026) T) ((-87 . -971) T) ((-86 . -780) 7694) ((-86 . -833) T) ((-86 . -496) T) ((-86 . -245) T) ((-86 . -145) T) ((-86 . -556) 7666) ((-86 . -655) 7653) ((-86 . -583) 7640) ((-86 . -969) 7627) ((-86 . -964) 7614) ((-86 . -79) 7599) ((-86 . -35) 7586) ((-86 . -392) T) ((-86 . -257) T) ((-86 . -962) T) ((-86 . -664) T) ((-86 . -1062) T) ((-86 . -1026) T) ((-86 . -971) T) ((-86 . -18) T) ((-86 . -589) 7558) ((-86 . -20) T) ((-86 . -1014) T) ((-86 . -553) 7540) ((-86 . -1130) T) ((-86 . -12) T) ((-86 . -69) T) ((-86 . -22) T) ((-86 . -101) T) ((-86 . -591) 7527) ((-86 . -117) T) ((-83 . -757) T) ((-83 . -553) 7509) ((-83 . -1014) T) ((-83 . -69) T) ((-83 . -12) T) ((-83 . -1130) T) ((-83 . -760) T) ((-83 . -748) 7490) ((-82 . -753) T) ((-82 . -760) T) ((-82 . -757) T) ((-82 . -1014) T) ((-82 . -553) 7472) ((-82 . -1130) T) ((-82 . -12) T) ((-82 . -69) T) ((-82 . -319) T) ((-82 . -881) T) ((-82 . -605) T) ((-82 . -81) T) ((-82 . -554) 7454) ((-78 . -93) T) ((-78 . -323) 7437) ((-78 . -760) T) ((-78 . -757) T) ((-78 . -121) 7420) ((-78 . -554) 7402) ((-78 . -240) 7353) ((-78 . -539) 7329) ((-78 . -242) 7305) ((-78 . -594) 7288) ((-78 . -429) 7271) ((-78 . -1014) T) ((-78 . -380) 7254) ((-78 . -456) NIL) ((-78 . -259) NIL) ((-78 . -553) 7236) ((-78 . -69) T) ((-78 . -31) T) ((-78 . -317) 7219) ((-78 . -1036) 7202) ((-78 . -16) 7185) ((-78 . -605) T) ((-78 . -12) T) ((-78 . -1130) T) ((-78 . -81) T) ((-76 . -77) 7169) ((-76 . -1130) T) ((-76 . |MappingCategory|) 7143) ((-76 . -1014) T) ((-76 . -553) 7125) ((-76 . -12) T) ((-76 . -69) T) ((-75 . -553) 7107) ((-74 . -905) 7089) ((-74 . -1067) T) ((-74 . -556) 7039) ((-74 . -951) 6999) ((-74 . -554) 6929) ((-74 . -934) T) ((-74 . -822) NIL) ((-74 . -795) 6911) ((-74 . -756) T) ((-74 . -722) T) ((-74 . -719) T) ((-74 . -760) T) ((-74 . -757) T) ((-74 . -717) T) ((-74 . -715) T) ((-74 . -741) T) ((-74 . -797) 6893) ((-74 . -342) 6875) ((-74 . -581) 6857) ((-74 . -328) 6839) ((-74 . -240) NIL) ((-74 . -259) NIL) ((-74 . -456) NIL) ((-74 . -380) 6821) ((-74 . -287) 6803) ((-74 . -200) T) ((-74 . -79) 6730) ((-74 . -964) 6680) ((-74 . -969) 6630) ((-74 . -245) T) ((-74 . -655) 6580) ((-74 . -583) 6530) ((-74 . -591) 6480) ((-74 . -589) 6430) ((-74 . -35) 6380) ((-74 . -257) T) ((-74 . -392) T) ((-74 . -145) T) ((-74 . -496) T) ((-74 . -833) T) ((-74 . -1135) T) ((-74 . -311) T) ((-74 . -189) T) ((-74 . -185) 6367) ((-74 . -188) T) ((-74 . -224) 6349) ((-74 . -807) NIL) ((-74 . -812) NIL) ((-74 . -810) NIL) ((-74 . -183) 6331) ((-74 . -117) T) ((-74 . -115) NIL) ((-74 . -101) T) ((-74 . -22) T) ((-74 . -69) T) ((-74 . -12) T) ((-74 . -1130) T) ((-74 . -553) 6274) ((-74 . -1014) T) ((-74 . -20) T) ((-74 . -18) T) ((-74 . -962) T) ((-74 . -664) T) ((-74 . -1062) T) ((-74 . -1026) T) ((-74 . -971) T) ((-70 . -95) 6258) ((-70 . -1036) 6242) ((-70 . -317) 6226) ((-70 . -924) 6210) ((-70 . -31) T) ((-70 . -12) T) ((-70 . -1130) T) ((-70 . -69) 6164) ((-70 . -553) 6099) ((-70 . -259) 6037) ((-70 . -456) 5970) ((-70 . -380) 5954) ((-70 . -1014) 5932) ((-70 . -429) 5916) ((-70 . -89) 5900) ((-66 . -413) T) ((-66 . -1026) T) ((-66 . -69) T) ((-66 . -12) T) ((-66 . -1130) T) ((-66 . -553) 5882) ((-66 . -1014) T) ((-66 . -664) T) ((-66 . -240) 5861) ((-64 . -996) T) ((-64 . -430) 5842) ((-64 . -553) 5808) ((-64 . -556) 5789) ((-64 . -1014) T) ((-64 . -1130) T) ((-64 . -12) T) ((-64 . -69) T) ((-64 . -61) T) ((-59 . -1035) 5773) ((-59 . -317) 5757) ((-59 . -429) 5741) ((-59 . -1014) 5719) ((-59 . -380) 5703) ((-59 . -456) 5636) ((-59 . -259) 5574) ((-59 . -553) 5509) ((-59 . -69) 5463) ((-59 . -1130) T) ((-59 . -12) T) ((-59 . -31) T) ((-59 . -1036) 5447) ((-59 . -73) 5431) ((-57 . -54) 5393) ((-57 . -1036) 5377) ((-57 . -429) 5361) ((-57 . -1014) 5339) ((-57 . -380) 5323) ((-57 . -456) 5256) ((-57 . -259) 5194) ((-57 . -553) 5129) ((-57 . -69) 5083) ((-57 . -1130) T) ((-57 . -12) T) ((-57 . -31) T) ((-57 . -317) 5067) ((-55 . -16) 5051) ((-55 . -1036) 5035) ((-55 . -317) 5019) ((-55 . -31) T) ((-55 . -12) T) ((-55 . -1130) T) ((-55 . -69) 4953) ((-55 . -553) 4868) ((-55 . -259) 4806) ((-55 . -456) 4739) ((-55 . -380) 4723) ((-55 . -1014) 4676) ((-55 . -429) 4660) ((-55 . -594) 4644) ((-55 . -242) 4621) ((-55 . -240) 4573) ((-55 . -539) 4550) ((-55 . -554) 4511) ((-55 . -121) 4495) ((-55 . -757) 4474) ((-55 . -760) 4453) ((-55 . -323) 4437) ((-52 . -1014) T) ((-52 . -553) 4419) ((-52 . -1130) T) ((-52 . -12) T) ((-52 . -69) T) ((-52 . -951) 4401) ((-52 . -556) 4383) ((-48 . -1014) T) ((-48 . -553) 4365) ((-48 . -1130) T) ((-48 . -12) T) ((-48 . -69) T) ((-47 . -561) 4349) ((-47 . -556) 4318) ((-47 . -591) 4292) ((-47 . -589) 4251) ((-47 . -971) T) ((-47 . -1026) T) ((-47 . -1062) T) ((-47 . -664) T) ((-47 . -962) T) ((-47 . -18) T) ((-47 . -20) T) ((-47 . -1014) T) ((-47 . -553) 4233) ((-47 . -1130) T) ((-47 . -12) T) ((-47 . -69) T) ((-47 . -22) T) ((-47 . -101) T) ((-47 . -951) 4217) ((-47 . -380) 4201) ((-46 . -1014) T) ((-46 . -553) 4183) ((-46 . -1130) T) ((-46 . -12) T) ((-46 . -69) T) ((-45 . -253) T) ((-45 . -69) T) ((-45 . -12) T) ((-45 . -1130) T) ((-45 . -553) 4165) ((-45 . -1014) T) ((-45 . -556) 4066) ((-45 . -951) 4009) ((-45 . -456) 3975) ((-45 . -259) 3962) ((-45 . -24) T) ((-45 . -916) T) ((-45 . -200) T) ((-45 . -79) 3911) ((-45 . -964) 3876) ((-45 . -969) 3841) ((-45 . -245) T) ((-45 . -655) 3806) ((-45 . -583) 3771) ((-45 . -591) 3721) ((-45 . -589) 3671) ((-45 . -101) T) ((-45 . -22) T) ((-45 . -20) T) ((-45 . -18) T) ((-45 . -962) T) ((-45 . -664) T) ((-45 . -1062) T) ((-45 . -1026) T) ((-45 . -971) T) ((-45 . -35) 3636) ((-45 . -257) T) ((-45 . -392) T) ((-45 . -145) T) ((-45 . -496) T) ((-45 . -833) T) ((-45 . -1135) T) ((-45 . -311) T) ((-45 . -581) 3596) ((-45 . -934) T) ((-45 . -554) 3541) ((-45 . -117) T) ((-45 . -189) T) ((-45 . -185) 3528) ((-45 . -188) T) ((-42 . -33) 3507) ((-42 . -550) 3486) ((-42 . -242) 3409) ((-42 . -240) 3307) ((-42 . -429) 3242) ((-42 . -380) 3177) ((-42 . -456) 2929) ((-42 . -259) 2727) ((-42 . -539) 2650) ((-42 . -192) 2598) ((-42 . -73) 2546) ((-42 . -182) 2494) ((-42 . -1108) 2473) ((-42 . -1036) 2408) ((-42 . -236) 2356) ((-42 . -121) 2304) ((-42 . -31) T) ((-42 . -12) T) ((-42 . -1130) T) ((-42 . -69) T) ((-42 . -553) 2286) ((-42 . -1014) T) ((-42 . -554) NIL) ((-42 . -594) 2234) ((-42 . -323) 2182) ((-42 . -760) NIL) ((-42 . -757) NIL) ((-42 . -317) 2130) ((-42 . -1065) 2078) ((-42 . -924) 2026) ((-42 . -1169) 1974) ((-42 . -609) 1922) ((-41 . -360) 1906) ((-41 . -684) 1890) ((-41 . -658) T) ((-41 . -686) T) ((-41 . -79) 1869) ((-41 . -964) 1853) ((-41 . -969) 1837) ((-41 . -18) T) ((-41 . -589) 1780) ((-41 . -20) T) ((-41 . -1014) T) ((-41 . -553) 1762) ((-41 . -69) T) ((-41 . -22) T) ((-41 . -101) T) ((-41 . -591) 1720) ((-41 . -583) 1704) ((-41 . -655) 1688) ((-41 . -315) 1672) ((-41 . -1130) T) ((-41 . -12) T) ((-41 . -240) 1649) ((-37 . -290) 1623) ((-37 . -145) T) ((-37 . -556) 1553) ((-37 . -971) T) ((-37 . -1026) T) ((-37 . -1062) T) ((-37 . -664) T) ((-37 . -962) T) ((-37 . -591) 1455) ((-37 . -589) 1385) ((-37 . -101) T) ((-37 . -22) T) ((-37 . -69) T) ((-37 . -12) T) ((-37 . -1130) T) ((-37 . -553) 1367) ((-37 . -1014) T) ((-37 . -20) T) ((-37 . -18) T) ((-37 . -969) 1312) ((-37 . -964) 1257) ((-37 . -79) 1174) ((-37 . -554) 1158) ((-37 . -183) 1135) ((-37 . -810) 1087) ((-37 . -812) 999) ((-37 . -807) 909) ((-37 . -224) 886) ((-37 . -188) 826) ((-37 . -185) 760) ((-37 . -189) 732) ((-37 . -311) T) ((-37 . -1135) T) ((-37 . -833) T) ((-37 . -496) T) ((-37 . -655) 677) ((-37 . -583) 622) ((-37 . -35) 567) ((-37 . -392) T) ((-37 . -257) T) ((-37 . -245) T) ((-37 . -200) T) ((-37 . -319) NIL) ((-37 . -298) NIL) ((-37 . -1067) NIL) ((-37 . -115) 539) ((-37 . -344) NIL) ((-37 . -352) 511) ((-37 . -117) 483) ((-37 . -321) 455) ((-37 . -328) 432) ((-37 . -581) 366) ((-37 . -354) 343) ((-37 . -951) 220) ((-37 . -662) 192) ((-28 . -996) T) ((-28 . -430) 173) ((-28 . -553) 139) ((-28 . -556) 120) ((-28 . -1014) T) ((-28 . -1130) T) ((-28 . -12) T) ((-28 . -69) T) ((-28 . -61) T) ((-27 . -867) T) ((-27 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1014) T) ((0 . -69) T) ((0 . -1130) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1014) T) ((-2 . -69) T) ((-2 . -1130) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1014) T) ((-3 . -69) T) ((-3 . -1130) T) ((-1 . -1014) T) ((-1 . -553) 30) ((-1 . -1130) T) ((-1 . -12) T) ((-1 . -69) T)) \ No newline at end of file
+((((|Integer|)) . T))
+(((|IntegerMod| . |CommutativeRing|) T) ((|IntegerMod| . |CoercibleFrom|) 283240) ((|IntegerMod| . |Rng|) T) ((|IntegerMod| . |SemiGroup|) T) ((|IntegerMod| . |SemiRing|) T) ((|IntegerMod| . |Monoid|) T) ((|IntegerMod| . |Ring|) T) ((|IntegerMod| . |LeftModule|) 283227) ((|IntegerMod| . |LeftLinearSet|) 283194) ((|IntegerMod| . |CancellationAbelianMonoid|) T) ((|IntegerMod| . |AbelianSemiGroup|) T) ((|IntegerMod| . |BasicType|) T) ((|IntegerMod| . |Join|) T) ((|IntegerMod| . |Type|) T) ((|IntegerMod| . |CoercibleTo|) 283168) ((|IntegerMod| . |SetCategory|) T) ((|IntegerMod| . |AbelianMonoid|) T) ((|IntegerMod| . |AbelianGroup|) T) ((|IntegerMod| . |RightModule|) 283155) ((|IntegerMod| . |RightLinearSet|) 283142) ((|IntegerMod| . |BiModule|) 283127) ((|IntegerMod| . |Finite|) T) ((|IntegerMod| . |ConvertibleTo|) 283104) ((|IntegerMod| . |StepThrough|) T) ((|YoungDiagram| . |SetCategory|) T) ((|YoungDiagram| . |CoercibleTo|) 283056) ((|YoungDiagram| . |Type|) T) ((|YoungDiagram| . |Join|) T) ((|YoungDiagram| . |BasicType|) T) ((|YoungDiagram| . |HomotopicTo|) 283031) ((|YoungDiagram| . |CoercibleFrom|) 283006) ((|XRecursivePolynomial| . |XPolynomialsCat|) 282985) ((|XRecursivePolynomial| . |Functorial|) 282969) ((|XRecursivePolynomial| . |Join|) T) ((|XRecursivePolynomial| . |Type|) T) ((|XRecursivePolynomial| . |RetractableTo|) 282931) ((|XRecursivePolynomial| . |CoercibleFrom|) 282860) ((|XRecursivePolynomial| . |Ring|) T) ((|XRecursivePolynomial| . |Monoid|) T) ((|XRecursivePolynomial| . |SemiRing|) T) ((|XRecursivePolynomial| . |SemiGroup|) T) ((|XRecursivePolynomial| . |Rng|) T) ((|XRecursivePolynomial| . |AbelianGroup|) T) ((|XRecursivePolynomial| . |LeftLinearSet|) 282814) ((|XRecursivePolynomial| . |AbelianMonoid|) T) ((|XRecursivePolynomial| . |SetCategory|) T) ((|XRecursivePolynomial| . |CoercibleTo|) 282788) ((|XRecursivePolynomial| . |BasicType|) T) ((|XRecursivePolynomial| . |AbelianSemiGroup|) T) ((|XRecursivePolynomial| . |CancellationAbelianMonoid|) T) ((|XRecursivePolynomial| . |LeftModule|) 282762) ((|XRecursivePolynomial| . |XAlgebra|) 282746) ((|XRecursivePolynomial| . |Module|) 282703) ((|XRecursivePolynomial| . |LinearSet|) 282660) ((|XRecursivePolynomial| . |RightModule|) 282644) ((|XRecursivePolynomial| . |RightLinearSet|) 282628) ((|XRecursivePolynomial| . |BiModule|) 282607) ((|XRecursivePolynomial| . |Algebra|) 282564) ((|XRecursivePolynomial| . |XFreeAlgebra|) 282543) ((|XPolynomialRing| . |Ring|) T) ((|XPolynomialRing| . |Monoid|) T) ((|XPolynomialRing| . |SemiRing|) T) ((|XPolynomialRing| . |SemiGroup|) T) ((|XPolynomialRing| . |Rng|) T) ((|XPolynomialRing| . |AbelianGroup|) T) ((|XPolynomialRing| . |LeftLinearSet|) 282497) ((|XPolynomialRing| . |AbelianMonoid|) T) ((|XPolynomialRing| . |SetCategory|) T) ((|XPolynomialRing| . |CoercibleTo|) 282471) ((|XPolynomialRing| . |Type|) T) ((|XPolynomialRing| . |Join|) T) ((|XPolynomialRing| . |BasicType|) T) ((|XPolynomialRing| . |AbelianSemiGroup|) T) ((|XPolynomialRing| . |CancellationAbelianMonoid|) T) ((|XPolynomialRing| . |LeftModule|) 282445) ((|XPolynomialRing| . |CoercibleFrom|) 282396) ((|XPolynomialRing| . |XAlgebra|) 282380) ((|XPolynomialRing| . |Module|) 282337) ((|XPolynomialRing| . |LinearSet|) 282294) ((|XPolynomialRing| . |RightModule|) 282278) ((|XPolynomialRing| . |RightLinearSet|) 282262) ((|XPolynomialRing| . |BiModule|) 282241) ((|XPolynomialRing| . |Algebra|) 282198) ((|XPolynomialRing| . |FreeModuleCat|) 282177) ((|XPolynomialRing| . |RetractableTo|) 282161) ((|XPolynomialRing| . |Functorial|) 282145) ((|XPolynomial| . |XPolynomialsCat|) 282118) ((|XPolynomial| . |Functorial|) 282102) ((|XPolynomial| . |Join|) T) ((|XPolynomial| . |Type|) T) ((|XPolynomial| . |RetractableTo|) 282058) ((|XPolynomial| . |CoercibleFrom|) 281981) ((|XPolynomial| . |Ring|) T) ((|XPolynomial| . |Monoid|) T) ((|XPolynomial| . |SemiRing|) T) ((|XPolynomial| . |SemiGroup|) T) ((|XPolynomial| . |Rng|) T) ((|XPolynomial| . |AbelianGroup|) T) ((|XPolynomial| . |LeftLinearSet|) 281935) ((|XPolynomial| . |AbelianMonoid|) T) ((|XPolynomial| . |SetCategory|) T) ((|XPolynomial| . |CoercibleTo|) 281909) ((|XPolynomial| . |BasicType|) T) ((|XPolynomial| . |AbelianSemiGroup|) T) ((|XPolynomial| . |CancellationAbelianMonoid|) T) ((|XPolynomial| . |LeftModule|) 281883) ((|XPolynomial| . |XAlgebra|) 281867) ((|XPolynomial| . |Module|) 281824) ((|XPolynomial| . |LinearSet|) 281781) ((|XPolynomial| . |RightModule|) 281765) ((|XPolynomial| . |RightLinearSet|) 281749) ((|XPolynomial| . |BiModule|) 281728) ((|XPolynomial| . |Algebra|) 281685) ((|XPolynomial| . |XFreeAlgebra|) 281658) ((|XPBWPolynomial| . |XPolynomialsCat|) 281637) ((|XPBWPolynomial| . |Functorial|) 281621) ((|XPBWPolynomial| . |Join|) T) ((|XPBWPolynomial| . |Type|) T) ((|XPBWPolynomial| . |RetractableTo|) 281534) ((|XPBWPolynomial| . |CoercibleFrom|) 281414) ((|XPBWPolynomial| . |Ring|) T) ((|XPBWPolynomial| . |Monoid|) T) ((|XPBWPolynomial| . |SemiRing|) T) ((|XPBWPolynomial| . |SemiGroup|) T) ((|XPBWPolynomial| . |Rng|) T) ((|XPBWPolynomial| . |AbelianGroup|) T) ((|XPBWPolynomial| . |LeftLinearSet|) 281368) ((|XPBWPolynomial| . |AbelianMonoid|) T) ((|XPBWPolynomial| . |SetCategory|) T) ((|XPBWPolynomial| . |CoercibleTo|) 281342) ((|XPBWPolynomial| . |BasicType|) T) ((|XPBWPolynomial| . |AbelianSemiGroup|) T) ((|XPBWPolynomial| . |CancellationAbelianMonoid|) T) ((|XPBWPolynomial| . |LeftModule|) 281316) ((|XPBWPolynomial| . |XAlgebra|) 281300) ((|XPBWPolynomial| . |Module|) 281257) ((|XPBWPolynomial| . |LinearSet|) 281214) ((|XPBWPolynomial| . |RightModule|) 281198) ((|XPBWPolynomial| . |RightLinearSet|) 281182) ((|XPBWPolynomial| . |BiModule|) 281161) ((|XPBWPolynomial| . |Algebra|) 281118) ((|XPBWPolynomial| . |XFreeAlgebra|) 281097) ((|XPBWPolynomial| . |FreeModuleCat|) 281040) ((|XDistributedPolynomial| . |FreeModuleCat|) 280997) ((|XDistributedPolynomial| . |CoercibleFrom|) 280926) ((|XDistributedPolynomial| . |RetractableTo|) 280888) ((|XDistributedPolynomial| . |LinearSet|) 280845) ((|XDistributedPolynomial| . |Module|) 280802) ((|XDistributedPolynomial| . |Functorial|) 280786) ((|XDistributedPolynomial| . |LeftModule|) 280760) ((|XDistributedPolynomial| . |LeftLinearSet|) 280714) ((|XDistributedPolynomial| . |CancellationAbelianMonoid|) T) ((|XDistributedPolynomial| . |AbelianSemiGroup|) T) ((|XDistributedPolynomial| . |BasicType|) T) ((|XDistributedPolynomial| . |Join|) T) ((|XDistributedPolynomial| . |Type|) T) ((|XDistributedPolynomial| . |CoercibleTo|) 280688) ((|XDistributedPolynomial| . |SetCategory|) T) ((|XDistributedPolynomial| . |AbelianMonoid|) T) ((|XDistributedPolynomial| . |AbelianGroup|) T) ((|XDistributedPolynomial| . |RightModule|) 280672) ((|XDistributedPolynomial| . |RightLinearSet|) 280656) ((|XDistributedPolynomial| . |BiModule|) 280635) ((|XDistributedPolynomial| . |XPolynomialsCat|) 280614) ((|XDistributedPolynomial| . |Ring|) T) ((|XDistributedPolynomial| . |Monoid|) T) ((|XDistributedPolynomial| . |SemiRing|) T) ((|XDistributedPolynomial| . |SemiGroup|) T) ((|XDistributedPolynomial| . |Rng|) T) ((|XDistributedPolynomial| . |XAlgebra|) 280598) ((|XDistributedPolynomial| . |Algebra|) 280555) ((|XDistributedPolynomial| . |XFreeAlgebra|) 280534) ((|WuWenTsunTriangularSet| . |TriangularSetCategory|) 280503) ((|WuWenTsunTriangularSet| . |ShallowlyMutableAggregate|) 280487) ((|WuWenTsunTriangularSet| . |CoercibleTo|) 280439) ((|WuWenTsunTriangularSet| . |Collection|) 280423) ((|WuWenTsunTriangularSet| . |Aggregate|) T) ((|WuWenTsunTriangularSet| . |Join|) T) ((|WuWenTsunTriangularSet| . |Type|) T) ((|WuWenTsunTriangularSet| . |BasicType|) T) ((|WuWenTsunTriangularSet| . |Evalable|) 280347) ((|WuWenTsunTriangularSet| . |InnerEvalable|) 280266) ((|WuWenTsunTriangularSet| . |Functorial|) 280250) ((|WuWenTsunTriangularSet| . |SetCategory|) T) ((|WuWenTsunTriangularSet| . |HomogeneousAggregate|) 280234) ((|WuWenTsunTriangularSet| . |ConvertibleTo|) 280170) ((|WuWenTsunTriangularSet| . |FiniteAggregate|) 280154) ((|WuWenTsunTriangularSet| . |PolynomialSetCategory|) 280123) ((|WeightedPolynomials| . |Ring|) T) ((|WeightedPolynomials| . |Monoid|) T) ((|WeightedPolynomials| . |SemiRing|) T) ((|WeightedPolynomials| . |SemiGroup|) T) ((|WeightedPolynomials| . |Rng|) T) ((|WeightedPolynomials| . |AbelianGroup|) T) ((|WeightedPolynomials| . |LeftLinearSet|) 280050) ((|WeightedPolynomials| . |AbelianMonoid|) T) ((|WeightedPolynomials| . |SetCategory|) T) ((|WeightedPolynomials| . |CoercibleTo|) 280011) ((|WeightedPolynomials| . |Type|) T) ((|WeightedPolynomials| . |Join|) T) ((|WeightedPolynomials| . |BasicType|) T) ((|WeightedPolynomials| . |AbelianSemiGroup|) T) ((|WeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|WeightedPolynomials| . |LeftModule|) 279958) ((|WeightedPolynomials| . |CoercibleFrom|) 279882) ((|WeightedPolynomials| . |HomotopicTo|) 279866) ((|WeightedPolynomials| . |Algebra|) 279823) ((|WeightedPolynomials| . |BiModule|) 279775) ((|WeightedPolynomials| . |RightLinearSet|) 279732) ((|WeightedPolynomials| . |RightModule|) 279689) ((|WeightedPolynomials| . |LinearSet|) 279646) ((|WeightedPolynomials| . |Module|) 279603) ((|WhileAst| . |SpadSyntaxCategory|) T) ((|WhileAst| . |HomotopicTo|) 279581) ((|WhileAst| . |CoercibleTo|) 279536) ((|WhileAst| . |CoercibleFrom|) 279514) ((|WhileAst| . |SetCategory|) T) ((|WhileAst| . |Type|) T) ((|WhileAst| . |Join|) T) ((|WhileAst| . |BasicType|) T) ((|WhileAst| . |AbstractSyntaxCategory|) T) ((|WhereAst| . |SpadSyntaxCategory|) T) ((|WhereAst| . |HomotopicTo|) 279492) ((|WhereAst| . |CoercibleTo|) 279447) ((|WhereAst| . |CoercibleFrom|) 279425) ((|WhereAst| . |SetCategory|) T) ((|WhereAst| . |Type|) T) ((|WhereAst| . |Join|) T) ((|WhereAst| . |BasicType|) T) ((|WhereAst| . |AbstractSyntaxCategory|) T) ((|Void| . |CoercibleTo|) 279399) ((|ThreeDimensionalViewport| . |SetCategory|) T) ((|ThreeDimensionalViewport| . |CoercibleTo|) 279373) ((|ThreeDimensionalViewport| . |Type|) T) ((|ThreeDimensionalViewport| . |Join|) T) ((|ThreeDimensionalViewport| . |BasicType|) T) ((|TwoDimensionalViewport| . |SetCategory|) T) ((|TwoDimensionalViewport| . |CoercibleTo|) 279347) ((|TwoDimensionalViewport| . |Type|) T) ((|TwoDimensionalViewport| . |Join|) T) ((|TwoDimensionalViewport| . |BasicType|) T) ((|Vector| . |VectorCategory|) 279331) ((|Vector| . |FiniteLinearAggregate|) 279315) ((|Vector| . |OrderedType|) 279286) ((|Vector| . |OrderedSet|) 279257) ((|Vector| . |Collection|) 279241) ((|Vector| . |ConvertibleTo|) 279177) ((|Vector| . |Eltable|) 279106) ((|Vector| . |IndexedAggregate|) 279078) ((|Vector| . |EltableAggregate|) 279050) ((|Vector| . |LinearAggregate|) 279034) ((|Vector| . |HomogeneousAggregate|) 279018) ((|Vector| . |SetCategory|) 278955) ((|Vector| . |Functorial|) 278939) ((|Vector| . |InnerEvalable|) 278858) ((|Vector| . |Evalable|) 278782) ((|Vector| . |CoercibleTo|) 278656) ((|Vector| . |BasicType|) 278566) ((|Vector| . |Type|) T) ((|Vector| . |Join|) T) ((|Vector| . |Aggregate|) T) ((|Vector| . |FiniteAggregate|) 278550) ((|Vector| . |ShallowlyMutableAggregate|) 278534) ((|Vector| . |OneDimensionalArrayAggregate|) 278518) ((|Variable| . |SetCategory|) T) ((|Variable| . |CoercibleTo|) 278473) ((|Variable| . |Type|) T) ((|Variable| . |Join|) T) ((|Variable| . |BasicType|) T) ((|UnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 278457) ((|UnivariateTaylorSeries| . |DifferentialRing|) 278394) ((|UnivariateTaylorSeries| . |CoercibleFrom|) 278218) ((|UnivariateTaylorSeries| . |LeftModule|) 278115) ((|UnivariateTaylorSeries| . |LeftLinearSet|) 277992) ((|UnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|UnivariateTaylorSeries| . |BasicType|) T) ((|UnivariateTaylorSeries| . |CoercibleTo|) 277966) ((|UnivariateTaylorSeries| . |SetCategory|) T) ((|UnivariateTaylorSeries| . |AbelianMonoid|) T) ((|UnivariateTaylorSeries| . |AbelianGroup|) T) ((|UnivariateTaylorSeries| . |Rng|) T) ((|UnivariateTaylorSeries| . |SemiGroup|) T) ((|UnivariateTaylorSeries| . |SemiRing|) T) ((|UnivariateTaylorSeries| . |Monoid|) T) ((|UnivariateTaylorSeries| . |Ring|) T) ((|UnivariateTaylorSeries| . |DifferentialDomain|) 277897) ((|UnivariateTaylorSeries| . |Join|) T) ((|UnivariateTaylorSeries| . |Type|) T) ((|UnivariateTaylorSeries| . |DifferentialSpace|) 277834) ((|UnivariateTaylorSeries| . |Eltable|) 277783) ((|UnivariateTaylorSeries| . |PartialDifferentialRing|) 277647) ((|UnivariateTaylorSeries| . |PartialDifferentialDomain|) 277481) ((|UnivariateTaylorSeries| . |PartialDifferentialSpace|) 277345) ((|UnivariateTaylorSeries| . |PowerSeriesCategory|) 277280) ((|UnivariateTaylorSeries| . |Algebra|) 277124) ((|UnivariateTaylorSeries| . |BiModule|) 276943) ((|UnivariateTaylorSeries| . |RightLinearSet|) 276776) ((|UnivariateTaylorSeries| . |RightModule|) 276609) ((|UnivariateTaylorSeries| . |LinearSet|) 276453) ((|UnivariateTaylorSeries| . |Module|) 276297) ((|UnivariateTaylorSeries| . |CharacteristicNonZero|) 276257) ((|UnivariateTaylorSeries| . |CharacteristicZero|) 276220) ((|UnivariateTaylorSeries| . |CommutativeRing|) 276149) ((|UnivariateTaylorSeries| . |Functorial|) 276133) ((|UnivariateTaylorSeries| . |IntegralDomain|) 276100) ((|UnivariateTaylorSeries| . |EntireRing|) 276067) ((|UnivariateTaylorSeries| . |AbelianMonoidRing|) 276028) ((|UnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 275989) ((|UnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 275938) ((|UnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 275887) ((|UnivariateTaylorSeries| . |ElementaryFunctionCategory|) 275836) ((|UnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 275785) ((|UnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 275734) ((|UnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 275683) ((|UnivariateTaylorSeries| . |RadicalCategory|) 275632) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FiniteAbelianMonoidRing|) 275522) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RetractableTo|) 275468) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FullyRetractableTo|) 275414) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Algebra|) 275245) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CoercibleFrom|) 275046) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |LeftModule|) 274903) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |LeftLinearSet|) 274740) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Rng|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SemiRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Monoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Ring|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BiModule|) 274584) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RightLinearSet|) 274441) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RightModule|) 274298) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SetCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CoercibleTo|) 274272) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Type|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Join|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BasicType|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |LinearSet|) 274103) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Module|) 273934) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicNonZero|) 273856) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicZero|) 273781) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CommutativeRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Functorial|) 273727) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |IntegralDomain|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |EntireRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoidRing|) 273617) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesConstructorCategory|) 273596) ((|UnivariatePuiseuxSeriesConstructor| . |Field|) 273572) ((|UnivariatePuiseuxSeriesConstructor| . |UniqueFactorizationDomain|) 273548) ((|UnivariatePuiseuxSeriesConstructor| . |PrincipalIdealDomain|) 273524) ((|UnivariatePuiseuxSeriesConstructor| . |IntegralDomain|) 273463) ((|UnivariatePuiseuxSeriesConstructor| . |CommutativeRing|) 273369) ((|UnivariatePuiseuxSeriesConstructor| . |CoercibleFrom|) 273124) ((|UnivariatePuiseuxSeriesConstructor| . |Module|) 272912) ((|UnivariatePuiseuxSeriesConstructor| . |LinearSet|) 272700) ((|UnivariatePuiseuxSeriesConstructor| . |Algebra|) 272488) ((|UnivariatePuiseuxSeriesConstructor| . |GcdDomain|) 272464) ((|UnivariatePuiseuxSeriesConstructor| . |EuclideanDomain|) 272440) ((|UnivariatePuiseuxSeriesConstructor| . |LeftModule|) 272309) ((|UnivariatePuiseuxSeriesConstructor| . |LeftLinearSet|) 272158) ((|UnivariatePuiseuxSeriesConstructor| . |Rng|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SemiRing|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Monoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Ring|) T) ((|UnivariatePuiseuxSeriesConstructor| . |BiModule|) 271926) ((|UnivariatePuiseuxSeriesConstructor| . |RightLinearSet|) 271708) ((|UnivariatePuiseuxSeriesConstructor| . |RightModule|) 271490) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SetCategory|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CoercibleTo|) 271464) ((|UnivariatePuiseuxSeriesConstructor| . |Type|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Join|) T) ((|UnivariatePuiseuxSeriesConstructor| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |EntireRing|) 271403) ((|UnivariatePuiseuxSeriesConstructor| . |DivisionRing|) 271379) ((|UnivariatePuiseuxSeriesConstructor| . |RadicalCategory|) 271328) ((|UnivariatePuiseuxSeriesConstructor| . |TranscendentalFunctionCategory|) 271277) ((|UnivariatePuiseuxSeriesConstructor| . |TrigonometricFunctionCategory|) 271226) ((|UnivariatePuiseuxSeriesConstructor| . |HyperbolicFunctionCategory|) 271175) ((|UnivariatePuiseuxSeriesConstructor| . |ElementaryFunctionCategory|) 271124) ((|UnivariatePuiseuxSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 271073) ((|UnivariatePuiseuxSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 271022) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePowerSeriesCategory|) 270981) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoidRing|) 270940) ((|UnivariatePuiseuxSeriesConstructor| . |Functorial|) 270924) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicZero|) 270887) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicNonZero|) 270847) ((|UnivariatePuiseuxSeriesConstructor| . |PowerSeriesCategory|) 270780) ((|UnivariatePuiseuxSeriesConstructor| . |PartialDifferentialSpace|) 270642) ((|UnivariatePuiseuxSeriesConstructor| . |PartialDifferentialDomain|) 270502) ((|UnivariatePuiseuxSeriesConstructor| . |PartialDifferentialRing|) 270364) ((|UnivariatePuiseuxSeriesConstructor| . |Eltable|) 270311) ((|UnivariatePuiseuxSeriesConstructor| . |DifferentialSpace|) 270246) ((|UnivariatePuiseuxSeriesConstructor| . |DifferentialDomain|) 270175) ((|UnivariatePuiseuxSeriesConstructor| . |DifferentialRing|) 270110) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesCategory|) 270094) ((|UnivariatePuiseuxSeriesConstructor| . |RetractableTo|) 270078) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 270019) ((|UnivariatePuiseuxSeries| . |Field|) 269995) ((|UnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 269971) ((|UnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 269947) ((|UnivariatePuiseuxSeries| . |IntegralDomain|) 269886) ((|UnivariatePuiseuxSeries| . |CommutativeRing|) 269792) ((|UnivariatePuiseuxSeries| . |CoercibleFrom|) 269433) ((|UnivariatePuiseuxSeries| . |Module|) 269221) ((|UnivariatePuiseuxSeries| . |LinearSet|) 269009) ((|UnivariatePuiseuxSeries| . |Algebra|) 268797) ((|UnivariatePuiseuxSeries| . |GcdDomain|) 268773) ((|UnivariatePuiseuxSeries| . |EuclideanDomain|) 268749) ((|UnivariatePuiseuxSeries| . |LeftModule|) 268618) ((|UnivariatePuiseuxSeries| . |LeftLinearSet|) 268467) ((|UnivariatePuiseuxSeries| . |Rng|) T) ((|UnivariatePuiseuxSeries| . |SemiGroup|) T) ((|UnivariatePuiseuxSeries| . |SemiRing|) T) ((|UnivariatePuiseuxSeries| . |Monoid|) T) ((|UnivariatePuiseuxSeries| . |Ring|) T) ((|UnivariatePuiseuxSeries| . |BiModule|) 268235) ((|UnivariatePuiseuxSeries| . |RightLinearSet|) 268017) ((|UnivariatePuiseuxSeries| . |RightModule|) 267799) ((|UnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeries| . |SetCategory|) T) ((|UnivariatePuiseuxSeries| . |CoercibleTo|) 267773) ((|UnivariatePuiseuxSeries| . |Type|) T) ((|UnivariatePuiseuxSeries| . |Join|) T) ((|UnivariatePuiseuxSeries| . |BasicType|) T) ((|UnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeries| . |EntireRing|) 267712) ((|UnivariatePuiseuxSeries| . |DivisionRing|) 267688) ((|UnivariatePuiseuxSeries| . |RadicalCategory|) 267637) ((|UnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 267586) ((|UnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 267535) ((|UnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 267484) ((|UnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 267433) ((|UnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 267382) ((|UnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 267331) ((|UnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 267290) ((|UnivariatePuiseuxSeries| . |AbelianMonoidRing|) 267249) ((|UnivariatePuiseuxSeries| . |Functorial|) 267233) ((|UnivariatePuiseuxSeries| . |CharacteristicZero|) 267196) ((|UnivariatePuiseuxSeries| . |CharacteristicNonZero|) 267156) ((|UnivariatePuiseuxSeries| . |PowerSeriesCategory|) 267089) ((|UnivariatePuiseuxSeries| . |PartialDifferentialSpace|) 266951) ((|UnivariatePuiseuxSeries| . |PartialDifferentialDomain|) 266783) ((|UnivariatePuiseuxSeries| . |PartialDifferentialRing|) 266645) ((|UnivariatePuiseuxSeries| . |Eltable|) 266592) ((|UnivariatePuiseuxSeries| . |DifferentialSpace|) 266527) ((|UnivariatePuiseuxSeries| . |DifferentialDomain|) 266456) ((|UnivariatePuiseuxSeries| . |DifferentialRing|) 266391) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 266375) ((|UnivariatePuiseuxSeries| . |RetractableTo|) 266271) ((|UnivariatePolynomial| . |UnivariatePolynomialCategory|) 266255) ((|UnivariatePolynomial| . |StepThrough|) 266225) ((|UnivariatePolynomial| . |ConvertibleTo|) NIL) ((|UnivariatePolynomial| . |Evalable|) 266212) ((|UnivariatePolynomial| . |InnerEvalable|) 266141) ((|UnivariatePolynomial| . |FiniteAbelianMonoidRing|) 266102) ((|UnivariatePolynomial| . |RetractableTo|) 265912) ((|UnivariatePolynomial| . |FullyRetractableTo|) 265896) ((|UnivariatePolynomial| . |Algebra|) 265636) ((|UnivariatePolynomial| . |BiModule|) 265356) ((|UnivariatePolynomial| . |RightLinearSet|) 265090) ((|UnivariatePolynomial| . |RightModule|) 264824) ((|UnivariatePolynomial| . |LeftLinearSet|) 264701) ((|UnivariatePolynomial| . |LeftModule|) 264530) ((|UnivariatePolynomial| . |LinearSet|) 264270) ((|UnivariatePolynomial| . |Module|) 264010) ((|UnivariatePolynomial| . |CoercibleFrom|) 263636) ((|UnivariatePolynomial| . |CharacteristicNonZero|) 263596) ((|UnivariatePolynomial| . |CharacteristicZero|) 263559) ((|UnivariatePolynomial| . |Functorial|) 263543) ((|UnivariatePolynomial| . |AbelianMonoidRing|) 263504) ((|UnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 263488) ((|UnivariatePolynomial| . |LinearlyExplicitRingOver|) 263404) ((|UnivariatePolynomial| . |PartialDifferentialRing|) 263302) ((|UnivariatePolynomial| . |PartialDifferentialDomain|) 263138) ((|UnivariatePolynomial| . |PartialDifferentialSpace|) 262978) ((|UnivariatePolynomial| . |PatternMatchable|) NIL) ((|UnivariatePolynomial| . |PolynomialFactorizationExplicit|) 262928) ((|UnivariatePolynomial| . |UniqueFactorizationDomain|) 262878) ((|UnivariatePolynomial| . |PolynomialCategory|) 262813) ((|UnivariatePolynomial| . |PrincipalIdealDomain|) 262789) ((|UnivariatePolynomial| . |IntegralDomain|) 262652) ((|UnivariatePolynomial| . |EntireRing|) 262515) ((|UnivariatePolynomial| . |CommutativeRing|) 262345) ((|UnivariatePolynomial| . |GcdDomain|) 262240) ((|UnivariatePolynomial| . |EuclideanDomain|) 262216) ((|UnivariatePolynomial| . |Eltable|) 262119) ((|UnivariatePolynomial| . |DifferentialRing|) T) ((|UnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|UnivariatePolynomial| . |AbelianSemiGroup|) T) ((|UnivariatePolynomial| . |BasicType|) T) ((|UnivariatePolynomial| . |CoercibleTo|) 262093) ((|UnivariatePolynomial| . |SetCategory|) T) ((|UnivariatePolynomial| . |AbelianMonoid|) T) ((|UnivariatePolynomial| . |AbelianGroup|) T) ((|UnivariatePolynomial| . |Rng|) T) ((|UnivariatePolynomial| . |SemiGroup|) T) ((|UnivariatePolynomial| . |SemiRing|) T) ((|UnivariatePolynomial| . |Monoid|) T) ((|UnivariatePolynomial| . |Ring|) T) ((|UnivariatePolynomial| . |DifferentialDomain|) 262080) ((|UnivariatePolynomial| . |Join|) T) ((|UnivariatePolynomial| . |Type|) T) ((|UnivariatePolynomial| . |DifferentialSpace|) T) ((|UnivariatePolynomial| . |DifferentialSpaceExtension|) 262064) ((|UnivariatePolynomial| . |DifferentialExtension|) 262048) ((|UniversalSegment| . |SegmentCategory|) 262032) ((|UniversalSegment| . |ConvertibleFrom|) 262016) ((|UniversalSegment| . |SetCategory|) 261986) ((|UniversalSegment| . |CoercibleTo|) 261937) ((|UniversalSegment| . |Type|) 261907) ((|UniversalSegment| . |Join|) 261877) ((|UniversalSegment| . |BasicType|) 261847) ((|UniversalSegment| . |SegmentExpansionCategory|) 261792) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesConstructorCategory|) 261771) ((|UnivariateLaurentSeriesConstructor| . |RadicalCategory|) 261720) ((|UnivariateLaurentSeriesConstructor| . |TranscendentalFunctionCategory|) 261669) ((|UnivariateLaurentSeriesConstructor| . |TrigonometricFunctionCategory|) 261618) ((|UnivariateLaurentSeriesConstructor| . |HyperbolicFunctionCategory|) 261567) ((|UnivariateLaurentSeriesConstructor| . |ElementaryFunctionCategory|) 261516) ((|UnivariateLaurentSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 261465) ((|UnivariateLaurentSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 261414) ((|UnivariateLaurentSeriesConstructor| . |UnivariatePowerSeriesCategory|) 261386) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoidRing|) 261358) ((|UnivariateLaurentSeriesConstructor| . |Functorial|) 261312) ((|UnivariateLaurentSeriesConstructor| . |CoercibleFrom|) 260983) ((|UnivariateLaurentSeriesConstructor| . |Module|) 260741) ((|UnivariateLaurentSeriesConstructor| . |LinearSet|) 260499) ((|UnivariateLaurentSeriesConstructor| . |LeftModule|) 260241) ((|UnivariateLaurentSeriesConstructor| . |LeftLinearSet|) 260060) ((|UnivariateLaurentSeriesConstructor| . |RightModule|) 259812) ((|UnivariateLaurentSeriesConstructor| . |RightLinearSet|) 259564) ((|UnivariateLaurentSeriesConstructor| . |BiModule|) 259297) ((|UnivariateLaurentSeriesConstructor| . |Algebra|) 259055) ((|UnivariateLaurentSeriesConstructor| . |PowerSeriesCategory|) 259001) ((|UnivariateLaurentSeriesConstructor| . |Eltable|) 258888) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesCategory|) 258872) ((|UnivariateLaurentSeriesConstructor| . |Rng|) T) ((|UnivariateLaurentSeriesConstructor| . |SemiGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |SemiRing|) T) ((|UnivariateLaurentSeriesConstructor| . |Monoid|) T) ((|UnivariateLaurentSeriesConstructor| . |Ring|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |SetCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |CoercibleTo|) 258846) ((|UnivariateLaurentSeriesConstructor| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |Join|) T) ((|UnivariateLaurentSeriesConstructor| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicNonZero|) 258733) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicZero|) 258558) ((|UnivariateLaurentSeriesConstructor| . |ConvertibleTo|) 258101) ((|UnivariateLaurentSeriesConstructor| . |DifferentialExtension|) 258068) ((|UnivariateLaurentSeriesConstructor| . |PartialDifferentialRing|) 257857) ((|UnivariateLaurentSeriesConstructor| . |PartialDifferentialSpace|) 257564) ((|UnivariateLaurentSeriesConstructor| . |PartialDifferentialDomain|) 257269) ((|UnivariateLaurentSeriesConstructor| . |DifferentialSpaceExtension|) 257236) ((|UnivariateLaurentSeriesConstructor| . |DifferentialSpace|) 257052) ((|UnivariateLaurentSeriesConstructor| . |DifferentialDomain|) 256862) ((|UnivariateLaurentSeriesConstructor| . |DifferentialRing|) 256742) ((|UnivariateLaurentSeriesConstructor| . |Field|) 256718) ((|UnivariateLaurentSeriesConstructor| . |UniqueFactorizationDomain|) 256694) ((|UnivariateLaurentSeriesConstructor| . |PrincipalIdealDomain|) 256670) ((|UnivariateLaurentSeriesConstructor| . |IntegralDomain|) 256609) ((|UnivariateLaurentSeriesConstructor| . |CommutativeRing|) 256515) ((|UnivariateLaurentSeriesConstructor| . |GcdDomain|) 256491) ((|UnivariateLaurentSeriesConstructor| . |EuclideanDomain|) 256467) ((|UnivariateLaurentSeriesConstructor| . |EntireRing|) 256406) ((|UnivariateLaurentSeriesConstructor| . |DivisionRing|) 256382) ((|UnivariateLaurentSeriesConstructor| . |FullyEvalableOver|) 256349) ((|UnivariateLaurentSeriesConstructor| . |InnerEvalable|) 256180) ((|UnivariateLaurentSeriesConstructor| . |Evalable|) 256110) ((|UnivariateLaurentSeriesConstructor| . |FullyLinearlyExplicitRingOver|) 256077) ((|UnivariateLaurentSeriesConstructor| . |LinearlyExplicitRingOver|) 255947) ((|UnivariateLaurentSeriesConstructor| . |FullyPatternMatchable|) 255914) ((|UnivariateLaurentSeriesConstructor| . |PatternMatchable|) 255737) ((|UnivariateLaurentSeriesConstructor| . |OrderedIntegralDomain|) 255668) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianGroup|) 255599) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianMonoid|) 255530) ((|UnivariateLaurentSeriesConstructor| . |OrderedSet|) 255399) ((|UnivariateLaurentSeriesConstructor| . |OrderedType|) 255268) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianSemiGroup|) 255199) ((|UnivariateLaurentSeriesConstructor| . |OrderedCancellationAbelianMonoid|) 255130) ((|UnivariateLaurentSeriesConstructor| . |OrderedRing|) 255061) ((|UnivariateLaurentSeriesConstructor| . |Patternable|) 255028) ((|UnivariateLaurentSeriesConstructor| . |PolynomialFactorizationExplicit|) 254949) ((|UnivariateLaurentSeriesConstructor| . |RealConstant|) 254889) ((|UnivariateLaurentSeriesConstructor| . |RetractableTo|) 254604) ((|UnivariateLaurentSeriesConstructor| . |StepThrough|) 254545) ((|UnivariateLaurentSeriesConstructor| . |QuotientFieldCategory|) 254512) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 254454) ((|UnivariateLaurentSeries| . |RadicalCategory|) 254403) ((|UnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 254352) ((|UnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 254301) ((|UnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 254250) ((|UnivariateLaurentSeries| . |ElementaryFunctionCategory|) 254199) ((|UnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 254148) ((|UnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 254097) ((|UnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 254069) ((|UnivariateLaurentSeries| . |AbelianMonoidRing|) 254041) ((|UnivariateLaurentSeries| . |Functorial|) 253958) ((|UnivariateLaurentSeries| . |CoercibleFrom|) 253676) ((|UnivariateLaurentSeries| . |Module|) 253397) ((|UnivariateLaurentSeries| . |LinearSet|) 253118) ((|UnivariateLaurentSeries| . |LeftModule|) 252920) ((|UnivariateLaurentSeries| . |LeftLinearSet|) 252702) ((|UnivariateLaurentSeries| . |RightModule|) 252417) ((|UnivariateLaurentSeries| . |RightLinearSet|) 252132) ((|UnivariateLaurentSeries| . |BiModule|) 251826) ((|UnivariateLaurentSeries| . |Algebra|) 251547) ((|UnivariateLaurentSeries| . |PowerSeriesCategory|) 251493) ((|UnivariateLaurentSeries| . |Eltable|) 251232) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 251216) ((|UnivariateLaurentSeries| . |Rng|) T) ((|UnivariateLaurentSeries| . |SemiGroup|) T) ((|UnivariateLaurentSeries| . |SemiRing|) T) ((|UnivariateLaurentSeries| . |Monoid|) T) ((|UnivariateLaurentSeries| . |Ring|) T) ((|UnivariateLaurentSeries| . |AbelianGroup|) T) ((|UnivariateLaurentSeries| . |AbelianMonoid|) T) ((|UnivariateLaurentSeries| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |CoercibleTo|) 251190) ((|UnivariateLaurentSeries| . |Type|) T) ((|UnivariateLaurentSeries| . |Join|) T) ((|UnivariateLaurentSeries| . |BasicType|) T) ((|UnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeries| . |CharacteristicNonZero|) 251040) ((|UnivariateLaurentSeries| . |CharacteristicZero|) 250896) ((|UnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|UnivariateLaurentSeries| . |DifferentialExtension|) 250826) ((|UnivariateLaurentSeries| . |PartialDifferentialRing|) 250578) ((|UnivariateLaurentSeries| . |PartialDifferentialSpace|) 250211) ((|UnivariateLaurentSeries| . |PartialDifferentialDomain|) 249814) ((|UnivariateLaurentSeries| . |DifferentialSpaceExtension|) 249744) ((|UnivariateLaurentSeries| . |DifferentialSpace|) 249486) ((|UnivariateLaurentSeries| . |DifferentialDomain|) 249222) ((|UnivariateLaurentSeries| . |DifferentialRing|) 249065) ((|UnivariateLaurentSeries| . |Field|) 249041) ((|UnivariateLaurentSeries| . |UniqueFactorizationDomain|) 249017) ((|UnivariateLaurentSeries| . |PrincipalIdealDomain|) 248993) ((|UnivariateLaurentSeries| . |IntegralDomain|) 248932) ((|UnivariateLaurentSeries| . |CommutativeRing|) 248838) ((|UnivariateLaurentSeries| . |GcdDomain|) 248814) ((|UnivariateLaurentSeries| . |EuclideanDomain|) 248790) ((|UnivariateLaurentSeries| . |EntireRing|) 248729) ((|UnivariateLaurentSeries| . |DivisionRing|) 248705) ((|UnivariateLaurentSeries| . |FullyEvalableOver|) 248635) ((|UnivariateLaurentSeries| . |InnerEvalable|) 248280) ((|UnivariateLaurentSeries| . |Evalable|) 248099) ((|UnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 248029) ((|UnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 247959) ((|UnivariateLaurentSeries| . |FullyPatternMatchable|) 247889) ((|UnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|UnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|UnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|UnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|UnivariateLaurentSeries| . |OrderedSet|) NIL) ((|UnivariateLaurentSeries| . |OrderedType|) NIL) ((|UnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|UnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|UnivariateLaurentSeries| . |OrderedRing|) NIL) ((|UnivariateLaurentSeries| . |Patternable|) 247819) ((|UnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|UnivariateLaurentSeries| . |RealConstant|) NIL) ((|UnivariateLaurentSeries| . |RetractableTo|) 247766) ((|UnivariateLaurentSeries| . |StepThrough|) NIL) ((|UnivariateLaurentSeries| . |QuotientFieldCategory|) 247696) ((|UInt8| . |OrderedFinite|) T) ((|UInt8| . |OrderedType|) T) ((|UInt8| . |OrderedSet|) T) ((|UInt8| . |SetCategory|) T) ((|UInt8| . |CoercibleTo|) 247670) ((|UInt8| . |Type|) T) ((|UInt8| . |Join|) T) ((|UInt8| . |BasicType|) T) ((|UInt8| . |Finite|) T) ((|UInt8| . |Logic|) T) ((|UInt64| . |OrderedFinite|) T) ((|UInt64| . |OrderedType|) T) ((|UInt64| . |OrderedSet|) T) ((|UInt64| . |SetCategory|) T) ((|UInt64| . |CoercibleTo|) 247644) ((|UInt64| . |Type|) T) ((|UInt64| . |Join|) T) ((|UInt64| . |BasicType|) T) ((|UInt64| . |Finite|) T) ((|UInt64| . |Logic|) T) ((|UInt32| . |OrderedFinite|) T) ((|UInt32| . |OrderedType|) T) ((|UInt32| . |OrderedSet|) T) ((|UInt32| . |SetCategory|) T) ((|UInt32| . |CoercibleTo|) 247618) ((|UInt32| . |Type|) T) ((|UInt32| . |Join|) T) ((|UInt32| . |BasicType|) T) ((|UInt32| . |Finite|) T) ((|UInt32| . |Logic|) T) ((|UInt16| . |OrderedFinite|) T) ((|UInt16| . |OrderedType|) T) ((|UInt16| . |OrderedSet|) T) ((|UInt16| . |SetCategory|) T) ((|UInt16| . |CoercibleTo|) 247592) ((|UInt16| . |Type|) T) ((|UInt16| . |Join|) T) ((|UInt16| . |BasicType|) T) ((|UInt16| . |Finite|) T) ((|UInt16| . |Logic|) T) ((|TypeAst| . |SpadSyntaxCategory|) T) ((|TypeAst| . |HomotopicTo|) 247570) ((|TypeAst| . |CoercibleTo|) 247525) ((|TypeAst| . |CoercibleFrom|) 247503) ((|TypeAst| . |SetCategory|) T) ((|TypeAst| . |Type|) T) ((|TypeAst| . |Join|) T) ((|TypeAst| . |BasicType|) T) ((|TypeAst| . |AbstractSyntaxCategory|) T) ((|Tuple| . |HomotopicTo|) 247468) ((|Tuple| . |CoercibleTo|) 247378) ((|Tuple| . |CoercibleFrom|) 247343) ((|Tuple| . |SetCategory|) 247313) ((|Tuple| . |Type|) 247283) ((|Tuple| . |Join|) 247253) ((|Tuple| . |BasicType|) 247223) ((|TaylorSeries| . |MultivariateTaylorSeriesCategory|) 247196) ((|TaylorSeries| . |ArcHyperbolicFunctionCategory|) 247145) ((|TaylorSeries| . |ArcTrigonometricFunctionCategory|) 247094) ((|TaylorSeries| . |ElementaryFunctionCategory|) 247043) ((|TaylorSeries| . |HyperbolicFunctionCategory|) 246992) ((|TaylorSeries| . |TrigonometricFunctionCategory|) 246941) ((|TaylorSeries| . |TranscendentalFunctionCategory|) 246890) ((|TaylorSeries| . |RadicalCategory|) 246839) ((|TaylorSeries| . |AbelianMonoidRing|) 246791) ((|TaylorSeries| . |Algebra|) 246635) ((|TaylorSeries| . |LinearSet|) 246479) ((|TaylorSeries| . |Module|) 246323) ((|TaylorSeries| . |CoercibleFrom|) 246147) ((|TaylorSeries| . |EntireRing|) 246114) ((|TaylorSeries| . |IntegralDomain|) 246081) ((|TaylorSeries| . |Functorial|) 246065) ((|TaylorSeries| . |BiModule|) 245884) ((|TaylorSeries| . |RightLinearSet|) 245717) ((|TaylorSeries| . |RightModule|) 245550) ((|TaylorSeries| . |CommutativeRing|) 245479) ((|TaylorSeries| . |CharacteristicZero|) 245442) ((|TaylorSeries| . |CharacteristicNonZero|) 245402) ((|TaylorSeries| . |LeftModule|) 245299) ((|TaylorSeries| . |LeftLinearSet|) 245176) ((|TaylorSeries| . |PowerSeriesCategory|) 245121) ((|TaylorSeries| . |PartialDifferentialSpace|) 245099) ((|TaylorSeries| . |Type|) T) ((|TaylorSeries| . |Join|) T) ((|TaylorSeries| . |PartialDifferentialDomain|) 245075) ((|TaylorSeries| . |Ring|) T) ((|TaylorSeries| . |Monoid|) T) ((|TaylorSeries| . |SemiRing|) T) ((|TaylorSeries| . |SemiGroup|) T) ((|TaylorSeries| . |Rng|) T) ((|TaylorSeries| . |AbelianGroup|) T) ((|TaylorSeries| . |AbelianMonoid|) T) ((|TaylorSeries| . |SetCategory|) T) ((|TaylorSeries| . |CoercibleTo|) 245049) ((|TaylorSeries| . |BasicType|) T) ((|TaylorSeries| . |AbelianSemiGroup|) T) ((|TaylorSeries| . |CancellationAbelianMonoid|) T) ((|TaylorSeries| . |PartialDifferentialRing|) 245027) ((|TaylorSeries| . |InnerEvalable|) 244991) ((|TaylorSeries| . |Evalable|) 244978) ((|Tree| . |RecursiveAggregate|) 244962) ((|Tree| . |Aggregate|) T) ((|Tree| . |Join|) T) ((|Tree| . |Type|) T) ((|Tree| . |BasicType|) 244900) ((|Tree| . |CoercibleTo|) 244802) ((|Tree| . |Evalable|) 244726) ((|Tree| . |InnerEvalable|) 244645) ((|Tree| . |Functorial|) 244629) ((|Tree| . |SetCategory|) 244599) ((|Tree| . |HomogeneousAggregate|) 244583) ((|Tree| . |FiniteAggregate|) 244567) ((|Tree| . |ShallowlyMutableAggregate|) 244551) ((|TextFile| . |FileCategory|) 244516) ((|TextFile| . |BasicType|) T) ((|TextFile| . |Join|) T) ((|TextFile| . |Type|) T) ((|TextFile| . |CoercibleTo|) 244490) ((|TextFile| . |SetCategory|) T) ((|TexFormat| . |SetCategory|) T) ((|TexFormat| . |CoercibleTo|) 244464) ((|TexFormat| . |Type|) T) ((|TexFormat| . |Join|) T) ((|TexFormat| . |BasicType|) T) ((|TexFormat| . |CoercibleFrom|) 244438) ((|TermAlgebraOperator| . |OperatorCategory|) 244422) ((|TermAlgebraOperator| . |BasicType|) T) ((|TermAlgebraOperator| . |Join|) T) ((|TermAlgebraOperator| . |Type|) T) ((|TermAlgebraOperator| . |CoercibleTo|) 244396) ((|TermAlgebraOperator| . |SetCategory|) T) ((|Table| . |TableAggregate|) 244375) ((|Table| . |Dictionary|) 244317) ((|Table| . |BagAggregate|) 244259) ((|Table| . |ShallowlyMutableAggregate|) 244188) ((|Table| . |Collection|) 244130) ((|Table| . |ConvertibleTo|) NIL) ((|Table| . |DictionaryOperations|) 244072) ((|Table| . |IndexedAggregate|) 244051) ((|Table| . |Evalable|) 243811) ((|Table| . |InnerEvalable|) 243559) ((|Table| . |Functorial|) 243488) ((|Table| . |HomogeneousAggregate|) 243417) ((|Table| . |Eltable|) 243396) ((|Table| . |EltableAggregate|) 243375) ((|Table| . |KeyedDictionary|) 243354) ((|Table| . |SetCategory|) T) ((|Table| . |CoercibleTo|) 243328) ((|Table| . |BasicType|) T) ((|Table| . |Type|) T) ((|Table| . |Join|) T) ((|Table| . |Aggregate|) T) ((|Table| . |FiniteAggregate|) 243270) ((|SystemPointer| . |SetCategory|) T) ((|SystemPointer| . |CoercibleTo|) 243244) ((|SystemPointer| . |Type|) T) ((|SystemPointer| . |Join|) T) ((|SystemPointer| . |BasicType|) T) ((|SystemNonNegativeInteger| . |OrderedFinite|) T) ((|SystemNonNegativeInteger| . |OrderedType|) T) ((|SystemNonNegativeInteger| . |OrderedSet|) T) ((|SystemNonNegativeInteger| . |SetCategory|) T) ((|SystemNonNegativeInteger| . |CoercibleTo|) 243218) ((|SystemNonNegativeInteger| . |Type|) T) ((|SystemNonNegativeInteger| . |Join|) T) ((|SystemNonNegativeInteger| . |BasicType|) T) ((|SystemNonNegativeInteger| . |Finite|) T) ((|SystemNonNegativeInteger| . |Logic|) T) ((|SystemInteger| . |OrderedFinite|) T) ((|SystemInteger| . |OrderedType|) T) ((|SystemInteger| . |OrderedSet|) T) ((|SystemInteger| . |SetCategory|) T) ((|SystemInteger| . |CoercibleTo|) 243192) ((|SystemInteger| . |Type|) T) ((|SystemInteger| . |Join|) T) ((|SystemInteger| . |BasicType|) T) ((|SystemInteger| . |Finite|) T) ((|Syntax| . |UnionType|) T) ((|Syntax| . |SetCategory|) T) ((|Syntax| . |CoercibleTo|) 243144) ((|Syntax| . |Type|) T) ((|Syntax| . |Join|) T) ((|Syntax| . |BasicType|) T) ((|Syntax| . |RetractableTo|) 243055) ((|Syntax| . |CoercibleFrom|) 242966) ((|SymbolTable| . |CoercibleTo|) 242940) ((|TheSymbolTable| . |CoercibleTo|) 242914) ((|SymmetricPolynomial| . |FiniteAbelianMonoidRing|) 242884) ((|SymmetricPolynomial| . |RetractableTo|) 242728) ((|SymmetricPolynomial| . |FullyRetractableTo|) 242712) ((|SymmetricPolynomial| . |Algebra|) 242556) ((|SymmetricPolynomial| . |CoercibleFrom|) 242346) ((|SymmetricPolynomial| . |LeftModule|) 242243) ((|SymmetricPolynomial| . |LeftLinearSet|) 242120) ((|SymmetricPolynomial| . |Rng|) T) ((|SymmetricPolynomial| . |SemiGroup|) T) ((|SymmetricPolynomial| . |SemiRing|) T) ((|SymmetricPolynomial| . |Monoid|) T) ((|SymmetricPolynomial| . |Ring|) T) ((|SymmetricPolynomial| . |BiModule|) 241939) ((|SymmetricPolynomial| . |RightLinearSet|) 241772) ((|SymmetricPolynomial| . |RightModule|) 241605) ((|SymmetricPolynomial| . |AbelianGroup|) T) ((|SymmetricPolynomial| . |AbelianMonoid|) T) ((|SymmetricPolynomial| . |SetCategory|) T) ((|SymmetricPolynomial| . |CoercibleTo|) 241579) ((|SymmetricPolynomial| . |Type|) T) ((|SymmetricPolynomial| . |Join|) T) ((|SymmetricPolynomial| . |BasicType|) T) ((|SymmetricPolynomial| . |AbelianSemiGroup|) T) ((|SymmetricPolynomial| . |CancellationAbelianMonoid|) T) ((|SymmetricPolynomial| . |LinearSet|) 241423) ((|SymmetricPolynomial| . |Module|) 241267) ((|SymmetricPolynomial| . |CharacteristicNonZero|) 241227) ((|SymmetricPolynomial| . |CharacteristicZero|) 241190) ((|SymmetricPolynomial| . |CommutativeRing|) 241119) ((|SymmetricPolynomial| . |Functorial|) 241103) ((|SymmetricPolynomial| . |IntegralDomain|) 241070) ((|SymmetricPolynomial| . |EntireRing|) 241037) ((|SymmetricPolynomial| . |AbelianMonoidRing|) 241007) ((|Symbol| . |OrderedSet|) T) ((|Symbol| . |CoercibleTo|) 240981) ((|Symbol| . |SetCategory|) T) ((|Symbol| . |BasicType|) T) ((|Symbol| . |Join|) T) ((|Symbol| . |Type|) T) ((|Symbol| . |OrderedType|) T) ((|Symbol| . |ConvertibleTo|) 240875) ((|Symbol| . |CoercibleFrom|) 240830) ((|Symbol| . |RetractableTo|) 240804) ((|Symbol| . |PatternMatchable|) 240763) ((|SparseUnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 240747) ((|SparseUnivariateTaylorSeries| . |DifferentialRing|) 240684) ((|SparseUnivariateTaylorSeries| . |CoercibleFrom|) 240508) ((|SparseUnivariateTaylorSeries| . |LeftModule|) 240405) ((|SparseUnivariateTaylorSeries| . |LeftLinearSet|) 240282) ((|SparseUnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|SparseUnivariateTaylorSeries| . |BasicType|) T) ((|SparseUnivariateTaylorSeries| . |CoercibleTo|) 240256) ((|SparseUnivariateTaylorSeries| . |SetCategory|) T) ((|SparseUnivariateTaylorSeries| . |AbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |AbelianGroup|) T) ((|SparseUnivariateTaylorSeries| . |Rng|) T) ((|SparseUnivariateTaylorSeries| . |SemiGroup|) T) ((|SparseUnivariateTaylorSeries| . |SemiRing|) T) ((|SparseUnivariateTaylorSeries| . |Monoid|) T) ((|SparseUnivariateTaylorSeries| . |Ring|) T) ((|SparseUnivariateTaylorSeries| . |DifferentialDomain|) 240187) ((|SparseUnivariateTaylorSeries| . |Join|) T) ((|SparseUnivariateTaylorSeries| . |Type|) T) ((|SparseUnivariateTaylorSeries| . |DifferentialSpace|) 240124) ((|SparseUnivariateTaylorSeries| . |Eltable|) 240073) ((|SparseUnivariateTaylorSeries| . |PartialDifferentialRing|) 239937) ((|SparseUnivariateTaylorSeries| . |PartialDifferentialDomain|) 239771) ((|SparseUnivariateTaylorSeries| . |PartialDifferentialSpace|) 239635) ((|SparseUnivariateTaylorSeries| . |PowerSeriesCategory|) 239570) ((|SparseUnivariateTaylorSeries| . |Algebra|) 239414) ((|SparseUnivariateTaylorSeries| . |BiModule|) 239233) ((|SparseUnivariateTaylorSeries| . |RightLinearSet|) 239066) ((|SparseUnivariateTaylorSeries| . |RightModule|) 238899) ((|SparseUnivariateTaylorSeries| . |LinearSet|) 238743) ((|SparseUnivariateTaylorSeries| . |Module|) 238587) ((|SparseUnivariateTaylorSeries| . |CharacteristicNonZero|) 238547) ((|SparseUnivariateTaylorSeries| . |CharacteristicZero|) 238510) ((|SparseUnivariateTaylorSeries| . |CommutativeRing|) 238439) ((|SparseUnivariateTaylorSeries| . |Functorial|) 238423) ((|SparseUnivariateTaylorSeries| . |IntegralDomain|) 238390) ((|SparseUnivariateTaylorSeries| . |EntireRing|) 238357) ((|SparseUnivariateTaylorSeries| . |AbelianMonoidRing|) 238318) ((|SparseUnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 238279) ((|SparseUnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 238228) ((|SparseUnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 238177) ((|SparseUnivariateTaylorSeries| . |ElementaryFunctionCategory|) 238126) ((|SparseUnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 238075) ((|SparseUnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 238024) ((|SparseUnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 237973) ((|SparseUnivariateTaylorSeries| . |RadicalCategory|) 237922) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 237857) ((|SparseUnivariatePuiseuxSeries| . |Field|) 237833) ((|SparseUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 237809) ((|SparseUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 237785) ((|SparseUnivariatePuiseuxSeries| . |IntegralDomain|) 237724) ((|SparseUnivariatePuiseuxSeries| . |CommutativeRing|) 237630) ((|SparseUnivariatePuiseuxSeries| . |CoercibleFrom|) 237259) ((|SparseUnivariatePuiseuxSeries| . |Module|) 237047) ((|SparseUnivariatePuiseuxSeries| . |LinearSet|) 236835) ((|SparseUnivariatePuiseuxSeries| . |Algebra|) 236623) ((|SparseUnivariatePuiseuxSeries| . |GcdDomain|) 236599) ((|SparseUnivariatePuiseuxSeries| . |EuclideanDomain|) 236575) ((|SparseUnivariatePuiseuxSeries| . |LeftModule|) 236444) ((|SparseUnivariatePuiseuxSeries| . |LeftLinearSet|) 236293) ((|SparseUnivariatePuiseuxSeries| . |Rng|) T) ((|SparseUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |SemiRing|) T) ((|SparseUnivariatePuiseuxSeries| . |Monoid|) T) ((|SparseUnivariatePuiseuxSeries| . |Ring|) T) ((|SparseUnivariatePuiseuxSeries| . |BiModule|) 236061) ((|SparseUnivariatePuiseuxSeries| . |RightLinearSet|) 235843) ((|SparseUnivariatePuiseuxSeries| . |RightModule|) 235625) ((|SparseUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |SetCategory|) T) ((|SparseUnivariatePuiseuxSeries| . |CoercibleTo|) 235599) ((|SparseUnivariatePuiseuxSeries| . |Type|) T) ((|SparseUnivariatePuiseuxSeries| . |Join|) T) ((|SparseUnivariatePuiseuxSeries| . |BasicType|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |EntireRing|) 235538) ((|SparseUnivariatePuiseuxSeries| . |DivisionRing|) 235514) ((|SparseUnivariatePuiseuxSeries| . |RadicalCategory|) 235463) ((|SparseUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 235412) ((|SparseUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 235361) ((|SparseUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 235310) ((|SparseUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 235259) ((|SparseUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 235208) ((|SparseUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 235157) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 235116) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 235075) ((|SparseUnivariatePuiseuxSeries| . |Functorial|) 235059) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicZero|) 235022) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 234982) ((|SparseUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 234915) ((|SparseUnivariatePuiseuxSeries| . |PartialDifferentialSpace|) 234777) ((|SparseUnivariatePuiseuxSeries| . |PartialDifferentialDomain|) 234609) ((|SparseUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 234471) ((|SparseUnivariatePuiseuxSeries| . |Eltable|) 234418) ((|SparseUnivariatePuiseuxSeries| . |DifferentialSpace|) 234353) ((|SparseUnivariatePuiseuxSeries| . |DifferentialDomain|) 234282) ((|SparseUnivariatePuiseuxSeries| . |DifferentialRing|) 234217) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 234201) ((|SparseUnivariatePuiseuxSeries| . |RetractableTo|) 234085) ((|SparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 234069) ((|SparseUnivariatePolynomial| . |StepThrough|) 234039) ((|SparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|SparseUnivariatePolynomial| . |Evalable|) 234026) ((|SparseUnivariatePolynomial| . |InnerEvalable|) 233955) ((|SparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 233916) ((|SparseUnivariatePolynomial| . |RetractableTo|) 233726) ((|SparseUnivariatePolynomial| . |FullyRetractableTo|) 233710) ((|SparseUnivariatePolynomial| . |Algebra|) 233450) ((|SparseUnivariatePolynomial| . |BiModule|) 233170) ((|SparseUnivariatePolynomial| . |RightLinearSet|) 232904) ((|SparseUnivariatePolynomial| . |RightModule|) 232638) ((|SparseUnivariatePolynomial| . |LeftLinearSet|) 232515) ((|SparseUnivariatePolynomial| . |LeftModule|) 232344) ((|SparseUnivariatePolynomial| . |LinearSet|) 232084) ((|SparseUnivariatePolynomial| . |Module|) 231824) ((|SparseUnivariatePolynomial| . |CoercibleFrom|) 231476) ((|SparseUnivariatePolynomial| . |CharacteristicNonZero|) 231436) ((|SparseUnivariatePolynomial| . |CharacteristicZero|) 231399) ((|SparseUnivariatePolynomial| . |Functorial|) 231383) ((|SparseUnivariatePolynomial| . |AbelianMonoidRing|) 231344) ((|SparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 231328) ((|SparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 231244) ((|SparseUnivariatePolynomial| . |PartialDifferentialRing|) 231142) ((|SparseUnivariatePolynomial| . |PartialDifferentialDomain|) 230978) ((|SparseUnivariatePolynomial| . |PartialDifferentialSpace|) 230818) ((|SparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|SparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 230768) ((|SparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 230718) ((|SparseUnivariatePolynomial| . |PolynomialCategory|) 230653) ((|SparseUnivariatePolynomial| . |PrincipalIdealDomain|) 230629) ((|SparseUnivariatePolynomial| . |IntegralDomain|) 230492) ((|SparseUnivariatePolynomial| . |EntireRing|) 230355) ((|SparseUnivariatePolynomial| . |CommutativeRing|) 230185) ((|SparseUnivariatePolynomial| . |GcdDomain|) 230080) ((|SparseUnivariatePolynomial| . |EuclideanDomain|) 230056) ((|SparseUnivariatePolynomial| . |Eltable|) 229959) ((|SparseUnivariatePolynomial| . |DifferentialRing|) T) ((|SparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseUnivariatePolynomial| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |CoercibleTo|) 229933) ((|SparseUnivariatePolynomial| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |AbelianGroup|) T) ((|SparseUnivariatePolynomial| . |Rng|) T) ((|SparseUnivariatePolynomial| . |SemiGroup|) T) ((|SparseUnivariatePolynomial| . |SemiRing|) T) ((|SparseUnivariatePolynomial| . |Monoid|) T) ((|SparseUnivariatePolynomial| . |Ring|) T) ((|SparseUnivariatePolynomial| . |DifferentialDomain|) 229920) ((|SparseUnivariatePolynomial| . |Join|) T) ((|SparseUnivariatePolynomial| . |Type|) T) ((|SparseUnivariatePolynomial| . |DifferentialSpace|) T) ((|SparseUnivariatePolynomial| . |DifferentialSpaceExtension|) 229904) ((|SparseUnivariatePolynomial| . |DifferentialExtension|) 229888) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 229824) ((|SparseUnivariateLaurentSeries| . |RadicalCategory|) 229773) ((|SparseUnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 229722) ((|SparseUnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 229671) ((|SparseUnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 229620) ((|SparseUnivariateLaurentSeries| . |ElementaryFunctionCategory|) 229569) ((|SparseUnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 229518) ((|SparseUnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 229467) ((|SparseUnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 229439) ((|SparseUnivariateLaurentSeries| . |AbelianMonoidRing|) 229411) ((|SparseUnivariateLaurentSeries| . |Functorial|) 229322) ((|SparseUnivariateLaurentSeries| . |CoercibleFrom|) 229034) ((|SparseUnivariateLaurentSeries| . |Module|) 228749) ((|SparseUnivariateLaurentSeries| . |LinearSet|) 228464) ((|SparseUnivariateLaurentSeries| . |LeftModule|) 228260) ((|SparseUnivariateLaurentSeries| . |LeftLinearSet|) 228036) ((|SparseUnivariateLaurentSeries| . |RightModule|) 227745) ((|SparseUnivariateLaurentSeries| . |RightLinearSet|) 227454) ((|SparseUnivariateLaurentSeries| . |BiModule|) 227142) ((|SparseUnivariateLaurentSeries| . |Algebra|) 226857) ((|SparseUnivariateLaurentSeries| . |PowerSeriesCategory|) 226803) ((|SparseUnivariateLaurentSeries| . |Eltable|) 226518) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 226502) ((|SparseUnivariateLaurentSeries| . |Rng|) T) ((|SparseUnivariateLaurentSeries| . |SemiGroup|) T) ((|SparseUnivariateLaurentSeries| . |SemiRing|) T) ((|SparseUnivariateLaurentSeries| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |Ring|) T) ((|SparseUnivariateLaurentSeries| . |AbelianGroup|) T) ((|SparseUnivariateLaurentSeries| . |AbelianMonoid|) T) ((|SparseUnivariateLaurentSeries| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |CoercibleTo|) 226476) ((|SparseUnivariateLaurentSeries| . |Type|) T) ((|SparseUnivariateLaurentSeries| . |Join|) T) ((|SparseUnivariateLaurentSeries| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|SparseUnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateLaurentSeries| . |CharacteristicNonZero|) 226320) ((|SparseUnivariateLaurentSeries| . |CharacteristicZero|) 226170) ((|SparseUnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|SparseUnivariateLaurentSeries| . |DifferentialExtension|) 226094) ((|SparseUnivariateLaurentSeries| . |PartialDifferentialRing|) 225840) ((|SparseUnivariateLaurentSeries| . |PartialDifferentialSpace|) 225461) ((|SparseUnivariateLaurentSeries| . |PartialDifferentialDomain|) 225052) ((|SparseUnivariateLaurentSeries| . |DifferentialSpaceExtension|) 224976) ((|SparseUnivariateLaurentSeries| . |DifferentialSpace|) 224706) ((|SparseUnivariateLaurentSeries| . |DifferentialDomain|) 224430) ((|SparseUnivariateLaurentSeries| . |DifferentialRing|) 224267) ((|SparseUnivariateLaurentSeries| . |Field|) 224243) ((|SparseUnivariateLaurentSeries| . |UniqueFactorizationDomain|) 224219) ((|SparseUnivariateLaurentSeries| . |PrincipalIdealDomain|) 224195) ((|SparseUnivariateLaurentSeries| . |IntegralDomain|) 224134) ((|SparseUnivariateLaurentSeries| . |CommutativeRing|) 224040) ((|SparseUnivariateLaurentSeries| . |GcdDomain|) 224016) ((|SparseUnivariateLaurentSeries| . |EuclideanDomain|) 223992) ((|SparseUnivariateLaurentSeries| . |EntireRing|) 223931) ((|SparseUnivariateLaurentSeries| . |DivisionRing|) 223907) ((|SparseUnivariateLaurentSeries| . |FullyEvalableOver|) 223831) ((|SparseUnivariateLaurentSeries| . |InnerEvalable|) 223446) ((|SparseUnivariateLaurentSeries| . |Evalable|) 223247) ((|SparseUnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 223171) ((|SparseUnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 223095) ((|SparseUnivariateLaurentSeries| . |FullyPatternMatchable|) 223019) ((|SparseUnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedSet|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedType|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|SparseUnivariateLaurentSeries| . |OrderedRing|) NIL) ((|SparseUnivariateLaurentSeries| . |Patternable|) 222943) ((|SparseUnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|SparseUnivariateLaurentSeries| . |RealConstant|) NIL) ((|SparseUnivariateLaurentSeries| . |RetractableTo|) 222884) ((|SparseUnivariateLaurentSeries| . |StepThrough|) NIL) ((|SparseUnivariateLaurentSeries| . |QuotientFieldCategory|) 222808) ((|SuchThatAst| . |SpadSyntaxCategory|) T) ((|SuchThatAst| . |HomotopicTo|) 222786) ((|SuchThatAst| . |CoercibleTo|) 222741) ((|SuchThatAst| . |CoercibleFrom|) 222719) ((|SuchThatAst| . |SetCategory|) T) ((|SuchThatAst| . |Type|) T) ((|SuchThatAst| . |Join|) T) ((|SuchThatAst| . |BasicType|) T) ((|SuchThatAst| . |AbstractSyntaxCategory|) T) ((|SuchThat| . |SetCategory|) T) ((|SuchThat| . |CoercibleTo|) 222693) ((|SuchThat| . |Type|) T) ((|SuchThat| . |Join|) T) ((|SuchThat| . |BasicType|) T) ((|SubSpace| . |SetCategory|) T) ((|SubSpace| . |CoercibleTo|) 222667) ((|SubSpace| . |Type|) T) ((|SubSpace| . |Join|) T) ((|SubSpace| . |BasicType|) T) ((|StringTable| . |TableAggregate|) 222640) ((|StringTable| . |Dictionary|) 222576) ((|StringTable| . |BagAggregate|) 222512) ((|StringTable| . |ShallowlyMutableAggregate|) 222435) ((|StringTable| . |Collection|) 222371) ((|StringTable| . |ConvertibleTo|) NIL) ((|StringTable| . |DictionaryOperations|) 222307) ((|StringTable| . |IndexedAggregate|) 222280) ((|StringTable| . |Evalable|) 222022) ((|StringTable| . |InnerEvalable|) 221752) ((|StringTable| . |Functorial|) 221675) ((|StringTable| . |HomogeneousAggregate|) 221598) ((|StringTable| . |Eltable|) 221571) ((|StringTable| . |EltableAggregate|) 221544) ((|StringTable| . |KeyedDictionary|) 221517) ((|StringTable| . |SetCategory|) T) ((|StringTable| . |CoercibleTo|) 221491) ((|StringTable| . |BasicType|) T) ((|StringTable| . |Type|) T) ((|StringTable| . |Join|) T) ((|StringTable| . |Aggregate|) T) ((|StringTable| . |FiniteAggregate|) 221427) ((|String| . |StringAggregate|) T) ((|String| . |FiniteLinearAggregate|) 221402) ((|String| . |OrderedType|) T) ((|String| . |OrderedSet|) T) ((|String| . |Collection|) 221377) ((|String| . |ConvertibleTo|) NIL) ((|String| . |Eltable|) 221297) ((|String| . |IndexedAggregate|) 221260) ((|String| . |EltableAggregate|) 221223) ((|String| . |LinearAggregate|) 221198) ((|String| . |HomogeneousAggregate|) 221173) ((|String| . |SetCategory|) T) ((|String| . |Functorial|) 221148) ((|String| . |InnerEvalable|) NIL) ((|String| . |Evalable|) NIL) ((|String| . |CoercibleTo|) 221122) ((|String| . |BasicType|) T) ((|String| . |Type|) T) ((|String| . |Join|) T) ((|String| . |Aggregate|) T) ((|String| . |FiniteAggregate|) 221097) ((|String| . |ShallowlyMutableAggregate|) 221072) ((|String| . |OneDimensionalArrayAggregate|) 221047) ((|Stream| . |LazyStreamAggregate|) 221031) ((|Stream| . |LinearAggregate|) 221015) ((|Stream| . |EltableAggregate|) 220987) ((|Stream| . |Eltable|) 220916) ((|Stream| . |IndexedAggregate|) 220888) ((|Stream| . |ConvertibleTo|) 220824) ((|Stream| . |HomogeneousAggregate|) 220808) ((|Stream| . |SetCategory|) 220778) ((|Stream| . |Functorial|) 220762) ((|Stream| . |InnerEvalable|) 220681) ((|Stream| . |Evalable|) 220605) ((|Stream| . |CoercibleTo|) 220507) ((|Stream| . |BasicType|) 220445) ((|Stream| . |Type|) T) ((|Stream| . |Join|) T) ((|Stream| . |Aggregate|) T) ((|Stream| . |Collection|) 220429) ((|Stream| . |UnaryRecursiveAggregate|) 220413) ((|Stream| . |RecursiveAggregate|) 220397) ((|Stream| . |StreamAggregate|) 220381) ((|Stream| . |CoercibleFrom|) 220356) ((|Stream| . |ShallowlyMutableAggregate|) 220340) ((|StepAst| . |SpadSyntaxCategory|) T) ((|StepAst| . |HomotopicTo|) 220318) ((|StepAst| . |CoercibleTo|) 220273) ((|StepAst| . |CoercibleFrom|) 220251) ((|StepAst| . |SetCategory|) T) ((|StepAst| . |Type|) T) ((|StepAst| . |Join|) T) ((|StepAst| . |BasicType|) T) ((|StepAst| . |AbstractSyntaxCategory|) T) ((|SparseTable| . |TableAggregate|) 220230) ((|SparseTable| . |Dictionary|) 220172) ((|SparseTable| . |BagAggregate|) 220114) ((|SparseTable| . |ShallowlyMutableAggregate|) 220043) ((|SparseTable| . |Collection|) 219985) ((|SparseTable| . |ConvertibleTo|) NIL) ((|SparseTable| . |DictionaryOperations|) 219927) ((|SparseTable| . |IndexedAggregate|) 219906) ((|SparseTable| . |Evalable|) 219666) ((|SparseTable| . |InnerEvalable|) 219414) ((|SparseTable| . |Functorial|) 219343) ((|SparseTable| . |HomogeneousAggregate|) 219272) ((|SparseTable| . |Eltable|) 219251) ((|SparseTable| . |EltableAggregate|) 219230) ((|SparseTable| . |KeyedDictionary|) 219209) ((|SparseTable| . |SetCategory|) T) ((|SparseTable| . |CoercibleTo|) 219183) ((|SparseTable| . |BasicType|) T) ((|SparseTable| . |Type|) T) ((|SparseTable| . |Join|) T) ((|SparseTable| . |Aggregate|) T) ((|SparseTable| . |FiniteAggregate|) 219125) ((|Stack| . |StackAggregate|) 219109) ((|Stack| . |FiniteAggregate|) 219093) ((|Stack| . |HomogeneousAggregate|) 219077) ((|Stack| . |SetCategory|) 219047) ((|Stack| . |Functorial|) 219031) ((|Stack| . |InnerEvalable|) 218950) ((|Stack| . |Evalable|) 218874) ((|Stack| . |CoercibleTo|) 218776) ((|Stack| . |BasicType|) 218714) ((|Stack| . |Type|) T) ((|Stack| . |Join|) T) ((|Stack| . |Aggregate|) T) ((|Stack| . |ShallowlyMutableAggregate|) 218698) ((|Stack| . |BagAggregate|) 218682) ((|SquareFreeRegularTriangularSet| . |SquareFreeRegularTriangularSetCategory|) 218651) ((|SquareFreeRegularTriangularSet| . |TriangularSetCategory|) 218620) ((|SquareFreeRegularTriangularSet| . |ShallowlyMutableAggregate|) 218604) ((|SquareFreeRegularTriangularSet| . |CoercibleTo|) 218556) ((|SquareFreeRegularTriangularSet| . |Collection|) 218540) ((|SquareFreeRegularTriangularSet| . |Aggregate|) T) ((|SquareFreeRegularTriangularSet| . |Join|) T) ((|SquareFreeRegularTriangularSet| . |Type|) T) ((|SquareFreeRegularTriangularSet| . |BasicType|) T) ((|SquareFreeRegularTriangularSet| . |Evalable|) 218464) ((|SquareFreeRegularTriangularSet| . |InnerEvalable|) 218383) ((|SquareFreeRegularTriangularSet| . |Functorial|) 218367) ((|SquareFreeRegularTriangularSet| . |SetCategory|) T) ((|SquareFreeRegularTriangularSet| . |HomogeneousAggregate|) 218351) ((|SquareFreeRegularTriangularSet| . |ConvertibleTo|) 218287) ((|SquareFreeRegularTriangularSet| . |FiniteAggregate|) 218271) ((|SquareFreeRegularTriangularSet| . |PolynomialSetCategory|) 218240) ((|SquareFreeRegularTriangularSet| . |RegularTriangularSetCategory|) 218209) ((|SquareMatrix| . |SquareMatrixCategory|) 218153) ((|SquareMatrix| . |FiniteAggregate|) 218137) ((|SquareMatrix| . |Aggregate|) T) ((|SquareMatrix| . |Evalable|) 218061) ((|SquareMatrix| . |InnerEvalable|) 217980) ((|SquareMatrix| . |Functorial|) 217964) ((|SquareMatrix| . |HomogeneousAggregate|) 217948) ((|SquareMatrix| . |RectangularMatrixCategory|) 217887) ((|SquareMatrix| . |RetractableTo|) 217731) ((|SquareMatrix| . |CoercibleFrom|) 217612) ((|SquareMatrix| . |FullyRetractableTo|) 217596) ((|SquareMatrix| . |LinearlyExplicitRingOver|) 217512) ((|SquareMatrix| . |LeftModule|) 217418) ((|SquareMatrix| . |FullyLinearlyExplicitRingOver|) 217402) ((|SquareMatrix| . |DifferentialRing|) 217367) ((|SquareMatrix| . |DifferentialDomain|) 217286) ((|SquareMatrix| . |DifferentialSpace|) 217211) ((|SquareMatrix| . |DifferentialSpaceExtension|) 217195) ((|SquareMatrix| . |PartialDifferentialDomain|) 217067) ((|SquareMatrix| . |PartialDifferentialSpace|) 216941) ((|SquareMatrix| . |PartialDifferentialRing|) 216873) ((|SquareMatrix| . |DifferentialExtension|) 216857) ((|SquareMatrix| . |Module|) 216764) ((|SquareMatrix| . |LinearSet|) 216671) ((|SquareMatrix| . |LeftLinearSet|) 216625) ((|SquareMatrix| . |CancellationAbelianMonoid|) T) ((|SquareMatrix| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |BasicType|) T) ((|SquareMatrix| . |Join|) T) ((|SquareMatrix| . |Type|) T) ((|SquareMatrix| . |CoercibleTo|) 216575) ((|SquareMatrix| . |SetCategory|) T) ((|SquareMatrix| . |AbelianMonoid|) T) ((|SquareMatrix| . |AbelianGroup|) T) ((|SquareMatrix| . |RightModule|) 216559) ((|SquareMatrix| . |RightLinearSet|) 216543) ((|SquareMatrix| . |BiModule|) 216522) ((|SquareMatrix| . |Ring|) T) ((|SquareMatrix| . |Monoid|) T) ((|SquareMatrix| . |SemiRing|) T) ((|SquareMatrix| . |SemiGroup|) T) ((|SquareMatrix| . |Rng|) T) ((|SquareMatrix| . |Algebra|) 216467) ((|SquareMatrix| . |ConvertibleTo|) 216408) ((|SplittingTree| . |RecursiveAggregate|) 216369) ((|SplittingTree| . |Aggregate|) T) ((|SplittingTree| . |Join|) T) ((|SplittingTree| . |Type|) T) ((|SplittingTree| . |BasicType|) T) ((|SplittingTree| . |CoercibleTo|) 216343) ((|SplittingTree| . |Evalable|) 216233) ((|SplittingTree| . |InnerEvalable|) 216116) ((|SplittingTree| . |Functorial|) 216077) ((|SplittingTree| . |SetCategory|) T) ((|SplittingTree| . |HomogeneousAggregate|) 216038) ((|SplittingTree| . |FiniteAggregate|) 215999) ((|SplittingTree| . |ShallowlyMutableAggregate|) 215960) ((|SplittingNode| . |SetCategory|) T) ((|SplittingNode| . |CoercibleTo|) 215934) ((|SplittingNode| . |Type|) T) ((|SplittingNode| . |Join|) T) ((|SplittingNode| . |BasicType|) T) ((|SpadAst| . |SpadAstExports|) T) ((|SpadAst| . |UnionType|) T) ((|SpadAst| . |AbstractSyntaxCategory|) T) ((|SpadAst| . |BasicType|) T) ((|SpadAst| . |Join|) T) ((|SpadAst| . |Type|) T) ((|SpadAst| . |CoercibleTo|) 215889) ((|SpadAst| . |SetCategory|) T) ((|SpadAst| . |CoercibleFrom|) 215867) ((|SpadAst| . |HomotopicTo|) 215845) ((|SpadAst| . |SpadSyntaxCategory|) T) ((|ThreeSpace| . |ThreeSpaceCategory|) 215829) ((|ThreeSpace| . |BasicType|) T) ((|ThreeSpace| . |Join|) T) ((|ThreeSpace| . |Type|) T) ((|ThreeSpace| . |CoercibleTo|) 215803) ((|ThreeSpace| . |SetCategory|) T) ((|SparseMultivariateTaylorSeries| . |MultivariateTaylorSeriesCategory|) 215782) ((|SparseMultivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 215731) ((|SparseMultivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 215680) ((|SparseMultivariateTaylorSeries| . |ElementaryFunctionCategory|) 215629) ((|SparseMultivariateTaylorSeries| . |HyperbolicFunctionCategory|) 215578) ((|SparseMultivariateTaylorSeries| . |TrigonometricFunctionCategory|) 215527) ((|SparseMultivariateTaylorSeries| . |TranscendentalFunctionCategory|) 215476) ((|SparseMultivariateTaylorSeries| . |RadicalCategory|) 215425) ((|SparseMultivariateTaylorSeries| . |AbelianMonoidRing|) 215383) ((|SparseMultivariateTaylorSeries| . |Algebra|) 215227) ((|SparseMultivariateTaylorSeries| . |LinearSet|) 215071) ((|SparseMultivariateTaylorSeries| . |Module|) 214915) ((|SparseMultivariateTaylorSeries| . |CoercibleFrom|) 214739) ((|SparseMultivariateTaylorSeries| . |EntireRing|) 214706) ((|SparseMultivariateTaylorSeries| . |IntegralDomain|) 214673) ((|SparseMultivariateTaylorSeries| . |Functorial|) 214657) ((|SparseMultivariateTaylorSeries| . |BiModule|) 214476) ((|SparseMultivariateTaylorSeries| . |RightLinearSet|) 214309) ((|SparseMultivariateTaylorSeries| . |RightModule|) 214142) ((|SparseMultivariateTaylorSeries| . |CommutativeRing|) 214071) ((|SparseMultivariateTaylorSeries| . |CharacteristicZero|) 214034) ((|SparseMultivariateTaylorSeries| . |CharacteristicNonZero|) 213994) ((|SparseMultivariateTaylorSeries| . |LeftModule|) 213891) ((|SparseMultivariateTaylorSeries| . |LeftLinearSet|) 213768) ((|SparseMultivariateTaylorSeries| . |PowerSeriesCategory|) 213721) ((|SparseMultivariateTaylorSeries| . |PartialDifferentialSpace|) 213705) ((|SparseMultivariateTaylorSeries| . |Type|) T) ((|SparseMultivariateTaylorSeries| . |Join|) T) ((|SparseMultivariateTaylorSeries| . |PartialDifferentialDomain|) 213687) ((|SparseMultivariateTaylorSeries| . |Ring|) T) ((|SparseMultivariateTaylorSeries| . |Monoid|) T) ((|SparseMultivariateTaylorSeries| . |SemiRing|) T) ((|SparseMultivariateTaylorSeries| . |SemiGroup|) T) ((|SparseMultivariateTaylorSeries| . |Rng|) T) ((|SparseMultivariateTaylorSeries| . |AbelianGroup|) T) ((|SparseMultivariateTaylorSeries| . |AbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |SetCategory|) T) ((|SparseMultivariateTaylorSeries| . |CoercibleTo|) 213661) ((|SparseMultivariateTaylorSeries| . |BasicType|) T) ((|SparseMultivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|SparseMultivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |PartialDifferentialRing|) 213645) ((|SparseMultivariateTaylorSeries| . |InnerEvalable|) 213615) ((|SparseMultivariateTaylorSeries| . |Evalable|) 213602) ((|SparseMultivariatePolynomial| . |PolynomialCategory|) 213555) ((|SparseMultivariatePolynomial| . |CoercibleFrom|) 213251) ((|SparseMultivariatePolynomial| . |RetractableTo|) 213082) ((|SparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 213032) ((|SparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 212982) ((|SparseMultivariatePolynomial| . |PatternMatchable|) 212761) ((|SparseMultivariatePolynomial| . |PartialDifferentialSpace|) 212745) ((|SparseMultivariatePolynomial| . |PartialDifferentialDomain|) 212727) ((|SparseMultivariatePolynomial| . |PartialDifferentialRing|) 212711) ((|SparseMultivariatePolynomial| . |InnerEvalable|) 212663) ((|SparseMultivariatePolynomial| . |GcdDomain|) 212581) ((|SparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 212497) ((|SparseMultivariatePolynomial| . |LeftModule|) 212326) ((|SparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 212310) ((|SparseMultivariatePolynomial| . |AbelianMonoidRing|) 212268) ((|SparseMultivariatePolynomial| . |Algebra|) 212031) ((|SparseMultivariatePolynomial| . |LinearSet|) 211794) ((|SparseMultivariatePolynomial| . |Module|) 211557) ((|SparseMultivariatePolynomial| . |EntireRing|) 211443) ((|SparseMultivariatePolynomial| . |IntegralDomain|) 211329) ((|SparseMultivariatePolynomial| . |Functorial|) 211313) ((|SparseMultivariatePolynomial| . |BiModule|) 211056) ((|SparseMultivariatePolynomial| . |RightLinearSet|) 210813) ((|SparseMultivariatePolynomial| . |RightModule|) 210570) ((|SparseMultivariatePolynomial| . |CommutativeRing|) 210423) ((|SparseMultivariatePolynomial| . |CharacteristicZero|) 210386) ((|SparseMultivariatePolynomial| . |CharacteristicNonZero|) 210346) ((|SparseMultivariatePolynomial| . |LeftLinearSet|) 210223) ((|SparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|SparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseMultivariatePolynomial| . |BasicType|) T) ((|SparseMultivariatePolynomial| . |Join|) T) ((|SparseMultivariatePolynomial| . |Type|) T) ((|SparseMultivariatePolynomial| . |CoercibleTo|) 210197) ((|SparseMultivariatePolynomial| . |SetCategory|) T) ((|SparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|SparseMultivariatePolynomial| . |AbelianGroup|) T) ((|SparseMultivariatePolynomial| . |Ring|) T) ((|SparseMultivariatePolynomial| . |Monoid|) T) ((|SparseMultivariatePolynomial| . |SemiRing|) T) ((|SparseMultivariatePolynomial| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |Rng|) T) ((|SparseMultivariatePolynomial| . |FullyRetractableTo|) 210181) ((|SparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 210139) ((|SparseMultivariatePolynomial| . |Evalable|) 210126) ((|SparseMultivariatePolynomial| . |ConvertibleTo|) 209733) ((|SingleInteger| . |IntegerNumberSystem|) T) ((|SingleInteger| . |UniqueFactorizationDomain|) T) ((|SingleInteger| . |StepThrough|) T) ((|SingleInteger| . |RetractableTo|) 209710) ((|SingleInteger| . |ConvertibleTo|) 209596) ((|SingleInteger| . |RealConstant|) T) ((|SingleInteger| . |PatternMatchable|) 209573) ((|SingleInteger| . |OrderedRing|) T) ((|SingleInteger| . |OrderedCancellationAbelianMonoid|) T) ((|SingleInteger| . |OrderedAbelianSemiGroup|) T) ((|SingleInteger| . |OrderedType|) T) ((|SingleInteger| . |OrderedSet|) T) ((|SingleInteger| . |OrderedAbelianMonoid|) T) ((|SingleInteger| . |OrderedAbelianGroup|) T) ((|SingleInteger| . |OrderedIntegralDomain|) T) ((|SingleInteger| . |LeftModule|) 209540) ((|SingleInteger| . |LinearlyExplicitRingOver|) 209517) ((|SingleInteger| . |PrincipalIdealDomain|) T) ((|SingleInteger| . |IntegralDomain|) T) ((|SingleInteger| . |EntireRing|) T) ((|SingleInteger| . |CommutativeRing|) T) ((|SingleInteger| . |CoercibleFrom|) 209484) ((|SingleInteger| . |Module|) 209471) ((|SingleInteger| . |LinearSet|) 209458) ((|SingleInteger| . |RightModule|) 209445) ((|SingleInteger| . |RightLinearSet|) 209432) ((|SingleInteger| . |BiModule|) 209417) ((|SingleInteger| . |Algebra|) 209404) ((|SingleInteger| . |GcdDomain|) T) ((|SingleInteger| . |EuclideanDomain|) T) ((|SingleInteger| . |DifferentialSpace|) T) ((|SingleInteger| . |DifferentialDomain|) 209391) ((|SingleInteger| . |DifferentialRing|) T) ((|SingleInteger| . |CombinatorialFunctionCategory|) T) ((|SingleInteger| . |Ring|) T) ((|SingleInteger| . |Monoid|) T) ((|SingleInteger| . |SemiRing|) T) ((|SingleInteger| . |SemiGroup|) T) ((|SingleInteger| . |Rng|) T) ((|SingleInteger| . |AbelianGroup|) T) ((|SingleInteger| . |LeftLinearSet|) 209358) ((|SingleInteger| . |AbelianMonoid|) T) ((|SingleInteger| . |SetCategory|) T) ((|SingleInteger| . |CoercibleTo|) 209332) ((|SingleInteger| . |Type|) T) ((|SingleInteger| . |Join|) T) ((|SingleInteger| . |BasicType|) T) ((|SingleInteger| . |AbelianSemiGroup|) T) ((|SingleInteger| . |CancellationAbelianMonoid|) T) ((|SingleInteger| . |CharacteristicZero|) T) ((|SingleInteger| . |OrderedFinite|) T) ((|SingleInteger| . |Finite|) T) ((|SingleInteger| . |BooleanLogic|) T) ((|SingleInteger| . |Logic|) T) ((|SignatureAst| . |SpadSyntaxCategory|) T) ((|SignatureAst| . |HomotopicTo|) 209310) ((|SignatureAst| . |CoercibleTo|) 209265) ((|SignatureAst| . |CoercibleFrom|) 209243) ((|SignatureAst| . |SetCategory|) T) ((|SignatureAst| . |Type|) T) ((|SignatureAst| . |Join|) T) ((|SignatureAst| . |BasicType|) T) ((|SignatureAst| . |AbstractSyntaxCategory|) T) ((|Signature| . |SetCategory|) T) ((|Signature| . |CoercibleTo|) 209217) ((|Signature| . |Type|) T) ((|Signature| . |Join|) T) ((|Signature| . |BasicType|) T) ((|SplitHomogeneousDirectProduct| . |DirectProductCategory|) 209196) ((|SplitHomogeneousDirectProduct| . |VectorSpace|) 209163) ((|SplitHomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 209121) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 209079) ((|SplitHomogeneousDirectProduct| . |OrderedType|) 209004) ((|SplitHomogeneousDirectProduct| . |OrderedSet|) 208929) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoid|) 208887) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 208845) ((|SplitHomogeneousDirectProduct| . |Module|) 208774) ((|SplitHomogeneousDirectProduct| . |LinearSet|) 208679) ((|SplitHomogeneousDirectProduct| . |EltableAggregate|) 208651) ((|SplitHomogeneousDirectProduct| . |Eltable|) 208623) ((|SplitHomogeneousDirectProduct| . |IndexedAggregate|) 208595) ((|SplitHomogeneousDirectProduct| . |RetractableTo|) 208346) ((|SplitHomogeneousDirectProduct| . |CoercibleFrom|) 208070) ((|SplitHomogeneousDirectProduct| . |FullyRetractableTo|) 208031) ((|SplitHomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 207903) ((|SplitHomogeneousDirectProduct| . |LeftModule|) 207688) ((|SplitHomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 207656) ((|SplitHomogeneousDirectProduct| . |HomogeneousAggregate|) 207640) ((|SplitHomogeneousDirectProduct| . |Functorial|) 207624) ((|SplitHomogeneousDirectProduct| . |InnerEvalable|) 207543) ((|SplitHomogeneousDirectProduct| . |Evalable|) 207467) ((|SplitHomogeneousDirectProduct| . |Aggregate|) T) ((|SplitHomogeneousDirectProduct| . |FiniteAggregate|) 207451) ((|SplitHomogeneousDirectProduct| . |Finite|) 207426) ((|SplitHomogeneousDirectProduct| . |DifferentialRing|) 207363) ((|SplitHomogeneousDirectProduct| . |LeftLinearSet|) 207093) ((|SplitHomogeneousDirectProduct| . |Rng|) 207070) ((|SplitHomogeneousDirectProduct| . |SemiGroup|) 207047) ((|SplitHomogeneousDirectProduct| . |SemiRing|) 207024) ((|SplitHomogeneousDirectProduct| . |Monoid|) 207001) ((|SplitHomogeneousDirectProduct| . |Ring|) 206978) ((|SplitHomogeneousDirectProduct| . |DifferentialDomain|) 206841) ((|SplitHomogeneousDirectProduct| . |DifferentialSpace|) 206710) ((|SplitHomogeneousDirectProduct| . |DifferentialSpaceExtension|) 206678) ((|SplitHomogeneousDirectProduct| . |PartialDifferentialDomain|) 206494) ((|SplitHomogeneousDirectProduct| . |PartialDifferentialSpace|) 206312) ((|SplitHomogeneousDirectProduct| . |PartialDifferentialRing|) 206216) ((|SplitHomogeneousDirectProduct| . |DifferentialExtension|) 206184) ((|SplitHomogeneousDirectProduct| . |CoercibleTo|) 205729) ((|SplitHomogeneousDirectProduct| . |RightModule|) 205636) ((|SplitHomogeneousDirectProduct| . |RightLinearSet|) 205519) ((|SplitHomogeneousDirectProduct| . |BiModule|) 205421) ((|SplitHomogeneousDirectProduct| . |CancellationAbelianMonoid|) 205223) ((|SplitHomogeneousDirectProduct| . |AbelianSemiGroup|) 204960) ((|SplitHomogeneousDirectProduct| . |BasicType|) 204565) ((|SplitHomogeneousDirectProduct| . |Join|) T) ((|SplitHomogeneousDirectProduct| . |Type|) T) ((|SplitHomogeneousDirectProduct| . |SetCategory|) 204197) ((|SplitHomogeneousDirectProduct| . |AbelianMonoid|) 203968) ((|SplitHomogeneousDirectProduct| . |AbelianGroup|) 203854) ((|SemiGroupOperation| . |SemiGroupOperatorCategory|) 203838) ((|SemiGroupOperation| . |MappingCategory|) 203812) ((|SemiGroupOperation| . |Type|) T) ((|SemiGroupOperation| . |BinaryOperatorCategory|) 203796) ((|SemiGroupOperation| . |SetCategory|) T) ((|SemiGroupOperation| . |CoercibleTo|) 203770) ((|SemiGroupOperation| . |Join|) T) ((|SemiGroupOperation| . |BasicType|) T) ((|SExpressionOf| . |SExpressionCategory|) 203734) ((|SExpressionOf| . |BasicType|) T) ((|SExpressionOf| . |CoercibleTo|) 203708) ((|SExpressionOf| . |SetCategory|) T) ((|SExpressionOf| . |Eltable|) 203652) ((|SExpressionOf| . |Type|) T) ((|SExpressionOf| . |Join|) T) ((|SExpressionOf| . |ConvertibleFrom|) 203565) ((|SExpression| . |SExpressionCategory|) 203489) ((|SExpression| . |BasicType|) T) ((|SExpression| . |CoercibleTo|) 203463) ((|SExpression| . |SetCategory|) T) ((|SExpression| . |Eltable|) 203407) ((|SExpression| . |Type|) T) ((|SExpression| . |Join|) T) ((|SExpression| . |ConvertibleFrom|) 203280) ((|SetOfMIntegersInOneToN| . |Finite|) T) ((|SetOfMIntegersInOneToN| . |BasicType|) T) ((|SetOfMIntegersInOneToN| . |Join|) T) ((|SetOfMIntegersInOneToN| . |Type|) T) ((|SetOfMIntegersInOneToN| . |CoercibleTo|) 203254) ((|SetOfMIntegersInOneToN| . |SetCategory|) T) ((|Set| . |FiniteSetAggregate|) 203238) ((|Set| . |SetAggregate|) 203222) ((|Set| . |FiniteAggregate|) 203206) ((|Set| . |Finite|) 203181) ((|Set| . |DictionaryOperations|) 203165) ((|Set| . |ConvertibleTo|) 203101) ((|Set| . |Collection|) 203085) ((|Set| . |HomogeneousAggregate|) 203069) ((|Set| . |SetCategory|) T) ((|Set| . |Functorial|) 203053) ((|Set| . |InnerEvalable|) 202972) ((|Set| . |Evalable|) 202896) ((|Set| . |CoercibleTo|) 202870) ((|Set| . |BasicType|) T) ((|Set| . |Type|) T) ((|Set| . |Join|) T) ((|Set| . |Aggregate|) T) ((|Set| . |ShallowlyMutableAggregate|) 202854) ((|Set| . |BagAggregate|) 202838) ((|Set| . |Dictionary|) 202822) ((|SequenceAst| . |SpadSyntaxCategory|) T) ((|SequenceAst| . |HomotopicTo|) 202800) ((|SequenceAst| . |CoercibleTo|) 202755) ((|SequenceAst| . |CoercibleFrom|) 202733) ((|SequenceAst| . |SetCategory|) T) ((|SequenceAst| . |Type|) T) ((|SequenceAst| . |Join|) T) ((|SequenceAst| . |BasicType|) T) ((|SequenceAst| . |AbstractSyntaxCategory|) T) ((|SegmentBinding| . |Type|) T) ((|SegmentBinding| . |Join|) T) ((|SegmentBinding| . |SetCategory|) 202691) ((|SegmentBinding| . |CoercibleTo|) 202630) ((|SegmentBinding| . |BasicType|) 202588) ((|SegmentAst| . |SpadSyntaxCategory|) T) ((|SegmentAst| . |HomotopicTo|) 202566) ((|SegmentAst| . |CoercibleTo|) 202521) ((|SegmentAst| . |CoercibleFrom|) 202499) ((|SegmentAst| . |SetCategory|) T) ((|SegmentAst| . |Type|) T) ((|SegmentAst| . |Join|) T) ((|SegmentAst| . |BasicType|) T) ((|SegmentAst| . |AbstractSyntaxCategory|) T) ((|Segment| . |SegmentCategory|) 202483) ((|Segment| . |ConvertibleFrom|) 202467) ((|Segment| . |SetCategory|) 202437) ((|Segment| . |CoercibleTo|) 202388) ((|Segment| . |Type|) 202358) ((|Segment| . |Join|) 202328) ((|Segment| . |BasicType|) 202298) ((|Segment| . |SegmentExpansionCategory|) 202245) ((|SequentialDifferentialVariable| . |DifferentialVariableCategory|) 202229) ((|SequentialDifferentialVariable| . |CoercibleFrom|) 202213) ((|SequentialDifferentialVariable| . |RetractableTo|) 202197) ((|SequentialDifferentialVariable| . |OrderedType|) T) ((|SequentialDifferentialVariable| . |BasicType|) T) ((|SequentialDifferentialVariable| . |SetCategory|) T) ((|SequentialDifferentialVariable| . |CoercibleTo|) 202171) ((|SequentialDifferentialVariable| . |OrderedSet|) T) ((|SequentialDifferentialVariable| . |DifferentialDomain|) 202158) ((|SequentialDifferentialVariable| . |Join|) T) ((|SequentialDifferentialVariable| . |Type|) T) ((|SequentialDifferentialVariable| . |DifferentialSpace|) T) ((|SequentialDifferentialPolynomial| . |DifferentialPolynomialCategory|) 202061) ((|SequentialDifferentialPolynomial| . |CoercibleFrom|) 201651) ((|SequentialDifferentialPolynomial| . |RetractableTo|) 201376) ((|SequentialDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|SequentialDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 201293) ((|SequentialDifferentialPolynomial| . |FullyRetractableTo|) 201277) ((|SequentialDifferentialPolynomial| . |Algebra|) 201040) ((|SequentialDifferentialPolynomial| . |BiModule|) 200783) ((|SequentialDifferentialPolynomial| . |RightLinearSet|) 200540) ((|SequentialDifferentialPolynomial| . |RightModule|) 200297) ((|SequentialDifferentialPolynomial| . |LeftLinearSet|) 200174) ((|SequentialDifferentialPolynomial| . |LeftModule|) 200003) ((|SequentialDifferentialPolynomial| . |LinearSet|) 199766) ((|SequentialDifferentialPolynomial| . |Module|) 199529) ((|SequentialDifferentialPolynomial| . |CharacteristicNonZero|) 199489) ((|SequentialDifferentialPolynomial| . |CharacteristicZero|) 199452) ((|SequentialDifferentialPolynomial| . |CommutativeRing|) 199305) ((|SequentialDifferentialPolynomial| . |Functorial|) 199289) ((|SequentialDifferentialPolynomial| . |IntegralDomain|) 199175) ((|SequentialDifferentialPolynomial| . |EntireRing|) 199061) ((|SequentialDifferentialPolynomial| . |AbelianMonoidRing|) 198978) ((|SequentialDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 198962) ((|SequentialDifferentialPolynomial| . |LinearlyExplicitRingOver|) 198878) ((|SequentialDifferentialPolynomial| . |GcdDomain|) 198796) ((|SequentialDifferentialPolynomial| . |InnerEvalable|) 198623) ((|SequentialDifferentialPolynomial| . |PartialDifferentialRing|) 198501) ((|SequentialDifferentialPolynomial| . |PartialDifferentialDomain|) 198317) ((|SequentialDifferentialPolynomial| . |PartialDifferentialSpace|) 198137) ((|SequentialDifferentialPolynomial| . |PatternMatchable|) NIL) ((|SequentialDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 198087) ((|SequentialDifferentialPolynomial| . |UniqueFactorizationDomain|) 198037) ((|SequentialDifferentialPolynomial| . |PolynomialCategory|) 197947) ((|SequentialDifferentialPolynomial| . |Evalable|) 197934) ((|SequentialDifferentialPolynomial| . |DifferentialRing|) 197899) ((|SequentialDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|SequentialDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|SequentialDifferentialPolynomial| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |CoercibleTo|) 197873) ((|SequentialDifferentialPolynomial| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |AbelianMonoid|) T) ((|SequentialDifferentialPolynomial| . |AbelianGroup|) T) ((|SequentialDifferentialPolynomial| . |Rng|) T) ((|SequentialDifferentialPolynomial| . |SemiGroup|) T) ((|SequentialDifferentialPolynomial| . |SemiRing|) T) ((|SequentialDifferentialPolynomial| . |Monoid|) T) ((|SequentialDifferentialPolynomial| . |Ring|) T) ((|SequentialDifferentialPolynomial| . |DifferentialDomain|) 197792) ((|SequentialDifferentialPolynomial| . |Join|) T) ((|SequentialDifferentialPolynomial| . |Type|) T) ((|SequentialDifferentialPolynomial| . |DifferentialSpace|) 197717) ((|SequentialDifferentialPolynomial| . |DifferentialSpaceExtension|) 197701) ((|SequentialDifferentialPolynomial| . |DifferentialExtension|) 197685) ((|Scope| . |CoercibleTo|) 197659) ((|SingletonAsOrderedSet| . |OrderedSet|) T) ((|SingletonAsOrderedSet| . |CoercibleTo|) 197633) ((|SingletonAsOrderedSet| . |SetCategory|) T) ((|SingletonAsOrderedSet| . |BasicType|) T) ((|SingletonAsOrderedSet| . |Join|) T) ((|SingletonAsOrderedSet| . |Type|) T) ((|SingletonAsOrderedSet| . |OrderedType|) T) ((|SingletonAsOrderedSet| . |ConvertibleTo|) 197611) ((|SimpleAlgebraicExtension| . |MonogenicAlgebra|) 197590) ((|SimpleAlgebraicExtension| . |RetractableTo|) 197434) ((|SimpleAlgebraicExtension| . |FullyRetractableTo|) 197418) ((|SimpleAlgebraicExtension| . |LinearlyExplicitRingOver|) 197334) ((|SimpleAlgebraicExtension| . |LeftModule|) 197148) ((|SimpleAlgebraicExtension| . |FullyLinearlyExplicitRingOver|) 197132) ((|SimpleAlgebraicExtension| . |FiniteRankAlgebra|) 197111) ((|SimpleAlgebraicExtension| . |CharacteristicZero|) 197074) ((|SimpleAlgebraicExtension| . |CoercibleFrom|) 196821) ((|SimpleAlgebraicExtension| . |Module|) 196644) ((|SimpleAlgebraicExtension| . |LinearSet|) 196467) ((|SimpleAlgebraicExtension| . |LeftLinearSet|) 196329) ((|SimpleAlgebraicExtension| . |RightModule|) 196211) ((|SimpleAlgebraicExtension| . |RightLinearSet|) 196093) ((|SimpleAlgebraicExtension| . |BiModule|) 195961) ((|SimpleAlgebraicExtension| . |Algebra|) 195784) ((|SimpleAlgebraicExtension| . |FramedAlgebra|) 195763) ((|SimpleAlgebraicExtension| . |FieldOfPrimeCharacteristic|) 195725) ((|SimpleAlgebraicExtension| . |CharacteristicNonZero|) 195643) ((|SimpleAlgebraicExtension| . |StepThrough|) 195605) ((|SimpleAlgebraicExtension| . |FiniteFieldCategory|) 195567) ((|SimpleAlgebraicExtension| . |Finite|) 195500) ((|SimpleAlgebraicExtension| . |DivisionRing|) 195434) ((|SimpleAlgebraicExtension| . |EntireRing|) 195368) ((|SimpleAlgebraicExtension| . |EuclideanDomain|) 195302) ((|SimpleAlgebraicExtension| . |GcdDomain|) 195236) ((|SimpleAlgebraicExtension| . |IntegralDomain|) 195170) ((|SimpleAlgebraicExtension| . |PrincipalIdealDomain|) 195104) ((|SimpleAlgebraicExtension| . |UniqueFactorizationDomain|) 195038) ((|SimpleAlgebraicExtension| . |Field|) 194972) ((|SimpleAlgebraicExtension| . |DifferentialRing|) 194866) ((|SimpleAlgebraicExtension| . |DifferentialDomain|) 194690) ((|SimpleAlgebraicExtension| . |DifferentialSpace|) 194520) ((|SimpleAlgebraicExtension| . |DifferentialSpaceExtension|) 194487) ((|SimpleAlgebraicExtension| . |PartialDifferentialDomain|) 194301) ((|SimpleAlgebraicExtension| . |PartialDifferentialSpace|) 194117) ((|SimpleAlgebraicExtension| . |PartialDifferentialRing|) 194020) ((|SimpleAlgebraicExtension| . |DifferentialExtension|) 193987) ((|SimpleAlgebraicExtension| . |ConvertibleTo|) 193971) ((|SimpleAlgebraicExtension| . |AbelianGroup|) T) ((|SimpleAlgebraicExtension| . |AbelianMonoid|) T) ((|SimpleAlgebraicExtension| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |CoercibleTo|) 193945) ((|SimpleAlgebraicExtension| . |Type|) T) ((|SimpleAlgebraicExtension| . |Join|) T) ((|SimpleAlgebraicExtension| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |AbelianSemiGroup|) T) ((|SimpleAlgebraicExtension| . |CancellationAbelianMonoid|) T) ((|SimpleAlgebraicExtension| . |Ring|) T) ((|SimpleAlgebraicExtension| . |Monoid|) T) ((|SimpleAlgebraicExtension| . |SemiRing|) T) ((|SimpleAlgebraicExtension| . |SemiGroup|) T) ((|SimpleAlgebraicExtension| . |Rng|) T) ((|SimpleAlgebraicExtension| . |CommutativeRing|) T) ((|Ruleset| . |SetCategory|) T) ((|Ruleset| . |CoercibleTo|) 193919) ((|Ruleset| . |Type|) T) ((|Ruleset| . |Join|) T) ((|Ruleset| . |BasicType|) T) ((|Ruleset| . |Eltable|) 193898) ((|RuleCalled| . |SetCategory|) T) ((|RuleCalled| . |CoercibleTo|) 193872) ((|RuleCalled| . |Type|) T) ((|RuleCalled| . |Join|) T) ((|RuleCalled| . |BasicType|) T) ((|RewriteRule| . |SetCategory|) T) ((|RewriteRule| . |CoercibleTo|) 193846) ((|RewriteRule| . |Type|) T) ((|RewriteRule| . |Join|) T) ((|RewriteRule| . |BasicType|) T) ((|RewriteRule| . |Eltable|) 193825) ((|RewriteRule| . |RetractableTo|) 193796) ((|RewriteRule| . |CoercibleFrom|) 193767) ((|RuntimeValue| . |Type|) T) ((|RuntimeValue| . |Join|) T) ((|RestrictAst| . |SpadSyntaxCategory|) T) ((|RestrictAst| . |HomotopicTo|) 193745) ((|RestrictAst| . |CoercibleTo|) 193700) ((|RestrictAst| . |CoercibleFrom|) 193678) ((|RestrictAst| . |SetCategory|) T) ((|RestrictAst| . |Type|) T) ((|RestrictAst| . |Join|) T) ((|RestrictAst| . |BasicType|) T) ((|RestrictAst| . |AbstractSyntaxCategory|) T) ((|RepeatAst| . |SpadSyntaxCategory|) T) ((|RepeatAst| . |HomotopicTo|) 193656) ((|RepeatAst| . |CoercibleTo|) 193611) ((|RepeatAst| . |CoercibleFrom|) 193589) ((|RepeatAst| . |SetCategory|) T) ((|RepeatAst| . |Type|) T) ((|RepeatAst| . |Join|) T) ((|RepeatAst| . |BasicType|) T) ((|RepeatAst| . |AbstractSyntaxCategory|) T) ((|RomanNumeral| . |IntegerNumberSystem|) T) ((|RomanNumeral| . |UniqueFactorizationDomain|) T) ((|RomanNumeral| . |StepThrough|) T) ((|RomanNumeral| . |RetractableTo|) 193566) ((|RomanNumeral| . |ConvertibleTo|) 193452) ((|RomanNumeral| . |RealConstant|) T) ((|RomanNumeral| . |PatternMatchable|) 193429) ((|RomanNumeral| . |OrderedRing|) T) ((|RomanNumeral| . |OrderedCancellationAbelianMonoid|) T) ((|RomanNumeral| . |OrderedAbelianSemiGroup|) T) ((|RomanNumeral| . |OrderedType|) T) ((|RomanNumeral| . |OrderedSet|) T) ((|RomanNumeral| . |OrderedAbelianMonoid|) T) ((|RomanNumeral| . |OrderedAbelianGroup|) T) ((|RomanNumeral| . |OrderedIntegralDomain|) T) ((|RomanNumeral| . |LeftModule|) 193396) ((|RomanNumeral| . |LinearlyExplicitRingOver|) 193373) ((|RomanNumeral| . |PrincipalIdealDomain|) T) ((|RomanNumeral| . |IntegralDomain|) T) ((|RomanNumeral| . |EntireRing|) T) ((|RomanNumeral| . |CommutativeRing|) T) ((|RomanNumeral| . |CoercibleFrom|) 193340) ((|RomanNumeral| . |Module|) 193327) ((|RomanNumeral| . |LinearSet|) 193314) ((|RomanNumeral| . |RightModule|) 193301) ((|RomanNumeral| . |RightLinearSet|) 193288) ((|RomanNumeral| . |BiModule|) 193273) ((|RomanNumeral| . |Algebra|) 193260) ((|RomanNumeral| . |GcdDomain|) T) ((|RomanNumeral| . |EuclideanDomain|) T) ((|RomanNumeral| . |DifferentialSpace|) T) ((|RomanNumeral| . |DifferentialDomain|) 193247) ((|RomanNumeral| . |DifferentialRing|) T) ((|RomanNumeral| . |CombinatorialFunctionCategory|) T) ((|RomanNumeral| . |Ring|) T) ((|RomanNumeral| . |Monoid|) T) ((|RomanNumeral| . |SemiRing|) T) ((|RomanNumeral| . |SemiGroup|) T) ((|RomanNumeral| . |Rng|) T) ((|RomanNumeral| . |AbelianGroup|) T) ((|RomanNumeral| . |LeftLinearSet|) 193214) ((|RomanNumeral| . |AbelianMonoid|) T) ((|RomanNumeral| . |SetCategory|) T) ((|RomanNumeral| . |CoercibleTo|) 193188) ((|RomanNumeral| . |Type|) T) ((|RomanNumeral| . |Join|) T) ((|RomanNumeral| . |BasicType|) T) ((|RomanNumeral| . |AbelianSemiGroup|) T) ((|RomanNumeral| . |CancellationAbelianMonoid|) T) ((|RomanNumeral| . |CharacteristicZero|) T) ((|RomanNumeral| . |ConvertibleFrom|) 193166) ((|RightOpenIntervalRootCharacterization| . |RealRootCharacterizationCategory|) 193145) ((|RightOpenIntervalRootCharacterization| . |BasicType|) T) ((|RightOpenIntervalRootCharacterization| . |Join|) T) ((|RightOpenIntervalRootCharacterization| . |Type|) T) ((|RightOpenIntervalRootCharacterization| . |CoercibleTo|) 193119) ((|RightOpenIntervalRootCharacterization| . |SetCategory|) T) ((|RangeBinding| . |Type|) T) ((|RangeBinding| . |Join|) T) ((|RangeBinding| . |SetCategory|) 193089) ((|RangeBinding| . |CoercibleTo|) 193040) ((|RangeBinding| . |BasicType|) 193010) ((|RectangularMatrix| . |RectangularMatrixCategory|) 192928) ((|RectangularMatrix| . |LinearSet|) 192857) ((|RectangularMatrix| . |Module|) 192786) ((|RectangularMatrix| . |HomogeneousAggregate|) 192770) ((|RectangularMatrix| . |Functorial|) 192754) ((|RectangularMatrix| . |InnerEvalable|) 192673) ((|RectangularMatrix| . |Evalable|) 192597) ((|RectangularMatrix| . |Aggregate|) T) ((|RectangularMatrix| . |FiniteAggregate|) 192581) ((|RectangularMatrix| . |LeftModule|) 192565) ((|RectangularMatrix| . |LeftLinearSet|) 192529) ((|RectangularMatrix| . |CancellationAbelianMonoid|) T) ((|RectangularMatrix| . |AbelianSemiGroup|) T) ((|RectangularMatrix| . |BasicType|) T) ((|RectangularMatrix| . |Join|) T) ((|RectangularMatrix| . |Type|) T) ((|RectangularMatrix| . |CoercibleTo|) 192479) ((|RectangularMatrix| . |SetCategory|) T) ((|RectangularMatrix| . |AbelianMonoid|) T) ((|RectangularMatrix| . |AbelianGroup|) T) ((|RectangularMatrix| . |RightModule|) 192463) ((|RectangularMatrix| . |RightLinearSet|) 192447) ((|RectangularMatrix| . |BiModule|) 192426) ((|RectangularMatrix| . |VectorSpace|) 192393) ((|RectangularMatrix| . |ConvertibleTo|) 192334) ((|RegularChain| . |RegularTriangularSetCategory|) 192216) ((|RegularChain| . |PolynomialSetCategory|) 192098) ((|RegularChain| . |FiniteAggregate|) 192017) ((|RegularChain| . |ConvertibleTo|) 191888) ((|RegularChain| . |HomogeneousAggregate|) 191807) ((|RegularChain| . |SetCategory|) T) ((|RegularChain| . |Functorial|) 191726) ((|RegularChain| . |InnerEvalable|) 191483) ((|RegularChain| . |Evalable|) 191247) ((|RegularChain| . |CoercibleTo|) 191134) ((|RegularChain| . |BasicType|) T) ((|RegularChain| . |Type|) T) ((|RegularChain| . |Join|) T) ((|RegularChain| . |Aggregate|) T) ((|RegularChain| . |Collection|) 191053) ((|RegularChain| . |ShallowlyMutableAggregate|) 190972) ((|RegularChain| . |TriangularSetCategory|) 190854) ((|ReturnAst| . |SpadSyntaxCategory|) T) ((|ReturnAst| . |HomotopicTo|) 190832) ((|ReturnAst| . |CoercibleTo|) 190787) ((|ReturnAst| . |CoercibleFrom|) 190765) ((|ReturnAst| . |SetCategory|) T) ((|ReturnAst| . |Type|) T) ((|ReturnAst| . |Join|) T) ((|ReturnAst| . |BasicType|) T) ((|ReturnAst| . |AbstractSyntaxCategory|) T) ((|ResidueRing| . |CommutativeRing|) T) ((|ResidueRing| . |CoercibleFrom|) 190729) ((|ResidueRing| . |Rng|) T) ((|ResidueRing| . |SemiGroup|) T) ((|ResidueRing| . |SemiRing|) T) ((|ResidueRing| . |Monoid|) T) ((|ResidueRing| . |Ring|) T) ((|ResidueRing| . |LeftModule|) 190703) ((|ResidueRing| . |LeftLinearSet|) 190657) ((|ResidueRing| . |CancellationAbelianMonoid|) T) ((|ResidueRing| . |AbelianSemiGroup|) T) ((|ResidueRing| . |BasicType|) T) ((|ResidueRing| . |Join|) T) ((|ResidueRing| . |Type|) T) ((|ResidueRing| . |CoercibleTo|) 190631) ((|ResidueRing| . |SetCategory|) T) ((|ResidueRing| . |AbelianMonoid|) T) ((|ResidueRing| . |AbelianGroup|) T) ((|ResidueRing| . |RightModule|) 190605) ((|ResidueRing| . |RightLinearSet|) 190579) ((|ResidueRing| . |BiModule|) 190546) ((|ResidueRing| . |Algebra|) 190530) ((|ResidueRing| . |LinearSet|) 190514) ((|ResidueRing| . |Module|) 190498) ((|RegularTriangularSet| . |RegularTriangularSetCategory|) 190467) ((|RegularTriangularSet| . |PolynomialSetCategory|) 190436) ((|RegularTriangularSet| . |FiniteAggregate|) 190420) ((|RegularTriangularSet| . |ConvertibleTo|) 190356) ((|RegularTriangularSet| . |HomogeneousAggregate|) 190340) ((|RegularTriangularSet| . |SetCategory|) T) ((|RegularTriangularSet| . |Functorial|) 190324) ((|RegularTriangularSet| . |InnerEvalable|) 190243) ((|RegularTriangularSet| . |Evalable|) 190167) ((|RegularTriangularSet| . |CoercibleTo|) 190119) ((|RegularTriangularSet| . |BasicType|) T) ((|RegularTriangularSet| . |Type|) T) ((|RegularTriangularSet| . |Join|) T) ((|RegularTriangularSet| . |Aggregate|) T) ((|RegularTriangularSet| . |Collection|) 190103) ((|RegularTriangularSet| . |ShallowlyMutableAggregate|) 190087) ((|RegularTriangularSet| . |TriangularSetCategory|) 190056) ((|Reference| . |SetCategory|) T) ((|Reference| . |CoercibleTo|) 190030) ((|Reference| . |Type|) T) ((|Reference| . |Join|) T) ((|Reference| . |BasicType|) T) ((|RealClosure| . |RealClosedField|) T) ((|RealClosure| . |RadicalCategory|) T) ((|RealClosure| . |OrderedAbelianGroup|) T) ((|RealClosure| . |OrderedAbelianMonoid|) T) ((|RealClosure| . |OrderedSet|) T) ((|RealClosure| . |OrderedType|) T) ((|RealClosure| . |OrderedAbelianSemiGroup|) T) ((|RealClosure| . |OrderedCancellationAbelianMonoid|) T) ((|RealClosure| . |OrderedRing|) T) ((|RealClosure| . |RetractableTo|) 189856) ((|RealClosure| . |FullyRetractableTo|) 189807) ((|RealClosure| . |DivisionRing|) T) ((|RealClosure| . |EntireRing|) T) ((|RealClosure| . |EuclideanDomain|) T) ((|RealClosure| . |GcdDomain|) T) ((|RealClosure| . |Algebra|) 189728) ((|RealClosure| . |LinearSet|) 189649) ((|RealClosure| . |Module|) 189570) ((|RealClosure| . |CoercibleFrom|) 189491) ((|RealClosure| . |IntegralDomain|) T) ((|RealClosure| . |PrincipalIdealDomain|) T) ((|RealClosure| . |UniqueFactorizationDomain|) T) ((|RealClosure| . |Field|) T) ((|RealClosure| . |BiModule|) 189391) ((|RealClosure| . |RightLinearSet|) 189312) ((|RealClosure| . |RightModule|) 189233) ((|RealClosure| . |CommutativeRing|) T) ((|RealClosure| . |CharacteristicZero|) T) ((|RealClosure| . |LeftModule|) 189154) ((|RealClosure| . |LeftLinearSet|) 189075) ((|RealClosure| . |CancellationAbelianMonoid|) T) ((|RealClosure| . |AbelianSemiGroup|) T) ((|RealClosure| . |BasicType|) T) ((|RealClosure| . |Join|) T) ((|RealClosure| . |Type|) T) ((|RealClosure| . |CoercibleTo|) 189049) ((|RealClosure| . |SetCategory|) T) ((|RealClosure| . |AbelianMonoid|) T) ((|RealClosure| . |AbelianGroup|) T) ((|RealClosure| . |Ring|) T) ((|RealClosure| . |Monoid|) T) ((|RealClosure| . |SemiRing|) T) ((|RealClosure| . |SemiGroup|) T) ((|RealClosure| . |Rng|) T) ((|ReduceAst| . |SpadSyntaxCategory|) T) ((|ReduceAst| . |HomotopicTo|) 189027) ((|ReduceAst| . |CoercibleTo|) 188982) ((|ReduceAst| . |CoercibleFrom|) 188960) ((|ReduceAst| . |SetCategory|) T) ((|ReduceAst| . |Type|) T) ((|ReduceAst| . |Join|) T) ((|ReduceAst| . |BasicType|) T) ((|ReduceAst| . |AbstractSyntaxCategory|) T) ((|RadixExpansion| . |QuotientFieldCategory|) 188937) ((|RadixExpansion| . |StepThrough|) T) ((|RadixExpansion| . |CoercibleFrom|) 188871) ((|RadixExpansion| . |RetractableTo|) 188815) ((|RadixExpansion| . |ConvertibleTo|) 188716) ((|RadixExpansion| . |RealConstant|) T) ((|RadixExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|RadixExpansion| . |Patternable|) 188693) ((|RadixExpansion| . |OrderedRing|) T) ((|RadixExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|RadixExpansion| . |OrderedAbelianSemiGroup|) T) ((|RadixExpansion| . |OrderedType|) T) ((|RadixExpansion| . |OrderedSet|) T) ((|RadixExpansion| . |OrderedAbelianMonoid|) T) ((|RadixExpansion| . |OrderedAbelianGroup|) T) ((|RadixExpansion| . |OrderedIntegralDomain|) T) ((|RadixExpansion| . |PatternMatchable|) 188670) ((|RadixExpansion| . |FullyPatternMatchable|) 188647) ((|RadixExpansion| . |LinearlyExplicitRingOver|) 188624) ((|RadixExpansion| . |FullyLinearlyExplicitRingOver|) 188601) ((|RadixExpansion| . |Eltable|) NIL) ((|RadixExpansion| . |Evalable|) NIL) ((|RadixExpansion| . |InnerEvalable|) NIL) ((|RadixExpansion| . |Functorial|) 188578) ((|RadixExpansion| . |FullyEvalableOver|) 188555) ((|RadixExpansion| . |DivisionRing|) T) ((|RadixExpansion| . |BiModule|) 188473) ((|RadixExpansion| . |RightLinearSet|) 188407) ((|RadixExpansion| . |RightModule|) 188341) ((|RadixExpansion| . |EntireRing|) T) ((|RadixExpansion| . |Module|) 188275) ((|RadixExpansion| . |LinearSet|) 188209) ((|RadixExpansion| . |LeftModule|) 188143) ((|RadixExpansion| . |LeftLinearSet|) 188077) ((|RadixExpansion| . |Algebra|) 188011) ((|RadixExpansion| . |EuclideanDomain|) T) ((|RadixExpansion| . |GcdDomain|) T) ((|RadixExpansion| . |CommutativeRing|) T) ((|RadixExpansion| . |IntegralDomain|) T) ((|RadixExpansion| . |PrincipalIdealDomain|) T) ((|RadixExpansion| . |UniqueFactorizationDomain|) T) ((|RadixExpansion| . |Field|) T) ((|RadixExpansion| . |DifferentialRing|) T) ((|RadixExpansion| . |DifferentialDomain|) 187998) ((|RadixExpansion| . |DifferentialSpace|) T) ((|RadixExpansion| . |DifferentialSpaceExtension|) 187975) ((|RadixExpansion| . |PartialDifferentialDomain|) NIL) ((|RadixExpansion| . |PartialDifferentialSpace|) NIL) ((|RadixExpansion| . |PartialDifferentialRing|) NIL) ((|RadixExpansion| . |DifferentialExtension|) 187952) ((|RadixExpansion| . |CharacteristicZero|) T) ((|RadixExpansion| . |CharacteristicNonZero|) NIL) ((|RadixExpansion| . |CancellationAbelianMonoid|) T) ((|RadixExpansion| . |AbelianSemiGroup|) T) ((|RadixExpansion| . |BasicType|) T) ((|RadixExpansion| . |Join|) T) ((|RadixExpansion| . |Type|) T) ((|RadixExpansion| . |CoercibleTo|) 187893) ((|RadixExpansion| . |SetCategory|) T) ((|RadixExpansion| . |AbelianMonoid|) T) ((|RadixExpansion| . |AbelianGroup|) T) ((|RadixExpansion| . |Ring|) T) ((|RadixExpansion| . |Monoid|) T) ((|RadixExpansion| . |SemiRing|) T) ((|RadixExpansion| . |SemiGroup|) T) ((|RadixExpansion| . |Rng|) T) ((|RadicalFunctionField| . |FunctionFieldCategory|) 187867) ((|RadicalFunctionField| . |CommutativeRing|) T) ((|RadicalFunctionField| . |CoercibleFrom|) 187775) ((|RadicalFunctionField| . |Rng|) T) ((|RadicalFunctionField| . |SemiGroup|) T) ((|RadicalFunctionField| . |SemiRing|) T) ((|RadicalFunctionField| . |Monoid|) T) ((|RadicalFunctionField| . |Ring|) T) ((|RadicalFunctionField| . |LeftModule|) 187633) ((|RadicalFunctionField| . |LeftLinearSet|) 187541) ((|RadicalFunctionField| . |CancellationAbelianMonoid|) T) ((|RadicalFunctionField| . |AbelianSemiGroup|) T) ((|RadicalFunctionField| . |BasicType|) T) ((|RadicalFunctionField| . |Join|) T) ((|RadicalFunctionField| . |Type|) T) ((|RadicalFunctionField| . |CoercibleTo|) 187515) ((|RadicalFunctionField| . |SetCategory|) T) ((|RadicalFunctionField| . |AbelianMonoid|) T) ((|RadicalFunctionField| . |AbelianGroup|) T) ((|RadicalFunctionField| . |RightModule|) 187443) ((|RadicalFunctionField| . |RightLinearSet|) 187371) ((|RadicalFunctionField| . |BiModule|) 187283) ((|RadicalFunctionField| . |ConvertibleTo|) 187267) ((|RadicalFunctionField| . |DifferentialExtension|) 187238) ((|RadicalFunctionField| . |PartialDifferentialRing|) 187157) ((|RadicalFunctionField| . |PartialDifferentialSpace|) 187005) ((|RadicalFunctionField| . |PartialDifferentialDomain|) 186851) ((|RadicalFunctionField| . |DifferentialSpaceExtension|) 186822) ((|RadicalFunctionField| . |DifferentialSpace|) 186721) ((|RadicalFunctionField| . |DifferentialDomain|) 186614) ((|RadicalFunctionField| . |DifferentialRing|) 186566) ((|RadicalFunctionField| . |Field|) T) ((|RadicalFunctionField| . |UniqueFactorizationDomain|) T) ((|RadicalFunctionField| . |PrincipalIdealDomain|) T) ((|RadicalFunctionField| . |IntegralDomain|) T) ((|RadicalFunctionField| . |Module|) 186494) ((|RadicalFunctionField| . |LinearSet|) 186422) ((|RadicalFunctionField| . |Algebra|) 186350) ((|RadicalFunctionField| . |GcdDomain|) T) ((|RadicalFunctionField| . |EuclideanDomain|) T) ((|RadicalFunctionField| . |EntireRing|) T) ((|RadicalFunctionField| . |DivisionRing|) T) ((|RadicalFunctionField| . |Finite|) NIL) ((|RadicalFunctionField| . |FiniteFieldCategory|) NIL) ((|RadicalFunctionField| . |StepThrough|) NIL) ((|RadicalFunctionField| . |CharacteristicNonZero|) 186297) ((|RadicalFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|RadicalFunctionField| . |FramedAlgebra|) 186263) ((|RadicalFunctionField| . |CharacteristicZero|) 186213) ((|RadicalFunctionField| . |FiniteRankAlgebra|) 186179) ((|RadicalFunctionField| . |FullyLinearlyExplicitRingOver|) 186150) ((|RadicalFunctionField| . |LinearlyExplicitRingOver|) 186051) ((|RadicalFunctionField| . |FullyRetractableTo|) 186022) ((|RadicalFunctionField| . |RetractableTo|) 185852) ((|RadicalFunctionField| . |MonogenicAlgebra|) 185818) ((|Queue| . |QueueAggregate|) 185802) ((|Queue| . |FiniteAggregate|) 185786) ((|Queue| . |HomogeneousAggregate|) 185770) ((|Queue| . |SetCategory|) 185740) ((|Queue| . |Functorial|) 185724) ((|Queue| . |InnerEvalable|) 185643) ((|Queue| . |Evalable|) 185567) ((|Queue| . |CoercibleTo|) 185469) ((|Queue| . |BasicType|) 185407) ((|Queue| . |Type|) T) ((|Queue| . |Join|) T) ((|Queue| . |Aggregate|) T) ((|Queue| . |ShallowlyMutableAggregate|) 185391) ((|Queue| . |BagAggregate|) 185375) ((|Quaternion| . |QuaternionCategory|) 185359) ((|Quaternion| . |OrderedType|) 185330) ((|Quaternion| . |OrderedSet|) 185301) ((|Quaternion| . |RetractableTo|) 185145) ((|Quaternion| . |FullyRetractableTo|) 185129) ((|Quaternion| . |LinearlyExplicitRingOver|) 185045) ((|Quaternion| . |LeftModule|) 184901) ((|Quaternion| . |FullyLinearlyExplicitRingOver|) 184885) ((|Quaternion| . |Eltable|) 184838) ((|Quaternion| . |Evalable|) 184797) ((|Quaternion| . |InnerEvalable|) 184686) ((|Quaternion| . |Functorial|) 184670) ((|Quaternion| . |FullyEvalableOver|) 184654) ((|Quaternion| . |Algebra|) 184588) ((|Quaternion| . |BiModule|) 184448) ((|Quaternion| . |RightLinearSet|) 184322) ((|Quaternion| . |RightModule|) 184196) ((|Quaternion| . |LeftLinearSet|) 184100) ((|Quaternion| . |LinearSet|) 184034) ((|Quaternion| . |Module|) 183968) ((|Quaternion| . |CoercibleFrom|) 183821) ((|Quaternion| . |EntireRing|) 183764) ((|Quaternion| . |DivisionRing|) 183740) ((|Quaternion| . |DifferentialRing|) 183705) ((|Quaternion| . |DifferentialDomain|) 183624) ((|Quaternion| . |DifferentialSpace|) 183549) ((|Quaternion| . |DifferentialSpaceExtension|) 183533) ((|Quaternion| . |PartialDifferentialDomain|) 183405) ((|Quaternion| . |PartialDifferentialSpace|) 183279) ((|Quaternion| . |PartialDifferentialRing|) 183211) ((|Quaternion| . |DifferentialExtension|) 183195) ((|Quaternion| . |ConvertibleTo|) 183131) ((|Quaternion| . |CharacteristicZero|) 183094) ((|Quaternion| . |CharacteristicNonZero|) 183054) ((|Quaternion| . |CancellationAbelianMonoid|) T) ((|Quaternion| . |AbelianSemiGroup|) T) ((|Quaternion| . |BasicType|) T) ((|Quaternion| . |Join|) T) ((|Quaternion| . |Type|) T) ((|Quaternion| . |CoercibleTo|) 183028) ((|Quaternion| . |SetCategory|) T) ((|Quaternion| . |AbelianMonoid|) T) ((|Quaternion| . |AbelianGroup|) T) ((|Quaternion| . |Ring|) T) ((|Quaternion| . |Monoid|) T) ((|Quaternion| . |SemiRing|) T) ((|Quaternion| . |SemiGroup|) T) ((|Quaternion| . |Rng|) T) ((|QuasiquoteAst| . |SpadSyntaxCategory|) T) ((|QuasiquoteAst| . |HomotopicTo|) 183006) ((|QuasiquoteAst| . |CoercibleTo|) 182961) ((|QuasiquoteAst| . |CoercibleFrom|) 182939) ((|QuasiquoteAst| . |SetCategory|) T) ((|QuasiquoteAst| . |Type|) T) ((|QuasiquoteAst| . |Join|) T) ((|QuasiquoteAst| . |BasicType|) T) ((|QuasiquoteAst| . |AbstractSyntaxCategory|) T) ((|QuadraticForm| . |AbelianGroup|) T) ((|QuadraticForm| . |LeftLinearSet|) 182916) ((|QuadraticForm| . |AbelianMonoid|) T) ((|QuadraticForm| . |SetCategory|) T) ((|QuadraticForm| . |CoercibleTo|) 182890) ((|QuadraticForm| . |Type|) T) ((|QuadraticForm| . |Join|) T) ((|QuadraticForm| . |BasicType|) T) ((|QuadraticForm| . |AbelianSemiGroup|) T) ((|QuadraticForm| . |CancellationAbelianMonoid|) T) ((|QuadraticForm| . |Eltable|) 182846) ((|QueryEquation| . |CoercibleTo|) 182820) ((|QuasiAlgebraicSet| . |SetCategory|) T) ((|QuasiAlgebraicSet| . |CoercibleTo|) 182794) ((|QuasiAlgebraicSet| . |Type|) T) ((|QuasiAlgebraicSet| . |Join|) T) ((|QuasiAlgebraicSet| . |BasicType|) T) ((|Partition| . |OrderedCancellationAbelianMonoid|) T) ((|Partition| . |OrderedAbelianSemiGroup|) T) ((|Partition| . |OrderedType|) T) ((|Partition| . |OrderedSet|) T) ((|Partition| . |OrderedAbelianMonoid|) T) ((|Partition| . |AbelianMonoid|) T) ((|Partition| . |SetCategory|) T) ((|Partition| . |CoercibleTo|) 182731) ((|Partition| . |Type|) T) ((|Partition| . |Join|) T) ((|Partition| . |BasicType|) T) ((|Partition| . |AbelianSemiGroup|) T) ((|Partition| . |CancellationAbelianMonoid|) T) ((|PretendAst| . |SpadSyntaxCategory|) T) ((|PretendAst| . |HomotopicTo|) 182709) ((|PretendAst| . |CoercibleTo|) 182664) ((|PretendAst| . |CoercibleFrom|) 182642) ((|PretendAst| . |SetCategory|) T) ((|PretendAst| . |Type|) T) ((|PretendAst| . |Join|) T) ((|PretendAst| . |BasicType|) T) ((|PretendAst| . |AbstractSyntaxCategory|) T) ((|PropositionalFormula| . |PropositionalLogic|) T) ((|PropositionalFormula| . |BasicType|) T) ((|PropositionalFormula| . |CoercibleTo|) 182616) ((|PropositionalFormula| . |SetCategory|) T) ((|PropositionalFormula| . |Logic|) T) ((|PropositionalFormula| . |Join|) T) ((|PropositionalFormula| . |Type|) T) ((|PropositionalFormula| . |BooleanLogic|) T) ((|PropositionalFormula| . |CoercibleFrom|) 182600) ((|Property| . |CoercibleTo|) 182574) ((|Product| . |SetCategory|) T) ((|Product| . |CoercibleTo|) 182548) ((|Product| . |Type|) T) ((|Product| . |Join|) T) ((|Product| . |BasicType|) T) ((|Product| . |Finite|) 182493) ((|Product| . |Monoid|) 182381) ((|Product| . |SemiGroup|) 182269) ((|Product| . |AbelianMonoid|) 181949) ((|Product| . |AbelianSemiGroup|) 181629) ((|Product| . |CancellationAbelianMonoid|) 181377) ((|Product| . |Group|) 181324) ((|Product| . |AbelianGroup|) 181257) ((|Product| . |LeftLinearSet|) 181174) ((|Product| . |OrderedAbelianMonoidSup|) 181085) ((|Product| . |OrderedAbelianMonoid|) 180996) ((|Product| . |OrderedSet|) 180840) ((|Product| . |OrderedType|) 180684) ((|Product| . |OrderedAbelianSemiGroup|) 180595) ((|Product| . |OrderedCancellationAbelianMonoid|) 180506) ((|PrimitiveArray| . |OneDimensionalArrayAggregate|) 180490) ((|PrimitiveArray| . |ShallowlyMutableAggregate|) 180474) ((|PrimitiveArray| . |FiniteAggregate|) 180458) ((|PrimitiveArray| . |Aggregate|) T) ((|PrimitiveArray| . |Join|) T) ((|PrimitiveArray| . |Type|) T) ((|PrimitiveArray| . |BasicType|) 180368) ((|PrimitiveArray| . |CoercibleTo|) 180242) ((|PrimitiveArray| . |Evalable|) 180166) ((|PrimitiveArray| . |InnerEvalable|) 180085) ((|PrimitiveArray| . |Functorial|) 180069) ((|PrimitiveArray| . |SetCategory|) 180006) ((|PrimitiveArray| . |HomogeneousAggregate|) 179990) ((|PrimitiveArray| . |LinearAggregate|) 179974) ((|PrimitiveArray| . |EltableAggregate|) 179946) ((|PrimitiveArray| . |Eltable|) 179875) ((|PrimitiveArray| . |IndexedAggregate|) 179847) ((|PrimitiveArray| . |ConvertibleTo|) 179783) ((|PrimitiveArray| . |Collection|) 179767) ((|PrimitiveArray| . |OrderedSet|) 179738) ((|PrimitiveArray| . |OrderedType|) 179709) ((|PrimitiveArray| . |FiniteLinearAggregate|) 179693) ((|PolynomialRing| . |FiniteAbelianMonoidRing|) 179672) ((|PolynomialRing| . |RetractableTo|) 179516) ((|PolynomialRing| . |FullyRetractableTo|) 179500) ((|PolynomialRing| . |Algebra|) 179344) ((|PolynomialRing| . |CoercibleFrom|) 179134) ((|PolynomialRing| . |LeftModule|) 179031) ((|PolynomialRing| . |LeftLinearSet|) 178908) ((|PolynomialRing| . |Rng|) T) ((|PolynomialRing| . |SemiGroup|) T) ((|PolynomialRing| . |SemiRing|) T) ((|PolynomialRing| . |Monoid|) T) ((|PolynomialRing| . |Ring|) T) ((|PolynomialRing| . |BiModule|) 178727) ((|PolynomialRing| . |RightLinearSet|) 178560) ((|PolynomialRing| . |RightModule|) 178393) ((|PolynomialRing| . |AbelianGroup|) T) ((|PolynomialRing| . |AbelianMonoid|) T) ((|PolynomialRing| . |SetCategory|) T) ((|PolynomialRing| . |CoercibleTo|) 178367) ((|PolynomialRing| . |Type|) T) ((|PolynomialRing| . |Join|) T) ((|PolynomialRing| . |BasicType|) T) ((|PolynomialRing| . |AbelianSemiGroup|) T) ((|PolynomialRing| . |CancellationAbelianMonoid|) T) ((|PolynomialRing| . |LinearSet|) 178211) ((|PolynomialRing| . |Module|) 178055) ((|PolynomialRing| . |CharacteristicNonZero|) 178015) ((|PolynomialRing| . |CharacteristicZero|) 177978) ((|PolynomialRing| . |CommutativeRing|) 177907) ((|PolynomialRing| . |Functorial|) 177891) ((|PolynomialRing| . |IntegralDomain|) 177858) ((|PolynomialRing| . |EntireRing|) 177825) ((|PolynomialRing| . |AbelianMonoidRing|) 177804) ((|PortNumber| . |SetCategory|) T) ((|PortNumber| . |CoercibleTo|) 177752) ((|PortNumber| . |Type|) T) ((|PortNumber| . |Join|) T) ((|PortNumber| . |BasicType|) T) ((|Polynomial| . |PolynomialCategory|) 177697) ((|Polynomial| . |CoercibleFrom|) 177387) ((|Polynomial| . |RetractableTo|) 177212) ((|Polynomial| . |UniqueFactorizationDomain|) 177162) ((|Polynomial| . |PolynomialFactorizationExplicit|) 177112) ((|Polynomial| . |PatternMatchable|) 176993) ((|Polynomial| . |PartialDifferentialSpace|) 176971) ((|Polynomial| . |PartialDifferentialDomain|) 176947) ((|Polynomial| . |PartialDifferentialRing|) 176925) ((|Polynomial| . |InnerEvalable|) 176869) ((|Polynomial| . |GcdDomain|) 176787) ((|Polynomial| . |LinearlyExplicitRingOver|) 176703) ((|Polynomial| . |LeftModule|) 176532) ((|Polynomial| . |FullyLinearlyExplicitRingOver|) 176516) ((|Polynomial| . |AbelianMonoidRing|) 176468) ((|Polynomial| . |Algebra|) 176231) ((|Polynomial| . |LinearSet|) 175994) ((|Polynomial| . |Module|) 175757) ((|Polynomial| . |EntireRing|) 175643) ((|Polynomial| . |IntegralDomain|) 175529) ((|Polynomial| . |Functorial|) 175513) ((|Polynomial| . |BiModule|) 175256) ((|Polynomial| . |RightLinearSet|) 175013) ((|Polynomial| . |RightModule|) 174770) ((|Polynomial| . |CommutativeRing|) 174623) ((|Polynomial| . |CharacteristicZero|) 174586) ((|Polynomial| . |CharacteristicNonZero|) 174546) ((|Polynomial| . |LeftLinearSet|) 174423) ((|Polynomial| . |CancellationAbelianMonoid|) T) ((|Polynomial| . |AbelianSemiGroup|) T) ((|Polynomial| . |BasicType|) T) ((|Polynomial| . |Join|) T) ((|Polynomial| . |Type|) T) ((|Polynomial| . |CoercibleTo|) 174397) ((|Polynomial| . |SetCategory|) T) ((|Polynomial| . |AbelianMonoid|) T) ((|Polynomial| . |AbelianGroup|) T) ((|Polynomial| . |Ring|) T) ((|Polynomial| . |Monoid|) T) ((|Polynomial| . |SemiRing|) T) ((|Polynomial| . |SemiGroup|) T) ((|Polynomial| . |Rng|) T) ((|Polynomial| . |FullyRetractableTo|) 174381) ((|Polynomial| . |FiniteAbelianMonoidRing|) 174333) ((|Polynomial| . |Evalable|) 174320) ((|Polynomial| . |ConvertibleTo|) 174098) ((|Point| . |PointCategory|) 174082) ((|Point| . |OneDimensionalArrayAggregate|) 174066) ((|Point| . |ShallowlyMutableAggregate|) 174050) ((|Point| . |FiniteAggregate|) 174034) ((|Point| . |Aggregate|) T) ((|Point| . |Join|) T) ((|Point| . |Type|) T) ((|Point| . |BasicType|) 173944) ((|Point| . |CoercibleTo|) 173818) ((|Point| . |Evalable|) 173742) ((|Point| . |InnerEvalable|) 173661) ((|Point| . |Functorial|) 173645) ((|Point| . |SetCategory|) 173582) ((|Point| . |HomogeneousAggregate|) 173566) ((|Point| . |LinearAggregate|) 173550) ((|Point| . |EltableAggregate|) 173522) ((|Point| . |Eltable|) 173451) ((|Point| . |IndexedAggregate|) 173423) ((|Point| . |ConvertibleTo|) 173359) ((|Point| . |Collection|) 173343) ((|Point| . |OrderedSet|) 173314) ((|Point| . |OrderedType|) 173285) ((|Point| . |FiniteLinearAggregate|) 173269) ((|Point| . |VectorCategory|) 173253) ((|Point| . |ConvertibleFrom|) 173228) ((|Plot3D| . |PlottableSpaceCurveCategory|) T) ((|Plot3D| . |CoercibleTo|) 173202) ((|Plot| . |PlottablePlaneCurveCategory|) T) ((|Plot| . |CoercibleTo|) 173176) ((|PositiveInteger| . |OrderedAbelianSemiGroup|) T) ((|PositiveInteger| . |OrderedType|) T) ((|PositiveInteger| . |OrderedSet|) T) ((|PositiveInteger| . |SetCategory|) T) ((|PositiveInteger| . |CoercibleTo|) 173150) ((|PositiveInteger| . |Type|) T) ((|PositiveInteger| . |Join|) T) ((|PositiveInteger| . |BasicType|) T) ((|PositiveInteger| . |AbelianSemiGroup|) T) ((|PositiveInteger| . |Monoid|) T) ((|PositiveInteger| . |SemiGroup|) T) ((|PartialFraction| . |Field|) T) ((|PartialFraction| . |UniqueFactorizationDomain|) T) ((|PartialFraction| . |PrincipalIdealDomain|) T) ((|PartialFraction| . |IntegralDomain|) T) ((|PartialFraction| . |CommutativeRing|) T) ((|PartialFraction| . |CoercibleFrom|) 173071) ((|PartialFraction| . |Module|) 173012) ((|PartialFraction| . |LinearSet|) 172953) ((|PartialFraction| . |Algebra|) 172894) ((|PartialFraction| . |GcdDomain|) T) ((|PartialFraction| . |EuclideanDomain|) T) ((|PartialFraction| . |LeftModule|) 172835) ((|PartialFraction| . |LeftLinearSet|) 172756) ((|PartialFraction| . |Rng|) T) ((|PartialFraction| . |SemiGroup|) T) ((|PartialFraction| . |SemiRing|) T) ((|PartialFraction| . |Monoid|) T) ((|PartialFraction| . |Ring|) T) ((|PartialFraction| . |BiModule|) 172683) ((|PartialFraction| . |RightLinearSet|) 172624) ((|PartialFraction| . |RightModule|) 172565) ((|PartialFraction| . |AbelianGroup|) T) ((|PartialFraction| . |AbelianMonoid|) T) ((|PartialFraction| . |SetCategory|) T) ((|PartialFraction| . |CoercibleTo|) 172539) ((|PartialFraction| . |Type|) T) ((|PartialFraction| . |Join|) T) ((|PartialFraction| . |BasicType|) T) ((|PartialFraction| . |AbelianSemiGroup|) T) ((|PartialFraction| . |CancellationAbelianMonoid|) T) ((|PartialFraction| . |EntireRing|) T) ((|PartialFraction| . |DivisionRing|) T) ((|PrimeField| . |FiniteFieldCategory|) T) ((|PrimeField| . |StepThrough|) T) ((|PrimeField| . |Finite|) T) ((|PrimeField| . |CharacteristicNonZero|) T) ((|PrimeField| . |Field|) T) ((|PrimeField| . |UniqueFactorizationDomain|) T) ((|PrimeField| . |PrincipalIdealDomain|) T) ((|PrimeField| . |IntegralDomain|) T) ((|PrimeField| . |CommutativeRing|) T) ((|PrimeField| . |CoercibleFrom|) 172473) ((|PrimeField| . |Module|) 172427) ((|PrimeField| . |LinearSet|) 172381) ((|PrimeField| . |Algebra|) 172335) ((|PrimeField| . |GcdDomain|) T) ((|PrimeField| . |EuclideanDomain|) T) ((|PrimeField| . |BiModule|) 172280) ((|PrimeField| . |RightLinearSet|) 172234) ((|PrimeField| . |RightModule|) 172188) ((|PrimeField| . |LeftLinearSet|) 172122) ((|PrimeField| . |LeftModule|) 172076) ((|PrimeField| . |EntireRing|) T) ((|PrimeField| . |DivisionRing|) T) ((|PrimeField| . |FieldOfPrimeCharacteristic|) T) ((|PrimeField| . |DifferentialSpace|) T) ((|PrimeField| . |Type|) T) ((|PrimeField| . |Join|) T) ((|PrimeField| . |DifferentialDomain|) 172063) ((|PrimeField| . |Ring|) T) ((|PrimeField| . |Monoid|) T) ((|PrimeField| . |SemiRing|) T) ((|PrimeField| . |SemiGroup|) T) ((|PrimeField| . |Rng|) T) ((|PrimeField| . |AbelianGroup|) T) ((|PrimeField| . |AbelianMonoid|) T) ((|PrimeField| . |SetCategory|) T) ((|PrimeField| . |CoercibleTo|) 172037) ((|PrimeField| . |BasicType|) T) ((|PrimeField| . |AbelianSemiGroup|) T) ((|PrimeField| . |CancellationAbelianMonoid|) T) ((|PrimeField| . |DifferentialRing|) T) ((|PrimeField| . |FiniteAlgebraicExtensionField|) 172024) ((|PrimeField| . |CharacteristicZero|) 171990) ((|PrimeField| . |RetractableTo|) 171977) ((|PrimeField| . |VectorSpace|) 171964) ((|PrimeField| . |ExtensionField|) 171951) ((|PrimeField| . |ConvertibleTo|) 171928) ((|PermutationGroup| . |SetCategory|) T) ((|PermutationGroup| . |CoercibleTo|) 171902) ((|PermutationGroup| . |Type|) T) ((|PermutationGroup| . |Join|) T) ((|PermutationGroup| . |BasicType|) T) ((|Permutation| . |PermutationCategory|) 171886) ((|Permutation| . |OrderedType|) 171828) ((|Permutation| . |OrderedSet|) 171770) ((|Permutation| . |Monoid|) T) ((|Permutation| . |SetCategory|) T) ((|Permutation| . |CoercibleTo|) 171744) ((|Permutation| . |BasicType|) T) ((|Permutation| . |SemiGroup|) T) ((|Permutation| . |Group|) T) ((|Permutation| . |Type|) T) ((|Permutation| . |Join|) T) ((|Permutation| . |Eltable|) 171723) ((|PendantTree| . |BinaryRecursiveAggregate|) 171707) ((|PendantTree| . |HomogeneousAggregate|) 171691) ((|PendantTree| . |SetCategory|) 171661) ((|PendantTree| . |Functorial|) 171645) ((|PendantTree| . |InnerEvalable|) 171564) ((|PendantTree| . |Evalable|) 171488) ((|PendantTree| . |CoercibleTo|) 171368) ((|PendantTree| . |BasicType|) 171306) ((|PendantTree| . |Type|) T) ((|PendantTree| . |Join|) T) ((|PendantTree| . |Aggregate|) T) ((|PendantTree| . |RecursiveAggregate|) 171290) ((|PoincareBirkhoffWittLyndonBasis| . |OrderedSet|) T) ((|PoincareBirkhoffWittLyndonBasis| . |CoercibleTo|) 171264) ((|PoincareBirkhoffWittLyndonBasis| . |SetCategory|) T) ((|PoincareBirkhoffWittLyndonBasis| . |BasicType|) T) ((|PoincareBirkhoffWittLyndonBasis| . |Join|) T) ((|PoincareBirkhoffWittLyndonBasis| . |Type|) T) ((|PoincareBirkhoffWittLyndonBasis| . |OrderedType|) T) ((|PoincareBirkhoffWittLyndonBasis| . |RetractableTo|) 171233) ((|PoincareBirkhoffWittLyndonBasis| . |CoercibleFrom|) 171202) ((|Pattern| . |SetCategory|) T) ((|Pattern| . |CoercibleTo|) 171176) ((|Pattern| . |Type|) T) ((|Pattern| . |Join|) T) ((|Pattern| . |BasicType|) T) ((|Pattern| . |RetractableTo|) 171141) ((|Pattern| . |CoercibleFrom|) 171106) ((|PatternMatchResult| . |SetCategory|) T) ((|PatternMatchResult| . |CoercibleTo|) 171080) ((|PatternMatchResult| . |Type|) T) ((|PatternMatchResult| . |Join|) T) ((|PatternMatchResult| . |BasicType|) T) ((|PatternMatchListResult| . |SetCategory|) T) ((|PatternMatchListResult| . |CoercibleTo|) 171054) ((|PatternMatchListResult| . |Type|) T) ((|PatternMatchListResult| . |Join|) T) ((|PatternMatchListResult| . |BasicType|) T) ((|ParameterAst| . |SpadSyntaxCategory|) T) ((|ParameterAst| . |HomotopicTo|) 171032) ((|ParameterAst| . |CoercibleTo|) 170987) ((|ParameterAst| . |CoercibleFrom|) 170965) ((|ParameterAst| . |SetCategory|) T) ((|ParameterAst| . |Type|) T) ((|ParameterAst| . |Join|) T) ((|ParameterAst| . |BasicType|) T) ((|ParameterAst| . |AbstractSyntaxCategory|) T) ((|ParameterAst| . |UnionType|) T) ((|Palette| . |SetCategory|) T) ((|Palette| . |CoercibleTo|) 170939) ((|Palette| . |Type|) T) ((|Palette| . |Join|) T) ((|Palette| . |BasicType|) T) ((|Palette| . |CoercibleFrom|) 170918) ((|Pair| . |Type|) T) ((|Pair| . |Join|) T) ((|Pair| . |CoercibleTo|) 170735) ((|Pair| . |SetCategory|) 170670) ((|Pair| . |BasicType|) 170605) ((|PAdicRationalConstructor| . |QuotientFieldCategory|) 170589) ((|PAdicRationalConstructor| . |StepThrough|) 170559) ((|PAdicRationalConstructor| . |RetractableTo|) 170378) ((|PAdicRationalConstructor| . |CoercibleFrom|) 170244) ((|PAdicRationalConstructor| . |ConvertibleTo|) 169947) ((|PAdicRationalConstructor| . |RealConstant|) 169916) ((|PAdicRationalConstructor| . |PolynomialFactorizationExplicit|) 169866) ((|PAdicRationalConstructor| . |Patternable|) 169850) ((|PAdicRationalConstructor| . |OrderedRing|) 169810) ((|PAdicRationalConstructor| . |OrderedCancellationAbelianMonoid|) 169770) ((|PAdicRationalConstructor| . |OrderedAbelianSemiGroup|) 169730) ((|PAdicRationalConstructor| . |OrderedType|) 169657) ((|PAdicRationalConstructor| . |OrderedSet|) 169584) ((|PAdicRationalConstructor| . |OrderedAbelianMonoid|) 169544) ((|PAdicRationalConstructor| . |OrderedAbelianGroup|) 169504) ((|PAdicRationalConstructor| . |OrderedIntegralDomain|) 169464) ((|PAdicRationalConstructor| . |PatternMatchable|) 169345) ((|PAdicRationalConstructor| . |FullyPatternMatchable|) 169329) ((|PAdicRationalConstructor| . |LinearlyExplicitRingOver|) 169245) ((|PAdicRationalConstructor| . |LeftModule|) 169118) ((|PAdicRationalConstructor| . |FullyLinearlyExplicitRingOver|) 169102) ((|PAdicRationalConstructor| . |Eltable|) 169055) ((|PAdicRationalConstructor| . |Evalable|) 169014) ((|PAdicRationalConstructor| . |InnerEvalable|) 168903) ((|PAdicRationalConstructor| . |Functorial|) 168887) ((|PAdicRationalConstructor| . |FullyEvalableOver|) 168871) ((|PAdicRationalConstructor| . |DivisionRing|) T) ((|PAdicRationalConstructor| . |BiModule|) 168798) ((|PAdicRationalConstructor| . |RightLinearSet|) 168739) ((|PAdicRationalConstructor| . |RightModule|) 168680) ((|PAdicRationalConstructor| . |EntireRing|) T) ((|PAdicRationalConstructor| . |Module|) 168621) ((|PAdicRationalConstructor| . |LinearSet|) 168562) ((|PAdicRationalConstructor| . |LeftLinearSet|) 168483) ((|PAdicRationalConstructor| . |Algebra|) 168424) ((|PAdicRationalConstructor| . |EuclideanDomain|) T) ((|PAdicRationalConstructor| . |GcdDomain|) T) ((|PAdicRationalConstructor| . |CommutativeRing|) T) ((|PAdicRationalConstructor| . |IntegralDomain|) T) ((|PAdicRationalConstructor| . |PrincipalIdealDomain|) T) ((|PAdicRationalConstructor| . |UniqueFactorizationDomain|) T) ((|PAdicRationalConstructor| . |Field|) T) ((|PAdicRationalConstructor| . |DifferentialRing|) 168389) ((|PAdicRationalConstructor| . |DifferentialDomain|) 168308) ((|PAdicRationalConstructor| . |DifferentialSpace|) 168233) ((|PAdicRationalConstructor| . |DifferentialSpaceExtension|) 168217) ((|PAdicRationalConstructor| . |PartialDifferentialDomain|) 168089) ((|PAdicRationalConstructor| . |PartialDifferentialSpace|) 167963) ((|PAdicRationalConstructor| . |PartialDifferentialRing|) 167895) ((|PAdicRationalConstructor| . |DifferentialExtension|) 167879) ((|PAdicRationalConstructor| . |CharacteristicZero|) 167798) ((|PAdicRationalConstructor| . |CharacteristicNonZero|) 167758) ((|PAdicRationalConstructor| . |CancellationAbelianMonoid|) T) ((|PAdicRationalConstructor| . |AbelianSemiGroup|) T) ((|PAdicRationalConstructor| . |BasicType|) T) ((|PAdicRationalConstructor| . |Join|) T) ((|PAdicRationalConstructor| . |Type|) T) ((|PAdicRationalConstructor| . |CoercibleTo|) 167732) ((|PAdicRationalConstructor| . |SetCategory|) T) ((|PAdicRationalConstructor| . |AbelianMonoid|) T) ((|PAdicRationalConstructor| . |AbelianGroup|) T) ((|PAdicRationalConstructor| . |Ring|) T) ((|PAdicRationalConstructor| . |Monoid|) T) ((|PAdicRationalConstructor| . |SemiRing|) T) ((|PAdicRationalConstructor| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |Rng|) T) ((|PAdicRational| . |QuotientFieldCategory|) 167699) ((|PAdicRational| . |StepThrough|) NIL) ((|PAdicRational| . |RetractableTo|) 167666) ((|PAdicRational| . |CoercibleFrom|) 167570) ((|PAdicRational| . |ConvertibleTo|) NIL) ((|PAdicRational| . |RealConstant|) NIL) ((|PAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|PAdicRational| . |Patternable|) 167537) ((|PAdicRational| . |OrderedRing|) NIL) ((|PAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|PAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|PAdicRational| . |OrderedType|) NIL) ((|PAdicRational| . |OrderedSet|) NIL) ((|PAdicRational| . |OrderedAbelianMonoid|) NIL) ((|PAdicRational| . |OrderedAbelianGroup|) NIL) ((|PAdicRational| . |OrderedIntegralDomain|) NIL) ((|PAdicRational| . |PatternMatchable|) NIL) ((|PAdicRational| . |FullyPatternMatchable|) 167504) ((|PAdicRational| . |LinearlyExplicitRingOver|) 167471) ((|PAdicRational| . |LeftModule|) 167395) ((|PAdicRational| . |FullyLinearlyExplicitRingOver|) 167362) ((|PAdicRational| . |Eltable|) 167298) ((|PAdicRational| . |Evalable|) 167239) ((|PAdicRational| . |InnerEvalable|) 167114) ((|PAdicRational| . |Functorial|) 167081) ((|PAdicRational| . |FullyEvalableOver|) 167048) ((|PAdicRational| . |DivisionRing|) T) ((|PAdicRational| . |BiModule|) 166956) ((|PAdicRational| . |RightLinearSet|) 166880) ((|PAdicRational| . |RightModule|) 166804) ((|PAdicRational| . |EntireRing|) T) ((|PAdicRational| . |Module|) 166728) ((|PAdicRational| . |LinearSet|) 166652) ((|PAdicRational| . |LeftLinearSet|) 166556) ((|PAdicRational| . |Algebra|) 166480) ((|PAdicRational| . |EuclideanDomain|) T) ((|PAdicRational| . |GcdDomain|) T) ((|PAdicRational| . |CommutativeRing|) T) ((|PAdicRational| . |IntegralDomain|) T) ((|PAdicRational| . |PrincipalIdealDomain|) T) ((|PAdicRational| . |UniqueFactorizationDomain|) T) ((|PAdicRational| . |Field|) T) ((|PAdicRational| . |DifferentialRing|) NIL) ((|PAdicRational| . |DifferentialDomain|) NIL) ((|PAdicRational| . |DifferentialSpace|) NIL) ((|PAdicRational| . |DifferentialSpaceExtension|) 166447) ((|PAdicRational| . |PartialDifferentialDomain|) NIL) ((|PAdicRational| . |PartialDifferentialSpace|) NIL) ((|PAdicRational| . |PartialDifferentialRing|) NIL) ((|PAdicRational| . |DifferentialExtension|) 166414) ((|PAdicRational| . |CharacteristicZero|) T) ((|PAdicRational| . |CharacteristicNonZero|) NIL) ((|PAdicRational| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |AbelianSemiGroup|) T) ((|PAdicRational| . |BasicType|) T) ((|PAdicRational| . |Join|) T) ((|PAdicRational| . |Type|) T) ((|PAdicRational| . |CoercibleTo|) 166388) ((|PAdicRational| . |SetCategory|) T) ((|PAdicRational| . |AbelianMonoid|) T) ((|PAdicRational| . |AbelianGroup|) T) ((|PAdicRational| . |Ring|) T) ((|PAdicRational| . |Monoid|) T) ((|PAdicRational| . |SemiRing|) T) ((|PAdicRational| . |SemiGroup|) T) ((|PAdicRational| . |Rng|) T) ((|PAdicInteger| . |PAdicIntegerCategory|) 166372) ((|PAdicInteger| . |PrincipalIdealDomain|) T) ((|PAdicInteger| . |IntegralDomain|) T) ((|PAdicInteger| . |EntireRing|) T) ((|PAdicInteger| . |CommutativeRing|) T) ((|PAdicInteger| . |CoercibleFrom|) 166339) ((|PAdicInteger| . |Module|) 166326) ((|PAdicInteger| . |LinearSet|) 166313) ((|PAdicInteger| . |RightModule|) 166300) ((|PAdicInteger| . |RightLinearSet|) 166287) ((|PAdicInteger| . |BiModule|) 166272) ((|PAdicInteger| . |Algebra|) 166259) ((|PAdicInteger| . |GcdDomain|) T) ((|PAdicInteger| . |EuclideanDomain|) T) ((|PAdicInteger| . |Ring|) T) ((|PAdicInteger| . |Monoid|) T) ((|PAdicInteger| . |SemiRing|) T) ((|PAdicInteger| . |SemiGroup|) T) ((|PAdicInteger| . |Rng|) T) ((|PAdicInteger| . |AbelianGroup|) T) ((|PAdicInteger| . |LeftLinearSet|) 166226) ((|PAdicInteger| . |AbelianMonoid|) T) ((|PAdicInteger| . |SetCategory|) T) ((|PAdicInteger| . |CoercibleTo|) 166200) ((|PAdicInteger| . |Type|) T) ((|PAdicInteger| . |Join|) T) ((|PAdicInteger| . |BasicType|) T) ((|PAdicInteger| . |AbelianSemiGroup|) T) ((|PAdicInteger| . |CancellationAbelianMonoid|) T) ((|PAdicInteger| . |LeftModule|) 166187) ((|PAdicInteger| . |CharacteristicZero|) T) ((|OrdinaryWeightedPolynomials| . |Ring|) T) ((|OrdinaryWeightedPolynomials| . |Monoid|) T) ((|OrdinaryWeightedPolynomials| . |SemiRing|) T) ((|OrdinaryWeightedPolynomials| . |SemiGroup|) T) ((|OrdinaryWeightedPolynomials| . |Rng|) T) ((|OrdinaryWeightedPolynomials| . |AbelianGroup|) T) ((|OrdinaryWeightedPolynomials| . |LeftLinearSet|) 166114) ((|OrdinaryWeightedPolynomials| . |AbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |SetCategory|) T) ((|OrdinaryWeightedPolynomials| . |CoercibleTo|) 166060) ((|OrdinaryWeightedPolynomials| . |Type|) T) ((|OrdinaryWeightedPolynomials| . |Join|) T) ((|OrdinaryWeightedPolynomials| . |BasicType|) T) ((|OrdinaryWeightedPolynomials| . |AbelianSemiGroup|) T) ((|OrdinaryWeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |LeftModule|) 166007) ((|OrdinaryWeightedPolynomials| . |CoercibleFrom|) 165916) ((|OrdinaryWeightedPolynomials| . |HomotopicTo|) 165885) ((|OrdinaryWeightedPolynomials| . |Algebra|) 165842) ((|OrdinaryWeightedPolynomials| . |BiModule|) 165794) ((|OrdinaryWeightedPolynomials| . |RightLinearSet|) 165751) ((|OrdinaryWeightedPolynomials| . |RightModule|) 165708) ((|OrdinaryWeightedPolynomials| . |LinearSet|) 165665) ((|OrdinaryWeightedPolynomials| . |Module|) 165622) ((|OverloadSet| . |SetCategory|) T) ((|OverloadSet| . |CoercibleTo|) 165596) ((|OverloadSet| . |Type|) T) ((|OverloadSet| . |Join|) T) ((|OverloadSet| . |BasicType|) T) ((|OrderedVariableList| . |OrderedFinite|) T) ((|OrderedVariableList| . |OrderedType|) T) ((|OrderedVariableList| . |OrderedSet|) T) ((|OrderedVariableList| . |SetCategory|) T) ((|OrderedVariableList| . |CoercibleTo|) 165570) ((|OrderedVariableList| . |Type|) T) ((|OrderedVariableList| . |Join|) T) ((|OrderedVariableList| . |BasicType|) T) ((|OrderedVariableList| . |Finite|) T) ((|OrderedVariableList| . |ConvertibleTo|) 165464) ((|OutputForm| . |SetCategory|) T) ((|OutputForm| . |CoercibleTo|) 165438) ((|OutputForm| . |Type|) T) ((|OutputForm| . |Join|) T) ((|OutputForm| . |BasicType|) T) ((|OutputBinaryFile| . |OutputByteConduit|) T) ((|OutputBinaryFile| . |Conduit|) T) ((|OutputBinaryFile| . |CoercibleTo|) 165412) ((|OrdSetInts| . |OrderedSet|) T) ((|OrdSetInts| . |CoercibleTo|) 165386) ((|OrdSetInts| . |SetCategory|) T) ((|OrdSetInts| . |BasicType|) T) ((|OrdSetInts| . |Join|) T) ((|OrdSetInts| . |Type|) T) ((|OrdSetInts| . |OrderedType|) T) ((|UnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 165370) ((|UnivariateSkewPolynomial| . |RetractableTo|) 165214) ((|UnivariateSkewPolynomial| . |CoercibleFrom|) 165069) ((|UnivariateSkewPolynomial| . |FullyRetractableTo|) 165053) ((|UnivariateSkewPolynomial| . |Module|) 165010) ((|UnivariateSkewPolynomial| . |LinearSet|) 164967) ((|UnivariateSkewPolynomial| . |LeftModule|) 164941) ((|UnivariateSkewPolynomial| . |LeftLinearSet|) 164895) ((|UnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|UnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateSkewPolynomial| . |BasicType|) T) ((|UnivariateSkewPolynomial| . |Join|) T) ((|UnivariateSkewPolynomial| . |Type|) T) ((|UnivariateSkewPolynomial| . |CoercibleTo|) 164869) ((|UnivariateSkewPolynomial| . |SetCategory|) T) ((|UnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|UnivariateSkewPolynomial| . |AbelianGroup|) T) ((|UnivariateSkewPolynomial| . |RightModule|) 164853) ((|UnivariateSkewPolynomial| . |RightLinearSet|) 164837) ((|UnivariateSkewPolynomial| . |BiModule|) 164816) ((|UnivariateSkewPolynomial| . |Ring|) T) ((|UnivariateSkewPolynomial| . |Monoid|) T) ((|UnivariateSkewPolynomial| . |SemiRing|) T) ((|UnivariateSkewPolynomial| . |SemiGroup|) T) ((|UnivariateSkewPolynomial| . |Rng|) T) ((|UnivariateSkewPolynomial| . |Algebra|) 164773) ((|SparseUnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 164757) ((|SparseUnivariateSkewPolynomial| . |RetractableTo|) 164601) ((|SparseUnivariateSkewPolynomial| . |CoercibleFrom|) 164482) ((|SparseUnivariateSkewPolynomial| . |FullyRetractableTo|) 164466) ((|SparseUnivariateSkewPolynomial| . |Module|) 164423) ((|SparseUnivariateSkewPolynomial| . |LinearSet|) 164380) ((|SparseUnivariateSkewPolynomial| . |LeftModule|) 164354) ((|SparseUnivariateSkewPolynomial| . |LeftLinearSet|) 164308) ((|SparseUnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|SparseUnivariateSkewPolynomial| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Join|) T) ((|SparseUnivariateSkewPolynomial| . |Type|) T) ((|SparseUnivariateSkewPolynomial| . |CoercibleTo|) 164282) ((|SparseUnivariateSkewPolynomial| . |SetCategory|) T) ((|SparseUnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|SparseUnivariateSkewPolynomial| . |AbelianGroup|) T) ((|SparseUnivariateSkewPolynomial| . |RightModule|) 164266) ((|SparseUnivariateSkewPolynomial| . |RightLinearSet|) 164250) ((|SparseUnivariateSkewPolynomial| . |BiModule|) 164229) ((|SparseUnivariateSkewPolynomial| . |Ring|) T) ((|SparseUnivariateSkewPolynomial| . |Monoid|) T) ((|SparseUnivariateSkewPolynomial| . |SemiRing|) T) ((|SparseUnivariateSkewPolynomial| . |SemiGroup|) T) ((|SparseUnivariateSkewPolynomial| . |Rng|) T) ((|SparseUnivariateSkewPolynomial| . |Algebra|) 164186) ((|OrderedStructure| . |OrderedType|) T) ((|OrderedStructure| . |Type|) T) ((|OrderedStructure| . |Join|) T) ((|OrderedStructure| . |BasicType|) T) ((|OrderedStructure| . |HomotopicTo|) 164170) ((|OrderedStructure| . |CoercibleTo|) 164099) ((|OrderedStructure| . |CoercibleFrom|) 164083) ((|OrderedCompletion| . |SetCategory|) T) ((|OrderedCompletion| . |CoercibleTo|) 164057) ((|OrderedCompletion| . |Type|) T) ((|OrderedCompletion| . |Join|) T) ((|OrderedCompletion| . |BasicType|) T) ((|OrderedCompletion| . |FullyRetractableTo|) 164041) ((|OrderedCompletion| . |CoercibleFrom|) 163851) ((|OrderedCompletion| . |RetractableTo|) 163695) ((|OrderedCompletion| . |AbelianGroup|) 163630) ((|OrderedCompletion| . |LeftLinearSet|) 163516) ((|OrderedCompletion| . |AbelianMonoid|) 163451) ((|OrderedCompletion| . |AbelianSemiGroup|) 163386) ((|OrderedCompletion| . |CancellationAbelianMonoid|) 163321) ((|OrderedCompletion| . |OrderedRing|) 163291) ((|OrderedCompletion| . |OrderedCancellationAbelianMonoid|) 163261) ((|OrderedCompletion| . |OrderedAbelianSemiGroup|) 163231) ((|OrderedCompletion| . |OrderedType|) 163201) ((|OrderedCompletion| . |OrderedSet|) 163171) ((|OrderedCompletion| . |OrderedAbelianMonoid|) 163141) ((|OrderedCompletion| . |OrderedAbelianGroup|) 163111) ((|OrderedCompletion| . |Ring|) 163081) ((|OrderedCompletion| . |Monoid|) 163051) ((|OrderedCompletion| . |SemiRing|) 163021) ((|OrderedCompletion| . |SemiGroup|) 162991) ((|OrderedCompletion| . |Rng|) 162961) ((|OrderedCompletion| . |LeftModule|) 162925) ((|OrderedCompletion| . |CharacteristicZero|) 162895) ((|OperatorSignature| . |OperatorCategory|) 162869) ((|OperatorSignature| . |BasicType|) T) ((|OperatorSignature| . |Join|) T) ((|OperatorSignature| . |Type|) T) ((|OperatorSignature| . |CoercibleTo|) 162843) ((|OperatorSignature| . |SetCategory|) T) ((|Operator| . |Ring|) T) ((|Operator| . |Monoid|) T) ((|Operator| . |SemiRing|) T) ((|Operator| . |SemiGroup|) T) ((|Operator| . |Rng|) T) ((|Operator| . |AbelianGroup|) T) ((|Operator| . |LeftLinearSet|) 162770) ((|Operator| . |AbelianMonoid|) T) ((|Operator| . |SetCategory|) T) ((|Operator| . |CoercibleTo|) 162744) ((|Operator| . |Type|) T) ((|Operator| . |Join|) T) ((|Operator| . |BasicType|) T) ((|Operator| . |AbelianSemiGroup|) T) ((|Operator| . |CancellationAbelianMonoid|) T) ((|Operator| . |LeftModule|) 162691) ((|Operator| . |CoercibleFrom|) 162629) ((|Operator| . |RetractableTo|) 162587) ((|Operator| . |Eltable|) 162566) ((|Operator| . |CharacteristicZero|) 162529) ((|Operator| . |CharacteristicNonZero|) 162489) ((|Operator| . |Algebra|) 162446) ((|Operator| . |BiModule|) 162398) ((|Operator| . |RightLinearSet|) 162355) ((|Operator| . |RightModule|) 162312) ((|Operator| . |LinearSet|) 162269) ((|Operator| . |Module|) 162226) ((|OnePointCompletion| . |SetCategory|) T) ((|OnePointCompletion| . |CoercibleTo|) 162200) ((|OnePointCompletion| . |Type|) T) ((|OnePointCompletion| . |Join|) T) ((|OnePointCompletion| . |BasicType|) T) ((|OnePointCompletion| . |FullyRetractableTo|) 162184) ((|OnePointCompletion| . |CoercibleFrom|) 161994) ((|OnePointCompletion| . |RetractableTo|) 161838) ((|OnePointCompletion| . |AbelianGroup|) 161773) ((|OnePointCompletion| . |LeftLinearSet|) 161659) ((|OnePointCompletion| . |AbelianMonoid|) 161594) ((|OnePointCompletion| . |AbelianSemiGroup|) 161529) ((|OnePointCompletion| . |CancellationAbelianMonoid|) 161464) ((|OnePointCompletion| . |OrderedRing|) 161434) ((|OnePointCompletion| . |OrderedCancellationAbelianMonoid|) 161404) ((|OnePointCompletion| . |OrderedAbelianSemiGroup|) 161374) ((|OnePointCompletion| . |OrderedType|) 161344) ((|OnePointCompletion| . |OrderedSet|) 161314) ((|OnePointCompletion| . |OrderedAbelianMonoid|) 161284) ((|OnePointCompletion| . |OrderedAbelianGroup|) 161254) ((|OnePointCompletion| . |Ring|) 161224) ((|OnePointCompletion| . |Monoid|) 161194) ((|OnePointCompletion| . |SemiRing|) 161164) ((|OnePointCompletion| . |SemiGroup|) 161134) ((|OnePointCompletion| . |Rng|) 161104) ((|OnePointCompletion| . |LeftModule|) 161068) ((|OnePointCompletion| . |CharacteristicZero|) 161038) ((|OppositeMonogenicLinearOperator| . |MonogenicLinearOperator|) 161022) ((|OppositeMonogenicLinearOperator| . |CoercibleFrom|) 160959) ((|OppositeMonogenicLinearOperator| . |Module|) 160916) ((|OppositeMonogenicLinearOperator| . |LinearSet|) 160873) ((|OppositeMonogenicLinearOperator| . |LeftModule|) 160847) ((|OppositeMonogenicLinearOperator| . |LeftLinearSet|) 160801) ((|OppositeMonogenicLinearOperator| . |CancellationAbelianMonoid|) T) ((|OppositeMonogenicLinearOperator| . |AbelianSemiGroup|) T) ((|OppositeMonogenicLinearOperator| . |BasicType|) T) ((|OppositeMonogenicLinearOperator| . |Join|) T) ((|OppositeMonogenicLinearOperator| . |Type|) T) ((|OppositeMonogenicLinearOperator| . |CoercibleTo|) 160775) ((|OppositeMonogenicLinearOperator| . |SetCategory|) T) ((|OppositeMonogenicLinearOperator| . |AbelianMonoid|) T) ((|OppositeMonogenicLinearOperator| . |AbelianGroup|) T) ((|OppositeMonogenicLinearOperator| . |RightModule|) 160759) ((|OppositeMonogenicLinearOperator| . |RightLinearSet|) 160743) ((|OppositeMonogenicLinearOperator| . |BiModule|) 160722) ((|OppositeMonogenicLinearOperator| . |Ring|) T) ((|OppositeMonogenicLinearOperator| . |Monoid|) T) ((|OppositeMonogenicLinearOperator| . |SemiRing|) T) ((|OppositeMonogenicLinearOperator| . |SemiGroup|) T) ((|OppositeMonogenicLinearOperator| . |Rng|) T) ((|OppositeMonogenicLinearOperator| . |Algebra|) 160679) ((|OppositeMonogenicLinearOperator| . |DifferentialRing|) 160644) ((|OppositeMonogenicLinearOperator| . |DifferentialDomain|) 160603) ((|OppositeMonogenicLinearOperator| . |DifferentialSpace|) 160568) ((|OrderedFreeMonoid| . |FreeMonoidCategory|) 160552) ((|OrderedFreeMonoid| . |CoercibleFrom|) 160536) ((|OrderedFreeMonoid| . |RetractableTo|) 160520) ((|OrderedFreeMonoid| . |OrderedType|) T) ((|OrderedFreeMonoid| . |OrderedSet|) T) ((|OrderedFreeMonoid| . |SemiGroup|) T) ((|OrderedFreeMonoid| . |BasicType|) T) ((|OrderedFreeMonoid| . |Join|) T) ((|OrderedFreeMonoid| . |Type|) T) ((|OrderedFreeMonoid| . |CoercibleTo|) 160494) ((|OrderedFreeMonoid| . |SetCategory|) T) ((|OrderedFreeMonoid| . |Monoid|) T) ((|OrderedFreeMonoid| . |OrderedMonoid|) T) ((|OrderedFreeMonoid| . |OrderedSemiGroup|) T) ((|OrderlyDifferentialVariable| . |DifferentialVariableCategory|) 160478) ((|OrderlyDifferentialVariable| . |CoercibleFrom|) 160462) ((|OrderlyDifferentialVariable| . |RetractableTo|) 160446) ((|OrderlyDifferentialVariable| . |OrderedType|) T) ((|OrderlyDifferentialVariable| . |BasicType|) T) ((|OrderlyDifferentialVariable| . |SetCategory|) T) ((|OrderlyDifferentialVariable| . |CoercibleTo|) 160420) ((|OrderlyDifferentialVariable| . |OrderedSet|) T) ((|OrderlyDifferentialVariable| . |DifferentialDomain|) 160407) ((|OrderlyDifferentialVariable| . |Join|) T) ((|OrderlyDifferentialVariable| . |Type|) T) ((|OrderlyDifferentialVariable| . |DifferentialSpace|) T) ((|OrdinaryDifferentialRing| . |BiModule|) 160335) ((|OrdinaryDifferentialRing| . |RightLinearSet|) 160272) ((|OrdinaryDifferentialRing| . |RightModule|) 160209) ((|OrdinaryDifferentialRing| . |AbelianGroup|) T) ((|OrdinaryDifferentialRing| . |LeftLinearSet|) 160126) ((|OrdinaryDifferentialRing| . |AbelianMonoid|) T) ((|OrdinaryDifferentialRing| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |CoercibleTo|) 160087) ((|OrdinaryDifferentialRing| . |Type|) T) ((|OrdinaryDifferentialRing| . |Join|) T) ((|OrdinaryDifferentialRing| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |AbelianSemiGroup|) T) ((|OrdinaryDifferentialRing| . |CancellationAbelianMonoid|) T) ((|OrdinaryDifferentialRing| . |LeftModule|) 160024) ((|OrdinaryDifferentialRing| . |DifferentialRing|) T) ((|OrdinaryDifferentialRing| . |CoercibleFrom|) 159919) ((|OrdinaryDifferentialRing| . |Rng|) T) ((|OrdinaryDifferentialRing| . |SemiGroup|) T) ((|OrdinaryDifferentialRing| . |SemiRing|) T) ((|OrdinaryDifferentialRing| . |Monoid|) T) ((|OrdinaryDifferentialRing| . |Ring|) T) ((|OrdinaryDifferentialRing| . |DifferentialDomain|) 159906) ((|OrdinaryDifferentialRing| . |DifferentialSpace|) T) ((|OrdinaryDifferentialRing| . |HomotopicTo|) 159890) ((|OrdinaryDifferentialRing| . |Field|) 159866) ((|OrdinaryDifferentialRing| . |UniqueFactorizationDomain|) 159842) ((|OrdinaryDifferentialRing| . |PrincipalIdealDomain|) 159818) ((|OrdinaryDifferentialRing| . |IntegralDomain|) 159794) ((|OrdinaryDifferentialRing| . |CommutativeRing|) 159770) ((|OrdinaryDifferentialRing| . |Module|) 159698) ((|OrdinaryDifferentialRing| . |LinearSet|) 159626) ((|OrdinaryDifferentialRing| . |Algebra|) 159554) ((|OrdinaryDifferentialRing| . |GcdDomain|) 159530) ((|OrdinaryDifferentialRing| . |EuclideanDomain|) 159506) ((|OrdinaryDifferentialRing| . |EntireRing|) 159482) ((|OrdinaryDifferentialRing| . |DivisionRing|) 159458) ((|OrderlyDifferentialPolynomial| . |DifferentialPolynomialCategory|) 159364) ((|OrderlyDifferentialPolynomial| . |CoercibleFrom|) 158957) ((|OrderlyDifferentialPolynomial| . |RetractableTo|) 158685) ((|OrderlyDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|OrderlyDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 158605) ((|OrderlyDifferentialPolynomial| . |FullyRetractableTo|) 158589) ((|OrderlyDifferentialPolynomial| . |Algebra|) 158352) ((|OrderlyDifferentialPolynomial| . |BiModule|) 158095) ((|OrderlyDifferentialPolynomial| . |RightLinearSet|) 157852) ((|OrderlyDifferentialPolynomial| . |RightModule|) 157609) ((|OrderlyDifferentialPolynomial| . |LeftLinearSet|) 157486) ((|OrderlyDifferentialPolynomial| . |LeftModule|) 157315) ((|OrderlyDifferentialPolynomial| . |LinearSet|) 157078) ((|OrderlyDifferentialPolynomial| . |Module|) 156841) ((|OrderlyDifferentialPolynomial| . |CharacteristicNonZero|) 156801) ((|OrderlyDifferentialPolynomial| . |CharacteristicZero|) 156764) ((|OrderlyDifferentialPolynomial| . |CommutativeRing|) 156617) ((|OrderlyDifferentialPolynomial| . |Functorial|) 156601) ((|OrderlyDifferentialPolynomial| . |IntegralDomain|) 156487) ((|OrderlyDifferentialPolynomial| . |EntireRing|) 156373) ((|OrderlyDifferentialPolynomial| . |AbelianMonoidRing|) 156293) ((|OrderlyDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 156277) ((|OrderlyDifferentialPolynomial| . |LinearlyExplicitRingOver|) 156193) ((|OrderlyDifferentialPolynomial| . |GcdDomain|) 156111) ((|OrderlyDifferentialPolynomial| . |InnerEvalable|) 155941) ((|OrderlyDifferentialPolynomial| . |PartialDifferentialRing|) 155822) ((|OrderlyDifferentialPolynomial| . |PartialDifferentialDomain|) 155641) ((|OrderlyDifferentialPolynomial| . |PartialDifferentialSpace|) 155464) ((|OrderlyDifferentialPolynomial| . |PatternMatchable|) NIL) ((|OrderlyDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 155414) ((|OrderlyDifferentialPolynomial| . |UniqueFactorizationDomain|) 155364) ((|OrderlyDifferentialPolynomial| . |PolynomialCategory|) 155277) ((|OrderlyDifferentialPolynomial| . |Evalable|) 155264) ((|OrderlyDifferentialPolynomial| . |DifferentialRing|) 155229) ((|OrderlyDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|OrderlyDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|OrderlyDifferentialPolynomial| . |BasicType|) T) ((|OrderlyDifferentialPolynomial| . |CoercibleTo|) 155203) ((|OrderlyDifferentialPolynomial| . |SetCategory|) T) ((|OrderlyDifferentialPolynomial| . |AbelianMonoid|) T) ((|OrderlyDifferentialPolynomial| . |AbelianGroup|) T) ((|OrderlyDifferentialPolynomial| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |SemiGroup|) T) ((|OrderlyDifferentialPolynomial| . |SemiRing|) T) ((|OrderlyDifferentialPolynomial| . |Monoid|) T) ((|OrderlyDifferentialPolynomial| . |Ring|) T) ((|OrderlyDifferentialPolynomial| . |DifferentialDomain|) 155122) ((|OrderlyDifferentialPolynomial| . |Join|) T) ((|OrderlyDifferentialPolynomial| . |Type|) T) ((|OrderlyDifferentialPolynomial| . |DifferentialSpace|) 155047) ((|OrderlyDifferentialPolynomial| . |DifferentialSpaceExtension|) 155031) ((|OrderlyDifferentialPolynomial| . |DifferentialExtension|) 155015) ((|OrderedDirectProduct| . |DirectProductCategory|) 154994) ((|OrderedDirectProduct| . |VectorSpace|) 154961) ((|OrderedDirectProduct| . |OrderedCancellationAbelianMonoid|) 154919) ((|OrderedDirectProduct| . |OrderedAbelianSemiGroup|) 154877) ((|OrderedDirectProduct| . |OrderedType|) 154802) ((|OrderedDirectProduct| . |OrderedSet|) 154727) ((|OrderedDirectProduct| . |OrderedAbelianMonoid|) 154685) ((|OrderedDirectProduct| . |OrderedAbelianMonoidSup|) 154643) ((|OrderedDirectProduct| . |Module|) 154572) ((|OrderedDirectProduct| . |LinearSet|) 154477) ((|OrderedDirectProduct| . |EltableAggregate|) 154449) ((|OrderedDirectProduct| . |Eltable|) 154421) ((|OrderedDirectProduct| . |IndexedAggregate|) 154393) ((|OrderedDirectProduct| . |RetractableTo|) 154144) ((|OrderedDirectProduct| . |CoercibleFrom|) 153868) ((|OrderedDirectProduct| . |FullyRetractableTo|) 153829) ((|OrderedDirectProduct| . |LinearlyExplicitRingOver|) 153701) ((|OrderedDirectProduct| . |LeftModule|) 153486) ((|OrderedDirectProduct| . |FullyLinearlyExplicitRingOver|) 153454) ((|OrderedDirectProduct| . |HomogeneousAggregate|) 153438) ((|OrderedDirectProduct| . |Functorial|) 153422) ((|OrderedDirectProduct| . |InnerEvalable|) 153341) ((|OrderedDirectProduct| . |Evalable|) 153265) ((|OrderedDirectProduct| . |Aggregate|) T) ((|OrderedDirectProduct| . |FiniteAggregate|) 153249) ((|OrderedDirectProduct| . |Finite|) 153224) ((|OrderedDirectProduct| . |DifferentialRing|) 153161) ((|OrderedDirectProduct| . |LeftLinearSet|) 152891) ((|OrderedDirectProduct| . |Rng|) 152868) ((|OrderedDirectProduct| . |SemiGroup|) 152845) ((|OrderedDirectProduct| . |SemiRing|) 152822) ((|OrderedDirectProduct| . |Monoid|) 152799) ((|OrderedDirectProduct| . |Ring|) 152776) ((|OrderedDirectProduct| . |DifferentialDomain|) 152639) ((|OrderedDirectProduct| . |DifferentialSpace|) 152508) ((|OrderedDirectProduct| . |DifferentialSpaceExtension|) 152476) ((|OrderedDirectProduct| . |PartialDifferentialDomain|) 152292) ((|OrderedDirectProduct| . |PartialDifferentialSpace|) 152110) ((|OrderedDirectProduct| . |PartialDifferentialRing|) 152014) ((|OrderedDirectProduct| . |DifferentialExtension|) 151982) ((|OrderedDirectProduct| . |CoercibleTo|) 151527) ((|OrderedDirectProduct| . |RightModule|) 151434) ((|OrderedDirectProduct| . |RightLinearSet|) 151317) ((|OrderedDirectProduct| . |BiModule|) 151219) ((|OrderedDirectProduct| . |CancellationAbelianMonoid|) 151021) ((|OrderedDirectProduct| . |AbelianSemiGroup|) 150758) ((|OrderedDirectProduct| . |BasicType|) 150363) ((|OrderedDirectProduct| . |Join|) T) ((|OrderedDirectProduct| . |Type|) T) ((|OrderedDirectProduct| . |SetCategory|) 149995) ((|OrderedDirectProduct| . |AbelianMonoid|) 149766) ((|OrderedDirectProduct| . |AbelianGroup|) 149652) ((|Octonion| . |OctonionCategory|) 149636) ((|Octonion| . |OrderedType|) 149607) ((|Octonion| . |OrderedSet|) 149578) ((|Octonion| . |RetractableTo|) 149255) ((|Octonion| . |CoercibleFrom|) 149032) ((|Octonion| . |FullyRetractableTo|) 148988) ((|Octonion| . |Eltable|) 148941) ((|Octonion| . |Evalable|) 148900) ((|Octonion| . |InnerEvalable|) 148789) ((|Octonion| . |Functorial|) 148773) ((|Octonion| . |FullyEvalableOver|) 148757) ((|Octonion| . |Finite|) 148732) ((|Octonion| . |ConvertibleTo|) 148668) ((|Octonion| . |CharacteristicZero|) 148631) ((|Octonion| . |CharacteristicNonZero|) 148591) ((|Octonion| . |Module|) 148575) ((|Octonion| . |LinearSet|) 148559) ((|Octonion| . |LeftModule|) 148533) ((|Octonion| . |LeftLinearSet|) 148487) ((|Octonion| . |CancellationAbelianMonoid|) T) ((|Octonion| . |AbelianSemiGroup|) T) ((|Octonion| . |BasicType|) T) ((|Octonion| . |Join|) T) ((|Octonion| . |Type|) T) ((|Octonion| . |CoercibleTo|) 148461) ((|Octonion| . |SetCategory|) T) ((|Octonion| . |AbelianMonoid|) T) ((|Octonion| . |AbelianGroup|) T) ((|Octonion| . |RightModule|) 148445) ((|Octonion| . |RightLinearSet|) 148429) ((|Octonion| . |BiModule|) 148408) ((|Octonion| . |Ring|) T) ((|Octonion| . |Monoid|) T) ((|Octonion| . |SemiRing|) T) ((|Octonion| . |SemiGroup|) T) ((|Octonion| . |Rng|) T) ((|Octonion| . |Algebra|) 148392) ((|NewSparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 148376) ((|NewSparseUnivariatePolynomial| . |StepThrough|) 148346) ((|NewSparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|NewSparseUnivariatePolynomial| . |Evalable|) 148333) ((|NewSparseUnivariatePolynomial| . |InnerEvalable|) 148262) ((|NewSparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 148223) ((|NewSparseUnivariatePolynomial| . |RetractableTo|) 147989) ((|NewSparseUnivariatePolynomial| . |FullyRetractableTo|) 147973) ((|NewSparseUnivariatePolynomial| . |Algebra|) 147713) ((|NewSparseUnivariatePolynomial| . |BiModule|) 147433) ((|NewSparseUnivariatePolynomial| . |RightLinearSet|) 147167) ((|NewSparseUnivariatePolynomial| . |RightModule|) 146901) ((|NewSparseUnivariatePolynomial| . |LeftLinearSet|) 146778) ((|NewSparseUnivariatePolynomial| . |LeftModule|) 146607) ((|NewSparseUnivariatePolynomial| . |LinearSet|) 146347) ((|NewSparseUnivariatePolynomial| . |Module|) 146087) ((|NewSparseUnivariatePolynomial| . |CoercibleFrom|) 145695) ((|NewSparseUnivariatePolynomial| . |CharacteristicNonZero|) 145655) ((|NewSparseUnivariatePolynomial| . |CharacteristicZero|) 145618) ((|NewSparseUnivariatePolynomial| . |Functorial|) 145602) ((|NewSparseUnivariatePolynomial| . |AbelianMonoidRing|) 145563) ((|NewSparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 145547) ((|NewSparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 145463) ((|NewSparseUnivariatePolynomial| . |PartialDifferentialRing|) 145361) ((|NewSparseUnivariatePolynomial| . |PartialDifferentialDomain|) 145197) ((|NewSparseUnivariatePolynomial| . |PartialDifferentialSpace|) 145037) ((|NewSparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|NewSparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 144987) ((|NewSparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 144937) ((|NewSparseUnivariatePolynomial| . |PolynomialCategory|) 144872) ((|NewSparseUnivariatePolynomial| . |PrincipalIdealDomain|) 144848) ((|NewSparseUnivariatePolynomial| . |IntegralDomain|) 144711) ((|NewSparseUnivariatePolynomial| . |EntireRing|) 144574) ((|NewSparseUnivariatePolynomial| . |CommutativeRing|) 144404) ((|NewSparseUnivariatePolynomial| . |GcdDomain|) 144299) ((|NewSparseUnivariatePolynomial| . |EuclideanDomain|) 144275) ((|NewSparseUnivariatePolynomial| . |Eltable|) 144178) ((|NewSparseUnivariatePolynomial| . |DifferentialRing|) T) ((|NewSparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|NewSparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |BasicType|) T) ((|NewSparseUnivariatePolynomial| . |CoercibleTo|) 144108) ((|NewSparseUnivariatePolynomial| . |SetCategory|) T) ((|NewSparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|NewSparseUnivariatePolynomial| . |AbelianGroup|) T) ((|NewSparseUnivariatePolynomial| . |Rng|) T) ((|NewSparseUnivariatePolynomial| . |SemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |SemiRing|) T) ((|NewSparseUnivariatePolynomial| . |Monoid|) T) ((|NewSparseUnivariatePolynomial| . |Ring|) T) ((|NewSparseUnivariatePolynomial| . |DifferentialDomain|) 144095) ((|NewSparseUnivariatePolynomial| . |Join|) T) ((|NewSparseUnivariatePolynomial| . |Type|) T) ((|NewSparseUnivariatePolynomial| . |DifferentialSpace|) T) ((|NewSparseUnivariatePolynomial| . |DifferentialSpaceExtension|) 144079) ((|NewSparseUnivariatePolynomial| . |DifferentialExtension|) 144063) ((|NewSparseMultivariatePolynomial| . |RecursivePolynomialCategory|) 144016) ((|NewSparseMultivariatePolynomial| . |ConvertibleTo|) 143455) ((|NewSparseMultivariatePolynomial| . |Evalable|) 143442) ((|NewSparseMultivariatePolynomial| . |InnerEvalable|) 143394) ((|NewSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 143352) ((|NewSparseMultivariatePolynomial| . |RetractableTo|) 143132) ((|NewSparseMultivariatePolynomial| . |FullyRetractableTo|) 143116) ((|NewSparseMultivariatePolynomial| . |Algebra|) 142879) ((|NewSparseMultivariatePolynomial| . |CoercibleFrom|) 142524) ((|NewSparseMultivariatePolynomial| . |LeftModule|) 142353) ((|NewSparseMultivariatePolynomial| . |LeftLinearSet|) 142230) ((|NewSparseMultivariatePolynomial| . |Rng|) T) ((|NewSparseMultivariatePolynomial| . |SemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |SemiRing|) T) ((|NewSparseMultivariatePolynomial| . |Monoid|) T) ((|NewSparseMultivariatePolynomial| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |BiModule|) 141973) ((|NewSparseMultivariatePolynomial| . |RightLinearSet|) 141730) ((|NewSparseMultivariatePolynomial| . |RightModule|) 141487) ((|NewSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|NewSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|NewSparseMultivariatePolynomial| . |SetCategory|) T) ((|NewSparseMultivariatePolynomial| . |CoercibleTo|) 141346) ((|NewSparseMultivariatePolynomial| . |Type|) T) ((|NewSparseMultivariatePolynomial| . |Join|) T) ((|NewSparseMultivariatePolynomial| . |BasicType|) T) ((|NewSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|NewSparseMultivariatePolynomial| . |LinearSet|) 141109) ((|NewSparseMultivariatePolynomial| . |Module|) 140872) ((|NewSparseMultivariatePolynomial| . |CharacteristicNonZero|) 140832) ((|NewSparseMultivariatePolynomial| . |CharacteristicZero|) 140795) ((|NewSparseMultivariatePolynomial| . |CommutativeRing|) 140648) ((|NewSparseMultivariatePolynomial| . |Functorial|) 140632) ((|NewSparseMultivariatePolynomial| . |IntegralDomain|) 140518) ((|NewSparseMultivariatePolynomial| . |EntireRing|) 140404) ((|NewSparseMultivariatePolynomial| . |AbelianMonoidRing|) 140362) ((|NewSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 140346) ((|NewSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 140262) ((|NewSparseMultivariatePolynomial| . |GcdDomain|) 140180) ((|NewSparseMultivariatePolynomial| . |PartialDifferentialRing|) 140164) ((|NewSparseMultivariatePolynomial| . |PartialDifferentialDomain|) 140146) ((|NewSparseMultivariatePolynomial| . |PartialDifferentialSpace|) 140130) ((|NewSparseMultivariatePolynomial| . |PatternMatchable|) 139909) ((|NewSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 139859) ((|NewSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 139809) ((|NewSparseMultivariatePolynomial| . |PolynomialCategory|) 139762) ((|None| . |SetCategory|) T) ((|None| . |CoercibleTo|) 139736) ((|None| . |Type|) T) ((|None| . |Join|) T) ((|None| . |BasicType|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoidSup|) T) ((|NonNegativeInteger| . |CancellationAbelianMonoid|) T) ((|NonNegativeInteger| . |AbelianSemiGroup|) T) ((|NonNegativeInteger| . |BasicType|) T) ((|NonNegativeInteger| . |Join|) T) ((|NonNegativeInteger| . |Type|) T) ((|NonNegativeInteger| . |CoercibleTo|) 139710) ((|NonNegativeInteger| . |SetCategory|) T) ((|NonNegativeInteger| . |AbelianMonoid|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoid|) T) ((|NonNegativeInteger| . |OrderedSet|) T) ((|NonNegativeInteger| . |OrderedType|) T) ((|NonNegativeInteger| . |OrderedAbelianSemiGroup|) T) ((|NonNegativeInteger| . |OrderedCancellationAbelianMonoid|) T) ((|NonNegativeInteger| . |Monoid|) T) ((|NonNegativeInteger| . |SemiGroup|) T) ((|Multiset| . |MultisetAggregate|) 139694) ((|Multiset| . |SetAggregate|) 139678) ((|Multiset| . |DictionaryOperations|) 139662) ((|Multiset| . |ConvertibleTo|) 139598) ((|Multiset| . |Collection|) 139582) ((|Multiset| . |HomogeneousAggregate|) 139566) ((|Multiset| . |SetCategory|) T) ((|Multiset| . |Functorial|) 139550) ((|Multiset| . |InnerEvalable|) 139469) ((|Multiset| . |Evalable|) 139393) ((|Multiset| . |CoercibleTo|) 139367) ((|Multiset| . |BasicType|) T) ((|Multiset| . |Type|) T) ((|Multiset| . |Join|) T) ((|Multiset| . |Aggregate|) T) ((|Multiset| . |ShallowlyMutableAggregate|) 139351) ((|Multiset| . |BagAggregate|) 139335) ((|Multiset| . |MultiDictionary|) 139319) ((|Multiset| . |FiniteAggregate|) 139303) ((|MonoidRing| . |Ring|) T) ((|MonoidRing| . |Monoid|) T) ((|MonoidRing| . |SemiRing|) T) ((|MonoidRing| . |SemiGroup|) T) ((|MonoidRing| . |Rng|) T) ((|MonoidRing| . |AbelianGroup|) T) ((|MonoidRing| . |LeftLinearSet|) 139230) ((|MonoidRing| . |AbelianMonoid|) T) ((|MonoidRing| . |SetCategory|) T) ((|MonoidRing| . |CoercibleTo|) 139204) ((|MonoidRing| . |Type|) T) ((|MonoidRing| . |Join|) T) ((|MonoidRing| . |BasicType|) T) ((|MonoidRing| . |AbelianSemiGroup|) T) ((|MonoidRing| . |CancellationAbelianMonoid|) T) ((|MonoidRing| . |LeftModule|) 139151) ((|MonoidRing| . |CoercibleFrom|) 139102) ((|MonoidRing| . |RetractableTo|) 139073) ((|MonoidRing| . |Functorial|) 139057) ((|MonoidRing| . |CharacteristicZero|) 139020) ((|MonoidRing| . |CharacteristicNonZero|) 138980) ((|MonoidRing| . |Algebra|) 138937) ((|MonoidRing| . |BiModule|) 138889) ((|MonoidRing| . |RightLinearSet|) 138846) ((|MonoidRing| . |RightModule|) 138803) ((|MonoidRing| . |LinearSet|) 138760) ((|MonoidRing| . |Module|) 138717) ((|MonoidRing| . |Finite|) 138662) ((|MultivariatePolynomial| . |PolynomialCategory|) 138589) ((|MultivariatePolynomial| . |CoercibleFrom|) 138261) ((|MultivariatePolynomial| . |RetractableTo|) 138068) ((|MultivariatePolynomial| . |UniqueFactorizationDomain|) 138018) ((|MultivariatePolynomial| . |PolynomialFactorizationExplicit|) 137968) ((|MultivariatePolynomial| . |PatternMatchable|) NIL) ((|MultivariatePolynomial| . |PartialDifferentialSpace|) 137928) ((|MultivariatePolynomial| . |PartialDifferentialDomain|) 137886) ((|MultivariatePolynomial| . |PartialDifferentialRing|) 137846) ((|MultivariatePolynomial| . |InnerEvalable|) 137772) ((|MultivariatePolynomial| . |GcdDomain|) 137690) ((|MultivariatePolynomial| . |LinearlyExplicitRingOver|) 137606) ((|MultivariatePolynomial| . |LeftModule|) 137435) ((|MultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 137419) ((|MultivariatePolynomial| . |AbelianMonoidRing|) 137353) ((|MultivariatePolynomial| . |Algebra|) 137116) ((|MultivariatePolynomial| . |LinearSet|) 136879) ((|MultivariatePolynomial| . |Module|) 136642) ((|MultivariatePolynomial| . |EntireRing|) 136528) ((|MultivariatePolynomial| . |IntegralDomain|) 136414) ((|MultivariatePolynomial| . |Functorial|) 136398) ((|MultivariatePolynomial| . |BiModule|) 136141) ((|MultivariatePolynomial| . |RightLinearSet|) 135898) ((|MultivariatePolynomial| . |RightModule|) 135655) ((|MultivariatePolynomial| . |CommutativeRing|) 135508) ((|MultivariatePolynomial| . |CharacteristicZero|) 135471) ((|MultivariatePolynomial| . |CharacteristicNonZero|) 135431) ((|MultivariatePolynomial| . |LeftLinearSet|) 135308) ((|MultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|MultivariatePolynomial| . |AbelianSemiGroup|) T) ((|MultivariatePolynomial| . |BasicType|) T) ((|MultivariatePolynomial| . |Join|) T) ((|MultivariatePolynomial| . |Type|) T) ((|MultivariatePolynomial| . |CoercibleTo|) 135282) ((|MultivariatePolynomial| . |SetCategory|) T) ((|MultivariatePolynomial| . |AbelianMonoid|) T) ((|MultivariatePolynomial| . |AbelianGroup|) T) ((|MultivariatePolynomial| . |Ring|) T) ((|MultivariatePolynomial| . |Monoid|) T) ((|MultivariatePolynomial| . |SemiRing|) T) ((|MultivariatePolynomial| . |SemiGroup|) T) ((|MultivariatePolynomial| . |Rng|) T) ((|MultivariatePolynomial| . |FullyRetractableTo|) 135266) ((|MultivariatePolynomial| . |FiniteAbelianMonoidRing|) 135200) ((|MultivariatePolynomial| . |Evalable|) 135187) ((|MultivariatePolynomial| . |ConvertibleTo|) 134965) ((|MonoidOperation| . |MonoidOperatorCategory|) 134949) ((|MonoidOperation| . |BinaryOperatorCategory|) 134933) ((|MonoidOperation| . |Type|) T) ((|MonoidOperation| . |MappingCategory|) 134907) ((|MonoidOperation| . |SemiGroupOperatorCategory|) 134891) ((|MonoidOperation| . |SetCategory|) T) ((|MonoidOperation| . |CoercibleTo|) 134829) ((|MonoidOperation| . |Join|) T) ((|MonoidOperation| . |BasicType|) T) ((|MoebiusTransform| . |Group|) T) ((|MoebiusTransform| . |SemiGroup|) T) ((|MoebiusTransform| . |BasicType|) T) ((|MoebiusTransform| . |Join|) T) ((|MoebiusTransform| . |Type|) T) ((|MoebiusTransform| . |CoercibleTo|) 134803) ((|MoebiusTransform| . |SetCategory|) T) ((|MoebiusTransform| . |Monoid|) T) ((|ModularRing| . |Ring|) T) ((|ModularRing| . |Monoid|) T) ((|ModularRing| . |SemiRing|) T) ((|ModularRing| . |SemiGroup|) T) ((|ModularRing| . |Rng|) T) ((|ModularRing| . |AbelianGroup|) T) ((|ModularRing| . |LeftLinearSet|) 134770) ((|ModularRing| . |AbelianMonoid|) T) ((|ModularRing| . |SetCategory|) T) ((|ModularRing| . |CoercibleTo|) 134744) ((|ModularRing| . |Type|) T) ((|ModularRing| . |Join|) T) ((|ModularRing| . |BasicType|) T) ((|ModularRing| . |AbelianSemiGroup|) T) ((|ModularRing| . |CancellationAbelianMonoid|) T) ((|ModularRing| . |LeftModule|) 134731) ((|ModularRing| . |CoercibleFrom|) 134708) ((|ModuleOperator| . |Ring|) T) ((|ModuleOperator| . |Monoid|) T) ((|ModuleOperator| . |SemiRing|) T) ((|ModuleOperator| . |SemiGroup|) T) ((|ModuleOperator| . |Rng|) T) ((|ModuleOperator| . |AbelianGroup|) T) ((|ModuleOperator| . |LeftLinearSet|) 134635) ((|ModuleOperator| . |AbelianMonoid|) T) ((|ModuleOperator| . |SetCategory|) T) ((|ModuleOperator| . |CoercibleTo|) 134609) ((|ModuleOperator| . |Type|) T) ((|ModuleOperator| . |Join|) T) ((|ModuleOperator| . |BasicType|) T) ((|ModuleOperator| . |AbelianSemiGroup|) T) ((|ModuleOperator| . |CancellationAbelianMonoid|) T) ((|ModuleOperator| . |LeftModule|) 134556) ((|ModuleOperator| . |CoercibleFrom|) 134494) ((|ModuleOperator| . |RetractableTo|) 134452) ((|ModuleOperator| . |Eltable|) 134431) ((|ModuleOperator| . |CharacteristicZero|) 134394) ((|ModuleOperator| . |CharacteristicNonZero|) 134354) ((|ModuleOperator| . |Algebra|) 134311) ((|ModuleOperator| . |BiModule|) 134263) ((|ModuleOperator| . |RightLinearSet|) 134220) ((|ModuleOperator| . |RightModule|) 134177) ((|ModuleOperator| . |LinearSet|) 134134) ((|ModuleOperator| . |Module|) 134091) ((|ModuleMonomial| . |OrderedSet|) T) ((|ModuleMonomial| . |CoercibleTo|) 134005) ((|ModuleMonomial| . |SetCategory|) T) ((|ModuleMonomial| . |BasicType|) T) ((|ModuleMonomial| . |Join|) T) ((|ModuleMonomial| . |Type|) T) ((|ModuleMonomial| . |OrderedType|) T) ((|ModuleMonomial| . |HomotopicTo|) 133942) ((|ModuleMonomial| . |CoercibleFrom|) 133879) ((|ModMonic| . |UnivariatePolynomialCategory|) 133863) ((|ModMonic| . |StepThrough|) 133833) ((|ModMonic| . |ConvertibleTo|) NIL) ((|ModMonic| . |Evalable|) 133820) ((|ModMonic| . |InnerEvalable|) 133749) ((|ModMonic| . |FiniteAbelianMonoidRing|) 133710) ((|ModMonic| . |RetractableTo|) 133520) ((|ModMonic| . |FullyRetractableTo|) 133504) ((|ModMonic| . |Algebra|) 133244) ((|ModMonic| . |BiModule|) 132964) ((|ModMonic| . |RightLinearSet|) 132698) ((|ModMonic| . |RightModule|) 132432) ((|ModMonic| . |LeftLinearSet|) 132309) ((|ModMonic| . |LeftModule|) 132138) ((|ModMonic| . |LinearSet|) 131878) ((|ModMonic| . |Module|) 131618) ((|ModMonic| . |CoercibleFrom|) 131257) ((|ModMonic| . |CharacteristicNonZero|) 131217) ((|ModMonic| . |CharacteristicZero|) 131180) ((|ModMonic| . |Functorial|) 131164) ((|ModMonic| . |AbelianMonoidRing|) 131125) ((|ModMonic| . |FullyLinearlyExplicitRingOver|) 131109) ((|ModMonic| . |LinearlyExplicitRingOver|) 131025) ((|ModMonic| . |PartialDifferentialRing|) 130923) ((|ModMonic| . |PartialDifferentialDomain|) 130759) ((|ModMonic| . |PartialDifferentialSpace|) 130599) ((|ModMonic| . |PatternMatchable|) NIL) ((|ModMonic| . |PolynomialFactorizationExplicit|) 130549) ((|ModMonic| . |UniqueFactorizationDomain|) 130499) ((|ModMonic| . |PolynomialCategory|) 130434) ((|ModMonic| . |PrincipalIdealDomain|) 130410) ((|ModMonic| . |IntegralDomain|) 130273) ((|ModMonic| . |EntireRing|) 130136) ((|ModMonic| . |CommutativeRing|) 129966) ((|ModMonic| . |GcdDomain|) 129861) ((|ModMonic| . |EuclideanDomain|) 129837) ((|ModMonic| . |Eltable|) 129740) ((|ModMonic| . |DifferentialRing|) T) ((|ModMonic| . |CancellationAbelianMonoid|) T) ((|ModMonic| . |AbelianSemiGroup|) T) ((|ModMonic| . |BasicType|) T) ((|ModMonic| . |CoercibleTo|) 129714) ((|ModMonic| . |SetCategory|) T) ((|ModMonic| . |AbelianMonoid|) T) ((|ModMonic| . |AbelianGroup|) T) ((|ModMonic| . |Rng|) T) ((|ModMonic| . |SemiGroup|) T) ((|ModMonic| . |SemiRing|) T) ((|ModMonic| . |Monoid|) T) ((|ModMonic| . |Ring|) T) ((|ModMonic| . |DifferentialDomain|) 129701) ((|ModMonic| . |Join|) T) ((|ModMonic| . |Type|) T) ((|ModMonic| . |DifferentialSpace|) T) ((|ModMonic| . |DifferentialSpaceExtension|) 129685) ((|ModMonic| . |DifferentialExtension|) 129669) ((|ModMonic| . |Finite|) 129644) ((|ModularField| . |Field|) T) ((|ModularField| . |UniqueFactorizationDomain|) T) ((|ModularField| . |PrincipalIdealDomain|) T) ((|ModularField| . |IntegralDomain|) T) ((|ModularField| . |CommutativeRing|) T) ((|ModularField| . |CoercibleFrom|) 129578) ((|ModularField| . |Module|) 129532) ((|ModularField| . |LinearSet|) 129486) ((|ModularField| . |Algebra|) 129440) ((|ModularField| . |GcdDomain|) T) ((|ModularField| . |EuclideanDomain|) T) ((|ModularField| . |LeftModule|) 129394) ((|ModularField| . |LeftLinearSet|) 129328) ((|ModularField| . |Rng|) T) ((|ModularField| . |SemiGroup|) T) ((|ModularField| . |SemiRing|) T) ((|ModularField| . |Monoid|) T) ((|ModularField| . |Ring|) T) ((|ModularField| . |BiModule|) 129273) ((|ModularField| . |RightLinearSet|) 129227) ((|ModularField| . |RightModule|) 129181) ((|ModularField| . |AbelianGroup|) T) ((|ModularField| . |AbelianMonoid|) T) ((|ModularField| . |SetCategory|) T) ((|ModularField| . |CoercibleTo|) 129155) ((|ModularField| . |Type|) T) ((|ModularField| . |Join|) T) ((|ModularField| . |BasicType|) T) ((|ModularField| . |AbelianSemiGroup|) T) ((|ModularField| . |CancellationAbelianMonoid|) T) ((|ModularField| . |EntireRing|) T) ((|ModularField| . |DivisionRing|) T) ((|MathMLFormat| . |SetCategory|) T) ((|MathMLFormat| . |CoercibleTo|) 129129) ((|MathMLFormat| . |Type|) T) ((|MathMLFormat| . |Join|) T) ((|MathMLFormat| . |BasicType|) T) ((|Maybe| . |UnionType|) T) ((|Maybe| . |RetractableTo|) 129113) ((|Maybe| . |CoercibleFrom|) 129097) ((|Maybe| . |CoercibleTo|) 129071) ((|Matrix| . |MatrixCategory|) 129032) ((|Matrix| . |FiniteAggregate|) 129016) ((|Matrix| . |Aggregate|) T) ((|Matrix| . |Join|) T) ((|Matrix| . |Type|) T) ((|Matrix| . |BasicType|) 128954) ((|Matrix| . |CoercibleTo|) 128856) ((|Matrix| . |Evalable|) 128780) ((|Matrix| . |InnerEvalable|) 128699) ((|Matrix| . |Functorial|) 128683) ((|Matrix| . |SetCategory|) 128653) ((|Matrix| . |HomogeneousAggregate|) 128637) ((|Matrix| . |ShallowlyMutableAggregate|) 128621) ((|Matrix| . |TwoDimensionalArrayCategory|) 128582) ((|Matrix| . |ConvertibleTo|) 128523) ((|MappingAst| . |SpadSyntaxCategory|) T) ((|MappingAst| . |HomotopicTo|) 128501) ((|MappingAst| . |CoercibleTo|) 128436) ((|MappingAst| . |CoercibleFrom|) 128414) ((|MappingAst| . |SetCategory|) T) ((|MappingAst| . |Type|) T) ((|MappingAst| . |Join|) T) ((|MappingAst| . |BasicType|) T) ((|MappingAst| . |AbstractSyntaxCategory|) T) ((|Magma| . |OrderedSet|) T) ((|Magma| . |CoercibleTo|) 128388) ((|Magma| . |SetCategory|) T) ((|Magma| . |BasicType|) T) ((|Magma| . |Join|) T) ((|Magma| . |Type|) T) ((|Magma| . |OrderedType|) T) ((|Magma| . |RetractableTo|) 128372) ((|Magma| . |CoercibleFrom|) 128356) ((|MacroAst| . |SpadSyntaxCategory|) T) ((|MacroAst| . |HomotopicTo|) 128334) ((|MacroAst| . |CoercibleTo|) 128289) ((|MacroAst| . |CoercibleFrom|) 128267) ((|MacroAst| . |SetCategory|) T) ((|MacroAst| . |Type|) T) ((|MacroAst| . |Join|) T) ((|MacroAst| . |BasicType|) T) ((|MacroAst| . |AbstractSyntaxCategory|) T) ((|LyndonWord| . |OrderedSet|) T) ((|LyndonWord| . |CoercibleTo|) 128241) ((|LyndonWord| . |SetCategory|) T) ((|LyndonWord| . |BasicType|) T) ((|LyndonWord| . |Join|) T) ((|LyndonWord| . |Type|) T) ((|LyndonWord| . |OrderedType|) T) ((|LyndonWord| . |RetractableTo|) 128225) ((|LyndonWord| . |CoercibleFrom|) 128209) ((|ConstructAst| . |SpadSyntaxCategory|) T) ((|ConstructAst| . |HomotopicTo|) 128187) ((|ConstructAst| . |CoercibleTo|) 128142) ((|ConstructAst| . |CoercibleFrom|) 128120) ((|ConstructAst| . |SetCategory|) T) ((|ConstructAst| . |Type|) T) ((|ConstructAst| . |Join|) T) ((|ConstructAst| . |BasicType|) T) ((|ConstructAst| . |AbstractSyntaxCategory|) T) ((|LieSquareMatrix| . |SquareMatrixCategory|) 128064) ((|LieSquareMatrix| . |FiniteAggregate|) 128048) ((|LieSquareMatrix| . |Aggregate|) T) ((|LieSquareMatrix| . |Evalable|) 127972) ((|LieSquareMatrix| . |InnerEvalable|) 127891) ((|LieSquareMatrix| . |Functorial|) 127875) ((|LieSquareMatrix| . |HomogeneousAggregate|) 127859) ((|LieSquareMatrix| . |RectangularMatrixCategory|) 127798) ((|LieSquareMatrix| . |RetractableTo|) 127642) ((|LieSquareMatrix| . |CoercibleFrom|) 127523) ((|LieSquareMatrix| . |FullyRetractableTo|) 127507) ((|LieSquareMatrix| . |LinearlyExplicitRingOver|) 127423) ((|LieSquareMatrix| . |LeftModule|) 127329) ((|LieSquareMatrix| . |FullyLinearlyExplicitRingOver|) 127313) ((|LieSquareMatrix| . |DifferentialRing|) 127278) ((|LieSquareMatrix| . |DifferentialDomain|) 127197) ((|LieSquareMatrix| . |DifferentialSpace|) 127122) ((|LieSquareMatrix| . |DifferentialSpaceExtension|) 127106) ((|LieSquareMatrix| . |PartialDifferentialDomain|) 126978) ((|LieSquareMatrix| . |PartialDifferentialSpace|) 126852) ((|LieSquareMatrix| . |PartialDifferentialRing|) 126784) ((|LieSquareMatrix| . |DifferentialExtension|) 126768) ((|LieSquareMatrix| . |Module|) 126752) ((|LieSquareMatrix| . |LinearSet|) 126736) ((|LieSquareMatrix| . |LeftLinearSet|) 126690) ((|LieSquareMatrix| . |CancellationAbelianMonoid|) T) ((|LieSquareMatrix| . |AbelianSemiGroup|) T) ((|LieSquareMatrix| . |BasicType|) T) ((|LieSquareMatrix| . |Join|) T) ((|LieSquareMatrix| . |Type|) T) ((|LieSquareMatrix| . |CoercibleTo|) 126640) ((|LieSquareMatrix| . |SetCategory|) T) ((|LieSquareMatrix| . |AbelianMonoid|) T) ((|LieSquareMatrix| . |AbelianGroup|) T) ((|LieSquareMatrix| . |RightModule|) 126624) ((|LieSquareMatrix| . |RightLinearSet|) 126608) ((|LieSquareMatrix| . |BiModule|) 126587) ((|LieSquareMatrix| . |Ring|) T) ((|LieSquareMatrix| . |Monoid|) T) ((|LieSquareMatrix| . |SemiRing|) T) ((|LieSquareMatrix| . |SemiGroup|) T) ((|LieSquareMatrix| . |Rng|) T) ((|LieSquareMatrix| . |Algebra|) 126532) ((|LieSquareMatrix| . |FramedNonAssociativeAlgebra|) 126516) ((|LieSquareMatrix| . |NonAssociativeAlgebra|) 126500) ((|LieSquareMatrix| . |Monad|) T) ((|LieSquareMatrix| . |NonAssociativeRng|) T) ((|LieSquareMatrix| . |FiniteRankNonAssociativeAlgebra|) 126484) ((|LieSquareMatrix| . |Eltable|) 126456) ((|LiePolynomial| . |FreeLieAlgebra|) 126435) ((|LiePolynomial| . |Module|) 126419) ((|LiePolynomial| . |LinearSet|) 126403) ((|LiePolynomial| . |LeftModule|) 126387) ((|LiePolynomial| . |LeftLinearSet|) 126351) ((|LiePolynomial| . |CancellationAbelianMonoid|) T) ((|LiePolynomial| . |AbelianSemiGroup|) T) ((|LiePolynomial| . |BasicType|) T) ((|LiePolynomial| . |Join|) T) ((|LiePolynomial| . |Type|) T) ((|LiePolynomial| . |CoercibleTo|) 126325) ((|LiePolynomial| . |SetCategory|) T) ((|LiePolynomial| . |AbelianMonoid|) T) ((|LiePolynomial| . |AbelianGroup|) T) ((|LiePolynomial| . |RightModule|) 126309) ((|LiePolynomial| . |RightLinearSet|) 126293) ((|LiePolynomial| . |BiModule|) 126272) ((|LiePolynomial| . |LieAlgebra|) 126256) ((|LiePolynomial| . |FreeModuleCat|) 126220) ((|LiePolynomial| . |CoercibleFrom|) 126189) ((|LiePolynomial| . |RetractableTo|) 126158) ((|LiePolynomial| . |Functorial|) 126142) ((|LinearOrdinaryDifferentialOperator2| . |LinearOrdinaryDifferentialOperatorCategory|) 126126) ((|LinearOrdinaryDifferentialOperator2| . |Algebra|) 126083) ((|LinearOrdinaryDifferentialOperator2| . |CoercibleFrom|) 125964) ((|LinearOrdinaryDifferentialOperator2| . |LeftModule|) 125938) ((|LinearOrdinaryDifferentialOperator2| . |LeftLinearSet|) 125892) ((|LinearOrdinaryDifferentialOperator2| . |Rng|) T) ((|LinearOrdinaryDifferentialOperator2| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |SemiRing|) T) ((|LinearOrdinaryDifferentialOperator2| . |Monoid|) T) ((|LinearOrdinaryDifferentialOperator2| . |Ring|) T) ((|LinearOrdinaryDifferentialOperator2| . |BiModule|) 125871) ((|LinearOrdinaryDifferentialOperator2| . |RightLinearSet|) 125855) ((|LinearOrdinaryDifferentialOperator2| . |RightModule|) 125839) ((|LinearOrdinaryDifferentialOperator2| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator2| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator2| . |CoercibleTo|) 125813) ((|LinearOrdinaryDifferentialOperator2| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator2| . |LinearSet|) 125770) ((|LinearOrdinaryDifferentialOperator2| . |Module|) 125727) ((|LinearOrdinaryDifferentialOperator2| . |FullyRetractableTo|) 125711) ((|LinearOrdinaryDifferentialOperator2| . |RetractableTo|) 125555) ((|LinearOrdinaryDifferentialOperator2| . |UnivariateSkewPolynomialCategory|) 125539) ((|LinearOrdinaryDifferentialOperator2| . |Type|) T) ((|LinearOrdinaryDifferentialOperator2| . |Join|) T) ((|LinearOrdinaryDifferentialOperator2| . |Eltable|) 125500) ((|LinearOrdinaryDifferentialOperator1| . |LinearOrdinaryDifferentialOperatorCategory|) 125484) ((|LinearOrdinaryDifferentialOperator1| . |Algebra|) 125441) ((|LinearOrdinaryDifferentialOperator1| . |CoercibleFrom|) 125322) ((|LinearOrdinaryDifferentialOperator1| . |LeftModule|) 125296) ((|LinearOrdinaryDifferentialOperator1| . |LeftLinearSet|) 125250) ((|LinearOrdinaryDifferentialOperator1| . |Rng|) T) ((|LinearOrdinaryDifferentialOperator1| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator1| . |SemiRing|) T) ((|LinearOrdinaryDifferentialOperator1| . |Monoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |Ring|) T) ((|LinearOrdinaryDifferentialOperator1| . |BiModule|) 125229) ((|LinearOrdinaryDifferentialOperator1| . |RightLinearSet|) 125213) ((|LinearOrdinaryDifferentialOperator1| . |RightModule|) 125197) ((|LinearOrdinaryDifferentialOperator1| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator1| . |CoercibleTo|) 125171) ((|LinearOrdinaryDifferentialOperator1| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator1| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |LinearSet|) 125128) ((|LinearOrdinaryDifferentialOperator1| . |Module|) 125085) ((|LinearOrdinaryDifferentialOperator1| . |FullyRetractableTo|) 125069) ((|LinearOrdinaryDifferentialOperator1| . |RetractableTo|) 124913) ((|LinearOrdinaryDifferentialOperator1| . |UnivariateSkewPolynomialCategory|) 124897) ((|LinearOrdinaryDifferentialOperator1| . |Type|) T) ((|LinearOrdinaryDifferentialOperator1| . |Join|) T) ((|LinearOrdinaryDifferentialOperator1| . |Eltable|) 124876) ((|LinearOrdinaryDifferentialOperator| . |LinearOrdinaryDifferentialOperatorCategory|) 124860) ((|LinearOrdinaryDifferentialOperator| . |Algebra|) 124817) ((|LinearOrdinaryDifferentialOperator| . |CoercibleFrom|) 124698) ((|LinearOrdinaryDifferentialOperator| . |LeftModule|) 124672) ((|LinearOrdinaryDifferentialOperator| . |LeftLinearSet|) 124626) ((|LinearOrdinaryDifferentialOperator| . |Rng|) T) ((|LinearOrdinaryDifferentialOperator| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |SemiRing|) T) ((|LinearOrdinaryDifferentialOperator| . |Monoid|) T) ((|LinearOrdinaryDifferentialOperator| . |Ring|) T) ((|LinearOrdinaryDifferentialOperator| . |BiModule|) 124605) ((|LinearOrdinaryDifferentialOperator| . |RightLinearSet|) 124589) ((|LinearOrdinaryDifferentialOperator| . |RightModule|) 124573) ((|LinearOrdinaryDifferentialOperator| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator| . |CoercibleTo|) 124547) ((|LinearOrdinaryDifferentialOperator| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |LinearSet|) 124504) ((|LinearOrdinaryDifferentialOperator| . |Module|) 124461) ((|LinearOrdinaryDifferentialOperator| . |FullyRetractableTo|) 124445) ((|LinearOrdinaryDifferentialOperator| . |RetractableTo|) 124289) ((|LinearOrdinaryDifferentialOperator| . |UnivariateSkewPolynomialCategory|) 124273) ((|LinearOrdinaryDifferentialOperator| . |Type|) T) ((|LinearOrdinaryDifferentialOperator| . |Join|) T) ((|LinearOrdinaryDifferentialOperator| . |Eltable|) 124252) ((|Localize| . |Module|) 124236) ((|Localize| . |LinearSet|) 124220) ((|Localize| . |LeftModule|) 124204) ((|Localize| . |LeftLinearSet|) 124168) ((|Localize| . |CancellationAbelianMonoid|) T) ((|Localize| . |AbelianSemiGroup|) T) ((|Localize| . |BasicType|) T) ((|Localize| . |Join|) T) ((|Localize| . |Type|) T) ((|Localize| . |CoercibleTo|) 124142) ((|Localize| . |SetCategory|) T) ((|Localize| . |AbelianMonoid|) T) ((|Localize| . |AbelianGroup|) T) ((|Localize| . |RightModule|) 124126) ((|Localize| . |RightLinearSet|) 124110) ((|Localize| . |BiModule|) 124089) ((|Localize| . |OrderedAbelianGroup|) 124051) ((|Localize| . |OrderedAbelianMonoid|) 124013) ((|Localize| . |OrderedSet|) 123975) ((|Localize| . |OrderedType|) 123937) ((|Localize| . |OrderedAbelianSemiGroup|) 123899) ((|Localize| . |OrderedCancellationAbelianMonoid|) 123861) ((|ListMonoidOps| . |SetCategory|) T) ((|ListMonoidOps| . |CoercibleTo|) 123835) ((|ListMonoidOps| . |Type|) T) ((|ListMonoidOps| . |Join|) T) ((|ListMonoidOps| . |BasicType|) T) ((|ListMonoidOps| . |RetractableTo|) 123819) ((|ListMonoidOps| . |CoercibleFrom|) 123803) ((|ListMultiDictionary| . |MultiDictionary|) 123787) ((|ListMultiDictionary| . |BagAggregate|) 123771) ((|ListMultiDictionary| . |ShallowlyMutableAggregate|) 123755) ((|ListMultiDictionary| . |Aggregate|) T) ((|ListMultiDictionary| . |Join|) T) ((|ListMultiDictionary| . |Type|) T) ((|ListMultiDictionary| . |BasicType|) 123693) ((|ListMultiDictionary| . |CoercibleTo|) 123595) ((|ListMultiDictionary| . |Evalable|) 123519) ((|ListMultiDictionary| . |InnerEvalable|) 123438) ((|ListMultiDictionary| . |Functorial|) 123422) ((|ListMultiDictionary| . |SetCategory|) 123392) ((|ListMultiDictionary| . |HomogeneousAggregate|) 123376) ((|ListMultiDictionary| . |Collection|) 123360) ((|ListMultiDictionary| . |ConvertibleTo|) 123296) ((|ListMultiDictionary| . |DictionaryOperations|) 123280) ((|ListMultiDictionary| . |FiniteAggregate|) 123264) ((|Literal| . |SpadSyntaxCategory|) T) ((|Literal| . |HomotopicTo|) 123242) ((|Literal| . |CoercibleTo|) 123184) ((|Literal| . |CoercibleFrom|) 123162) ((|Literal| . |SetCategory|) T) ((|Literal| . |Type|) T) ((|Literal| . |Join|) T) ((|Literal| . |BasicType|) T) ((|Literal| . |AbstractSyntaxCategory|) T) ((|List| . |ListAggregate|) 123146) ((|List| . |UnaryRecursiveAggregate|) 123130) ((|List| . |RecursiveAggregate|) 123114) ((|List| . |StreamAggregate|) 123098) ((|List| . |FiniteAggregate|) 123082) ((|List| . |OrderedSet|) 123053) ((|List| . |OrderedType|) 123024) ((|List| . |FiniteLinearAggregate|) 123008) ((|List| . |LinearAggregate|) 122992) ((|List| . |EltableAggregate|) 122964) ((|List| . |Eltable|) 122893) ((|List| . |IndexedAggregate|) 122865) ((|List| . |ConvertibleTo|) 122801) ((|List| . |HomogeneousAggregate|) 122785) ((|List| . |SetCategory|) 122722) ((|List| . |Functorial|) 122706) ((|List| . |InnerEvalable|) 122625) ((|List| . |Evalable|) 122549) ((|List| . |CoercibleTo|) 122423) ((|List| . |BasicType|) 122333) ((|List| . |Type|) T) ((|List| . |Join|) T) ((|List| . |Aggregate|) T) ((|List| . |Collection|) 122317) ((|List| . |ShallowlyMutableAggregate|) 122301) ((|List| . |ExtensibleLinearAggregate|) 122285) ((|LinearForm| . |VectorSpace|) 122269) ((|LinearForm| . |BiModule|) 122248) ((|LinearForm| . |RightLinearSet|) 122232) ((|LinearForm| . |RightModule|) 122216) ((|LinearForm| . |AbelianGroup|) T) ((|LinearForm| . |LeftLinearSet|) 122180) ((|LinearForm| . |AbelianMonoid|) T) ((|LinearForm| . |SetCategory|) T) ((|LinearForm| . |CoercibleTo|) 122154) ((|LinearForm| . |Type|) T) ((|LinearForm| . |Join|) T) ((|LinearForm| . |BasicType|) T) ((|LinearForm| . |AbelianSemiGroup|) T) ((|LinearForm| . |CancellationAbelianMonoid|) T) ((|LinearForm| . |LeftModule|) 122138) ((|LinearForm| . |LinearSet|) 122122) ((|LinearForm| . |Module|) 122106) ((|LinearForm| . |Eltable|) 122062) ((|LinearElement| . |VectorSpace|) 122046) ((|LinearElement| . |BiModule|) 122025) ((|LinearElement| . |RightLinearSet|) 122009) ((|LinearElement| . |RightModule|) 121993) ((|LinearElement| . |AbelianGroup|) T) ((|LinearElement| . |LeftLinearSet|) 121957) ((|LinearElement| . |AbelianMonoid|) T) ((|LinearElement| . |SetCategory|) T) ((|LinearElement| . |CoercibleTo|) 121931) ((|LinearElement| . |Type|) T) ((|LinearElement| . |Join|) T) ((|LinearElement| . |BasicType|) T) ((|LinearElement| . |AbelianSemiGroup|) T) ((|LinearElement| . |CancellationAbelianMonoid|) T) ((|LinearElement| . |LeftModule|) 121915) ((|LinearElement| . |LinearSet|) 121899) ((|LinearElement| . |Module|) 121883) ((|LinearElement| . |CoercibleFrom|) 121851) ((|LinearElement| . |IndexedDirectProductCategory|) 121814) ((|LinearElement| . |Functorial|) 121798) ((|LinearElement| . |ConvertibleFrom|) 121729) ((|LinearBasis| . |OrderedFinite|) T) ((|LinearBasis| . |OrderedType|) T) ((|LinearBasis| . |OrderedSet|) T) ((|LinearBasis| . |SetCategory|) T) ((|LinearBasis| . |CoercibleTo|) 121703) ((|LinearBasis| . |Type|) T) ((|LinearBasis| . |Join|) T) ((|LinearBasis| . |BasicType|) T) ((|LinearBasis| . |Finite|) T) ((|LinearBasis| . |CoercibleFrom|) 121663) ((|AssociatedLieAlgebra| . |NonAssociativeAlgebra|) 121647) ((|AssociatedLieAlgebra| . |Monad|) T) ((|AssociatedLieAlgebra| . |NonAssociativeRng|) T) ((|AssociatedLieAlgebra| . |BiModule|) 121626) ((|AssociatedLieAlgebra| . |RightLinearSet|) 121610) ((|AssociatedLieAlgebra| . |RightModule|) 121594) ((|AssociatedLieAlgebra| . |AbelianGroup|) T) ((|AssociatedLieAlgebra| . |LeftLinearSet|) 121558) ((|AssociatedLieAlgebra| . |AbelianMonoid|) T) ((|AssociatedLieAlgebra| . |SetCategory|) T) ((|AssociatedLieAlgebra| . |CoercibleTo|) 121519) ((|AssociatedLieAlgebra| . |Type|) T) ((|AssociatedLieAlgebra| . |Join|) T) ((|AssociatedLieAlgebra| . |BasicType|) T) ((|AssociatedLieAlgebra| . |AbelianSemiGroup|) T) ((|AssociatedLieAlgebra| . |CancellationAbelianMonoid|) T) ((|AssociatedLieAlgebra| . |LeftModule|) 121503) ((|AssociatedLieAlgebra| . |LinearSet|) 121487) ((|AssociatedLieAlgebra| . |Module|) 121471) ((|AssociatedLieAlgebra| . |FramedNonAssociativeAlgebra|) 121407) ((|AssociatedLieAlgebra| . |FiniteRankNonAssociativeAlgebra|) 121288) ((|AssociatedLieAlgebra| . |Eltable|) 121216) ((|Library| . |TableAggregate|) 121186) ((|Library| . |Dictionary|) 121119) ((|Library| . |BagAggregate|) 121052) ((|Library| . |ShallowlyMutableAggregate|) 120970) ((|Library| . |Collection|) 120903) ((|Library| . |ConvertibleTo|) NIL) ((|Library| . |DictionaryOperations|) 120836) ((|Library| . |IndexedAggregate|) 120806) ((|Library| . |Evalable|) 120612) ((|Library| . |InnerEvalable|) 120411) ((|Library| . |Functorial|) 120329) ((|Library| . |HomogeneousAggregate|) 120247) ((|Library| . |Eltable|) 120191) ((|Library| . |EltableAggregate|) 120161) ((|Library| . |KeyedDictionary|) 120131) ((|Library| . |SetCategory|) T) ((|Library| . |CoercibleTo|) 120105) ((|Library| . |BasicType|) T) ((|Library| . |Type|) T) ((|Library| . |Join|) T) ((|Library| . |Aggregate|) T) ((|Library| . |FiniteAggregate|) 120038) ((|LieExponentials| . |Group|) T) ((|LieExponentials| . |SemiGroup|) T) ((|LieExponentials| . |BasicType|) T) ((|LieExponentials| . |Join|) T) ((|LieExponentials| . |Type|) T) ((|LieExponentials| . |CoercibleTo|) 120012) ((|LieExponentials| . |SetCategory|) T) ((|LieExponentials| . |Monoid|) T) ((|LetAst| . |SpadSyntaxCategory|) T) ((|LetAst| . |HomotopicTo|) 119990) ((|LetAst| . |CoercibleTo|) 119945) ((|LetAst| . |CoercibleFrom|) 119923) ((|LetAst| . |SetCategory|) T) ((|LetAst| . |Type|) T) ((|LetAst| . |Join|) T) ((|LetAst| . |BasicType|) T) ((|LetAst| . |AbstractSyntaxCategory|) T) ((|LaurentPolynomial| . |DifferentialExtension|) 119907) ((|LaurentPolynomial| . |PartialDifferentialRing|) 119839) ((|LaurentPolynomial| . |PartialDifferentialSpace|) 119713) ((|LaurentPolynomial| . |PartialDifferentialDomain|) 119585) ((|LaurentPolynomial| . |DifferentialSpaceExtension|) 119569) ((|LaurentPolynomial| . |DifferentialSpace|) 119494) ((|LaurentPolynomial| . |Type|) T) ((|LaurentPolynomial| . |Join|) T) ((|LaurentPolynomial| . |DifferentialDomain|) 119413) ((|LaurentPolynomial| . |Ring|) T) ((|LaurentPolynomial| . |Monoid|) T) ((|LaurentPolynomial| . |SemiRing|) T) ((|LaurentPolynomial| . |SemiGroup|) T) ((|LaurentPolynomial| . |Rng|) T) ((|LaurentPolynomial| . |AbelianGroup|) T) ((|LaurentPolynomial| . |LeftLinearSet|) 119380) ((|LaurentPolynomial| . |AbelianMonoid|) T) ((|LaurentPolynomial| . |SetCategory|) T) ((|LaurentPolynomial| . |CoercibleTo|) 119354) ((|LaurentPolynomial| . |BasicType|) T) ((|LaurentPolynomial| . |AbelianSemiGroup|) T) ((|LaurentPolynomial| . |CancellationAbelianMonoid|) T) ((|LaurentPolynomial| . |LeftModule|) 119341) ((|LaurentPolynomial| . |CoercibleFrom|) 119199) ((|LaurentPolynomial| . |DifferentialRing|) 119164) ((|LaurentPolynomial| . |IntegralDomain|) T) ((|LaurentPolynomial| . |EntireRing|) T) ((|LaurentPolynomial| . |CommutativeRing|) T) ((|LaurentPolynomial| . |Module|) 119151) ((|LaurentPolynomial| . |LinearSet|) 119138) ((|LaurentPolynomial| . |RightModule|) 119125) ((|LaurentPolynomial| . |RightLinearSet|) 119112) ((|LaurentPolynomial| . |BiModule|) 119097) ((|LaurentPolynomial| . |Algebra|) 119084) ((|LaurentPolynomial| . |ConvertibleTo|) 119055) ((|LaurentPolynomial| . |FullyRetractableTo|) 119039) ((|LaurentPolynomial| . |RetractableTo|) 118870) ((|LaurentPolynomial| . |CharacteristicZero|) 118833) ((|LaurentPolynomial| . |CharacteristicNonZero|) 118793) ((|LaurentPolynomial| . |EuclideanDomain|) 118769) ((|LaurentPolynomial| . |GcdDomain|) 118745) ((|LaurentPolynomial| . |PrincipalIdealDomain|) 118721) ((|LocalAlgebra| . |Algebra|) 118705) ((|LocalAlgebra| . |CoercibleFrom|) 118669) ((|LocalAlgebra| . |LeftModule|) 118643) ((|LocalAlgebra| . |LeftLinearSet|) 118597) ((|LocalAlgebra| . |Rng|) T) ((|LocalAlgebra| . |SemiGroup|) T) ((|LocalAlgebra| . |SemiRing|) T) ((|LocalAlgebra| . |Monoid|) T) ((|LocalAlgebra| . |Ring|) T) ((|LocalAlgebra| . |BiModule|) 118576) ((|LocalAlgebra| . |RightLinearSet|) 118560) ((|LocalAlgebra| . |RightModule|) 118544) ((|LocalAlgebra| . |AbelianGroup|) T) ((|LocalAlgebra| . |AbelianMonoid|) T) ((|LocalAlgebra| . |SetCategory|) T) ((|LocalAlgebra| . |CoercibleTo|) 118518) ((|LocalAlgebra| . |Type|) T) ((|LocalAlgebra| . |Join|) T) ((|LocalAlgebra| . |BasicType|) T) ((|LocalAlgebra| . |AbelianSemiGroup|) T) ((|LocalAlgebra| . |CancellationAbelianMonoid|) T) ((|LocalAlgebra| . |LinearSet|) 118502) ((|LocalAlgebra| . |Module|) 118486) ((|LocalAlgebra| . |OrderedRing|) 118456) ((|LocalAlgebra| . |OrderedCancellationAbelianMonoid|) 118426) ((|LocalAlgebra| . |OrderedAbelianSemiGroup|) 118396) ((|LocalAlgebra| . |OrderedType|) 118366) ((|LocalAlgebra| . |OrderedSet|) 118336) ((|LocalAlgebra| . |OrderedAbelianMonoid|) 118306) ((|LocalAlgebra| . |OrderedAbelianGroup|) 118276) ((|LocalAlgebra| . |CharacteristicZero|) 118246) ((|KleeneTrivalentLogic| . |PropositionalLogic|) T) ((|KleeneTrivalentLogic| . |BasicType|) T) ((|KleeneTrivalentLogic| . |CoercibleTo|) 118220) ((|KleeneTrivalentLogic| . |SetCategory|) T) ((|KleeneTrivalentLogic| . |Logic|) T) ((|KleeneTrivalentLogic| . |Join|) T) ((|KleeneTrivalentLogic| . |Type|) T) ((|KleeneTrivalentLogic| . |BooleanLogic|) T) ((|KleeneTrivalentLogic| . |Finite|) T) ((|Kernel| . |CachableSet|) T) ((|Kernel| . |BasicType|) T) ((|Kernel| . |Join|) T) ((|Kernel| . |Type|) T) ((|Kernel| . |CoercibleTo|) 118194) ((|Kernel| . |SetCategory|) T) ((|Kernel| . |OrderedSet|) T) ((|Kernel| . |OrderedType|) T) ((|Kernel| . |Patternable|) 118178) ((|Kernel| . |ConvertibleTo|) 117961) ((|KeyedAccessFile| . |FileCategory|) 117884) ((|KeyedAccessFile| . |BasicType|) T) ((|KeyedAccessFile| . |Join|) T) ((|KeyedAccessFile| . |Type|) T) ((|KeyedAccessFile| . |CoercibleTo|) 117858) ((|KeyedAccessFile| . |SetCategory|) T) ((|KeyedAccessFile| . |TableAggregate|) 117831) ((|KeyedAccessFile| . |Dictionary|) 117767) ((|KeyedAccessFile| . |BagAggregate|) 117703) ((|KeyedAccessFile| . |ShallowlyMutableAggregate|) 117626) ((|KeyedAccessFile| . |Collection|) 117562) ((|KeyedAccessFile| . |ConvertibleTo|) NIL) ((|KeyedAccessFile| . |DictionaryOperations|) 117498) ((|KeyedAccessFile| . |IndexedAggregate|) 117471) ((|KeyedAccessFile| . |Evalable|) 117213) ((|KeyedAccessFile| . |InnerEvalable|) 116943) ((|KeyedAccessFile| . |Functorial|) 116866) ((|KeyedAccessFile| . |HomogeneousAggregate|) 116789) ((|KeyedAccessFile| . |Eltable|) 116762) ((|KeyedAccessFile| . |EltableAggregate|) 116735) ((|KeyedAccessFile| . |KeyedDictionary|) 116708) ((|KeyedAccessFile| . |Aggregate|) T) ((|KeyedAccessFile| . |FiniteAggregate|) 116644) ((|JVMOpcode| . |SetCategory|) T) ((|JVMOpcode| . |CoercibleTo|) 116577) ((|JVMOpcode| . |Type|) T) ((|JVMOpcode| . |Join|) T) ((|JVMOpcode| . |BasicType|) T) ((|JVMOpcode| . |HomotopicTo|) 116533) ((|JVMOpcode| . |CoercibleFrom|) 116489) ((|JVMMethodAccess| . |SetCategory|) T) ((|JVMMethodAccess| . |CoercibleTo|) 116463) ((|JVMMethodAccess| . |Type|) T) ((|JVMMethodAccess| . |Join|) T) ((|JVMMethodAccess| . |BasicType|) T) ((|JVMMethodAccess| . |Logic|) T) ((|JVMFieldAccess| . |SetCategory|) T) ((|JVMFieldAccess| . |CoercibleTo|) 116437) ((|JVMFieldAccess| . |Type|) T) ((|JVMFieldAccess| . |Join|) T) ((|JVMFieldAccess| . |BasicType|) T) ((|JVMFieldAccess| . |Logic|) T) ((|JVMConstantTag| . |SetCategory|) T) ((|JVMConstantTag| . |CoercibleTo|) 116394) ((|JVMConstantTag| . |Type|) T) ((|JVMConstantTag| . |Join|) T) ((|JVMConstantTag| . |BasicType|) T) ((|JVMClassFileAccess| . |SetCategory|) T) ((|JVMClassFileAccess| . |CoercibleTo|) 116368) ((|JVMClassFileAccess| . |Type|) T) ((|JVMClassFileAccess| . |Join|) T) ((|JVMClassFileAccess| . |BasicType|) T) ((|JVMClassFileAccess| . |Logic|) T) ((|JVMBytecode| . |SetCategory|) T) ((|JVMBytecode| . |CoercibleTo|) 116325) ((|JVMBytecode| . |Type|) T) ((|JVMBytecode| . |Join|) T) ((|JVMBytecode| . |BasicType|) T) ((|JVMBytecode| . |HomotopicTo|) 116305) ((|JVMBytecode| . |CoercibleFrom|) 116285) ((|AssociatedJordanAlgebra| . |NonAssociativeAlgebra|) 116269) ((|AssociatedJordanAlgebra| . |Monad|) T) ((|AssociatedJordanAlgebra| . |NonAssociativeRng|) T) ((|AssociatedJordanAlgebra| . |BiModule|) 116248) ((|AssociatedJordanAlgebra| . |RightLinearSet|) 116232) ((|AssociatedJordanAlgebra| . |RightModule|) 116216) ((|AssociatedJordanAlgebra| . |AbelianGroup|) T) ((|AssociatedJordanAlgebra| . |LeftLinearSet|) 116180) ((|AssociatedJordanAlgebra| . |AbelianMonoid|) T) ((|AssociatedJordanAlgebra| . |SetCategory|) T) ((|AssociatedJordanAlgebra| . |CoercibleTo|) 116141) ((|AssociatedJordanAlgebra| . |Type|) T) ((|AssociatedJordanAlgebra| . |Join|) T) ((|AssociatedJordanAlgebra| . |BasicType|) T) ((|AssociatedJordanAlgebra| . |AbelianSemiGroup|) T) ((|AssociatedJordanAlgebra| . |CancellationAbelianMonoid|) T) ((|AssociatedJordanAlgebra| . |LeftModule|) 116125) ((|AssociatedJordanAlgebra| . |LinearSet|) 116109) ((|AssociatedJordanAlgebra| . |Module|) 116093) ((|AssociatedJordanAlgebra| . |FramedNonAssociativeAlgebra|) 116029) ((|AssociatedJordanAlgebra| . |FiniteRankNonAssociativeAlgebra|) 115910) ((|AssociatedJordanAlgebra| . |Eltable|) 115838) ((|JoinAst| . |SpadSyntaxCategory|) T) ((|JoinAst| . |HomotopicTo|) 115816) ((|JoinAst| . |CoercibleTo|) 115751) ((|JoinAst| . |CoercibleFrom|) 115729) ((|JoinAst| . |SetCategory|) T) ((|JoinAst| . |Type|) T) ((|JoinAst| . |Join|) T) ((|JoinAst| . |BasicType|) T) ((|JoinAst| . |AbstractSyntaxCategory|) T) ((|InfiniteTuple| . |Functorial|) 115713) ((|InfiniteTuple| . |Join|) T) ((|InfiniteTuple| . |Type|) T) ((|InfiniteTuple| . |CoercibleTo|) 115687) ((|InternalTypeForm| . |SetCategory|) T) ((|InternalTypeForm| . |CoercibleTo|) 115642) ((|InternalTypeForm| . |Type|) T) ((|InternalTypeForm| . |Join|) T) ((|InternalTypeForm| . |BasicType|) T) ((|InternalTypeForm| . |HomotopicTo|) 115620) ((|InternalTypeForm| . |CoercibleFrom|) 115598) ((|InnerTaylorSeries| . |Ring|) T) ((|InnerTaylorSeries| . |Monoid|) T) ((|InnerTaylorSeries| . |SemiRing|) T) ((|InnerTaylorSeries| . |SemiGroup|) T) ((|InnerTaylorSeries| . |Rng|) T) ((|InnerTaylorSeries| . |AbelianGroup|) T) ((|InnerTaylorSeries| . |LeftLinearSet|) 115552) ((|InnerTaylorSeries| . |AbelianMonoid|) T) ((|InnerTaylorSeries| . |SetCategory|) T) ((|InnerTaylorSeries| . |CoercibleTo|) 115526) ((|InnerTaylorSeries| . |Type|) T) ((|InnerTaylorSeries| . |Join|) T) ((|InnerTaylorSeries| . |BasicType|) T) ((|InnerTaylorSeries| . |AbelianSemiGroup|) T) ((|InnerTaylorSeries| . |CancellationAbelianMonoid|) T) ((|InnerTaylorSeries| . |LeftModule|) 115500) ((|InnerTaylorSeries| . |CoercibleFrom|) 115441) ((|InnerTaylorSeries| . |BiModule|) 115382) ((|InnerTaylorSeries| . |RightLinearSet|) 115330) ((|InnerTaylorSeries| . |RightModule|) 115278) ((|InnerTaylorSeries| . |IntegralDomain|) 115245) ((|InnerTaylorSeries| . |EntireRing|) 115212) ((|InnerTaylorSeries| . |CommutativeRing|) 115179) ((|InnerTaylorSeries| . |Module|) 115140) ((|InnerTaylorSeries| . |LinearSet|) 115101) ((|InnerTaylorSeries| . |Algebra|) 115062) ((|InnerSparseUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 115034) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoidRing|) 115006) ((|InnerSparseUnivariatePowerSeries| . |Algebra|) 114850) ((|InnerSparseUnivariatePowerSeries| . |LinearSet|) 114694) ((|InnerSparseUnivariatePowerSeries| . |Module|) 114538) ((|InnerSparseUnivariatePowerSeries| . |CoercibleFrom|) 114362) ((|InnerSparseUnivariatePowerSeries| . |EntireRing|) 114329) ((|InnerSparseUnivariatePowerSeries| . |IntegralDomain|) 114296) ((|InnerSparseUnivariatePowerSeries| . |Functorial|) 114280) ((|InnerSparseUnivariatePowerSeries| . |BiModule|) 114099) ((|InnerSparseUnivariatePowerSeries| . |RightLinearSet|) 113932) ((|InnerSparseUnivariatePowerSeries| . |RightModule|) 113765) ((|InnerSparseUnivariatePowerSeries| . |CommutativeRing|) 113694) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicZero|) 113657) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicNonZero|) 113617) ((|InnerSparseUnivariatePowerSeries| . |LeftModule|) 113514) ((|InnerSparseUnivariatePowerSeries| . |LeftLinearSet|) 113391) ((|InnerSparseUnivariatePowerSeries| . |PowerSeriesCategory|) 113337) ((|InnerSparseUnivariatePowerSeries| . |PartialDifferentialSpace|) 113212) ((|InnerSparseUnivariatePowerSeries| . |PartialDifferentialDomain|) 113085) ((|InnerSparseUnivariatePowerSeries| . |PartialDifferentialRing|) 112960) ((|InnerSparseUnivariatePowerSeries| . |Eltable|) 112920) ((|InnerSparseUnivariatePowerSeries| . |DifferentialSpace|) 112868) ((|InnerSparseUnivariatePowerSeries| . |Type|) T) ((|InnerSparseUnivariatePowerSeries| . |Join|) T) ((|InnerSparseUnivariatePowerSeries| . |DifferentialDomain|) 112810) ((|InnerSparseUnivariatePowerSeries| . |Ring|) T) ((|InnerSparseUnivariatePowerSeries| . |Monoid|) T) ((|InnerSparseUnivariatePowerSeries| . |SemiRing|) T) ((|InnerSparseUnivariatePowerSeries| . |SemiGroup|) T) ((|InnerSparseUnivariatePowerSeries| . |Rng|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianGroup|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoid|) T) ((|InnerSparseUnivariatePowerSeries| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |CoercibleTo|) 112784) ((|InnerSparseUnivariatePowerSeries| . |BasicType|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|InnerSparseUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|InnerSparseUnivariatePowerSeries| . |DifferentialRing|) 112732) ((|IsAst| . |SpadSyntaxCategory|) T) ((|IsAst| . |HomotopicTo|) 112710) ((|IsAst| . |CoercibleTo|) 112665) ((|IsAst| . |CoercibleFrom|) 112643) ((|IsAst| . |SetCategory|) T) ((|IsAst| . |Type|) T) ((|IsAst| . |Join|) T) ((|IsAst| . |BasicType|) T) ((|IsAst| . |AbstractSyntaxCategory|) T) ((|InternalRepresentationForm| . |SetCategory|) T) ((|InternalRepresentationForm| . |CoercibleTo|) 112598) ((|InternalRepresentationForm| . |Type|) T) ((|InternalRepresentationForm| . |Join|) T) ((|InternalRepresentationForm| . |BasicType|) T) ((|InternalRepresentationForm| . |HomotopicTo|) 112576) ((|InternalRepresentationForm| . |CoercibleFrom|) 112554) ((|IntegrationResult| . |Module|) 112518) ((|IntegrationResult| . |LinearSet|) 112482) ((|IntegrationResult| . |LeftModule|) 112446) ((|IntegrationResult| . |LeftLinearSet|) 112390) ((|IntegrationResult| . |CancellationAbelianMonoid|) T) ((|IntegrationResult| . |AbelianSemiGroup|) T) ((|IntegrationResult| . |BasicType|) T) ((|IntegrationResult| . |Join|) T) ((|IntegrationResult| . |Type|) T) ((|IntegrationResult| . |CoercibleTo|) 112364) ((|IntegrationResult| . |SetCategory|) T) ((|IntegrationResult| . |AbelianMonoid|) T) ((|IntegrationResult| . |AbelianGroup|) T) ((|IntegrationResult| . |RightModule|) 112328) ((|IntegrationResult| . |RightLinearSet|) 112292) ((|IntegrationResult| . |BiModule|) 112249) ((|IntegrationResult| . |RetractableTo|) 112233) ((|IntegrationResult| . |CoercibleFrom|) 112217) ((|InnerPrimeField| . |FiniteFieldCategory|) T) ((|InnerPrimeField| . |StepThrough|) T) ((|InnerPrimeField| . |Finite|) T) ((|InnerPrimeField| . |CharacteristicNonZero|) T) ((|InnerPrimeField| . |Field|) T) ((|InnerPrimeField| . |UniqueFactorizationDomain|) T) ((|InnerPrimeField| . |PrincipalIdealDomain|) T) ((|InnerPrimeField| . |IntegralDomain|) T) ((|InnerPrimeField| . |CommutativeRing|) T) ((|InnerPrimeField| . |CoercibleFrom|) 112151) ((|InnerPrimeField| . |Module|) 112105) ((|InnerPrimeField| . |LinearSet|) 112059) ((|InnerPrimeField| . |Algebra|) 112013) ((|InnerPrimeField| . |GcdDomain|) T) ((|InnerPrimeField| . |EuclideanDomain|) T) ((|InnerPrimeField| . |BiModule|) 111958) ((|InnerPrimeField| . |RightLinearSet|) 111912) ((|InnerPrimeField| . |RightModule|) 111866) ((|InnerPrimeField| . |LeftLinearSet|) 111800) ((|InnerPrimeField| . |LeftModule|) 111754) ((|InnerPrimeField| . |EntireRing|) T) ((|InnerPrimeField| . |DivisionRing|) T) ((|InnerPrimeField| . |FieldOfPrimeCharacteristic|) T) ((|InnerPrimeField| . |DifferentialSpace|) T) ((|InnerPrimeField| . |Type|) T) ((|InnerPrimeField| . |Join|) T) ((|InnerPrimeField| . |DifferentialDomain|) 111741) ((|InnerPrimeField| . |Ring|) T) ((|InnerPrimeField| . |Monoid|) T) ((|InnerPrimeField| . |SemiRing|) T) ((|InnerPrimeField| . |SemiGroup|) T) ((|InnerPrimeField| . |Rng|) T) ((|InnerPrimeField| . |AbelianGroup|) T) ((|InnerPrimeField| . |AbelianMonoid|) T) ((|InnerPrimeField| . |SetCategory|) T) ((|InnerPrimeField| . |CoercibleTo|) 111715) ((|InnerPrimeField| . |BasicType|) T) ((|InnerPrimeField| . |AbelianSemiGroup|) T) ((|InnerPrimeField| . |CancellationAbelianMonoid|) T) ((|InnerPrimeField| . |DifferentialRing|) T) ((|InnerPrimeField| . |FiniteAlgebraicExtensionField|) 111702) ((|InnerPrimeField| . |CharacteristicZero|) 111668) ((|InnerPrimeField| . |RetractableTo|) 111655) ((|InnerPrimeField| . |VectorSpace|) 111642) ((|InnerPrimeField| . |ExtensionField|) 111629) ((|InnerPrimeField| . |ConvertibleTo|) 111606) ((|InnerPAdicInteger| . |PAdicIntegerCategory|) 111590) ((|InnerPAdicInteger| . |PrincipalIdealDomain|) T) ((|InnerPAdicInteger| . |IntegralDomain|) T) ((|InnerPAdicInteger| . |EntireRing|) T) ((|InnerPAdicInteger| . |CommutativeRing|) T) ((|InnerPAdicInteger| . |CoercibleFrom|) 111557) ((|InnerPAdicInteger| . |Module|) 111544) ((|InnerPAdicInteger| . |LinearSet|) 111531) ((|InnerPAdicInteger| . |RightModule|) 111518) ((|InnerPAdicInteger| . |RightLinearSet|) 111505) ((|InnerPAdicInteger| . |BiModule|) 111490) ((|InnerPAdicInteger| . |Algebra|) 111477) ((|InnerPAdicInteger| . |GcdDomain|) T) ((|InnerPAdicInteger| . |EuclideanDomain|) T) ((|InnerPAdicInteger| . |Ring|) T) ((|InnerPAdicInteger| . |Monoid|) T) ((|InnerPAdicInteger| . |SemiRing|) T) ((|InnerPAdicInteger| . |SemiGroup|) T) ((|InnerPAdicInteger| . |Rng|) T) ((|InnerPAdicInteger| . |AbelianGroup|) T) ((|InnerPAdicInteger| . |LeftLinearSet|) 111444) ((|InnerPAdicInteger| . |AbelianMonoid|) T) ((|InnerPAdicInteger| . |SetCategory|) T) ((|InnerPAdicInteger| . |CoercibleTo|) 111418) ((|InnerPAdicInteger| . |Type|) T) ((|InnerPAdicInteger| . |Join|) T) ((|InnerPAdicInteger| . |BasicType|) T) ((|InnerPAdicInteger| . |AbelianSemiGroup|) T) ((|InnerPAdicInteger| . |CancellationAbelianMonoid|) T) ((|InnerPAdicInteger| . |LeftModule|) 111405) ((|InnerPAdicInteger| . |CharacteristicZero|) T) ((|IP4Address| . |SetCategory|) T) ((|IP4Address| . |CoercibleTo|) 111379) ((|IP4Address| . |Type|) T) ((|IP4Address| . |Join|) T) ((|IP4Address| . |BasicType|) T) ((|IOMode| . |SetCategory|) T) ((|IOMode| . |CoercibleTo|) 111353) ((|IOMode| . |Type|) T) ((|IOMode| . |Join|) T) ((|IOMode| . |BasicType|) T) ((|InputOutputBinaryFile| . |InputOutputByteConduit|) T) ((|InputOutputBinaryFile| . |OutputByteConduit|) T) ((|InputOutputBinaryFile| . |Conduit|) T) ((|InputOutputBinaryFile| . |InputByteConduit|) T) ((|InputOutputBinaryFile| . |CoercibleTo|) 111327) ((|Interval| . |IntervalCategory|) 111311) ((|Interval| . |ArcHyperbolicFunctionCategory|) T) ((|Interval| . |ArcTrigonometricFunctionCategory|) T) ((|Interval| . |ElementaryFunctionCategory|) T) ((|Interval| . |HyperbolicFunctionCategory|) T) ((|Interval| . |TrigonometricFunctionCategory|) T) ((|Interval| . |TranscendentalFunctionCategory|) T) ((|Interval| . |RetractableTo|) 111288) ((|Interval| . |RadicalCategory|) T) ((|Interval| . |OrderedType|) T) ((|Interval| . |OrderedSet|) T) ((|Interval| . |IntegralDomain|) T) ((|Interval| . |EntireRing|) T) ((|Interval| . |CommutativeRing|) T) ((|Interval| . |CoercibleFrom|) 111255) ((|Interval| . |Module|) 111242) ((|Interval| . |LinearSet|) 111229) ((|Interval| . |LeftModule|) 111216) ((|Interval| . |LeftLinearSet|) 111183) ((|Interval| . |CancellationAbelianMonoid|) T) ((|Interval| . |AbelianSemiGroup|) T) ((|Interval| . |BasicType|) T) ((|Interval| . |Join|) T) ((|Interval| . |Type|) T) ((|Interval| . |CoercibleTo|) 111157) ((|Interval| . |SetCategory|) T) ((|Interval| . |AbelianMonoid|) T) ((|Interval| . |AbelianGroup|) T) ((|Interval| . |RightModule|) 111144) ((|Interval| . |RightLinearSet|) 111131) ((|Interval| . |BiModule|) 111116) ((|Interval| . |Ring|) T) ((|Interval| . |Monoid|) T) ((|Interval| . |SemiRing|) T) ((|Interval| . |SemiGroup|) T) ((|Interval| . |Rng|) T) ((|Interval| . |Algebra|) 111103) ((|Interval| . |GcdDomain|) T) ((|InnerTable| . |TableAggregate|) 111082) ((|InnerTable| . |Dictionary|) 111024) ((|InnerTable| . |BagAggregate|) 110966) ((|InnerTable| . |ShallowlyMutableAggregate|) 110895) ((|InnerTable| . |Collection|) 110837) ((|InnerTable| . |ConvertibleTo|) NIL) ((|InnerTable| . |DictionaryOperations|) 110779) ((|InnerTable| . |IndexedAggregate|) 110758) ((|InnerTable| . |Evalable|) 110518) ((|InnerTable| . |InnerEvalable|) 110266) ((|InnerTable| . |Functorial|) 110195) ((|InnerTable| . |HomogeneousAggregate|) 110124) ((|InnerTable| . |Eltable|) 110103) ((|InnerTable| . |EltableAggregate|) 110082) ((|InnerTable| . |KeyedDictionary|) 110061) ((|InnerTable| . |SetCategory|) T) ((|InnerTable| . |CoercibleTo|) 110035) ((|InnerTable| . |BasicType|) T) ((|InnerTable| . |Type|) T) ((|InnerTable| . |Join|) T) ((|InnerTable| . |Aggregate|) T) ((|InnerTable| . |FiniteAggregate|) 109977) ((|Int8| . |OrderedFinite|) T) ((|Int8| . |OrderedType|) T) ((|Int8| . |OrderedSet|) T) ((|Int8| . |SetCategory|) T) ((|Int8| . |CoercibleTo|) 109951) ((|Int8| . |Type|) T) ((|Int8| . |Join|) T) ((|Int8| . |BasicType|) T) ((|Int8| . |Finite|) T) ((|Int64| . |OrderedFinite|) T) ((|Int64| . |OrderedType|) T) ((|Int64| . |OrderedSet|) T) ((|Int64| . |SetCategory|) T) ((|Int64| . |CoercibleTo|) 109925) ((|Int64| . |Type|) T) ((|Int64| . |Join|) T) ((|Int64| . |BasicType|) T) ((|Int64| . |Finite|) T) ((|Int32| . |OrderedFinite|) T) ((|Int32| . |OrderedType|) T) ((|Int32| . |OrderedSet|) T) ((|Int32| . |SetCategory|) T) ((|Int32| . |CoercibleTo|) 109899) ((|Int32| . |Type|) T) ((|Int32| . |Join|) T) ((|Int32| . |BasicType|) T) ((|Int32| . |Finite|) T) ((|Int16| . |OrderedFinite|) T) ((|Int16| . |OrderedType|) T) ((|Int16| . |OrderedSet|) T) ((|Int16| . |SetCategory|) T) ((|Int16| . |CoercibleTo|) 109873) ((|Int16| . |Type|) T) ((|Int16| . |Join|) T) ((|Int16| . |BasicType|) T) ((|Int16| . |Finite|) T) ((|Integer| . |IntegerNumberSystem|) T) ((|Integer| . |UniqueFactorizationDomain|) T) ((|Integer| . |StepThrough|) T) ((|Integer| . |RetractableTo|) 109850) ((|Integer| . |ConvertibleTo|) 109736) ((|Integer| . |RealConstant|) T) ((|Integer| . |PatternMatchable|) 109713) ((|Integer| . |OrderedRing|) T) ((|Integer| . |OrderedCancellationAbelianMonoid|) T) ((|Integer| . |OrderedAbelianSemiGroup|) T) ((|Integer| . |OrderedType|) T) ((|Integer| . |OrderedSet|) T) ((|Integer| . |OrderedAbelianMonoid|) T) ((|Integer| . |OrderedAbelianGroup|) T) ((|Integer| . |OrderedIntegralDomain|) T) ((|Integer| . |LeftModule|) 109680) ((|Integer| . |LinearlyExplicitRingOver|) 109657) ((|Integer| . |PrincipalIdealDomain|) T) ((|Integer| . |IntegralDomain|) T) ((|Integer| . |EntireRing|) T) ((|Integer| . |CommutativeRing|) T) ((|Integer| . |CoercibleFrom|) 109624) ((|Integer| . |Module|) 109611) ((|Integer| . |LinearSet|) 109598) ((|Integer| . |RightModule|) 109585) ((|Integer| . |RightLinearSet|) 109572) ((|Integer| . |BiModule|) 109557) ((|Integer| . |Algebra|) 109544) ((|Integer| . |GcdDomain|) T) ((|Integer| . |EuclideanDomain|) T) ((|Integer| . |DifferentialSpace|) T) ((|Integer| . |DifferentialDomain|) 109531) ((|Integer| . |DifferentialRing|) T) ((|Integer| . |CombinatorialFunctionCategory|) T) ((|Integer| . |Ring|) T) ((|Integer| . |Monoid|) T) ((|Integer| . |SemiRing|) T) ((|Integer| . |SemiGroup|) T) ((|Integer| . |Rng|) T) ((|Integer| . |AbelianGroup|) T) ((|Integer| . |LeftLinearSet|) 109498) ((|Integer| . |AbelianMonoid|) T) ((|Integer| . |SetCategory|) T) ((|Integer| . |CoercibleTo|) 109472) ((|Integer| . |Type|) T) ((|Integer| . |Join|) T) ((|Integer| . |BasicType|) T) ((|Integer| . |AbelianSemiGroup|) T) ((|Integer| . |CancellationAbelianMonoid|) T) ((|Integer| . |CharacteristicZero|) T) ((|InputForm| . |SExpressionCategory|) 109396) ((|InputForm| . |BasicType|) T) ((|InputForm| . |CoercibleTo|) 109370) ((|InputForm| . |SetCategory|) T) ((|InputForm| . |Eltable|) 109314) ((|InputForm| . |Type|) T) ((|InputForm| . |Join|) T) ((|InputForm| . |ConvertibleFrom|) 109187) ((|InputForm| . |ConvertibleTo|) 109160) ((|InetClientStreamSocket| . |NetworkClientSocket|) 109134) ((|InetClientStreamSocket| . |InputByteConduit|) T) ((|InetClientStreamSocket| . |Conduit|) T) ((|InetClientStreamSocket| . |OutputByteConduit|) T) ((|InetClientStreamSocket| . |InputOutputByteConduit|) T) ((|InetClientStreamSocket| . |CoercibleTo|) 109108) ((|IndexedExponents| . |OrderedAbelianMonoidSup|) T) ((|IndexedExponents| . |CancellationAbelianMonoid|) T) ((|IndexedExponents| . |AbelianSemiGroup|) T) ((|IndexedExponents| . |BasicType|) T) ((|IndexedExponents| . |Join|) T) ((|IndexedExponents| . |Type|) T) ((|IndexedExponents| . |CoercibleTo|) 109082) ((|IndexedExponents| . |SetCategory|) T) ((|IndexedExponents| . |AbelianMonoid|) T) ((|IndexedExponents| . |OrderedAbelianMonoid|) T) ((|IndexedExponents| . |OrderedSet|) T) ((|IndexedExponents| . |OrderedType|) T) ((|IndexedExponents| . |OrderedAbelianSemiGroup|) T) ((|IndexedExponents| . |OrderedCancellationAbelianMonoid|) T) ((|IndexedExponents| . |IndexedDirectProductCategory|) 109043) ((|IndexedExponents| . |Functorial|) 109009) ((|IndexedExponents| . |ConvertibleFrom|) 108938) ((|InputBinaryFile| . |InputByteConduit|) T) ((|InputBinaryFile| . |Conduit|) T) ((|InputBinaryFile| . |CoercibleTo|) 108912) ((|InAst| . |SpadSyntaxCategory|) T) ((|InAst| . |HomotopicTo|) 108890) ((|InAst| . |CoercibleTo|) 108845) ((|InAst| . |CoercibleFrom|) 108823) ((|InAst| . |SetCategory|) T) ((|InAst| . |Type|) T) ((|InAst| . |Join|) T) ((|InAst| . |BasicType|) T) ((|InAst| . |AbstractSyntaxCategory|) T) ((|ImportAst| . |SpadSyntaxCategory|) T) ((|ImportAst| . |HomotopicTo|) 108801) ((|ImportAst| . |CoercibleTo|) 108756) ((|ImportAst| . |CoercibleFrom|) 108734) ((|ImportAst| . |SetCategory|) T) ((|ImportAst| . |Type|) T) ((|ImportAst| . |Join|) T) ((|ImportAst| . |BasicType|) T) ((|ImportAst| . |AbstractSyntaxCategory|) T) ((|InnerFiniteField| . |FiniteAlgebraicExtensionField|) 108698) ((|InnerFiniteField| . |DifferentialRing|) T) ((|InnerFiniteField| . |DifferentialDomain|) 108685) ((|InnerFiniteField| . |DifferentialSpace|) T) ((|InnerFiniteField| . |Finite|) T) ((|InnerFiniteField| . |StepThrough|) T) ((|InnerFiniteField| . |FiniteFieldCategory|) T) ((|InnerFiniteField| . |CharacteristicZero|) 108651) ((|InnerFiniteField| . |CoercibleFrom|) 108552) ((|InnerFiniteField| . |LeftModule|) 108473) ((|InnerFiniteField| . |LeftLinearSet|) 108374) ((|InnerFiniteField| . |CancellationAbelianMonoid|) T) ((|InnerFiniteField| . |AbelianSemiGroup|) T) ((|InnerFiniteField| . |BasicType|) T) ((|InnerFiniteField| . |Join|) T) ((|InnerFiniteField| . |Type|) T) ((|InnerFiniteField| . |CoercibleTo|) 108348) ((|InnerFiniteField| . |SetCategory|) T) ((|InnerFiniteField| . |AbelianMonoid|) T) ((|InnerFiniteField| . |AbelianGroup|) T) ((|InnerFiniteField| . |Rng|) T) ((|InnerFiniteField| . |SemiGroup|) T) ((|InnerFiniteField| . |SemiRing|) T) ((|InnerFiniteField| . |Monoid|) T) ((|InnerFiniteField| . |Ring|) T) ((|InnerFiniteField| . |Field|) T) ((|InnerFiniteField| . |UniqueFactorizationDomain|) T) ((|InnerFiniteField| . |PrincipalIdealDomain|) T) ((|InnerFiniteField| . |IntegralDomain|) T) ((|InnerFiniteField| . |CommutativeRing|) T) ((|InnerFiniteField| . |Module|) 108269) ((|InnerFiniteField| . |LinearSet|) 108190) ((|InnerFiniteField| . |Algebra|) 108144) ((|InnerFiniteField| . |GcdDomain|) T) ((|InnerFiniteField| . |EuclideanDomain|) T) ((|InnerFiniteField| . |BiModule|) 108049) ((|InnerFiniteField| . |RightLinearSet|) 107970) ((|InnerFiniteField| . |RightModule|) 107891) ((|InnerFiniteField| . |EntireRing|) T) ((|InnerFiniteField| . |DivisionRing|) T) ((|InnerFiniteField| . |FieldOfPrimeCharacteristic|) T) ((|InnerFiniteField| . |CharacteristicNonZero|) T) ((|InnerFiniteField| . |RetractableTo|) 107855) ((|InnerFiniteField| . |VectorSpace|) 107819) ((|InnerFiniteField| . |ExtensionField|) 107783) ((|IfAst| . |SpadSyntaxCategory|) T) ((|IfAst| . |HomotopicTo|) 107761) ((|IfAst| . |CoercibleTo|) 107716) ((|IfAst| . |CoercibleFrom|) 107694) ((|IfAst| . |SetCategory|) T) ((|IfAst| . |Type|) T) ((|IfAst| . |Join|) T) ((|IfAst| . |BasicType|) T) ((|IfAst| . |AbstractSyntaxCategory|) T) ((|IndexedFlexibleArray| . |OneDimensionalArrayAggregate|) 107678) ((|IndexedFlexibleArray| . |ShallowlyMutableAggregate|) 107662) ((|IndexedFlexibleArray| . |FiniteAggregate|) 107646) ((|IndexedFlexibleArray| . |Aggregate|) T) ((|IndexedFlexibleArray| . |Join|) T) ((|IndexedFlexibleArray| . |Type|) T) ((|IndexedFlexibleArray| . |BasicType|) 107556) ((|IndexedFlexibleArray| . |CoercibleTo|) 107430) ((|IndexedFlexibleArray| . |Evalable|) 107354) ((|IndexedFlexibleArray| . |InnerEvalable|) 107273) ((|IndexedFlexibleArray| . |Functorial|) 107257) ((|IndexedFlexibleArray| . |SetCategory|) 107194) ((|IndexedFlexibleArray| . |HomogeneousAggregate|) 107178) ((|IndexedFlexibleArray| . |LinearAggregate|) 107162) ((|IndexedFlexibleArray| . |EltableAggregate|) 107134) ((|IndexedFlexibleArray| . |Eltable|) 107063) ((|IndexedFlexibleArray| . |IndexedAggregate|) 107035) ((|IndexedFlexibleArray| . |ConvertibleTo|) 106971) ((|IndexedFlexibleArray| . |Collection|) 106955) ((|IndexedFlexibleArray| . |OrderedSet|) 106926) ((|IndexedFlexibleArray| . |OrderedType|) 106897) ((|IndexedFlexibleArray| . |FiniteLinearAggregate|) 106881) ((|IndexedFlexibleArray| . |ExtensibleLinearAggregate|) 106865) ((|InnerFreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 106844) ((|InnerFreeAbelianMonoid| . |CoercibleFrom|) 106828) ((|InnerFreeAbelianMonoid| . |RetractableTo|) 106812) ((|InnerFreeAbelianMonoid| . |AbelianMonoid|) T) ((|InnerFreeAbelianMonoid| . |SetCategory|) T) ((|InnerFreeAbelianMonoid| . |CoercibleTo|) 106786) ((|InnerFreeAbelianMonoid| . |Type|) T) ((|InnerFreeAbelianMonoid| . |Join|) T) ((|InnerFreeAbelianMonoid| . |BasicType|) T) ((|InnerFreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|InnerFreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|IndexedProductTerm| . |BasicType|) T) ((|IndexedProductTerm| . |Join|) T) ((|IndexedProductTerm| . |Type|) T) ((|IndexedProductTerm| . |CoercibleTo|) 106756) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoidSup|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CancellationAbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |BasicType|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |Join|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |Type|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CoercibleTo|) 106730) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |SetCategory|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedSet|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedType|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedCancellationAbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |IndexedDirectProductCategory|) 106709) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |Functorial|) 106693) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |ConvertibleFrom|) 106640) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedSet|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedType|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |BasicType|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |Join|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |Type|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |CoercibleTo|) 106614) ((|IndexedDirectProductOrderedAbelianMonoid| . |SetCategory|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |IndexedDirectProductCategory|) 106593) ((|IndexedDirectProductOrderedAbelianMonoid| . |Functorial|) 106577) ((|IndexedDirectProductOrderedAbelianMonoid| . |ConvertibleFrom|) 106524) ((|IndexedDirectProductObject| . |IndexedDirectProductCategory|) 106503) ((|IndexedDirectProductObject| . |CoercibleTo|) 106419) ((|IndexedDirectProductObject| . |SetCategory|) 106354) ((|IndexedDirectProductObject| . |Functorial|) 106338) ((|IndexedDirectProductObject| . |ConvertibleFrom|) 106285) ((|IndexedDirectProductObject| . |Type|) T) ((|IndexedDirectProductObject| . |Join|) T) ((|IndexedDirectProductObject| . |BasicType|) T) ((|IndexedDirectProductAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductAbelianMonoid| . |SetCategory|) T) ((|IndexedDirectProductAbelianMonoid| . |CoercibleTo|) 106259) ((|IndexedDirectProductAbelianMonoid| . |Type|) T) ((|IndexedDirectProductAbelianMonoid| . |Join|) T) ((|IndexedDirectProductAbelianMonoid| . |BasicType|) T) ((|IndexedDirectProductAbelianMonoid| . |AbelianSemiGroup|) T) ((|IndexedDirectProductAbelianMonoid| . |IndexedDirectProductCategory|) 106238) ((|IndexedDirectProductAbelianMonoid| . |Functorial|) 106222) ((|IndexedDirectProductAbelianMonoid| . |ConvertibleFrom|) 106169) ((|IndexedDirectProductAbelianGroup| . |AbelianGroup|) T) ((|IndexedDirectProductAbelianGroup| . |LeftLinearSet|) 106146) ((|IndexedDirectProductAbelianGroup| . |AbelianMonoid|) T) ((|IndexedDirectProductAbelianGroup| . |SetCategory|) T) ((|IndexedDirectProductAbelianGroup| . |CoercibleTo|) 106120) ((|IndexedDirectProductAbelianGroup| . |Type|) T) ((|IndexedDirectProductAbelianGroup| . |Join|) T) ((|IndexedDirectProductAbelianGroup| . |BasicType|) T) ((|IndexedDirectProductAbelianGroup| . |AbelianSemiGroup|) T) ((|IndexedDirectProductAbelianGroup| . |CancellationAbelianMonoid|) T) ((|IndexedDirectProductAbelianGroup| . |IndexedDirectProductCategory|) 106099) ((|IndexedDirectProductAbelianGroup| . |Functorial|) 106083) ((|IndexedDirectProductAbelianGroup| . |ConvertibleFrom|) 106030) ((|Identifier| . |SetCategory|) T) ((|Identifier| . |CoercibleTo|) 106004) ((|Identifier| . |Type|) T) ((|Identifier| . |Join|) T) ((|Identifier| . |BasicType|) T) ((|PolynomialIdeals| . |SetCategory|) T) ((|PolynomialIdeals| . |CoercibleTo|) 105978) ((|PolynomialIdeals| . |Type|) T) ((|PolynomialIdeals| . |Join|) T) ((|PolynomialIdeals| . |BasicType|) T) ((|IndexCard| . |OrderedSet|) T) ((|IndexCard| . |CoercibleTo|) 105952) ((|IndexCard| . |SetCategory|) T) ((|IndexCard| . |BasicType|) T) ((|IndexCard| . |Join|) T) ((|IndexCard| . |Type|) T) ((|IndexCard| . |OrderedType|) T) ((|IndexCard| . |CoercibleFrom|) 105930) ((|IndexedBits| . |BitAggregate|) T) ((|IndexedBits| . |FiniteLinearAggregate|) 105907) ((|IndexedBits| . |OrderedType|) T) ((|IndexedBits| . |OrderedSet|) T) ((|IndexedBits| . |Collection|) 105884) ((|IndexedBits| . |ConvertibleTo|) 105859) ((|IndexedBits| . |Eltable|) 105781) ((|IndexedBits| . |IndexedAggregate|) 105746) ((|IndexedBits| . |EltableAggregate|) 105711) ((|IndexedBits| . |LinearAggregate|) 105688) ((|IndexedBits| . |HomogeneousAggregate|) 105665) ((|IndexedBits| . |SetCategory|) T) ((|IndexedBits| . |Functorial|) 105642) ((|IndexedBits| . |InnerEvalable|) NIL) ((|IndexedBits| . |Evalable|) NIL) ((|IndexedBits| . |CoercibleTo|) 105616) ((|IndexedBits| . |BasicType|) T) ((|IndexedBits| . |Aggregate|) T) ((|IndexedBits| . |FiniteAggregate|) 105593) ((|IndexedBits| . |ShallowlyMutableAggregate|) 105570) ((|IndexedBits| . |OneDimensionalArrayAggregate|) 105547) ((|IndexedBits| . |Logic|) T) ((|IndexedBits| . |Join|) T) ((|IndexedBits| . |Type|) T) ((|IndexedBits| . |BooleanLogic|) T) ((|InnerTwoDimensionalArray| . |TwoDimensionalArrayCategory|) 105521) ((|InnerTwoDimensionalArray| . |ShallowlyMutableAggregate|) 105505) ((|InnerTwoDimensionalArray| . |HomogeneousAggregate|) 105489) ((|InnerTwoDimensionalArray| . |SetCategory|) 105459) ((|InnerTwoDimensionalArray| . |Functorial|) 105443) ((|InnerTwoDimensionalArray| . |InnerEvalable|) 105362) ((|InnerTwoDimensionalArray| . |Evalable|) 105286) ((|InnerTwoDimensionalArray| . |CoercibleTo|) 105188) ((|InnerTwoDimensionalArray| . |BasicType|) 105126) ((|InnerTwoDimensionalArray| . |Type|) T) ((|InnerTwoDimensionalArray| . |Join|) T) ((|InnerTwoDimensionalArray| . |Aggregate|) T) ((|InnerTwoDimensionalArray| . |FiniteAggregate|) 105110) ((|IndexedOneDimensionalArray| . |OneDimensionalArrayAggregate|) 105094) ((|IndexedOneDimensionalArray| . |ShallowlyMutableAggregate|) 105078) ((|IndexedOneDimensionalArray| . |FiniteAggregate|) 105062) ((|IndexedOneDimensionalArray| . |Aggregate|) T) ((|IndexedOneDimensionalArray| . |Join|) T) ((|IndexedOneDimensionalArray| . |Type|) T) ((|IndexedOneDimensionalArray| . |BasicType|) 104972) ((|IndexedOneDimensionalArray| . |CoercibleTo|) 104846) ((|IndexedOneDimensionalArray| . |Evalable|) 104770) ((|IndexedOneDimensionalArray| . |InnerEvalable|) 104689) ((|IndexedOneDimensionalArray| . |Functorial|) 104673) ((|IndexedOneDimensionalArray| . |SetCategory|) 104610) ((|IndexedOneDimensionalArray| . |HomogeneousAggregate|) 104594) ((|IndexedOneDimensionalArray| . |LinearAggregate|) 104578) ((|IndexedOneDimensionalArray| . |EltableAggregate|) 104550) ((|IndexedOneDimensionalArray| . |Eltable|) 104479) ((|IndexedOneDimensionalArray| . |IndexedAggregate|) 104451) ((|IndexedOneDimensionalArray| . |ConvertibleTo|) 104387) ((|IndexedOneDimensionalArray| . |Collection|) 104371) ((|IndexedOneDimensionalArray| . |OrderedSet|) 104342) ((|IndexedOneDimensionalArray| . |OrderedType|) 104313) ((|IndexedOneDimensionalArray| . |FiniteLinearAggregate|) 104297) ((|InnerAlgebraicNumber| . |ExpressionSpace|) T) ((|InnerAlgebraicNumber| . |BasicType|) T) ((|InnerAlgebraicNumber| . |Join|) T) ((|InnerAlgebraicNumber| . |Type|) T) ((|InnerAlgebraicNumber| . |CoercibleTo|) 104271) ((|InnerAlgebraicNumber| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |CoercibleFrom|) 104118) ((|InnerAlgebraicNumber| . |RetractableTo|) 104046) ((|InnerAlgebraicNumber| . |InnerEvalable|) 104008) ((|InnerAlgebraicNumber| . |Evalable|) 103995) ((|InnerAlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|InnerAlgebraicNumber| . |RadicalCategory|) T) ((|InnerAlgebraicNumber| . |DivisionRing|) T) ((|InnerAlgebraicNumber| . |BiModule|) 103940) ((|InnerAlgebraicNumber| . |RightLinearSet|) 103894) ((|InnerAlgebraicNumber| . |RightModule|) 103848) ((|InnerAlgebraicNumber| . |EntireRing|) T) ((|InnerAlgebraicNumber| . |Module|) 103802) ((|InnerAlgebraicNumber| . |LinearSet|) 103756) ((|InnerAlgebraicNumber| . |LeftModule|) 103690) ((|InnerAlgebraicNumber| . |LeftLinearSet|) 103624) ((|InnerAlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|InnerAlgebraicNumber| . |AbelianSemiGroup|) T) ((|InnerAlgebraicNumber| . |AbelianMonoid|) T) ((|InnerAlgebraicNumber| . |AbelianGroup|) T) ((|InnerAlgebraicNumber| . |Ring|) T) ((|InnerAlgebraicNumber| . |Monoid|) T) ((|InnerAlgebraicNumber| . |SemiRing|) T) ((|InnerAlgebraicNumber| . |SemiGroup|) T) ((|InnerAlgebraicNumber| . |Rng|) T) ((|InnerAlgebraicNumber| . |Algebra|) 103578) ((|InnerAlgebraicNumber| . |EuclideanDomain|) T) ((|InnerAlgebraicNumber| . |GcdDomain|) T) ((|InnerAlgebraicNumber| . |CommutativeRing|) T) ((|InnerAlgebraicNumber| . |IntegralDomain|) T) ((|InnerAlgebraicNumber| . |PrincipalIdealDomain|) T) ((|InnerAlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|InnerAlgebraicNumber| . |Field|) T) ((|InnerAlgebraicNumber| . |LinearlyExplicitRingOver|) 103527) ((|InnerAlgebraicNumber| . |RealConstant|) T) ((|InnerAlgebraicNumber| . |ConvertibleTo|) 103452) ((|InnerAlgebraicNumber| . |CharacteristicZero|) T) ((|InnerAlgebraicNumber| . |DifferentialRing|) T) ((|InnerAlgebraicNumber| . |DifferentialDomain|) 103439) ((|InnerAlgebraicNumber| . |DifferentialSpace|) T) ((|Hostname| . |SetCategory|) T) ((|Hostname| . |CoercibleTo|) 103394) ((|Hostname| . |Type|) T) ((|Hostname| . |Join|) T) ((|Hostname| . |BasicType|) T) ((|HexadecimalExpansion| . |QuotientFieldCategory|) 103371) ((|HexadecimalExpansion| . |StepThrough|) T) ((|HexadecimalExpansion| . |CoercibleFrom|) 103305) ((|HexadecimalExpansion| . |RetractableTo|) 103249) ((|HexadecimalExpansion| . |ConvertibleTo|) 103150) ((|HexadecimalExpansion| . |RealConstant|) T) ((|HexadecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|HexadecimalExpansion| . |Patternable|) 103127) ((|HexadecimalExpansion| . |OrderedRing|) T) ((|HexadecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|HexadecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|HexadecimalExpansion| . |OrderedType|) T) ((|HexadecimalExpansion| . |OrderedSet|) T) ((|HexadecimalExpansion| . |OrderedAbelianMonoid|) T) ((|HexadecimalExpansion| . |OrderedAbelianGroup|) T) ((|HexadecimalExpansion| . |OrderedIntegralDomain|) T) ((|HexadecimalExpansion| . |PatternMatchable|) 103104) ((|HexadecimalExpansion| . |FullyPatternMatchable|) 103081) ((|HexadecimalExpansion| . |LinearlyExplicitRingOver|) 103058) ((|HexadecimalExpansion| . |FullyLinearlyExplicitRingOver|) 103035) ((|HexadecimalExpansion| . |Eltable|) NIL) ((|HexadecimalExpansion| . |Evalable|) NIL) ((|HexadecimalExpansion| . |InnerEvalable|) NIL) ((|HexadecimalExpansion| . |Functorial|) 103012) ((|HexadecimalExpansion| . |FullyEvalableOver|) 102989) ((|HexadecimalExpansion| . |DivisionRing|) T) ((|HexadecimalExpansion| . |BiModule|) 102907) ((|HexadecimalExpansion| . |RightLinearSet|) 102841) ((|HexadecimalExpansion| . |RightModule|) 102775) ((|HexadecimalExpansion| . |EntireRing|) T) ((|HexadecimalExpansion| . |Module|) 102709) ((|HexadecimalExpansion| . |LinearSet|) 102643) ((|HexadecimalExpansion| . |LeftModule|) 102577) ((|HexadecimalExpansion| . |LeftLinearSet|) 102511) ((|HexadecimalExpansion| . |Algebra|) 102445) ((|HexadecimalExpansion| . |EuclideanDomain|) T) ((|HexadecimalExpansion| . |GcdDomain|) T) ((|HexadecimalExpansion| . |CommutativeRing|) T) ((|HexadecimalExpansion| . |IntegralDomain|) T) ((|HexadecimalExpansion| . |PrincipalIdealDomain|) T) ((|HexadecimalExpansion| . |UniqueFactorizationDomain|) T) ((|HexadecimalExpansion| . |Field|) T) ((|HexadecimalExpansion| . |DifferentialRing|) T) ((|HexadecimalExpansion| . |DifferentialDomain|) 102432) ((|HexadecimalExpansion| . |DifferentialSpace|) T) ((|HexadecimalExpansion| . |DifferentialSpaceExtension|) 102409) ((|HexadecimalExpansion| . |PartialDifferentialDomain|) NIL) ((|HexadecimalExpansion| . |PartialDifferentialSpace|) NIL) ((|HexadecimalExpansion| . |PartialDifferentialRing|) NIL) ((|HexadecimalExpansion| . |DifferentialExtension|) 102386) ((|HexadecimalExpansion| . |CharacteristicZero|) T) ((|HexadecimalExpansion| . |CharacteristicNonZero|) NIL) ((|HexadecimalExpansion| . |CancellationAbelianMonoid|) T) ((|HexadecimalExpansion| . |AbelianSemiGroup|) T) ((|HexadecimalExpansion| . |BasicType|) T) ((|HexadecimalExpansion| . |Join|) T) ((|HexadecimalExpansion| . |Type|) T) ((|HexadecimalExpansion| . |CoercibleTo|) 102297) ((|HexadecimalExpansion| . |SetCategory|) T) ((|HexadecimalExpansion| . |AbelianMonoid|) T) ((|HexadecimalExpansion| . |AbelianGroup|) T) ((|HexadecimalExpansion| . |Ring|) T) ((|HexadecimalExpansion| . |Monoid|) T) ((|HexadecimalExpansion| . |SemiRing|) T) ((|HexadecimalExpansion| . |SemiGroup|) T) ((|HexadecimalExpansion| . |Rng|) T) ((|HyperellipticFiniteDivisor| . |FiniteDivisorCategory|) 102266) ((|HyperellipticFiniteDivisor| . |CancellationAbelianMonoid|) T) ((|HyperellipticFiniteDivisor| . |AbelianSemiGroup|) T) ((|HyperellipticFiniteDivisor| . |BasicType|) T) ((|HyperellipticFiniteDivisor| . |Join|) T) ((|HyperellipticFiniteDivisor| . |Type|) T) ((|HyperellipticFiniteDivisor| . |CoercibleTo|) 102240) ((|HyperellipticFiniteDivisor| . |SetCategory|) T) ((|HyperellipticFiniteDivisor| . |AbelianMonoid|) T) ((|HyperellipticFiniteDivisor| . |LeftLinearSet|) 102217) ((|HyperellipticFiniteDivisor| . |AbelianGroup|) T) ((|Heap| . |PriorityQueueAggregate|) 102201) ((|Heap| . |FiniteAggregate|) 102185) ((|Heap| . |HomogeneousAggregate|) 102169) ((|Heap| . |SetCategory|) 102139) ((|Heap| . |Functorial|) 102123) ((|Heap| . |InnerEvalable|) 102042) ((|Heap| . |Evalable|) 101966) ((|Heap| . |CoercibleTo|) 101868) ((|Heap| . |BasicType|) 101806) ((|Heap| . |Type|) T) ((|Heap| . |Join|) T) ((|Heap| . |Aggregate|) T) ((|Heap| . |ShallowlyMutableAggregate|) 101790) ((|Heap| . |BagAggregate|) 101774) ((|HeadAst| . |SpadSyntaxCategory|) T) ((|HeadAst| . |HomotopicTo|) 101752) ((|HeadAst| . |CoercibleTo|) 101707) ((|HeadAst| . |CoercibleFrom|) 101685) ((|HeadAst| . |SetCategory|) T) ((|HeadAst| . |Type|) T) ((|HeadAst| . |Join|) T) ((|HeadAst| . |BasicType|) T) ((|HeadAst| . |AbstractSyntaxCategory|) T) ((|HomogeneousDirectProduct| . |DirectProductCategory|) 101664) ((|HomogeneousDirectProduct| . |VectorSpace|) 101631) ((|HomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 101589) ((|HomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 101547) ((|HomogeneousDirectProduct| . |OrderedType|) 101472) ((|HomogeneousDirectProduct| . |OrderedSet|) 101397) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoid|) 101355) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 101313) ((|HomogeneousDirectProduct| . |Module|) 101242) ((|HomogeneousDirectProduct| . |LinearSet|) 101147) ((|HomogeneousDirectProduct| . |EltableAggregate|) 101119) ((|HomogeneousDirectProduct| . |Eltable|) 101091) ((|HomogeneousDirectProduct| . |IndexedAggregate|) 101063) ((|HomogeneousDirectProduct| . |RetractableTo|) 100814) ((|HomogeneousDirectProduct| . |CoercibleFrom|) 100538) ((|HomogeneousDirectProduct| . |FullyRetractableTo|) 100499) ((|HomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 100371) ((|HomogeneousDirectProduct| . |LeftModule|) 100156) ((|HomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 100124) ((|HomogeneousDirectProduct| . |HomogeneousAggregate|) 100108) ((|HomogeneousDirectProduct| . |Functorial|) 100092) ((|HomogeneousDirectProduct| . |InnerEvalable|) 100011) ((|HomogeneousDirectProduct| . |Evalable|) 99935) ((|HomogeneousDirectProduct| . |Aggregate|) T) ((|HomogeneousDirectProduct| . |FiniteAggregate|) 99919) ((|HomogeneousDirectProduct| . |Finite|) 99894) ((|HomogeneousDirectProduct| . |DifferentialRing|) 99831) ((|HomogeneousDirectProduct| . |LeftLinearSet|) 99561) ((|HomogeneousDirectProduct| . |Rng|) 99538) ((|HomogeneousDirectProduct| . |SemiGroup|) 99515) ((|HomogeneousDirectProduct| . |SemiRing|) 99492) ((|HomogeneousDirectProduct| . |Monoid|) 99469) ((|HomogeneousDirectProduct| . |Ring|) 99446) ((|HomogeneousDirectProduct| . |DifferentialDomain|) 99309) ((|HomogeneousDirectProduct| . |DifferentialSpace|) 99178) ((|HomogeneousDirectProduct| . |DifferentialSpaceExtension|) 99146) ((|HomogeneousDirectProduct| . |PartialDifferentialDomain|) 98962) ((|HomogeneousDirectProduct| . |PartialDifferentialSpace|) 98780) ((|HomogeneousDirectProduct| . |PartialDifferentialRing|) 98684) ((|HomogeneousDirectProduct| . |DifferentialExtension|) 98652) ((|HomogeneousDirectProduct| . |CoercibleTo|) 98197) ((|HomogeneousDirectProduct| . |RightModule|) 98104) ((|HomogeneousDirectProduct| . |RightLinearSet|) 97987) ((|HomogeneousDirectProduct| . |BiModule|) 97889) ((|HomogeneousDirectProduct| . |CancellationAbelianMonoid|) 97691) ((|HomogeneousDirectProduct| . |AbelianSemiGroup|) 97428) ((|HomogeneousDirectProduct| . |BasicType|) 97033) ((|HomogeneousDirectProduct| . |Join|) T) ((|HomogeneousDirectProduct| . |Type|) T) ((|HomogeneousDirectProduct| . |SetCategory|) 96665) ((|HomogeneousDirectProduct| . |AbelianMonoid|) 96436) ((|HomogeneousDirectProduct| . |AbelianGroup|) 96322) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialCategory|) 96214) ((|HomogeneousDistributedMultivariatePolynomial| . |CoercibleFrom|) 95886) ((|HomogeneousDistributedMultivariatePolynomial| . |RetractableTo|) 95693) ((|HomogeneousDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 95643) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 95593) ((|HomogeneousDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|HomogeneousDistributedMultivariatePolynomial| . |PartialDifferentialSpace|) 95553) ((|HomogeneousDistributedMultivariatePolynomial| . |PartialDifferentialDomain|) 95511) ((|HomogeneousDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 95471) ((|HomogeneousDistributedMultivariatePolynomial| . |InnerEvalable|) 95397) ((|HomogeneousDistributedMultivariatePolynomial| . |GcdDomain|) 95315) ((|HomogeneousDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 95231) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftModule|) 95060) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 95044) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 94965) ((|HomogeneousDistributedMultivariatePolynomial| . |Algebra|) 94728) ((|HomogeneousDistributedMultivariatePolynomial| . |LinearSet|) 94491) ((|HomogeneousDistributedMultivariatePolynomial| . |Module|) 94254) ((|HomogeneousDistributedMultivariatePolynomial| . |EntireRing|) 94140) ((|HomogeneousDistributedMultivariatePolynomial| . |IntegralDomain|) 94026) ((|HomogeneousDistributedMultivariatePolynomial| . |Functorial|) 94010) ((|HomogeneousDistributedMultivariatePolynomial| . |BiModule|) 93753) ((|HomogeneousDistributedMultivariatePolynomial| . |RightLinearSet|) 93510) ((|HomogeneousDistributedMultivariatePolynomial| . |RightModule|) 93267) ((|HomogeneousDistributedMultivariatePolynomial| . |CommutativeRing|) 93120) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicZero|) 93083) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 93043) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftLinearSet|) 92920) ((|HomogeneousDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |BasicType|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Join|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CoercibleTo|) 92894) ((|HomogeneousDistributedMultivariatePolynomial| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Ring|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Monoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |SemiRing|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyRetractableTo|) 92878) ((|HomogeneousDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 92799) ((|HomogeneousDistributedMultivariatePolynomial| . |Evalable|) 92786) ((|HomogeneousDistributedMultivariatePolynomial| . |ConvertibleTo|) 92564) ((|HashTable| . |TableAggregate|) 92543) ((|HashTable| . |Dictionary|) 92485) ((|HashTable| . |BagAggregate|) 92427) ((|HashTable| . |ShallowlyMutableAggregate|) 92356) ((|HashTable| . |Collection|) 92298) ((|HashTable| . |ConvertibleTo|) NIL) ((|HashTable| . |DictionaryOperations|) 92240) ((|HashTable| . |IndexedAggregate|) 92219) ((|HashTable| . |Evalable|) 91979) ((|HashTable| . |InnerEvalable|) 91727) ((|HashTable| . |Functorial|) 91656) ((|HashTable| . |HomogeneousAggregate|) 91585) ((|HashTable| . |Eltable|) 91564) ((|HashTable| . |EltableAggregate|) 91543) ((|HashTable| . |KeyedDictionary|) 91522) ((|HashTable| . |SetCategory|) T) ((|HashTable| . |CoercibleTo|) 91496) ((|HashTable| . |BasicType|) T) ((|HashTable| . |Type|) T) ((|HashTable| . |Join|) T) ((|HashTable| . |Aggregate|) T) ((|HashTable| . |FiniteAggregate|) 91438) ((|HasAst| . |SpadSyntaxCategory|) T) ((|HasAst| . |HomotopicTo|) 91416) ((|HasAst| . |CoercibleTo|) 91371) ((|HasAst| . |CoercibleFrom|) 91349) ((|HasAst| . |SetCategory|) T) ((|HasAst| . |Type|) T) ((|HasAst| . |Join|) T) ((|HasAst| . |BasicType|) T) ((|HasAst| . |AbstractSyntaxCategory|) T) ((|Pi| . |Field|) T) ((|Pi| . |UniqueFactorizationDomain|) T) ((|Pi| . |PrincipalIdealDomain|) T) ((|Pi| . |IntegralDomain|) T) ((|Pi| . |CommutativeRing|) T) ((|Pi| . |CoercibleFrom|) 91283) ((|Pi| . |Module|) 91237) ((|Pi| . |LinearSet|) 91191) ((|Pi| . |Algebra|) 91145) ((|Pi| . |GcdDomain|) T) ((|Pi| . |EuclideanDomain|) T) ((|Pi| . |LeftModule|) 91099) ((|Pi| . |LeftLinearSet|) 91033) ((|Pi| . |Rng|) T) ((|Pi| . |SemiGroup|) T) ((|Pi| . |SemiRing|) T) ((|Pi| . |Monoid|) T) ((|Pi| . |Ring|) T) ((|Pi| . |BiModule|) 90978) ((|Pi| . |RightLinearSet|) 90932) ((|Pi| . |RightModule|) 90886) ((|Pi| . |AbelianGroup|) T) ((|Pi| . |AbelianMonoid|) T) ((|Pi| . |SetCategory|) T) ((|Pi| . |CoercibleTo|) 90818) ((|Pi| . |Type|) T) ((|Pi| . |Join|) T) ((|Pi| . |BasicType|) T) ((|Pi| . |AbelianSemiGroup|) T) ((|Pi| . |CancellationAbelianMonoid|) T) ((|Pi| . |EntireRing|) T) ((|Pi| . |DivisionRing|) T) ((|Pi| . |CharacteristicZero|) T) ((|Pi| . |RetractableTo|) 90767) ((|Pi| . |RealConstant|) T) ((|Pi| . |ConvertibleTo|) 90636) ((|GeneralTriangularSet| . |TriangularSetCategory|) 90605) ((|GeneralTriangularSet| . |ShallowlyMutableAggregate|) 90589) ((|GeneralTriangularSet| . |CoercibleTo|) 90541) ((|GeneralTriangularSet| . |Collection|) 90525) ((|GeneralTriangularSet| . |Aggregate|) T) ((|GeneralTriangularSet| . |Join|) T) ((|GeneralTriangularSet| . |Type|) T) ((|GeneralTriangularSet| . |BasicType|) T) ((|GeneralTriangularSet| . |Evalable|) 90449) ((|GeneralTriangularSet| . |InnerEvalable|) 90368) ((|GeneralTriangularSet| . |Functorial|) 90352) ((|GeneralTriangularSet| . |SetCategory|) T) ((|GeneralTriangularSet| . |HomogeneousAggregate|) 90336) ((|GeneralTriangularSet| . |ConvertibleTo|) 90272) ((|GeneralTriangularSet| . |FiniteAggregate|) 90256) ((|GeneralTriangularSet| . |PolynomialSetCategory|) 90225) ((|GeneralSparseTable| . |TableAggregate|) 90204) ((|GeneralSparseTable| . |Dictionary|) 90146) ((|GeneralSparseTable| . |BagAggregate|) 90088) ((|GeneralSparseTable| . |ShallowlyMutableAggregate|) 90017) ((|GeneralSparseTable| . |Collection|) 89959) ((|GeneralSparseTable| . |ConvertibleTo|) NIL) ((|GeneralSparseTable| . |DictionaryOperations|) 89901) ((|GeneralSparseTable| . |IndexedAggregate|) 89880) ((|GeneralSparseTable| . |Evalable|) 89640) ((|GeneralSparseTable| . |InnerEvalable|) 89388) ((|GeneralSparseTable| . |Functorial|) 89317) ((|GeneralSparseTable| . |HomogeneousAggregate|) 89246) ((|GeneralSparseTable| . |Eltable|) 89225) ((|GeneralSparseTable| . |EltableAggregate|) 89204) ((|GeneralSparseTable| . |KeyedDictionary|) 89183) ((|GeneralSparseTable| . |SetCategory|) T) ((|GeneralSparseTable| . |CoercibleTo|) 89157) ((|GeneralSparseTable| . |BasicType|) T) ((|GeneralSparseTable| . |Type|) T) ((|GeneralSparseTable| . |Join|) T) ((|GeneralSparseTable| . |Aggregate|) T) ((|GeneralSparseTable| . |FiniteAggregate|) 89099) ((|GeneralUnivariatePowerSeries| . |UnivariatePuiseuxSeriesCategory|) 89083) ((|GeneralUnivariatePowerSeries| . |DifferentialRing|) 89018) ((|GeneralUnivariatePowerSeries| . |DifferentialDomain|) 88947) ((|GeneralUnivariatePowerSeries| . |DifferentialSpace|) 88882) ((|GeneralUnivariatePowerSeries| . |Eltable|) 88829) ((|GeneralUnivariatePowerSeries| . |PartialDifferentialRing|) 88691) ((|GeneralUnivariatePowerSeries| . |PartialDifferentialDomain|) 88523) ((|GeneralUnivariatePowerSeries| . |PartialDifferentialSpace|) 88385) ((|GeneralUnivariatePowerSeries| . |PowerSeriesCategory|) 88318) ((|GeneralUnivariatePowerSeries| . |Algebra|) 88106) ((|GeneralUnivariatePowerSeries| . |BiModule|) 87874) ((|GeneralUnivariatePowerSeries| . |RightLinearSet|) 87656) ((|GeneralUnivariatePowerSeries| . |RightModule|) 87438) ((|GeneralUnivariatePowerSeries| . |LeftLinearSet|) 87287) ((|GeneralUnivariatePowerSeries| . |LeftModule|) 87156) ((|GeneralUnivariatePowerSeries| . |LinearSet|) 86944) ((|GeneralUnivariatePowerSeries| . |Module|) 86732) ((|GeneralUnivariatePowerSeries| . |CoercibleFrom|) 86500) ((|GeneralUnivariatePowerSeries| . |CharacteristicNonZero|) 86460) ((|GeneralUnivariatePowerSeries| . |CharacteristicZero|) 86423) ((|GeneralUnivariatePowerSeries| . |Functorial|) 86407) ((|GeneralUnivariatePowerSeries| . |AbelianMonoidRing|) 86366) ((|GeneralUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 86325) ((|GeneralUnivariatePowerSeries| . |ArcHyperbolicFunctionCategory|) 86274) ((|GeneralUnivariatePowerSeries| . |ArcTrigonometricFunctionCategory|) 86223) ((|GeneralUnivariatePowerSeries| . |ElementaryFunctionCategory|) 86172) ((|GeneralUnivariatePowerSeries| . |HyperbolicFunctionCategory|) 86121) ((|GeneralUnivariatePowerSeries| . |TrigonometricFunctionCategory|) 86070) ((|GeneralUnivariatePowerSeries| . |TranscendentalFunctionCategory|) 86019) ((|GeneralUnivariatePowerSeries| . |RadicalCategory|) 85968) ((|GeneralUnivariatePowerSeries| . |DivisionRing|) 85944) ((|GeneralUnivariatePowerSeries| . |EntireRing|) 85883) ((|GeneralUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |BasicType|) T) ((|GeneralUnivariatePowerSeries| . |Join|) T) ((|GeneralUnivariatePowerSeries| . |Type|) T) ((|GeneralUnivariatePowerSeries| . |CoercibleTo|) 85857) ((|GeneralUnivariatePowerSeries| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |AbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |AbelianGroup|) T) ((|GeneralUnivariatePowerSeries| . |Ring|) T) ((|GeneralUnivariatePowerSeries| . |Monoid|) T) ((|GeneralUnivariatePowerSeries| . |SemiRing|) T) ((|GeneralUnivariatePowerSeries| . |SemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |Rng|) T) ((|GeneralUnivariatePowerSeries| . |EuclideanDomain|) 85833) ((|GeneralUnivariatePowerSeries| . |GcdDomain|) 85809) ((|GeneralUnivariatePowerSeries| . |CommutativeRing|) 85715) ((|GeneralUnivariatePowerSeries| . |IntegralDomain|) 85654) ((|GeneralUnivariatePowerSeries| . |PrincipalIdealDomain|) 85630) ((|GeneralUnivariatePowerSeries| . |UniqueFactorizationDomain|) 85606) ((|GeneralUnivariatePowerSeries| . |Field|) 85582) ((|GraphImage| . |SetCategory|) T) ((|GraphImage| . |CoercibleTo|) 85556) ((|GraphImage| . |Type|) T) ((|GraphImage| . |Join|) T) ((|GraphImage| . |BasicType|) T) ((|GeneralPolynomialSet| . |PolynomialSetCategory|) 85525) ((|GeneralPolynomialSet| . |FiniteAggregate|) 85509) ((|GeneralPolynomialSet| . |ConvertibleTo|) 85445) ((|GeneralPolynomialSet| . |HomogeneousAggregate|) 85429) ((|GeneralPolynomialSet| . |SetCategory|) T) ((|GeneralPolynomialSet| . |Functorial|) 85413) ((|GeneralPolynomialSet| . |InnerEvalable|) 85332) ((|GeneralPolynomialSet| . |Evalable|) 85256) ((|GeneralPolynomialSet| . |CoercibleTo|) 85208) ((|GeneralPolynomialSet| . |BasicType|) T) ((|GeneralPolynomialSet| . |Type|) T) ((|GeneralPolynomialSet| . |Join|) T) ((|GeneralPolynomialSet| . |Aggregate|) T) ((|GeneralPolynomialSet| . |Collection|) 85192) ((|GeneralPolynomialSet| . |ShallowlyMutableAggregate|) 85176) ((|GeneralModulePolynomial| . |Module|) 85147) ((|GeneralModulePolynomial| . |LinearSet|) 85118) ((|GeneralModulePolynomial| . |LeftModule|) 85089) ((|GeneralModulePolynomial| . |LeftLinearSet|) 85040) ((|GeneralModulePolynomial| . |CancellationAbelianMonoid|) T) ((|GeneralModulePolynomial| . |AbelianSemiGroup|) T) ((|GeneralModulePolynomial| . |BasicType|) T) ((|GeneralModulePolynomial| . |Join|) T) ((|GeneralModulePolynomial| . |Type|) T) ((|GeneralModulePolynomial| . |CoercibleTo|) 85014) ((|GeneralModulePolynomial| . |SetCategory|) T) ((|GeneralModulePolynomial| . |AbelianMonoid|) T) ((|GeneralModulePolynomial| . |AbelianGroup|) T) ((|GeneralModulePolynomial| . |RightModule|) 84985) ((|GeneralModulePolynomial| . |RightLinearSet|) 84956) ((|GeneralModulePolynomial| . |BiModule|) 84917) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialCategory|) 84867) ((|GeneralDistributedMultivariatePolynomial| . |CoercibleFrom|) 84539) ((|GeneralDistributedMultivariatePolynomial| . |RetractableTo|) 84346) ((|GeneralDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 84296) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 84246) ((|GeneralDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|GeneralDistributedMultivariatePolynomial| . |PartialDifferentialSpace|) 84206) ((|GeneralDistributedMultivariatePolynomial| . |PartialDifferentialDomain|) 84164) ((|GeneralDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 84124) ((|GeneralDistributedMultivariatePolynomial| . |InnerEvalable|) 84050) ((|GeneralDistributedMultivariatePolynomial| . |GcdDomain|) 83968) ((|GeneralDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 83884) ((|GeneralDistributedMultivariatePolynomial| . |LeftModule|) 83713) ((|GeneralDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 83697) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 83676) ((|GeneralDistributedMultivariatePolynomial| . |Algebra|) 83439) ((|GeneralDistributedMultivariatePolynomial| . |LinearSet|) 83202) ((|GeneralDistributedMultivariatePolynomial| . |Module|) 82965) ((|GeneralDistributedMultivariatePolynomial| . |EntireRing|) 82851) ((|GeneralDistributedMultivariatePolynomial| . |IntegralDomain|) 82737) ((|GeneralDistributedMultivariatePolynomial| . |Functorial|) 82721) ((|GeneralDistributedMultivariatePolynomial| . |BiModule|) 82464) ((|GeneralDistributedMultivariatePolynomial| . |RightLinearSet|) 82221) ((|GeneralDistributedMultivariatePolynomial| . |RightModule|) 81978) ((|GeneralDistributedMultivariatePolynomial| . |CommutativeRing|) 81831) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicZero|) 81794) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 81754) ((|GeneralDistributedMultivariatePolynomial| . |LeftLinearSet|) 81631) ((|GeneralDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |BasicType|) T) ((|GeneralDistributedMultivariatePolynomial| . |Join|) T) ((|GeneralDistributedMultivariatePolynomial| . |Type|) T) ((|GeneralDistributedMultivariatePolynomial| . |CoercibleTo|) 81605) ((|GeneralDistributedMultivariatePolynomial| . |SetCategory|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |Ring|) T) ((|GeneralDistributedMultivariatePolynomial| . |Monoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |SemiRing|) T) ((|GeneralDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |Rng|) T) ((|GeneralDistributedMultivariatePolynomial| . |FullyRetractableTo|) 81589) ((|GeneralDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 81568) ((|GeneralDistributedMultivariatePolynomial| . |Evalable|) 81555) ((|GeneralDistributedMultivariatePolynomial| . |ConvertibleTo|) 81333) ((|GenericNonAssociativeAlgebra| . |FramedNonAssociativeAlgebra|) 81289) ((|GenericNonAssociativeAlgebra| . |NonAssociativeAlgebra|) 81245) ((|GenericNonAssociativeAlgebra| . |Monad|) T) ((|GenericNonAssociativeAlgebra| . |NonAssociativeRng|) T) ((|GenericNonAssociativeAlgebra| . |BiModule|) 81194) ((|GenericNonAssociativeAlgebra| . |RightLinearSet|) 81150) ((|GenericNonAssociativeAlgebra| . |RightModule|) 81106) ((|GenericNonAssociativeAlgebra| . |AbelianGroup|) T) ((|GenericNonAssociativeAlgebra| . |LeftLinearSet|) 81005) ((|GenericNonAssociativeAlgebra| . |AbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |SetCategory|) T) ((|GenericNonAssociativeAlgebra| . |CoercibleTo|) 80979) ((|GenericNonAssociativeAlgebra| . |BasicType|) T) ((|GenericNonAssociativeAlgebra| . |AbelianSemiGroup|) T) ((|GenericNonAssociativeAlgebra| . |CancellationAbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |LeftModule|) 80898) ((|GenericNonAssociativeAlgebra| . |LinearSet|) 80854) ((|GenericNonAssociativeAlgebra| . |Module|) 80810) ((|GenericNonAssociativeAlgebra| . |FiniteRankNonAssociativeAlgebra|) 80766) ((|GenericNonAssociativeAlgebra| . |Type|) T) ((|GenericNonAssociativeAlgebra| . |Join|) T) ((|GenericNonAssociativeAlgebra| . |Eltable|) 80710) ((|FunctionDescriptor| . |SetCategory|) T) ((|FunctionDescriptor| . |CoercibleTo|) 80684) ((|FunctionDescriptor| . |Type|) T) ((|FunctionDescriptor| . |Join|) T) ((|FunctionDescriptor| . |BasicType|) T) ((|FunctionCalled| . |SetCategory|) T) ((|FunctionCalled| . |CoercibleTo|) 80658) ((|FunctionCalled| . |Type|) T) ((|FunctionCalled| . |Join|) T) ((|FunctionCalled| . |BasicType|) T) ((|FortranType| . |SetCategory|) T) ((|FortranType| . |CoercibleTo|) 80632) ((|FortranType| . |Type|) T) ((|FortranType| . |Join|) T) ((|FortranType| . |BasicType|) T) ((|FortranScalarType| . |CoercibleTo|) 80606) ((|FourierSeries| . |Algebra|) 80590) ((|FourierSeries| . |CoercibleFrom|) 80554) ((|FourierSeries| . |LeftModule|) 80528) ((|FourierSeries| . |LeftLinearSet|) 80482) ((|FourierSeries| . |Rng|) T) ((|FourierSeries| . |SemiGroup|) T) ((|FourierSeries| . |SemiRing|) T) ((|FourierSeries| . |Monoid|) T) ((|FourierSeries| . |Ring|) T) ((|FourierSeries| . |BiModule|) 80461) ((|FourierSeries| . |RightLinearSet|) 80445) ((|FourierSeries| . |RightModule|) 80429) ((|FourierSeries| . |AbelianGroup|) T) ((|FourierSeries| . |AbelianMonoid|) T) ((|FourierSeries| . |SetCategory|) T) ((|FourierSeries| . |CoercibleTo|) 80403) ((|FourierSeries| . |Type|) T) ((|FourierSeries| . |Join|) T) ((|FourierSeries| . |BasicType|) T) ((|FourierSeries| . |AbelianSemiGroup|) T) ((|FourierSeries| . |CancellationAbelianMonoid|) T) ((|FourierSeries| . |LinearSet|) 80387) ((|FourierSeries| . |Module|) 80371) ((|FramedModule| . |Monoid|) T) ((|FramedModule| . |SetCategory|) T) ((|FramedModule| . |CoercibleTo|) 80345) ((|FramedModule| . |Type|) T) ((|FramedModule| . |Join|) T) ((|FramedModule| . |BasicType|) T) ((|FramedModule| . |SemiGroup|) T) ((|FractionalIdeal| . |Group|) T) ((|FractionalIdeal| . |SemiGroup|) T) ((|FractionalIdeal| . |BasicType|) T) ((|FractionalIdeal| . |Join|) T) ((|FractionalIdeal| . |Type|) T) ((|FractionalIdeal| . |CoercibleTo|) 80319) ((|FractionalIdeal| . |SetCategory|) T) ((|FractionalIdeal| . |Monoid|) T) ((|Fraction| . |QuotientFieldCategory|) 80303) ((|Fraction| . |StepThrough|) 80273) ((|Fraction| . |RetractableTo|) 80092) ((|Fraction| . |CoercibleFrom|) 79958) ((|Fraction| . |ConvertibleTo|) 79661) ((|Fraction| . |RealConstant|) 79630) ((|Fraction| . |PolynomialFactorizationExplicit|) 79580) ((|Fraction| . |Patternable|) 79564) ((|Fraction| . |OrderedRing|) 79524) ((|Fraction| . |OrderedCancellationAbelianMonoid|) 79484) ((|Fraction| . |OrderedAbelianSemiGroup|) 79444) ((|Fraction| . |OrderedType|) 79371) ((|Fraction| . |OrderedSet|) 79298) ((|Fraction| . |OrderedAbelianMonoid|) 79258) ((|Fraction| . |OrderedAbelianGroup|) 79218) ((|Fraction| . |OrderedIntegralDomain|) 79178) ((|Fraction| . |PatternMatchable|) 79059) ((|Fraction| . |FullyPatternMatchable|) 79043) ((|Fraction| . |LinearlyExplicitRingOver|) 78959) ((|Fraction| . |LeftModule|) 78832) ((|Fraction| . |FullyLinearlyExplicitRingOver|) 78816) ((|Fraction| . |Eltable|) 78769) ((|Fraction| . |Evalable|) 78728) ((|Fraction| . |InnerEvalable|) 78617) ((|Fraction| . |Functorial|) 78601) ((|Fraction| . |FullyEvalableOver|) 78585) ((|Fraction| . |DivisionRing|) T) ((|Fraction| . |BiModule|) 78512) ((|Fraction| . |RightLinearSet|) 78453) ((|Fraction| . |RightModule|) 78394) ((|Fraction| . |EntireRing|) T) ((|Fraction| . |Module|) 78335) ((|Fraction| . |LinearSet|) 78276) ((|Fraction| . |LeftLinearSet|) 78197) ((|Fraction| . |Algebra|) 78138) ((|Fraction| . |EuclideanDomain|) T) ((|Fraction| . |GcdDomain|) T) ((|Fraction| . |CommutativeRing|) T) ((|Fraction| . |IntegralDomain|) T) ((|Fraction| . |PrincipalIdealDomain|) T) ((|Fraction| . |UniqueFactorizationDomain|) T) ((|Fraction| . |Field|) T) ((|Fraction| . |DifferentialRing|) 78103) ((|Fraction| . |DifferentialDomain|) 78022) ((|Fraction| . |DifferentialSpace|) 77947) ((|Fraction| . |DifferentialSpaceExtension|) 77931) ((|Fraction| . |PartialDifferentialDomain|) 77803) ((|Fraction| . |PartialDifferentialSpace|) 77677) ((|Fraction| . |PartialDifferentialRing|) 77609) ((|Fraction| . |DifferentialExtension|) 77593) ((|Fraction| . |CharacteristicZero|) 77512) ((|Fraction| . |CharacteristicNonZero|) 77472) ((|Fraction| . |CancellationAbelianMonoid|) T) ((|Fraction| . |AbelianSemiGroup|) T) ((|Fraction| . |BasicType|) T) ((|Fraction| . |Join|) T) ((|Fraction| . |Type|) T) ((|Fraction| . |CoercibleTo|) 77446) ((|Fraction| . |SetCategory|) T) ((|Fraction| . |AbelianMonoid|) T) ((|Fraction| . |AbelianGroup|) T) ((|Fraction| . |Ring|) T) ((|Fraction| . |Monoid|) T) ((|Fraction| . |SemiRing|) T) ((|Fraction| . |SemiGroup|) T) ((|Fraction| . |Rng|) T) ((|Factored| . |IntegralDomain|) T) ((|Factored| . |EntireRing|) T) ((|Factored| . |CommutativeRing|) T) ((|Factored| . |CoercibleFrom|) 77317) ((|Factored| . |Module|) 77291) ((|Factored| . |LinearSet|) 77265) ((|Factored| . |LeftModule|) 77239) ((|Factored| . |LeftLinearSet|) 77193) ((|Factored| . |CancellationAbelianMonoid|) T) ((|Factored| . |AbelianSemiGroup|) T) ((|Factored| . |BasicType|) T) ((|Factored| . |Join|) T) ((|Factored| . |Type|) T) ((|Factored| . |CoercibleTo|) 77167) ((|Factored| . |SetCategory|) T) ((|Factored| . |AbelianMonoid|) T) ((|Factored| . |AbelianGroup|) T) ((|Factored| . |RightModule|) 77141) ((|Factored| . |RightLinearSet|) 77115) ((|Factored| . |BiModule|) 77082) ((|Factored| . |Ring|) T) ((|Factored| . |Monoid|) T) ((|Factored| . |SemiRing|) T) ((|Factored| . |SemiGroup|) T) ((|Factored| . |Rng|) T) ((|Factored| . |Algebra|) 77056) ((|Factored| . |DifferentialExtension|) 77040) ((|Factored| . |PartialDifferentialRing|) 76972) ((|Factored| . |PartialDifferentialSpace|) 76846) ((|Factored| . |PartialDifferentialDomain|) 76718) ((|Factored| . |DifferentialSpaceExtension|) 76702) ((|Factored| . |DifferentialSpace|) 76627) ((|Factored| . |DifferentialDomain|) 76546) ((|Factored| . |DifferentialRing|) 76511) ((|Factored| . |FullyEvalableOver|) 76495) ((|Factored| . |InnerEvalable|) 76295) ((|Factored| . |Functorial|) 76279) ((|Factored| . |Evalable|) 76199) ((|Factored| . |Eltable|) 76112) ((|Factored| . |FullyRetractableTo|) 76096) ((|Factored| . |RetractableTo|) 75940) ((|Factored| . |GcdDomain|) 75864) ((|Factored| . |RealConstant|) 75833) ((|Factored| . |ConvertibleTo|) 75699) ((|Factored| . |UniqueFactorizationDomain|) 75655) ((|FullPartialFractionExpansion| . |SetCategory|) T) ((|FullPartialFractionExpansion| . |CoercibleTo|) 75629) ((|FullPartialFractionExpansion| . |Type|) T) ((|FullPartialFractionExpansion| . |Join|) T) ((|FullPartialFractionExpansion| . |BasicType|) T) ((|FullPartialFractionExpansion| . |DifferentialSpace|) T) ((|FullPartialFractionExpansion| . |DifferentialDomain|) 75616) ((|FullPartialFractionExpansion| . |ConvertibleTo|) 75587) ((|FreeNilpotentLie| . |NonAssociativeAlgebra|) 75571) ((|FreeNilpotentLie| . |Monad|) T) ((|FreeNilpotentLie| . |NonAssociativeRng|) T) ((|FreeNilpotentLie| . |BiModule|) 75550) ((|FreeNilpotentLie| . |RightLinearSet|) 75534) ((|FreeNilpotentLie| . |RightModule|) 75518) ((|FreeNilpotentLie| . |AbelianGroup|) T) ((|FreeNilpotentLie| . |LeftLinearSet|) 75482) ((|FreeNilpotentLie| . |AbelianMonoid|) T) ((|FreeNilpotentLie| . |SetCategory|) T) ((|FreeNilpotentLie| . |CoercibleTo|) 75456) ((|FreeNilpotentLie| . |Type|) T) ((|FreeNilpotentLie| . |Join|) T) ((|FreeNilpotentLie| . |BasicType|) T) ((|FreeNilpotentLie| . |AbelianSemiGroup|) T) ((|FreeNilpotentLie| . |CancellationAbelianMonoid|) T) ((|FreeNilpotentLie| . |LeftModule|) 75440) ((|FreeNilpotentLie| . |LinearSet|) 75424) ((|FreeNilpotentLie| . |Module|) 75408) ((|FileName| . |FileNameCategory|) T) ((|FileName| . |BasicType|) T) ((|FileName| . |Join|) T) ((|FileName| . |Type|) T) ((|FileName| . |CoercibleTo|) 75363) ((|FileName| . |SetCategory|) T) ((|FileName| . |CoercibleFrom|) 75341) ((|FileName| . |HomotopicTo|) 75319) ((|FreeMonoid| . |FreeMonoidCategory|) 75303) ((|FreeMonoid| . |CoercibleFrom|) 75287) ((|FreeMonoid| . |RetractableTo|) 75271) ((|FreeMonoid| . |OrderedType|) 75242) ((|FreeMonoid| . |OrderedSet|) 75213) ((|FreeMonoid| . |SemiGroup|) T) ((|FreeMonoid| . |BasicType|) T) ((|FreeMonoid| . |Join|) T) ((|FreeMonoid| . |Type|) T) ((|FreeMonoid| . |CoercibleTo|) 75187) ((|FreeMonoid| . |SetCategory|) T) ((|FreeMonoid| . |Monoid|) T) ((|FreeModule1| . |FreeModuleCat|) 75166) ((|FreeModule1| . |CoercibleFrom|) 75150) ((|FreeModule1| . |RetractableTo|) 75134) ((|FreeModule1| . |LinearSet|) 75091) ((|FreeModule1| . |Module|) 75048) ((|FreeModule1| . |Functorial|) 75032) ((|FreeModule1| . |LeftModule|) 75016) ((|FreeModule1| . |LeftLinearSet|) 74980) ((|FreeModule1| . |CancellationAbelianMonoid|) T) ((|FreeModule1| . |AbelianSemiGroup|) T) ((|FreeModule1| . |BasicType|) T) ((|FreeModule1| . |Join|) T) ((|FreeModule1| . |Type|) T) ((|FreeModule1| . |CoercibleTo|) 74954) ((|FreeModule1| . |SetCategory|) T) ((|FreeModule1| . |AbelianMonoid|) T) ((|FreeModule1| . |AbelianGroup|) T) ((|FreeModule1| . |RightModule|) 74938) ((|FreeModule1| . |RightLinearSet|) 74922) ((|FreeModule1| . |BiModule|) 74901) ((|FreeModule| . |BiModule|) 74880) ((|FreeModule| . |RightLinearSet|) 74864) ((|FreeModule| . |RightModule|) 74848) ((|FreeModule| . |AbelianGroup|) T) ((|FreeModule| . |LeftLinearSet|) 74812) ((|FreeModule| . |AbelianMonoid|) T) ((|FreeModule| . |SetCategory|) T) ((|FreeModule| . |CoercibleTo|) 74786) ((|FreeModule| . |Type|) T) ((|FreeModule| . |Join|) T) ((|FreeModule| . |BasicType|) T) ((|FreeModule| . |AbelianSemiGroup|) T) ((|FreeModule| . |CancellationAbelianMonoid|) T) ((|FreeModule| . |LeftModule|) 74770) ((|FreeModule| . |IndexedDirectProductCategory|) 74749) ((|FreeModule| . |Functorial|) 74733) ((|FreeModule| . |ConvertibleFrom|) 74680) ((|FreeModule| . |Module|) 74637) ((|FreeModule| . |LinearSet|) 74594) ((|Float| . |FloatingPointSystem|) T) ((|Float| . |CharacteristicZero|) T) ((|Float| . |CoercibleFrom|) 74528) ((|Float| . |LeftModule|) 74482) ((|Float| . |LeftLinearSet|) 74416) ((|Float| . |CancellationAbelianMonoid|) T) ((|Float| . |AbelianSemiGroup|) T) ((|Float| . |BasicType|) T) ((|Float| . |Join|) T) ((|Float| . |Type|) T) ((|Float| . |CoercibleTo|) 74366) ((|Float| . |SetCategory|) T) ((|Float| . |AbelianMonoid|) T) ((|Float| . |AbelianGroup|) T) ((|Float| . |Rng|) T) ((|Float| . |SemiGroup|) T) ((|Float| . |SemiRing|) T) ((|Float| . |Monoid|) T) ((|Float| . |Ring|) T) ((|Float| . |ConvertibleTo|) 74250) ((|Float| . |Field|) T) ((|Float| . |UniqueFactorizationDomain|) T) ((|Float| . |PrincipalIdealDomain|) T) ((|Float| . |IntegralDomain|) T) ((|Float| . |CommutativeRing|) T) ((|Float| . |Module|) 74204) ((|Float| . |LinearSet|) 74158) ((|Float| . |Algebra|) 74112) ((|Float| . |GcdDomain|) T) ((|Float| . |EuclideanDomain|) T) ((|Float| . |BiModule|) 74057) ((|Float| . |RightLinearSet|) 74011) ((|Float| . |RightModule|) 73965) ((|Float| . |EntireRing|) T) ((|Float| . |DivisionRing|) T) ((|Float| . |OrderedRing|) T) ((|Float| . |OrderedCancellationAbelianMonoid|) T) ((|Float| . |OrderedAbelianSemiGroup|) T) ((|Float| . |OrderedType|) T) ((|Float| . |OrderedSet|) T) ((|Float| . |OrderedAbelianMonoid|) T) ((|Float| . |OrderedAbelianGroup|) T) ((|Float| . |PatternMatchable|) 73944) ((|Float| . |RadicalCategory|) T) ((|Float| . |RealConstant|) T) ((|Float| . |RetractableTo|) 73893) ((|Float| . |RealNumberSystem|) T) ((|Float| . |DifferentialRing|) T) ((|Float| . |DifferentialDomain|) 73880) ((|Float| . |DifferentialSpace|) T) ((|Float| . |TranscendentalFunctionCategory|) T) ((|Float| . |TrigonometricFunctionCategory|) T) ((|Float| . |HyperbolicFunctionCategory|) T) ((|Float| . |ElementaryFunctionCategory|) T) ((|Float| . |ArcTrigonometricFunctionCategory|) T) ((|Float| . |ArcHyperbolicFunctionCategory|) T) ((|Float| . |ConvertibleFrom|) 73853) ((|File| . |FileCategory|) 73824) ((|File| . |BasicType|) T) ((|File| . |Join|) T) ((|File| . |Type|) T) ((|File| . |CoercibleTo|) 73798) ((|File| . |SetCategory|) T) ((|FreeGroup| . |Group|) T) ((|FreeGroup| . |SemiGroup|) T) ((|FreeGroup| . |BasicType|) T) ((|FreeGroup| . |Join|) T) ((|FreeGroup| . |Type|) T) ((|FreeGroup| . |CoercibleTo|) 73772) ((|FreeGroup| . |SetCategory|) T) ((|FreeGroup| . |Monoid|) T) ((|FreeGroup| . |RetractableTo|) 73756) ((|FreeGroup| . |CoercibleFrom|) 73740) ((|FiniteFieldExtension| . |FiniteAlgebraicExtensionField|) 73724) ((|FiniteFieldExtension| . |DifferentialRing|) 73699) ((|FiniteFieldExtension| . |DifferentialDomain|) 73668) ((|FiniteFieldExtension| . |DifferentialSpace|) 73643) ((|FiniteFieldExtension| . |Finite|) 73618) ((|FiniteFieldExtension| . |StepThrough|) 73593) ((|FiniteFieldExtension| . |FiniteFieldCategory|) 73568) ((|FiniteFieldExtension| . |CharacteristicZero|) 73531) ((|FiniteFieldExtension| . |CoercibleFrom|) 73452) ((|FiniteFieldExtension| . |LeftModule|) 73393) ((|FiniteFieldExtension| . |LeftLinearSet|) 73314) ((|FiniteFieldExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldExtension| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |BasicType|) T) ((|FiniteFieldExtension| . |Join|) T) ((|FiniteFieldExtension| . |Type|) T) ((|FiniteFieldExtension| . |CoercibleTo|) 73288) ((|FiniteFieldExtension| . |SetCategory|) T) ((|FiniteFieldExtension| . |AbelianMonoid|) T) ((|FiniteFieldExtension| . |AbelianGroup|) T) ((|FiniteFieldExtension| . |Rng|) T) ((|FiniteFieldExtension| . |SemiGroup|) T) ((|FiniteFieldExtension| . |SemiRing|) T) ((|FiniteFieldExtension| . |Monoid|) T) ((|FiniteFieldExtension| . |Ring|) T) ((|FiniteFieldExtension| . |Field|) T) ((|FiniteFieldExtension| . |UniqueFactorizationDomain|) T) ((|FiniteFieldExtension| . |PrincipalIdealDomain|) T) ((|FiniteFieldExtension| . |IntegralDomain|) T) ((|FiniteFieldExtension| . |CommutativeRing|) T) ((|FiniteFieldExtension| . |Module|) 73229) ((|FiniteFieldExtension| . |LinearSet|) 73170) ((|FiniteFieldExtension| . |Algebra|) 73124) ((|FiniteFieldExtension| . |GcdDomain|) T) ((|FiniteFieldExtension| . |EuclideanDomain|) T) ((|FiniteFieldExtension| . |BiModule|) 73051) ((|FiniteFieldExtension| . |RightLinearSet|) 72992) ((|FiniteFieldExtension| . |RightModule|) 72933) ((|FiniteFieldExtension| . |EntireRing|) T) ((|FiniteFieldExtension| . |DivisionRing|) T) ((|FiniteFieldExtension| . |FieldOfPrimeCharacteristic|) 72864) ((|FiniteFieldExtension| . |CharacteristicNonZero|) 72795) ((|FiniteFieldExtension| . |RetractableTo|) 72779) ((|FiniteFieldExtension| . |VectorSpace|) 72763) ((|FiniteFieldExtension| . |ExtensionField|) 72747) ((|FiniteFieldExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 72731) ((|FiniteFieldExtensionByPolynomial| . |DifferentialRing|) 72706) ((|FiniteFieldExtensionByPolynomial| . |DifferentialDomain|) 72675) ((|FiniteFieldExtensionByPolynomial| . |DifferentialSpace|) 72650) ((|FiniteFieldExtensionByPolynomial| . |Finite|) 72625) ((|FiniteFieldExtensionByPolynomial| . |StepThrough|) 72600) ((|FiniteFieldExtensionByPolynomial| . |FiniteFieldCategory|) 72575) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicZero|) 72538) ((|FiniteFieldExtensionByPolynomial| . |CoercibleFrom|) 72459) ((|FiniteFieldExtensionByPolynomial| . |LeftModule|) 72400) ((|FiniteFieldExtensionByPolynomial| . |LeftLinearSet|) 72321) ((|FiniteFieldExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |BasicType|) T) ((|FiniteFieldExtensionByPolynomial| . |Join|) T) ((|FiniteFieldExtensionByPolynomial| . |Type|) T) ((|FiniteFieldExtensionByPolynomial| . |CoercibleTo|) 72295) ((|FiniteFieldExtensionByPolynomial| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |AbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |AbelianGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |Rng|) T) ((|FiniteFieldExtensionByPolynomial| . |SemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |SemiRing|) T) ((|FiniteFieldExtensionByPolynomial| . |Monoid|) T) ((|FiniteFieldExtensionByPolynomial| . |Ring|) T) ((|FiniteFieldExtensionByPolynomial| . |Field|) T) ((|FiniteFieldExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|FiniteFieldExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|FiniteFieldExtensionByPolynomial| . |IntegralDomain|) T) ((|FiniteFieldExtensionByPolynomial| . |CommutativeRing|) T) ((|FiniteFieldExtensionByPolynomial| . |Module|) 72236) ((|FiniteFieldExtensionByPolynomial| . |LinearSet|) 72177) ((|FiniteFieldExtensionByPolynomial| . |Algebra|) 72131) ((|FiniteFieldExtensionByPolynomial| . |GcdDomain|) T) ((|FiniteFieldExtensionByPolynomial| . |EuclideanDomain|) T) ((|FiniteFieldExtensionByPolynomial| . |BiModule|) 72058) ((|FiniteFieldExtensionByPolynomial| . |RightLinearSet|) 71999) ((|FiniteFieldExtensionByPolynomial| . |RightModule|) 71940) ((|FiniteFieldExtensionByPolynomial| . |EntireRing|) T) ((|FiniteFieldExtensionByPolynomial| . |DivisionRing|) T) ((|FiniteFieldExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 71871) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicNonZero|) 71802) ((|FiniteFieldExtensionByPolynomial| . |RetractableTo|) 71786) ((|FiniteFieldExtensionByPolynomial| . |VectorSpace|) 71770) ((|FiniteFieldExtensionByPolynomial| . |ExtensionField|) 71754) ((|FiniteFieldNormalBasisExtension| . |FiniteAlgebraicExtensionField|) 71738) ((|FiniteFieldNormalBasisExtension| . |DifferentialRing|) 71713) ((|FiniteFieldNormalBasisExtension| . |DifferentialDomain|) 71682) ((|FiniteFieldNormalBasisExtension| . |DifferentialSpace|) 71657) ((|FiniteFieldNormalBasisExtension| . |Finite|) 71632) ((|FiniteFieldNormalBasisExtension| . |StepThrough|) 71607) ((|FiniteFieldNormalBasisExtension| . |FiniteFieldCategory|) 71582) ((|FiniteFieldNormalBasisExtension| . |CharacteristicZero|) 71545) ((|FiniteFieldNormalBasisExtension| . |CoercibleFrom|) 71466) ((|FiniteFieldNormalBasisExtension| . |LeftModule|) 71407) ((|FiniteFieldNormalBasisExtension| . |LeftLinearSet|) 71328) ((|FiniteFieldNormalBasisExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |BasicType|) T) ((|FiniteFieldNormalBasisExtension| . |Join|) T) ((|FiniteFieldNormalBasisExtension| . |Type|) T) ((|FiniteFieldNormalBasisExtension| . |CoercibleTo|) 71302) ((|FiniteFieldNormalBasisExtension| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianGroup|) T) ((|FiniteFieldNormalBasisExtension| . |Rng|) T) ((|FiniteFieldNormalBasisExtension| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |SemiRing|) T) ((|FiniteFieldNormalBasisExtension| . |Monoid|) T) ((|FiniteFieldNormalBasisExtension| . |Ring|) T) ((|FiniteFieldNormalBasisExtension| . |Field|) T) ((|FiniteFieldNormalBasisExtension| . |UniqueFactorizationDomain|) T) ((|FiniteFieldNormalBasisExtension| . |PrincipalIdealDomain|) T) ((|FiniteFieldNormalBasisExtension| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtension| . |CommutativeRing|) T) ((|FiniteFieldNormalBasisExtension| . |Module|) 71243) ((|FiniteFieldNormalBasisExtension| . |LinearSet|) 71184) ((|FiniteFieldNormalBasisExtension| . |Algebra|) 71138) ((|FiniteFieldNormalBasisExtension| . |GcdDomain|) T) ((|FiniteFieldNormalBasisExtension| . |EuclideanDomain|) T) ((|FiniteFieldNormalBasisExtension| . |BiModule|) 71065) ((|FiniteFieldNormalBasisExtension| . |RightLinearSet|) 71006) ((|FiniteFieldNormalBasisExtension| . |RightModule|) 70947) ((|FiniteFieldNormalBasisExtension| . |EntireRing|) T) ((|FiniteFieldNormalBasisExtension| . |DivisionRing|) T) ((|FiniteFieldNormalBasisExtension| . |FieldOfPrimeCharacteristic|) 70878) ((|FiniteFieldNormalBasisExtension| . |CharacteristicNonZero|) 70809) ((|FiniteFieldNormalBasisExtension| . |RetractableTo|) 70793) ((|FiniteFieldNormalBasisExtension| . |VectorSpace|) 70777) ((|FiniteFieldNormalBasisExtension| . |ExtensionField|) 70761) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 70745) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DifferentialRing|) 70720) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DifferentialDomain|) 70689) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DifferentialSpace|) 70664) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Finite|) 70639) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |StepThrough|) 70614) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteFieldCategory|) 70589) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicZero|) 70552) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CoercibleFrom|) 70473) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftModule|) 70414) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftLinearSet|) 70335) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BasicType|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Join|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Type|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CoercibleTo|) 70309) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Rng|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SemiRing|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Monoid|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Ring|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Field|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CommutativeRing|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Module|) 70250) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LinearSet|) 70191) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Algebra|) 70145) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |GcdDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EuclideanDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BiModule|) 70072) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RightLinearSet|) 70013) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RightModule|) 69954) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EntireRing|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DivisionRing|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 69885) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicNonZero|) 69816) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RetractableTo|) 69800) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |VectorSpace|) 69784) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |ExtensionField|) 69768) ((|FiniteFieldNormalBasis| . |FiniteAlgebraicExtensionField|) 69737) ((|FiniteFieldNormalBasis| . |DifferentialRing|) T) ((|FiniteFieldNormalBasis| . |DifferentialDomain|) 69724) ((|FiniteFieldNormalBasis| . |DifferentialSpace|) T) ((|FiniteFieldNormalBasis| . |Finite|) T) ((|FiniteFieldNormalBasis| . |StepThrough|) T) ((|FiniteFieldNormalBasis| . |FiniteFieldCategory|) T) ((|FiniteFieldNormalBasis| . |CharacteristicZero|) 69690) ((|FiniteFieldNormalBasis| . |CoercibleFrom|) 69596) ((|FiniteFieldNormalBasis| . |LeftModule|) 69522) ((|FiniteFieldNormalBasis| . |LeftLinearSet|) 69428) ((|FiniteFieldNormalBasis| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasis| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasis| . |BasicType|) T) ((|FiniteFieldNormalBasis| . |Join|) T) ((|FiniteFieldNormalBasis| . |Type|) T) ((|FiniteFieldNormalBasis| . |CoercibleTo|) 69402) ((|FiniteFieldNormalBasis| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasis| . |AbelianGroup|) T) ((|FiniteFieldNormalBasis| . |Rng|) T) ((|FiniteFieldNormalBasis| . |SemiGroup|) T) ((|FiniteFieldNormalBasis| . |SemiRing|) T) ((|FiniteFieldNormalBasis| . |Monoid|) T) ((|FiniteFieldNormalBasis| . |Ring|) T) ((|FiniteFieldNormalBasis| . |Field|) T) ((|FiniteFieldNormalBasis| . |UniqueFactorizationDomain|) T) ((|FiniteFieldNormalBasis| . |PrincipalIdealDomain|) T) ((|FiniteFieldNormalBasis| . |IntegralDomain|) T) ((|FiniteFieldNormalBasis| . |CommutativeRing|) T) ((|FiniteFieldNormalBasis| . |Module|) 69328) ((|FiniteFieldNormalBasis| . |LinearSet|) 69254) ((|FiniteFieldNormalBasis| . |Algebra|) 69208) ((|FiniteFieldNormalBasis| . |GcdDomain|) T) ((|FiniteFieldNormalBasis| . |EuclideanDomain|) T) ((|FiniteFieldNormalBasis| . |BiModule|) 69118) ((|FiniteFieldNormalBasis| . |RightLinearSet|) 69044) ((|FiniteFieldNormalBasis| . |RightModule|) 68970) ((|FiniteFieldNormalBasis| . |EntireRing|) T) ((|FiniteFieldNormalBasis| . |DivisionRing|) T) ((|FiniteFieldNormalBasis| . |FieldOfPrimeCharacteristic|) T) ((|FiniteFieldNormalBasis| . |CharacteristicNonZero|) T) ((|FiniteFieldNormalBasis| . |RetractableTo|) 68939) ((|FiniteFieldNormalBasis| . |VectorSpace|) 68908) ((|FiniteFieldNormalBasis| . |ExtensionField|) 68877) ((|FiniteFieldCyclicGroupExtension| . |FiniteAlgebraicExtensionField|) 68861) ((|FiniteFieldCyclicGroupExtension| . |DifferentialRing|) 68836) ((|FiniteFieldCyclicGroupExtension| . |DifferentialDomain|) 68805) ((|FiniteFieldCyclicGroupExtension| . |DifferentialSpace|) 68780) ((|FiniteFieldCyclicGroupExtension| . |Finite|) 68755) ((|FiniteFieldCyclicGroupExtension| . |StepThrough|) 68730) ((|FiniteFieldCyclicGroupExtension| . |FiniteFieldCategory|) 68705) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicZero|) 68668) ((|FiniteFieldCyclicGroupExtension| . |CoercibleFrom|) 68589) ((|FiniteFieldCyclicGroupExtension| . |LeftModule|) 68530) ((|FiniteFieldCyclicGroupExtension| . |LeftLinearSet|) 68451) ((|FiniteFieldCyclicGroupExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtension| . |Join|) T) ((|FiniteFieldCyclicGroupExtension| . |Type|) T) ((|FiniteFieldCyclicGroupExtension| . |CoercibleTo|) 68425) ((|FiniteFieldCyclicGroupExtension| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |Rng|) T) ((|FiniteFieldCyclicGroupExtension| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |SemiRing|) T) ((|FiniteFieldCyclicGroupExtension| . |Monoid|) T) ((|FiniteFieldCyclicGroupExtension| . |Ring|) T) ((|FiniteFieldCyclicGroupExtension| . |Field|) T) ((|FiniteFieldCyclicGroupExtension| . |UniqueFactorizationDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroupExtension| . |Module|) 68366) ((|FiniteFieldCyclicGroupExtension| . |LinearSet|) 68307) ((|FiniteFieldCyclicGroupExtension| . |Algebra|) 68261) ((|FiniteFieldCyclicGroupExtension| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |EuclideanDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |BiModule|) 68188) ((|FiniteFieldCyclicGroupExtension| . |RightLinearSet|) 68129) ((|FiniteFieldCyclicGroupExtension| . |RightModule|) 68070) ((|FiniteFieldCyclicGroupExtension| . |EntireRing|) T) ((|FiniteFieldCyclicGroupExtension| . |DivisionRing|) T) ((|FiniteFieldCyclicGroupExtension| . |FieldOfPrimeCharacteristic|) 68001) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicNonZero|) 67932) ((|FiniteFieldCyclicGroupExtension| . |RetractableTo|) 67916) ((|FiniteFieldCyclicGroupExtension| . |VectorSpace|) 67900) ((|FiniteFieldCyclicGroupExtension| . |ExtensionField|) 67884) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 67868) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DifferentialRing|) 67843) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DifferentialDomain|) 67812) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DifferentialSpace|) 67787) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Finite|) 67762) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |StepThrough|) 67737) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteFieldCategory|) 67712) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicZero|) 67675) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CoercibleFrom|) 67596) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftModule|) 67537) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftLinearSet|) 67458) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Join|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Type|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CoercibleTo|) 67432) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Rng|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SemiRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Monoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Ring|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Field|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Module|) 67373) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LinearSet|) 67314) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Algebra|) 67268) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EuclideanDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BiModule|) 67195) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RightLinearSet|) 67136) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RightModule|) 67077) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EntireRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DivisionRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 67008) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicNonZero|) 66939) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RetractableTo|) 66923) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |VectorSpace|) 66907) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |ExtensionField|) 66891) ((|FiniteFieldCyclicGroup| . |FiniteAlgebraicExtensionField|) 66860) ((|FiniteFieldCyclicGroup| . |DifferentialRing|) T) ((|FiniteFieldCyclicGroup| . |DifferentialDomain|) 66847) ((|FiniteFieldCyclicGroup| . |DifferentialSpace|) T) ((|FiniteFieldCyclicGroup| . |Finite|) T) ((|FiniteFieldCyclicGroup| . |StepThrough|) T) ((|FiniteFieldCyclicGroup| . |FiniteFieldCategory|) T) ((|FiniteFieldCyclicGroup| . |CharacteristicZero|) 66813) ((|FiniteFieldCyclicGroup| . |CoercibleFrom|) 66719) ((|FiniteFieldCyclicGroup| . |LeftModule|) 66645) ((|FiniteFieldCyclicGroup| . |LeftLinearSet|) 66551) ((|FiniteFieldCyclicGroup| . |CancellationAbelianMonoid|) T) ((|FiniteFieldCyclicGroup| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroup| . |BasicType|) T) ((|FiniteFieldCyclicGroup| . |Join|) T) ((|FiniteFieldCyclicGroup| . |Type|) T) ((|FiniteFieldCyclicGroup| . |CoercibleTo|) 66525) ((|FiniteFieldCyclicGroup| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroup| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroup| . |Rng|) T) ((|FiniteFieldCyclicGroup| . |SemiGroup|) T) ((|FiniteFieldCyclicGroup| . |SemiRing|) T) ((|FiniteFieldCyclicGroup| . |Monoid|) T) ((|FiniteFieldCyclicGroup| . |Ring|) T) ((|FiniteFieldCyclicGroup| . |Field|) T) ((|FiniteFieldCyclicGroup| . |UniqueFactorizationDomain|) T) ((|FiniteFieldCyclicGroup| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroup| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroup| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroup| . |Module|) 66451) ((|FiniteFieldCyclicGroup| . |LinearSet|) 66377) ((|FiniteFieldCyclicGroup| . |Algebra|) 66331) ((|FiniteFieldCyclicGroup| . |GcdDomain|) T) ((|FiniteFieldCyclicGroup| . |EuclideanDomain|) T) ((|FiniteFieldCyclicGroup| . |BiModule|) 66241) ((|FiniteFieldCyclicGroup| . |RightLinearSet|) 66167) ((|FiniteFieldCyclicGroup| . |RightModule|) 66093) ((|FiniteFieldCyclicGroup| . |EntireRing|) T) ((|FiniteFieldCyclicGroup| . |DivisionRing|) T) ((|FiniteFieldCyclicGroup| . |FieldOfPrimeCharacteristic|) T) ((|FiniteFieldCyclicGroup| . |CharacteristicNonZero|) T) ((|FiniteFieldCyclicGroup| . |RetractableTo|) 66062) ((|FiniteFieldCyclicGroup| . |VectorSpace|) 66031) ((|FiniteFieldCyclicGroup| . |ExtensionField|) 66000) ((|FiniteField| . |FiniteAlgebraicExtensionField|) 65969) ((|FiniteField| . |DifferentialRing|) T) ((|FiniteField| . |DifferentialDomain|) 65956) ((|FiniteField| . |DifferentialSpace|) T) ((|FiniteField| . |Finite|) T) ((|FiniteField| . |StepThrough|) T) ((|FiniteField| . |FiniteFieldCategory|) T) ((|FiniteField| . |CharacteristicZero|) 65922) ((|FiniteField| . |CoercibleFrom|) 65828) ((|FiniteField| . |LeftModule|) 65754) ((|FiniteField| . |LeftLinearSet|) 65660) ((|FiniteField| . |CancellationAbelianMonoid|) T) ((|FiniteField| . |AbelianSemiGroup|) T) ((|FiniteField| . |BasicType|) T) ((|FiniteField| . |Join|) T) ((|FiniteField| . |Type|) T) ((|FiniteField| . |CoercibleTo|) 65634) ((|FiniteField| . |SetCategory|) T) ((|FiniteField| . |AbelianMonoid|) T) ((|FiniteField| . |AbelianGroup|) T) ((|FiniteField| . |Rng|) T) ((|FiniteField| . |SemiGroup|) T) ((|FiniteField| . |SemiRing|) T) ((|FiniteField| . |Monoid|) T) ((|FiniteField| . |Ring|) T) ((|FiniteField| . |Field|) T) ((|FiniteField| . |UniqueFactorizationDomain|) T) ((|FiniteField| . |PrincipalIdealDomain|) T) ((|FiniteField| . |IntegralDomain|) T) ((|FiniteField| . |CommutativeRing|) T) ((|FiniteField| . |Module|) 65560) ((|FiniteField| . |LinearSet|) 65486) ((|FiniteField| . |Algebra|) 65440) ((|FiniteField| . |GcdDomain|) T) ((|FiniteField| . |EuclideanDomain|) T) ((|FiniteField| . |BiModule|) 65350) ((|FiniteField| . |RightLinearSet|) 65276) ((|FiniteField| . |RightModule|) 65202) ((|FiniteField| . |EntireRing|) T) ((|FiniteField| . |DivisionRing|) T) ((|FiniteField| . |FieldOfPrimeCharacteristic|) T) ((|FiniteField| . |CharacteristicNonZero|) T) ((|FiniteField| . |RetractableTo|) 65171) ((|FiniteField| . |VectorSpace|) 65140) ((|FiniteField| . |ExtensionField|) 65109) ((|FiniteDivisor| . |FiniteDivisorCategory|) 65078) ((|FiniteDivisor| . |CancellationAbelianMonoid|) T) ((|FiniteDivisor| . |AbelianSemiGroup|) T) ((|FiniteDivisor| . |BasicType|) T) ((|FiniteDivisor| . |Join|) T) ((|FiniteDivisor| . |Type|) T) ((|FiniteDivisor| . |CoercibleTo|) 65052) ((|FiniteDivisor| . |SetCategory|) T) ((|FiniteDivisor| . |AbelianMonoid|) T) ((|FiniteDivisor| . |LeftLinearSet|) 65029) ((|FiniteDivisor| . |AbelianGroup|) T) ((|FunctorData| . |SetCategory|) T) ((|FunctorData| . |CoercibleTo|) 65003) ((|FunctorData| . |Type|) T) ((|FunctorData| . |Join|) T) ((|FunctorData| . |BasicType|) T) ((|FourierComponent| . |OrderedSet|) T) ((|FourierComponent| . |CoercibleTo|) 64977) ((|FourierComponent| . |SetCategory|) T) ((|FourierComponent| . |BasicType|) T) ((|FourierComponent| . |Join|) T) ((|FourierComponent| . |Type|) T) ((|FourierComponent| . |OrderedType|) T) ((|FlexibleArray| . |OneDimensionalArrayAggregate|) 64961) ((|FlexibleArray| . |ShallowlyMutableAggregate|) 64945) ((|FlexibleArray| . |FiniteAggregate|) 64929) ((|FlexibleArray| . |Aggregate|) T) ((|FlexibleArray| . |Join|) T) ((|FlexibleArray| . |Type|) T) ((|FlexibleArray| . |BasicType|) 64839) ((|FlexibleArray| . |CoercibleTo|) 64713) ((|FlexibleArray| . |Evalable|) 64637) ((|FlexibleArray| . |InnerEvalable|) 64556) ((|FlexibleArray| . |Functorial|) 64540) ((|FlexibleArray| . |SetCategory|) 64477) ((|FlexibleArray| . |HomogeneousAggregate|) 64461) ((|FlexibleArray| . |LinearAggregate|) 64445) ((|FlexibleArray| . |EltableAggregate|) 64417) ((|FlexibleArray| . |Eltable|) 64346) ((|FlexibleArray| . |IndexedAggregate|) 64318) ((|FlexibleArray| . |ConvertibleTo|) 64254) ((|FlexibleArray| . |Collection|) 64238) ((|FlexibleArray| . |OrderedSet|) 64209) ((|FlexibleArray| . |OrderedType|) 64180) ((|FlexibleArray| . |FiniteLinearAggregate|) 64164) ((|FlexibleArray| . |ExtensibleLinearAggregate|) 64148) ((|FreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 64109) ((|FreeAbelianMonoid| . |CoercibleFrom|) 64093) ((|FreeAbelianMonoid| . |RetractableTo|) 64077) ((|FreeAbelianMonoid| . |AbelianMonoid|) T) ((|FreeAbelianMonoid| . |SetCategory|) T) ((|FreeAbelianMonoid| . |CoercibleTo|) 64051) ((|FreeAbelianMonoid| . |Type|) T) ((|FreeAbelianMonoid| . |Join|) T) ((|FreeAbelianMonoid| . |BasicType|) T) ((|FreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|FreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|FreeAbelianGroup| . |AbelianGroup|) T) ((|FreeAbelianGroup| . |LeftLinearSet|) 64028) ((|FreeAbelianGroup| . |AbelianMonoid|) T) ((|FreeAbelianGroup| . |SetCategory|) T) ((|FreeAbelianGroup| . |CoercibleTo|) 64002) ((|FreeAbelianGroup| . |Type|) T) ((|FreeAbelianGroup| . |Join|) T) ((|FreeAbelianGroup| . |BasicType|) T) ((|FreeAbelianGroup| . |AbelianSemiGroup|) T) ((|FreeAbelianGroup| . |CancellationAbelianMonoid|) T) ((|FreeAbelianGroup| . |Module|) 63979) ((|FreeAbelianGroup| . |LinearSet|) 63956) ((|FreeAbelianGroup| . |LeftModule|) 63933) ((|FreeAbelianGroup| . |RightModule|) 63910) ((|FreeAbelianGroup| . |RightLinearSet|) 63887) ((|FreeAbelianGroup| . |BiModule|) 63857) ((|FreeAbelianGroup| . |FreeAbelianMonoidCategory|) 63829) ((|FreeAbelianGroup| . |CoercibleFrom|) 63813) ((|FreeAbelianGroup| . |RetractableTo|) 63797) ((|FreeAbelianGroup| . |OrderedSet|) 63768) ((|FreeAbelianGroup| . |OrderedType|) 63739) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 63723) ((|ExponentialOfUnivariatePuiseuxSeries| . |DifferentialRing|) 63658) ((|ExponentialOfUnivariatePuiseuxSeries| . |DifferentialDomain|) 63587) ((|ExponentialOfUnivariatePuiseuxSeries| . |DifferentialSpace|) 63522) ((|ExponentialOfUnivariatePuiseuxSeries| . |Eltable|) 63469) ((|ExponentialOfUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 63331) ((|ExponentialOfUnivariatePuiseuxSeries| . |PartialDifferentialDomain|) 63191) ((|ExponentialOfUnivariatePuiseuxSeries| . |PartialDifferentialSpace|) 63053) ((|ExponentialOfUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 62986) ((|ExponentialOfUnivariatePuiseuxSeries| . |Algebra|) 62774) ((|ExponentialOfUnivariatePuiseuxSeries| . |BiModule|) 62542) ((|ExponentialOfUnivariatePuiseuxSeries| . |RightLinearSet|) 62324) ((|ExponentialOfUnivariatePuiseuxSeries| . |RightModule|) 62106) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftLinearSet|) 61955) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftModule|) 61824) ((|ExponentialOfUnivariatePuiseuxSeries| . |LinearSet|) 61612) ((|ExponentialOfUnivariatePuiseuxSeries| . |Module|) 61400) ((|ExponentialOfUnivariatePuiseuxSeries| . |CoercibleFrom|) 61168) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 61128) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicZero|) 61091) ((|ExponentialOfUnivariatePuiseuxSeries| . |Functorial|) 61075) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 61034) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 60993) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 60942) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 60891) ((|ExponentialOfUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 60840) ((|ExponentialOfUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 60789) ((|ExponentialOfUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 60738) ((|ExponentialOfUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 60687) ((|ExponentialOfUnivariatePuiseuxSeries| . |RadicalCategory|) 60636) ((|ExponentialOfUnivariatePuiseuxSeries| . |DivisionRing|) 60612) ((|ExponentialOfUnivariatePuiseuxSeries| . |EntireRing|) 60551) ((|ExponentialOfUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |BasicType|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Join|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Type|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |CoercibleTo|) 60525) ((|ExponentialOfUnivariatePuiseuxSeries| . |SetCategory|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Ring|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Monoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |SemiRing|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Rng|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |EuclideanDomain|) 60501) ((|ExponentialOfUnivariatePuiseuxSeries| . |GcdDomain|) 60477) ((|ExponentialOfUnivariatePuiseuxSeries| . |CommutativeRing|) 60383) ((|ExponentialOfUnivariatePuiseuxSeries| . |IntegralDomain|) 60322) ((|ExponentialOfUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 60298) ((|ExponentialOfUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 60274) ((|ExponentialOfUnivariatePuiseuxSeries| . |Field|) 60250) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianMonoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedSet|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedType|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianSemiGroup|) T) ((|Expression| . |FunctionSpace|) 60234) ((|Expression| . |CoercibleFrom|) 59584) ((|Expression| . |RetractableTo|) 59088) ((|Expression| . |ConvertibleTo|) 58866) ((|Expression| . |Patternable|) 58850) ((|Expression| . |PartialDifferentialSpace|) 58812) ((|Expression| . |PartialDifferentialDomain|) 58772) ((|Expression| . |PartialDifferentialRing|) 58734) ((|Expression| . |Group|) 58710) ((|Expression| . |FullyRetractableTo|) 58694) ((|Expression| . |PatternMatchable|) 58575) ((|Expression| . |FullyPatternMatchable|) 58559) ((|Expression| . |LinearlyExplicitRingOver|) 58431) ((|Expression| . |LeftModule|) 58035) ((|Expression| . |FullyLinearlyExplicitRingOver|) 58003) ((|Expression| . |DivisionRing|) 57970) ((|Expression| . |BiModule|) 57818) ((|Expression| . |RightLinearSet|) 57680) ((|Expression| . |RightModule|) 57542) ((|Expression| . |EntireRing|) 57509) ((|Expression| . |Module|) 57371) ((|Expression| . |LinearSet|) 57233) ((|Expression| . |LeftLinearSet|) 56722) ((|Expression| . |Algebra|) 56584) ((|Expression| . |EuclideanDomain|) 56551) ((|Expression| . |GcdDomain|) 56518) ((|Expression| . |CommutativeRing|) 56485) ((|Expression| . |IntegralDomain|) 56452) ((|Expression| . |PrincipalIdealDomain|) 56419) ((|Expression| . |UniqueFactorizationDomain|) 56386) ((|Expression| . |Field|) 56353) ((|Expression| . |Evalable|) 56340) ((|Expression| . |InnerEvalable|) 56302) ((|Expression| . |ExpressionSpace|) T) ((|Expression| . |CharacteristicZero|) 56265) ((|Expression| . |CharacteristicNonZero|) 56225) ((|Expression| . |Ring|) 56057) ((|Expression| . |Monoid|) 55839) ((|Expression| . |SemiRing|) 55671) ((|Expression| . |SemiGroup|) 55453) ((|Expression| . |Rng|) 55285) ((|Expression| . |CancellationAbelianMonoid|) 55087) ((|Expression| . |AbelianSemiGroup|) 54855) ((|Expression| . |BasicType|) T) ((|Expression| . |Join|) T) ((|Expression| . |Type|) T) ((|Expression| . |CoercibleTo|) 54829) ((|Expression| . |SetCategory|) T) ((|Expression| . |AbelianMonoid|) 54597) ((|Expression| . |AbelianGroup|) 54399) ((|Expression| . |AlgebraicallyClosedFunctionSpace|) 54357) ((|Expression| . |RadicalCategory|) 54324) ((|Expression| . |AlgebraicallyClosedField|) 54291) ((|Expression| . |TranscendentalFunctionCategory|) 54258) ((|Expression| . |TrigonometricFunctionCategory|) 54225) ((|Expression| . |HyperbolicFunctionCategory|) 54192) ((|Expression| . |ElementaryFunctionCategory|) 54159) ((|Expression| . |ArcTrigonometricFunctionCategory|) 54126) ((|Expression| . |ArcHyperbolicFunctionCategory|) 54093) ((|Expression| . |CombinatorialOpsCategory|) 54060) ((|Expression| . |CombinatorialFunctionCategory|) 54027) ((|Expression| . |LiouvillianFunctionCategory|) 53994) ((|Expression| . |PrimitiveFunctionCategory|) 53961) ((|Expression| . |SpecialFunctionCategory|) 53928) ((|ExponentialExpansion| . |QuotientFieldCategory|) 53843) ((|ExponentialExpansion| . |StepThrough|) NIL) ((|ExponentialExpansion| . |RetractableTo|) 53707) ((|ExponentialExpansion| . |CoercibleFrom|) 53508) ((|ExponentialExpansion| . |ConvertibleTo|) NIL) ((|ExponentialExpansion| . |RealConstant|) NIL) ((|ExponentialExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|ExponentialExpansion| . |Patternable|) 53423) ((|ExponentialExpansion| . |OrderedRing|) NIL) ((|ExponentialExpansion| . |OrderedCancellationAbelianMonoid|) NIL) ((|ExponentialExpansion| . |OrderedAbelianSemiGroup|) NIL) ((|ExponentialExpansion| . |OrderedType|) NIL) ((|ExponentialExpansion| . |OrderedSet|) NIL) ((|ExponentialExpansion| . |OrderedAbelianMonoid|) NIL) ((|ExponentialExpansion| . |OrderedAbelianGroup|) NIL) ((|ExponentialExpansion| . |OrderedIntegralDomain|) NIL) ((|ExponentialExpansion| . |PatternMatchable|) NIL) ((|ExponentialExpansion| . |FullyPatternMatchable|) 53338) ((|ExponentialExpansion| . |LinearlyExplicitRingOver|) 53253) ((|ExponentialExpansion| . |LeftModule|) 53125) ((|ExponentialExpansion| . |FullyLinearlyExplicitRingOver|) 53040) ((|ExponentialExpansion| . |Eltable|) 52924) ((|ExponentialExpansion| . |Evalable|) 52813) ((|ExponentialExpansion| . |InnerEvalable|) 52636) ((|ExponentialExpansion| . |Functorial|) 52551) ((|ExponentialExpansion| . |FullyEvalableOver|) 52466) ((|ExponentialExpansion| . |DivisionRing|) T) ((|ExponentialExpansion| . |BiModule|) 52322) ((|ExponentialExpansion| . |RightLinearSet|) 52194) ((|ExponentialExpansion| . |RightModule|) 52066) ((|ExponentialExpansion| . |EntireRing|) T) ((|ExponentialExpansion| . |Module|) 51938) ((|ExponentialExpansion| . |LinearSet|) 51810) ((|ExponentialExpansion| . |LeftLinearSet|) 51662) ((|ExponentialExpansion| . |Algebra|) 51534) ((|ExponentialExpansion| . |EuclideanDomain|) T) ((|ExponentialExpansion| . |GcdDomain|) T) ((|ExponentialExpansion| . |CommutativeRing|) T) ((|ExponentialExpansion| . |IntegralDomain|) T) ((|ExponentialExpansion| . |PrincipalIdealDomain|) T) ((|ExponentialExpansion| . |UniqueFactorizationDomain|) T) ((|ExponentialExpansion| . |Field|) T) ((|ExponentialExpansion| . |DifferentialRing|) NIL) ((|ExponentialExpansion| . |DifferentialDomain|) NIL) ((|ExponentialExpansion| . |DifferentialSpace|) NIL) ((|ExponentialExpansion| . |DifferentialSpaceExtension|) 51449) ((|ExponentialExpansion| . |PartialDifferentialDomain|) NIL) ((|ExponentialExpansion| . |PartialDifferentialSpace|) NIL) ((|ExponentialExpansion| . |PartialDifferentialRing|) NIL) ((|ExponentialExpansion| . |DifferentialExtension|) 51364) ((|ExponentialExpansion| . |CharacteristicZero|) 51258) ((|ExponentialExpansion| . |CharacteristicNonZero|) 51149) ((|ExponentialExpansion| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |AbelianSemiGroup|) T) ((|ExponentialExpansion| . |BasicType|) T) ((|ExponentialExpansion| . |Join|) T) ((|ExponentialExpansion| . |Type|) T) ((|ExponentialExpansion| . |CoercibleTo|) 51123) ((|ExponentialExpansion| . |SetCategory|) T) ((|ExponentialExpansion| . |AbelianMonoid|) T) ((|ExponentialExpansion| . |AbelianGroup|) T) ((|ExponentialExpansion| . |Ring|) T) ((|ExponentialExpansion| . |Monoid|) T) ((|ExponentialExpansion| . |SemiRing|) T) ((|ExponentialExpansion| . |SemiGroup|) T) ((|ExponentialExpansion| . |Rng|) T) ((|ExitAst| . |SpadSyntaxCategory|) T) ((|ExitAst| . |HomotopicTo|) 51101) ((|ExitAst| . |CoercibleTo|) 51056) ((|ExitAst| . |CoercibleFrom|) 51034) ((|ExitAst| . |SetCategory|) T) ((|ExitAst| . |Type|) T) ((|ExitAst| . |Join|) T) ((|ExitAst| . |BasicType|) T) ((|ExitAst| . |AbstractSyntaxCategory|) T) ((|Exit| . |SetCategory|) T) ((|Exit| . |CoercibleTo|) 51008) ((|Exit| . |Type|) T) ((|Exit| . |Join|) T) ((|Exit| . |BasicType|) T) ((|EqTable| . |TableAggregate|) 50987) ((|EqTable| . |Dictionary|) 50929) ((|EqTable| . |BagAggregate|) 50871) ((|EqTable| . |ShallowlyMutableAggregate|) 50800) ((|EqTable| . |Collection|) 50742) ((|EqTable| . |ConvertibleTo|) NIL) ((|EqTable| . |DictionaryOperations|) 50684) ((|EqTable| . |IndexedAggregate|) 50663) ((|EqTable| . |Evalable|) 50423) ((|EqTable| . |InnerEvalable|) 50171) ((|EqTable| . |Functorial|) 50100) ((|EqTable| . |HomogeneousAggregate|) 50029) ((|EqTable| . |Eltable|) 50008) ((|EqTable| . |EltableAggregate|) 49987) ((|EqTable| . |KeyedDictionary|) 49966) ((|EqTable| . |SetCategory|) T) ((|EqTable| . |CoercibleTo|) 49940) ((|EqTable| . |BasicType|) T) ((|EqTable| . |Type|) T) ((|EqTable| . |Join|) T) ((|EqTable| . |Aggregate|) T) ((|EqTable| . |FiniteAggregate|) 49882) ((|Equation| . |Functorial|) 49866) ((|Equation| . |Join|) T) ((|Equation| . |Type|) T) ((|Equation| . |InnerEvalable|) 49805) ((|Equation| . |SetCategory|) 49502) ((|Equation| . |CoercibleTo|) 49137) ((|Equation| . |BasicType|) 48834) ((|Equation| . |AbelianSemiGroup|) 48634) ((|Equation| . |AbelianGroup|) 48468) ((|Equation| . |LeftLinearSet|) 48113) ((|Equation| . |AbelianMonoid|) 47947) ((|Equation| . |CancellationAbelianMonoid|) 47781) ((|Equation| . |SemiGroup|) 47627) ((|Equation| . |Monoid|) 47500) ((|Equation| . |Group|) 47476) ((|Equation| . |Ring|) 47396) ((|Equation| . |SemiRing|) 47316) ((|Equation| . |Rng|) 47236) ((|Equation| . |LeftModule|) 47060) ((|Equation| . |CoercibleFrom|) 46964) ((|Equation| . |BiModule|) 46866) ((|Equation| . |RightLinearSet|) 46773) ((|Equation| . |RightModule|) 46680) ((|Equation| . |Module|) 46609) ((|Equation| . |LinearSet|) 46538) ((|Equation| . |PartialDifferentialRing|) 46472) ((|Equation| . |PartialDifferentialDomain|) 46406) ((|Equation| . |PartialDifferentialSpace|) 46342) ((|Equation| . |VectorSpace|) 46309) ((|Environment| . |CoercibleTo|) 46283) ((|EuclideanModularRing| . |EuclideanDomain|) T) ((|EuclideanModularRing| . |GcdDomain|) T) ((|EuclideanModularRing| . |Algebra|) 46270) ((|EuclideanModularRing| . |CoercibleFrom|) 46237) ((|EuclideanModularRing| . |Rng|) T) ((|EuclideanModularRing| . |SemiGroup|) T) ((|EuclideanModularRing| . |SemiRing|) T) ((|EuclideanModularRing| . |Monoid|) T) ((|EuclideanModularRing| . |Ring|) T) ((|EuclideanModularRing| . |BiModule|) 46222) ((|EuclideanModularRing| . |RightLinearSet|) 46209) ((|EuclideanModularRing| . |RightModule|) 46196) ((|EuclideanModularRing| . |AbelianGroup|) T) ((|EuclideanModularRing| . |LeftLinearSet|) 46163) ((|EuclideanModularRing| . |AbelianMonoid|) T) ((|EuclideanModularRing| . |SetCategory|) T) ((|EuclideanModularRing| . |CoercibleTo|) 46137) ((|EuclideanModularRing| . |Type|) T) ((|EuclideanModularRing| . |Join|) T) ((|EuclideanModularRing| . |BasicType|) T) ((|EuclideanModularRing| . |AbelianSemiGroup|) T) ((|EuclideanModularRing| . |CancellationAbelianMonoid|) T) ((|EuclideanModularRing| . |LeftModule|) 46124) ((|EuclideanModularRing| . |LinearSet|) 46111) ((|EuclideanModularRing| . |Module|) 46098) ((|EuclideanModularRing| . |CommutativeRing|) T) ((|EuclideanModularRing| . |EntireRing|) T) ((|EuclideanModularRing| . |IntegralDomain|) T) ((|EuclideanModularRing| . |PrincipalIdealDomain|) T) ((|EuclideanModularRing| . |Eltable|) 46077) ((|Elaboration| . |CoercibleTo|) 46051) ((|ElaboratedExpression| . |CoercibleTo|) 46025) ((|ExtAlgBasis| . |OrderedSet|) T) ((|ExtAlgBasis| . |CoercibleTo|) 45999) ((|ExtAlgBasis| . |SetCategory|) T) ((|ExtAlgBasis| . |BasicType|) T) ((|ExtAlgBasis| . |Join|) T) ((|ExtAlgBasis| . |Type|) T) ((|ExtAlgBasis| . |OrderedType|) T) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialPolynomialCategory|) 45947) ((|DifferentialSparseMultivariatePolynomial| . |CoercibleFrom|) 45579) ((|DifferentialSparseMultivariatePolynomial| . |RetractableTo|) 45346) ((|DifferentialSparseMultivariatePolynomial| . |ConvertibleTo|) 44953) ((|DifferentialSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 44911) ((|DifferentialSparseMultivariatePolynomial| . |FullyRetractableTo|) 44895) ((|DifferentialSparseMultivariatePolynomial| . |Algebra|) 44658) ((|DifferentialSparseMultivariatePolynomial| . |BiModule|) 44401) ((|DifferentialSparseMultivariatePolynomial| . |RightLinearSet|) 44158) ((|DifferentialSparseMultivariatePolynomial| . |RightModule|) 43915) ((|DifferentialSparseMultivariatePolynomial| . |LeftLinearSet|) 43792) ((|DifferentialSparseMultivariatePolynomial| . |LeftModule|) 43621) ((|DifferentialSparseMultivariatePolynomial| . |LinearSet|) 43384) ((|DifferentialSparseMultivariatePolynomial| . |Module|) 43147) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicNonZero|) 43107) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicZero|) 43070) ((|DifferentialSparseMultivariatePolynomial| . |CommutativeRing|) 42923) ((|DifferentialSparseMultivariatePolynomial| . |Functorial|) 42907) ((|DifferentialSparseMultivariatePolynomial| . |IntegralDomain|) 42793) ((|DifferentialSparseMultivariatePolynomial| . |EntireRing|) 42679) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoidRing|) 42637) ((|DifferentialSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 42621) ((|DifferentialSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 42537) ((|DifferentialSparseMultivariatePolynomial| . |GcdDomain|) 42455) ((|DifferentialSparseMultivariatePolynomial| . |InnerEvalable|) 42326) ((|DifferentialSparseMultivariatePolynomial| . |PartialDifferentialRing|) 42245) ((|DifferentialSparseMultivariatePolynomial| . |PartialDifferentialDomain|) 42102) ((|DifferentialSparseMultivariatePolynomial| . |PartialDifferentialSpace|) 41963) ((|DifferentialSparseMultivariatePolynomial| . |PatternMatchable|) 41742) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 41692) ((|DifferentialSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 41642) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialCategory|) 41595) ((|DifferentialSparseMultivariatePolynomial| . |Evalable|) 41582) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialRing|) 41547) ((|DifferentialSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |BasicType|) T) ((|DifferentialSparseMultivariatePolynomial| . |CoercibleTo|) 41521) ((|DifferentialSparseMultivariatePolynomial| . |SetCategory|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |Rng|) T) ((|DifferentialSparseMultivariatePolynomial| . |SemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |SemiRing|) T) ((|DifferentialSparseMultivariatePolynomial| . |Monoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |Ring|) T) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialDomain|) 41440) ((|DifferentialSparseMultivariatePolynomial| . |Join|) T) ((|DifferentialSparseMultivariatePolynomial| . |Type|) T) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialSpace|) 41365) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialSpaceExtension|) 41349) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialExtension|) 41333) ((|DrawOption| . |SetCategory|) T) ((|DrawOption| . |CoercibleTo|) 41307) ((|DrawOption| . |Type|) T) ((|DrawOption| . |Join|) T) ((|DrawOption| . |BasicType|) T) ((|DirectProductModule| . |DirectProductCategory|) 41286) ((|DirectProductModule| . |VectorSpace|) 41253) ((|DirectProductModule| . |OrderedCancellationAbelianMonoid|) 41211) ((|DirectProductModule| . |OrderedAbelianSemiGroup|) 41169) ((|DirectProductModule| . |OrderedType|) 41094) ((|DirectProductModule| . |OrderedSet|) 41019) ((|DirectProductModule| . |OrderedAbelianMonoid|) 40977) ((|DirectProductModule| . |OrderedAbelianMonoidSup|) 40935) ((|DirectProductModule| . |Module|) 40864) ((|DirectProductModule| . |LinearSet|) 40769) ((|DirectProductModule| . |EltableAggregate|) 40741) ((|DirectProductModule| . |Eltable|) 40713) ((|DirectProductModule| . |IndexedAggregate|) 40685) ((|DirectProductModule| . |RetractableTo|) 40436) ((|DirectProductModule| . |CoercibleFrom|) 40160) ((|DirectProductModule| . |FullyRetractableTo|) 40121) ((|DirectProductModule| . |LinearlyExplicitRingOver|) 39993) ((|DirectProductModule| . |LeftModule|) 39765) ((|DirectProductModule| . |FullyLinearlyExplicitRingOver|) 39733) ((|DirectProductModule| . |HomogeneousAggregate|) 39717) ((|DirectProductModule| . |Functorial|) 39701) ((|DirectProductModule| . |InnerEvalable|) 39620) ((|DirectProductModule| . |Evalable|) 39544) ((|DirectProductModule| . |Aggregate|) T) ((|DirectProductModule| . |FiniteAggregate|) 39528) ((|DirectProductModule| . |Finite|) 39503) ((|DirectProductModule| . |DifferentialRing|) 39440) ((|DirectProductModule| . |LeftLinearSet|) 39264) ((|DirectProductModule| . |Rng|) 39241) ((|DirectProductModule| . |SemiGroup|) 39218) ((|DirectProductModule| . |SemiRing|) 39195) ((|DirectProductModule| . |Monoid|) 39172) ((|DirectProductModule| . |Ring|) 39149) ((|DirectProductModule| . |DifferentialDomain|) 39012) ((|DirectProductModule| . |DifferentialSpace|) 38881) ((|DirectProductModule| . |DifferentialSpaceExtension|) 38849) ((|DirectProductModule| . |PartialDifferentialDomain|) 38665) ((|DirectProductModule| . |PartialDifferentialSpace|) 38483) ((|DirectProductModule| . |PartialDifferentialRing|) 38387) ((|DirectProductModule| . |DifferentialExtension|) 38355) ((|DirectProductModule| . |CoercibleTo|) 38305) ((|DirectProductModule| . |RightModule|) 38212) ((|DirectProductModule| . |RightLinearSet|) 38095) ((|DirectProductModule| . |BiModule|) 37997) ((|DirectProductModule| . |CancellationAbelianMonoid|) T) ((|DirectProductModule| . |AbelianSemiGroup|) T) ((|DirectProductModule| . |BasicType|) T) ((|DirectProductModule| . |Join|) T) ((|DirectProductModule| . |Type|) T) ((|DirectProductModule| . |SetCategory|) T) ((|DirectProductModule| . |AbelianMonoid|) T) ((|DirectProductModule| . |AbelianGroup|) T) ((|DirectProductMatrixModule| . |DirectProductCategory|) 37976) ((|DirectProductMatrixModule| . |VectorSpace|) 37943) ((|DirectProductMatrixModule| . |OrderedCancellationAbelianMonoid|) 37901) ((|DirectProductMatrixModule| . |OrderedAbelianSemiGroup|) 37859) ((|DirectProductMatrixModule| . |OrderedType|) 37784) ((|DirectProductMatrixModule| . |OrderedSet|) 37709) ((|DirectProductMatrixModule| . |OrderedAbelianMonoid|) 37667) ((|DirectProductMatrixModule| . |OrderedAbelianMonoidSup|) 37625) ((|DirectProductMatrixModule| . |Module|) 37554) ((|DirectProductMatrixModule| . |LinearSet|) 37459) ((|DirectProductMatrixModule| . |EltableAggregate|) 37431) ((|DirectProductMatrixModule| . |Eltable|) 37403) ((|DirectProductMatrixModule| . |IndexedAggregate|) 37375) ((|DirectProductMatrixModule| . |RetractableTo|) 37126) ((|DirectProductMatrixModule| . |CoercibleFrom|) 36850) ((|DirectProductMatrixModule| . |FullyRetractableTo|) 36811) ((|DirectProductMatrixModule| . |LinearlyExplicitRingOver|) 36683) ((|DirectProductMatrixModule| . |LeftModule|) 36442) ((|DirectProductMatrixModule| . |FullyLinearlyExplicitRingOver|) 36410) ((|DirectProductMatrixModule| . |HomogeneousAggregate|) 36394) ((|DirectProductMatrixModule| . |Functorial|) 36378) ((|DirectProductMatrixModule| . |InnerEvalable|) 36297) ((|DirectProductMatrixModule| . |Evalable|) 36221) ((|DirectProductMatrixModule| . |Aggregate|) T) ((|DirectProductMatrixModule| . |FiniteAggregate|) 36205) ((|DirectProductMatrixModule| . |Finite|) 36180) ((|DirectProductMatrixModule| . |DifferentialRing|) 36117) ((|DirectProductMatrixModule| . |LeftLinearSet|) 35928) ((|DirectProductMatrixModule| . |Rng|) 35905) ((|DirectProductMatrixModule| . |SemiGroup|) 35882) ((|DirectProductMatrixModule| . |SemiRing|) 35859) ((|DirectProductMatrixModule| . |Monoid|) 35836) ((|DirectProductMatrixModule| . |Ring|) 35813) ((|DirectProductMatrixModule| . |DifferentialDomain|) 35676) ((|DirectProductMatrixModule| . |DifferentialSpace|) 35545) ((|DirectProductMatrixModule| . |DifferentialSpaceExtension|) 35513) ((|DirectProductMatrixModule| . |PartialDifferentialDomain|) 35329) ((|DirectProductMatrixModule| . |PartialDifferentialSpace|) 35147) ((|DirectProductMatrixModule| . |PartialDifferentialRing|) 35051) ((|DirectProductMatrixModule| . |DifferentialExtension|) 35019) ((|DirectProductMatrixModule| . |CoercibleTo|) 34969) ((|DirectProductMatrixModule| . |RightModule|) 34876) ((|DirectProductMatrixModule| . |RightLinearSet|) 34759) ((|DirectProductMatrixModule| . |BiModule|) 34661) ((|DirectProductMatrixModule| . |CancellationAbelianMonoid|) T) ((|DirectProductMatrixModule| . |AbelianSemiGroup|) T) ((|DirectProductMatrixModule| . |BasicType|) T) ((|DirectProductMatrixModule| . |Join|) T) ((|DirectProductMatrixModule| . |Type|) T) ((|DirectProductMatrixModule| . |SetCategory|) T) ((|DirectProductMatrixModule| . |AbelianMonoid|) T) ((|DirectProductMatrixModule| . |AbelianGroup|) T) ((|DomainTemplate| . |SetCategory|) T) ((|DomainTemplate| . |CoercibleTo|) 34635) ((|DomainTemplate| . |Type|) T) ((|DomainTemplate| . |Join|) T) ((|DomainTemplate| . |BasicType|) T) ((|DomainTemplate| . |Eltable|) 34590) ((|DomainConstructor| . |ConstructorCategory|) T) ((|DomainConstructor| . |SetCategory|) T) ((|DomainConstructor| . |CoercibleTo|) 34540) ((|DomainConstructor| . |Type|) T) ((|DomainConstructor| . |Join|) T) ((|DomainConstructor| . |BasicType|) T) ((|DomainConstructor| . |OperatorCategory|) 34514) ((|Domain| . |SetCategory|) T) ((|Domain| . |CoercibleTo|) 34488) ((|Domain| . |Type|) T) ((|Domain| . |Join|) T) ((|Domain| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |PolynomialCategory|) 34391) ((|DistributedMultivariatePolynomial| . |CoercibleFrom|) 34063) ((|DistributedMultivariatePolynomial| . |RetractableTo|) 33870) ((|DistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 33820) ((|DistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 33770) ((|DistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|DistributedMultivariatePolynomial| . |PartialDifferentialSpace|) 33730) ((|DistributedMultivariatePolynomial| . |PartialDifferentialDomain|) 33688) ((|DistributedMultivariatePolynomial| . |PartialDifferentialRing|) 33648) ((|DistributedMultivariatePolynomial| . |InnerEvalable|) 33574) ((|DistributedMultivariatePolynomial| . |GcdDomain|) 33492) ((|DistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 33408) ((|DistributedMultivariatePolynomial| . |LeftModule|) 33237) ((|DistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 33221) ((|DistributedMultivariatePolynomial| . |AbelianMonoidRing|) 33153) ((|DistributedMultivariatePolynomial| . |Algebra|) 32916) ((|DistributedMultivariatePolynomial| . |LinearSet|) 32679) ((|DistributedMultivariatePolynomial| . |Module|) 32442) ((|DistributedMultivariatePolynomial| . |EntireRing|) 32328) ((|DistributedMultivariatePolynomial| . |IntegralDomain|) 32214) ((|DistributedMultivariatePolynomial| . |Functorial|) 32198) ((|DistributedMultivariatePolynomial| . |BiModule|) 31941) ((|DistributedMultivariatePolynomial| . |RightLinearSet|) 31698) ((|DistributedMultivariatePolynomial| . |RightModule|) 31455) ((|DistributedMultivariatePolynomial| . |CommutativeRing|) 31308) ((|DistributedMultivariatePolynomial| . |CharacteristicZero|) 31271) ((|DistributedMultivariatePolynomial| . |CharacteristicNonZero|) 31231) ((|DistributedMultivariatePolynomial| . |LeftLinearSet|) 31108) ((|DistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|DistributedMultivariatePolynomial| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |Join|) T) ((|DistributedMultivariatePolynomial| . |Type|) T) ((|DistributedMultivariatePolynomial| . |CoercibleTo|) 31082) ((|DistributedMultivariatePolynomial| . |SetCategory|) T) ((|DistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|DistributedMultivariatePolynomial| . |Ring|) T) ((|DistributedMultivariatePolynomial| . |Monoid|) T) ((|DistributedMultivariatePolynomial| . |SemiRing|) T) ((|DistributedMultivariatePolynomial| . |SemiGroup|) T) ((|DistributedMultivariatePolynomial| . |Rng|) T) ((|DistributedMultivariatePolynomial| . |FullyRetractableTo|) 31066) ((|DistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 30998) ((|DistributedMultivariatePolynomial| . |Evalable|) 30985) ((|DistributedMultivariatePolynomial| . |ConvertibleTo|) 30763) ((|DataList| . |ListAggregate|) 30747) ((|DataList| . |UnaryRecursiveAggregate|) 30731) ((|DataList| . |RecursiveAggregate|) 30715) ((|DataList| . |StreamAggregate|) 30699) ((|DataList| . |FiniteAggregate|) 30683) ((|DataList| . |OrderedSet|) 30654) ((|DataList| . |OrderedType|) 30625) ((|DataList| . |FiniteLinearAggregate|) 30609) ((|DataList| . |LinearAggregate|) 30593) ((|DataList| . |EltableAggregate|) 30565) ((|DataList| . |Eltable|) 30494) ((|DataList| . |IndexedAggregate|) 30466) ((|DataList| . |ConvertibleTo|) 30402) ((|DataList| . |HomogeneousAggregate|) 30386) ((|DataList| . |SetCategory|) 30323) ((|DataList| . |Functorial|) 30307) ((|DataList| . |InnerEvalable|) 30226) ((|DataList| . |Evalable|) 30150) ((|DataList| . |CoercibleTo|) 30002) ((|DataList| . |BasicType|) 29912) ((|DataList| . |Type|) T) ((|DataList| . |Join|) T) ((|DataList| . |Aggregate|) T) ((|DataList| . |Collection|) 29896) ((|DataList| . |ShallowlyMutableAggregate|) 29880) ((|DataList| . |ExtensibleLinearAggregate|) 29864) ((|DataList| . |HomotopicTo|) 29839) ((|DataList| . |CoercibleFrom|) 29814) ((|DirectProduct| . |DirectProductCategory|) 29793) ((|DirectProduct| . |VectorSpace|) 29760) ((|DirectProduct| . |OrderedCancellationAbelianMonoid|) 29718) ((|DirectProduct| . |OrderedAbelianSemiGroup|) 29676) ((|DirectProduct| . |OrderedType|) 29601) ((|DirectProduct| . |OrderedSet|) 29526) ((|DirectProduct| . |OrderedAbelianMonoid|) 29484) ((|DirectProduct| . |OrderedAbelianMonoidSup|) 29442) ((|DirectProduct| . |Module|) 29371) ((|DirectProduct| . |LinearSet|) 29276) ((|DirectProduct| . |EltableAggregate|) 29248) ((|DirectProduct| . |Eltable|) 29220) ((|DirectProduct| . |IndexedAggregate|) 29192) ((|DirectProduct| . |RetractableTo|) 28943) ((|DirectProduct| . |CoercibleFrom|) 28667) ((|DirectProduct| . |FullyRetractableTo|) 28628) ((|DirectProduct| . |LinearlyExplicitRingOver|) 28500) ((|DirectProduct| . |LeftModule|) 28285) ((|DirectProduct| . |FullyLinearlyExplicitRingOver|) 28253) ((|DirectProduct| . |HomogeneousAggregate|) 28237) ((|DirectProduct| . |Functorial|) 28221) ((|DirectProduct| . |InnerEvalable|) 28140) ((|DirectProduct| . |Evalable|) 28064) ((|DirectProduct| . |Aggregate|) T) ((|DirectProduct| . |FiniteAggregate|) 28048) ((|DirectProduct| . |Finite|) 28023) ((|DirectProduct| . |DifferentialRing|) 27960) ((|DirectProduct| . |LeftLinearSet|) 27690) ((|DirectProduct| . |Rng|) 27667) ((|DirectProduct| . |SemiGroup|) 27644) ((|DirectProduct| . |SemiRing|) 27621) ((|DirectProduct| . |Monoid|) 27598) ((|DirectProduct| . |Ring|) 27575) ((|DirectProduct| . |DifferentialDomain|) 27438) ((|DirectProduct| . |DifferentialSpace|) 27307) ((|DirectProduct| . |DifferentialSpaceExtension|) 27275) ((|DirectProduct| . |PartialDifferentialDomain|) 27091) ((|DirectProduct| . |PartialDifferentialSpace|) 26909) ((|DirectProduct| . |PartialDifferentialRing|) 26813) ((|DirectProduct| . |DifferentialExtension|) 26781) ((|DirectProduct| . |CoercibleTo|) 26326) ((|DirectProduct| . |RightModule|) 26233) ((|DirectProduct| . |RightLinearSet|) 26116) ((|DirectProduct| . |BiModule|) 26018) ((|DirectProduct| . |CancellationAbelianMonoid|) 25820) ((|DirectProduct| . |AbelianSemiGroup|) 25557) ((|DirectProduct| . |BasicType|) 25162) ((|DirectProduct| . |Join|) T) ((|DirectProduct| . |Type|) T) ((|DirectProduct| . |SetCategory|) 24794) ((|DirectProduct| . |AbelianMonoid|) 24565) ((|DirectProduct| . |AbelianGroup|) 24451) ((|DenavitHartenbergMatrix| . |MatrixCategory|) 24412) ((|DenavitHartenbergMatrix| . |FiniteAggregate|) 24396) ((|DenavitHartenbergMatrix| . |Aggregate|) T) ((|DenavitHartenbergMatrix| . |Join|) T) ((|DenavitHartenbergMatrix| . |Type|) T) ((|DenavitHartenbergMatrix| . |BasicType|) 24334) ((|DenavitHartenbergMatrix| . |CoercibleTo|) 24236) ((|DenavitHartenbergMatrix| . |Evalable|) 24160) ((|DenavitHartenbergMatrix| . |InnerEvalable|) 24079) ((|DenavitHartenbergMatrix| . |Functorial|) 24063) ((|DenavitHartenbergMatrix| . |SetCategory|) 24033) ((|DenavitHartenbergMatrix| . |HomogeneousAggregate|) 24017) ((|DenavitHartenbergMatrix| . |ShallowlyMutableAggregate|) 24001) ((|DenavitHartenbergMatrix| . |TwoDimensionalArrayCategory|) 23962) ((|DoubleFloat| . |FloatingPointSystem|) T) ((|DoubleFloat| . |CharacteristicZero|) T) ((|DoubleFloat| . |CoercibleFrom|) 23896) ((|DoubleFloat| . |LeftModule|) 23850) ((|DoubleFloat| . |LeftLinearSet|) 23784) ((|DoubleFloat| . |CancellationAbelianMonoid|) T) ((|DoubleFloat| . |AbelianSemiGroup|) T) ((|DoubleFloat| . |BasicType|) T) ((|DoubleFloat| . |Join|) T) ((|DoubleFloat| . |Type|) T) ((|DoubleFloat| . |CoercibleTo|) 23758) ((|DoubleFloat| . |SetCategory|) T) ((|DoubleFloat| . |AbelianMonoid|) T) ((|DoubleFloat| . |AbelianGroup|) T) ((|DoubleFloat| . |Rng|) T) ((|DoubleFloat| . |SemiGroup|) T) ((|DoubleFloat| . |SemiRing|) T) ((|DoubleFloat| . |Monoid|) T) ((|DoubleFloat| . |Ring|) T) ((|DoubleFloat| . |ConvertibleTo|) 23661) ((|DoubleFloat| . |Field|) T) ((|DoubleFloat| . |UniqueFactorizationDomain|) T) ((|DoubleFloat| . |PrincipalIdealDomain|) T) ((|DoubleFloat| . |IntegralDomain|) T) ((|DoubleFloat| . |CommutativeRing|) T) ((|DoubleFloat| . |Module|) 23615) ((|DoubleFloat| . |LinearSet|) 23569) ((|DoubleFloat| . |Algebra|) 23523) ((|DoubleFloat| . |GcdDomain|) T) ((|DoubleFloat| . |EuclideanDomain|) T) ((|DoubleFloat| . |BiModule|) 23468) ((|DoubleFloat| . |RightLinearSet|) 23422) ((|DoubleFloat| . |RightModule|) 23376) ((|DoubleFloat| . |EntireRing|) T) ((|DoubleFloat| . |DivisionRing|) T) ((|DoubleFloat| . |OrderedRing|) T) ((|DoubleFloat| . |OrderedCancellationAbelianMonoid|) T) ((|DoubleFloat| . |OrderedAbelianSemiGroup|) T) ((|DoubleFloat| . |OrderedType|) T) ((|DoubleFloat| . |OrderedSet|) T) ((|DoubleFloat| . |OrderedAbelianMonoid|) T) ((|DoubleFloat| . |OrderedAbelianGroup|) T) ((|DoubleFloat| . |PatternMatchable|) 23355) ((|DoubleFloat| . |RadicalCategory|) T) ((|DoubleFloat| . |RealConstant|) T) ((|DoubleFloat| . |RetractableTo|) 23304) ((|DoubleFloat| . |RealNumberSystem|) T) ((|DoubleFloat| . |DifferentialRing|) T) ((|DoubleFloat| . |DifferentialDomain|) 23291) ((|DoubleFloat| . |DifferentialSpace|) T) ((|DoubleFloat| . |TranscendentalFunctionCategory|) T) ((|DoubleFloat| . |TrigonometricFunctionCategory|) T) ((|DoubleFloat| . |HyperbolicFunctionCategory|) T) ((|DoubleFloat| . |ElementaryFunctionCategory|) T) ((|DoubleFloat| . |ArcTrigonometricFunctionCategory|) T) ((|DoubleFloat| . |ArcHyperbolicFunctionCategory|) T) ((|DeRhamComplex| . |LeftAlgebra|) 23260) ((|DeRhamComplex| . |CoercibleFrom|) 23209) ((|DeRhamComplex| . |LeftModule|) 23168) ((|DeRhamComplex| . |LeftLinearSet|) 23107) ((|DeRhamComplex| . |Rng|) T) ((|DeRhamComplex| . |SemiGroup|) T) ((|DeRhamComplex| . |SemiRing|) T) ((|DeRhamComplex| . |Monoid|) T) ((|DeRhamComplex| . |Ring|) T) ((|DeRhamComplex| . |AbelianGroup|) T) ((|DeRhamComplex| . |AbelianMonoid|) T) ((|DeRhamComplex| . |SetCategory|) T) ((|DeRhamComplex| . |CoercibleTo|) 23081) ((|DeRhamComplex| . |Type|) T) ((|DeRhamComplex| . |Join|) T) ((|DeRhamComplex| . |BasicType|) T) ((|DeRhamComplex| . |AbelianSemiGroup|) T) ((|DeRhamComplex| . |CancellationAbelianMonoid|) T) ((|DeRhamComplex| . |RetractableTo|) 23050) ((|DeRhamComplex| . |Functorial|) 23019) ((|Dequeue| . |DequeueAggregate|) 23003) ((|Dequeue| . |StackAggregate|) 22987) ((|Dequeue| . |BagAggregate|) 22971) ((|Dequeue| . |ShallowlyMutableAggregate|) 22955) ((|Dequeue| . |Aggregate|) T) ((|Dequeue| . |Join|) T) ((|Dequeue| . |Type|) T) ((|Dequeue| . |BasicType|) 22893) ((|Dequeue| . |CoercibleTo|) 22795) ((|Dequeue| . |Evalable|) 22719) ((|Dequeue| . |InnerEvalable|) 22638) ((|Dequeue| . |Functorial|) 22622) ((|Dequeue| . |SetCategory|) 22592) ((|Dequeue| . |HomogeneousAggregate|) 22576) ((|Dequeue| . |FiniteAggregate|) 22560) ((|Dequeue| . |QueueAggregate|) 22544) ((|DefinitionAst| . |SpadSyntaxCategory|) T) ((|DefinitionAst| . |HomotopicTo|) 22522) ((|DefinitionAst| . |CoercibleTo|) 22477) ((|DefinitionAst| . |CoercibleFrom|) 22455) ((|DefinitionAst| . |SetCategory|) T) ((|DefinitionAst| . |Type|) T) ((|DefinitionAst| . |Join|) T) ((|DefinitionAst| . |BasicType|) T) ((|DefinitionAst| . |AbstractSyntaxCategory|) T) ((|DecimalExpansion| . |QuotientFieldCategory|) 22432) ((|DecimalExpansion| . |StepThrough|) T) ((|DecimalExpansion| . |CoercibleFrom|) 22366) ((|DecimalExpansion| . |RetractableTo|) 22310) ((|DecimalExpansion| . |ConvertibleTo|) 22211) ((|DecimalExpansion| . |RealConstant|) T) ((|DecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|DecimalExpansion| . |Patternable|) 22188) ((|DecimalExpansion| . |OrderedRing|) T) ((|DecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|DecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|DecimalExpansion| . |OrderedType|) T) ((|DecimalExpansion| . |OrderedSet|) T) ((|DecimalExpansion| . |OrderedAbelianMonoid|) T) ((|DecimalExpansion| . |OrderedAbelianGroup|) T) ((|DecimalExpansion| . |OrderedIntegralDomain|) T) ((|DecimalExpansion| . |PatternMatchable|) 22165) ((|DecimalExpansion| . |FullyPatternMatchable|) 22142) ((|DecimalExpansion| . |LinearlyExplicitRingOver|) 22119) ((|DecimalExpansion| . |FullyLinearlyExplicitRingOver|) 22096) ((|DecimalExpansion| . |Eltable|) NIL) ((|DecimalExpansion| . |Evalable|) NIL) ((|DecimalExpansion| . |InnerEvalable|) NIL) ((|DecimalExpansion| . |Functorial|) 22073) ((|DecimalExpansion| . |FullyEvalableOver|) 22050) ((|DecimalExpansion| . |DivisionRing|) T) ((|DecimalExpansion| . |BiModule|) 21968) ((|DecimalExpansion| . |RightLinearSet|) 21902) ((|DecimalExpansion| . |RightModule|) 21836) ((|DecimalExpansion| . |EntireRing|) T) ((|DecimalExpansion| . |Module|) 21770) ((|DecimalExpansion| . |LinearSet|) 21704) ((|DecimalExpansion| . |LeftModule|) 21638) ((|DecimalExpansion| . |LeftLinearSet|) 21572) ((|DecimalExpansion| . |Algebra|) 21506) ((|DecimalExpansion| . |EuclideanDomain|) T) ((|DecimalExpansion| . |GcdDomain|) T) ((|DecimalExpansion| . |CommutativeRing|) T) ((|DecimalExpansion| . |IntegralDomain|) T) ((|DecimalExpansion| . |PrincipalIdealDomain|) T) ((|DecimalExpansion| . |UniqueFactorizationDomain|) T) ((|DecimalExpansion| . |Field|) T) ((|DecimalExpansion| . |DifferentialRing|) T) ((|DecimalExpansion| . |DifferentialDomain|) 21493) ((|DecimalExpansion| . |DifferentialSpace|) T) ((|DecimalExpansion| . |DifferentialSpaceExtension|) 21470) ((|DecimalExpansion| . |PartialDifferentialDomain|) NIL) ((|DecimalExpansion| . |PartialDifferentialSpace|) NIL) ((|DecimalExpansion| . |PartialDifferentialRing|) NIL) ((|DecimalExpansion| . |DifferentialExtension|) 21447) ((|DecimalExpansion| . |CharacteristicZero|) T) ((|DecimalExpansion| . |CharacteristicNonZero|) NIL) ((|DecimalExpansion| . |CancellationAbelianMonoid|) T) ((|DecimalExpansion| . |AbelianSemiGroup|) T) ((|DecimalExpansion| . |BasicType|) T) ((|DecimalExpansion| . |Join|) T) ((|DecimalExpansion| . |Type|) T) ((|DecimalExpansion| . |CoercibleTo|) 21358) ((|DecimalExpansion| . |SetCategory|) T) ((|DecimalExpansion| . |AbelianMonoid|) T) ((|DecimalExpansion| . |AbelianGroup|) T) ((|DecimalExpansion| . |Ring|) T) ((|DecimalExpansion| . |Monoid|) T) ((|DecimalExpansion| . |SemiRing|) T) ((|DecimalExpansion| . |SemiGroup|) T) ((|DecimalExpansion| . |Rng|) T) ((|DualBasis| . |OrderedFinite|) T) ((|DualBasis| . |OrderedType|) T) ((|DualBasis| . |OrderedSet|) T) ((|DualBasis| . |SetCategory|) T) ((|DualBasis| . |CoercibleTo|) 21332) ((|DualBasis| . |Type|) T) ((|DualBasis| . |Join|) T) ((|DualBasis| . |BasicType|) T) ((|DualBasis| . |Finite|) T) ((|Database| . |SetCategory|) T) ((|Database| . |CoercibleTo|) 21306) ((|Database| . |Type|) T) ((|Database| . |Join|) T) ((|Database| . |BasicType|) T) ((|Database| . |CoercibleFrom|) 21281) ((|DataArray| . |SetCategory|) T) ((|DataArray| . |CoercibleTo|) 21255) ((|DataArray| . |Type|) T) ((|DataArray| . |Join|) T) ((|DataArray| . |BasicType|) T) ((|ConstructorKind| . |SetCategory|) T) ((|ConstructorKind| . |CoercibleTo|) 21229) ((|ConstructorKind| . |Type|) T) ((|ConstructorKind| . |Join|) T) ((|ConstructorKind| . |BasicType|) T) ((|ConstructorCall| . |SetCategory|) T) ((|ConstructorCall| . |CoercibleTo|) 21203) ((|ConstructorCall| . |Type|) T) ((|ConstructorCall| . |Join|) T) ((|ConstructorCall| . |BasicType|) T) ((|Constructor| . |ConstructorCategory|) T) ((|Constructor| . |SetCategory|) T) ((|Constructor| . |CoercibleTo|) 21177) ((|Constructor| . |Type|) T) ((|Constructor| . |Join|) T) ((|Constructor| . |BasicType|) T) ((|Constructor| . |OperatorCategory|) 21151) ((|CoerceAst| . |SpadSyntaxCategory|) T) ((|CoerceAst| . |HomotopicTo|) 21129) ((|CoerceAst| . |CoercibleTo|) 21084) ((|CoerceAst| . |CoercibleFrom|) 21062) ((|CoerceAst| . |SetCategory|) T) ((|CoerceAst| . |Type|) T) ((|CoerceAst| . |Join|) T) ((|CoerceAst| . |BasicType|) T) ((|CoerceAst| . |AbstractSyntaxCategory|) T) ((|Contour| . |CoercibleTo|) 21036) ((|ContinuedFraction| . |Algebra|) 20951) ((|ContinuedFraction| . |CoercibleFrom|) 20846) ((|ContinuedFraction| . |LeftModule|) 20761) ((|ContinuedFraction| . |LeftLinearSet|) 20656) ((|ContinuedFraction| . |Rng|) T) ((|ContinuedFraction| . |SemiGroup|) T) ((|ContinuedFraction| . |SemiRing|) T) ((|ContinuedFraction| . |Monoid|) T) ((|ContinuedFraction| . |Ring|) T) ((|ContinuedFraction| . |BiModule|) 20550) ((|ContinuedFraction| . |RightLinearSet|) 20465) ((|ContinuedFraction| . |RightModule|) 20380) ((|ContinuedFraction| . |AbelianGroup|) T) ((|ContinuedFraction| . |AbelianMonoid|) T) ((|ContinuedFraction| . |SetCategory|) T) ((|ContinuedFraction| . |CoercibleTo|) 20354) ((|ContinuedFraction| . |Type|) T) ((|ContinuedFraction| . |Join|) T) ((|ContinuedFraction| . |BasicType|) T) ((|ContinuedFraction| . |AbelianSemiGroup|) T) ((|ContinuedFraction| . |CancellationAbelianMonoid|) T) ((|ContinuedFraction| . |LinearSet|) 20269) ((|ContinuedFraction| . |Module|) 20184) ((|ContinuedFraction| . |Field|) T) ((|ContinuedFraction| . |UniqueFactorizationDomain|) T) ((|ContinuedFraction| . |PrincipalIdealDomain|) T) ((|ContinuedFraction| . |IntegralDomain|) T) ((|ContinuedFraction| . |CommutativeRing|) T) ((|ContinuedFraction| . |GcdDomain|) T) ((|ContinuedFraction| . |EuclideanDomain|) T) ((|ContinuedFraction| . |EntireRing|) T) ((|ContinuedFraction| . |DivisionRing|) T) ((|SubSpaceComponentProperty| . |SetCategory|) T) ((|SubSpaceComponentProperty| . |CoercibleTo|) 20158) ((|SubSpaceComponentProperty| . |Type|) T) ((|SubSpaceComponentProperty| . |Join|) T) ((|SubSpaceComponentProperty| . |BasicType|) T) ((|Complex| . |ComplexCategory|) 20142) ((|Complex| . |ArcHyperbolicFunctionCategory|) 20093) ((|Complex| . |ArcTrigonometricFunctionCategory|) 20044) ((|Complex| . |ElementaryFunctionCategory|) 19995) ((|Complex| . |HyperbolicFunctionCategory|) 19946) ((|Complex| . |TrigonometricFunctionCategory|) 19897) ((|Complex| . |TranscendentalFunctionCategory|) 19848) ((|Complex| . |RadicalCategory|) 19760) ((|Complex| . |PolynomialFactorizationExplicit|) 19671) ((|Complex| . |ConvertibleTo|) 19295) ((|Complex| . |Patternable|) 19279) ((|Complex| . |Finite|) 19212) ((|Complex| . |FiniteFieldCategory|) 19174) ((|Complex| . |StepThrough|) 19136) ((|Complex| . |FieldOfPrimeCharacteristic|) 19098) ((|Complex| . |FramedAlgebra|) 19046) ((|Complex| . |Algebra|) 18804) ((|Complex| . |BiModule|) 18672) ((|Complex| . |RightLinearSet|) 18554) ((|Complex| . |RightModule|) 18436) ((|Complex| . |LinearSet|) 18194) ((|Complex| . |Module|) 17952) ((|Complex| . |FiniteRankAlgebra|) 17900) ((|Complex| . |MonogenicAlgebra|) 17848) ((|Complex| . |RetractableTo|) 17692) ((|Complex| . |CoercibleFrom|) 17374) ((|Complex| . |FullyRetractableTo|) 17358) ((|Complex| . |PatternMatchable|) 17239) ((|Complex| . |FullyPatternMatchable|) 17223) ((|Complex| . |LinearlyExplicitRingOver|) 17139) ((|Complex| . |LeftModule|) 16953) ((|Complex| . |LeftLinearSet|) 16815) ((|Complex| . |FullyLinearlyExplicitRingOver|) 16799) ((|Complex| . |Eltable|) 16752) ((|Complex| . |Evalable|) 16711) ((|Complex| . |InnerEvalable|) 16600) ((|Complex| . |Functorial|) 16584) ((|Complex| . |FullyEvalableOver|) 16568) ((|Complex| . |DivisionRing|) 16502) ((|Complex| . |UniqueFactorizationDomain|) 16348) ((|Complex| . |Field|) 16282) ((|Complex| . |PrincipalIdealDomain|) 16183) ((|Complex| . |IntegralDomain|) 16052) ((|Complex| . |EntireRing|) 15921) ((|Complex| . |GcdDomain|) 15822) ((|Complex| . |EuclideanDomain|) 15723) ((|Complex| . |DifferentialRing|) 15646) ((|Complex| . |DifferentialDomain|) 15528) ((|Complex| . |DifferentialSpace|) 15416) ((|Complex| . |DifferentialSpaceExtension|) 15400) ((|Complex| . |PartialDifferentialDomain|) 15272) ((|Complex| . |PartialDifferentialSpace|) 15146) ((|Complex| . |PartialDifferentialRing|) 15078) ((|Complex| . |DifferentialExtension|) 15062) ((|Complex| . |CommutativeRing|) T) ((|Complex| . |CharacteristicZero|) 15025) ((|Complex| . |Ring|) T) ((|Complex| . |Monoid|) T) ((|Complex| . |SemiRing|) T) ((|Complex| . |SemiGroup|) T) ((|Complex| . |Rng|) T) ((|Complex| . |AbelianGroup|) T) ((|Complex| . |AbelianMonoid|) T) ((|Complex| . |SetCategory|) T) ((|Complex| . |CoercibleTo|) 14999) ((|Complex| . |Type|) T) ((|Complex| . |Join|) T) ((|Complex| . |BasicType|) T) ((|Complex| . |AbelianSemiGroup|) T) ((|Complex| . |CancellationAbelianMonoid|) T) ((|Complex| . |CharacteristicNonZero|) 14917) ((|CommutativeOperation| . |CommutativeOperatorCategory|) 14901) ((|CommutativeOperation| . |MappingCategory|) 14875) ((|CommutativeOperation| . |Type|) T) ((|CommutativeOperation| . |BinaryOperatorCategory|) 14859) ((|CommutativeOperation| . |CoercibleTo|) 14823) ((|CommaAst| . |SpadSyntaxCategory|) T) ((|CommaAst| . |HomotopicTo|) 14801) ((|CommaAst| . |CoercibleTo|) 14756) ((|CommaAst| . |CoercibleFrom|) 14734) ((|CommaAst| . |SetCategory|) T) ((|CommaAst| . |Type|) T) ((|CommaAst| . |Join|) T) ((|CommaAst| . |BasicType|) T) ((|CommaAst| . |AbstractSyntaxCategory|) T) ((|Commutator| . |SetCategory|) T) ((|Commutator| . |CoercibleTo|) 14708) ((|Commutator| . |Type|) T) ((|Commutator| . |Join|) T) ((|Commutator| . |BasicType|) T) ((|Color| . |AbelianSemiGroup|) T) ((|Color| . |BasicType|) T) ((|Color| . |Join|) T) ((|Color| . |Type|) T) ((|Color| . |CoercibleTo|) 14682) ((|Color| . |SetCategory|) T) ((|ColonAst| . |SpadSyntaxCategory|) T) ((|ColonAst| . |HomotopicTo|) 14660) ((|ColonAst| . |CoercibleTo|) 14615) ((|ColonAst| . |CoercibleFrom|) 14593) ((|ColonAst| . |SetCategory|) T) ((|ColonAst| . |Type|) T) ((|ColonAst| . |Join|) T) ((|ColonAst| . |BasicType|) T) ((|ColonAst| . |AbstractSyntaxCategory|) T) ((|CollectAst| . |SpadSyntaxCategory|) T) ((|CollectAst| . |HomotopicTo|) 14571) ((|CollectAst| . |CoercibleTo|) 14526) ((|CollectAst| . |CoercibleFrom|) 14504) ((|CollectAst| . |SetCategory|) T) ((|CollectAst| . |Type|) T) ((|CollectAst| . |Join|) T) ((|CollectAst| . |BasicType|) T) ((|CollectAst| . |AbstractSyntaxCategory|) T) ((|CliffordAlgebra| . |Ring|) T) ((|CliffordAlgebra| . |Monoid|) T) ((|CliffordAlgebra| . |SemiRing|) T) ((|CliffordAlgebra| . |SemiGroup|) T) ((|CliffordAlgebra| . |Rng|) T) ((|CliffordAlgebra| . |AbelianGroup|) T) ((|CliffordAlgebra| . |LeftLinearSet|) 14458) ((|CliffordAlgebra| . |AbelianMonoid|) T) ((|CliffordAlgebra| . |SetCategory|) T) ((|CliffordAlgebra| . |CoercibleTo|) 14432) ((|CliffordAlgebra| . |Type|) T) ((|CliffordAlgebra| . |Join|) T) ((|CliffordAlgebra| . |BasicType|) T) ((|CliffordAlgebra| . |AbelianSemiGroup|) T) ((|CliffordAlgebra| . |CancellationAbelianMonoid|) T) ((|CliffordAlgebra| . |LeftModule|) 14406) ((|CliffordAlgebra| . |CoercibleFrom|) 14370) ((|CliffordAlgebra| . |Algebra|) 14354) ((|CliffordAlgebra| . |BiModule|) 14333) ((|CliffordAlgebra| . |RightLinearSet|) 14317) ((|CliffordAlgebra| . |RightModule|) 14301) ((|CliffordAlgebra| . |LinearSet|) 14285) ((|CliffordAlgebra| . |Module|) 14269) ((|CliffordAlgebra| . |VectorSpace|) 14253) ((|Character| . |OrderedFinite|) T) ((|Character| . |OrderedType|) T) ((|Character| . |OrderedSet|) T) ((|Character| . |SetCategory|) T) ((|Character| . |CoercibleTo|) 14227) ((|Character| . |Type|) T) ((|Character| . |Join|) T) ((|Character| . |BasicType|) T) ((|Character| . |Finite|) T) ((|CharacterClass| . |SetCategory|) T) ((|CharacterClass| . |CoercibleTo|) 14201) ((|CharacterClass| . |Type|) T) ((|CharacterClass| . |Join|) T) ((|CharacterClass| . |BasicType|) T) ((|CharacterClass| . |ConvertibleTo|) 14148) ((|CharacterClass| . |FiniteSetAggregate|) 14123) ((|CharacterClass| . |SetAggregate|) 14098) ((|CharacterClass| . |FiniteAggregate|) 14073) ((|CharacterClass| . |Finite|) T) ((|CharacterClass| . |DictionaryOperations|) 14048) ((|CharacterClass| . |Collection|) 14023) ((|CharacterClass| . |HomogeneousAggregate|) 13998) ((|CharacterClass| . |Functorial|) 13973) ((|CharacterClass| . |InnerEvalable|) NIL) ((|CharacterClass| . |Evalable|) NIL) ((|CharacterClass| . |Aggregate|) T) ((|CharacterClass| . |ShallowlyMutableAggregate|) 13948) ((|CharacterClass| . |BagAggregate|) 13923) ((|CharacterClass| . |Dictionary|) 13898) ((|Category| . |CoercibleTo|) 13872) ((|CategoryConstructor| . |ConstructorCategory|) T) ((|CategoryConstructor| . |SetCategory|) T) ((|CategoryConstructor| . |CoercibleTo|) 13822) ((|CategoryConstructor| . |Type|) T) ((|CategoryConstructor| . |Join|) T) ((|CategoryConstructor| . |BasicType|) T) ((|CategoryConstructor| . |OperatorCategory|) 13796) ((|CategoryAst| . |SpadSyntaxCategory|) T) ((|CategoryAst| . |HomotopicTo|) 13774) ((|CategoryAst| . |CoercibleTo|) 13729) ((|CategoryAst| . |CoercibleFrom|) 13707) ((|CategoryAst| . |SetCategory|) T) ((|CategoryAst| . |Type|) T) ((|CategoryAst| . |Join|) T) ((|CategoryAst| . |BasicType|) T) ((|CategoryAst| . |AbstractSyntaxCategory|) T) ((|CaseAst| . |SpadSyntaxCategory|) T) ((|CaseAst| . |HomotopicTo|) 13685) ((|CaseAst| . |CoercibleTo|) 13640) ((|CaseAst| . |CoercibleFrom|) 13618) ((|CaseAst| . |SetCategory|) T) ((|CaseAst| . |Type|) T) ((|CaseAst| . |Join|) T) ((|CaseAst| . |BasicType|) T) ((|CaseAst| . |AbstractSyntaxCategory|) T) ((|CartesianTensor| . |GradedAlgebra|) 13579) ((|CartesianTensor| . |CoercibleFrom|) 13451) ((|CartesianTensor| . |RetractableTo|) 13435) ((|CartesianTensor| . |SetCategory|) T) ((|CartesianTensor| . |CoercibleTo|) 13409) ((|CartesianTensor| . |Type|) T) ((|CartesianTensor| . |Join|) T) ((|CartesianTensor| . |BasicType|) T) ((|CartesianTensor| . |GradedModule|) 13343) ((|CartesianTensor| . |Eltable|) 13315) ((|CardinalNumber| . |OrderedSet|) T) ((|CardinalNumber| . |CoercibleTo|) 13289) ((|CardinalNumber| . |SetCategory|) T) ((|CardinalNumber| . |BasicType|) T) ((|CardinalNumber| . |Join|) T) ((|CardinalNumber| . |Type|) T) ((|CardinalNumber| . |OrderedType|) T) ((|CardinalNumber| . |AbelianMonoid|) T) ((|CardinalNumber| . |AbelianSemiGroup|) T) ((|CardinalNumber| . |Monoid|) T) ((|CardinalNumber| . |SemiGroup|) T) ((|CardinalNumber| . |RetractableTo|) 13255) ((|CardinalNumber| . |CoercibleFrom|) 13221) ((|CapsuleAst| . |SpadSyntaxCategory|) T) ((|CapsuleAst| . |HomotopicTo|) 13199) ((|CapsuleAst| . |CoercibleTo|) 13154) ((|CapsuleAst| . |CoercibleFrom|) 13132) ((|CapsuleAst| . |SetCategory|) T) ((|CapsuleAst| . |Type|) T) ((|CapsuleAst| . |Join|) T) ((|CapsuleAst| . |BasicType|) T) ((|CapsuleAst| . |AbstractSyntaxCategory|) T) ((|ByteOrder| . |SetCategory|) T) ((|ByteOrder| . |CoercibleTo|) 13106) ((|ByteOrder| . |Type|) T) ((|ByteOrder| . |Join|) T) ((|ByteOrder| . |BasicType|) T) ((|ByteBuffer| . |OneDimensionalArrayAggregate|) 13086) ((|ByteBuffer| . |ShallowlyMutableAggregate|) 13066) ((|ByteBuffer| . |FiniteAggregate|) 13046) ((|ByteBuffer| . |Aggregate|) T) ((|ByteBuffer| . |Join|) T) ((|ByteBuffer| . |Type|) T) ((|ByteBuffer| . |BasicType|) T) ((|ByteBuffer| . |CoercibleTo|) 12965) ((|ByteBuffer| . |Evalable|) NIL) ((|ByteBuffer| . |InnerEvalable|) NIL) ((|ByteBuffer| . |Functorial|) 12945) ((|ByteBuffer| . |SetCategory|) T) ((|ByteBuffer| . |HomogeneousAggregate|) 12925) ((|ByteBuffer| . |LinearAggregate|) 12905) ((|ByteBuffer| . |EltableAggregate|) 12873) ((|ByteBuffer| . |Eltable|) 12798) ((|ByteBuffer| . |IndexedAggregate|) 12766) ((|ByteBuffer| . |ConvertibleTo|) NIL) ((|ByteBuffer| . |Collection|) 12746) ((|ByteBuffer| . |OrderedSet|) T) ((|ByteBuffer| . |OrderedType|) T) ((|ByteBuffer| . |FiniteLinearAggregate|) 12726) ((|Byte| . |OrderedFinite|) T) ((|Byte| . |OrderedType|) T) ((|Byte| . |OrderedSet|) T) ((|Byte| . |SetCategory|) T) ((|Byte| . |CoercibleTo|) 12700) ((|Byte| . |Type|) T) ((|Byte| . |Join|) T) ((|Byte| . |BasicType|) T) ((|Byte| . |Finite|) T) ((|Byte| . |Logic|) T) ((|BinaryTree| . |BinaryTreeCategory|) 12684) ((|BinaryTree| . |ShallowlyMutableAggregate|) 12668) ((|BinaryTree| . |FiniteAggregate|) 12652) ((|BinaryTree| . |RecursiveAggregate|) 12636) ((|BinaryTree| . |Aggregate|) T) ((|BinaryTree| . |Join|) T) ((|BinaryTree| . |Type|) T) ((|BinaryTree| . |BasicType|) 12574) ((|BinaryTree| . |CoercibleTo|) 12476) ((|BinaryTree| . |Evalable|) 12400) ((|BinaryTree| . |InnerEvalable|) 12319) ((|BinaryTree| . |Functorial|) 12303) ((|BinaryTree| . |SetCategory|) 12273) ((|BinaryTree| . |HomogeneousAggregate|) 12257) ((|BinaryTree| . |BinaryRecursiveAggregate|) 12241) ((|BinaryTournament| . |BinaryTreeCategory|) 12225) ((|BinaryTournament| . |ShallowlyMutableAggregate|) 12209) ((|BinaryTournament| . |FiniteAggregate|) 12193) ((|BinaryTournament| . |RecursiveAggregate|) 12177) ((|BinaryTournament| . |Aggregate|) T) ((|BinaryTournament| . |Join|) T) ((|BinaryTournament| . |Type|) T) ((|BinaryTournament| . |BasicType|) 12115) ((|BinaryTournament| . |CoercibleTo|) 12017) ((|BinaryTournament| . |Evalable|) 11941) ((|BinaryTournament| . |InnerEvalable|) 11860) ((|BinaryTournament| . |Functorial|) 11844) ((|BinaryTournament| . |SetCategory|) 11814) ((|BinaryTournament| . |HomogeneousAggregate|) 11798) ((|BinaryTournament| . |BinaryRecursiveAggregate|) 11782) ((|BinarySearchTree| . |BinaryTreeCategory|) 11766) ((|BinarySearchTree| . |ShallowlyMutableAggregate|) 11750) ((|BinarySearchTree| . |FiniteAggregate|) 11734) ((|BinarySearchTree| . |RecursiveAggregate|) 11718) ((|BinarySearchTree| . |Aggregate|) T) ((|BinarySearchTree| . |Join|) T) ((|BinarySearchTree| . |Type|) T) ((|BinarySearchTree| . |BasicType|) 11656) ((|BinarySearchTree| . |CoercibleTo|) 11558) ((|BinarySearchTree| . |Evalable|) 11482) ((|BinarySearchTree| . |InnerEvalable|) 11401) ((|BinarySearchTree| . |Functorial|) 11385) ((|BinarySearchTree| . |SetCategory|) 11355) ((|BinarySearchTree| . |HomogeneousAggregate|) 11339) ((|BinarySearchTree| . |BinaryRecursiveAggregate|) 11323) ((|BalancedPAdicRational| . |QuotientFieldCategory|) 11282) ((|BalancedPAdicRational| . |StepThrough|) NIL) ((|BalancedPAdicRational| . |RetractableTo|) 11241) ((|BalancedPAdicRational| . |CoercibleFrom|) 11137) ((|BalancedPAdicRational| . |ConvertibleTo|) NIL) ((|BalancedPAdicRational| . |RealConstant|) NIL) ((|BalancedPAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|BalancedPAdicRational| . |Patternable|) 11096) ((|BalancedPAdicRational| . |OrderedRing|) NIL) ((|BalancedPAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|BalancedPAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|BalancedPAdicRational| . |OrderedType|) NIL) ((|BalancedPAdicRational| . |OrderedSet|) NIL) ((|BalancedPAdicRational| . |OrderedAbelianMonoid|) NIL) ((|BalancedPAdicRational| . |OrderedAbelianGroup|) NIL) ((|BalancedPAdicRational| . |OrderedIntegralDomain|) NIL) ((|BalancedPAdicRational| . |PatternMatchable|) NIL) ((|BalancedPAdicRational| . |FullyPatternMatchable|) 11055) ((|BalancedPAdicRational| . |LinearlyExplicitRingOver|) 11014) ((|BalancedPAdicRational| . |LeftModule|) 10930) ((|BalancedPAdicRational| . |FullyLinearlyExplicitRingOver|) 10889) ((|BalancedPAdicRational| . |Eltable|) 10817) ((|BalancedPAdicRational| . |Evalable|) 10750) ((|BalancedPAdicRational| . |InnerEvalable|) 10617) ((|BalancedPAdicRational| . |Functorial|) 10576) ((|BalancedPAdicRational| . |FullyEvalableOver|) 10535) ((|BalancedPAdicRational| . |DivisionRing|) T) ((|BalancedPAdicRational| . |BiModule|) 10435) ((|BalancedPAdicRational| . |RightLinearSet|) 10351) ((|BalancedPAdicRational| . |RightModule|) 10267) ((|BalancedPAdicRational| . |EntireRing|) T) ((|BalancedPAdicRational| . |Module|) 10183) ((|BalancedPAdicRational| . |LinearSet|) 10099) ((|BalancedPAdicRational| . |LeftLinearSet|) 9995) ((|BalancedPAdicRational| . |Algebra|) 9911) ((|BalancedPAdicRational| . |EuclideanDomain|) T) ((|BalancedPAdicRational| . |GcdDomain|) T) ((|BalancedPAdicRational| . |CommutativeRing|) T) ((|BalancedPAdicRational| . |IntegralDomain|) T) ((|BalancedPAdicRational| . |PrincipalIdealDomain|) T) ((|BalancedPAdicRational| . |UniqueFactorizationDomain|) T) ((|BalancedPAdicRational| . |Field|) T) ((|BalancedPAdicRational| . |DifferentialRing|) NIL) ((|BalancedPAdicRational| . |DifferentialDomain|) NIL) ((|BalancedPAdicRational| . |DifferentialSpace|) NIL) ((|BalancedPAdicRational| . |DifferentialSpaceExtension|) 9870) ((|BalancedPAdicRational| . |PartialDifferentialDomain|) NIL) ((|BalancedPAdicRational| . |PartialDifferentialSpace|) NIL) ((|BalancedPAdicRational| . |PartialDifferentialRing|) NIL) ((|BalancedPAdicRational| . |DifferentialExtension|) 9829) ((|BalancedPAdicRational| . |CharacteristicZero|) T) ((|BalancedPAdicRational| . |CharacteristicNonZero|) NIL) ((|BalancedPAdicRational| . |CancellationAbelianMonoid|) T) ((|BalancedPAdicRational| . |AbelianSemiGroup|) T) ((|BalancedPAdicRational| . |BasicType|) T) ((|BalancedPAdicRational| . |Join|) T) ((|BalancedPAdicRational| . |Type|) T) ((|BalancedPAdicRational| . |CoercibleTo|) 9803) ((|BalancedPAdicRational| . |SetCategory|) T) ((|BalancedPAdicRational| . |AbelianMonoid|) T) ((|BalancedPAdicRational| . |AbelianGroup|) T) ((|BalancedPAdicRational| . |Ring|) T) ((|BalancedPAdicRational| . |Monoid|) T) ((|BalancedPAdicRational| . |SemiRing|) T) ((|BalancedPAdicRational| . |SemiGroup|) T) ((|BalancedPAdicRational| . |Rng|) T) ((|BalancedPAdicInteger| . |PAdicIntegerCategory|) 9787) ((|BalancedPAdicInteger| . |PrincipalIdealDomain|) T) ((|BalancedPAdicInteger| . |IntegralDomain|) T) ((|BalancedPAdicInteger| . |EntireRing|) T) ((|BalancedPAdicInteger| . |CommutativeRing|) T) ((|BalancedPAdicInteger| . |CoercibleFrom|) 9754) ((|BalancedPAdicInteger| . |Module|) 9741) ((|BalancedPAdicInteger| . |LinearSet|) 9728) ((|BalancedPAdicInteger| . |RightModule|) 9715) ((|BalancedPAdicInteger| . |RightLinearSet|) 9702) ((|BalancedPAdicInteger| . |BiModule|) 9687) ((|BalancedPAdicInteger| . |Algebra|) 9674) ((|BalancedPAdicInteger| . |GcdDomain|) T) ((|BalancedPAdicInteger| . |EuclideanDomain|) T) ((|BalancedPAdicInteger| . |Ring|) T) ((|BalancedPAdicInteger| . |Monoid|) T) ((|BalancedPAdicInteger| . |SemiRing|) T) ((|BalancedPAdicInteger| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |Rng|) T) ((|BalancedPAdicInteger| . |AbelianGroup|) T) ((|BalancedPAdicInteger| . |LeftLinearSet|) 9641) ((|BalancedPAdicInteger| . |AbelianMonoid|) T) ((|BalancedPAdicInteger| . |SetCategory|) T) ((|BalancedPAdicInteger| . |CoercibleTo|) 9615) ((|BalancedPAdicInteger| . |Type|) T) ((|BalancedPAdicInteger| . |Join|) T) ((|BalancedPAdicInteger| . |BasicType|) T) ((|BalancedPAdicInteger| . |AbelianSemiGroup|) T) ((|BalancedPAdicInteger| . |CancellationAbelianMonoid|) T) ((|BalancedPAdicInteger| . |LeftModule|) 9602) ((|BalancedPAdicInteger| . |CharacteristicZero|) T) ((|BasicOperator| . |OrderedSet|) T) ((|BasicOperator| . |CoercibleTo|) 9576) ((|BasicOperator| . |SetCategory|) T) ((|BasicOperator| . |BasicType|) T) ((|BasicOperator| . |Join|) T) ((|BasicOperator| . |Type|) T) ((|BasicOperator| . |OrderedType|) T) ((|BasicOperator| . |OperatorCategory|) 9554) ((|Boolean| . |OrderedFinite|) T) ((|Boolean| . |OrderedType|) T) ((|Boolean| . |OrderedSet|) T) ((|Boolean| . |SetCategory|) T) ((|Boolean| . |CoercibleTo|) 9528) ((|Boolean| . |Type|) T) ((|Boolean| . |Join|) T) ((|Boolean| . |BasicType|) T) ((|Boolean| . |Finite|) T) ((|Boolean| . |PropositionalLogic|) T) ((|Boolean| . |Logic|) T) ((|Boolean| . |BooleanLogic|) T) ((|Boolean| . |ConvertibleTo|) 9503) ((|Bits| . |BitAggregate|) T) ((|Bits| . |FiniteLinearAggregate|) 9480) ((|Bits| . |OrderedType|) T) ((|Bits| . |OrderedSet|) T) ((|Bits| . |Collection|) 9457) ((|Bits| . |ConvertibleTo|) 9432) ((|Bits| . |Eltable|) 9354) ((|Bits| . |IndexedAggregate|) 9319) ((|Bits| . |EltableAggregate|) 9284) ((|Bits| . |LinearAggregate|) 9261) ((|Bits| . |HomogeneousAggregate|) 9238) ((|Bits| . |SetCategory|) T) ((|Bits| . |Functorial|) 9215) ((|Bits| . |InnerEvalable|) NIL) ((|Bits| . |Evalable|) NIL) ((|Bits| . |CoercibleTo|) 9189) ((|Bits| . |BasicType|) T) ((|Bits| . |Aggregate|) T) ((|Bits| . |FiniteAggregate|) 9166) ((|Bits| . |ShallowlyMutableAggregate|) 9143) ((|Bits| . |OneDimensionalArrayAggregate|) 9120) ((|Bits| . |Logic|) T) ((|Bits| . |Join|) T) ((|Bits| . |Type|) T) ((|Bits| . |BooleanLogic|) T) ((|BinaryOperation| . |BinaryOperatorCategory|) 9104) ((|BinaryOperation| . |Type|) T) ((|BinaryOperation| . |MappingCategory|) 9078) ((|BinaryOperation| . |SetCategory|) T) ((|BinaryOperation| . |CoercibleTo|) 9052) ((|BinaryOperation| . |Join|) T) ((|BinaryOperation| . |BasicType|) T) ((|Binding| . |CoercibleTo|) 9026) ((|BinaryExpansion| . |QuotientFieldCategory|) 9003) ((|BinaryExpansion| . |StepThrough|) T) ((|BinaryExpansion| . |CoercibleFrom|) 8937) ((|BinaryExpansion| . |RetractableTo|) 8881) ((|BinaryExpansion| . |ConvertibleTo|) 8782) ((|BinaryExpansion| . |RealConstant|) T) ((|BinaryExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|BinaryExpansion| . |Patternable|) 8759) ((|BinaryExpansion| . |OrderedRing|) T) ((|BinaryExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|BinaryExpansion| . |OrderedAbelianSemiGroup|) T) ((|BinaryExpansion| . |OrderedType|) T) ((|BinaryExpansion| . |OrderedSet|) T) ((|BinaryExpansion| . |OrderedAbelianMonoid|) T) ((|BinaryExpansion| . |OrderedAbelianGroup|) T) ((|BinaryExpansion| . |OrderedIntegralDomain|) T) ((|BinaryExpansion| . |PatternMatchable|) 8736) ((|BinaryExpansion| . |FullyPatternMatchable|) 8713) ((|BinaryExpansion| . |LinearlyExplicitRingOver|) 8690) ((|BinaryExpansion| . |FullyLinearlyExplicitRingOver|) 8667) ((|BinaryExpansion| . |Eltable|) NIL) ((|BinaryExpansion| . |Evalable|) NIL) ((|BinaryExpansion| . |InnerEvalable|) NIL) ((|BinaryExpansion| . |Functorial|) 8644) ((|BinaryExpansion| . |FullyEvalableOver|) 8621) ((|BinaryExpansion| . |DivisionRing|) T) ((|BinaryExpansion| . |BiModule|) 8539) ((|BinaryExpansion| . |RightLinearSet|) 8473) ((|BinaryExpansion| . |RightModule|) 8407) ((|BinaryExpansion| . |EntireRing|) T) ((|BinaryExpansion| . |Module|) 8341) ((|BinaryExpansion| . |LinearSet|) 8275) ((|BinaryExpansion| . |LeftModule|) 8209) ((|BinaryExpansion| . |LeftLinearSet|) 8143) ((|BinaryExpansion| . |Algebra|) 8077) ((|BinaryExpansion| . |EuclideanDomain|) T) ((|BinaryExpansion| . |GcdDomain|) T) ((|BinaryExpansion| . |CommutativeRing|) T) ((|BinaryExpansion| . |IntegralDomain|) T) ((|BinaryExpansion| . |PrincipalIdealDomain|) T) ((|BinaryExpansion| . |UniqueFactorizationDomain|) T) ((|BinaryExpansion| . |Field|) T) ((|BinaryExpansion| . |DifferentialRing|) T) ((|BinaryExpansion| . |DifferentialDomain|) 8064) ((|BinaryExpansion| . |DifferentialSpace|) T) ((|BinaryExpansion| . |DifferentialSpaceExtension|) 8041) ((|BinaryExpansion| . |PartialDifferentialDomain|) NIL) ((|BinaryExpansion| . |PartialDifferentialSpace|) NIL) ((|BinaryExpansion| . |PartialDifferentialRing|) NIL) ((|BinaryExpansion| . |DifferentialExtension|) 8018) ((|BinaryExpansion| . |CharacteristicZero|) T) ((|BinaryExpansion| . |CharacteristicNonZero|) NIL) ((|BinaryExpansion| . |CancellationAbelianMonoid|) T) ((|BinaryExpansion| . |AbelianSemiGroup|) T) ((|BinaryExpansion| . |BasicType|) T) ((|BinaryExpansion| . |Join|) T) ((|BinaryExpansion| . |Type|) T) ((|BinaryExpansion| . |CoercibleTo|) 7930) ((|BinaryExpansion| . |SetCategory|) T) ((|BinaryExpansion| . |AbelianMonoid|) T) ((|BinaryExpansion| . |AbelianGroup|) T) ((|BinaryExpansion| . |Ring|) T) ((|BinaryExpansion| . |Monoid|) T) ((|BinaryExpansion| . |SemiRing|) T) ((|BinaryExpansion| . |SemiGroup|) T) ((|BinaryExpansion| . |Rng|) T) ((|BalancedBinaryTree| . |BinaryTreeCategory|) 7914) ((|BalancedBinaryTree| . |ShallowlyMutableAggregate|) 7898) ((|BalancedBinaryTree| . |FiniteAggregate|) 7882) ((|BalancedBinaryTree| . |RecursiveAggregate|) 7866) ((|BalancedBinaryTree| . |Aggregate|) T) ((|BalancedBinaryTree| . |Join|) T) ((|BalancedBinaryTree| . |Type|) T) ((|BalancedBinaryTree| . |BasicType|) 7804) ((|BalancedBinaryTree| . |CoercibleTo|) 7706) ((|BalancedBinaryTree| . |Evalable|) 7630) ((|BalancedBinaryTree| . |InnerEvalable|) 7549) ((|BalancedBinaryTree| . |Functorial|) 7533) ((|BalancedBinaryTree| . |SetCategory|) 7503) ((|BalancedBinaryTree| . |HomogeneousAggregate|) 7487) ((|BalancedBinaryTree| . |BinaryRecursiveAggregate|) 7471) ((|Automorphism| . |Group|) T) ((|Automorphism| . |SemiGroup|) T) ((|Automorphism| . |BasicType|) T) ((|Automorphism| . |Join|) T) ((|Automorphism| . |Type|) T) ((|Automorphism| . |CoercibleTo|) 7445) ((|Automorphism| . |SetCategory|) T) ((|Automorphism| . |Monoid|) T) ((|Automorphism| . |Eltable|) 7424) ((|AttributeAst| . |SpadSyntaxCategory|) T) ((|AttributeAst| . |HomotopicTo|) 7402) ((|AttributeAst| . |CoercibleTo|) 7357) ((|AttributeAst| . |CoercibleFrom|) 7335) ((|AttributeAst| . |SetCategory|) T) ((|AttributeAst| . |Type|) T) ((|AttributeAst| . |Join|) T) ((|AttributeAst| . |BasicType|) T) ((|AttributeAst| . |AbstractSyntaxCategory|) T) ((|ArrayStack| . |StackAggregate|) 7319) ((|ArrayStack| . |FiniteAggregate|) 7303) ((|ArrayStack| . |HomogeneousAggregate|) 7287) ((|ArrayStack| . |SetCategory|) 7257) ((|ArrayStack| . |Functorial|) 7241) ((|ArrayStack| . |InnerEvalable|) 7160) ((|ArrayStack| . |Evalable|) 7084) ((|ArrayStack| . |CoercibleTo|) 6986) ((|ArrayStack| . |BasicType|) 6924) ((|ArrayStack| . |Type|) T) ((|ArrayStack| . |Join|) T) ((|ArrayStack| . |Aggregate|) T) ((|ArrayStack| . |ShallowlyMutableAggregate|) 6908) ((|ArrayStack| . |BagAggregate|) 6892) ((|TwoDimensionalArray| . |TwoDimensionalArrayCategory|) 6840) ((|TwoDimensionalArray| . |ShallowlyMutableAggregate|) 6824) ((|TwoDimensionalArray| . |HomogeneousAggregate|) 6808) ((|TwoDimensionalArray| . |SetCategory|) 6778) ((|TwoDimensionalArray| . |Functorial|) 6762) ((|TwoDimensionalArray| . |InnerEvalable|) 6681) ((|TwoDimensionalArray| . |Evalable|) 6605) ((|TwoDimensionalArray| . |CoercibleTo|) 6507) ((|TwoDimensionalArray| . |BasicType|) 6445) ((|TwoDimensionalArray| . |Type|) T) ((|TwoDimensionalArray| . |Join|) T) ((|TwoDimensionalArray| . |Aggregate|) T) ((|TwoDimensionalArray| . |FiniteAggregate|) 6429) ((|OneDimensionalArray| . |OneDimensionalArrayAggregate|) 6413) ((|OneDimensionalArray| . |ShallowlyMutableAggregate|) 6397) ((|OneDimensionalArray| . |FiniteAggregate|) 6381) ((|OneDimensionalArray| . |Aggregate|) T) ((|OneDimensionalArray| . |Join|) T) ((|OneDimensionalArray| . |Type|) T) ((|OneDimensionalArray| . |BasicType|) 6291) ((|OneDimensionalArray| . |CoercibleTo|) 6165) ((|OneDimensionalArray| . |Evalable|) 6089) ((|OneDimensionalArray| . |InnerEvalable|) 6008) ((|OneDimensionalArray| . |Functorial|) 5992) ((|OneDimensionalArray| . |SetCategory|) 5929) ((|OneDimensionalArray| . |HomogeneousAggregate|) 5913) ((|OneDimensionalArray| . |LinearAggregate|) 5897) ((|OneDimensionalArray| . |EltableAggregate|) 5869) ((|OneDimensionalArray| . |Eltable|) 5798) ((|OneDimensionalArray| . |IndexedAggregate|) 5770) ((|OneDimensionalArray| . |ConvertibleTo|) 5706) ((|OneDimensionalArray| . |Collection|) 5690) ((|OneDimensionalArray| . |OrderedSet|) 5661) ((|OneDimensionalArray| . |OrderedType|) 5632) ((|OneDimensionalArray| . |FiniteLinearAggregate|) 5616) ((|Arity| . |SetCategory|) T) ((|Arity| . |CoercibleTo|) 5590) ((|Arity| . |Type|) T) ((|Arity| . |Join|) T) ((|Arity| . |BasicType|) T) ((|Arity| . |RetractableTo|) 5556) ((|Arity| . |CoercibleFrom|) 5522) ((|Any| . |SetCategory|) T) ((|Any| . |CoercibleTo|) 5496) ((|Any| . |Type|) T) ((|Any| . |Join|) T) ((|Any| . |BasicType|) T) ((|AntiSymm| . |LeftAlgebra|) 5480) ((|AntiSymm| . |CoercibleFrom|) 5444) ((|AntiSymm| . |LeftModule|) 5418) ((|AntiSymm| . |LeftLinearSet|) 5372) ((|AntiSymm| . |Rng|) T) ((|AntiSymm| . |SemiGroup|) T) ((|AntiSymm| . |SemiRing|) T) ((|AntiSymm| . |Monoid|) T) ((|AntiSymm| . |Ring|) T) ((|AntiSymm| . |AbelianGroup|) T) ((|AntiSymm| . |AbelianMonoid|) T) ((|AntiSymm| . |SetCategory|) T) ((|AntiSymm| . |CoercibleTo|) 5346) ((|AntiSymm| . |Type|) T) ((|AntiSymm| . |Join|) T) ((|AntiSymm| . |BasicType|) T) ((|AntiSymm| . |AbelianSemiGroup|) T) ((|AntiSymm| . |CancellationAbelianMonoid|) T) ((|AntiSymm| . |RetractableTo|) 5330) ((|AntiSymm| . |Functorial|) 5314) ((|AnonymousFunction| . |SetCategory|) T) ((|AnonymousFunction| . |CoercibleTo|) 5288) ((|AnonymousFunction| . |Type|) T) ((|AnonymousFunction| . |Join|) T) ((|AnonymousFunction| . |BasicType|) T) ((|AlgebraicNumber| . |ExpressionSpace|) T) ((|AlgebraicNumber| . |BasicType|) T) ((|AlgebraicNumber| . |Join|) T) ((|AlgebraicNumber| . |Type|) T) ((|AlgebraicNumber| . |CoercibleTo|) 5262) ((|AlgebraicNumber| . |SetCategory|) T) ((|AlgebraicNumber| . |CoercibleFrom|) 5109) ((|AlgebraicNumber| . |RetractableTo|) 5037) ((|AlgebraicNumber| . |InnerEvalable|) 4999) ((|AlgebraicNumber| . |Evalable|) 4986) ((|AlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|AlgebraicNumber| . |RadicalCategory|) T) ((|AlgebraicNumber| . |DivisionRing|) T) ((|AlgebraicNumber| . |BiModule|) 4931) ((|AlgebraicNumber| . |RightLinearSet|) 4885) ((|AlgebraicNumber| . |RightModule|) 4839) ((|AlgebraicNumber| . |EntireRing|) T) ((|AlgebraicNumber| . |Module|) 4793) ((|AlgebraicNumber| . |LinearSet|) 4747) ((|AlgebraicNumber| . |LeftModule|) 4681) ((|AlgebraicNumber| . |LeftLinearSet|) 4615) ((|AlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |AbelianSemiGroup|) T) ((|AlgebraicNumber| . |AbelianMonoid|) T) ((|AlgebraicNumber| . |AbelianGroup|) T) ((|AlgebraicNumber| . |Ring|) T) ((|AlgebraicNumber| . |Monoid|) T) ((|AlgebraicNumber| . |SemiRing|) T) ((|AlgebraicNumber| . |SemiGroup|) T) ((|AlgebraicNumber| . |Rng|) T) ((|AlgebraicNumber| . |Algebra|) 4569) ((|AlgebraicNumber| . |EuclideanDomain|) T) ((|AlgebraicNumber| . |GcdDomain|) T) ((|AlgebraicNumber| . |CommutativeRing|) T) ((|AlgebraicNumber| . |IntegralDomain|) T) ((|AlgebraicNumber| . |PrincipalIdealDomain|) T) ((|AlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|AlgebraicNumber| . |Field|) T) ((|AlgebraicNumber| . |LinearlyExplicitRingOver|) 4518) ((|AlgebraicNumber| . |RealConstant|) T) ((|AlgebraicNumber| . |ConvertibleTo|) 4443) ((|AlgebraicNumber| . |CharacteristicZero|) T) ((|AlgebraicNumber| . |DifferentialRing|) T) ((|AlgebraicNumber| . |DifferentialDomain|) 4430) ((|AlgebraicNumber| . |DifferentialSpace|) T) ((|AssociationList| . |AssociationListAggregate|) 4409) ((|AssociationList| . |KeyedDictionary|) 4388) ((|AssociationList| . |EltableAggregate|) 4300) ((|AssociationList| . |Eltable|) 4169) ((|AssociationList| . |HomogeneousAggregate|) 4098) ((|AssociationList| . |Functorial|) 4027) ((|AssociationList| . |InnerEvalable|) 3775) ((|AssociationList| . |Evalable|) 3535) ((|AssociationList| . |IndexedAggregate|) 3447) ((|AssociationList| . |DictionaryOperations|) 3389) ((|AssociationList| . |BagAggregate|) 3331) ((|AssociationList| . |Dictionary|) 3273) ((|AssociationList| . |TableAggregate|) 3252) ((|AssociationList| . |ShallowlyMutableAggregate|) 3181) ((|AssociationList| . |ExtensibleLinearAggregate|) 3123) ((|AssociationList| . |Collection|) 3065) ((|AssociationList| . |Aggregate|) T) ((|AssociationList| . |Join|) T) ((|AssociationList| . |Type|) T) ((|AssociationList| . |BasicType|) T) ((|AssociationList| . |CoercibleTo|) 3039) ((|AssociationList| . |SetCategory|) T) ((|AssociationList| . |ConvertibleTo|) NIL) ((|AssociationList| . |LinearAggregate|) 2981) ((|AssociationList| . |FiniteLinearAggregate|) 2923) ((|AssociationList| . |OrderedType|) NIL) ((|AssociationList| . |OrderedSet|) NIL) ((|AssociationList| . |FiniteAggregate|) 2865) ((|AssociationList| . |StreamAggregate|) 2807) ((|AssociationList| . |RecursiveAggregate|) 2749) ((|AssociationList| . |UnaryRecursiveAggregate|) 2691) ((|AssociationList| . |ListAggregate|) 2633) ((|AlgebraGivenByStructuralConstants| . |FramedNonAssociativeAlgebra|) 2617) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeAlgebra|) 2601) ((|AlgebraGivenByStructuralConstants| . |Monad|) T) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeRng|) T) ((|AlgebraGivenByStructuralConstants| . |BiModule|) 2580) ((|AlgebraGivenByStructuralConstants| . |RightLinearSet|) 2564) ((|AlgebraGivenByStructuralConstants| . |RightModule|) 2548) ((|AlgebraGivenByStructuralConstants| . |AbelianGroup|) T) ((|AlgebraGivenByStructuralConstants| . |LeftLinearSet|) 2477) ((|AlgebraGivenByStructuralConstants| . |AbelianMonoid|) T) ((|AlgebraGivenByStructuralConstants| . |SetCategory|) T) ((|AlgebraGivenByStructuralConstants| . |CoercibleTo|) 2451) ((|AlgebraGivenByStructuralConstants| . |BasicType|) T) ((|AlgebraGivenByStructuralConstants| . |AbelianSemiGroup|) T) ((|AlgebraGivenByStructuralConstants| . |CancellationAbelianMonoid|) T) ((|AlgebraGivenByStructuralConstants| . |LeftModule|) 2400) ((|AlgebraGivenByStructuralConstants| . |LinearSet|) 2384) ((|AlgebraGivenByStructuralConstants| . |Module|) 2368) ((|AlgebraGivenByStructuralConstants| . |FiniteRankNonAssociativeAlgebra|) 2352) ((|AlgebraGivenByStructuralConstants| . |Type|) T) ((|AlgebraGivenByStructuralConstants| . |Join|) T) ((|AlgebraGivenByStructuralConstants| . |Eltable|) 2324) ((|AlgebraicFunctionField| . |FunctionFieldCategory|) 2298) ((|AlgebraicFunctionField| . |CommutativeRing|) T) ((|AlgebraicFunctionField| . |CoercibleFrom|) 2206) ((|AlgebraicFunctionField| . |Rng|) T) ((|AlgebraicFunctionField| . |SemiGroup|) T) ((|AlgebraicFunctionField| . |SemiRing|) T) ((|AlgebraicFunctionField| . |Monoid|) T) ((|AlgebraicFunctionField| . |Ring|) T) ((|AlgebraicFunctionField| . |LeftModule|) 2064) ((|AlgebraicFunctionField| . |LeftLinearSet|) 1972) ((|AlgebraicFunctionField| . |CancellationAbelianMonoid|) T) ((|AlgebraicFunctionField| . |AbelianSemiGroup|) T) ((|AlgebraicFunctionField| . |BasicType|) T) ((|AlgebraicFunctionField| . |Join|) T) ((|AlgebraicFunctionField| . |Type|) T) ((|AlgebraicFunctionField| . |CoercibleTo|) 1946) ((|AlgebraicFunctionField| . |SetCategory|) T) ((|AlgebraicFunctionField| . |AbelianMonoid|) T) ((|AlgebraicFunctionField| . |AbelianGroup|) T) ((|AlgebraicFunctionField| . |RightModule|) 1874) ((|AlgebraicFunctionField| . |RightLinearSet|) 1802) ((|AlgebraicFunctionField| . |BiModule|) 1714) ((|AlgebraicFunctionField| . |ConvertibleTo|) 1698) ((|AlgebraicFunctionField| . |DifferentialExtension|) 1669) ((|AlgebraicFunctionField| . |PartialDifferentialRing|) 1588) ((|AlgebraicFunctionField| . |PartialDifferentialSpace|) 1436) ((|AlgebraicFunctionField| . |PartialDifferentialDomain|) 1282) ((|AlgebraicFunctionField| . |DifferentialSpaceExtension|) 1253) ((|AlgebraicFunctionField| . |DifferentialSpace|) 1152) ((|AlgebraicFunctionField| . |DifferentialDomain|) 1045) ((|AlgebraicFunctionField| . |DifferentialRing|) 997) ((|AlgebraicFunctionField| . |Field|) T) ((|AlgebraicFunctionField| . |UniqueFactorizationDomain|) T) ((|AlgebraicFunctionField| . |PrincipalIdealDomain|) T) ((|AlgebraicFunctionField| . |IntegralDomain|) T) ((|AlgebraicFunctionField| . |Module|) 925) ((|AlgebraicFunctionField| . |LinearSet|) 853) ((|AlgebraicFunctionField| . |Algebra|) 781) ((|AlgebraicFunctionField| . |GcdDomain|) T) ((|AlgebraicFunctionField| . |EuclideanDomain|) T) ((|AlgebraicFunctionField| . |EntireRing|) T) ((|AlgebraicFunctionField| . |DivisionRing|) T) ((|AlgebraicFunctionField| . |Finite|) NIL) ((|AlgebraicFunctionField| . |FiniteFieldCategory|) NIL) ((|AlgebraicFunctionField| . |StepThrough|) NIL) ((|AlgebraicFunctionField| . |CharacteristicNonZero|) 728) ((|AlgebraicFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|AlgebraicFunctionField| . |FramedAlgebra|) 694) ((|AlgebraicFunctionField| . |CharacteristicZero|) 644) ((|AlgebraicFunctionField| . |FiniteRankAlgebra|) 610) ((|AlgebraicFunctionField| . |FullyLinearlyExplicitRingOver|) 581) ((|AlgebraicFunctionField| . |LinearlyExplicitRingOver|) 482) ((|AlgebraicFunctionField| . |FullyRetractableTo|) 453) ((|AlgebraicFunctionField| . |RetractableTo|) 283) ((|AlgebraicFunctionField| . |MonogenicAlgebra|) 249) ((|AddAst| . |SpadSyntaxCategory|) T) ((|AddAst| . |HomotopicTo|) 227) ((|AddAst| . |CoercibleTo|) 182) ((|AddAst| . |CoercibleFrom|) 160) ((|AddAst| . |SetCategory|) T) ((|AddAst| . |Type|) T) ((|AddAst| . |Join|) T) ((|AddAst| . |BasicType|) T) ((|AddAst| . |AbstractSyntaxCategory|) T) ((|PlaneAlgebraicCurvePlot| . |PlottablePlaneCurveCategory|) T) ((|PlaneAlgebraicCurvePlot| . |CoercibleTo|) 134) ((|Enumeration| . |EnumerationCategory|) T) ((|Enumeration| . |CoercibleTo|) 108) ((|Enumeration| . |SetCategory|) T) ((|Enumeration| . |BasicType|) T) ((|Enumeration| . |Type|) T) ((|Record| . |RecordCategory|) T) ((|Record| . |CoercibleTo|) 82) ((|Record| . |SetCategory|) T) ((|Record| . |BasicType|) T) ((|Record| . |Type|) T) ((|Union| . |UnionCategory|) T) ((|Union| . |CoercibleTo|) 56) ((|Union| . |SetCategory|) T) ((|Union| . |BasicType|) T) ((|Union| . |Type|) T) ((|Mapping| . |SetCategory|) T) ((|Mapping| . |CoercibleTo|) 30) ((|Mapping| . |Type|) T) ((|Mapping| . |Join|) T) ((|Mapping| . |BasicType|) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
deleted file mode 100644
index 9505169d..00000000
--- a/src/share/algebra/compress.daase
+++ /dev/null
@@ -1,931 +0,0 @@
-
-(30 . 3581069278)
-(3998 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
- ATTRIBUTE |package| |domain| |category| CATEGORY AND |Join| |ofType| SIGNATURE
- |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&|
- |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
- |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
- |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
- |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
- |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
- |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
- |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
- |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
- |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity|
- |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
- |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
- |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
- |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeRegistry|
- |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType|
- |BalancedBinaryTree| |BezoutMatrix| |BagAggregate&| |BagAggregate|
- |BinaryExpansion| |Binding| |BinaryOperation| |BinaryOperatorCategory| |Bits|
- |BiModule| |BooleanLogic&| |BooleanLogic| |Boolean| |BasicOperator|
- |BasicOperatorFunctions1| |BoundIntegerRoots| |BalancedPAdicInteger|
- |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
- |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
- |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree|
- |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| |CachableSet|
- |CapsuleAst| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2|
- |CaseAst| |CategoryAst| |CategoryConstructor| |Category| |CharacterClass|
- |CommonDenominator| |CombinatorialFunctionCategory| |Character|
- |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero|
- |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&|
- |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
- |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
- |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
- |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
- |CommutativeOperation| |CommutativeOperatorCategory| |ComplexCategory&|
- |ComplexCategory| |ComplexFactorization| |CompilerPackage| |Complex|
- |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
- |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
- |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
- |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory|
- |ConstructorKind| |ComplexTrigonometricManipulations|
- |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
- |DataArray| |Database| |DualBasis| |DoubleResultantPackage|
- |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
- |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
- |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
- |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
- |Dictionary&| |Dictionary| |DifferentialExtension| |DifferentialDomain&|
- |DifferentialDomain| |DifferentialModule| |DifferentialSpace&|
- |DifferentialSpace| |DifferentialRing| |Dioid| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
- |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
- |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
- |DataList| |DiscreteLogarithmPackage| |DifferentialModuleExtension|
- |DistributedMultivariatePolynomial| |Domain| |DomainConstructor|
- |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule|
- |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
- |DequeueAggregate| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
- |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DifferentialSpaceExtension&|
- |DifferentialSpaceExtension| |DifferentialSparseMultivariatePolynomial|
- |DifferentialVariableCategory&| |DifferentialVariableCategory| |ExtAlgBasis|
- |ElementaryFunction| |ElementaryFunctionStructurePackage|
- |ElementaryFunctionsUnivariateLaurentSeries|
- |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
- |Elaboration| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
- |ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
- |EltableAggregate| |EuclideanModularRing| |EntireRing&| |EntireRing|
- |Environment| |EigenPackage| |Equation| |EquationFunctions2| |EqTable|
- |ErrorFunctions| |ExpressionSpace&| |ExpressionSpace|
- |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |EuclideanDomain&|
- |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
- |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
- |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
- |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
- |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
- |FiniteAlgebraicExtensionField| |FourierComponent| |FunctorData|
- |FiniteDivisor| |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
- |FiniteDivisorCategory| |FullyEvalableOver&| |FullyEvalableOver| |FiniteField|
- |FunctionFieldCategory&| |FunctionFieldCategory|
- |FunctionFieldCategoryFunctions2| |FiniteFieldCyclicGroup|
- |FiniteFieldCyclicGroupExtensionByPolynomial|
- |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
- |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
- |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
- |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
- |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |FiniteAggregate&| |FiniteAggregate| |Finite&| |Finite| |FiniteRankAlgebra&|
- |FiniteRankAlgebra| |FiniteLinearAggregate&| |FiniteLinearAggregate|
- |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort|
- |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float|
- |FloatingComplexPackage| |FloatingRealPackage| |FreeModule| |FreeModule1|
- |FreeModuleCat| |FreeMonoidCategory| |FreeMonoid| |FileName|
- |FileNameCategory| |FreeNilpotentLie| |FindOrderFinite|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2|
- |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal|
- |FractionalIdealFunctions2| |FramedModule|
- |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
- |FunctionSpace| |FunctionSpaceFunctions2|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
- |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
- |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
- |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
- |FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FunctionCalled|
- |Functorial| |FunctionDescriptor| |GaloisGroupFactorizer|
- |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
- |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage|
- |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
- |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
- |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
- |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
- |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
- |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
- |Pi| |HasAst| |HashTable| |HallBasis|
- |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
- |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
- |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname|
- |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
- |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |InnerTwoDimensionalArray|
- |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits|
- |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator|
- |PolynomialIdeals| |IdealDecompositionPackage| |IdempotentOperatorCategory|
- |Identifier| |IndexedDirectProductAbelianGroup|
- |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
- |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedProductTerm|
- |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid|
- |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
- |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
- |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
- |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps|
- |IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket|
- |Infinity| |InputForm| |InputFormFunctions1|
- |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
- |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
- |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
- |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int64| |Int8| |InnerTable|
- |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
- |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
- |IntegerFactorizationPackage| |GenusZeroIntegration|
- |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
- |TranscendentalHermiteIntegration| |PureAlgebraicIntegration|
- |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
- |RationalFunctionIntegration| |Interval|
- |IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
- |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger|
- |InnerPrimeField| |InternalPrintPackage| |IntegrationResult|
- |IntegrationResultFunctions2| |IntegrationResultToFunction|
- |InternalRepresentationForm| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst| |InnerPolySum|
- |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InternalTypeForm|
- |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
- |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedAggregate&|
- |IndexedAggregate| |JoinAst| |AssociatedJordanAlgebra| |JVMBytecode|
- |JVMClassFileAccess| |JVMConstantTag| |JVMFieldAccess| |JVMMethodAccess|
- |JVMOpcode| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |Kernel|
- |KernelFunctions2| |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom|
- |KleeneTrivalentLogic| |ConvertibleFrom| |LocalAlgebra| |LeftAlgebra&|
- |LeftAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage|
- |LeadingCoefDetermination| |LetAst| |LieExponentials| |LexTriangularPackage|
- |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage|
- |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra|
- |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearBasis|
- |LinearDependence| |LinearElement| |LinearlyExplicitRingOver| |LinearForm|
- |LinearSet| |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal|
- |LeftLinearSet| |ListMultiDictionary| |LeftModule| |ListMonoidOps|
- |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
- |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
- |LinearOrdinaryDifferentialOperator2|
- |LinearOrdinaryDifferentialOperatorCategory&|
- |LinearOrdinaryDifferentialOperatorCategory|
- |LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
- |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
- |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
- |LazyStreamAggregate&| |LazyStreamAggregate| |MacroAst| |Magma|
- |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
- |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
- |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory|
- |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix|
- |StorageEfficientMatrixOperations| |Maybe| |MatrixCommonDenominator|
- |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
- |ModularHermitianRowReduction| |MakeBinaryCompiledFunction|
- |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
- |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
- |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
- |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
- |MonogenicAlgebra| |Monoid&| |Monoid| |MonoidOperation|
- |MonoidOperatorCategory| |MonomialExtensionTools| |MPolyCatFunctions2|
- |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
- |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
- |MonoidRingFunctions2| |MonoidRing| |Multiset| |MultisetAggregate|
- |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
- |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&|
- |NonAssociativeAlgebra| |NonAssociativeRng&| |NonAssociativeRng|
- |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage|
- |NumericContinuedFraction| |NonCommutativeOperatorDivision|
- |NetworkClientSocket| |NumberFieldIntegralBasis| |NonLinearSolvePackage|
- |NonNegativeInteger| |NonLinearFirstOrderODESolver| |None| |NoneFunctions1|
- |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef|
- |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2|
- |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory|
- |Numeric| |NumberFormats| |NumericalOrdinaryDifferentialEquations|
- |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup&|
- |OrderedAbelianGroup| |OrderedAbelianMonoid&| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&|
- |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion|
- |OctonionCategoryFunctions2| |ConstantLODE| |ElementaryFunctionODESolver|
- |ODEIntegration| |PureAlgebraicLODE| |PrimitiveRatDE| |PrimitiveRatRicDE|
- |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools|
- |OrderedDirectProduct| |OrderlyDifferentialPolynomial|
- |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OppositeMonogenicLinearOperator|
- |OrderedMultisetAggregate| |OnePointCompletion| |OnePointCompletionFunctions2|
- |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery|
- |OperatorSignature| |OrderedCompletion| |OrderedCompletionFunctions2|
- |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing| |OrderedSet|
- |OrderedStructure| |OrderedType&| |OrderedType|
- |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory|
- |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
- |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrderedSemiGroup|
- |OrdSetInts| |OutputPackage| |OutputByteConduit&| |OutputByteConduit|
- |OutputBinaryFile| |OutputForm| |OrderedVariableList| |OverloadSet|
- |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage|
- |PAdicInteger| |PAdicIntegerCategory| |PAdicRational|
- |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression|
- |ParameterAst| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve|
- |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser|
- |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations|
- |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern|
- |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis|
- |PolynomialComposition| |PartialDifferentialDomain&|
- |PartialDifferentialDomain| |PolynomialDecomposition|
- |PartialDifferentialModule| |PartialDifferentialRing|
- |PartialDifferentialSpace&| |PartialDifferentialSpace| |PendantTree|
- |Permutation| |Permanent| |PermutationCategory| |PermutationGroup|
- |PrimeField| |PolynomialFactorizationByRecursion|
- |PolynomialFactorizationByRecursionUnivariate|
- |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
- |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
- |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
- |PrincipalIdealDomain| |PolynomialInterpolation|
- |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
- |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
- |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
- |PatternMatchIntegerNumberSystem| |PatternMatchKernel|
- |PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |AttachPredicates| |FunctionSpaceAttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
- |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
- |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
- |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
- |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
- |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
- |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
- |PrintPackage| |Product| |Property| |PropositionalFormula|
- |PropositionalFormulaFunctions1| |PropositionalFormulaFunctions2|
- |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
- |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
- |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
- |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
- |PartialTranscendentalFunctions| |PushVariables|
- |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
- |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
- |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
- |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
- |RandomNumberSource| |RationalFactorize| |RationalRetractions|
- |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
- |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
- |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
- |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
- |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
- |Reference| |RegularTriangularSet| |RadicalEigenPackage|
- |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
- |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |ReturnAst|
- |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RationalFunction|
- |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain|
- |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
- |RightLinearSet| |RectangularMatrixCategory&| |RectangularMatrixCategory|
- |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng&|
- |Rng| |RangeBinding| |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst|
- |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory|
- |RegularSetDecompositionPackage| |RegularTriangularSetCategory&|
- |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RestrictAst|
- |RuntimeValue| |RewriteRule| |RuleCalled| |Ruleset|
- |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
- |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
- |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
- |StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
- |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
- |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
- |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
- |SExpressionCategory| |SExpressionOf| |SquareFreeQuasiComponentPackage|
- |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
- |SemiGroupOperation| |SemiGroupOperatorCategory| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |Signature|
- |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
- |ShallowlyMutableAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
- |SmithNormalForm| |SparseMultivariatePolynomial|
- |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory|
- |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService|
- |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst|
- |SpadParser| |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
- |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
- |StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |SemiRing| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StepAst|
- |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2|
- |StreamFunctions3| |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
- |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
- |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
- |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
- |SparseUnivariateTaylorSeries| |Symbol| |SymmetricFunctions|
- |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger|
- |SystemNonNegativeInteger| |SystemPointer| |SystemSolvePackage| |System|
- |TableauxBumpers| |Table| |Tableau| |TermAlgebraOperator| |TangentExpansions|
- |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TexFormat|
- |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
- |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
- |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
- |TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
- |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
- |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
- |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32|
- |UInt64| |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
- |UnivariateLaurentSeriesCategory|
- |UnivariateLaurentSeriesConstructorCategory&|
- |UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
- |UniversalSegmentFunctions2| |UnivariatePolynomial|
- |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
- |UnivariatePolynomialDecompositionPackage|
- |UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
- |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
- |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
- |UnivariatePuiseuxSeriesConstructorCategory&|
- |UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor|
- |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
- |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
- |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
- |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
- |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
- |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
- |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
- |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
- |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
- |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram|
- |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
- |Union| |opposite?| |zerosOf| |zeroOf| |rootsOf| |makeSketch| |inrootof|
- |droot| |iroot| |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit|
- |ratDenom| |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp|
- |leftRank| |rightRank| |doubleRank| |weakBiRank| |biRank|
- |basisOfCommutingElements| |basisOfLeftAnnihilator| |basisOfRightAnnihilator|
- |basisOfLeftNucleus| |basisOfRightNucleus| |basisOfMiddleNucleus|
- |basisOfNucleus| |basisOfCenter| |basisOfLeftNucloid| |basisOfRightNucloid|
- |basisOfCentroid| |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules|
- |localUnquote| |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray|
- |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack|
- |morphism| |balancedFactorisation| |before?| |mapDown!| |mapUp!| |setleaves!|
- |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant|
- |bezoutDiscriminant| |inspect| |extract!| |bag| |binding| |binaryOperation|
- |setProperties| |setProperty| |deleteProperty!| |has?| |comparison| |equality|
- |nary?| |unary?| |nullary?| |properties| |derivative| |constantOperator|
- |constantOpIfCan| |integerBound| |setright!| |setleft!|
- |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
- |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte|
- |setLength!| |capacity| |byteBuffer| |unknownEndian| |bigEndian|
- |littleEndian| |subtractIfCan| |setPosition|
- |generalizedContinuumHypothesisAssumed|
- |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
- |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents|
- |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic|
- |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?|
- |alphabetic?| |hexDigit?| |digit?| |escape| |verticalTab| |horizontalTab|
- |backspace| |formfeed| |linefeed| |carriageReturn| |newline| |underscore|
- |char| |ord| |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar|
- |removeDuplicates| |e| |clipParametric| |clipWithRanges| |numberOfHues|
- |yellow| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow|
- |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation|
- |factorials| |mkcomm| |commutativeOperation| |polarCoordinates| |complex|
- |imaginary| |elaborateFile| |elaborate| |macroExpand| |solid| |solid?|
- |denominators| |numerators| |convergents| |approximants| |reducedForm|
- |partialQuotients| |partialDenominators| |partialNumerators|
- |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical|
- |spherical| |parabolic| |parabolicCylindrical| |paraboloidal|
- |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar|
- |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree|
- |complexZeros| |divisorCascade| |graeffe| |pleskenSplit|
- |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound|
- |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry|
- |findConstructor| |arguments| |operations| |dualSignature| |kind| |package|
- |domain| |category| |coerceP| |powerSum| |elementary| |alternating| |cyclic|
- |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction|
- |cyclotomicDecomposition| |cyclotomicFactorization| |qsetelt|
- |doubleResultant| |distdfact| |separateDegrees| |trace2PowMod| |tracePowMod|
- |irreducible?| |decimal| |innerint| |exteriorDifferential| |totalDifferential|
- |homogeneous?| |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |nan?|
- |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity|
- |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength|
- |setnext!| |setprevious!| |next| |previous| |datalist|
- |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |constructor|
- |functorData| |separant| |initial| |leader| |isobaric?| |weights|
- |differentialVariables| |extractBottom!| |extractTop!| |insertBottom!|
- |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| |drawComplex|
- |drawComplexVectorField| |setRealSteps| |setImagSteps| |setClipValue| |draw|
- |option?| |range| |colorFunction| |curveColor| |pointColor| |clip|
- |clipBoolean| |style| |toScale| |pointColorPalette| |curveColorPalette|
- |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| |option| |weight|
- |makeVariable| |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin|
- |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot|
- |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch|
- |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs|
- |localReal?| |rischNormalize| |realElementary| |validExponential|
- |rootNormalize| |tanQ| |callForm?| |getIdentifier| |variable?| |getConstant|
- |type| |environment| |typeForm| |irForm| |elaboration| |select!| |delete!|
- |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| |interactiveEnv|
- |currentEnv| |putProperties| |getProperties| |putProperty| |getProperty|
- |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector|
- |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne|
- |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower|
- |kernels| |mainKernel| |distribute| |subst| |multiEuclidean|
- |extendedEuclidean| |euclideanSize| |sizeLess?| |simplifyPower| |number?|
- |seriesSolve| |constantToUnaryFunction| |tubePlot| |exponentialOrder|
- |completeEval| |lowerPolynomial| |raisePolynomial| |normalDeriv| |ran|
- |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| |pomopo!| |mapExponents|
- |linearAssociatedLog| |linearAssociatedOrder| |linearAssociatedExp|
- |createNormalElement| |sin?| |lookupFunction| |encodingDirectory|
- |attributeData| |domainTemplate| |lSpaceBasis| |finiteBasis| |principal?|
- |divisor| |rationalPoints| |nonSingularModel| |algSplitSimple| |hyperelliptic|
- |elliptic| |integralDerivationMatrix| |integralRepresents|
- |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity|
- |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix|
- |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?|
- |integralAtInfinity?| |integralBasisAtInfinity| |ramified?|
- |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?|
- |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus|
- |getZechTable| |createZechTable| |createMultiplicationTable|
- |createMultiplicationMatrix| |createLowComplexityTable|
- |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement|
- |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication|
- |getMultiplicationMatrix| |getMultiplicationTable| |primitive?|
- |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly|
- |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly|
- |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly|
- |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly|
- |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers|
- |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open|
- |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial|
- |associatorDependence| |lieAlgebra?| |jordanAlgebra?|
- |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?|
- |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?|
- |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?|
- |antiCommutative?| |commutative?| |rightCharacteristicPolynomial|
- |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace|
- |someBasis| |find| |count| |every?| |any?| |sort!| |copyInto!| |sorted?|
- |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral|
- |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation|
- |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |overlap|
- |hcrf| |hclf| |writable?| |readable?| |exists?| |extension| |directory|
- |filename| |shallowExpand| |deepExpand| |fracPart| |polyPart|
- |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision|
- |increasePrecision| |precision| |bits| |mantissa| |unitNormalize| |unit|
- |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent|
- |irreducibleFactor| |factors| |nilFactor| |regularRepresentation|
- |traceMatrix| |randomLC| |minimize| |module| |rightRegularRepresentation|
- |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix|
- |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult|
- |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS|
- |localAbs| |universe| |complement| |cardinality| |internalIntegrate0|
- |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?|
- |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor|
- |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex|
- |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble|
- |fortranReal| |external?| |dimensionsOf| |scalarTypeOf| |makeFR|
- |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor|
- |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?|
- |useEisensteinCriterion| |eisensteinIrreducible?|
- |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
- |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
- |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
- |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
- |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
- |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
- |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
- |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
- |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
- |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
- |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
- |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
- |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
- |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
- |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
- |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
- |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
- |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
- |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
- |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
- |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
- |gcdcofactprim| |lintgcd| |hex| |host| |trueEqual| |factorList|
- |listConjugateBases| |matrixGcd| |divideIfCan!| |leastPower| |idealiser|
- |idealiserMatrix| |moduleSum| |mapUnivariate| |mapUnivariateIfCan|
- |mapMatrixIfCan| |mapBivariate| |fullDisplay| |relationsIdeal| |saturate|
- |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| |backOldPos|
- |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| |element?|
- |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| |contract|
- |gensym| |leadingSupport| |combineWithIf| |term| |shrinkable|
- |physicalLength!| |physicalLength| |flexibleArray| |elseBranch| |thenBranch|
- |generalizedInverse| |imports| |sequence| |readBytes!| |readUInt32!|
- |readInt32!| |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!|
- |setFieldInfo| |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup|
- |normal?| |basis| |normalElement| |minimalPolynomial| |position!| |eof?|
- |inputBinaryFile| |increment| |incrementBy| |charpol| |solve1|
- |innerEigenvectors| |compile| |declare| |parseString| |unparse| |flatten|
- |lambda| |binary| |packageCall| |interpret| |innerSolve1| |innerSolve|
- |makeEq| |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod|
- |powmod| |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder|
- |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate|
- |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf|
- |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal|
- |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint|
- |BasicMethod| |PollardSmallFactor| |palgint0| |palgextint0| |palglimint0|
- |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci|
- |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
- |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
- |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
- |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
- |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
- |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
- |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
- |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
- |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
- |inverseLaplace| |inputOutputBinaryFile| |closed| |bothWays| |input| |resolve|
- |bytes| |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer|
- |irDef| |irCtor| |irVar| |perfectNthPower?| |perfectNthRoot| |approxNthRoot|
- |perfectSquare?| |perfectSqrt| |approxSqrt| |generateIrredPoly|
- |complexExpand| |complexIntegrate| |dimensionOfIrreducibleRepresentation|
- |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
- |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
- |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
- |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
- |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| |mappingMode|
- |categoryMode| |voidMode| |noValueMode| |jokerMode| GF2FG FG2F F2FG
- |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
- |indices| |index?| |entries| |categories| |jvmInterface| |jvmSuper|
- |jvmNameAndTypeConstantTag| |jvmInterfaceMethodConstantTag|
- |jvmMethodrefConstantTag| |jvmFieldrefConstantTag| |jvmStringConstantTag|
- |jvmClassConstantTag| |jvmDoubleConstantTag| |jvmLongConstantTag|
- |jvmFloatConstantTag| |jvmIntegerConstantTag| |jvmUTF8ConstantTag|
- |jvmTransient| |jvmVolatile| |jvmStrict| |jvmAbstract| |jvmNative|
- |jvmSynchronized| |jvmFinal| |jvmStatic| |jvmProtected| |jvmPrivate|
- |jvmPublic| |search| |keys| |key?| |symbolIfCan| |kernel| |argument|
- |constantKernel| |constantIfCan| |kovacic| |unknown| |laplace|
- |trailingCoefficient| |normalizeIfCan| |polCase| |distFact| |identification|
- |LyndonCoordinates| |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner|
- |lexTriangular| |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci|
- |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord|
- |anticoord| |intcompBasis| |choosemon| |transform| |pack!| |library|
- |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear|
- |linearElement| |reducedSystem| |leftReducedSystem| |linearForm|
- |setDifference| |setIntersection| |setUnion| |append| |null| |nil|
- |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| |plus|
- |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |nthFactor| |nthExpon|
- |makeMulti| |makeTerm| |listOfMonoms| |insert| |delete| |symmetricSquare|
- |factor1| |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~
- |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
- |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
- |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
- |explicitlyEmpty?| |explicitEntries?| |iter| |arg1| |arg2| |comp| |mappingAst|
- |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| |curryRight|
- |curryLeft| |constantRight| |constantLeft| |twist| |setsubMatrix!| |subMatrix|
- |swapColumns!| |swapRows!| |vertConcat| |horizConcat| |squareTop| |elRow1!|
- |elRow2!| |elColumn2!| |fractionFreeGauss!| |invertIfCan| |copy!| |plus!|
- |minus!| |leftScalarTimes!| |rightScalarTimes!| |times!| |power!| |nothing|
- |just| |duplicates| |removeDuplicates!| |linears| |ddFact| |separateFactors|
- |exptMod| |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |rowEch|
- |rowEchLocal| |rowEchelonLocal| |normalizedDivide| |binaryFunction|
- |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
- |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
- |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
- |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
- |derivationCoordinates| |generator| |one?| |monoidOperation| |neutralValue|
- |splitSquarefree| |normalDenom| |reshape| |totalfract| |pushdterm| |pushucoef|
- |pushuconst| |numberOfMonomials| |unique| |multiset| |systemCommand|
- |mergeDifference| |squareFreePrim| |compdegd| |univcase| |consnewpol|
- |nsqfree| |intChoose| |coefChoose| |myDegree| |normDeriv2| |plenaryPower|
- |antiCommutator| |commutator| |associator| |complexEigenvalues|
- |complexEigenvectors| |isConnected?| |connectTo| |shift| |normalizedAssociate|
- |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp|
- |characteristicPolynomial| |realEigenvalues| |realEigenvectors|
- |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant|
- |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB|
- |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan|
- |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces|
- |ScanFloatIgnoreSpacesIfCan| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson|
- |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono|
- |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon|
- |constDsolve| |expint| |diff| |algDsolve| |denomLODE| |indicialEquations|
- |indicialEquation| |denomRicDE| |leadingCoefficientRicDE|
- |constantCoefficientRicDE| |changeVar| |ratDsolve|
- |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
- |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
- |lexico| |po| |op| |infinity| |makeop| |opeval| |evaluateInverse| |evaluate|
- |conjug| |adjoint| |arity| |getDatabase| |whatInfinity| |infinite?| |finite?|
- |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| |min|
- |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder|
- |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient|
- |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide|
- |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL|
- |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!| |writeByte!|
- |isOpen?| |outputBinaryFile| |not| |or| |and| |quo| |rem| |div| >= > ~=
- |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket|
- |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub|
- |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?|
- |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace|
- |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint|
- |message| |members| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus|
- |digits| |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark|
- |getSyntaxFormsFromFile| |surface| |coordinate| |conjugates| |shuffle|
- |shufflein| |sequences| |permutations| |lists| |makeResult| |is?| |Is|
- |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| |failed?|
- |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| |topPredicate|
- |setTopPredicate| |patternVariable| |withPredicates| |setPredicates|
- |predicates| |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?|
- |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| |addBadValue|
- |badValues| |retractable?| |ListOfTerms| |One| |leftFactor|
- |rightFactorCandidate| D |ptree| |coerceImages| |fixedPoints| |odd?| |even?|
- |numberOfCycles| |cyclePartition| |coerceListOfPairs| |coercePreimagesImages|
- |listRepresentation| |permanent| |cycles| |cycle|
- |initializeGroupForWordProblem| <= < |support| |wordInGenerators|
- |wordInStrongGenerators| |orbits| |orbit| |permutationGroup|
- |wordsForStrongGenerators| |strongGenerators| |base| |generators|
- |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
- |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
- |charthRoot| |conditionP| |solveLinearPolynomialEquation|
- |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
- |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
- |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
- |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
- |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
- |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
- |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
- |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
- |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
- |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
- |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
- |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
- |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
- |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
- |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
- |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
- |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
- |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
- |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
- |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
- |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
- |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
- |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
- |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
- |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
- |selectsecond| |selectfirst| |makeprod| |property| |disjunction| |conjunction|
- |isEquiv| |isImplies| |isOr| |isAnd| |isNot| |isAtom| |atoms| |dual| |equiv|
- |implies| |false| |true| |merge!| |max| |resultantEuclidean|
- |semiResultantEuclidean2| |semiResultantEuclidean1| |indiceSubResultant|
- |indiceSubResultantEuclidean| |semiIndiceSubResultantEuclidean|
- |degreeSubResultant| |degreeSubResultantEuclidean|
- |semiDegreeSubResultantEuclidean| |lastSubResultantEuclidean|
- |semiLastSubResultantEuclidean| |subResultantGcdEuclidean|
- |semiSubResultantGcdEuclidean2| |semiSubResultantGcdEuclidean1|
- |discriminantEuclidean| |semiDiscriminantEuclidean| |chainSubResultants|
- |schema| |resultantReduit| |resultantReduitEuclidean|
- |semiResultantReduitEuclidean| |divide| |Lazard| |Lazard2|
- |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
- |semiResultantEuclideannaif| |pdct| |powers| |partitions| |parts| |partition|
- |complete| |pole?| |monomial| |leadingMonomial| |zRange| |yRange| |xRange|
- |listBranches| |triangular?| |rewriteIdealWithRemainder|
- |rewriteIdealWithHeadRemainder| |remainder| |headRemainder| |roughUnitIdeal?|
- |roughEqualIdeals?| |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort|
- |collectUpper| |collect| |collectUnder| |mainVariable?| |mainVariables|
- |removeSquaresIfCan| |unprotectedRemoveRedundantFactors|
- |removeRedundantFactors| |certainlySubVariety?| |possiblyNewVariety?|
- |probablyZeroDim?| |selectPolynomials| |selectOrPolynomials|
- |selectAndPolynomials| |quasiMonicPolynomials| |univariate?|
- |univariatePolynomials| |linear?| |linearPolynomials| |bivariate?|
- |bivariatePolynomials| |removeRoughlyRedundantFactorsInPols|
- |removeRoughlyRedundantFactorsInPol| |interReduce| |roughBasicSet|
- |crushedSet| |rewriteSetByReducingWithParticularGenerators|
- |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
- |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
- |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
- |irreducibleFactors| |lazyIrreducibleFactors|
- |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
- |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
- |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
- |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
- |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
- |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
- |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
- |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
- |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
- |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
- |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
- |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
- |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
- |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
- |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
- |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
- |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |midpoint| |midpoints|
- |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| |setref|
- |deref| |ref| = |radicalEigenvectors| |radicalEigenvector|
- |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
- |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
- |symmetricTensors| |tensorProduct| |permutationRepresentation|
- |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
- |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
- |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |solveRetract|
- |variables| |mainVariable| |univariate| |multivariate| |uniform01| |normal01|
- |exponential1| |chiSquare1| |normal| |exponential| |chiSquare| F |t|
- |factorFraction| |componentUpperBound| |blue| |green| |red| |whitePoint|
- |uniform| |binomial| |poisson| |geometric| |ridHack1| |interpolate|
- |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| |ncols|
- |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex|
- |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix|
- |rectangularMatrix| |annihilate?| |characteristic| |round| |fractionPart|
- |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size|
- |right| |left| |roman| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
- |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
- |subResultantChain| |halfExtendedSubResultantGcd2|
- |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
- |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
- |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
- |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
- |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
- |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
- |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
- |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
- |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
- |invertibleSet| |invertible?| |invertibleElseSplit?|
- |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
- |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
- |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
- |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
- |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
- |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
- |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
- |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
- |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex|
- |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
- |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
- |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
- |atom?| |null?| |eq| |startTable!| |stopTable!| |supDimElseRittWu?|
- |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
- |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
- |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
- |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
- |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
- |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
- |stoseIntegralLastSubResultant| |stoseLastSubResultant|
- |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
- |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
- |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
- |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
- |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
- |unrankImproperPartitions1| |semiGroupOperation| |subresultantSequence|
- |SturmHabichtSequence| |SturmHabichtCoefficients| |SturmHabicht|
- |countRealRoots| |SturmHabichtMultiple| |countRealRootsMultiple| |source|
- |target| |signature| |signatureAst| |xor| |depth| |top| |pop!| |push!| |map!|
- |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix|
- |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith|
- |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear|
- |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic|
- |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise|
- |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp|
- |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve|
- |curve?| |curve| |point?| |enterPointData| |composites| |components|
- |numberOfComposites| |numberOfComponents| |create3Space| |parse|
- |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma|
- |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi|
- |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!|
- |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove|
- |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!|
- |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim|
- |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?|
- |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber|
- |numberOfVariables| |algebraicDecompose| |transcendentalDecompose|
- |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess|
- |internalZeroSetSplit| |internalAugment| |stack| |size?| |possiblyInfinite?|
- |explicitlyFinite?| |nextItem| |init| |step| |upperBound| |lowerBound|
- |iterationVar| |infiniteProduct| |evenInfiniteProduct| |oddInfiniteProduct|
- |generalInfiniteProduct| |filterUntil| |filterWhile| |generate| |showAll?|
- |showAllElements| |output| |cons| |delay| |findCycle| |repeating?| |repeating|
- |exquo| |recip| |integers| |oddintegers| |int| |mapmult| |deriv| |gderiv|
- |compose| |addiag| |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate|
- |power| |sincos| |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh|
- |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech|
- |acsch| |subresultantVector| |primitivePart| |pointData| |parent| |level|
- |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse|
- |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2|
- |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children|
- |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct|
- |predicate| |sum| |outputForm| |list| |string| |argscript| |superscript|
- |subscript| |script| |scripts| |scripted?| |name| |resetNew| |symFunc|
- |symbolTableOf| |argumentListOf| |returnTypeOf| |printHeader| |returnType!|
- |argumentList!| |endSubProgram| |currentSubProgram| |newSubProgram|
- |clearTheSymbolTable| |showTheSymbolTable| |symbolTable| |printTypes|
- |newTypeLists| |typeLists| |externalList| |typeList| |parametersOf|
- |fortranTypeOf| |declare!| |empty| |case| |compound?| |getOperands|
- |getOperator| |nil?| |buildSyntax| |autoCoerce| |solve| |triangularSystems|
- |loadNativeModule| |nativeModuleExtension| |hostByteOrder| |hostPlatform|
- |rootDirectory| |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1|
- |tab| |lex| |slex| |inverse| |maxrow| |mr| |tableau| |listOfLists| |operator|
- |tanSum| |tanAn| |tanNa| |table| |initTable!| |printInfo!| |startStats!|
- |printStats!| |clearTable!| |usingTable?| |printingInfo?| |makingStats?|
- |extractIfCan| |insert!| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
- |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
- |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
- |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
- |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
- |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
- |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
- |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
- |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
- |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
- |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
- |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
- |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
- |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
- |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
- |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
- |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
- |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
- |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
- |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
- |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction|
- |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree|
- |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator|
- |clearDenominator| |splitDenominator| |monicRightFactorIfCan|
- |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan|
- |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce|
- |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite|
- |subResultantGcd| |resultant| |discriminant| |differentiate| |pseudoRemainder|
- |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents|
- |unmakeSUP| |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate|
- |order| |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents|
- |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm|
- |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!|
- |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail|
- |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert|
- |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange|
- |univariatePolynomial| |integrate| ** |polynomial| |multiplyCoefficients|
- |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| |stFuncN|
- |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS
- |variable| |magnitude| |length| |cross| |outerProduct| |dot| - |zero| +
- |vector| |scan| |reduce| |map| |graphCurves| |drawCurves| |update| |show|
- |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs|
- |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints|
- |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface|
- |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective|
- |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes|
- |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options|
- |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault|
- |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault|
- |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault|
- |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults|
- |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault|
- |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst|
- |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis|
- |localIntegralBasis| |qualifier| |mainExpression| |condition|
- |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet|
- |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree|
- |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror|
- |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
- |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?|
- |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |reductum| *
- |RemainderList| |unexpand| |expand| |shape| |youngDiagram| Y |triangSolve|
- |univariateSolve| |realSolve| |positiveSolve| |squareFree| |convert|
- |linearlyDependentOverZ?| |linearDependenceOverZ| |solveLinearlyOverQ| |nil|
- |infinite| |arbitraryExponent| |approximate| |complex| |canonical|
- |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 399145ca..5d24f455 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4065 +1,4065 @@
-(2793524 . 3581069288)
-((-1737 (((-82) (-1 (-82) |#2| |#2|) $) 86 T ELT) (((-82) $) NIL T ELT)) (-1735 (($ (-1 (-82) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3791 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2299 (($ $) 80 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3422 (((-485) (-1 (-82) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-3521 (($ (-1 (-82) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2611 (((-584 |#2|) $) 13 T ELT)) (-3329 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2306 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-82) |#2|) $) 29 T ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 23 T ELT)) (-3803 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2307 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1732 (((-695) |#2| $) NIL T ELT) (((-695) (-1 (-82) |#2|) $) 34 T ELT)) (-1736 (($ $ $ (-485)) 69 T ELT)) (-3403 (($ $) 68 T ELT)) (-3533 (($ (-584 |#2|)) 73 T ELT)) (-3805 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3950 (((-773) $) 92 T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) 22 T ELT)) (-3059 (((-82) $ $) 95 T ELT)) (-2688 (((-82) $ $) 99 T ELT)))
-(((-15 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -2688 ((-82) |#1| |#1|)) (-14 -1735 (|#1| |#1|)) (-14 -1735 (|#1| (-1 (-82) |#2| |#2|) |#1|)) (-14 -2299 (|#1| |#1|)) (-14 -1736 (|#1| |#1| |#1| (-485))) (-14 -1737 ((-82) |#1|)) (-14 -3521 (|#1| |#1| |#1|)) (-14 -3422 ((-485) |#2| |#1| (-485))) (-14 -3422 ((-485) |#2| |#1|)) (-14 -3422 ((-485) (-1 (-82) |#2|) |#1|)) (-14 -1737 ((-82) (-1 (-82) |#2| |#2|) |#1|)) (-14 -3521 (|#1| (-1 (-82) |#2| |#2|) |#1| |#1|)) (-14 -1734 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -1733 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -1732 ((-695) (-1 (-82) |#2|) |#1|)) (-14 -2611 ((-584 |#2|) |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-14 -1731 ((-3 |#2| "failed") (-1 (-82) |#2|) |#1|)) (-14 -1732 ((-695) |#2| |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-14 -3791 (|#2| |#1| (-1147 (-485)) |#2|)) (-14 -2306 (|#1| |#1| |#1| (-485))) (-14 -2306 (|#1| |#2| |#1| (-485))) (-14 -2307 (|#1| |#1| (-1147 (-485)))) (-14 -2307 (|#1| |#1| (-485))) (-14 -3846 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-14 -3805 (|#1| (-584 |#1|))) (-14 -3805 (|#1| |#1| |#1|)) (-14 -3805 (|#1| |#2| |#1|)) (-14 -3805 (|#1| |#1| |#2|)) (-14 -3803 (|#1| |#1| (-1147 (-485)))) (-14 -3533 (|#1| (-584 |#2|))) (-14 -3803 (|#2| |#1| (-485))) (-14 -3803 (|#2| |#1| (-485) |#2|)) (-14 -3791 (|#2| |#1| (-485) |#2|)) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3403 (|#1| |#1|))) (-16 |#2|) (-1130)) (T -15))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) 96 T ELT) (((-82) $) 90 (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-11 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 104 T ELT)) (-3248 (((-82) |#1| $) 109 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 102 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1732 (((-695) |#1| $) 108 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 101 T ELT)) (-2569 (((-82) $ $) 82 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 84 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) 83 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 85 (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 100 T ELT)))
-(((-16 |#1|) (-110) (-1130)) (T -16))
-NIL
-(-12 (-323 |t#1|) (-1036 |t#1|))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T))
-((-1313 (((-3 $ "failed") $ $) 12 T ELT)) (-1215 (((-82) $ $) 27 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-485) $) 25 T ELT)))
-(((-17 |#1|) (-10 -7 (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 -1313 ((-3 |#1| "failed") |#1| |#1|)) (-14 -1215 ((-82) |#1| |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|))) (-18)) (T -17))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
-(((-18) (-110)) (T -18))
-((-3840 (*1 *1 *1) (-4 *1 (-18))) (-3840 (*1 *1 *1 *1) (-4 *1 (-18))))
-(-12 (-101) (-589 (-485)) (-10 -8 (-14 -3840 ($ $)) (-14 -3840 ($ $ $))))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T))
-((-3191 (((-82) $) 10 T ELT)) (-3727 (($) 15 T CONST)) (-1215 (((-82) $ $) 22 T ELT)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT)))
-(((-19 |#1|) (-10 -7 (-14 -1215 ((-82) |#1| |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 -3191 ((-82) |#1|)) (-14 -3727 (|#1|) -3956) (-14 * (|#1| (-831) |#1|))) (-20)) (T -19))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
-(((-20) (-110)) (T -20))
-((-2663 (*1 *1) (-4 *1 (-20))) (-3727 (*1 *1) (-4 *1 (-20))) (-3191 (*1 *2 *1) (-11 (-4 *1 (-20)) (-5 *2 (-82)))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-20)) (-5 *2 (-695)))) (-1215 (*1 *2 *1 *1) (-11 (-4 *1 (-20)) (-5 *2 (-82)))))
-(-12 (-22) (-10 -8 (-14 -2663 ($) -3956) (-14 -3727 ($) -3956) (-14 -3191 ((-82) $)) (-14 * ($ (-695) $)) (-14 -1215 ((-82) $ $))))
-(((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((* (($ (-831) $) 10 T ELT)))
-(((-21 |#1|) (-10 -7 (-14 * (|#1| (-831) |#1|))) (-22)) (T -21))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT)))
-(((-22) (-110)) (T -22))
-((-3842 (*1 *1 *1 *1) (-4 *1 (-22))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-22)) (-5 *2 (-831)))))
-(-12 (-1014) (-10 -8 (-14 -3842 ($ $ $)) (-14 * ($ (-831) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-1216 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1086 $)) 16 T ELT) (((-584 $) (-1086 $) (-1091)) 20 T ELT)) (-1217 (($ (-858 $)) 30 T ELT) (($ (-1086 $)) 11 T ELT) (($ (-1086 $) (-1091)) 60 T ELT)) (-1218 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1086 $)) 18 T ELT) (((-584 $) (-1086 $) (-1091)) 19 T ELT)) (-3186 (($ (-858 $)) 31 T ELT) (($ (-1086 $)) 13 T ELT) (($ (-1086 $) (-1091)) NIL T ELT)))
-(((-23 |#1|) (-10 -7 (-14 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-14 -1216 ((-584 |#1|) (-1086 |#1|))) (-14 -1216 ((-584 |#1|) (-858 |#1|))) (-14 -1217 (|#1| (-1086 |#1|) (-1091))) (-14 -1217 (|#1| (-1086 |#1|))) (-14 -1217 (|#1| (-858 |#1|))) (-14 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-14 -1218 ((-584 |#1|) (-1086 |#1|))) (-14 -1218 ((-584 |#1|) (-858 |#1|))) (-14 -3186 (|#1| (-1086 |#1|) (-1091))) (-14 -3186 (|#1| (-1086 |#1|))) (-14 -3186 (|#1| (-858 |#1|)))) (-24)) (T -23))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT)) (-3186 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-349 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-24) (-110)) (T -24))
-((-3186 (*1 *1 *2) (-11 (-5 *2 (-858 *1)) (-4 *1 (-24)))) (-3186 (*1 *1 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-24)))) (-3186 (*1 *1 *2 *3) (-11 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-24)))) (-1218 (*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-24)) (-5 *2 (-584 *1)))) (-1217 (*1 *1 *2) (-11 (-5 *2 (-858 *1)) (-4 *1 (-24)))) (-1217 (*1 *1 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-24)))) (-1217 (*1 *1 *2 *3) (-11 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-24)))) (-1216 (*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-24)) (-5 *2 (-584 *1)))))
-(-12 (-311) (-916) (-10 -8 (-14 -3186 ($ (-858 $))) (-14 -3186 ($ (-1086 $))) (-14 -3186 ($ (-1086 $) (-1091))) (-14 -1218 ((-584 $) (-858 $))) (-14 -1218 ((-584 $) (-1086 $))) (-14 -1218 ((-584 $) (-1086 $) (-1091))) (-14 -1217 ($ (-858 $))) (-14 -1217 ($ (-1086 $))) (-14 -1217 ($ (-1086 $) (-1091))) (-14 -1216 ((-584 $) (-858 $))) (-14 -1216 ((-584 $) (-1086 $))) (-14 -1216 ((-584 $) (-1086 $) (-1091)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-1216 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1091)) 45 T ELT)) (-1217 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1091)) 39 T ELT)) (-1218 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1091)) 47 T ELT)) (-3186 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1091)) 41 T ELT)))
-(((-25 |#1| |#2|) (-10 -7 (-14 -1216 ((-584 |#1|) |#1| (-1091))) (-14 -1217 (|#1| |#1| (-1091))) (-14 -1216 ((-584 |#1|) |#1|)) (-14 -1217 (|#1| |#1|)) (-14 -1218 ((-584 |#1|) |#1| (-1091))) (-14 -3186 (|#1| |#1| (-1091))) (-14 -1218 ((-584 |#1|) |#1|)) (-14 -3186 (|#1| |#1|)) (-14 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-14 -1216 ((-584 |#1|) (-1086 |#1|))) (-14 -1216 ((-584 |#1|) (-858 |#1|))) (-14 -1217 (|#1| (-1086 |#1|) (-1091))) (-14 -1217 (|#1| (-1086 |#1|))) (-14 -1217 (|#1| (-858 |#1|))) (-14 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-14 -1218 ((-584 |#1|) (-1086 |#1|))) (-14 -1218 ((-584 |#1|) (-858 |#1|))) (-14 -3186 (|#1| (-1086 |#1|) (-1091))) (-14 -3186 (|#1| (-1086 |#1|))) (-14 -3186 (|#1| (-858 |#1|)))) (-26 |#2|) (-496)) (T -25))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT) (((-584 $) $) 148 T ELT) (((-584 $) $ (-1091)) 146 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1091)) 147 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-1091)) $) 217 T ELT)) (-3086 (((-349 (-1086 $)) $ (-551 $)) 249 (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1601 (((-584 (-551 $)) $) 180 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-584 (-551 $)) (-584 $)) 170 T ELT) (($ $ (-584 (-248 $))) 169 T ELT) (($ $ (-248 $)) 168 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-3040 (($ $) 110 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT) (((-584 $) $) 152 T ELT) (((-584 $) $ (-1091)) 150 T ELT)) (-3186 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1091)) 151 T ELT)) (-3160 (((-3 (-858 |#1|) #1="failed") $) 268 (|has| |#1| (-962)) ELT) (((-3 (-349 (-858 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) 204 T ELT) (((-3 (-551 $) #1#) $) 155 T ELT) (((-3 (-349 (-485)) #1#) $) 143 (OR (-11 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3159 (((-858 |#1|) $) 267 (|has| |#1| (-962)) ELT) (((-349 (-858 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-951 (-485))) ELT) (((-1091) $) 203 T ELT) (((-551 $) $) 154 T ELT) (((-349 (-485)) $) 144 (OR (-11 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-631 |#1|) (-631 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 142 (OR (-2565 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-631 $)) 141 (OR (-2565 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 209 (|has| |#1| (-797 (-329))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 208 (|has| |#1| (-797 (-485))) ELT)) (-2576 (($ (-584 $)) 174 T ELT) (($ $) 173 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-1600 (((-584 (-83)) $) 181 T ELT)) (-3598 (((-83) (-83)) 182 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2676 (((-82) $) 202 (|has| $ (-951 (-485))) ELT)) (-2999 (($ $) 234 (|has| |#1| (-962)) ELT)) (-3001 (((-1040 |#1| (-551 $)) $) 233 (|has| |#1| (-962)) ELT)) (-3014 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-1598 (((-1086 $) (-551 $)) 199 (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) 188 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 178 T ELT)) (-2282 (((-631 |#1|) (-1180 $)) 258 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 257 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 140 (OR (-2565 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-1180 $)) 139 (OR (-2565 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 179 T ELT)) (-2237 (($ (-83) (-584 $)) 187 T ELT) (($ (-83) $) 186 T ELT)) (-2826 (((-3 (-584 $) #3="failed") $) 228 (|has| |#1| (-1026)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #3#) $) 237 (|has| |#1| (-962)) ELT)) (-2825 (((-3 (-584 $) #3#) $) 230 (|has| |#1| (-22)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 $))) #3#) $) 231 (|has| |#1| (-22)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #3#) $ (-1091)) 236 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #3#) $ (-83)) 235 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #3#) $) 229 (|has| |#1| (-1026)) ELT)) (-2636 (((-82) $ (-1091)) 185 T ELT) (((-82) $ (-83)) 184 T ELT)) (-2487 (($ $) 88 T ELT)) (-2606 (((-695) $) 177 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 215 T ELT)) (-1801 ((|#1| $) 216 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1599 (((-82) $ (-1091)) 190 T ELT) (((-82) $ $) 189 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2677 (((-82) $) 201 (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-1091) (-695) (-1 $ $)) 241 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 240 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 239 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-83)) (-584 $) (-1091)) 227 (|has| |#1| (-554 (-474))) ELT) (($ $ (-83) $ (-1091)) 226 (|has| |#1| (-554 (-474))) ELT) (($ $) 225 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 224 (|has| |#1| (-554 (-474))) ELT) (($ $ (-1091)) 223 (|has| |#1| (-554 (-474))) ELT) (($ $ (-83) (-1 $ $)) 198 T ELT) (($ $ (-83) (-1 $ (-584 $))) 197 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) 196 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) 195 T ELT) (($ $ (-1091) (-1 $ $)) 194 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 193 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 192 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 191 T ELT) (($ $ (-584 $) (-584 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-248 $)) 160 T ELT) (($ $ (-584 (-248 $))) 159 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 158 T ELT) (($ $ (-551 $) $) 157 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-3803 (($ (-83) (-584 $)) 167 T ELT) (($ (-83) $ $ $ $) 166 T ELT) (($ (-83) $ $ $) 165 T ELT) (($ (-83) $ $) 164 T ELT) (($ (-83) $) 163 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3761 (($ $ (-584 (-1091)) (-584 (-695))) 263 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 262 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 259 (|has| |#1| (-962)) ELT)) (-2998 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3188 (($ $) 200 (|has| $ (-962)) ELT)) (-3975 (((-474) $) 272 (|has| |#1| (-554 (-474))) ELT) (($ (-347 $)) 242 (|has| |#1| (-496)) ELT) (((-801 (-329)) $) 207 (|has| |#1| (-554 (-801 (-329)))) ELT) (((-801 (-485)) $) 206 (|has| |#1| (-554 (-801 (-485)))) ELT)) (-3012 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2438 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ (-858 |#1|)) 269 (|has| |#1| (-962)) ELT) (($ (-349 (-858 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-349 (-858 (-349 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-858 (-349 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-349 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1040 |#1| (-551 $))) 232 (|has| |#1| (-962)) ELT) (($ |#1|) 214 T ELT) (($ (-1091)) 205 T ELT) (($ (-551 $)) 156 T ELT)) (-2705 (((-633 $) $) 254 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-2593 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-2256 (((-82) (-83)) 183 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-1800 (($ (-1091) (-584 $)) 222 T ELT) (($ (-1091) $ $ $ $) 221 T ELT) (($ (-1091) $ $ $) 220 T ELT) (($ (-1091) $ $) 219 T ELT) (($ (-1091) $) 218 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 (-1091)) (-584 (-695))) 266 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 265 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 260 (|has| |#1| (-962)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 245 (|has| |#1| (-496)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-349 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-145)) ELT) (($ |#1| $) 145 (|has| |#1| (-962)) ELT)))
-(((-26 |#1|) (-110) (-496)) (T -26))
-((-3186 (*1 *1 *1) (-11 (-4 *1 (-26 *2)) (-4 *2 (-496)))) (-1218 (*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *3)))) (-3186 (*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-4 *1 (-26 *3)) (-4 *3 (-496)))) (-1218 (*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *4)))) (-1217 (*1 *1 *1) (-11 (-4 *1 (-26 *2)) (-4 *2 (-496)))) (-1216 (*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *3)))) (-1217 (*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-4 *1 (-26 *3)) (-4 *3 (-496)))) (-1216 (*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *4)))))
-(-12 (-24) (-363 |t#1|) (-10 -8 (-14 -3186 ($ $)) (-14 -1218 ((-584 $) $)) (-14 -3186 ($ $ (-1091))) (-14 -1218 ((-584 $) $ (-1091))) (-14 -1217 ($ $)) (-14 -1216 ((-584 $) $)) (-14 -1217 ($ $ (-1091))) (-14 -1216 ((-584 $) $ (-1091)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) . T) ((-24) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 |#1| |#1|) |has| |#1| (-145)) ((-79 $ $) . T) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) . T) ((-556 (-349 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-329))) |has| |#1| (-554 (-801 (-329)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-200) . T) ((-245) . T) ((-257) . T) ((-259 $) . T) ((-253) . T) ((-311) . T) ((-328 |#1|) |has| |#1| (-962)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-363 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-145))) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 (-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-145))) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) . T) ((-581 (-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-349 (-485))) . T) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-329)) |has| |#1| (-797 (-329))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-349 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-349 (-485))) . T) ((-964 |#1|) |has| |#1| (-145)) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 |#1|) |has| |#1| (-145)) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2899 (((-1002 (-178)) $) NIL T ELT)) (-2900 (((-1002 (-178)) $) NIL T ELT)) (-3137 (($ $ (-178)) 164 T ELT)) (-1219 (($ (-858 (-485)) (-1091) (-1091) (-1002 (-349 (-485))) (-1002 (-349 (-485)))) 103 T ELT)) (-2901 (((-584 (-584 (-855 (-178)))) $) 181 T ELT)) (-3950 (((-773) $) 195 T ELT)))
-(((-27) (-12 (-867) (-10 -8 (-14 -1219 ($ (-858 (-485)) (-1091) (-1091) (-1002 (-349 (-485))) (-1002 (-349 (-485))))) (-14 -3137 ($ $ (-178)))))) (T -27))
-((-1219 (*1 *1 *2 *3 *3 *4 *4) (-11 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-349 (-485)))) (-5 *1 (-27)))) (-3137 (*1 *1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-27)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (((-1050) $) 10 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-28) (-12 (-996) (-10 -8 (-14 -2697 ((-1050) $)) (-14 -3236 ((-1050) $))))) (T -28))
-((-2697 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-28)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-28)))))
-((-3186 ((|#2| (-1086 |#2|) (-1091)) 39 T ELT)) (-3598 (((-83) (-83)) 53 T ELT)) (-1598 (((-1086 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-485))) ELT)) (-1222 ((|#2| |#1| (-485)) 120 (|has| |#1| (-951 (-485))) ELT)) (-1220 ((|#2| (-1086 |#2|) |#2|) 29 T ELT)) (-1221 (((-773) (-584 |#2|)) 87 T ELT)) (-3188 ((|#2| |#2|) 143 (|has| |#1| (-951 (-485))) ELT)) (-2256 (((-82) (-83)) 17 T ELT)) (** ((|#2| |#2| (-349 (-485))) 96 (|has| |#1| (-951 (-485))) ELT)))
-(((-29 |#1| |#2|) (-10 -7 (-14 -3186 (|#2| (-1086 |#2|) (-1091))) (-14 -3598 ((-83) (-83))) (-14 -2256 ((-82) (-83))) (-14 -1220 (|#2| (-1086 |#2|) |#2|)) (-14 -1221 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-485))) (PROGN (-14 ** (|#2| |#2| (-349 (-485)))) (-14 -1598 ((-1086 |#2|) (-551 |#2|))) (-14 -3188 (|#2| |#2|)) (-14 -1222 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-363 |#1|)) (T -29))
-((-1222 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-4 *2 (-363 *3)) (-5 *1 (-29 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-496)))) (-3188 (*1 *2 *2) (-11 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-29 *3 *2)) (-4 *2 (-363 *3)))) (-1598 (*1 *2 *3) (-11 (-5 *3 (-551 *5)) (-4 *5 (-363 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *2 (-1086 *5)) (-5 *1 (-29 *4 *5)))) (** (*1 *2 *2 *3) (-11 (-5 *3 (-349 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-29 *4 *2)) (-4 *2 (-363 *4)))) (-1221 (*1 *2 *3) (-11 (-5 *3 (-584 *5)) (-4 *5 (-363 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-29 *4 *5)))) (-1220 (*1 *2 *3 *2) (-11 (-5 *3 (-1086 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496)) (-5 *1 (-29 *4 *2)))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-29 *4 *5)) (-4 *5 (-363 *4)))) (-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-29 *3 *4)) (-4 *4 (-363 *3)))) (-3186 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-363 *5)) (-5 *1 (-29 *5 *2)) (-4 *5 (-496)))))
-((-3727 (($) 10 T CONST)) (-1223 (((-82) $ $) 8 T ELT)))
-(((-30 |#1|) (-10 -7 (-14 -3727 (|#1|) -3956) (-14 -1223 ((-82) |#1| |#1|))) (-31)) (T -30))
-NIL
-((-3727 (($) 6 T CONST)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)))
-(((-31) (-110)) (T -31))
-((-1223 (*1 *2 *1 *1) (-11 (-4 *1 (-31)) (-5 *2 (-82)))) (-3403 (*1 *1 *1) (-4 *1 (-31))) (-3568 (*1 *1) (-4 *1 (-31))) (-3406 (*1 *2 *1) (-11 (-4 *1 (-31)) (-5 *2 (-82)))) (-3727 (*1 *1) (-4 *1 (-31))))
-(-12 (-1130) (-10 -8 (-14 -1223 ((-82) $ $)) (-14 -3403 ($ $)) (-14 -3568 ($)) (-14 -3406 ((-82) $)) (-14 -3727 ($) -3956)))
-(((-12) . T) ((-1130) . T))
-((-3501 (($ $) 11 T ELT)) (-3499 (($ $) 10 T ELT)) (-3503 (($ $) 9 T ELT)) (-3504 (($ $) 8 T ELT)) (-3502 (($ $) 7 T ELT)) (-3500 (($ $) 6 T ELT)))
-(((-32) (-110)) (T -32))
-((-3501 (*1 *1 *1) (-4 *1 (-32))) (-3499 (*1 *1 *1) (-4 *1 (-32))) (-3503 (*1 *1 *1) (-4 *1 (-32))) (-3504 (*1 *1 *1) (-4 *1 (-32))) (-3502 (*1 *1 *1) (-4 *1 (-32))) (-3500 (*1 *1 *1) (-4 *1 (-32))))
-(-12 (-10 -8 (-14 -3500 ($ $)) (-14 -3502 ($ $)) (-14 -3504 ($ $)) (-14 -3503 ($ $)) (-14 -3499 ($ $)) (-14 -3501 ($ $))))
-((-2571 (((-82) $ $) 18 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3405 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 136 T ELT)) (-3798 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-3800 (($ $) 157 T ELT)) (-3602 (($) 95 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1186) $ |#1| |#1|) 82 (|has| $ (-1036 |#2|)) ELT) (((-1186) $ (-485) (-485)) 185 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-485)) 170 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-82) $) 213 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1735 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 210 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 209 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-2912 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (($ $) 214 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3445 (((-82) $ (-695)) 202 T ELT)) (-3028 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 145 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 166 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 196 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 171 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 169 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 167 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 144 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-584 $)) 143 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 236 T ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 158 T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 211 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) 221 T ELT)) (-3802 (($ $ (-695)) 153 T ELT) (($ $) 151 T ELT)) (-2370 (($ $) 234 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-1354 (($ $) 51 (OR (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 60 T ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 240 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 235 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 184 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 106 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 232 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 228 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) 195 T ELT)) (-3446 (((-82) $) 199 T ELT)) (-3422 (((-485) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 218 T ELT) (((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 217 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) 216 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3034 (((-584 $) $) 134 T ELT)) (-3030 (((-82) $ $) 142 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3617 (($ (-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 179 T ELT)) (-3722 (((-82) $ (-695)) 201 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-757)) ELT) (((-485) $) 187 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 203 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2859 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 233 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3521 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 222 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 105 T ELT) (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 226 T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 231 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-757)) ELT) (((-485) $) 188 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 204 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) 176 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 128 T ELT)) (-3537 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 246 T ELT)) (-3719 (((-82) $ (-695)) 200 T ELT)) (-3033 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 139 T ELT)) (-3530 (((-82) $) 135 T ELT)) (-3245 (((-1074) $) 21 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3801 (($ $ (-695)) 156 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-2234 (((-584 |#1|) $) 61 T ELT)) (-2235 (((-82) |#1| $) 62 T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) 239 T ELT) (($ $ $ (-485)) 238 T ELT)) (-2306 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) 173 T ELT) (($ $ $ (-485)) 172 T ELT)) (-2205 (((-584 |#1|) $) 76 T ELT) (((-584 (-485)) $) 190 T ELT)) (-2206 (((-82) |#1| $) 75 T ELT) (((-82) (-485) $) 191 T ELT)) (-3246 (((-1034) $) 20 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-757)) ELT) (($ $ (-695)) 150 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 148 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 108 T ELT) (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 229 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1036 |#2|)) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 186 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3447 (((-82) $) 198 T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 224 T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 68 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 67 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 66 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) 65 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 100 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 99 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 98 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 97 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 132 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 131 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 130 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 129 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#2| $) 77 (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT) (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 189 (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-2207 (((-584 |#2|) $) 74 T ELT) (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 192 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 194 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) 193 T ELT) (($ $ (-1147 (-485))) 180 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1#) 155 T ELT) (($ $ #2#) 152 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3#) 149 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4#) 137 T ELT)) (-3032 (((-485) $ $) 140 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1572 (($ $ (-485)) 242 T ELT) (($ $ (-1147 (-485))) 241 T ELT)) (-2307 (($ $ (-485)) 175 T ELT) (($ $ (-1147 (-485))) 174 T ELT)) (-3636 (((-82) $) 138 T ELT)) (-3795 (($ $) 162 T ELT)) (-3793 (($ $) 163 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-695) $) 161 T ELT)) (-3797 (($ $) 160 T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 104 T ELT) (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 225 T ELT)) (-1736 (($ $ $ (-485)) 212 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474)))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 181 T ELT)) (-3794 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 244 T ELT) (($ $ $) 243 T ELT)) (-3805 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 178 T ELT) (($ (-584 $)) 177 T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 147 T ELT) (($ $ $) 146 T ELT)) (-3950 (((-773) $) 16 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3525 (((-584 $) $) 133 T ELT)) (-3031 (((-82) $ $) 141 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-1266 (((-82) $ $) 19 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1224 (((-633 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |#1| $) 127 T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-2569 (((-82) $ $) 205 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2570 (((-82) $ $) 207 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3059 (((-82) $ $) 17 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-2687 (((-82) $ $) 206 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2688 (((-82) $ $) 208 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3961 (((-695) $) 101 T ELT)))
-(((-33 |#1| |#2|) (-110) (-1014) (-1014)) (T -33))
-((-1224 (*1 *2 *3 *1) (-11 (-4 *1 (-33 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-633 (-2 (|:| -3864 *3) (|:| |entry| *4)))))))
-(-12 (-1108 |t#1| |t#2|) (-609 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-1036 |t#2|) (-10 -8 (-14 -1224 ((-633 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
-(((-31) . T) ((-73 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-69) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-1014)) (|has| |#2| (-69))) ((-553 (-773)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-121 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-182 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-240 (-1147 (-485)) $) . T) ((-240 |#1| |#2|) . T) ((-242 (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-242 |#1| |#2|) . T) ((-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-236 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-323 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-380 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-380 |#2|) . T) ((-429 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1014) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1065 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1108 |#1| |#2|) . T) ((-1130) . T) ((-1169 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T))
-((-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-34 |#1| |#2|) (-10 -7 (-14 -3950 (|#1| |#2|)) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-35 |#2|) (-145)) (T -34))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-35 |#1|) (-110) (-145)) (T -35))
-NIL
-(-12 (-962) (-655 |t#1|) (-556 |t#1|))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3421 (((-347 |#1|) |#1|) 41 T ELT)) (-3735 (((-347 |#1|) |#1|) 30 T ELT) (((-347 |#1|) |#1| (-584 (-45))) 33 T ELT)) (-1225 (((-82) |#1|) 59 T ELT)))
-(((-36 |#1|) (-10 -7 (-14 -3735 ((-347 |#1|) |#1| (-584 (-45)))) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3421 ((-347 |#1|) |#1|)) (-14 -1225 ((-82) |#1|))) (-1156 (-45))) (T -36))
-((-1225 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45))))) (-3421 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45))))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45))))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-45))) (-5 *2 (-347 *3)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2065 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2063 (((-82) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1787 (((-631 (-349 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-349 |#2|))) NIL T ELT)) (-3333 (((-349 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1609 (((-82) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3139 (((-695)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1662 (((-82)) NIL T ELT)) (-1661 (((-82) |#1|) NIL T ELT) (((-82) |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| (-349 |#2|) (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| (-349 |#2|) (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1797 (($ (-1180 (-349 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-349 |#2|))) 60 T ELT) (($ (-1180 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-298)) ELT)) (-2567 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1786 (((-631 (-349 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1665 (((-82) |#1| |#1|) NIL T ELT)) (-3111 (((-831)) NIL T ELT)) (-2997 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-82)) NIL T ELT)) (-1659 (((-82) |#1|) NIL T ELT) (((-82) |#2|) NIL T ELT)) (-2566 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1681 (((-82) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1769 (($ $ (-695)) NIL (|has| (-349 |#2|) (-298)) ELT) (($ $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3726 (((-82) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3775 (((-831) $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3380 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) 105 T ELT)) (-3135 (((-349 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-311)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2016 ((|#3| $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2012 (((-831) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-349 |#2|)) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1226 (((-1186) (-695)) 83 T ELT)) (-1649 (((-631 (-349 |#2|))) 55 T ELT)) (-1651 (((-631 (-349 |#2|))) 48 T ELT)) (-2487 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 131 T ELT)) (-1650 (((-631 (-349 |#2|))) 49 T ELT)) (-1652 (((-631 (-349 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1180 $)) 46 T ELT)) (-3922 (((-1180 $)) 45 T ELT)) (-1657 (((-82) $) NIL T ELT)) (-1656 (((-82) $) NIL T ELT) (((-82) $ |#1|) NIL T ELT) (((-82) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-349 |#2|) (-298)) CONST)) (-2402 (($ (-831)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3735 (((-347 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1608 (((-695) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3760 (((-349 |#2|) (-1180 $)) NIL T ELT) (((-349 |#2|)) 43 T ELT)) (-1770 (((-695) $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3761 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-2410 (((-631 (-349 |#2|)) (-1180 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3188 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3227 (((-1180 (-349 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-349 |#2|)) $) 61 T ELT) (((-631 (-349 |#2|)) (-1180 $)) 106 T ELT)) (-3975 (((-1180 (-349 |#2|)) $) NIL T ELT) (($ (-1180 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2705 (($ $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-349 |#2|) (-115)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1664 (((-82)) 41 T ELT)) (-1663 (((-82) |#1|) 53 T ELT) (((-82) |#2|) 137 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-82)) NIL T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 27 T CONST)) (-2672 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-349 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-349 (-485))) NIL (|has| (-349 |#2|) (-311)) ELT)))
-(((-37 |#1| |#2| |#3| |#4|) (-12 (-290 |#1| |#2| |#3|) (-10 -7 (-14 -1226 ((-1186) (-695))))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) |#3|) (T -37))
-((-1226 (*1 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) (-5 *1 (-37 *4 *5 *6 *7)) (-4 *6 (-1156 (-349 *5))) (-13 *7 *6))))
-((-1227 ((|#2| |#2|) 47 T ELT)) (-1232 ((|#2| |#2|) 136 (-11 (|has| |#2| (-363 |#1|)) (|has| |#1| (-12 (-392) (-951 (-485))))) ELT)) (-1231 ((|#2| |#2|) 100 (-11 (|has| |#2| (-363 |#1|)) (|has| |#1| (-12 (-392) (-951 (-485))))) ELT)) (-1230 ((|#2| |#2|) 101 (-11 (|has| |#2| (-363 |#1|)) (|has| |#1| (-12 (-392) (-951 (-485))))) ELT)) (-1233 ((|#2| (-83) |#2| (-695)) 80 (-11 (|has| |#2| (-363 |#1|)) (|has| |#1| (-12 (-392) (-951 (-485))))) ELT)) (-1229 (((-1086 |#2|) |#2|) 44 T ELT)) (-1228 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
-(((-38 |#1| |#2|) (-10 -7 (-14 -1227 (|#2| |#2|)) (-14 -1228 (|#2| |#2|)) (-14 -1228 (|#2| |#2| |#2|)) (-14 -1228 (|#2| |#2| (-584 |#2|))) (-14 -1228 (|#2| |#2| (-584 (-551 |#2|)))) (-14 -1229 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-12 (-392) (-951 (-485)))) (IF (|has| |#2| (-363 |#1|)) (PROGN (-14 -1230 (|#2| |#2|)) (-14 -1231 (|#2| |#2|)) (-14 -1232 (|#2| |#2|)) (-14 -1233 (|#2| (-83) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-496) (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 |#1| (-551 $)) $)) (-14 -3000 ((-1040 |#1| (-551 $)) $)) (-14 -3950 ($ (-1040 |#1| (-551 $))))))) (T -38))
-((-1233 (*1 *2 *3 *2 *4) (-11 (-5 *3 (-83)) (-5 *4 (-695)) (-4 *5 (-12 (-392) (-951 (-485)))) (-4 *5 (-496)) (-5 *1 (-38 *5 *2)) (-4 *2 (-363 *5)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *5 (-551 $)) $)) (-14 -3000 ((-1040 *5 (-551 $)) $)) (-14 -3950 ($ (-1040 *5 (-551 $))))))))) (-1232 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))) (-1231 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))) (-1230 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))) (-1229 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-38 *4 *3)) (-4 *3 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $)) (-14 -3000 ((-1040 *4 (-551 $)) $)) (-14 -3950 ($ (-1040 *4 (-551 $))))))))) (-1228 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-551 *2))) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $)) (-14 -3000 ((-1040 *4 (-551 $)) $)) (-14 -3950 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-38 *4 *2)))) (-1228 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $)) (-14 -3000 ((-1040 *4 (-551 $)) $)) (-14 -3950 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-38 *4 *2)))) (-1228 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2)) (-4 *2 (-12 (-311) (-253) (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $)) (-14 -3000 ((-1040 *3 (-551 $)) $)) (-14 -3950 ($ (-1040 *3 (-551 $))))))))))
-((-3735 (((-347 (-1086 |#3|)) (-1086 |#3|) (-584 (-45))) 23 T ELT) (((-347 |#3|) |#3| (-584 (-45))) 19 T ELT)))
-(((-39 |#1| |#2| |#3|) (-10 -7 (-14 -3735 ((-347 |#3|) |#3| (-584 (-45)))) (-14 -3735 ((-347 (-1086 |#3|)) (-1086 |#3|) (-584 (-45))))) (-757) (-718) (-862 (-45) |#2| |#1|)) (T -39))
-((-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-45))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-45) *6 *5)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-39 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-45))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-347 *3)) (-5 *1 (-39 *5 *6 *3)) (-4 *3 (-862 (-45) *6 *5)))))
-((-1237 (((-695) |#2|) 70 T ELT)) (-1235 (((-695) |#2|) 74 T ELT)) (-1250 (((-584 |#2|)) 37 T ELT)) (-1234 (((-695) |#2|) 73 T ELT)) (-1236 (((-695) |#2|) 69 T ELT)) (-1238 (((-695) |#2|) 72 T ELT)) (-1248 (((-584 (-631 |#1|))) 65 T ELT)) (-1243 (((-584 |#2|)) 60 T ELT)) (-1241 (((-584 |#2|) |#2|) 48 T ELT)) (-1245 (((-584 |#2|)) 62 T ELT)) (-1244 (((-584 |#2|)) 61 T ELT)) (-1247 (((-584 (-631 |#1|))) 53 T ELT)) (-1242 (((-584 |#2|)) 59 T ELT)) (-1240 (((-584 |#2|) |#2|) 47 T ELT)) (-1239 (((-584 |#2|)) 55 T ELT)) (-1249 (((-584 (-631 |#1|))) 66 T ELT)) (-1246 (((-584 |#2|)) 64 T ELT)) (-2014 (((-1180 |#2|) (-1180 |#2|)) 99 (|has| |#1| (-257)) ELT)))
-(((-40 |#1| |#2|) (-10 -7 (-14 -1234 ((-695) |#2|)) (-14 -1235 ((-695) |#2|)) (-14 -1236 ((-695) |#2|)) (-14 -1237 ((-695) |#2|)) (-14 -1238 ((-695) |#2|)) (-14 -1239 ((-584 |#2|))) (-14 -1240 ((-584 |#2|) |#2|)) (-14 -1241 ((-584 |#2|) |#2|)) (-14 -1242 ((-584 |#2|))) (-14 -1243 ((-584 |#2|))) (-14 -1244 ((-584 |#2|))) (-14 -1245 ((-584 |#2|))) (-14 -1246 ((-584 |#2|))) (-14 -1247 ((-584 (-631 |#1|)))) (-14 -1248 ((-584 (-631 |#1|)))) (-14 -1249 ((-584 (-631 |#1|)))) (-14 -1250 ((-584 |#2|))) (IF (|has| |#1| (-257)) (-14 -2014 ((-1180 |#2|) (-1180 |#2|))) |%noBranch|)) (-496) (-360 |#1|)) (T -40))
-((-2014 (*1 *2 *2) (-11 (-5 *2 (-1180 *4)) (-4 *4 (-360 *3)) (-4 *3 (-257)) (-4 *3 (-496)) (-5 *1 (-40 *3 *4)))) (-1250 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1249 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1248 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1247 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1246 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1245 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1244 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1243 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1242 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1241 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1240 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1239 (*1 *2) (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))) (-1238 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1237 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1236 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1235 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))) (-1234 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1180 (-631 |#1|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#1|))) 24 T ELT)) (-1730 (((-1180 $)) 52 T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2409 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1086 |#1|) $) NIL T ELT)) (-1718 (((-82)) 99 T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3111 (((-831)) 53 T ELT)) (-1715 (((-82)) NIL T ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1711 (((-82)) NIL T ELT)) (-1709 (((-82)) NIL T ELT)) (-1713 (((-82)) 101 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1794 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1792 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1909 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1796 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1086 |#1|) $) NIL T ELT)) (-1719 (((-82)) 98 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1710 (((-82)) 106 T ELT)) (-1712 (((-82)) 105 T ELT)) (-1714 (((-82)) 107 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1717 (((-82)) 100 T ELT)) (-3803 ((|#1| $ (-485)) 55 T ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 48 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 28 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3975 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1897 (((-584 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-82)) 95 T ELT)) (-3950 (((-773) $) 71 T ELT) (($ (-1180 |#1|)) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 51 T ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-82)) 91 T ELT)) (-2548 (($ (-631 |#1|) $) 18 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-82)) 97 T ELT)) (-1720 (((-82)) 92 T ELT)) (-1716 (((-82)) 90 T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1057 |#2| |#1|) $) 19 T ELT)))
-(((-41 |#1| |#2| |#3| |#4|) (-12 (-360 |#1|) (-591 (-1057 |#2| |#1|)) (-10 -8 (-14 -3950 ($ (-1180 |#1|))))) (-311) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -41))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-311)) (-13 *6 (-1180 (-631 *3))) (-5 *1 (-41 *3 *4 *5 *6)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3405 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT) (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1737 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-82) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1735 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-11 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2912 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3445 (((-82) $ (-695)) NIL T ELT)) (-3028 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (($ $ $) 35 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3792 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 37 (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 ((|#2| $ |#1| |#2|) 60 (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3799 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 45 T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $ (-695)) NIL T ELT) (($ $) 31 T ELT)) (-2370 (($ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 63 T ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3446 (((-82) $) NIL T ELT)) (-3422 (((-485) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-3617 (($ (-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3722 (((-82) $ (-695)) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 40 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2859 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3521 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 22 T ELT) (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 22 T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 42 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3537 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3719 (((-82) $ (-695)) NIL T ELT)) (-3033 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) 51 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3801 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2234 (((-584 |#1|) $) 24 T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2306 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT) (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT) (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 29 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3447 (((-82) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT) (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3406 (((-82) $) 20 T ELT)) (-3568 (($) 16 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 15 T ELT)) (-1572 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3796 (((-695) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3794 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 33 T ELT) (($ $ $) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1224 (((-633 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) |#1| $) 55 T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-2687 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3961 (((-695) $) 27 T ELT)))
-(((-42 |#1| |#2|) (-33 |#1| |#2|) (-1014) (-1014)) (T -42))
-NIL
-((-3941 (((-82) $) 12 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-349 (-485)) $) 25 T ELT) (($ $ (-349 (-485))) NIL T ELT)))
-(((-43 |#1| |#2| |#3|) (-10 -7 (-14 * (|#1| |#1| (-349 (-485)))) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 -3941 ((-82) |#1|)) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|))) (-44 |#2| |#3|) (-962) (-717)) (T -43))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-44 |#1| |#2|) (-110) (-962) (-717)) (T -44))
-((-3177 (*1 *2 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2897 (*1 *1 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-44 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3941 (*1 *2 *1) (-11 (-4 *1 (-44 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-82)))) (-2896 (*1 *1 *2 *3) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3962 (*1 *1 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3680 (*1 *2 *1 *3) (-11 (-4 *1 (-44 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3953 (*1 *1 *1 *2) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311)))))
-(-12 (-962) (-79 |t#1| |t#1|) (-380 |t#1|) (-10 -8 (-14 -3177 (|t#1| $)) (-14 -2897 ($ $)) (-14 -3952 (|t#2| $)) (-14 -3941 ((-82) $)) (-14 -2896 ($ |t#1| |t#2|)) (-14 -3962 ($ $)) (-14 -3680 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-311)) (-14 -3953 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-145)) (PROGN (-6 (-145)) (-6 (-35 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-35 (-349 (-485)))) (-6 (-35 (-349 (-485)))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-245) |has| |#1| (-496)) ((-380 |#1|) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3191 (((-82) $) 9 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3186 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3160 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3159 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-349 (-485)))) (|:| |vec| (-1180 (-349 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-349 (-485))) (-631 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1600 (((-584 (-83)) $) NIL T ELT)) (-3598 (((-83) (-83)) NIL T ELT)) (-2412 (((-82) $) 11 T ELT)) (-2676 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-3001 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-3135 (((-1086 $) (-1086 $) (-551 $)) NIL T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-349 (-485)))) (|:| |vec| (-1180 (-349 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-349 (-485))) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2237 (($ (-83) $) NIL T ELT) (($ (-83) (-584 $)) NIL T ELT)) (-2636 (((-82) $ (-83)) NIL T ELT) (((-82) $ (-1091)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-695) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-82) $ $) NIL T ELT) (((-82) $ (-1091)) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2677 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-83) (-1 $ (-584 $))) NIL T ELT) (($ $ (-83) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ (-83) $) NIL T ELT) (($ (-83) $ $) NIL T ELT) (($ (-83) $ $ $) NIL T ELT) (($ (-83) $ $ $ $) NIL T ELT) (($ (-83) (-584 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3000 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3188 (($ $) NIL (|has| $ (-962)) ELT)) (-3975 (((-329) $) NIL T ELT) (((-178) $) NIL T ELT) (((-141 (-329)) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2256 (((-82) (-83)) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3059 (((-82) $ $) 13 T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-45) (-12 (-253) (-24) (-951 (-485)) (-951 (-349 (-485))) (-581 (-485)) (-934) (-581 (-349 (-485))) (-117) (-554 (-141 (-329))) (-189) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-14 -3001 ((-1040 (-485) (-551 $)) $)) (-14 -3000 ((-1040 (-485) (-551 $)) $)) (-14 -3845 ($ $)) (-14 -3135 ((-1086 $) (-1086 $) (-551 $))) (-14 -3135 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-14 -3135 ($ $ (-551 $))) (-14 -3135 ($ $ (-584 (-551 $))))))) (T -45))
-((-3001 (*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-45)))) (-5 *1 (-45)))) (-3000 (*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-45)))) (-5 *1 (-45)))) (-3845 (*1 *1 *1) (-5 *1 (-45))) (-3135 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 (-45))) (-5 *3 (-551 (-45))) (-5 *1 (-45)))) (-3135 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 (-45))) (-5 *3 (-584 (-551 (-45)))) (-5 *1 (-45)))) (-3135 (*1 *1 *1 *2) (-11 (-5 *2 (-551 (-45))) (-5 *1 (-45)))) (-3135 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-551 (-45)))) (-5 *1 (-45)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1943 (((-584 (-447)) $) 17 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 7 T ELT)) (-3236 (((-1096) $) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-46) (-12 (-1014) (-10 -8 (-14 -1943 ((-584 (-447)) $)) (-14 -3236 ((-1096) $))))) (T -46))
-((-1943 (*1 *2 *1) (-11 (-5 *2 (-584 (-447))) (-5 *1 (-46)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-46)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 86 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-82) $) 31 T ELT)) (-3160 (((-3 |#1| #1#) $) 34 T ELT)) (-3159 ((|#1| $) 35 T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3177 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1455 (((-82) $) 44 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($ (-695)) 73 T ELT)) (-3947 (($ (-584 (-485))) 74 T ELT)) (-3952 (((-695) $) 45 T ELT)) (-3950 (((-773) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3680 ((|#1| $ $) 29 T ELT)) (-3129 (((-695)) 72 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 46 T CONST)) (-2669 (($) 17 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
-(((-47 |#1| |#2|) (-12 (-561 |#1|) (-951 |#1|) (-380 |#1|) (-10 -8 (-14 -3177 (|#1| $)) (-14 -1456 ($ $)) (-14 -3962 ($ $)) (-14 -3680 (|#1| $ $)) (-14 -2411 ($ (-695))) (-14 -3947 ($ (-584 (-485)))) (-14 -1455 ((-82) $)) (-14 -2667 ((-82) $)) (-14 -3952 ((-695) $)))) (-962) (-584 (-1091))) (T -47))
-((-3177 (*1 *2 *1) (-11 (-4 *2 (-962)) (-5 *1 (-47 *2 *3)) (-13 *3 (-584 (-1091))))) (-1456 (*1 *1 *1) (-11 (-5 *1 (-47 *2 *3)) (-4 *2 (-962)) (-13 *3 (-584 (-1091))))) (-3962 (*1 *1 *1) (-11 (-5 *1 (-47 *2 *3)) (-4 *2 (-962)) (-13 *3 (-584 (-1091))))) (-3680 (*1 *2 *1 *1) (-11 (-4 *2 (-962)) (-5 *1 (-47 *2 *3)) (-13 *3 (-584 (-1091))))) (-2411 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962)) (-13 *4 (-584 (-1091))))) (-3947 (*1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-47 *3 *4)) (-4 *3 (-962)) (-13 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962)) (-13 *4 (-584 (-1091))))) (-2667 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962)) (-13 *4 (-584 (-1091))))) (-3952 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962)) (-13 *4 (-584 (-1091))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1251 (((-697) $) 8 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1252 (((-1016) $) 10 T ELT)) (-3950 (((-773) $) 15 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1253 (($ (-1016) (-697)) 16 T ELT)) (-3059 (((-82) $ $) 12 T ELT)))
-(((-48) (-12 (-1014) (-10 -8 (-14 -1253 ($ (-1016) (-697))) (-14 -1252 ((-1016) $)) (-14 -1251 ((-697) $))))) (T -48))
-((-1253 (*1 *1 *2 *3) (-11 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-48)))) (-1252 (*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-48)))) (-1251 (*1 *2 *1) (-11 (-5 *2 (-697)) (-5 *1 (-48)))))
-((-2667 (((-82) (-48)) 18 T ELT)) (-3160 (((-3 |#1| "failed") (-48)) 20 T ELT)) (-3159 ((|#1| (-48)) 21 T ELT)) (-3950 (((-48) |#1|) 14 T ELT)))
-(((-49 |#1|) (-10 -7 (-14 -3950 ((-48) |#1|)) (-14 -3160 ((-3 |#1| "failed") (-48))) (-14 -2667 ((-82) (-48))) (-14 -3159 (|#1| (-48)))) (-1130)) (T -49))
-((-3159 (*1 *2 *3) (-11 (-5 *3 (-48)) (-5 *1 (-49 *2)) (-4 *2 (-1130)))) (-2667 (*1 *2 *3) (-11 (-5 *3 (-48)) (-5 *2 (-82)) (-5 *1 (-49 *4)) (-4 *4 (-1130)))) (-3160 (*1 *2 *3) (|partial| -11 (-5 *3 (-48)) (-5 *1 (-49 *2)) (-4 *2 (-1130)))) (-3950 (*1 *2 *3) (-11 (-5 *2 (-48)) (-5 *1 (-49 *3)) (-4 *3 (-1130)))))
-((-2548 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
-(((-50 |#1| |#2| |#3|) (-10 -7 (-14 -2548 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -50))
-((-2548 (*1 *2 *3 *4 *2) (-11 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-50 *5 *2 *3)) (-4 *3 (-762 *5)))))
-((-1255 ((|#3| |#3| (-584 (-1091))) 44 T ELT)) (-1254 ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
-(((-51 |#1| |#2| |#3|) (-10 -7 (-14 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|)) (-14 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831))) (-14 -1255 (|#3| |#3| (-584 (-1091))))) (-1014) (-12 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-12 (-363 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -51))
-((-1255 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-51 *4 *5 *2)) (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))))) (-1254 (*1 *2 *3 *2 *4) (-11 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) (-4 *6 (-12 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-12 (-363 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-51 *5 *6 *2)))) (-1254 (*1 *2 *3 *2) (-11 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-51 *4 *5 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 13 T ELT)) (-3160 (((-3 (-695) "failed") $) 31 T ELT)) (-3159 (((-695) $) NIL T ELT)) (-2412 (((-82) $) 15 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) 17 T ELT)) (-3950 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1256 (($) 10 T CONST)) (-3059 (((-82) $ $) 19 T ELT)))
-(((-52) (-12 (-1014) (-951 (-695)) (-10 -8 (-14 -1256 ($) -3956) (-14 -3191 ((-82) $)) (-14 -2412 ((-82) $))))) (T -52))
-((-1256 (*1 *1) (-5 *1 (-52))) (-3191 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-52)))) (-2412 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-52)))))
-((-1258 (($ $ (-485) |#3|) 46 T ELT)) (-1257 (($ $ (-485) |#4|) 50 T ELT)) (-2611 (((-584 |#2|) $) 41 T ELT)) (-3248 (((-82) |#2| $) 55 T ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 21 T ELT)) (-3803 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1732 (((-695) (-1 (-82) |#2|) $) 35 T ELT) (((-695) |#2| $) 57 T ELT)) (-3950 (((-773) $) 63 T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) 20 T ELT)) (-3059 (((-82) $ $) 54 T ELT)) (-3961 (((-695) $) 26 T ELT)))
-(((-53 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -1257 (|#1| |#1| (-485) |#4|)) (-14 -1258 (|#1| |#1| (-485) |#3|)) (-14 -3803 (|#2| |#1| (-485) (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485) (-485))) (-14 -3248 ((-82) |#2| |#1|)) (-14 -1732 ((-695) |#2| |#1|)) (-14 -2611 ((-584 |#2|) |#1|)) (-14 -1732 ((-695) (-1 (-82) |#2|) |#1|)) (-14 -1733 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -1734 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -3961 ((-695) |#1|))) (-54 |#2| |#3| |#4|) (-1130) (-323 |#2|) (-323 |#2|)) (T -53))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) 52 T ELT)) (-1258 (($ $ (-485) |#2|) 50 T ELT)) (-1257 (($ $ (-485) |#3|) 49 T ELT)) (-3727 (($) 6 T CONST)) (-3114 ((|#2| $ (-485)) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-3115 ((|#1| $ (-485) (-485)) 56 T ELT)) (-3117 (((-695) $) 59 T ELT)) (-3617 (($ (-695) (-695) |#1|) 65 T ELT)) (-3116 (((-695) $) 58 T ELT)) (-3121 (((-485) $) 63 T ELT)) (-3119 (((-485) $) 61 T ELT)) (-2611 (((-584 |#1|) $) 40 T ELT)) (-3248 (((-82) |#1| $) 35 (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) 62 T ELT)) (-3118 (((-485) $) 60 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 37 T ELT)) (-2201 (($ $ |#1|) 64 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 42 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) (-485)) 57 T ELT) ((|#1| $ (-485) (-485) |#1|) 55 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) 41 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-69)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-485)) 53 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 43 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-54 |#1| |#2| |#3|) (-110) (-1130) (-323 |t#1|) (-323 |t#1|)) (T -54))
-((-3617 (*1 *1 *2 *2 *3) (-11 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-54 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2201 (*1 *1 *1 *2) (-11 (-4 *1 (-54 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3121 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-485)))) (-3120 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-695)))) (-3116 (*1 *2 *1) (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-695)))) (-3803 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1130)))) (-3115 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1 *3 *3 *2) (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-3114 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-54 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3113 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-54 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3791 (*1 *2 *1 *3 *3 *2) (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1258 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-485)) (-4 *1 (-54 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-323 *4)) (-4 *5 (-323 *4)))) (-1257 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-485)) (-4 *1 (-54 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-323 *4)) (-4 *3 (-323 *4)))) (-3846 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3846 (*1 *1 *2 *1 *1 *3) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))))
-(-12 (-317 |t#1|) (-1036 |t#1|) (-10 -8 (-14 -3617 ($ (-695) (-695) |t#1|)) (-14 -2201 ($ $ |t#1|)) (-14 -3121 ((-485) $)) (-14 -3120 ((-485) $)) (-14 -3119 ((-485) $)) (-14 -3118 ((-485) $)) (-14 -3117 ((-695) $)) (-14 -3116 ((-695) $)) (-14 -3803 (|t#1| $ (-485) (-485))) (-14 -3115 (|t#1| $ (-485) (-485))) (-14 -3803 (|t#1| $ (-485) (-485) |t#1|)) (-14 -3114 (|t#2| $ (-485))) (-14 -3113 (|t#3| $ (-485))) (-14 -3791 (|t#1| $ (-485) (-485) |t#1|)) (-14 -1577 (|t#1| $ (-485) (-485) |t#1|)) (-14 -1258 ($ $ (-485) |t#2|)) (-14 -1257 ($ $ (-485) |t#3|)) (-14 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-14 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-1259 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3617 (($ (-695) |#1|) 13 T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 10 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-55 |#1|) (-12 (-16 |#1|) (-10 -8 (-14 -1259 ($ (-584 |#1|))) (-14 -1259 ($ (-695) |#1|)))) (-1130)) (T -55))
-((-1259 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-55 *3)))) (-1259 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *1 (-55 *3)) (-4 *3 (-1130)))))
-((-3844 (((-55 |#2|) (-1 |#2| |#1| |#2|) (-55 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-55 |#1|) |#2|) 18 T ELT)) (-3846 (((-55 |#2|) (-1 |#2| |#1|) (-55 |#1|)) 13 T ELT)))
-(((-56 |#1| |#2|) (-10 -7 (-14 -3844 ((-55 |#2|) (-1 |#2| |#1| |#2|) (-55 |#1|) |#2|)) (-14 -3845 (|#2| (-1 |#2| |#1| |#2|) (-55 |#1|) |#2|)) (-14 -3846 ((-55 |#2|) (-1 |#2| |#1|) (-55 |#1|)))) (-1130) (-1130)) (T -56))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-55 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-55 *6)) (-5 *1 (-56 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-55 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-56 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-55 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-55 *5)) (-5 *1 (-56 *6 *5)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-55 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-55 |#1|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 (((-55 |#1|) $ (-485)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3117 (((-695) $) NIL T ELT)) (-3617 (($ (-695) (-695) |#1|) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3121 (((-485) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-55 |#1|) $ (-485)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-57 |#1|) (-54 |#1| (-55 |#1|) (-55 |#1|)) (-1130)) (T -57))
-NIL
-((-1261 (((-1180 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1260 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1262 (((-2 (|:| |minor| (-584 (-831))) (|:| -3269 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-311)) ELT)))
-(((-58 |#1| |#2|) (-10 -7 (-14 -1260 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831))) (-14 -1261 ((-1180 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-311)) (-14 -1262 ((-2 (|:| |minor| (-584 (-831))) (|:| -3269 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-496) (-601 |#1|)) (T -58))
-((-1262 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3269 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-58 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1261 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-58 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1260 (*1 *2 *3 *4) (-11 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) (-5 *1 (-58 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 37 T ELT)) (-3327 ((|#1| $) 35 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-3612 (($ |#1| $) 38 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 20 T ELT)) (-3568 (($) 46 T ELT)) (-3325 (((-695) $) 33 T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 19 T ELT)) (-3950 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1263 (($ (-584 |#1|)) 44 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 14 T ELT)))
-(((-59 |#1|) (-12 (-1035 |#1|) (-10 -8 (-14 -1263 ($ (-584 |#1|))))) (-1014)) (T -59))
-((-1263 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-59 *3)))))
-((-3950 (((-773) $) 13 T ELT) (($ (-1096)) 9 T ELT) (((-1096) $) 8 T ELT)))
-(((-60 |#1|) (-10 -7 (-14 -3950 ((-1096) |#1|)) (-14 -3950 (|#1| (-1096))) (-14 -3950 ((-773) |#1|))) (-61)) (T -60))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-61) (-110)) (T -61))
-NIL
-(-12 (-1014) (-430 (-1096)))
-(((-69) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3491 (($ $) 10 T ELT)) (-3492 (($ $) 12 T ELT)))
-(((-62 |#1|) (-10 -7 (-14 -3492 (|#1| |#1|)) (-14 -3491 (|#1| |#1|))) (-63)) (T -62))
-NIL
-((-3489 (($ $) 11 T ELT)) (-3487 (($ $) 10 T ELT)) (-3491 (($ $) 9 T ELT)) (-3492 (($ $) 8 T ELT)) (-3490 (($ $) 7 T ELT)) (-3488 (($ $) 6 T ELT)))
-(((-63) (-110)) (T -63))
-((-3489 (*1 *1 *1) (-4 *1 (-63))) (-3487 (*1 *1 *1) (-4 *1 (-63))) (-3491 (*1 *1 *1) (-4 *1 (-63))) (-3492 (*1 *1 *1) (-4 *1 (-63))) (-3490 (*1 *1 *1) (-4 *1 (-63))) (-3488 (*1 *1 *1) (-4 *1 (-63))))
-(-12 (-10 -8 (-14 -3488 ($ $)) (-14 -3490 ($ $)) (-14 -3492 ($ $)) (-14 -3491 ($ $)) (-14 -3487 ($ $)) (-14 -3489 ($ $))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3545 (((-1050) $) 11 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-64) (-12 (-996) (-10 -8 (-14 -3545 ((-1050) $))))) (T -64))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-64)))))
-NIL
-(((-65) (-110)) (T -65))
-NIL
-(-12 (-10 -7 (-6 (-3997 "*")) (-6 -3994) (-6 -3992) (-6 -3991) (-6 -3990) (-6 -3995) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3993) (-6 -3996) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3984)))
-((-2571 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1264 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $ |#1|) 13 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 8 T CONST)) (-3059 (((-82) $ $) 10 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
-(((-66 |#1|) (-12 (-413) (-240 |#1| |#1|) (-10 -8 (-14 -1264 ($ (-1 |#1| |#1|))) (-14 -1264 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-14 -1264 ($ (-1 |#1| |#1| (-485)))))) (-962)) (T -66))
-((-1264 (*1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-66 *3)))) (-1264 (*1 *1 *2 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-66 *3)))) (-1264 (*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-66 *3)))))
-((-1265 (((-347 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-347 |#2|) |#2| |#2|) 11 T ELT)))
-(((-67 |#1| |#2|) (-10 -7 (-14 -1265 ((-347 |#2|) |#2| |#2|)) (-14 -1265 ((-347 |#2|) |#2| (-584 |#2|)))) (-12 (-392) (-117)) (-1156 |#1|)) (T -67))
-((-1265 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-12 (-392) (-117))) (-5 *2 (-347 *3)) (-5 *1 (-67 *5 *3)))) (-1265 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-392) (-117))) (-5 *2 (-347 *3)) (-5 *1 (-67 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) 13 T ELT)) (-1266 (((-82) $ $) 14 T ELT)) (-3059 (((-82) $ $) 11 T ELT)))
-(((-68 |#1|) (-10 -7 (-14 -1266 ((-82) |#1| |#1|)) (-14 -2571 ((-82) |#1| |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-69)) (T -68))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-69) (-110)) (T -69))
-((-3059 (*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82)))) (-2571 (*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82)))) (-1266 (*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82)))))
-(-12 (-1130) (-10 -8 (-14 -3059 ((-82) $ $)) (-14 -2571 ((-82) $ $)) (-14 -1266 ((-82) $ $))))
-(((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3028 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1269 (($ $ (-584 |#1|)) 30 T ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 12 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1303 (($ $ |#1| $) 32 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-1268 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1267 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 11 T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) 13 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 9 T ELT)) (-3568 (($) 31 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1270 (($ (-695) |#1|) 33 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-70 |#1|) (-12 (-95 |#1|) (-10 -8 (-14 -1270 ($ (-695) |#1|)) (-14 -1269 ($ $ (-584 |#1|))) (-14 -1268 (|#1| $ (-1 |#1| |#1| |#1|))) (-14 -1268 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-14 -1267 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-14 -1267 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -70))
-((-1270 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *1 (-70 *3)) (-4 *3 (-1014)))) (-1269 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-70 *3)))) (-1268 (*1 *2 *1 *3) (-11 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-70 *2)) (-4 *2 (-1014)))) (-1268 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-70 *3)))) (-1267 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-70 *2)))) (-1267 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-70 *2)))))
-((-1271 ((|#3| |#2| |#2|) 34 T ELT)) (-1273 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-1272 ((|#3| |#2| |#2|) 36 T ELT)) (-1274 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3997 #1#))) ELT)))
-(((-71 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -1271 (|#3| |#2| |#2|)) (-14 -1272 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3997 "*"))) (PROGN (-14 -1273 (|#1| |#2| |#2|)) (-14 -1274 (|#1| |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-628 |#1| |#4| |#5|) (-323 |#1|) (-323 |#1|)) (T -71))
-((-1274 (*1 *2 *3) (-11 (|has| *2 (-6 (-3997 #1="*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-962)) (-5 *1 (-71 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-11 (|has| *2 (-6 (-3997 #1#))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-962)) (-5 *1 (-71 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-11 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-71 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-1271 (*1 *2 *3 *3) (-11 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-71 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
-((-1277 (($ (-584 |#2|)) 11 T ELT)))
-(((-72 |#1| |#2|) (-10 -7 (-14 -1277 (|#1| (-584 |#2|)))) (-73 |#2|) (-1130)) (T -72))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-73 |#1|) (-110) (-1130)) (T -73))
-((-1277 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-73 *3)))) (-1276 (*1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130)))) (-3612 (*1 *1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130)))) (-1275 (*1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130)))))
-(-12 (-429 |t#1|) (-1036 |t#1|) (-10 -8 (-14 -1277 ($ (-584 |t#1|))) (-14 -1276 (|t#1| $)) (-14 -3612 ($ |t#1| $)) (-14 -1275 (|t#1| $))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3159 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-485) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-485) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-485) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-485) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-485) (-257)) ELT) (((-349 (-485)) $) NIL T ELT)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-248 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-248 (-485)))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-485)) NIL (|has| (-485) (-240 (-485) (-485))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-485) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-485) (-934)) ELT) (((-178) $) NIL (|has| (-485) (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-485) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-485) (-822))) (|has| (-485) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2031 (($ (-349 (-485))) 9 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-74) (-12 (-905 (-485)) (-553 (-349 (-485))) (-553 (-918 2)) (-10 -8 (-14 -3131 ((-349 (-485)) $)) (-14 -2031 ($ (-349 (-485))))))) (T -74))
-((-3131 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-74)))) (-2031 (*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-74)))))
-((-1289 (((-584 (-877)) $) 14 T ELT)) (-3545 (((-447) $) 12 T ELT)) (-3950 (((-773) $) 21 T ELT)) (-1278 (($ (-447) (-584 (-877))) 16 T ELT)))
-(((-75) (-12 (-553 (-773)) (-10 -8 (-14 -3545 ((-447) $)) (-14 -1289 ((-584 (-877)) $)) (-14 -1278 ($ (-447) (-584 (-877))))))) (T -75))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-75)))) (-1289 (*1 *2 *1) (-11 (-5 *2 (-584 (-877))) (-5 *1 (-75)))) (-1278 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-75)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1279 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-76 |#1|) (-12 (-77 |#1|) (-1014) (-10 -8 (-14 -1279 ($ (-1 |#1| |#1| |#1|))))) (-1130)) (T -76))
-((-1279 (*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-76 *3)))))
-((-3803 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-77 |#1|) (-110) (-1130)) (T -77))
-NIL
-(-12 (|MappingCategory| |t#1| |t#1| |t#1|))
-(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3324 (($ $ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-82))) ELT)) (-1737 (((-82) $) NIL (|has| (-82) (-757)) ELT) (((-82) (-1 (-82) (-82) (-82)) $) NIL T ELT)) (-1735 (($ $) NIL (-11 (|has| $ (-1036 (-82))) (|has| (-82) (-757))) ELT) (($ (-1 (-82) (-82) (-82)) $) NIL (|has| $ (-1036 (-82))) ELT)) (-2912 (($ $) NIL (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $) NIL T ELT)) (-3791 (((-82) $ (-1147 (-485)) (-82)) NIL (|has| $ (-1036 (-82))) ELT) (((-82) $ (-485) (-82)) NIL (|has| $ (-1036 (-82))) ELT)) (-3713 (($ (-1 (-82) (-82)) $) NIL (|has| $ (-317 (-82))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 (-82))) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-3409 (($ (-1 (-82) (-82)) $) NIL (|has| $ (-317 (-82))) ELT) (($ (-82) $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-3845 (((-82) (-1 (-82) (-82) (-82)) $) NIL T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82)) NIL T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82) (-82)) NIL (|has| (-82) (-69)) ELT)) (-1577 (((-82) $ (-485) (-82)) NIL (|has| $ (-1036 (-82))) ELT)) (-3115 (((-82) $ (-485)) NIL T ELT)) (-3422 (((-485) (-82) $ (-485)) NIL (|has| (-82) (-69)) ELT) (((-485) (-82) $) NIL (|has| (-82) (-69)) ELT) (((-485) (-1 (-82) (-82)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3617 (($ (-695) (-82)) 10 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $ $) NIL T ELT)) (-2611 (((-584 (-82)) $) NIL T ELT)) (-3248 (((-82) (-82) $) NIL (|has| (-82) (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-82) (-82)) $) NIL T ELT)) (-3846 (($ (-1 (-82) (-82) (-82)) $ $) NIL T ELT) (($ (-1 (-82) (-82)) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ (-82) $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-82) $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-82) "failed") (-1 (-82) (-82)) $) NIL T ELT)) (-2201 (($ $ (-82)) NIL (|has| $ (-1036 (-82))) ELT)) (-1733 (((-82) (-1 (-82) (-82)) $) NIL T ELT)) (-3771 (($ $ (-584 (-82)) (-584 (-82))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-82) (-82)) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-248 (-82))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-584 (-248 (-82)))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) (-82) $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-2207 (((-584 (-82)) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (($ $ (-1147 (-485))) NIL T ELT) (((-82) $ (-485)) NIL T ELT) (((-82) $ (-485) (-82)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1732 (((-695) (-1 (-82) (-82)) $) NIL T ELT) (((-695) (-82) $) NIL (|has| (-82) (-69)) ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 (-82))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-82) (-554 (-474))) ELT)) (-3533 (($ (-584 (-82))) NIL T ELT)) (-3805 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-82) $) NIL T ELT) (($ $ (-82)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1774 (($ (-695) (-82)) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-82)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-78) (-12 (-93) (-10 -8 (-14 -1774 ($ (-695) (-82)))))) (T -78))
-((-1774 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-82)) (-5 *1 (-78)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-79 |#1| |#2|) (-110) (-962) (-962)) (T -79))
-NIL
-(-12 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3992) (-6 -3991)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T))
-((-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-2565 (($ $ $) 10 T ELT)))
-(((-80 |#1|) (-10 -7 (-14 -2564 (|#1| |#1| |#1|)) (-14 -2565 (|#1| |#1| |#1|)) (-14 -2563 (|#1| |#1|))) (-81)) (T -80))
-NIL
-((-2315 (($ $) 8 T ELT)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT)))
-(((-81) (-110)) (T -81))
-((-2563 (*1 *1 *1) (-4 *1 (-81))) (-2565 (*1 *1 *1 *1) (-4 *1 (-81))) (-2564 (*1 *1 *1 *1) (-4 *1 (-81))))
-(-12 (-605) (-10 -8 (-14 -2563 ($ $)) (-14 -2565 ($ $ $)) (-14 -2564 ($ $ $))))
-(((-12) . T) ((-605) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 9 T ELT)) (-3324 (($ $ $) 14 T ELT)) (-2858 (($) 6 T CONST)) (-3139 (((-695)) 23 T ELT)) (-2997 (($) 31 T ELT)) (-2564 (($ $ $) 12 T ELT)) (-2563 (($ $) 8 T ELT)) (-1301 (($ $ $) 15 T ELT)) (-1302 (($ $ $) 16 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) 29 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 27 T ELT)) (-2856 (($ $ $) 19 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2857 (($) 7 T CONST)) (-2855 (($ $ $) 20 T ELT)) (-3975 (((-474) $) 33 T ELT)) (-3950 (((-773) $) 35 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 13 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 18 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 21 T ELT)) (-2314 (($ $ $) 11 T ELT)))
-(((-82) (-12 (-753) (-881) (-554 (-474)) (-10 -8 (-14 -3324 ($ $ $)) (-14 -1302 ($ $ $)) (-14 -1301 ($ $ $))))) (T -82))
-((-3324 (*1 *1 *1 *1) (-5 *1 (-82))) (-1302 (*1 *1 *1 *1) (-5 *1 (-82))) (-1301 (*1 *1 *1 *1) (-5 *1 (-82))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1523 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1287 (((-82) $) 42 T ELT)) (-1281 (($ $ (-1074) (-697)) 59 T ELT) (($ $ (-447) (-697)) 34 T ELT)) (-1280 (($ $ (-42 (-1074) (-697))) 16 T ELT)) (-2844 (((-3 (-697) "failed") $ (-1074)) 27 T ELT) (((-633 (-697)) $ (-447)) 33 T ELT)) (-1289 (((-42 (-1074) (-697)) $) 15 T ELT)) (-3598 (($ (-1091)) 20 T ELT) (($ (-1091) (-695)) 23 T ELT) (($ (-1091) (-52)) 24 T ELT)) (-1288 (((-82) $) 40 T ELT)) (-1286 (((-82) $) 44 T ELT)) (-3545 (((-1091) $) 8 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2636 (((-82) $ (-1091)) 11 T ELT)) (-2130 (($ $ (-1 (-474) (-584 (-474)))) 65 T ELT) (((-633 (-1 (-474) (-584 (-474)))) $) 69 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1283 (((-82) $ (-447)) 37 T ELT)) (-1285 (($ $ (-1 (-82) $ $)) 46 T ELT)) (-3620 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1282 (($ $ (-1074)) 56 T ELT) (($ $ (-447)) 57 T ELT)) (-3403 (($ $) 75 T ELT)) (-1284 (($ $ (-1 (-82) $ $)) 47 T ELT)) (-3950 (((-773) $) 61 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2795 (($ $ (-447)) 35 T ELT)) (-2524 (((-52) $) 70 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 88 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 104 T ELT)))
-(((-83) (-12 (-757) (-748 (-1091)) (-10 -8 (-14 -1289 ((-42 (-1074) (-697)) $)) (-14 -3403 ($ $)) (-14 -3598 ($ (-1091))) (-14 -3598 ($ (-1091) (-695))) (-14 -3598 ($ (-1091) (-52))) (-14 -1288 ((-82) $)) (-14 -1287 ((-82) $)) (-14 -1286 ((-82) $)) (-14 -1523 ((-695) $)) (-14 -1523 ($ $ (-695))) (-14 -1285 ($ $ (-1 (-82) $ $))) (-14 -1284 ($ $ (-1 (-82) $ $))) (-14 -3620 ((-633 (-1 (-773) (-584 (-773)))) $)) (-14 -3620 ($ $ (-1 (-773) (-584 (-773))))) (-14 -3620 ($ $ (-1 (-773) (-773)))) (-14 -2130 ($ $ (-1 (-474) (-584 (-474))))) (-14 -2130 ((-633 (-1 (-474) (-584 (-474)))) $)) (-14 -1283 ((-82) $ (-447))) (-14 -2795 ($ $ (-447))) (-14 -1282 ($ $ (-1074))) (-14 -1282 ($ $ (-447))) (-14 -2844 ((-3 (-697) "failed") $ (-1074))) (-14 -2844 ((-633 (-697)) $ (-447))) (-14 -1281 ($ $ (-1074) (-697))) (-14 -1281 ($ $ (-447) (-697))) (-14 -1280 ($ $ (-42 (-1074) (-697))))))) (T -83))
-((-1289 (*1 *2 *1) (-11 (-5 *2 (-42 (-1074) (-697))) (-5 *1 (-83)))) (-3403 (*1 *1 *1) (-5 *1 (-83))) (-3598 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-83)))) (-3598 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-83)))) (-3598 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-52)) (-5 *1 (-83)))) (-1288 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))) (-1287 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))) (-1286 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))) (-1523 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-83)))) (-1523 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-83)))) (-1285 (*1 *1 *1 *2) (-11 (-5 *2 (-1 (-82) (-83) (-83))) (-5 *1 (-83)))) (-1284 (*1 *1 *1 *2) (-11 (-5 *2 (-1 (-82) (-83) (-83))) (-5 *1 (-83)))) (-3620 (*1 *2 *1) (-11 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-83)))) (-3620 (*1 *1 *1 *2) (-11 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-83)))) (-3620 (*1 *1 *1 *2) (-11 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-83)))) (-2130 (*1 *1 *1 *2) (-11 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-83)))) (-2130 (*1 *2 *1) (-11 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-83)))) (-1283 (*1 *2 *1 *3) (-11 (-5 *3 (-447)) (-5 *2 (-82)) (-5 *1 (-83)))) (-2795 (*1 *1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-83)))) (-1282 (*1 *1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-83)))) (-1282 (*1 *1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-83)))) (-2844 (*1 *2 *1 *3) (|partial| -11 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-83)))) (-2844 (*1 *2 *1 *3) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-83)))) (-1281 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-83)))) (-1281 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-83)))) (-1280 (*1 *1 *1 *2) (-11 (-5 *2 (-42 (-1074) (-697))) (-5 *1 (-83)))))
-((-2521 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-83)) 23 T ELT) (((-83) (-83) (-1 |#1| |#1|)) 13 T ELT) (((-83) (-83) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-83) (-584 |#1|)) 25 T ELT)) (-1290 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-83)) 29 T ELT) (((-83) (-83) (-1 |#1| |#1|)) 33 T ELT) (((-83) (-83) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1291 (((-83) |#1|) 63 T ELT)) (-1292 (((-3 |#1| #1#) (-83)) 58 T ELT)))
-(((-84 |#1|) (-10 -7 (-14 -2521 ((-3 |#1| #1="failed") (-83) (-584 |#1|))) (-14 -2521 ((-83) (-83) (-1 |#1| (-584 |#1|)))) (-14 -2521 ((-83) (-83) (-1 |#1| |#1|))) (-14 -2521 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-83))) (-14 -1290 ((-83) (-83) (-584 (-1 |#1| (-584 |#1|))))) (-14 -1290 ((-83) (-83) (-1 |#1| |#1|))) (-14 -1290 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-83))) (-14 -1291 ((-83) |#1|)) (-14 -1292 ((-3 |#1| #1#) (-83)))) (-1014)) (T -84))
-((-1292 (*1 *2 *3) (|partial| -11 (-5 *3 (-83)) (-5 *1 (-84 *2)) (-4 *2 (-1014)))) (-1291 (*1 *2 *3) (-11 (-5 *2 (-83)) (-5 *1 (-84 *3)) (-4 *3 (-1014)))) (-1290 (*1 *2 *3) (|partial| -11 (-5 *3 (-83)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-84 *4)) (-4 *4 (-1014)))) (-1290 (*1 *2 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-84 *4)))) (-1290 (*1 *2 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-84 *4)))) (-2521 (*1 *2 *3) (|partial| -11 (-5 *3 (-83)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-84 *4)) (-4 *4 (-1014)))) (-2521 (*1 *2 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-84 *4)))) (-2521 (*1 *2 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-84 *4)))) (-2521 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-83)) (-5 *4 (-584 *2)) (-5 *1 (-84 *2)) (-4 *2 (-1014)))))
-((-1293 (((-485) |#2|) 41 T ELT)))
-(((-85 |#1| |#2|) (-10 -7 (-14 -1293 ((-485) |#2|))) (-12 (-311) (-951 (-349 (-485)))) (-1156 |#1|)) (T -85))
-((-1293 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-951 (-349 *2)))) (-5 *2 (-485)) (-5 *1 (-85 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-485)) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3775 (((-695) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2617 (((-485)) NIL T ELT)) (-2616 (((-485) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-485)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1070 (-485)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-485) $ (-485)) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-86 |#1|) (-780 |#1|) (-485)) (T -86))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-86 |#1|) $) NIL (|has| (-86 |#1|) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-86 |#1|) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-86 |#1|) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-86 |#1|) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-86 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-86 |#1|) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-86 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-86 |#1|) (-951 (-485))) ELT)) (-3159 (((-86 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-86 |#1|) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-86 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-86 |#1|) (-951 (-485))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-86 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-86 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-86 |#1|))) (|:| |vec| (-1180 (-86 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-86 |#1|)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-86 |#1|) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-86 |#1|) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-86 |#1|) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-86 |#1|) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-86 |#1|) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| (-86 |#1|) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-86 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-3846 (($ (-1 (-86 |#1|) (-86 |#1|)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-86 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-86 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-86 |#1|))) (|:| |vec| (-1180 (-86 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-86 |#1|)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-86 |#1|) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-86 |#1|) (-257)) ELT)) (-3133 (((-86 |#1|) $) NIL (|has| (-86 |#1|) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-86 |#1|) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-86 |#1|) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-86 |#1|)) (-584 (-86 |#1|))) NIL (|has| (-86 |#1|) (-259 (-86 |#1|))) ELT) (($ $ (-86 |#1|) (-86 |#1|)) NIL (|has| (-86 |#1|) (-259 (-86 |#1|))) ELT) (($ $ (-248 (-86 |#1|))) NIL (|has| (-86 |#1|) (-259 (-86 |#1|))) ELT) (($ $ (-584 (-248 (-86 |#1|)))) NIL (|has| (-86 |#1|) (-259 (-86 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-86 |#1|))) NIL (|has| (-86 |#1|) (-456 (-1091) (-86 |#1|))) ELT) (($ $ (-1091) (-86 |#1|)) NIL (|has| (-86 |#1|) (-456 (-1091) (-86 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-86 |#1|)) NIL (|has| (-86 |#1|) (-240 (-86 |#1|) (-86 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-86 |#1|) (-86 |#1|))) NIL T ELT) (($ $ (-1 (-86 |#1|) (-86 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-86 |#1|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-86 |#1|) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-86 |#1|) $) NIL T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-86 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-86 |#1|) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-86 |#1|) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-86 |#1|) (-934)) ELT) (((-178) $) NIL (|has| (-86 |#1|) (-934)) ELT)) (-2619 (((-147 (-349 (-485))) $) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-86 |#1|) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-86 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-86 |#1|) (-951 (-1091))) ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-86 |#1|) (-822))) (|has| (-86 |#1|) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-86 |#1|) $) NIL (|has| (-86 |#1|) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-349 (-485)) $ (-485)) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-86 |#1|) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-86 |#1|) (-86 |#1|))) NIL T ELT) (($ $ (-1 (-86 |#1|) (-86 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-86 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-86 |#1|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-86 |#1|) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-86 |#1|) (-757)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-86 |#1|) (-86 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-86 |#1|) $) NIL T ELT) (($ $ (-86 |#1|)) NIL T ELT)))
-(((-87 |#1|) (-12 (-905 (-86 |#1|)) (-10 -8 (-14 -3773 ((-349 (-485)) $ (-485))) (-14 -2619 ((-147 (-349 (-485))) $)) (-14 -3733 ($ $)) (-14 -3733 ($ (-485) $)))) (-485)) (T -87))
-((-3773 (*1 *2 *1 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-87 *4)) (-13 *4 *3) (-5 *3 (-485)))) (-2619 (*1 *2 *1) (-11 (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-87 *3)) (-13 *3 (-485)))) (-3733 (*1 *1 *1) (-11 (-5 *1 (-87 *2)) (-13 *2 (-485)))) (-3733 (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-87 *3)) (-13 *3 *2))))
-((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3034 (((-584 $) $) 31 T ELT)) (-3030 (((-82) $ $) 36 T ELT)) (-3033 (((-584 |#2|) $) 25 T ELT)) (-3530 (((-82) $) 18 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3636 (((-82) $) 55 T ELT)) (-3950 (((-773) $) 46 T ELT)) (-3525 (((-584 $) $) 32 T ELT)) (-3059 (((-82) $ $) 38 T ELT)))
-(((-88 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3791 (|#1| |#1| #1="right" |#1|)) (-14 -3791 (|#1| |#1| #2="left" |#1|)) (-14 -3803 (|#1| |#1| #1#)) (-14 -3803 (|#1| |#1| #2#)) (-14 -3791 (|#2| |#1| #3="value" |#2|)) (-14 -3030 ((-82) |#1| |#1|)) (-14 -3033 ((-584 |#2|) |#1|)) (-14 -3636 ((-82) |#1|)) (-14 -3803 (|#2| |#1| #3#)) (-14 -3530 ((-82) |#1|)) (-14 -3034 ((-584 |#1|) |#1|)) (-14 -3525 ((-584 |#1|) |#1|))) (-89 |#2|) (-1130)) (T -88))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1036 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-89 |#1|) (-110) (-1130)) (T -89))
-((-3141 (*1 *1 *1) (-11 (-4 *1 (-89 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 "left") (-4 *1 (-89 *3)) (-4 *3 (-1130)))) (-3140 (*1 *1 *1) (-11 (-4 *1 (-89 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 "right") (-4 *1 (-89 *3)) (-4 *3 (-1130)))) (-3791 (*1 *1 *1 *2 *1) (-11 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-89 *3)) (-4 *3 (-1130)))) (-1295 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-89 *2)) (-4 *2 (-1130)))) (-3791 (*1 *1 *1 *2 *1) (-11 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-89 *3)) (-4 *3 (-1130)))) (-1294 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-89 *2)) (-4 *2 (-1130)))))
-(-12 (-924 |t#1|) (-10 -8 (-14 -3141 ($ $)) (-14 -3803 ($ $ "left")) (-14 -3140 ($ $)) (-14 -3803 ($ $ "right")) (IF (|has| $ (-1036 |t#1|)) (PROGN (-14 -3791 ($ $ "left" $)) (-14 -1295 ($ $ $)) (-14 -3791 ($ $ "right" $)) (-14 -1294 ($ $ $))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-1298 (((-82) |#1|) 29 T ELT)) (-1297 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1296 (((-82) |#1| (-82)) 30 T ELT) (((-82) |#1|) 31 T ELT)))
-(((-90 |#1|) (-10 -7 (-14 -1296 ((-82) |#1|)) (-14 -1296 ((-82) |#1| (-82))) (-14 -1297 ((-695))) (-14 -1297 ((-695) (-695))) (-14 -1298 ((-82) |#1|))) (-1156 (-485))) (T -90))
-((-1298 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2 *2) (-11 (-5 *2 (-695)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3421 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 20 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1303 (($ $ |#1| $) 27 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 22 T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1299 (($ |#1| $) 28 T ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1300 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-91 |#1|) (-12 (-95 |#1|) (-10 -8 (-14 -1300 ($ (-584 |#1|))) (-14 -3612 ($ |#1| $)) (-14 -1299 ($ |#1| $)) (-14 -3421 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -91))
-((-1300 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-91 *3)))) (-3612 (*1 *1 *2 *1) (-11 (-5 *1 (-91 *2)) (-4 *2 (-757)))) (-1299 (*1 *1 *2 *1) (-11 (-5 *1 (-91 *2)) (-4 *2 (-757)))) (-3421 (*1 *2 *3 *1) (-11 (-5 *2 (-2 (|:| |less| (-91 *3)) (|:| |greater| (-91 *3)))) (-5 *1 (-91 *3)) (-4 *3 (-757)))))
-((-2315 (($ $) 13 T ELT)) (-2563 (($ $) 11 T ELT)) (-1301 (($ $ $) 23 T ELT)) (-1302 (($ $ $) 21 T ELT)) (-2313 (($ $ $) 19 T ELT)) (-2314 (($ $ $) 17 T ELT)))
-(((-92 |#1|) (-10 -7 (-14 -1301 (|#1| |#1| |#1|)) (-14 -1302 (|#1| |#1| |#1|)) (-14 -2315 (|#1| |#1|)) (-14 -2314 (|#1| |#1| |#1|)) (-14 -2313 (|#1| |#1| |#1|)) (-14 -2563 (|#1| |#1|))) (-93)) (T -92))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-2315 (($ $) 105 T ELT)) (-3324 (($ $ $) 34 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 60 (|has| $ (-1036 (-82))) ELT)) (-1737 (((-82) $) 99 (|has| (-82) (-757)) ELT) (((-82) (-1 (-82) (-82) (-82)) $) 93 T ELT)) (-1735 (($ $) 103 (-11 (|has| (-82) (-757)) (|has| $ (-1036 (-82)))) ELT) (($ (-1 (-82) (-82) (-82)) $) 102 (|has| $ (-1036 (-82))) ELT)) (-2912 (($ $) 98 (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $) 92 T ELT)) (-3791 (((-82) $ (-1147 (-485)) (-82)) 78 (|has| $ (-1036 (-82))) ELT) (((-82) $ (-485) (-82)) 48 (|has| $ (-1036 (-82))) ELT)) (-3713 (($ (-1 (-82) (-82)) $) 64 (|has| $ (-317 (-82))) ELT)) (-3727 (($) 41 T CONST)) (-2299 (($ $) 101 (|has| $ (-1036 (-82))) ELT)) (-2300 (($ $) 91 T ELT)) (-1354 (($ $) 62 (-11 (|has| (-82) (-69)) (|has| $ (-317 (-82)))) ELT)) (-3409 (($ (-1 (-82) (-82)) $) 65 (|has| $ (-317 (-82))) ELT) (($ (-82) $) 63 (-11 (|has| (-82) (-69)) (|has| $ (-317 (-82)))) ELT)) (-3845 (((-82) (-1 (-82) (-82) (-82)) $) 84 T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82)) 83 T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82) (-82)) 79 (|has| (-82) (-69)) ELT)) (-1577 (((-82) $ (-485) (-82)) 47 (|has| $ (-1036 (-82))) ELT)) (-3115 (((-82) $ (-485)) 49 T ELT)) (-3422 (((-485) (-82) $ (-485)) 96 (|has| (-82) (-69)) ELT) (((-485) (-82) $) 95 (|has| (-82) (-69)) ELT) (((-485) (-1 (-82) (-82)) $) 94 T ELT)) (-2564 (($ $ $) 110 T ELT)) (-2563 (($ $) 108 T ELT)) (-1301 (($ $ $) 35 T ELT)) (-3617 (($ (-695) (-82)) 68 T ELT)) (-1302 (($ $ $) 36 T ELT)) (-2202 (((-485) $) 57 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 23 T ELT)) (-3521 (($ $ $) 97 (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $ $) 90 T ELT)) (-2611 (((-584 (-82)) $) 85 T ELT)) (-3248 (((-82) (-82) $) 80 (|has| (-82) (-69)) ELT)) (-2203 (((-485) $) 56 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 22 T ELT)) (-3329 (($ (-1 (-82) (-82)) $) 104 T ELT)) (-3846 (($ (-1 (-82) (-82) (-82)) $ $) 73 T ELT) (($ (-1 (-82) (-82)) $) 42 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2306 (($ $ $ (-485)) 77 T ELT) (($ (-82) $ (-485)) 76 T ELT)) (-2205 (((-584 (-485)) $) 54 T ELT)) (-2206 (((-82) (-485) $) 53 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-82) $) 58 (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-82) "failed") (-1 (-82) (-82)) $) 82 T ELT)) (-2201 (($ $ (-82)) 59 (|has| $ (-1036 (-82))) ELT)) (-1733 (((-82) (-1 (-82) (-82)) $) 87 T ELT)) (-3771 (($ $ (-584 (-82)) (-584 (-82))) 46 (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-82) (-82)) 45 (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-248 (-82))) 44 (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-584 (-248 (-82)))) 43 (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT)) (-1223 (((-82) $ $) 37 T ELT)) (-2204 (((-82) (-82) $) 55 (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-2207 (((-584 (-82)) $) 52 T ELT)) (-3406 (((-82) $) 40 T ELT)) (-3568 (($) 39 T ELT)) (-3803 (($ $ (-1147 (-485))) 67 T ELT) (((-82) $ (-485)) 51 T ELT) (((-82) $ (-485) (-82)) 50 T ELT)) (-2307 (($ $ (-1147 (-485))) 75 T ELT) (($ $ (-485)) 74 T ELT)) (-1732 (((-695) (-1 (-82) (-82)) $) 86 T ELT) (((-695) (-82) $) 81 (|has| (-82) (-69)) ELT)) (-1736 (($ $ $ (-485)) 100 (|has| $ (-1036 (-82))) ELT)) (-3403 (($ $) 38 T ELT)) (-3975 (((-474) $) 61 (|has| (-82) (-554 (-474))) ELT)) (-3533 (($ (-584 (-82))) 66 T ELT)) (-3805 (($ (-584 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-82) $) 70 T ELT) (($ $ (-82)) 69 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-1734 (((-82) (-1 (-82) (-82)) $) 88 T ELT)) (-2565 (($ $ $) 109 T ELT)) (-2313 (($ $ $) 107 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-2314 (($ $ $) 106 T ELT)) (-3961 (((-695) $) 89 T ELT)))
-(((-93) (-110)) (T -93))
-((-1302 (*1 *1 *1 *1) (-4 *1 (-93))) (-1301 (*1 *1 *1 *1) (-4 *1 (-93))) (-3324 (*1 *1 *1 *1) (-4 *1 (-93))))
-(-12 (-757) (-81) (-605) (-16 (-82)) (-10 -8 (-14 -1302 ($ $ $)) (-14 -1301 ($ $ $)) (-14 -3324 ($ $ $))))
-(((-31) . T) ((-69) . T) ((-81) . T) ((-553 (-773)) . T) ((-121 (-82)) . T) ((-554 (-474)) |has| (-82) (-554 (-474))) ((-240 (-485) (-82)) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) (-82)) . T) ((-259 (-82)) -11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ((-317 (-82)) . T) ((-323 (-82)) . T) ((-380 (-82)) . T) ((-429 (-82)) . T) ((-539 (-485) (-82)) . T) ((-456 (-82) (-82)) -11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ((-12) . T) ((-594 (-82)) . T) ((-605) . T) ((-16 (-82)) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1036 (-82)) . T) ((-1130) . T))
-((-3329 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3403 (($ $) 16 T ELT)) (-3961 (((-695) $) 25 T ELT)))
-(((-94 |#1| |#2|) (-10 -7 (-14 -3329 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3961 ((-695) |#1|)) (-14 -3403 (|#1| |#1|))) (-95 |#2|) (-1014)) (T -94))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3140 (($ $) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 67 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 66 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-1303 (($ $ |#1| $) 59 T ELT)) (-2611 (((-584 |#1|) $) 65 T ELT)) (-3248 (((-82) |#1| $) 70 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 60 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3141 (($ $) 56 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 68 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 63 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-1732 (((-695) |#1| $) 69 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 64 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 62 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 61 T ELT)))
-(((-95 |#1|) (-110) (-1014)) (T -95))
-((-1303 (*1 *1 *1 *2 *1) (-11 (-4 *1 (-95 *2)) (-4 *2 (-1014)))))
-(-12 (-89 |t#1|) (-317 |t#1|) (-1036 |t#1|) (-10 -8 (-14 -1303 ($ $ |t#1| $))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-89 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 18 T ELT)) (-3028 ((|#1| $ |#1|) 22 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1303 (($ $ |#1| $) NIL T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) NIL T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3612 (($ |#1| $) 15 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 17 T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1304 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-96 |#1|) (-12 (-95 |#1|) (-10 -8 (-14 -1304 ($ (-584 |#1|))) (-14 -3612 ($ |#1| $)))) (-757)) (T -96))
-((-1304 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-96 *3)))) (-3612 (*1 *1 *2 *1) (-11 (-5 *1 (-96 *2)) (-4 *2 (-757)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 31 T ELT)) (-3028 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 37 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 35 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1303 (($ $ |#1| $) 17 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) 26 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 21 T ELT)) (-3568 (($) 13 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1305 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 12 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-97 |#1|) (-12 (-95 |#1|) (-10 -8 (-14 -1305 ($ |#1|)) (-14 -1305 ($ $ |#1| $)))) (-1014)) (T -97))
-((-1305 (*1 *1 *2) (-11 (-5 *1 (-97 *2)) (-4 *2 (-1014)))) (-1305 (*1 *1 *1 *2 *1) (-11 (-5 *1 (-97 *2)) (-4 *2 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 32 T ELT)) (-3139 (((-695)) 17 T ELT)) (-3727 (($) 9 T CONST)) (-2997 (($) 27 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2012 (((-831) $) 25 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 23 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-3728 (($ $ $) 29 T ELT)) (-3729 (($ $ $) 28 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) 31 T ELT)) (-2569 (((-82) $ $) 14 T ELT)) (-2570 (((-82) $ $) 12 T ELT)) (-3059 (((-82) $ $) 10 T ELT)) (-2687 (((-82) $ $) 13 T ELT)) (-2688 (((-82) $ $) 11 T ELT)) (-2314 (($ $ $) 30 T ELT)))
-(((-98) (-12 (-753) (-605) (-10 -8 (-14 -1306 ($ (-695))) (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956)))) (T -98))
-((-1306 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-98)))) (-3729 (*1 *1 *1 *1) (-5 *1 (-98))) (-3728 (*1 *1 *1 *1) (-5 *1 (-98))) (-3727 (*1 *1) (-5 *1 (-98))))
-((-695) (|%ilt| |#1| 256))
-((-2571 (((-82) $ $) NIL (|has| (-98) (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-98))) ELT)) (-1737 (((-82) (-1 (-82) (-98) (-98)) $) NIL T ELT) (((-82) $) NIL (|has| (-98) (-757)) ELT)) (-1735 (($ (-1 (-82) (-98) (-98)) $) NIL (|has| $ (-1036 (-98))) ELT) (($ $) NIL (-11 (|has| $ (-1036 (-98))) (|has| (-98) (-757))) ELT)) (-2912 (($ (-1 (-82) (-98) (-98)) $) NIL T ELT) (($ $) NIL (|has| (-98) (-757)) ELT)) (-3791 (((-98) $ (-485) (-98)) 26 (|has| $ (-1036 (-98))) ELT) (((-98) $ (-1147 (-485)) (-98)) NIL (|has| $ (-1036 (-98))) ELT)) (-1307 (((-695) $ (-695)) 35 T ELT)) (-3713 (($ (-1 (-82) (-98)) $) NIL (|has| $ (-317 (-98))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 (-98))) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-98))) (|has| (-98) (-69))) ELT)) (-3409 (($ (-98) $) NIL (-11 (|has| $ (-317 (-98))) (|has| (-98) (-69))) ELT) (($ (-1 (-82) (-98)) $) NIL (|has| $ (-317 (-98))) ELT)) (-3845 (((-98) (-1 (-98) (-98) (-98)) $ (-98) (-98)) NIL (|has| (-98) (-69)) ELT) (((-98) (-1 (-98) (-98) (-98)) $ (-98)) NIL T ELT) (((-98) (-1 (-98) (-98) (-98)) $) NIL T ELT)) (-1577 (((-98) $ (-485) (-98)) 25 (|has| $ (-1036 (-98))) ELT)) (-3115 (((-98) $ (-485)) 20 T ELT)) (-3422 (((-485) (-1 (-82) (-98)) $) NIL T ELT) (((-485) (-98) $) NIL (|has| (-98) (-69)) ELT) (((-485) (-98) $ (-485)) NIL (|has| (-98) (-69)) ELT)) (-3617 (($ (-695) (-98)) 14 T ELT)) (-2202 (((-485) $) 27 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| (-98) (-757)) ELT)) (-3521 (($ (-1 (-82) (-98) (-98)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-98) (-757)) ELT)) (-2611 (((-584 (-98)) $) NIL T ELT)) (-3248 (((-82) (-98) $) NIL (|has| (-98) (-69)) ELT)) (-2203 (((-485) $) 30 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-98) (-757)) ELT)) (-3329 (($ (-1 (-98) (-98)) $) NIL T ELT)) (-3846 (($ (-1 (-98) (-98)) $) NIL T ELT) (($ (-1 (-98) (-98) (-98)) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| (-98) (-1014)) ELT)) (-2306 (($ (-98) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| (-98) (-1014)) ELT)) (-3804 (((-98) $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-98) "failed") (-1 (-82) (-98)) $) NIL T ELT)) (-2201 (($ $ (-98)) NIL (|has| $ (-1036 (-98))) ELT)) (-1733 (((-82) (-1 (-82) (-98)) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-98)))) NIL (-11 (|has| (-98) (-259 (-98))) (|has| (-98) (-1014))) ELT) (($ $ (-248 (-98))) NIL (-11 (|has| (-98) (-259 (-98))) (|has| (-98) (-1014))) ELT) (($ $ (-98) (-98)) NIL (-11 (|has| (-98) (-259 (-98))) (|has| (-98) (-1014))) ELT) (($ $ (-584 (-98)) (-584 (-98))) NIL (-11 (|has| (-98) (-259 (-98))) (|has| (-98) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) (-98) $) NIL (-11 (|has| $ (-317 (-98))) (|has| (-98) (-69))) ELT)) (-2207 (((-584 (-98)) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 12 T ELT)) (-3803 (((-98) $ (-485) (-98)) NIL T ELT) (((-98) $ (-485)) 23 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) (-98) $) NIL (|has| (-98) (-69)) ELT) (((-695) (-1 (-82) (-98)) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 (-98))) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-98) (-554 (-474))) ELT)) (-3533 (($ (-584 (-98))) 41 T ELT)) (-3805 (($ $ (-98)) NIL T ELT) (($ (-98) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-870 (-98)) $) 36 T ELT) (((-1074) $) 38 T ELT) (((-773) $) NIL (|has| (-98) (-553 (-773))) ELT)) (-1308 (((-695) $) 18 T ELT)) (-1309 (($ (-695)) 8 T ELT)) (-1266 (((-82) $ $) NIL (|has| (-98) (-69)) ELT)) (-1734 (((-82) (-1 (-82) (-98)) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| (-98) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-98) (-757)) ELT)) (-3059 (((-82) $ $) 33 (|has| (-98) (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| (-98) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-98) (-757)) ELT)) (-3961 (((-695) $) 15 T ELT)))
-(((-99) (-12 (-16 (-98)) (-553 (-870 (-98))) (-553 (-1074)) (-10 -8 (-14 -1309 ($ (-695))) (-14 -1308 ((-695) $)) (-14 -1307 ((-695) $ (-695)))))) (T -99))
-((-1309 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-99)))) (-1308 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-99)))) (-1307 (*1 *2 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-99)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1310 (($) 6 T CONST)) (-1312 (($) 7 T CONST)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 14 T ELT)) (-1311 (($) 8 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 10 T ELT)))
-(((-100) (-12 (-1014) (-10 -8 (-14 -1312 ($) -3956) (-14 -1311 ($) -3956) (-14 -1310 ($) -3956)))) (T -100))
-((-1312 (*1 *1) (-5 *1 (-100))) (-1311 (*1 *1) (-5 *1 (-100))) (-1310 (*1 *1) (-5 *1 (-100))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
-(((-101) (-110)) (T -101))
-((-1313 (*1 *1 *1 *1) (|partial| -4 *1 (-101))))
-(-12 (-20) (-10 -8 (-14 -1313 ((-3 $ "failed") $ $))))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-1314 (((-1186) $ (-695)) 17 T ELT)) (-3422 (((-695) $) 18 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-102) (-110)) (T -102))
-((-3422 (*1 *2 *1) (-11 (-4 *1 (-102)) (-5 *2 (-695)))) (-1314 (*1 *2 *1 *3) (-11 (-4 *1 (-102)) (-5 *3 (-695)) (-5 *2 (-1186)))))
-(-12 (-1014) (-10 -8 (-14 -3422 ((-695) $)) (-14 -1314 ((-1186) $ (-695)))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-103) (-12 (-996) (-10 -8 (-14 -3236 ((-584 (-1050)) $))))) (T -103))
-((-3236 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-103)))))
-((-2571 (((-82) $ $) 49 T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3159 (((-695) $) 58 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) 37 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1316 (((-82)) 61 T ELT)) (-1315 (((-82) (-82)) 63 T ELT)) (-2528 (((-82) $) 30 T ELT)) (-1317 (((-82) $) 57 T ELT)) (-3950 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 19 T CONST)) (-1318 (($ (-695)) 21 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) 40 T ELT)) (-3059 (((-82) $ $) 32 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 35 T ELT)) (-3840 (((-3 $ #1#) $ $) 42 T ELT)) (-3842 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT)))
-(((-104) (-12 (-757) (-20) (-664) (-951 (-695)) (-10 -8 (-6 (-3997 "*")) (-14 -3840 ((-3 $ "failed") $ $)) (-14 ** ($ $ $)) (-14 -1318 ($ (-695))) (-14 -2528 ((-82) $)) (-14 -1317 ((-82) $)) (-14 -1316 ((-82))) (-14 -1315 ((-82) (-82)))))) (T -104))
-((-3840 (*1 *1 *1 *1) (|partial| -5 *1 (-104))) (** (*1 *1 *1 *1) (-5 *1 (-104))) (-1318 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-104)))) (-2528 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-104)))) (-1317 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-104)))) (-1316 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-104)))) (-1315 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-104)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1319 (($ (-584 |#3|)) 63 T ELT)) (-3417 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3727 (($) 17 T ELT)) (-3160 (((-3 |#3| "failed") $) 86 T ELT)) (-3159 ((|#3| $) NIL T ELT)) (-1323 (($ $ (-584 (-485))) 126 T ELT)) (-1320 (((-584 |#3|) $) 58 T ELT)) (-3111 (((-695) $) 68 T ELT)) (-3948 (($ $ $) 120 T ELT)) (-1321 (($) 67 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1322 (($) 16 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-584 (-485))) 76 T ELT)) (-3952 (((-695) $) 69 T ELT)) (-1983 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3950 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-196 |#2| |#3|)) 102 T ELT) (($ (-1057 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 96 T CONST)) (-2669 (($) 97 T CONST)) (-3059 (((-82) $ $) 107 T ELT)) (-3840 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT)))
-(((-105 |#1| |#2| |#3|) (-12 (-405 |#3| (-695)) (-410 (-485) (-695)) (-240 (-485) |#3|) (-556 (-196 |#2| |#3|)) (-556 (-1057 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-14 -3111 ((-695) $)) (-14 -3803 (|#3| $)) (-14 -3803 (|#3| $ (-485) (-485))) (-14 -3803 (|#3| $ (-485) (-485) (-485))) (-14 -3803 (|#3| $ (-485) (-485) (-485) (-485))) (-14 -3803 (|#3| $ (-584 (-485)))) (-14 -3948 ($ $ $)) (-14 * ($ $ $)) (-14 -1983 ($ $ (-485) $ (-485))) (-14 -1983 ($ $ (-485) (-485))) (-14 -3417 ($ $)) (-14 -3417 ($ $ (-485) (-485))) (-14 -1323 ($ $ (-584 (-485)))) (-14 -1322 ($)) (-14 -1321 ($)) (-14 -1320 ((-584 |#3|) $)) (-14 -1319 ($ (-584 |#3|))) (-14 -3727 ($)))) (-485) (-695) (-145)) (T -105))
-((-3948 (*1 *1 *1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))) (-3111 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485)) (-13 *4 *2) (-4 *5 (-145)))) (-3803 (*1 *2 *1) (-11 (-4 *2 (-145)) (-5 *1 (-105 *3 *4 *2)) (-13 *3 (-485)) (-13 *4 (-695)))) (-3803 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3) (-13 *5 (-695)))) (-3803 (*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3) (-13 *5 (-695)))) (-3803 (*1 *2 *1 *3 *3 *3 *3) (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3) (-13 *5 (-695)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 (-584 (-485))) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 (-485)) (-13 *5 (-695)))) (* (*1 *1 *1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))) (-1983 (*1 *1 *1 *2 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695)) (-4 *5 (-145)))) (-1983 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695)) (-4 *5 (-145)))) (-3417 (*1 *1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))) (-3417 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695)) (-4 *5 (-145)))) (-1323 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485)) (-13 *4 (-695)) (-4 *5 (-145)))) (-1322 (*1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))) (-1321 (*1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))) (-1320 (*1 *2 *1) (-11 (-5 *2 (-584 *5)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485)) (-13 *4 (-695)) (-4 *5 (-145)))) (-1319 (*1 *1 *2) (-11 (-5 *2 (-584 *5)) (-4 *5 (-145)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485)) (-13 *4 (-695)))) (-3727 (*1 *1) (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))))
-((-2417 (((-105 |#1| |#2| |#4|) (-584 |#4|) (-105 |#1| |#2| |#3|)) 14 T ELT)) (-3846 (((-105 |#1| |#2| |#4|) (-1 |#4| |#3|) (-105 |#1| |#2| |#3|)) 18 T ELT)))
-(((-106 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2417 ((-105 |#1| |#2| |#4|) (-584 |#4|) (-105 |#1| |#2| |#3|))) (-14 -3846 ((-105 |#1| |#2| |#4|) (-1 |#4| |#3|) (-105 |#1| |#2| |#3|)))) (-485) (-695) (-145) (-145)) (T -106))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *8 *7)) (-5 *4 (-105 *5 *6 *7)) (-13 *5 (-485)) (-13 *6 (-695)) (-4 *7 (-145)) (-4 *8 (-145)) (-5 *2 (-105 *5 *6 *8)) (-5 *1 (-106 *5 *6 *7 *8)))) (-2417 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-105 *5 *6 *7)) (-13 *5 (-485)) (-13 *6 (-695)) (-4 *7 (-145)) (-4 *8 (-145)) (-5 *2 (-105 *5 *6 *8)) (-5 *1 (-106 *5 *6 *7 *8)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 (((-1050) $) 12 T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-107) (-12 (-996) (-10 -8 (-14 -3532 ((-1050) $)) (-14 -3531 ((-1050) $))))) (T -107))
-((-3532 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-107)))) (-3531 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-107)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1427 (((-160) $) 11 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-584 (-1050)) $) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-108) (-12 (-996) (-10 -8 (-14 -1427 ((-160) $)) (-14 -3236 ((-584 (-1050)) $))))) (T -108))
-((-1427 (*1 *2 *1) (-11 (-5 *2 (-160)) (-5 *1 (-108)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-108)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3545 (((-447) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1427 (((-160) $) NIL T ELT)) (-2636 (((-82) $ (-447)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1426 (((-584 (-82)) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (((-156) $) 6 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2524 (((-52) $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-109) (-12 (-159) (-553 (-156)))) (T -109))
-NIL
-((-1325 (((-584 (-157 (-109))) $) 13 T ELT)) (-1324 (((-584 (-157 (-109))) $) 14 T ELT)) (-1326 (((-584 (-750)) $) 10 T ELT)) (-1483 (((-109) $) 7 T ELT)) (-3950 (((-773) $) 16 T ELT)))
-(((-110) (-12 (-553 (-773)) (-10 -8 (-14 -1483 ((-109) $)) (-14 -1326 ((-584 (-750)) $)) (-14 -1325 ((-584 (-157 (-109))) $)) (-14 -1324 ((-584 (-157 (-109))) $))))) (T -110))
-((-1483 (*1 *2 *1) (-11 (-5 *2 (-109)) (-5 *1 (-110)))) (-1326 (*1 *2 *1) (-11 (-5 *2 (-584 (-750))) (-5 *1 (-110)))) (-1325 (*1 *2 *1) (-11 (-5 *2 (-584 (-157 (-109)))) (-5 *1 (-110)))) (-1324 (*1 *2 *1) (-11 (-5 *2 (-584 (-157 (-109)))) (-5 *1 (-110)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3430 (($) 17 T CONST)) (-1807 (($) NIL (|has| (-114) (-319)) ELT)) (-3237 (($ $ $) 19 T ELT) (($ $ (-114)) NIL T ELT) (($ (-114) $) NIL T ELT)) (-3239 (($ $ $) NIL T ELT)) (-3238 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| (-114) (-319)) ELT)) (-3242 (($) NIL T ELT) (($ (-584 (-114))) NIL T ELT)) (-1571 (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT)) (-3713 (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT)) (-3408 (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT) (($ (-114) $) 56 (|has| $ (-317 (-114))) ELT)) (-3409 (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT) (($ (-114) $) NIL (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT)) (-3845 (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL T ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (|has| (-114) (-69)) ELT)) (-2997 (($) NIL (|has| (-114) (-319)) ELT)) (-3244 (((-82) $ $) NIL T ELT)) (-2534 (((-114) $) NIL (|has| (-114) (-757)) ELT)) (-2611 (((-584 (-114)) $) 65 T ELT)) (-3248 (((-82) (-114) $) 29 (|has| (-114) (-69)) ELT)) (-2860 (((-114) $) NIL (|has| (-114) (-757)) ELT)) (-3329 (($ (-1 (-114) (-114)) $) 64 T ELT)) (-3846 (($ (-1 (-114) (-114)) $) 60 T ELT)) (-3432 (($) 18 T CONST)) (-2012 (((-831) $) NIL (|has| (-114) (-319)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3241 (($ $ $) 32 T ELT)) (-1275 (((-114) $) 57 T ELT)) (-3612 (($ (-114) $) 55 T ELT)) (-2402 (($ (-831)) NIL (|has| (-114) (-319)) ELT)) (-1329 (($) 16 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 (-114) "failed") (-1 (-82) (-114)) $) NIL T ELT)) (-1276 (((-114) $) 58 T ELT)) (-1733 (((-82) (-1 (-82) (-114)) $) NIL T ELT)) (-3771 (($ $ (-584 (-114)) (-584 (-114))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-114) (-114)) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-248 (-114))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-584 (-248 (-114)))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 53 T ELT)) (-1330 (($) 15 T CONST)) (-3240 (($ $ $) 34 T ELT) (($ $ (-114)) NIL T ELT)) (-1467 (($ (-584 (-114))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-695) (-1 (-82) (-114)) $) NIL T ELT) (((-695) (-114) $) NIL (|has| (-114) (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-1074) $) 39 T ELT) (((-474) $) NIL (|has| (-114) (-554 (-474))) ELT) (((-584 (-114)) $) 37 T ELT)) (-3533 (($ (-584 (-114))) NIL T ELT)) (-1808 (($ $) 35 (|has| (-114) (-319)) ELT)) (-3950 (((-773) $) 51 T ELT)) (-1331 (($ (-1074)) 14 T ELT) (($ (-584 (-114))) 48 T ELT)) (-1809 (((-695) $) NIL T ELT)) (-3243 (($) 54 T ELT) (($ (-584 (-114))) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1277 (($ (-584 (-114))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-114)) $) NIL T ELT)) (-1327 (($) 21 T CONST)) (-1328 (($) 20 T CONST)) (-3059 (((-82) $ $) 26 T ELT)) (-3961 (((-695) $) 52 T ELT)))
-(((-111) (-12 (-1014) (-554 (-1074)) (-368 (-114)) (-554 (-584 (-114))) (-10 -8 (-14 -1331 ($ (-1074))) (-14 -1331 ($ (-584 (-114)))) (-14 -1330 ($) -3956) (-14 -1329 ($) -3956) (-14 -3430 ($) -3956) (-14 -3432 ($) -3956) (-14 -1328 ($) -3956) (-14 -1327 ($) -3956)))) (T -111))
-((-1331 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-111)))) (-1331 (*1 *1 *2) (-11 (-5 *2 (-584 (-114))) (-5 *1 (-111)))) (-1330 (*1 *1) (-5 *1 (-111))) (-1329 (*1 *1) (-5 *1 (-111))) (-3430 (*1 *1) (-5 *1 (-111))) (-3432 (*1 *1) (-5 *1 (-111))) (-1328 (*1 *1) (-5 *1 (-111))) (-1327 (*1 *1) (-5 *1 (-111))))
-((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3742 ((|#1| |#3|) 9 T ELT)) (-3743 ((|#3| |#3|) 15 T ELT)))
-(((-112 |#1| |#2| |#3|) (-10 -7 (-14 -3742 (|#1| |#3|)) (-14 -3743 (|#3| |#3|)) (-14 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-323 |#2|)) (T -112))
-((-3744 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-112 *4 *5 *3)) (-4 *3 (-323 *5)))) (-3743 (*1 *2 *2) (-11 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-112 *3 *4 *2)) (-4 *2 (-323 *4)))) (-3742 (*1 *2 *3) (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-112 *2 *4 *3)) (-4 *3 (-323 *4)))))
-((-1369 (($ $ $) 8 T ELT)) (-1367 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT)))
-(((-113) (-110)) (T -113))
-((-1369 (*1 *1 *1 *1) (-4 *1 (-113))) (-1367 (*1 *1 *1) (-4 *1 (-113))) (-3104 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-12 (-10 -8 (-14 -3104 ($ $ $)) (-14 -1367 ($ $)) (-14 -1369 ($ $ $))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1339 (($) 30 T CONST)) (-1334 (((-82) $) 42 T ELT)) (-3430 (($ $) 52 T ELT)) (-1346 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3139 (((-695)) 13 T ELT)) (-2997 (($) 20 T ELT)) (-2582 (($) 22 T CONST)) (-1348 (((-695) $) 17 T ELT)) (-1345 (($) 24 T CONST)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1333 (((-82) $) 44 T ELT)) (-3432 (($ $) 53 T ELT)) (-2012 (((-831) $) 18 T ELT)) (-1343 (($) 26 T CONST)) (-3245 (((-1074) $) 50 T ELT)) (-2402 (($ (-831)) 16 T ELT)) (-1340 (($) 29 T CONST)) (-1336 (((-82) $) 40 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1342 (($) 27 T CONST)) (-1338 (($) 31 T CONST)) (-1337 (((-82) $) 38 T ELT)) (-3950 (((-773) $) 33 T ELT)) (-1347 (($ (-695)) 14 T ELT) (($ (-1074)) 51 T ELT)) (-1344 (($) 25 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-1341 (($) 28 T CONST)) (-1332 (((-82) $) 48 T ELT)) (-1335 (((-82) $) 46 T ELT)) (-2569 (((-82) $ $) 11 T ELT)) (-2570 (((-82) $ $) 9 T ELT)) (-3059 (((-82) $ $) 7 T ELT)) (-2687 (((-82) $ $) 10 T ELT)) (-2688 (((-82) $ $) 8 T ELT)))
-(((-114) (-12 (-753) (-10 -8 (-14 -1348 ((-695) $)) (-14 -1347 ($ (-695))) (-14 -1347 ($ (-1074))) (-14 -1519 ($) -3956) (-14 -2582 ($) -3956) (-14 -1346 ($) -3956) (-14 -1345 ($) -3956) (-14 -1344 ($) -3956) (-14 -1343 ($) -3956) (-14 -1342 ($) -3956) (-14 -1341 ($) -3956) (-14 -1340 ($) -3956) (-14 -1339 ($) -3956) (-14 -1338 ($) -3956) (-14 -3430 ($ $)) (-14 -3432 ($ $)) (-14 -1337 ((-82) $)) (-14 -1336 ((-82) $)) (-14 -1335 ((-82) $)) (-14 -1334 ((-82) $)) (-14 -1333 ((-82) $)) (-14 -1332 ((-82) $))))) (T -114))
-((-1348 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-114)))) (-1347 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-114)))) (-1347 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-114)))) (-1519 (*1 *1) (-5 *1 (-114))) (-2582 (*1 *1) (-5 *1 (-114))) (-1346 (*1 *1) (-5 *1 (-114))) (-1345 (*1 *1) (-5 *1 (-114))) (-1344 (*1 *1) (-5 *1 (-114))) (-1343 (*1 *1) (-5 *1 (-114))) (-1342 (*1 *1) (-5 *1 (-114))) (-1341 (*1 *1) (-5 *1 (-114))) (-1340 (*1 *1) (-5 *1 (-114))) (-1339 (*1 *1) (-5 *1 (-114))) (-1338 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1 *1) (-5 *1 (-114))) (-3432 (*1 *1 *1) (-5 *1 (-114))) (-1337 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))) (-1336 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))) (-1335 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))) (-1334 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))) (-1333 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))) (-1332 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2705 (((-633 $) $) 47 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-115) (-110)) (T -115))
-((-2705 (*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-115)))))
-(-12 (-962) (-10 -8 (-14 -2705 ((-633 $) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2452 ((|#1| (-631 |#1|) |#1|) 19 T ELT)))
-(((-116 |#1|) (-10 -7 (-14 -2452 (|#1| (-631 |#1|) |#1|))) (-145)) (T -116))
-((-2452 (*1 *2 *3 *2) (-11 (-5 *3 (-631 *2)) (-4 *2 (-145)) (-5 *1 (-116 *2)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-117) (-110)) (T -117))
-NIL
-(-12 (-962))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1351 (((-2 (|:| -2403 (-695)) (|:| -3958 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-695)) 76 T ELT)) (-1350 (((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1349 (((-2 (|:| -3958 (-349 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1352 ((|#1| |#3| |#3|) 44 T ELT)) (-3771 ((|#3| |#3| (-349 |#2|) (-349 |#2|)) 20 T ELT)) (-1353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT)))
-(((-118 |#1| |#2| |#3|) (-10 -7 (-14 -1349 ((-2 (|:| -3958 (-349 |#2|)) (|:| |poly| |#3|)) |#3|)) (-14 -1350 ((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-14 -1351 ((-2 (|:| -2403 (-695)) (|:| -3958 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-695))) (-14 -1352 (|#1| |#3| |#3|)) (-14 -3771 (|#3| |#3| (-349 |#2|) (-349 |#2|))) (-14 -1353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1135) (-1156 |#1|) (-1156 (-349 |#2|))) (T -118))
-((-1353 (*1 *2 *3 *3) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5)) (|:| |c2| (-349 *5)) (|:| |deg| (-695)))) (-5 *1 (-118 *4 *5 *3)) (-4 *3 (-1156 (-349 *5))))) (-3771 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-349 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *1 (-118 *4 *5 *2)) (-4 *2 (-1156 *3)))) (-1352 (*1 *2 *3 *3) (-11 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-118 *2 *4 *3)) (-4 *3 (-1156 (-349 *4))))) (-1351 (*1 *2 *3 *4) (-11 (-5 *3 (-349 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| *6))) (-5 *1 (-118 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))) (-1350 (*1 *2 *3) (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-695)))) (-5 *1 (-118 *4 *5 *3)) (-4 *3 (-1156 (-349 *5))))) (-1349 (*1 *2 *3) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -3958 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-118 *4 *5 *3)) (-4 *3 (-1156 (-349 *5))))))
-((-2707 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 35 T ELT)))
-(((-119 |#1| |#2|) (-10 -7 (-14 -2707 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)))) (-484) (-138 |#1|)) (T -119))
-((-2707 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-138 *4)) (-4 *4 (-484)) (-5 *1 (-119 *4 *5)))))
-((-3713 (($ (-1 (-82) |#2|) $) 16 T ELT)) (-1354 (($ $) 21 T ELT)) (-3409 (($ (-1 (-82) |#2|) $) 14 T ELT) (($ |#2| $) 19 T ELT)))
-(((-120 |#1| |#2|) (-10 -7 (-14 -1354 (|#1| |#1|)) (-14 -3409 (|#1| |#2| |#1|)) (-14 -3713 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3409 (|#1| (-1 (-82) |#2|) |#1|))) (-121 |#2|) (-1130)) (T -120))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 38 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 36 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ (-1 (-82) |#1|) $) 39 (|has| $ (-317 |#1|)) ELT) (($ |#1| $) 37 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 35 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 40 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-121 |#1|) (-110) (-1130)) (T -121))
-((-3533 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-121 *3)))) (-3409 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-121 *3)) (-4 *3 (-1130)))) (-3713 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-121 *3)) (-4 *3 (-1130)))) (-3409 (*1 *1 *2 *1) (-11 (-4 *1 (-317 *2)) (-4 *1 (-121 *2)) (-4 *2 (-1130)) (-4 *2 (-69)))) (-1354 (*1 *1 *1) (-11 (-4 *1 (-317 *2)) (-4 *1 (-121 *2)) (-4 *2 (-1130)) (-4 *2 (-69)))))
-(-12 (-429 |t#1|) (-10 -8 (-14 -3533 ($ (-584 |t#1|))) (IF (|has| $ (-317 |t#1|)) (PROGN (-14 -3409 ($ (-1 (-82) |t#1|) $)) (-14 -3713 ($ (-1 (-82) |t#1|) $)) (IF (|has| |t#1| (-69)) (PROGN (-14 -3409 ($ |t#1| $)) (-14 -1354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 113 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-584 (-831))) 72 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1355 (($ (-831)) 58 T ELT)) (-3915 (((-104)) 23 T ELT)) (-3950 (((-773) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3680 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3129 (((-695)) 20 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 48 T CONST)) (-2669 (($) 52 T CONST)) (-3059 (((-82) $ $) 34 T ELT)) (-3953 (($ $ |#2|) NIL T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3842 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-122 |#1| |#2| |#3|) (-12 (-962) (-35 |#2|) (-1188 |#2|) (-10 -8 (-14 -1355 ($ (-831))) (-14 -2896 ($ |#2| (-584 (-831)))) (-14 -3680 (|#2| $ (-584 (-831)))) (-14 -3470 ((-3 $ "failed") $)))) (-831) (-311) (-907 |#1| |#2|)) (T -122))
-((-3470 (*1 *1 *1) (|partial| -11 (-5 *1 (-122 *2 *3 *4)) (-13 *2 (-831)) (-4 *3 (-311)) (-13 *4 (-907 *2 *3)))) (-1355 (*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-122 *3 *4 *5)) (-13 *3 *2) (-4 *4 (-311)) (-13 *5 (-907 *3 *4)))) (-2896 (*1 *1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *1 (-122 *4 *2 *5)) (-13 *4 (-831)) (-4 *2 (-311)) (-13 *5 (-907 *4 *2)))) (-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-122 *4 *2 *5)) (-13 *4 (-831)) (-13 *5 (-907 *4 *2)))))
-((-1357 (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-584 (-855 (-178)))) (-178) (-178) (-178) (-178)) 59 T ELT)) (-1356 (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837) (-349 (-485)) (-349 (-485))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-584 (-855 (-178))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-855 (-178)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837) (-349 (-485)) (-349 (-485))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837)) 90 T ELT)))
-(((-123) (-10 -7 (-14 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837))) (-14 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837) (-349 (-485)) (-349 (-485)))) (-14 -1356 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837))) (-14 -1356 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-837) (-349 (-485)) (-349 (-485)))) (-14 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-584 (-855 (-178)))) (-178) (-178) (-178) (-178))) (-14 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-855 (-178))))) (-14 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))) (-584 (-584 (-855 (-178)))))))) (T -123))
-((-1511 (*1 *2 *3) (-11 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)) (-5 *3 (-584 (-584 (-855 (-178))))))) (-1511 (*1 *2 *3) (-11 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)) (-5 *3 (-584 (-855 (-178)))))) (-1357 (*1 *2 *3 *4 *4 *4 *4) (-11 (-5 *4 (-178)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) (|:| |yValues| (-1002 *4)))) (-5 *1 (-123)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1356 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-837)) (-5 *4 (-349 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)))) (-1356 (*1 *2 *3) (-11 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)))) (-1511 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-837)) (-5 *4 (-349 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)))) (-1511 (*1 *2 *3) (-11 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-178))))) (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178))))) (-5 *1 (-123)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3184 (((-584 (-1050)) $) 20 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 10 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-124) (-12 (-996) (-10 -8 (-14 -3184 ((-584 (-1050)) $)) (-14 -3236 ((-1050) $))))) (T -124))
-((-3184 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-124)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-124)))))
-((-1411 (((-584 (-141 |#2|)) |#1| |#2|) 50 T ELT)))
-(((-125 |#1| |#2|) (-10 -7 (-14 -1411 ((-584 (-141 |#2|)) |#1| |#2|))) (-1156 (-141 (-485))) (-12 (-311) (-756))) (T -125))
-((-1411 (*1 *2 *3 *4) (-11 (-5 *2 (-584 (-141 *4))) (-5 *1 (-125 *3 *4)) (-4 *3 (-1156 (-141 (-485)))) (-4 *4 (-12 (-311) (-756))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 (((-1131) $) 13 T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-126) (-12 (-996) (-10 -8 (-14 -3532 ((-1050) $)) (-14 -3531 ((-1131) $))))) (T -126))
-((-3532 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-126)))) (-3531 (*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-126)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1359 (($) 38 T ELT)) (-3101 (($) 37 T ELT)) (-1358 (((-831)) 43 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2959 (((-485) $) 41 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3100 (($) 39 T ELT)) (-2958 (($ (-485)) 44 T ELT)) (-3950 (((-773) $) 50 T ELT)) (-3099 (($) 40 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 35 T ELT)) (-3842 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-178) $) 11 T ELT)))
-(((-127) (-12 (-22) (-10 -8 (-14 * ($ (-831) $)) (-14 * ($ (-178) $)) (-14 -3842 ($ $ $)) (-14 -3101 ($)) (-14 -1359 ($)) (-14 -3100 ($)) (-14 -3099 ($)) (-14 -2959 ((-485) $)) (-14 -1358 ((-831))) (-14 -2958 ($ (-485)))))) (T -127))
-((-3842 (*1 *1 *1 *1) (-5 *1 (-127))) (* (*1 *1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-127)))) (* (*1 *1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-127)))) (-3101 (*1 *1) (-5 *1 (-127))) (-1359 (*1 *1) (-5 *1 (-127))) (-3100 (*1 *1) (-5 *1 (-127))) (-3099 (*1 *1) (-5 *1 (-127))) (-2959 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-127)))) (-1358 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-127)))) (-2958 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-127)))))
-((-1372 ((|#2| |#2| (-1005 |#2|)) 98 T ELT) ((|#2| |#2| (-1091)) 75 T ELT)) (-3948 ((|#2| |#2| (-1005 |#2|)) 97 T ELT) ((|#2| |#2| (-1091)) 74 T ELT)) (-1369 ((|#2| |#2| |#2|) 25 T ELT)) (-3598 (((-83) (-83)) 111 T ELT)) (-1366 ((|#2| (-584 |#2|)) 130 T ELT)) (-1363 ((|#2| (-584 |#2|)) 150 T ELT)) (-1362 ((|#2| (-584 |#2|)) 138 T ELT)) (-1360 ((|#2| |#2|) 136 T ELT)) (-1364 ((|#2| (-584 |#2|)) 124 T ELT)) (-1365 ((|#2| (-584 |#2|)) 125 T ELT)) (-1361 ((|#2| (-584 |#2|)) 148 T ELT)) (-1373 ((|#2| |#2| (-1091)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1367 ((|#2| |#2|) 21 T ELT)) (-3104 ((|#2| |#2| |#2|) 24 T ELT)) (-2256 (((-82) (-83)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
-(((-128 |#1| |#2|) (-10 -7 (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 ** (|#2| |#2| |#2|)) (-14 -3104 (|#2| |#2| |#2|)) (-14 -1369 (|#2| |#2| |#2|)) (-14 -1367 (|#2| |#2|)) (-14 -1373 (|#2| |#2|)) (-14 -1373 (|#2| |#2| (-1091))) (-14 -1372 (|#2| |#2| (-1091))) (-14 -1372 (|#2| |#2| (-1005 |#2|))) (-14 -3948 (|#2| |#2| (-1091))) (-14 -3948 (|#2| |#2| (-1005 |#2|))) (-14 -1360 (|#2| |#2|)) (-14 -1361 (|#2| (-584 |#2|))) (-14 -1362 (|#2| (-584 |#2|))) (-14 -1363 (|#2| (-584 |#2|))) (-14 -1364 (|#2| (-584 |#2|))) (-14 -1365 (|#2| (-584 |#2|))) (-14 -1366 (|#2| (-584 |#2|)))) (-496) (-363 |#1|)) (T -128))
-((-1366 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2)) (-4 *4 (-496)))) (-1360 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (-3948 (*1 *2 *2 *3) (-11 (-5 *3 (-1005 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)))) (-3948 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4)))) (-1372 (*1 *2 *2 *3) (-11 (-5 *3 (-1005 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)))) (-1372 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4)))) (-1373 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4)))) (-1373 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (-1367 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (-1369 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (-3104 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (** (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))) (-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-128 *3 *4)) (-4 *4 (-363 *3)))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-128 *4 *5)) (-4 *5 (-363 *4)))))
-((-1371 ((|#1| |#1| |#1|) 66 T ELT)) (-1370 ((|#1| |#1| |#1|) 63 T ELT)) (-1369 ((|#1| |#1| |#1|) 57 T ELT)) (-2893 ((|#1| |#1|) 43 T ELT)) (-1368 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1367 ((|#1| |#1|) 47 T ELT)) (-3104 ((|#1| |#1| |#1|) 51 T ELT)))
-(((-129 |#1|) (-10 -7 (-14 -3104 (|#1| |#1| |#1|)) (-14 -1367 (|#1| |#1|)) (-14 -1368 (|#1| |#1| (-584 |#1|))) (-14 -2893 (|#1| |#1|)) (-14 -1369 (|#1| |#1| |#1|)) (-14 -1370 (|#1| |#1| |#1|)) (-14 -1371 (|#1| |#1| |#1|))) (-484)) (T -129))
-((-1371 (*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))) (-2893 (*1 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))) (-1368 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-129 *2)))) (-1367 (*1 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))) (-3104 (*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))))
-((-1372 (($ $ (-1091)) 12 T ELT) (($ $ (-1005 $)) 11 T ELT)) (-3948 (($ $ (-1091)) 10 T ELT) (($ $ (-1005 $)) 9 T ELT)) (-1369 (($ $ $) 8 T ELT)) (-1373 (($ $) 14 T ELT) (($ $ (-1091)) 13 T ELT)) (-1367 (($ $) 7 T ELT)) (-3104 (($ $ $) 6 T ELT)))
-(((-130) (-110)) (T -130))
-((-1373 (*1 *1 *1) (-4 *1 (-130))) (-1373 (*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091)))) (-1372 (*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091)))) (-1372 (*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-130)))) (-3948 (*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091)))) (-3948 (*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-130)))))
-(-12 (-113) (-10 -8 (-14 -1373 ($ $)) (-14 -1373 ($ $ (-1091))) (-14 -1372 ($ $ (-1091))) (-14 -1372 ($ $ (-1005 $))) (-14 -3948 ($ $ (-1091))) (-14 -3948 ($ $ (-1005 $)))))
-(((-113) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-1374 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 19 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 11 T ELT)))
-(((-131) (-12 (-1014) (-10 -8 (-14 -1374 ($ (-485))) (-14 -1374 ($ $ $))))) (T -131))
-((-1374 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-131)))) (-1374 (*1 *1 *1 *1) (-5 *1 (-131))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-132) (-12 (-996) (-10 -8 (-14 -3236 ((-584 (-1050)) $))))) (T -132))
-((-3236 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-132)))))
-((-3598 (((-83) (-1091)) 103 T ELT)))
-(((-133) (-10 -7 (-14 -3598 ((-83) (-1091))))) (T -133))
-((-3598 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-83)) (-5 *1 (-133)))))
-((-1596 ((|#3| |#3|) 19 T ELT)))
-(((-134 |#1| |#2| |#3|) (-10 -7 (-14 -1596 (|#3| |#3|))) (-962) (-1156 |#1|) (-1156 |#2|)) (T -134))
-((-1596 (*1 *2 *2) (-11 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-134 *3 *4 *2)) (-4 *2 (-1156 *4)))))
-((-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1375 (($ (-1 |#1| |#1| |#1|)) 9 T ELT)) (-3950 (((-76 |#1|) $) 10 T ELT)))
-(((-135 |#1|) (-12 (-136 |#1|) (-553 (-76 |#1|)) (-10 -8 (-14 -1375 ($ (-1 |#1| |#1| |#1|))))) (-69)) (T -135))
-((-1375 (*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-135 *3)))))
-((-3803 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-136 |#1|) (-110) (-69)) (T -136))
-NIL
-(-12 (-77 |t#1|) (-10 -8 (-6 (|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|)) (-3059 (|f| |x| |y|) (|f| |y| |x|)))))))
-(((-77 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 222 T ELT)) (-3333 ((|#2| $) 102 T ELT)) (-3495 (($ $) 255 T ELT)) (-3642 (($ $) 249 T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 47 T ELT)) (-3493 (($ $) 253 T ELT)) (-3641 (($ $) 247 T ELT)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2567 (($ $ $) 228 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3845 (($ (-1086 |#2|)) 125 T ELT) (((-3 $ #1#) (-349 (-1086 |#2|))) NIL T ELT)) (-3470 (((-3 $ #1#) $) 213 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 203 T ELT)) (-3026 (((-82) $) 198 T ELT)) (-3025 (((-349 (-485)) $) 201 T ELT)) (-3111 (((-831)) 96 T ELT)) (-2566 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3630 (($) 244 T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 192 T ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 197 T ELT)) (-3135 ((|#2| $) 100 T ELT)) (-2016 (((-1086 |#2|) $) 127 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3946 (($ $) 246 T ELT)) (-3082 (((-1086 |#2|) $) 126 T ELT)) (-2487 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 95 T ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 64 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3947 (($ $) 245 T ELT)) (-1608 (((-695) $) 225 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 234 T ELT)) (-3760 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3188 (((-1086 |#2|)) 120 T ELT)) (-3494 (($ $) 254 T ELT)) (-3637 (($ $) 248 T ELT)) (-3227 (((-1180 |#2|) $ (-1180 $)) 136 T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 116 T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3975 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT) (($ (-1086 |#2|)) NIL T ELT) (((-801 (-485)) $) 183 T ELT) (((-801 (-329)) $) 187 T ELT) (((-141 (-329)) $) 172 T ELT) (((-141 (-178)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3012 (($ $) 104 T ELT)) (-3950 (((-773) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2452 (((-1086 |#2|) $) 32 T ELT)) (-3129 (((-695)) 106 T CONST)) (-1266 (((-82) $ $) 13 T ELT)) (-3501 (($ $) 258 T ELT)) (-3489 (($ $) 252 T ELT)) (-3499 (($ $) 256 T ELT)) (-3487 (($ $) 250 T ELT)) (-2238 ((|#2| $) 241 T ELT)) (-3500 (($ $) 257 T ELT)) (-3488 (($ $) 251 T ELT)) (-3386 (($ $) 162 T ELT)) (-3059 (((-82) $ $) 110 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-349 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)))
-(((-137 |#1| |#2|) (-10 -7 (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3950 (|#1| |#1|)) (-14 -3469 ((-3 |#1| #1="failed") |#1| |#1|)) (-14 -2066 ((-2 (|:| -1777 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-14 -1608 ((-695) |#1|)) (-14 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -2566 (|#1| |#1| |#1|)) (-14 -2567 (|#1| |#1| |#1|)) (-14 -2487 (|#1| |#1|)) (-14 ** (|#1| |#1| (-485))) (-14 * (|#1| |#1| (-349 (-485)))) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3975 ((-474) |#1|)) (-14 -3975 ((-141 (-178)) |#1|)) (-14 -3975 ((-141 (-329)) |#1|)) (-14 -3642 (|#1| |#1|)) (-14 -3641 (|#1| |#1|)) (-14 -3637 (|#1| |#1|)) (-14 -3488 (|#1| |#1|)) (-14 -3487 (|#1| |#1|)) (-14 -3489 (|#1| |#1|)) (-14 -3494 (|#1| |#1|)) (-14 -3493 (|#1| |#1|)) (-14 -3495 (|#1| |#1|)) (-14 -3500 (|#1| |#1|)) (-14 -3499 (|#1| |#1|)) (-14 -3501 (|#1| |#1|)) (-14 -3946 (|#1| |#1|)) (-14 -3947 (|#1| |#1|)) (-14 ** (|#1| |#1| |#1|)) (-14 -3630 (|#1|)) (-14 ** (|#1| |#1| (-349 (-485)))) (-14 -2709 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2708 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2707 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-14 -3027 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3025 ((-349 (-485)) |#1|)) (-14 -3026 ((-82) |#1|)) (-14 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-14 -2238 (|#2| |#1|)) (-14 -3386 (|#1| |#1|)) (-14 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-14 -3012 (|#1| |#1|)) (-14 -1378 (|#1|)) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -2799 ((-799 (-329) |#1|) |#1| (-801 (-329)) (-799 (-329) |#1|))) (-14 -2799 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3845 ((-3 |#1| #1#) (-349 (-1086 |#2|)))) (-14 -3082 ((-1086 |#2|) |#1|)) (-14 -3975 (|#1| (-1086 |#2|))) (-14 -3845 (|#1| (-1086 |#2|))) (-14 -3188 ((-1086 |#2|))) (-14 -2281 ((-631 |#2|) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3975 ((-1086 |#2|) |#1|)) (-14 -3760 (|#2|)) (-14 -3975 (|#1| (-1180 |#2|))) (-14 -3975 ((-1180 |#2|) |#1|)) (-14 -3227 ((-631 |#2|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1|)) (-14 -2016 ((-1086 |#2|) |#1|)) (-14 -2452 ((-1086 |#2|) |#1|)) (-14 -3760 (|#2| (-1180 |#1|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1| (-1180 |#1|))) (-14 -3135 (|#2| |#1|)) (-14 -3333 (|#2| |#1|)) (-14 -3111 ((-831))) (-14 -3950 (|#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 -3129 ((-695)) -3956) (-14 -3950 (|#1| (-485))) (-14 -3470 ((-3 |#1| #1#) |#1|)) (-14 ** (|#1| |#1| (-695))) (-14 * (|#1| |#1| |#1|)) (-14 ** (|#1| |#1| (-831))) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|)) (-14 -3842 (|#1| |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -1266 ((-82) |#1| |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-138 |#2|) (-145)) (T -137))
-((-3129 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-137 *3 *4)) (-4 *3 (-138 *4)))) (-3111 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-831)) (-5 *1 (-137 *3 *4)) (-4 *3 (-138 *4)))) (-3760 (*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-137 *3 *2)) (-4 *3 (-138 *2)))) (-3188 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-1086 *4)) (-5 *1 (-137 *3 *4)) (-4 *3 (-138 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2065 (($ $) 115 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2063 (((-82) $) 117 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1787 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-3495 (($ $) 250 (|has| |#1| (-1116)) ELT)) (-3642 (($ $) 233 (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-298)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 264 (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3778 (($ $) 134 (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3974 (((-347 $) $) 135 (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3040 (($ $) 263 (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2707 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 267 (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1609 (((-82) $ $) 125 (|has| |#1| (-257)) ELT)) (-3139 (((-695)) 108 (|has| |#1| (-319)) ELT)) (-3493 (($ $) 249 (|has| |#1| (-1116)) ELT)) (-3641 (($ $) 234 (|has| |#1| (-1116)) ELT)) (-3497 (($ $) 248 (|has| |#1| (-1116)) ELT)) (-3640 (($ $) 235 (|has| |#1| (-1116)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 192 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 191 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-298)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-257)) ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3845 (($ (-1086 |#1|)) 178 T ELT) (((-3 $ "failed") (-349 (-1086 |#1|))) 175 (|has| |#1| (-311)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 275 T ELT)) (-3027 (((-3 (-349 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 270 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3111 (((-831)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-257)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 123 (|has| |#1| (-257)) ELT)) (-2836 (($) 169 (|has| |#1| (-298)) ELT)) (-1681 (((-82) $) 170 (|has| |#1| (-298)) ELT)) (-1769 (($ $ (-695)) 161 (|has| |#1| (-298)) ELT) (($ $) 160 (|has| |#1| (-298)) ELT)) (-3726 (((-82) $) 136 (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-11 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3630 (($) 260 (|has| |#1| (-1116)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 283 (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 282 (|has| |#1| (-797 (-329))) ELT)) (-3775 (((-831) $) 172 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-298)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 262 (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-633 $) $) 162 (|has| |#1| (-298)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-257)) ELT)) (-2016 (((-1086 |#1|) $) 59 (|has| |#1| (-311)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2012 (((-831) $) 110 (|has| |#1| (-319)) ELT)) (-3946 (($ $) 257 (|has| |#1| (-1116)) ELT)) (-3082 (((-1086 |#1|) $) 176 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1896 (($ (-584 $)) 121 (OR (|has| |#1| (-257)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-257)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-311)) ELT)) (-3449 (($) 163 (|has| |#1| (-298)) CONST)) (-2402 (($ (-831)) 109 (|has| |#1| (-319)) ELT)) (-1378 (($) 279 T ELT)) (-3647 ((|#1| $) 276 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 122 (OR (|has| |#1| (-257)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3147 (($ (-584 $)) 119 (OR (|has| |#1| (-257)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-257)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 166 (|has| |#1| (-298)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 266 (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 265 (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3735 (((-347 $) $) 133 (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-257)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-257)) ELT)) (-3947 (($ $) 258 (|has| |#1| (-1116)) ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) 290 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 288 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 287 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 286 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 285 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-257)) ELT)) (-3803 (($ $ |#1|) 291 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-257)) ELT)) (-3760 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-695) $) 171 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-298)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 146 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 156 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-188))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-189))) (|has| |#1| (-188)) (-2565 (|has| |#1| (-188)) (|has| |#1| (-311)))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-188))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-189))) (|has| |#1| (-188)) (-2565 (|has| |#1| (-188)) (|has| |#1| (-311)))) ELT)) (-2410 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-311)) ELT)) (-3188 (((-1086 |#1|)) 179 T ELT)) (-3498 (($ $) 247 (|has| |#1| (-1116)) ELT)) (-3639 (($ $) 236 (|has| |#1| (-1116)) ELT)) (-1675 (($) 168 (|has| |#1| (-298)) ELT)) (-3496 (($ $) 246 (|has| |#1| (-1116)) ELT)) (-3638 (($ $) 237 (|has| |#1| (-1116)) ELT)) (-3494 (($ $) 245 (|has| |#1| (-1116)) ELT)) (-3637 (($ $) 238 (|has| |#1| (-1116)) ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3975 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) (((-1086 |#1|) $) 195 T ELT) (($ (-1086 |#1|)) 177 T ELT) (((-801 (-485)) $) 281 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) 280 (|has| |#1| (-554 (-801 (-329)))) ELT) (((-141 (-329)) $) 232 (|has| |#1| (-934)) ELT) (((-141 (-178)) $) 231 (|has| |#1| (-934)) ELT) (((-474) $) 230 (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) 278 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 165 (OR (-2565 (|has| $ (-115)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-298))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-485))) 107 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-298)) ELT) (((-633 $) $) 58 (OR (-2565 (|has| $ (-115)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-115))) ELT)) (-2452 (((-1086 |#1|) $) 60 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-3501 (($ $) 256 (|has| |#1| (-1116)) ELT)) (-3489 (($ $) 244 (|has| |#1| (-1116)) ELT)) (-2064 (((-82) $ $) 116 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3499 (($ $) 255 (|has| |#1| (-1116)) ELT)) (-3487 (($ $) 243 (|has| |#1| (-1116)) ELT)) (-3503 (($ $) 254 (|has| |#1| (-1116)) ELT)) (-3491 (($ $) 242 (|has| |#1| (-1116)) ELT)) (-2238 ((|#1| $) 272 (|has| |#1| (-1116)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 253 (|has| |#1| (-1116)) ELT)) (-3492 (($ $) 241 (|has| |#1| (-1116)) ELT)) (-3502 (($ $) 252 (|has| |#1| (-1116)) ELT)) (-3490 (($ $) 240 (|has| |#1| (-1116)) ELT)) (-3500 (($ $) 251 (|has| |#1| (-1116)) ELT)) (-3488 (($ $) 239 (|has| |#1| (-1116)) ELT)) (-3386 (($ $) 273 (|has| |#1| (-974)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 147 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 157 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-188))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-189))) (|has| |#1| (-188)) (-2565 (|has| |#1| (-188)) (|has| |#1| (-311)))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-311)) (|has| |#1| (-188))) (-2565 (|has| |#1| (-311)) (|has| |#1| (-189))) (|has| |#1| (-188)) (-2565 (|has| |#1| (-188)) (|has| |#1| (-311)))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-349 (-485))) 261 (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) 259 (|has| |#1| (-1116)) ELT) (($ $ (-485)) 138 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-485)) $) 140 (|has| |#1| (-311)) ELT) (($ $ (-349 (-485))) 139 (|has| |#1| (-311)) ELT)))
-(((-138 |#1|) (-110) (-145)) (T -138))
-((-3135 (*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-1378 (*1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-3012 (*1 *1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-1377 (*1 *1 *2 *2) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-3647 (*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-3646 (*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))) (-3469 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-496)))) (-3386 (*1 *1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-974)))) (-2238 (*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-1116)))) (-1376 (*1 *2 *1) (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-974)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3026 (*1 *2 *1) (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82)))) (-3025 (*1 *2 *1) (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))) (-3027 (*1 *2 *1) (|partial| -11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))))
-(-12 (-662 |t#1| (-1086 |t#1|)) (-354 |t#1|) (-183 |t#1|) (-287 |t#1|) (-342 |t#1|) (-795 |t#1|) (-328 |t#1|) (-145) (-10 -8 (-6 -1377) (-14 -1378 ($)) (-14 -3012 ($ $)) (-14 -1377 ($ |t#1| |t#1|)) (-14 -3647 (|t#1| $)) (-14 -3646 (|t#1| $)) (-14 -3135 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-14 -3469 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-257)) (-6 (-257)) |%noBranch|) (IF (|has| |t#1| (-6 -3996)) (-6 -3996) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-141 (-178)))) (-6 (-554 (-141 (-329))))) |%noBranch|) (IF (|has| |t#1| (-974)) (-14 -3386 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-1116)) (-14 -2238 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-974)) (-14 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-257)) (-6 (-822)) |%noBranch|) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-35 |#1|) . T) ((-35 $) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-32) |has| |#1| (-1116)) ((-63) |has| |#1| (-1116)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-79 |#1| |#1|) . T) ((-79 $ $) . T) ((-101) . T) ((-115) OR (|has| |#1| (-298)) (|has| |#1| (-115))) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-553 (-773)) . T) ((-145) . T) ((-554 (-141 (-178))) |has| |#1| (-934)) ((-554 (-141 (-329))) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-329))) |has| |#1| (-554 (-801 (-329)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-554 (-1086 |#1|)) . T) ((-185 $) OR (|has| |#1| (-298)) (|has| |#1| (-188)) (|has| |#1| (-189))) ((-183 |#1|) . T) ((-189) OR (|has| |#1| (-298)) (|has| |#1| (-189))) ((-188) OR (|has| |#1| (-298)) (|has| |#1| (-188)) (|has| |#1| (-189))) ((-224 |#1|) . T) ((-200) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-238) |has| |#1| (-1116)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-245) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-344) |has| |#1| (-298)) ((-319) OR (|has| |#1| (-298)) (|has| |#1| (-319))) ((-298) |has| |#1| (-298)) ((-321 |#1| (-1086 |#1|)) . T) ((-352 |#1| (-1086 |#1|)) . T) ((-287 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-392) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-433) |has| |#1| (-1116)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-662 |#1| (-1086 |#1|)) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-329)) |has| |#1| (-797 (-329))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) -11 (|has| |#1| (-257)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-916) -11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-298)) ((-1116) |has| |#1| (-1116)) ((-1119) |has| |#1| (-1116)) ((-1130) . T) ((-1135) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (-11 (|has| |#1| (-257)) (|has| |#1| (-822)))))
-((-3735 (((-347 |#2|) |#2|) 67 T ELT)))
-(((-139 |#1| |#2|) (-10 -7 (-14 -3735 ((-347 |#2|) |#2|))) (-257) (-1156 (-141 |#1|))) (T -139))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-139 *4 *3)) (-4 *3 (-1156 (-141 *4))))))
-((-1381 (((-1050) (-1050) (-246)) 8 T ELT)) (-1379 (((-584 (-633 (-234))) (-1074)) 81 T ELT)) (-1380 (((-633 (-234)) (-1050)) 76 T ELT)))
-(((-140) (-12 (-1130) (-10 -7 (-14 -1381 ((-1050) (-1050) (-246))) (-14 -1380 ((-633 (-234)) (-1050))) (-14 -1379 ((-584 (-633 (-234))) (-1074)))))) (T -140))
-((-1381 (*1 *2 *2 *3) (-11 (-5 *2 (-1050)) (-5 *3 (-246)) (-5 *1 (-140)))) (-1380 (*1 *2 *3) (-11 (-5 *3 (-1050)) (-5 *2 (-633 (-234))) (-5 *1 (-140)))) (-1379 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-234)))) (-5 *1 (-140)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 15 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2063 (((-82) $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-1787 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3642 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-298)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3778 (($ $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3974 (((-347 $) $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3040 (($ $) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-257)) ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3845 (($ (-1086 |#1|)) NIL T ELT) (((-3 $ #1#) (-349 (-1086 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 20 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3111 (((-831)) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-257)) ELT)) (-2836 (($) NIL (|has| |#1| (-298)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-298)) ELT)) (-1769 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3726 (((-82) $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-11 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3630 (($) NIL (|has| |#1| (-1116)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| |#1| (-797 (-329))) ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 17 T ELT)) (-3014 (($ $ (-485)) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3135 ((|#1| $) 30 T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-2016 (((-1086 |#1|) $) NIL (|has| |#1| (-311)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3082 (((-1086 |#1|) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3449 (($) NIL (|has| |#1| (-298)) CONST)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1378 (($) NIL T ELT)) (-3647 ((|#1| $) 21 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-257)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-298)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3735 (((-347 $) $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-257)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3760 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-188))) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-188))) ELT)) (-2410 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3188 (((-1086 |#1|)) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1675 (($) NIL (|has| |#1| (-298)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3975 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT) (($ (-1086 |#1|)) NIL T ELT) (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| |#1| (-554 (-801 (-329)))) ELT) (((-141 (-329)) $) NIL (|has| |#1| (-934)) ELT) (((-141 (-178)) $) NIL (|has| |#1| (-934)) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) 29 T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-298))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-2452 (((-1086 |#1|) $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2064 (((-82) $ $) NIL (OR (-11 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2238 ((|#1| $) NIL (|has| |#1| (-1116)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-974)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-188))) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-188))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-349 (-485))) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) NIL (|has| |#1| (-1116)) ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-311)) ELT)))
-(((-141 |#1|) (-138 |#1|) (-145)) (T -141))
-NIL
-((-3846 (((-141 |#2|) (-1 |#2| |#1|) (-141 |#1|)) 14 T ELT)))
-(((-142 |#1| |#2|) (-10 -7 (-14 -3846 ((-141 |#2|) (-1 |#2| |#1|) (-141 |#1|)))) (-145) (-145)) (T -142))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-141 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-5 *2 (-141 *6)) (-5 *1 (-142 *5 *6)))))
-((-3975 (((-801 |#1|) |#3|) 22 T ELT)))
-(((-143 |#1| |#2| |#3|) (-10 -7 (-14 -3975 ((-801 |#1|) |#3|))) (-1014) (-12 (-554 (-801 |#1|)) (-145)) (-138 |#2|)) (T -143))
-((-3975 (*1 *2 *3) (-11 (-4 *5 (-12 (-554 *2) (-145))) (-5 *2 (-801 *4)) (-5 *1 (-143 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-138 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1383 (((-82) $) 9 T ELT)) (-1382 (((-82) $ (-82)) 11 T ELT)) (-3617 (($) 13 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3950 (((-773) $) 18 T ELT)) (-3705 (((-82) $) 8 T ELT)) (-3865 (((-82) $ (-82)) 10 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-144) (-12 (-1014) (-10 -8 (-14 -3617 ($)) (-14 -3705 ((-82) $)) (-14 -1383 ((-82) $)) (-14 -3865 ((-82) $ (-82))) (-14 -1382 ((-82) $ (-82))) (-14 -3403 ($ $))))) (T -144))
-((-3617 (*1 *1) (-5 *1 (-144))) (-3705 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-144)))) (-1383 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-144)))) (-3865 (*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-144)))) (-1382 (*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-144)))) (-3403 (*1 *1 *1) (-5 *1 (-144))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-145) (-110)) (T -145))
-NIL
-(-12 (-962) (-79 $ $) (-10 -7 (-6 (-3997 "*"))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1701 (($ $) 6 T ELT)))
-(((-146) (-110)) (T -146))
-((-1701 (*1 *1 *1) (-4 *1 (-146))))
-(-12 (-10 -8 (-14 -1701 ($ $))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 ((|#1| $) 79 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1070 |#1|)) 48 T ELT)) (-3470 (((-3 $ #1#) $) 123 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-1389 (((-1070 |#1|) $) 86 T ELT)) (-1391 (((-1070 |#1|) $) 83 T ELT)) (-1390 (((-1070 |#1|) $) 84 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1385 (((-1070 |#1|) $) 93 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1896 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3772 (($ $ (-485)) 96 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1384 (((-1070 |#1|) $) 94 T ELT)) (-1386 (((-1070 (-349 |#1|)) $) 14 T ELT)) (-2619 (($ (-349 |#1|)) 17 T ELT) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-2894 (($ $) 98 T ELT)) (-3950 (((-773) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-349 |#1|)) 36 T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-695)) 67 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-1387 (((-1070 (-349 |#1|)) $) 20 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-82) $ $) 35 T ELT)) (-3953 (($ $ $) 121 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3842 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-349 |#1|) $) 117 T ELT) (($ $ (-349 |#1|)) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)))
-(((-147 |#1|) (-12 (-35 |#1|) (-35 (-349 |#1|)) (-311) (-10 -8 (-14 -2619 ($ (-349 |#1|))) (-14 -2619 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-14 -1392 ($ |#1| (-1070 |#1|))) (-14 -1391 ((-1070 |#1|) $)) (-14 -1390 ((-1070 |#1|) $)) (-14 -1389 ((-1070 |#1|) $)) (-14 -3132 (|#1| $)) (-14 -1388 ($ $)) (-14 -1387 ((-1070 (-349 |#1|)) $)) (-14 -1386 ((-1070 (-349 |#1|)) $)) (-14 -1385 ((-1070 |#1|) $)) (-14 -1384 ((-1070 |#1|) $)) (-14 -3772 ($ $ (-485))) (-14 -2894 ($ $)))) (-257)) (T -147))
-((-2619 (*1 *1 *2) (-11 (-5 *2 (-349 *3)) (-4 *3 (-257)) (-5 *1 (-147 *3)))) (-2619 (*1 *1 *2 *3 *3) (-11 (-5 *3 (-1070 *2)) (-4 *2 (-257)) (-5 *1 (-147 *2)))) (-1392 (*1 *1 *2 *3) (-11 (-5 *3 (-1070 *2)) (-4 *2 (-257)) (-5 *1 (-147 *2)))) (-1391 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-1390 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-1389 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-3132 (*1 *2 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257)))) (-1388 (*1 *1 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257)))) (-1387 (*1 *2 *1) (-11 (-5 *2 (-1070 (-349 *3))) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-1386 (*1 *2 *1) (-11 (-5 *2 (-1070 (-349 *3))) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-1385 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-1384 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-3772 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-147 *3)) (-4 *3 (-257)))) (-2894 (*1 *1 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257)))))
-((-1393 (($ (-75) $) 15 T ELT)) (-3224 (((-633 (-75)) (-447) $) 14 T ELT)) (-3950 (((-773) $) 18 T ELT)) (-1394 (((-584 (-75)) $) 8 T ELT)))
-(((-148) (-12 (-553 (-773)) (-10 -8 (-14 -1394 ((-584 (-75)) $)) (-14 -1393 ($ (-75) $)) (-14 -3224 ((-633 (-75)) (-447) $))))) (T -148))
-((-1394 (*1 *2 *1) (-11 (-5 *2 (-584 (-75))) (-5 *1 (-148)))) (-1393 (*1 *1 *2 *1) (-11 (-5 *2 (-75)) (-5 *1 (-148)))) (-3224 (*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-75))) (-5 *1 (-148)))))
-((-1407 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1401 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1400 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1399 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1408 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1406 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT)))
-(((-149 |#1|) (-10 -7 (-14 -1395 ((-855 |#1|) (-855 |#1|))) (-14 -1396 ((-855 |#1|) (-855 |#1|))) (-14 -1397 ((-855 |#1|) (-855 |#1|))) (-14 -1398 ((-855 |#1|) (-855 |#1|))) (-14 -1399 ((-855 |#1|) (-855 |#1|))) (-14 -1400 ((-855 |#1|) (-855 |#1|))) (-14 -1401 ((-855 |#1|) (-855 |#1|))) (-14 -1644 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1406 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1407 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-14 -1408 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-12 (-311) (-1116) (-916))) (T -149))
-((-1408 (*1 *2 *3 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1407 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1406 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1405 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1404 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1403 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1402 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1644 (*1 *2 *3) (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3)) (-4 *3 (-12 (-311) (-1116) (-916))))) (-1401 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1400 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1399 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1398 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1397 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1396 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))) (-1395 (*1 *2 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916))) (-5 *1 (-149 *3)))))
-((-2452 ((|#2| |#3|) 28 T ELT)))
-(((-150 |#1| |#2| |#3|) (-10 -7 (-14 -2452 (|#2| |#3|))) (-145) (-1156 |#1|) (-662 |#1| |#2|)) (T -150))
-((-2452 (*1 *2 *3) (-11 (-4 *4 (-145)) (-4 *2 (-1156 *4)) (-5 *1 (-150 *4 *2 *3)) (-4 *3 (-662 *4 *2)))))
-((-2799 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT)))
-(((-151 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-14 -2799 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1014) (-12 (-797 |#1|) (-145)) (-138 |#2|)) (T -151))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-138 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-12 (-797 *5) (-145))) (-5 *1 (-151 *5 *6 *3)))))
-((-1410 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1409 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2079 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT)))
-(((-152 |#1|) (-10 -7 (-14 -1409 ((-584 |#1|) |#1| (-584 |#1|))) (-14 -2079 (|#1| (-584 |#1|) (-584 |#1|))) (-14 -2079 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-14 -1410 ((-584 |#1|) (-584 |#1|) |#1|))) (-257)) (T -152))
-((-1410 (*1 *2 *2 *3) (-11 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-152 *3)))) (-2079 (*1 *2 *3 *2) (-11 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257)) (-5 *1 (-152 *4)))) (-2079 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-152 *2)) (-4 *2 (-257)))) (-1409 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-152 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3321 (((-1131) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 11 T ELT)) (-3950 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-153) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $)) (-14 -3321 ((-1131) $))))) (T -153))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-153)))) (-3321 (*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-153)))))
-((-1419 (((-2 (|:| |start| |#2|) (|:| -1784 (-347 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-141 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-347 |#2|) |#2| |#1|) 119 T ELT) (((-347 |#2|) |#2| |#1| (-82)) 88 T ELT)) (-3135 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3735 (((-347 |#2|) |#2|) 154 T ELT) (((-347 |#2|) |#2| |#1|) 33 T ELT) (((-347 |#2|) |#2| |#1| (-82)) 153 T ELT)) (-1412 (((-584 (-2 (|:| -1784 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1784 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-82)) 82 T ELT)) (-1411 (((-584 (-141 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-141 |#1|)) |#2|) 43 T ELT)))
-(((-154 |#1| |#2|) (-10 -7 (-14 -1411 ((-584 (-141 |#1|)) |#2|)) (-14 -1411 ((-584 (-141 |#1|)) |#2| |#1|)) (-14 -1412 ((-584 (-2 (|:| -1784 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-82))) (-14 -1412 ((-584 (-2 (|:| -1784 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-14 -3735 ((-347 |#2|) |#2| |#1| (-82))) (-14 -3735 ((-347 |#2|) |#2| |#1|)) (-14 -3735 ((-347 |#2|) |#2|)) (-14 -1413 (|#2| |#2|)) (-14 -3135 (|#1| |#2|)) (-14 -1414 ((-347 |#2|) |#2| |#1| (-82))) (-14 -1414 ((-347 |#2|) |#2| |#1|)) (-14 -1415 (|#2| |#2|)) (-14 -1416 (|#1| |#2| |#1|)) (-14 -1416 (|#1| |#2|)) (-14 -1417 ((-141 |#1|) |#2|)) (-14 -1418 (|#1| |#1|)) (-14 -1419 ((-2 (|:| |start| |#2|) (|:| -1784 (-347 |#2|))) |#2|))) (-12 (-311) (-756)) (-1156 (-141 |#1|))) (T -154))
-((-1419 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-347 *3)))) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-1418 (*1 *2 *2) (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3)) (-4 *3 (-1156 (-141 *2))))) (-1417 (*1 *2 *3) (-11 (-5 *2 (-141 *4)) (-5 *1 (-154 *4 *3)) (-4 *4 (-12 (-311) (-756))) (-4 *3 (-1156 *2)))) (-1416 (*1 *2 *3) (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3)) (-4 *3 (-1156 (-141 *2))))) (-1416 (*1 *2 *3 *2) (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3)) (-4 *3 (-1156 (-141 *2))))) (-1415 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-756))) (-5 *1 (-154 *3 *2)) (-4 *2 (-1156 (-141 *3))))) (-1414 (*1 *2 *3 *4) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-1414 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-82)) (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-3135 (*1 *2 *3) (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3)) (-4 *3 (-1156 (-141 *2))))) (-1413 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-756))) (-5 *1 (-154 *3 *2)) (-4 *2 (-1156 (-141 *3))))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-3735 (*1 *2 *3 *4) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-3735 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-82)) (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-1412 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1784 (-584 *3)) (|:| -1597 *4)))) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-1412 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1784 (-584 *3)) (|:| -1597 *5)))) (-5 *1 (-154 *5 *3)) (-4 *3 (-1156 (-141 *5))))) (-1411 (*1 *2 *3 *4) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-584 (-141 *4))) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))) (-1411 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-584 (-141 *4))) (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))))
-((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-695) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT)))
-(((-155 |#1| |#2|) (-10 -7 (-14 -1420 ((-3 |#2| "failed") |#2|)) (-14 -1421 ((-695) |#2|)) (-14 -1422 (|#2| |#2| |#2|))) (-1130) (-617 |#1|)) (T -155))
-((-1422 (*1 *2 *2 *2) (-11 (-4 *3 (-1130)) (-5 *1 (-155 *3 *2)) (-4 *2 (-617 *3)))) (-1421 (*1 *2 *3) (-11 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-155 *4 *3)) (-4 *3 (-617 *4)))) (-1420 (*1 *2 *2) (|partial| -11 (-4 *3 (-1130)) (-5 *1 (-155 *3 *2)) (-4 *2 (-617 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3545 (((-447) $) 8 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1427 (((-160) $) 10 T ELT)) (-2636 (((-82) $ (-447)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1423 (((-633 $) (-447)) 17 T ELT)) (-1426 (((-584 (-82)) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2524 (((-52) $) 12 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-156) (-12 (-159) (-10 -8 (-14 -1423 ((-633 $) (-447)))))) (T -156))
-((-1423 (*1 *2 *3) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-156))) (-5 *1 (-156)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3950 (((-773) $) 14 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1424 (((-584 (-1096)) $) 10 T ELT)) (-3059 (((-82) $ $) 12 T ELT)))
-(((-157 |#1|) (-12 (-1014) (-10 -8 (-14 -1483 (|#1| $)) (-14 -1424 ((-584 (-1096)) $)))) (-159)) (T -157))
-((-1483 (*1 *2 *1) (-11 (-5 *1 (-157 *2)) (-4 *2 (-159)))) (-1424 (*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-157 *3)) (-4 *3 (-159)))))
-((-1425 (((-584 (-775)) $) 16 T ELT)) (-1427 (((-160) $) 8 T ELT)) (-1426 (((-584 (-82)) $) 13 T ELT)) (-2524 (((-52) $) 10 T ELT)))
-(((-158 |#1|) (-10 -7 (-14 -1425 ((-584 (-775)) |#1|)) (-14 -1426 ((-584 (-82)) |#1|)) (-14 -1427 ((-160) |#1|)) (-14 -2524 ((-52) |#1|))) (-159)) (T -158))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1425 (((-584 (-775)) $) 22 T ELT)) (-3545 (((-447) $) 19 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1427 (((-160) $) 24 T ELT)) (-2636 (((-82) $ (-447)) 17 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1426 (((-584 (-82)) $) 23 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2524 (((-52) $) 18 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-159) (-110)) (T -159))
-((-1427 (*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-160)))) (-1426 (*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-584 (-82))))) (-1425 (*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-584 (-775))))))
-(-12 (-748 (-447)) (-10 -8 (-14 -1427 ((-160) $)) (-14 -1426 ((-584 (-82)) $)) (-14 -1425 ((-584 (-775)) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-748 (-447)) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3950 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 10 T ELT)))
-(((-160) (-12 (-1014) (-10 -8 (-14 -9 ($) -3956) (-14 -8 ($) -3956) (-14 -7 ($) -3956)))) (T -160))
-((-9 (*1 *1) (-5 *1 (-160))) (-8 (*1 *1) (-5 *1 (-160))) (-7 (*1 *1) (-5 *1 (-160))))
-((-3645 ((|#2| |#2|) 28 T ELT)) (-3648 (((-82) |#2|) 19 T ELT)) (-3646 (((-264 |#1|) |#2|) 12 T ELT)) (-3647 (((-264 |#1|) |#2|) 14 T ELT)) (-3643 ((|#2| |#2| (-1091)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3649 (((-141 (-264 |#1|)) |#2|) 10 T ELT)) (-3644 ((|#2| |#2| (-1091)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
-(((-161 |#1| |#2|) (-10 -7 (-14 -3643 (|#2| |#2|)) (-14 -3643 (|#2| |#2| (-1091))) (-14 -3644 (|#2| |#2|)) (-14 -3644 (|#2| |#2| (-1091))) (-14 -3646 ((-264 |#1|) |#2|)) (-14 -3647 ((-264 |#1|) |#2|)) (-14 -3648 ((-82) |#2|)) (-14 -3645 (|#2| |#2|)) (-14 -3649 ((-141 (-264 |#1|)) |#2|))) (-12 (-496) (-951 (-485))) (-12 (-24) (-1116) (-363 (-141 |#1|)))) (T -161))
-((-3649 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-141 (-264 *4))) (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3645 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3)))))) (-3648 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-82)) (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3647 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-264 *4)) (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3646 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-264 *4)) (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3644 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3644 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3)))))) (-3643 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 (-141 *4)))))) (-3643 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3)))))))
-((-1431 (((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|))) 26 T ELT)) (-3950 (((-1180 (-631 (-349 (-858 |#1|)))) (-1180 (-631 |#1|))) 37 T ELT)))
-(((-162 |#1|) (-10 -7 (-14 -1431 ((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|)))) (-14 -3950 ((-1180 (-631 (-349 (-858 |#1|)))) (-1180 (-631 |#1|))))) (-145)) (T -162))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-145)) (-5 *2 (-1180 (-631 (-349 (-858 *4))))) (-5 *1 (-162 *4)))) (-1431 (*1 *2 *3) (-11 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-145)) (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-162 *4)))))
-((-1439 (((-1093 (-349 (-485))) (-1093 (-349 (-485))) (-1093 (-349 (-485)))) 93 T ELT)) (-1441 (((-1093 (-349 (-485))) (-584 (-485)) (-584 (-485))) 109 T ELT)) (-1432 (((-1093 (-349 (-485))) (-831)) 54 T ELT)) (-3858 (((-1093 (-349 (-485))) (-831)) 79 T ELT)) (-3771 (((-349 (-485)) (-1093 (-349 (-485)))) 89 T ELT)) (-1433 (((-1093 (-349 (-485))) (-695)) 37 T ELT)) (-1436 (((-1093 (-349 (-485))) (-831)) 66 T ELT)) (-1435 (((-1093 (-349 (-485))) (-831)) 61 T ELT)) (-1438 (((-1093 (-349 (-485))) (-1093 (-349 (-485))) (-1093 (-349 (-485)))) 87 T ELT)) (-2894 (((-1093 (-349 (-485))) (-695)) 29 T ELT)) (-1437 (((-349 (-485)) (-1093 (-349 (-485))) (-1093 (-349 (-485)))) 91 T ELT)) (-1434 (((-1093 (-349 (-485))) (-695)) 35 T ELT)) (-1440 (((-1093 (-349 (-485))) (-584 (-831))) 103 T ELT)))
-(((-163) (-10 -7 (-14 -2894 ((-1093 (-349 (-485))) (-695))) (-14 -1432 ((-1093 (-349 (-485))) (-831))) (-14 -1433 ((-1093 (-349 (-485))) (-695))) (-14 -1434 ((-1093 (-349 (-485))) (-695))) (-14 -1435 ((-1093 (-349 (-485))) (-831))) (-14 -1436 ((-1093 (-349 (-485))) (-831))) (-14 -3858 ((-1093 (-349 (-485))) (-831))) (-14 -1437 ((-349 (-485)) (-1093 (-349 (-485))) (-1093 (-349 (-485))))) (-14 -1438 ((-1093 (-349 (-485))) (-1093 (-349 (-485))) (-1093 (-349 (-485))))) (-14 -3771 ((-349 (-485)) (-1093 (-349 (-485))))) (-14 -1439 ((-1093 (-349 (-485))) (-1093 (-349 (-485))) (-1093 (-349 (-485))))) (-14 -1440 ((-1093 (-349 (-485))) (-584 (-831)))) (-14 -1441 ((-1093 (-349 (-485))) (-584 (-485)) (-584 (-485)))))) (T -163))
-((-1441 (*1 *2 *3 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1440 (*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1439 (*1 *2 *2 *2) (-11 (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-3771 (*1 *2 *3) (-11 (-5 *3 (-1093 (-349 (-485)))) (-5 *2 (-349 (-485))) (-5 *1 (-163)))) (-1438 (*1 *2 *2 *2) (-11 (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1437 (*1 *2 *3 *3) (-11 (-5 *3 (-1093 (-349 (-485)))) (-5 *2 (-349 (-485))) (-5 *1 (-163)))) (-3858 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1436 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1435 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1434 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1433 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-1432 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))) (-2894 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-((-1443 (((-347 (-1086 (-485))) (-485)) 38 T ELT)) (-1442 (((-584 (-1086 (-485))) (-485)) 33 T ELT)) (-2804 (((-1086 (-485)) (-485)) 28 T ELT)))
-(((-164) (-10 -7 (-14 -1442 ((-584 (-1086 (-485))) (-485))) (-14 -2804 ((-1086 (-485)) (-485))) (-14 -1443 ((-347 (-1086 (-485))) (-485))))) (T -164))
-((-1443 (*1 *2 *3) (-11 (-5 *2 (-347 (-1086 (-485)))) (-5 *1 (-164)) (-5 *3 (-485)))) (-2804 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-164)) (-5 *3 (-485)))) (-1442 (*1 *2 *3) (-11 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-164)) (-5 *3 (-485)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1444 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3115 ((|#2| $ (-695)) 10 T ELT)) (-3617 (($) 8 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 23 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 13 T ELT)))
-(((-165 |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -3617 ($)) (-14 -3115 (|#2| $ (-695))) (-14 -1444 (|#2| $ (-695) |#2|)))) (-831) (-1014)) (T -165))
-((-3617 (*1 *1) (-11 (-5 *1 (-165 *2 *3)) (-13 *2 (-831)) (-4 *3 (-1014)))) (-3115 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-165 *4 *2)) (-13 *4 (-831)))) (-1444 (*1 *2 *1 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-165 *4 *2)) (-13 *4 (-831)) (-4 *2 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1965 (((-1186) $) 36 T ELT) (((-1186) $ (-831) (-831)) 40 T ELT)) (-3803 (($ $ (-903)) 19 T ELT) (((-202 (-1074)) $ (-1091)) 15 T ELT)) (-3620 (((-1186) $) 34 T ELT)) (-3950 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (-3842 (($ $ $) 22 T ELT)))
-(((-166 |#1|) (-12 (-1014) (-556 (-584 |#1|)) (-10 -8 (-14 -3803 ($ $ (-903))) (-14 -3803 ((-202 (-1074)) $ (-1091))) (-14 -3842 ($ $ $)) (-14 -3840 ($ $ $)) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $)) (-14 -1965 ((-1186) $ (-831) (-831))))) (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))) (T -166))
-((-3803 (*1 *1 *1 *2) (-11 (-5 *2 (-903)) (-5 *1 (-166 *3)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-202 (-1074))) (-5 *1 (-166 *4)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ *3)) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))))) (-3842 (*1 *1 *1 *1) (-11 (-5 *1 (-166 *2)) (-4 *2 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))))) (-3840 (*1 *1 *1 *1) (-11 (-5 *1 (-166 *2)) (-4 *2 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))))) (-3620 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-166 *3)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $)) (-14 -1965 (*2 $))))))) (-1965 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-166 *3)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $)) (-14 -1965 (*2 $))))))) (-1965 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-166 *4)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $)) (-14 -1965 (*2 $))))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 10 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2854 (($ (-578 |#1|)) 11 T ELT)) (-3950 (((-773) $) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-167 |#1|) (-12 (-753) (-10 -8 (-14 -2854 ($ (-578 |#1|))))) (-584 (-1091))) (T -167))
-((-2854 (*1 *1 *2) (-11 (-5 *2 (-578 *3)) (-13 *3 (-584 (-1091))) (-5 *1 (-167 *3)))))
-((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
-(((-168 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -168))
-((-1445 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1156 (-349 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-168 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
-((-1449 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2373 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2578 |#2|)))) 79 T ELT)) (-1447 (((-584 (-2 (|:| |deg| (-695)) (|:| -2578 |#2|))) |#2|) 72 T ELT)) (-1450 (((-82) |#2|) 70 T ELT)) (-3736 (((-347 |#2|) |#2|) 92 T ELT)) (-3735 (((-347 |#2|) |#2|) 91 T ELT)) (-2374 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1784 (-584 (-2 (|:| |irr| |#2|) (|:| -2397 (-485)))))) |#2| (-82)) 86 T ELT)))
-(((-169 |#1| |#2|) (-10 -7 (-14 -3735 ((-347 |#2|) |#2|)) (-14 -3736 ((-347 |#2|) |#2|)) (-14 -1446 ((-2 (|:| |cont| |#1|) (|:| -1784 (-584 (-2 (|:| |irr| |#2|) (|:| -2397 (-485)))))) |#2| (-82))) (-14 -1447 ((-584 (-2 (|:| |deg| (-695)) (|:| -2578 |#2|))) |#2|)) (-14 -2373 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2578 |#2|))))) (-14 -2374 (|#2| |#2| (-695) |#2|)) (-14 -1448 (|#2| |#2| (-695) |#2|)) (-14 -1449 (|#2| |#2| (-695) |#2|)) (-14 -1450 ((-82) |#2|))) (-298) (-1156 |#1|)) (T -169))
-((-1450 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))) (-1449 (*1 *2 *2 *3 *2) (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4)))) (-1448 (*1 *2 *2 *3 *2) (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4)))) (-2374 (*1 *2 *2 *3 *2) (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4)))) (-2373 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2578 *5)))) (-4 *5 (-1156 *4)) (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-169 *4 *5)))) (-1447 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2578 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))) (-1446 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1156 *5)))) (-3736 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-347 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-347 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3159 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-485) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-485) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-485) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-485) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-485) (-257)) ELT) (((-349 (-485)) $) NIL T ELT)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-248 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-248 (-485)))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-485)) NIL (|has| (-485) (-240 (-485) (-485))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-1451 (($ (-349 (-485))) 9 T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-485) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-485) (-934)) ELT) (((-178) $) NIL (|has| (-485) (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-485) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-485) (-822))) (|has| (-485) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-170) (-12 (-905 (-485)) (-553 (-349 (-485))) (-553 (-918 10)) (-10 -8 (-14 -3131 ((-349 (-485)) $)) (-14 -1451 ($ (-349 (-485))))))) (T -170))
-((-3131 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-170)))) (-1451 (*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-170)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3322 (((-1029) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3181 (((-423) $) 11 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 16 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-171) (-12 (-996) (-10 -8 (-14 -3181 ((-423) $)) (-14 -3322 ((-1029) $)) (-14 -3236 ((-1050) $))))) (T -171))
-((-3181 (*1 *2 *1) (-11 (-5 *2 (-423)) (-5 *1 (-171)))) (-3322 (*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-171)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-171)))))
-((-3815 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)) (-1074)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-82)) 17 T ELT)))
-(((-172 |#1| |#2|) (-10 -7 (-14 -3815 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)))) (-14 -3815 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|)) (-1074))) (-14 -1452 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-82)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-872) (-26 |#1|))) (T -172))
-((-1452 (*1 *2 *3 *4 *5 *5 *6) (-11 (-5 *4 (-1091)) (-5 *6 (-82)) (-4 *7 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-4 *3 (-12 (-1116) (-872) (-26 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-172 *7 *3)) (-5 *5 (-751 *3)))) (-3815 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) (-4 *3 (-12 (-1116) (-872) (-26 *6))) (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *6 *3)))) (-3815 (*1 *2 *3 *4) (-11 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-12 (-1116) (-872) (-26 *5))) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5 *3)))))
-((-3815 (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-858 |#1|)) (-1005 (-751 (-349 (-858 |#1|)))) (-1074)) 49 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-349 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-264 |#1|))) (-1074)) 50 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-264 |#1|)))) 22 T ELT)))
-(((-173 |#1|) (-10 -7 (-14 -3815 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-858 |#1|)) (-1005 (-751 (-264 |#1|))))) (-14 -3815 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-264 |#1|))) (-1074))) (-14 -3815 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-349 (-858 |#1|)))))) (-14 -3815 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-858 |#1|)) (-1005 (-751 (-349 (-858 |#1|)))) (-1074)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (T -173))
-((-3815 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1005 (-751 (-349 (-858 *6))))) (-5 *5 (-1074)) (-5 *3 (-349 (-858 *6))) (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *6)))) (-3815 (*1 *2 *3 *4) (-11 (-5 *4 (-1005 (-751 (-349 (-858 *5))))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5)))) (-3815 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-349 (-858 *6))) (-5 *4 (-1005 (-751 (-264 *6)))) (-5 *5 (-1074)) (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6)))) (-3815 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1005 (-751 (-264 *5)))) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5)))))
-((-3845 (((-2 (|:| -2006 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|)) 26 T ELT)) (-3966 (((-584 (-264 |#2|)) (-264 |#2|) (-831)) 51 T ELT)))
-(((-174 |#1| |#2|) (-10 -7 (-14 -3845 ((-2 (|:| -2006 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|))) (-14 -3966 ((-584 (-264 |#2|)) (-264 |#2|) (-831)))) (-962) (-496)) (T -174))
-((-3966 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-264 *6))) (-5 *1 (-174 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962)))) (-3845 (*1 *2 *3) (-11 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2006 (-1086 *4)) (|:| |deg| (-831)))) (-5 *1 (-174 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3326 ((|#1| $) 31 T ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) NIL T ELT)) (-2299 (($ $) 40 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-695) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3612 (($ |#1| $) NIL T ELT)) (-2606 (((-695) $) 34 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) NIL T ELT)) (-3406 (((-82) $) 9 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3325 (((-695) $) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-175 |#1|) (-12 (-213 |#1|) (-10 -8 (-14 -1497 ($ (-584 |#1|))))) (-1014)) (T -175))
-((-1497 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-175 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1454 (($ (-264 |#1|)) 24 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2667 (((-82) $) NIL T ELT)) (-3160 (((-3 (-264 |#1|) #1#) $) NIL T ELT)) (-3159 (((-264 |#1|) $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3846 (($ (-1 (-264 |#1|) (-264 |#1|)) $) NIL T ELT)) (-3177 (((-264 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1455 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($ (-695)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3952 (((-485) $) NIL T ELT)) (-3950 (((-773) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-264 |#1|)) NIL T ELT)) (-3680 (((-264 |#1|) $ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) 29 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-264 |#1|) $) 19 T ELT)))
-(((-176 |#1| |#2|) (-12 (-561 (-264 |#1|)) (-951 (-264 |#1|)) (-380 (-264 |#1|)) (-10 -8 (-14 -3177 ((-264 |#1|) $)) (-14 -1456 ($ $)) (-14 -3962 ($ $)) (-14 -3680 ((-264 |#1|) $ $)) (-14 -2411 ($ (-695))) (-14 -1455 ((-82) $)) (-14 -2667 ((-82) $)) (-14 -3952 ((-485) $)) (-14 -1454 ($ (-264 |#1|))) (-14 -1453 ($ $)))) (-12 (-962) (-757)) (-584 (-1091))) (T -176))
-((-3177 (*1 *2 *1) (-11 (-5 *2 (-264 *3)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-1456 (*1 *1 *1) (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757))) (-13 *3 (-584 (-1091))))) (-3962 (*1 *1 *1) (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757))) (-13 *3 (-584 (-1091))))) (-3680 (*1 *2 *1 *1) (-11 (-5 *2 (-264 *3)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-2411 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-2667 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-3952 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757))) (-13 *4 (-584 (-1091))))) (-1454 (*1 *1 *2) (-11 (-5 *2 (-264 *3)) (-4 *3 (-12 (-962) (-757))) (-5 *1 (-176 *3 *4)) (-13 *4 (-584 (-1091))))) (-1453 (*1 *1 *1) (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757))) (-13 *3 (-584 (-1091))))))
-((-1457 (((-82) (-1074)) 26 T ELT)) (-1458 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-82)) 35 T ELT)) (-1459 (((-3 (-82) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-82)) 83 T ELT) (((-3 (-82) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-82)) 84 T ELT)))
-(((-177 |#1| |#2|) (-10 -7 (-14 -1457 ((-82) (-1074))) (-14 -1458 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-82))) (-14 -1459 ((-3 (-82) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-82))) (-14 -1459 ((-3 (-82) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-82)))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-26 |#1|))) (T -177))
-((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -11 (-5 *2 (-82)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) (-4 *6 (-12 (-1116) (-26 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-177 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -11 (-5 *2 (-82)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) (-5 *5 (-751 *7)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-4 *7 (-12 (-1116) (-26 *6))) (-5 *1 (-177 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -11 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-82)) (-4 *4 (-12 (-1116) (-26 *6))) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-177 *6 *4)))) (-1457 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-82)) (-5 *1 (-177 *4 *5)) (-4 *5 (-12 (-1116) (-26 *4))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 86 T ELT)) (-3132 (((-485) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3495 (($ $) 73 T ELT)) (-3642 (($ $) 61 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-3040 (($ $) 52 T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3493 (($ $) 71 T ELT)) (-3641 (($ $) 59 T ELT)) (-3626 (((-485) $) 83 T ELT)) (-3497 (($ $) 76 T ELT)) (-3640 (($ $) 63 T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) NIL T ELT)) (-3160 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-349 (-485)) #1#) $) 113 T ELT)) (-3159 (((-485) $) 114 T ELT) (((-349 (-485)) $) 111 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 91 T ELT)) (-1749 (((-349 (-485)) $ (-695)) 106 T ELT) (((-349 (-485)) $ (-695) (-695)) 105 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-1773 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3189 (((-82) $) 107 T ELT)) (-3630 (($) 31 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL T ELT)) (-3775 (((-485) $) 25 T ELT)) (-1215 (((-82) $ $) 141 T ELT)) (-2412 (((-82) $) 87 T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-82) $) 85 T ELT)) (-1460 (((-82) $) 140 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) 49 T ELT) (($) 21 (-11 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3988)))) ELT)) (-2860 (($ $ $) 48 T ELT) (($) 20 (-11 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3988)))) ELT)) (-1775 (((-485) $) 10 T ELT)) (-1748 (($ $) 16 T ELT)) (-1747 (($ $) 53 T ELT)) (-3946 (($ $) 58 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-1772 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3246 (((-1034) $) 89 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3257 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-831)) 98 T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-485) $) 11 T ELT)) (-1746 (($) 30 T ELT)) (-3947 (($ $) 57 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3761 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1771 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3498 (($ $) 74 T ELT)) (-3639 (($ $) 64 T ELT)) (-3496 (($ $) 75 T ELT)) (-3638 (($ $) 62 T ELT)) (-3494 (($ $) 72 T ELT)) (-3637 (($ $) 60 T ELT)) (-3975 (((-329) $) 102 T ELT) (((-178) $) 99 T ELT) (((-801 (-329)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3950 (((-773) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-349 (-485))) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-1774 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (((-831)) 7 T ELT)) (-3501 (($ $) 79 T ELT)) (-3489 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3499 (($ $) 77 T ELT)) (-3487 (($ $) 65 T ELT)) (-3503 (($ $) 82 T ELT)) (-3491 (($ $) 70 T ELT)) (-3128 (((-82) $ $) 143 T ELT)) (-3504 (($ $) 80 T ELT)) (-3492 (($ $) 68 T ELT)) (-3502 (($ $) 81 T ELT)) (-3490 (($ $) 69 T ELT)) (-3500 (($ $) 78 T ELT)) (-3488 (($ $) 66 T ELT)) (-3386 (($ $) 108 T ELT)) (-2663 (($) 27 T CONST)) (-2669 (($) 28 T CONST)) (-3390 (($ $) 95 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3387 (($ $ $) 97 T ELT)) (-2569 (((-82) $ $) 42 T ELT)) (-2570 (((-82) $ $) 40 T ELT)) (-3059 (((-82) $ $) 50 T ELT)) (-2687 (((-82) $ $) 41 T ELT)) (-2688 (((-82) $ $) 39 T ELT)) (-3953 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3840 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3842 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-349 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-178) (-12 (-346) (-189) (-1116) (-554 (-474)) (-10 -8 (-14 -3953 ($ $ (-485))) (-14 ** ($ $ $)) (-14 -1746 ($)) (-14 -1748 ($ $)) (-14 -1747 ($ $)) (-14 -3489 ($ $ $)) (-14 -3390 ($ $)) (-14 -3387 ($ $ $)) (-14 -1749 ((-349 (-485)) $ (-695))) (-14 -1749 ((-349 (-485)) $ (-695) (-695))) (-14 -1460 ((-82) $))))) (T -178))
-((** (*1 *1 *1 *1) (-5 *1 (-178))) (-3953 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-178)))) (-1746 (*1 *1) (-5 *1 (-178))) (-1748 (*1 *1 *1) (-5 *1 (-178))) (-1747 (*1 *1 *1) (-5 *1 (-178))) (-3489 (*1 *1 *1 *1) (-5 *1 (-178))) (-3390 (*1 *1 *1) (-5 *1 (-178))) (-3387 (*1 *1 *1 *1) (-5 *1 (-178))) (-1749 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-178)))) (-1749 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-178)))) (-1460 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-178)))))
-((-3389 (((-141 (-178)) (-695) (-141 (-178))) 11 T ELT) (((-178) (-695) (-178)) 12 T ELT)) (-1461 (((-141 (-178)) (-141 (-178))) 13 T ELT) (((-178) (-178)) 14 T ELT)) (-1462 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 19 T ELT) (((-178) (-178) (-178)) 22 T ELT)) (-3388 (((-141 (-178)) (-141 (-178))) 27 T ELT) (((-178) (-178)) 26 T ELT)) (-3392 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 57 T ELT) (((-178) (-178) (-178)) 49 T ELT)) (-3394 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 62 T ELT) (((-178) (-178) (-178)) 60 T ELT)) (-3391 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 15 T ELT) (((-178) (-178) (-178)) 16 T ELT)) (-3393 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 17 T ELT) (((-178) (-178) (-178)) 18 T ELT)) (-3396 (((-141 (-178)) (-141 (-178))) 74 T ELT) (((-178) (-178)) 73 T ELT)) (-3395 (((-178) (-178)) 68 T ELT) (((-141 (-178)) (-141 (-178))) 72 T ELT)) (-3390 (((-141 (-178)) (-141 (-178))) 8 T ELT) (((-178) (-178)) 9 T ELT)) (-3387 (((-141 (-178)) (-141 (-178)) (-141 (-178))) 35 T ELT) (((-178) (-178) (-178)) 31 T ELT)))
-(((-179) (-10 -7 (-14 -3390 ((-178) (-178))) (-14 -3390 ((-141 (-178)) (-141 (-178)))) (-14 -3387 ((-178) (-178) (-178))) (-14 -3387 ((-141 (-178)) (-141 (-178)) (-141 (-178)))) (-14 -1461 ((-178) (-178))) (-14 -1461 ((-141 (-178)) (-141 (-178)))) (-14 -3388 ((-178) (-178))) (-14 -3388 ((-141 (-178)) (-141 (-178)))) (-14 -3389 ((-178) (-695) (-178))) (-14 -3389 ((-141 (-178)) (-695) (-141 (-178)))) (-14 -3391 ((-178) (-178) (-178))) (-14 -3391 ((-141 (-178)) (-141 (-178)) (-141 (-178)))) (-14 -3392 ((-178) (-178) (-178))) (-14 -3392 ((-141 (-178)) (-141 (-178)) (-141 (-178)))) (-14 -3393 ((-178) (-178) (-178))) (-14 -3393 ((-141 (-178)) (-141 (-178)) (-141 (-178)))) (-14 -3394 ((-178) (-178) (-178))) (-14 -3394 ((-141 (-178)) (-141 (-178)) (-141 (-178)))) (-14 -3395 ((-141 (-178)) (-141 (-178)))) (-14 -3395 ((-178) (-178))) (-14 -3396 ((-178) (-178))) (-14 -3396 ((-141 (-178)) (-141 (-178)))) (-14 -1462 ((-178) (-178) (-178))) (-14 -1462 ((-141 (-178)) (-141 (-178)) (-141 (-178)))))) (T -179))
-((-1462 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-1462 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3396 (*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3396 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3395 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3395 (*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3394 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3394 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3393 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3393 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3392 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3392 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3391 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3391 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3389 (*1 *2 *3 *2) (-11 (-5 *2 (-141 (-178))) (-5 *3 (-695)) (-5 *1 (-179)))) (-3389 (*1 *2 *3 *2) (-11 (-5 *2 (-178)) (-5 *3 (-695)) (-5 *1 (-179)))) (-3388 (*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3388 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-1461 (*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-1461 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3387 (*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3387 (*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))) (-3390 (*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))) (-3390 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3841 (($ (-695) (-695)) NIL T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3877 (($ |#1| |#1| |#1|) 33 T ELT)) (-3123 (((-82) $) NIL T ELT)) (-2351 (($ $ (-485) (-485)) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-82) $) NIL T ELT)) (-2348 (($ $ (-485) (-485) $) NIL T ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3851 (($ |#1| |#1| |#1|) 32 T ELT)) (-3336 (($ (-695) |#1|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3114 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-3111 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3115 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3110 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-3109 (((-584 (-1180 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3117 (((-695) $) NIL T ELT)) (-3617 (($ (-695) (-695) |#1|) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3330 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3121 (((-485) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-3126 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3593 (((-3 $ #2="failed") $) NIL (|has| |#1| (-311)) ELT)) (-1466 (($) 12 T ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| #2#) (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3335 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3124 (((-82) $) NIL T ELT)) (-3331 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3950 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3122 (((-82) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) 15 T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-180 |#1|) (-12 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-14 * ((-855 |#1|) $ (-855 |#1|))) (-14 -1466 ($)) (-14 -1465 ($ |#1|)) (-14 -1464 ($ |#1|)) (-14 -1463 ($ |#1|)) (-14 -3851 ($ |#1| |#1| |#1|)) (-14 -3877 ($ |#1| |#1| |#1|)))) (-12 (-311) (-1116))) (T -180))
-((* (*1 *2 *1 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116))) (-5 *1 (-180 *3)))) (-1466 (*1 *1) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))) (-1465 (*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))) (-1464 (*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))) (-1463 (*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))) (-3851 (*1 *1 *2 *2 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))) (-3877 (*1 *1 *2 *2 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))))
-((-1571 (($ (-1 (-82) |#2|) $) 16 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-82) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3059 (((-82) $ $) 26 T ELT)))
-(((-181 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -1571 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3408 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3408 (|#1| |#2| |#1|)) (-14 -1467 (|#1| (-584 |#2|))) (-14 -1467 (|#1|))) (-182 |#2|) (-1014)) (T -181))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-182 |#1|) (-110) (-1014)) (T -182))
-NIL
-(-12 (-192 |t#1|))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-192 |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1091)) 63 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#1| (-812 (-1091))) ELT) (($ $) 55 (|has| |#1| (-188)) ELT) (($ $ (-695)) 53 (|has| |#1| (-188)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|) (-695)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1091)) 62 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $) 54 (|has| |#1| (-188)) ELT) (($ $ (-695)) 52 (|has| |#1| (-188)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-183 |#1|) (-110) (-962)) (T -183))
-NIL
-(-12 (-962) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-185 $) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-189) |has| |#1| (-189)) ((-188) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-224 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2672 ((|#2| $) 9 T ELT)))
-(((-184 |#1| |#2|) (-10 -7 (-14 -2672 (|#2| |#1|))) (-185 |#2|) (-1130)) (T -184))
-NIL
-((-3761 ((|#1| $) 7 T ELT)) (-2672 ((|#1| $) 6 T ELT)))
-(((-185 |#1|) (-110) (-1130)) (T -185))
-((-3761 (*1 *2 *1) (-11 (-4 *1 (-185 *2)) (-4 *2 (-1130)))) (-2672 (*1 *2 *1) (-11 (-4 *1 (-185 *2)) (-4 *2 (-1130)))))
-(-12 (-1130) (-10 -8 (-14 -3761 (|t#1| $)) (-14 -2672 (|t#1| $))))
-(((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-695)) 44 T ELT) (($ $) 42 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-186 |#1|) (-110) (-962)) (T -186))
-NIL
-(-12 (-79 |t#1| |t#1|) (-188) (-10 -7 (IF (|has| |t#1| (-145)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-185 $) . T) ((-188) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3761 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT)))
-(((-187 |#1|) (-10 -7 (-14 -2672 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-695))) (-14 -2672 (|#1| |#1|)) (-14 -3761 (|#1| |#1|))) (-188)) (T -187))
-NIL
-((-3761 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2672 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT)))
-(((-188) (-110)) (T -188))
-((-3761 (*1 *1 *1 *2) (-11 (-4 *1 (-188)) (-5 *2 (-695)))) (-2672 (*1 *1 *1 *2) (-11 (-4 *1 (-188)) (-5 *2 (-695)))))
-(-12 (-185 $) (-10 -8 (-14 -3761 ($ $ (-695))) (-14 -2672 ($ $ (-695)))))
-(((-185 $) . T) ((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-695)) 50 T ELT) (($ $) 48 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-695)) 51 T ELT) (($ $) 49 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-189) (-110)) (T -189))
-NIL
-(-12 (-962) (-188))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-185 $) . T) ((-188) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 36 T ELT)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-2412 (((-82) $) 38 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 40 T ELT) (($ $ (-695)) 37 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 41 T ELT)))
-(((-190) (-110)) (T -190))
-NIL
-(-12 (-717) (-1062))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1467 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3403 (($ $) 14 T ELT)) (-3533 (($ (-584 |#2|)) 10 T ELT)) (-3950 (((-773) $) 21 T ELT)))
-(((-191 |#1| |#2|) (-10 -7 (-14 -3950 ((-773) |#1|)) (-14 -1467 (|#1| (-584 |#2|))) (-14 -1467 (|#1|)) (-14 -3533 (|#1| (-584 |#2|))) (-14 -3403 (|#1| |#1|))) (-192 |#2|) (-1014)) (T -191))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-192 |#1|) (-110) (-1014)) (T -192))
-((-1467 (*1 *1) (-11 (-4 *1 (-192 *2)) (-4 *2 (-1014)))) (-1467 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-192 *3)))) (-3408 (*1 *1 *2 *1) (-11 (-4 *1 (-317 *2)) (-4 *1 (-192 *2)) (-4 *2 (-1014)))) (-3408 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-192 *3)) (-4 *3 (-1014)))) (-1571 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-192 *3)) (-4 *3 (-1014)))))
-(-12 (-73 |t#1|) (-121 |t#1|) (-10 -8 (-14 -1467 ($)) (-14 -1467 ($ (-584 |t#1|))) (IF (|has| $ (-317 |t#1|)) (PROGN (-14 -3408 ($ |t#1| $)) (-14 -3408 ($ (-1 (-82) |t#1|) $)) (-14 -1571 ($ (-1 (-82) |t#1|) $))) |%noBranch|)))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-1468 (((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-248 (-858 (-485)))) 42 T ELT)))
-(((-193) (-10 -7 (-14 -1468 ((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-248 (-858 (-485))))))) (T -193))
-((-1468 (*1 *2 *3) (-11 (-5 *3 (-248 (-858 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695)))))) (-5 *1 (-193)))))
-((-3139 (((-695)) 56 T ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3915 (((-104)) 62 T ELT)) (-3761 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-349 (-485))) NIL T ELT)) (-3129 (((-695)) 15 T CONST)) (-3953 (($ $ |#3|) 59 T ELT)))
-(((-194 |#1| |#2| |#3|) (-10 -7 (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 (|#1| (-485))) (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3950 ((-773) |#1|)) (-14 -3129 ((-695)) -3956) (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -3950 (|#1| |#3|)) (-14 -3761 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-14 -2281 ((-631 |#3|) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-14 -3139 ((-695))) (-14 -3953 (|#1| |#1| |#3|)) (-14 -3915 ((-104))) (-14 -3950 ((-1180 |#3|) |#1|))) (-195 |#2| |#3|) (-695) (-1130)) (T -194))
-((-3915 (*1 *2) (-11 (-13 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-104)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3139 (*1 *2) (-11 (-13 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))) (-3129 (*1 *2) (-11 (-13 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-194 *3 *4 *5)) (-4 *3 (-195 *4 *5)))))
-((-2571 (((-82) $ $) 18 (|has| |#2| (-69)) ELT)) (-3191 (((-82) $) 72 (|has| |#2| (-20)) ELT)) (-3710 (($ (-831)) 128 (|has| |#2| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#2|)) ELT)) (-2486 (($ $ $) 124 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ "failed") $ $) 75 (|has| |#2| (-101)) ELT)) (-3139 (((-695)) 113 (|has| |#2| (-319)) ELT)) (-3791 ((|#2| $ (-485) |#2|) 47 (|has| $ (-1036 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 67 (-2565 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) 64 (-2565 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1014)) ELT)) (-3159 (((-485) $) 66 (-2565 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-349 (-485)) $) 63 (-2565 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 62 (|has| |#2| (-1014)) ELT)) (-2281 (((-631 (-485)) (-631 $)) 110 (-2565 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 109 (-2565 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 108 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 107 (|has| |#2| (-962)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 141 (|has| |#2| (-69)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3470 (((-3 $ "failed") $) 87 (|has| |#2| (-962)) ELT)) (-2997 (($) 116 (|has| |#2| (-319)) ELT)) (-1577 ((|#2| $ (-485) |#2|) 48 (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ (-485)) 46 T ELT)) (-3189 (((-82) $) 123 (|has| |#2| (-718)) ELT)) (-1215 (((-82) $ $) 74 (|has| |#2| (-20)) ELT)) (-2412 (((-82) $) 85 (|has| |#2| (-962)) ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 117 (|has| |#2| (-757)) ELT)) (-2611 (((-584 |#2|) $) 135 T ELT)) (-3248 (((-82) |#2| $) 140 (|has| |#2| (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 118 (|has| |#2| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2012 (((-831) $) 115 (|has| |#2| (-319)) ELT)) (-2282 (((-631 (-485)) (-1180 $)) 112 (-2565 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 111 (-2565 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 106 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) 105 (|has| |#2| (-962)) ELT)) (-3245 (((-1074) $) 21 (|has| |#2| (-1014)) ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-2402 (($ (-831)) 114 (|has| |#2| (-319)) ELT)) (-3246 (((-1034) $) 20 (|has| |#2| (-1014)) ELT)) (-3804 ((|#2| $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#2| "failed") (-1 (-82) |#2|) $) 138 T ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1036 |#2|)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 133 T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) 25 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 24 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 23 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 22 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#2| $) 40 (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ (-485) |#2|) 45 T ELT) ((|#2| $ (-485)) 44 T ELT)) (-3839 ((|#2| $ $) 127 (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 129 T ELT)) (-3915 (((-104)) 126 (|has| |#2| (-311)) ELT)) (-3761 (($ $ (-695)) 103 (-2565 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) 101 (-2565 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 97 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 96 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 95 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 93 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 91 (|has| |#2| (-962)) ELT)) (-1732 (((-695) |#2| $) 139 (|has| |#2| (-69)) ELT) (((-695) (-1 (-82) |#2|) $) 134 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-1180 |#2|) $) 130 T ELT) (($ (-485)) 68 (OR (-2565 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-349 (-485))) 65 (-2565 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 60 (|has| |#2| (-1014)) ELT) (((-773) $) 16 (|has| |#2| (-553 (-773))) ELT)) (-3129 (((-695)) 88 (|has| |#2| (-962)) CONST)) (-1266 (((-82) $ $) 19 (|has| |#2| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) 132 T ELT)) (-3128 (((-82) $ $) 83 (|has| |#2| (-962)) ELT)) (-2663 (($) 71 (|has| |#2| (-20)) CONST)) (-2669 (($) 84 (|has| |#2| (-962)) CONST)) (-2672 (($ $ (-695)) 104 (-2565 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) 102 (-2565 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 100 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 99 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 98 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 94 (-2565 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 89 (|has| |#2| (-962)) ELT)) (-2569 (((-82) $ $) 119 (|has| |#2| (-757)) ELT)) (-2570 (((-82) $ $) 121 (|has| |#2| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#2| (-69)) ELT)) (-2687 (((-82) $ $) 120 (|has| |#2| (-757)) ELT)) (-2688 (((-82) $ $) 122 (|has| |#2| (-757)) ELT)) (-3953 (($ $ |#2|) 125 (|has| |#2| (-311)) ELT)) (-3840 (($ $ $) 78 (|has| |#2| (-18)) ELT) (($ $) 77 (|has| |#2| (-18)) ELT)) (-3842 (($ $ $) 69 (|has| |#2| (-22)) ELT)) (** (($ $ (-695)) 86 (|has| |#2| (-962)) ELT) (($ $ (-831)) 81 (|has| |#2| (-962)) ELT)) (* (($ $ $) 82 (|has| |#2| (-962)) ELT) (($ $ |#2|) 80 (|has| |#2| (-664)) ELT) (($ |#2| $) 79 (|has| |#2| (-664)) ELT) (($ (-485) $) 76 (|has| |#2| (-18)) ELT) (($ (-695) $) 73 (|has| |#2| (-20)) ELT) (($ (-831) $) 70 (|has| |#2| (-22)) ELT)) (-3961 (((-695) $) 131 T ELT)))
-(((-195 |#1| |#2|) (-110) (-695) (-1130)) (T -195))
-((-1469 (*1 *1 *2) (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-195 *3 *4)))) (-3710 (*1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-195 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) (-3839 (*1 *2 *1 *1) (-11 (-4 *1 (-195 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
-(-12 (-539 (-485) |t#2|) (-317 |t#2|) (-553 (-1180 |t#2|)) (-10 -8 (-14 -1469 ($ (-1180 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-354 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-79 |t#2| |t#2|)) (-6 (-183 |t#2|)) (-6 (-328 |t#2|)) (-14 -3710 ($ (-831))) (-14 -3839 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-22)) (-6 (-22)) |%noBranch|) (IF (|has| |t#2| (-101)) (-6 (-101)) |%noBranch|) (IF (|has| |t#2| (-20)) (-6 (-20)) |%noBranch|) (IF (|has| |t#2| (-18)) (-6 (-18)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#2| (-145)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-311)) (-6 (-1188 |t#2|)) |%noBranch|)))
-(((-18) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-18))) ((-20) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-101)) (|has| |#2| (-20)) (|has| |#2| (-18))) ((-22) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-101)) (|has| |#2| (-22)) (|has| |#2| (-20)) (|has| |#2| (-18))) ((-31) . T) ((-69) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-319)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-101)) (|has| |#2| (-69)) (|has| |#2| (-22)) (|has| |#2| (-20)) (|has| |#2| (-18))) ((-79 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-101) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-101)) (|has| |#2| (-18))) ((-556 (-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ((-556 (-485)) OR (|has| |#2| (-962)) (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014)))) ((-556 |#2|) |has| |#2| (-1014)) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-319)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-553 (-773))) (|has| |#2| (-101)) (|has| |#2| (-22)) (|has| |#2| (-20)) (|has| |#2| (-18))) ((-553 (-1180 |#2|)) . T) ((-185 $) OR (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) (-11 (|has| |#2| (-189)) (|has| |#2| (-962)))) ((-183 |#2|) |has| |#2| (-962)) ((-189) -11 (|has| |#2| (-189)) (|has| |#2| (-962))) ((-188) OR (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) (-11 (|has| |#2| (-189)) (|has| |#2| (-962)))) ((-224 |#2|) |has| |#2| (-962)) ((-240 (-485) |#2|) . T) ((-242 (-485) |#2|) . T) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-319) |has| |#2| (-319)) ((-317 |#2|) . T) ((-328 |#2|) |has| |#2| (-962)) ((-354 |#2|) |has| |#2| (-1014)) ((-380 |#2|) . T) ((-429 |#2|) . T) ((-539 (-485) |#2|) . T) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-589 (-485)) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-18))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-589 $) |has| |#2| (-962)) ((-591 (-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-581 (-485)) -11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-311)) (|has| |#2| (-145))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1091)) OR (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-810 (-1091)) -11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) ((-812 (-1091)) OR (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-11 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-951 (-349 (-485))) -11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ((-951 (-485)) -11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ((-951 |#2|) |has| |#2| (-1014)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-145))) ((-962) |has| |#2| (-962)) ((-971) |has| |#2| (-962)) ((-1026) |has| |#2| (-962)) ((-1062) |has| |#2| (-962)) ((-1014) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-319)) (|has| |#2| (-311)) (|has| |#2| (-145)) (|has| |#2| (-101)) (|has| |#2| (-22)) (|has| |#2| (-20)) (|has| |#2| (-18))) ((-1130) . T) ((-1188 |#2|) |has| |#2| (-311)))
-((-2571 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-3191 (((-82) $) NIL (|has| |#2| (-20)) ELT)) (-3710 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2486 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-101)) ELT)) (-3139 (((-695)) NIL (|has| |#2| (-319)) ELT)) (-3791 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1014)) ELT)) (-3159 (((-485) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 29 (|has| |#2| (-1014)) ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-69)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2997 (($) NIL (|has| |#2| (-319)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ (-485)) 57 T ELT)) (-3189 (((-82) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#2| (-20)) ELT)) (-2412 (((-82) $) NIL (|has| |#2| (-962)) ELT)) (-2202 (((-485) $) 20 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2611 (((-584 |#2|) $) 14 T ELT)) (-3248 (((-82) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#2| (-319)) ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3245 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#2| (-319)) ELT)) (-3246 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3804 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-82) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 24 T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 18 T ELT)) (-3915 (((-104)) NIL (|has| |#2| (-311)) ELT)) (-3761 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1732 (((-695) |#2| $) NIL (|has| |#2| (-69)) ELT) (((-695) (-1 (-82) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 12 (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3129 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#2| (-962)) ELT)) (-2663 (($) 37 (|has| |#2| (-20)) CONST)) (-2669 (($) 41 (|has| |#2| (-962)) CONST)) (-2672 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-3059 (((-82) $ $) 28 (|has| |#2| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2688 (((-82) $ $) 67 (|has| |#2| (-757)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-18)) ELT) (($ $) NIL (|has| |#2| (-18)) ELT)) (-3842 (($ $ $) 35 (|has| |#2| (-22)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-18)) ELT) (($ (-695) $) NIL (|has| |#2| (-20)) ELT) (($ (-831) $) NIL (|has| |#2| (-22)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-196 |#1| |#2|) (-195 |#1| |#2|) (-695) (-1130)) (T -196))
-NIL
-((-3844 (((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 21 T ELT)) (-3845 ((|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|) 23 T ELT)) (-3846 (((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)) 18 T ELT)))
-(((-197 |#1| |#2| |#3|) (-10 -7 (-14 -3844 ((-196 |#1| |#3|) (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-14 -3845 (|#3| (-1 |#3| |#2| |#3|) (-196 |#1| |#2|) |#3|)) (-14 -3846 ((-196 |#1| |#3|) (-1 |#3| |#2|) (-196 |#1| |#2|)))) (-695) (-1130) (-1130)) (T -197))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-13 *5 (-695)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-13 *5 (-695)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-197 *5 *6 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-13 *6 (-695)) (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-196 *6 *5)) (-5 *1 (-197 *6 *7 *5)))))
-((-1473 (((-485) (-584 (-1074))) 36 T ELT) (((-485) (-1074)) 29 T ELT)) (-1472 (((-1186) (-584 (-1074))) 40 T ELT) (((-1186) (-1074)) 39 T ELT)) (-1470 (((-1074)) 16 T ELT)) (-1471 (((-1074) (-485) (-1074)) 23 T ELT)) (-3776 (((-584 (-1074)) (-584 (-1074)) (-485) (-1074)) 37 T ELT) (((-1074) (-1074) (-485) (-1074)) 35 T ELT)) (-2623 (((-584 (-1074)) (-584 (-1074))) 15 T ELT) (((-584 (-1074)) (-1074)) 11 T ELT)))
-(((-198) (-10 -7 (-14 -2623 ((-584 (-1074)) (-1074))) (-14 -2623 ((-584 (-1074)) (-584 (-1074)))) (-14 -1470 ((-1074))) (-14 -1471 ((-1074) (-485) (-1074))) (-14 -3776 ((-1074) (-1074) (-485) (-1074))) (-14 -3776 ((-584 (-1074)) (-584 (-1074)) (-485) (-1074))) (-14 -1472 ((-1186) (-1074))) (-14 -1472 ((-1186) (-584 (-1074)))) (-14 -1473 ((-485) (-1074))) (-14 -1473 ((-485) (-584 (-1074)))))) (T -198))
-((-1473 (*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-198)))) (-1473 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-198)))) (-1472 (*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-198)))) (-1472 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-198)))) (-3776 (*1 *2 *2 *3 *4) (-11 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-198)))) (-3776 (*1 *2 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-198)))) (-1471 (*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-198)))) (-1470 (*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-198)))) (-2623 (*1 *2 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-198)))) (-2623 (*1 *2 *3) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-198)) (-5 *3 (-1074)))))
-((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-485)) $) 25 T ELT) (($ $ (-349 (-485))) NIL T ELT)))
-(((-199 |#1|) (-10 -7 (-14 ** (|#1| |#1| (-485))) (-14 * (|#1| |#1| (-349 (-485)))) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 ** (|#1| |#1| (-695))) (-14 * (|#1| |#1| |#1|)) (-14 ** (|#1| |#1| (-831))) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|))) (-200)) (T -199))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 55 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 59 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-485)) $) 58 T ELT) (($ $ (-349 (-485))) 57 T ELT)))
-(((-200) (-110)) (T -200))
-((** (*1 *1 *1 *2) (-11 (-4 *1 (-200)) (-5 *2 (-485)))) (-2487 (*1 *1 *1) (-4 *1 (-200))))
-(-12 (-245) (-35 (-349 (-485))) (-10 -8 (-14 ** ($ $ (-485))) (-14 -2487 ($ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-245) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-655 (-349 (-485))) . T) ((-664) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3800 (($ $) 54 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1475 (($ $ $) 50 (|has| $ (-1036 |#1|)) ELT)) (-1474 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1477 (($ $) 53 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-1476 (($ $) 52 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 56 T ELT)) (-3181 (($ $) 55 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-201 |#1|) (-110) (-1130)) (T -201))
-((-3801 (*1 *2 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-3181 (*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-3800 (*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-1477 (*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-1476 (*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-3794 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-1475 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130)))) (-1474 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130)))))
-(-12 (-924 |t#1|) (-10 -8 (-14 -3801 (|t#1| $)) (-14 -3181 ($ $)) (-14 -3800 ($ $)) (-14 -1477 ($ $)) (-14 -1476 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-14 -3794 ($ $ $)) (-14 -1475 ($ $ $)) (-14 -1474 ($ $ $))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) $) NIL (|has| |#1| (-757)) ELT) (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2912 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $) NIL T ELT)) (-3445 (((-82) $ (-695)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-69)) ELT)) (-1354 (($ $) 7 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-69)) ELT) (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT) (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3446 (((-82) $) NIL T ELT)) (-3422 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) (-1 (-82) |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-3722 (((-82) $ (-695)) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-82) $ (-695)) NIL T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3612 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3447 (((-82) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1478 (($ (-584 |#1|)) 22 T ELT)) (-3636 (((-82) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3950 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 14 T ELT)))
-(((-202 |#1|) (-12 (-609 |#1|) (-430 (-584 |#1|)) (-10 -8 (-14 -1478 ($ (-584 |#1|))) (-14 -3803 ($ $ "unique")) (-14 -3803 ($ $ "sort")) (-14 -3803 ((-695) $ "count")))) (-757)) (T -202))
-((-1478 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-202 *3)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-757)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-757)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-202 *4)) (-4 *4 (-757)))))
-((-1479 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT)))
-(((-203 |#1|) (-10 -7 (-14 -1479 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-12 (-664) (-319) (-10 -7 (-14 ** (|#1| |#1| (-485)))))) (T -203))
-((-1479 (*1 *2 *3 *3 *2) (|partial| -11 (-5 *2 (-695)) (-4 *3 (-12 (-664) (-319) (-10 -7 (-14 ** (*3 *3 (-485)))))) (-5 *1 (-203 *3)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $) 60 (|has| |#1| (-188)) ELT) (($ $ (-695)) 58 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 54 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 53 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 52 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $) 59 (|has| |#1| (-188)) ELT) (($ $ (-695)) 57 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 55 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 51 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 50 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 49 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-204 |#1|) (-110) (-962)) (T -204))
-NIL
-(-12 (-79 |t#1| |t#1|) (-224 |t#1|) (-10 -7 (IF (|has| |t#1| (-188)) (-6 (-186 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-809 |t#1| (-1091))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-185 $) |has| |#1| (-188)) ((-186 |#1|) |has| |#1| (-188)) ((-188) |has| |#1| (-188)) ((-224 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-11 (|has| |#1| (-145)) (|has| |#1| (-812 (-1091)))) (-11 (|has| |#1| (-145)) (|has| |#1| (-188)))) ((-655 |#1|) OR (-11 (|has| |#1| (-145)) (|has| |#1| (-812 (-1091)))) (-11 (|has| |#1| (-145)) (|has| |#1| (-188)))) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-809 |#1| (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3086 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-1942 (($ $ (-584 (-485))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-196 (-3961 |#1|) (-695)) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-196 (-3961 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2823 (((-196 (-3961 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-196 (-3961 |#1|) (-695)) (-196 (-3961 |#1|) (-695))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3760 (($ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-3761 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3952 (((-196 (-3961 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-196 (-3961 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-205 |#1| |#2|) (-12 (-862 |#2| (-196 (-3961 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-14 -1942 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -205))
-((-1942 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-205 *3 *4)) (-13 *3 (-584 (-1091))) (-4 *4 (-962)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1480 (((-1186) $) 17 T ELT)) (-1482 (((-157 (-207)) $) 11 T ELT)) (-1481 (($ (-157 (-207))) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1483 (((-207) $) 7 T ELT)) (-3950 (((-773) $) 9 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 15 T ELT)))
-(((-206) (-12 (-1014) (-10 -8 (-14 -1483 ((-207) $)) (-14 -1482 ((-157 (-207)) $)) (-14 -1481 ($ (-157 (-207)))) (-14 -1480 ((-1186) $))))) (T -206))
-((-1483 (*1 *2 *1) (-11 (-5 *2 (-207)) (-5 *1 (-206)))) (-1482 (*1 *2 *1) (-11 (-5 *2 (-157 (-207))) (-5 *1 (-206)))) (-1481 (*1 *1 *2) (-11 (-5 *2 (-157 (-207))) (-5 *1 (-206)))) (-1480 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-206)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3545 (((-447) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1427 (((-160) $) NIL T ELT)) (-2636 (((-82) $ (-447)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1484 (((-281) $) 7 T ELT)) (-1426 (((-584 (-82)) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (((-156) $) 8 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2524 (((-52) $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-207) (-12 (-159) (-553 (-156)) (-10 -8 (-14 -1484 ((-281) $))))) (T -207))
-((-1484 (*1 *2 *1) (-11 (-5 *2 (-281)) (-5 *1 (-207)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 (((-1096) $ (-695)) 14 T ELT)) (-3950 (((-773) $) 20 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 17 T ELT)) (-3961 (((-695) $) 11 T ELT)))
-(((-208) (-12 (-1014) (-240 (-695) (-1096)) (-10 -8 (-14 -3961 ((-695) $))))) (T -208))
-((-3961 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-208)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3710 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#4|)) ELT)) (-2486 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#4| (-319)) ELT)) (-3791 ((|#4| $ (-485) |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-11 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#4| (-951 (-349 (-485)))) (|has| |#4| (-1014))) ELT)) (-3159 ((|#4| $) NIL (|has| |#4| (-1014)) ELT) (((-485) $) NIL (-11 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#4| (-951 (-349 (-485)))) (|has| |#4| (-1014))) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-631 $) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2997 (($) NIL (|has| |#4| (-319)) ELT)) (-1577 ((|#4| $ (-485) |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-3115 ((|#4| $ (-485)) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#4| (-718)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL (|has| |#4| (-962)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2611 (((-584 |#4|) $) NIL T ELT)) (-3248 (((-82) |#4| $) NIL (|has| |#4| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-3846 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#4| (-319)) ELT)) (-2282 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-1180 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#4| (-319)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 ((|#4| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-2201 (($ $ |#4|) NIL (|has| $ (-1036 |#4|)) ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-2207 (((-584 |#4|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3839 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1469 (($ (-1180 |#4|)) NIL T ELT)) (-3915 (((-104)) NIL (|has| |#4| (-311)) ELT)) (-3761 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962)))) ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-11 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#4| (-951 (-349 (-485)))) (|has| |#4| (-1014))) ELT)) (-3129 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#4| (-962)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#4| (-962)) CONST)) (-2672 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-11 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-11 (|has| |#4| (-189)) (|has| |#4| (-962))) (-11 (|has| |#4| (-188)) (|has| |#4| (-962)))) ELT)) (-2569 (((-82) $ $) NIL (|has| |#4| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#4| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#4| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#4| (-757)) ELT)) (-3953 (($ $ |#4|) NIL (|has| |#4| (-311)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-209 |#1| |#2| |#3| |#4|) (-12 (-195 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1038 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-591 |#2|)) (T -209))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3710 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#3| (-319)) ELT)) (-3791 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT)) (-3159 ((|#3| $) NIL (|has| |#3| (-1014)) ELT) (((-485) $) NIL (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-69)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2997 (($) NIL (|has| |#3| (-319)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3115 ((|#3| $ (-485)) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL (|has| |#3| (-962)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2611 (((-584 |#3|) $) NIL T ELT)) (-3248 (((-82) |#3| $) NIL (|has| |#3| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#3| (-319)) ELT)) (-2282 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#3| (-319)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#3| #1#) (-1 (-82) |#3|) $) NIL T ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-1733 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#3|))) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-248 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#3| $) NIL (-11 (|has| $ (-317 |#3|)) (|has| |#3| (-69))) ELT)) (-2207 (((-584 |#3|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3915 (((-104)) NIL (|has| |#3| (-311)) ELT)) (-3761 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))) ELT)) (-1732 (((-695) |#3| $) NIL (|has| |#3| (-69)) ELT) (((-695) (-1 (-82) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT)) (-3129 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#3| (-962)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL (|has| |#3| (-962)) CONST)) (-2672 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-11 (|has| |#3| (-189)) (|has| |#3| (-962))) (-11 (|has| |#3| (-188)) (|has| |#3| (-962)))) ELT)) (-2569 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-210 |#1| |#2| |#3|) (-12 (-195 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -210))
-NIL
-((-1489 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1523 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3775 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1524 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-82) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3771 (($ $ (-584 (-248 $))) 111 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3761 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1490 (((-584 |#3|) $) 86 T ELT)) (-3952 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT)))
-(((-211 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3950 (|#1| |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3771 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-14 -3771 (|#1| |#1| |#3| |#2|)) (-14 -3771 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#3| |#1|)) (-14 -1524 ((-1 |#1| (-695)) |#1|)) (-14 -1485 (|#1| |#1|)) (-14 -1486 (|#1| |#1|)) (-14 -1487 (|#4| |#1|)) (-14 -1488 ((-82) |#1|)) (-14 -1523 ((-695) |#1| |#3|)) (-14 -1489 ((-584 (-695)) |#1| |#3|)) (-14 -1523 ((-695) |#1|)) (-14 -1489 ((-584 (-695)) |#1|)) (-14 -3952 ((-695) |#1| |#3|)) (-14 -3775 ((-695) |#1|)) (-14 -3775 ((-695) |#1| |#3|)) (-14 -1490 ((-584 |#3|) |#1|)) (-14 -1524 ((-1 |#1| (-695)) |#3|)) (-14 -3950 (|#1| |#3|)) (-14 -3160 ((-3 |#3| #1="failed") |#1|)) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3952 ((-584 (-695)) |#1| (-584 |#4|))) (-14 -3952 ((-695) |#1| |#4|)) (-14 -3950 (|#1| |#4|)) (-14 -3160 ((-3 |#4| #1#) |#1|)) (-14 -3771 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#4| |#1|)) (-14 -3771 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-14 -3771 (|#1| |#1| |#4| |#2|)) (-14 -3771 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#1| |#1|)) (-14 -3771 (|#1| |#1| (-248 |#1|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -3952 (|#5| |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3761 (|#1| |#1| |#4|)) (-14 -3761 (|#1| |#1| (-584 |#4|))) (-14 -3761 (|#1| |#1| |#4| (-695))) (-14 -3761 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-212 |#2| |#3| |#4| |#5|) (-962) (-757) (-227 |#3|) (-718)) (T -211))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1489 (((-584 (-695)) $) 252 T ELT) (((-584 (-695)) $ |#2|) 250 T ELT)) (-1523 (((-695) $) 251 T ELT) (((-695) $ |#2|) 249 T ELT)) (-3084 (((-584 |#3|) $) 124 T ELT)) (-3086 (((-1086 $) $ |#3|) 139 T ELT) (((-1086 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 101 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 104 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 126 T ELT) (((-695) $ (-584 |#3|)) 125 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) 111 (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1485 (($ $) 245 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-349 (-485)) #2#) $) 179 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #2#) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 |#2| #2#) $) 259 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-349 (-485)) $) 180 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) 178 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 155 T ELT) ((|#2| $) 260 T ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-145)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 148 T ELT) (((-631 |#1|) (-631 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 194 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) 123 T ELT)) (-3726 (((-82) $) 110 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#4| $) 190 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 98 (-11 (|has| |#3| (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 97 (-11 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ |#2|) 255 T ELT) (((-695) $) 254 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2422 (((-695) $) 187 T ELT)) (-3087 (($ (-1086 |#1|) |#3|) 131 T ELT) (($ (-1086 $) |#3|) 130 T ELT)) (-2824 (((-584 $) $) 140 T ELT)) (-3941 (((-82) $) 170 T ELT)) (-2896 (($ |#1| |#4|) 171 T ELT) (($ $ |#3| (-695)) 133 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-2823 ((|#4| $) 188 T ELT) (((-695) $ |#3|) 136 T ELT) (((-584 (-695)) $ (-584 |#3|)) 135 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1524 (((-1 $ (-695)) |#2|) 257 T ELT) (((-1 $ (-695)) $) 244 (|has| |#1| (-189)) ELT)) (-3085 (((-3 |#3| #3="failed") $) 137 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 152 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 146 T ELT) (((-631 |#1|) (-1180 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1487 ((|#3| $) 247 T ELT)) (-1896 (($ (-584 $)) 108 (|has| |#1| (-392)) ELT) (($ $ $) 107 (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1488 (((-82) $) 248 T ELT)) (-2826 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-695))) #3#) $) 127 T ELT)) (-1486 (($ $) 246 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 109 (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) 106 (|has| |#1| (-392)) ELT) (($ $ $) 105 (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 113 (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) 163 T ELT) (($ $ (-248 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-584 |#3|) (-584 $)) 156 T ELT) (($ $ |#2| $) 243 (|has| |#1| (-189)) ELT) (($ $ (-584 |#2|) (-584 $)) 242 (|has| |#1| (-189)) ELT) (($ $ |#2| |#1|) 241 (|has| |#1| (-189)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 240 (|has| |#1| (-189)) ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 264 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 263 T ELT) (($ $) 239 (|has| |#1| (-188)) ELT) (($ $ (-695)) 237 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 235 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 231 (|has| |#1| (-812 (-1091))) ELT)) (-1490 (((-584 |#2|) $) 256 T ELT)) (-3952 ((|#4| $) 169 T ELT) (((-695) $ |#3|) 144 T ELT) (((-584 (-695)) $ (-584 |#3|)) 143 T ELT) (((-695) $ |#2|) 253 T ELT)) (-3975 (((-801 (-329)) $) 96 (-11 (|has| |#3| (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) 95 (-11 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 94 (-11 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 120 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 118 (-2565 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ |#2|) 258 T ELT) (($ (-349 (-485))) 92 (OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ELT) (($ $) 99 (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#4|) 173 T ELT) (($ $ |#3| (-695)) 142 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 141 T ELT)) (-2705 (((-633 $) $) 93 (OR (-2565 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 191 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 103 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 262 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 261 T ELT) (($ $) 238 (|has| |#1| (-188)) ELT) (($ $ (-695)) 236 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 230 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 228 (|has| |#1| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 176 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 175 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT)))
-(((-212 |#1| |#2| |#3| |#4|) (-110) (-962) (-757) (-227 |t#2|) (-718)) (T -212))
-((-1524 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-212 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3775 (*1 *2 *1 *3) (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3952 (*1 *2 *1 *3) (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1 *3) (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1 *3) (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-82)))) (-1487 (*1 *2 *1) (-11 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-227 *4)))) (-1486 (*1 *1 *1) (-11 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-227 *3)) (-4 *5 (-718)))) (-1485 (*1 *1 *1) (-11 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-227 *3)) (-4 *5 (-718)))) (-1524 (*1 *2 *1) (-11 (-4 *3 (-189)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-212 *3 *4 *5 *6)))))
-(-12 (-862 |t#1| |t#4| |t#3|) (-183 |t#1|) (-951 |t#2|) (-10 -8 (-14 -1524 ((-1 $ (-695)) |t#2|)) (-14 -1490 ((-584 |t#2|) $)) (-14 -3775 ((-695) $ |t#2|)) (-14 -3775 ((-695) $)) (-14 -3952 ((-695) $ |t#2|)) (-14 -1489 ((-584 (-695)) $)) (-14 -1523 ((-695) $)) (-14 -1489 ((-584 (-695)) $ |t#2|)) (-14 -1523 ((-695) $ |t#2|)) (-14 -1488 ((-82) $)) (-14 -1487 (|t#3| $)) (-14 -1486 ($ $)) (-14 -1485 ($ $)) (IF (|has| |t#1| (-189)) (PROGN (-6 (-456 |t#2| |t#1|)) (-6 (-456 |t#2| $)) (-6 (-259 $)) (-14 -1524 ((-1 $ (-695)) $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#4|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-554 (-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#3| (-554 (-801 (-329))))) ((-554 (-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-185 $) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-183 |#1|) . T) ((-189) |has| |#1| (-189)) ((-188) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-224 |#1|) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-259 $) . T) ((-276 |#1| |#4|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#2| |#1|) |has| |#1| (-189)) ((-456 |#2| $) |has| |#1| (-189)) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-807 $ |#3|) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-810 |#3|) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-812 |#3|) . T) ((-797 (-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#3| (-797 (-329)))) ((-797 (-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-1496 ((|#1| $) 64 T ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 70 T ELT)) (-2299 (($ $) 58 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3328 ((|#1| |#1| $) 44 T ELT)) (-3327 ((|#1| $) 43 T ELT)) (-2611 (((-584 |#1|) $) 49 T ELT)) (-3248 (((-82) |#1| $) 54 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-695) $) 71 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-1494 ((|#1| |#1| $) 62 T ELT)) (-1493 ((|#1| |#1| $) 61 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2606 (((-695) $) 65 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3004 ((|#1| $) 72 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 52 T ELT)) (-1492 ((|#1| $) 60 T ELT)) (-1491 ((|#1| $) 59 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 47 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 68 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 69 T ELT)) (-1497 (($) 67 T ELT) (($ (-584 |#1|)) 66 T ELT)) (-3325 (((-695) $) 41 T ELT)) (-1732 (((-695) |#1| $) 53 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 48 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 63 T ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 73 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 46 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 45 T ELT)))
-(((-213 |#1|) (-110) (-1130)) (T -213))
-((-1497 (*1 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1497 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-213 *3)))) (-2606 (*1 *2 *1) (-11 (-4 *1 (-213 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1496 (*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1495 (*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1494 (*1 *2 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1493 (*1 *2 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1492 (*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-1491 (*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))) (-2299 (*1 *1 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(-12 (-1035 |t#1|) (-909 |t#1|) (-10 -8 (-14 -1497 ($)) (-14 -1497 ($ (-584 |t#1|))) (-14 -2606 ((-695) $)) (-14 -1496 (|t#1| $)) (-14 -1495 (|t#1| $)) (-14 -1494 (|t#1| |t#1| $)) (-14 -1493 (|t#1| |t#1| $)) (-14 -1492 (|t#1| $)) (-14 -1491 (|t#1| $)) (-14 -2299 ($ $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-909 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1035 |#1|) . T) ((-1130) . T))
-((-1498 (((-1048 (-178)) (-793 |#1|) (-1005 (-329)) (-1005 (-329))) 75 T ELT) (((-1048 (-178)) (-793 |#1|) (-1005 (-329)) (-1005 (-329)) (-584 (-220))) 74 T ELT) (((-1048 (-178)) |#1| (-1005 (-329)) (-1005 (-329))) 65 T ELT) (((-1048 (-178)) |#1| (-1005 (-329)) (-1005 (-329)) (-584 (-220))) 64 T ELT) (((-1048 (-178)) (-790 |#1|) (-1005 (-329))) 56 T ELT) (((-1048 (-178)) (-790 |#1|) (-1005 (-329)) (-584 (-220))) 55 T ELT)) (-1505 (((-1184) (-793 |#1|) (-1005 (-329)) (-1005 (-329))) 78 T ELT) (((-1184) (-793 |#1|) (-1005 (-329)) (-1005 (-329)) (-584 (-220))) 77 T ELT) (((-1184) |#1| (-1005 (-329)) (-1005 (-329))) 68 T ELT) (((-1184) |#1| (-1005 (-329)) (-1005 (-329)) (-584 (-220))) 67 T ELT) (((-1184) (-790 |#1|) (-1005 (-329))) 60 T ELT) (((-1184) (-790 |#1|) (-1005 (-329)) (-584 (-220))) 59 T ELT) (((-1183) (-788 |#1|) (-1005 (-329))) 47 T ELT) (((-1183) (-788 |#1|) (-1005 (-329)) (-584 (-220))) 46 T ELT) (((-1183) |#1| (-1005 (-329))) 38 T ELT) (((-1183) |#1| (-1005 (-329)) (-584 (-220))) 36 T ELT)))
-(((-214 |#1|) (-10 -7 (-14 -1505 ((-1183) |#1| (-1005 (-329)) (-584 (-220)))) (-14 -1505 ((-1183) |#1| (-1005 (-329)))) (-14 -1505 ((-1183) (-788 |#1|) (-1005 (-329)) (-584 (-220)))) (-14 -1505 ((-1183) (-788 |#1|) (-1005 (-329)))) (-14 -1505 ((-1184) (-790 |#1|) (-1005 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-790 |#1|) (-1005 (-329)))) (-14 -1498 ((-1048 (-178)) (-790 |#1|) (-1005 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-790 |#1|) (-1005 (-329)))) (-14 -1505 ((-1184) |#1| (-1005 (-329)) (-1005 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) |#1| (-1005 (-329)) (-1005 (-329)))) (-14 -1498 ((-1048 (-178)) |#1| (-1005 (-329)) (-1005 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) |#1| (-1005 (-329)) (-1005 (-329)))) (-14 -1505 ((-1184) (-793 |#1|) (-1005 (-329)) (-1005 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-793 |#1|) (-1005 (-329)) (-1005 (-329)))) (-14 -1498 ((-1048 (-178)) (-793 |#1|) (-1005 (-329)) (-1005 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-793 |#1|) (-1005 (-329)) (-1005 (-329))))) (-12 (-554 (-474)) (-1014))) (T -214))
-((-1498 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-329))) (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *6)))) (-1505 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-329))) (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *6)))) (-1498 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4 *4 *5) (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1184)) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4) (-11 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-329))) (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *5)))) (-1498 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *6)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-329))) (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *5)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *6)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-329))) (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-214 *5)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-214 *6)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1183)) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014))))))
-((-1499 (((-1 (-855 (-178)) (-178) (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1 (-178) (-178) (-178) (-178))) 158 T ELT)) (-1498 (((-1048 (-178)) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329))) 178 T ELT) (((-1048 (-178)) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 176 T ELT) (((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329))) 181 T ELT) (((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 177 T ELT) (((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329))) 169 T ELT) (((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 168 T ELT) (((-1048 (-178)) (-1 (-855 (-178)) (-178)) (-1002 (-329))) 150 T ELT) (((-1048 (-178)) (-1 (-855 (-178)) (-178)) (-1002 (-329)) (-584 (-220))) 148 T ELT) (((-1048 (-178)) (-790 (-1 (-178) (-178))) (-1002 (-329))) 149 T ELT) (((-1048 (-178)) (-790 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220))) 146 T ELT)) (-1505 (((-1184) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329))) 180 T ELT) (((-1184) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 179 T ELT) (((-1184) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329))) 183 T ELT) (((-1184) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 182 T ELT) (((-1184) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329))) 171 T ELT) (((-1184) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220))) 170 T ELT) (((-1184) (-1 (-855 (-178)) (-178)) (-1002 (-329))) 156 T ELT) (((-1184) (-1 (-855 (-178)) (-178)) (-1002 (-329)) (-584 (-220))) 155 T ELT) (((-1184) (-790 (-1 (-178) (-178))) (-1002 (-329))) 154 T ELT) (((-1184) (-790 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220))) 153 T ELT) (((-1183) (-788 (-1 (-178) (-178))) (-1002 (-329))) 118 T ELT) (((-1183) (-788 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220))) 117 T ELT) (((-1183) (-1 (-178) (-178)) (-1002 (-329))) 112 T ELT) (((-1183) (-1 (-178) (-178)) (-1002 (-329)) (-584 (-220))) 110 T ELT)))
-(((-215) (-10 -7 (-14 -1505 ((-1183) (-1 (-178) (-178)) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1183) (-1 (-178) (-178)) (-1002 (-329)))) (-14 -1505 ((-1183) (-788 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1183) (-788 (-1 (-178) (-178))) (-1002 (-329)))) (-14 -1505 ((-1184) (-790 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-790 (-1 (-178) (-178))) (-1002 (-329)))) (-14 -1505 ((-1184) (-1 (-855 (-178)) (-178)) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-1 (-855 (-178)) (-178)) (-1002 (-329)))) (-14 -1498 ((-1048 (-178)) (-790 (-1 (-178) (-178))) (-1002 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-790 (-1 (-178) (-178))) (-1002 (-329)))) (-14 -1498 ((-1048 (-178)) (-1 (-855 (-178)) (-178)) (-1002 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-1 (-855 (-178)) (-178)) (-1002 (-329)))) (-14 -1505 ((-1184) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)))) (-14 -1498 ((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1002 (-329)) (-1002 (-329)))) (-14 -1505 ((-1184) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)))) (-14 -1498 ((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-329)) (-1002 (-329)))) (-14 -1505 ((-1184) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1505 ((-1184) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)))) (-14 -1498 ((-1048 (-178)) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)) (-584 (-220)))) (-14 -1498 ((-1048 (-178)) (-793 (-1 (-178) (-178) (-178))) (-1002 (-329)) (-1002 (-329)))) (-14 -1499 ((-1 (-855 (-178)) (-178) (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1 (-178) (-178) (-178) (-178)))))) (T -215))
-((-1499 (*1 *2 *2 *3) (-11 (-5 *2 (-1 (-855 (-178)) (-178) (-178))) (-5 *3 (-1 (-178) (-178) (-178) (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4) (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1498 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-788 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1183)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-788 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1183)) (-5 *1 (-215)))) (-1505 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-215)))))
-((-1505 (((-1183) (-248 |#2|) (-1091) (-1091) (-584 (-220))) 102 T ELT)))
-(((-216 |#1| |#2|) (-10 -7 (-14 -1505 ((-1183) (-248 |#2|) (-1091) (-1091) (-584 (-220))))) (-12 (-496) (-757) (-951 (-485))) (-363 |#1|)) (T -216))
-((-1505 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-248 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-220))) (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) (-5 *1 (-216 *6 *7)))))
-((-1502 (((-485) (-485)) 71 T ELT)) (-1503 (((-485) (-485)) 72 T ELT)) (-1504 (((-178) (-178)) 73 T ELT)) (-1501 (((-1184) (-1 (-141 (-178)) (-141 (-178))) (-1002 (-178)) (-1002 (-178))) 70 T ELT)) (-1500 (((-1184) (-1 (-141 (-178)) (-141 (-178))) (-1002 (-178)) (-1002 (-178)) (-82)) 68 T ELT)))
-(((-217) (-10 -7 (-14 -1500 ((-1184) (-1 (-141 (-178)) (-141 (-178))) (-1002 (-178)) (-1002 (-178)) (-82))) (-14 -1501 ((-1184) (-1 (-141 (-178)) (-141 (-178))) (-1002 (-178)) (-1002 (-178)))) (-14 -1502 ((-485) (-485))) (-14 -1503 ((-485) (-485))) (-14 -1504 ((-178) (-178))))) (T -217))
-((-1504 (*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-217)))) (-1503 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-217)))) (-1502 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-217)))) (-1501 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 (-141 (-178)) (-141 (-178)))) (-5 *4 (-1002 (-178))) (-5 *2 (-1184)) (-5 *1 (-217)))) (-1500 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-141 (-178)) (-141 (-178)))) (-5 *4 (-1002 (-178))) (-5 *5 (-82)) (-5 *2 (-1184)) (-5 *1 (-217)))))
-((-3950 (((-1005 (-329)) (-1005 (-264 |#1|))) 16 T ELT)))
-(((-218 |#1|) (-10 -7 (-14 -3950 ((-1005 (-329)) (-1005 (-264 |#1|))))) (-12 (-757) (-496) (-554 (-329)))) (T -218))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-1005 (-264 *4))) (-4 *4 (-12 (-757) (-496) (-554 (-329)))) (-5 *2 (-1005 (-329))) (-5 *1 (-218 *4)))))
-((-1505 (((-1184) (-584 (-178)) (-584 (-178)) (-584 (-178)) (-584 (-220))) 23 T ELT) (((-1184) (-584 (-178)) (-584 (-178)) (-584 (-178))) 24 T ELT) (((-1183) (-584 (-855 (-178))) (-584 (-220))) 16 T ELT) (((-1183) (-584 (-855 (-178)))) 17 T ELT) (((-1183) (-584 (-178)) (-584 (-178)) (-584 (-220))) 20 T ELT) (((-1183) (-584 (-178)) (-584 (-178))) 21 T ELT)))
-(((-219) (-10 -7 (-14 -1505 ((-1183) (-584 (-178)) (-584 (-178)))) (-14 -1505 ((-1183) (-584 (-178)) (-584 (-178)) (-584 (-220)))) (-14 -1505 ((-1183) (-584 (-855 (-178))))) (-14 -1505 ((-1183) (-584 (-855 (-178))) (-584 (-220)))) (-14 -1505 ((-1184) (-584 (-178)) (-584 (-178)) (-584 (-178)))) (-14 -1505 ((-1184) (-584 (-178)) (-584 (-178)) (-584 (-178)) (-584 (-220)))))) (T -219))
-((-1505 (*1 *2 *3 *3 *3 *4) (-11 (-5 *3 (-584 (-178))) (-5 *4 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-219)))) (-1505 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-584 (-178))) (-5 *2 (-1184)) (-5 *1 (-219)))) (-1505 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *4 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-219)))) (-1505 (*1 *2 *3) (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *2 (-1183)) (-5 *1 (-219)))) (-1505 (*1 *2 *3 *3 *4) (-11 (-5 *3 (-584 (-178))) (-5 *4 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-219)))) (-1505 (*1 *2 *3 *3) (-11 (-5 *3 (-584 (-178))) (-5 *2 (-1183)) (-5 *1 (-219)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3885 (($ (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) 24 T ELT)) (-1518 (($ (-831)) 81 T ELT)) (-1517 (($ (-831)) 80 T ELT)) (-1777 (($ (-584 (-329))) 87 T ELT)) (-1521 (($ (-329)) 66 T ELT)) (-1520 (($ (-831)) 82 T ELT)) (-1514 (($ (-82)) 33 T ELT)) (-3887 (($ (-1074)) 28 T ELT)) (-1513 (($ (-1074)) 29 T ELT)) (-1519 (($ (-1048 (-178))) 76 T ELT)) (-1933 (($ (-584 (-1002 (-329)))) 72 T ELT)) (-1507 (($ (-584 (-1002 (-329)))) 68 T ELT) (($ (-584 (-1002 (-349 (-485))))) 71 T ELT)) (-1510 (($ (-329)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1506 (((-82) (-584 $) (-1091)) 100 T ELT)) (-1522 (((-3 (-48) "failed") (-584 $) (-1091)) 102 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1509 (($ (-329)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3227 (($ (-1 (-855 (-178)) (-855 (-178)))) 65 T ELT)) (-2268 (($ (-1 (-855 (-178)) (-855 (-178)))) 83 T ELT)) (-1508 (($ (-1 (-178) (-178))) 48 T ELT) (($ (-1 (-178) (-178) (-178))) 52 T ELT) (($ (-1 (-178) (-178) (-178) (-178))) 56 T ELT)) (-3950 (((-773) $) 93 T ELT)) (-1511 (($ (-82)) 34 T ELT) (($ (-584 (-1002 (-329)))) 60 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1928 (($ (-82)) 35 T ELT)) (-3059 (((-82) $ $) 97 T ELT)))
-(((-220) (-12 (-1014) (-10 -8 (-14 -1928 ($ (-82))) (-14 -1511 ($ (-82))) (-14 -3885 ($ (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))) (-14 -3887 ($ (-1074))) (-14 -1513 ($ (-1074))) (-14 -1514 ($ (-82))) (-14 -1511 ($ (-584 (-1002 (-329))))) (-14 -3227 ($ (-1 (-855 (-178)) (-855 (-178))))) (-14 -1510 ($ (-329))) (-14 -1510 ($ (-784))) (-14 -1509 ($ (-329))) (-14 -1509 ($ (-784))) (-14 -1508 ($ (-1 (-178) (-178)))) (-14 -1508 ($ (-1 (-178) (-178) (-178)))) (-14 -1508 ($ (-1 (-178) (-178) (-178) (-178)))) (-14 -1521 ($ (-329))) (-14 -1507 ($ (-584 (-1002 (-329))))) (-14 -1507 ($ (-584 (-1002 (-349 (-485)))))) (-14 -1933 ($ (-584 (-1002 (-329))))) (-14 -1519 ($ (-1048 (-178)))) (-14 -1517 ($ (-831))) (-14 -1518 ($ (-831))) (-14 -1520 ($ (-831))) (-14 -2268 ($ (-1 (-855 (-178)) (-855 (-178))))) (-14 -1777 ($ (-584 (-329)))) (-14 -1522 ((-3 (-48) "failed") (-584 $) (-1091))) (-14 -1506 ((-82) (-584 $) (-1091)))))) (T -220))
-((-1928 (*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220)))) (-1511 (*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220)))) (-3885 (*1 *1 *2) (-11 (-5 *2 (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) (-5 *1 (-220)))) (-3887 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-220)))) (-1513 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-220)))) (-1514 (*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220)))) (-1511 (*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220)))) (-3227 (*1 *1 *2) (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *1 (-220)))) (-1510 (*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220)))) (-1510 (*1 *1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-220)))) (-1509 (*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220)))) (-1509 (*1 *1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-220)))) (-1508 (*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-220)))) (-1508 (*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178) (-178))) (-5 *1 (-220)))) (-1508 (*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178) (-178) (-178))) (-5 *1 (-220)))) (-1521 (*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220)))) (-1507 (*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220)))) (-1507 (*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-349 (-485))))) (-5 *1 (-220)))) (-1933 (*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220)))) (-1519 (*1 *1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-220)))) (-1517 (*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220)))) (-1518 (*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220)))) (-1520 (*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220)))) (-2268 (*1 *1 *2) (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *1 (-220)))) (-1777 (*1 *1 *2) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-220)))) (-1522 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *2 (-48)) (-5 *1 (-220)))) (-1506 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *2 (-82)) (-5 *1 (-220)))))
-((-3885 (((-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))) (-584 (-220)) (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) 25 T ELT)) (-1518 (((-831) (-584 (-220)) (-831)) 52 T ELT)) (-1517 (((-831) (-584 (-220)) (-831)) 51 T ELT)) (-3855 (((-584 (-329)) (-584 (-220)) (-584 (-329))) 68 T ELT)) (-1521 (((-329) (-584 (-220)) (-329)) 57 T ELT)) (-1520 (((-831) (-584 (-220)) (-831)) 53 T ELT)) (-1514 (((-82) (-584 (-220)) (-82)) 27 T ELT)) (-3887 (((-1074) (-584 (-220)) (-1074)) 19 T ELT)) (-1513 (((-1074) (-584 (-220)) (-1074)) 26 T ELT)) (-1519 (((-1048 (-178)) (-584 (-220))) 46 T ELT)) (-1933 (((-584 (-1002 (-329))) (-584 (-220)) (-584 (-1002 (-329)))) 40 T ELT)) (-1515 (((-784) (-584 (-220)) (-784)) 32 T ELT)) (-1516 (((-784) (-584 (-220)) (-784)) 33 T ELT)) (-2268 (((-1 (-855 (-178)) (-855 (-178))) (-584 (-220)) (-1 (-855 (-178)) (-855 (-178)))) 63 T ELT)) (-1512 (((-82) (-584 (-220)) (-82)) 14 T ELT)) (-1928 (((-82) (-584 (-220)) (-82)) 13 T ELT)))
-(((-221) (-10 -7 (-14 -1928 ((-82) (-584 (-220)) (-82))) (-14 -1512 ((-82) (-584 (-220)) (-82))) (-14 -3885 ((-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))) (-584 (-220)) (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))) (-14 -3887 ((-1074) (-584 (-220)) (-1074))) (-14 -1513 ((-1074) (-584 (-220)) (-1074))) (-14 -1514 ((-82) (-584 (-220)) (-82))) (-14 -1515 ((-784) (-584 (-220)) (-784))) (-14 -1516 ((-784) (-584 (-220)) (-784))) (-14 -1933 ((-584 (-1002 (-329))) (-584 (-220)) (-584 (-1002 (-329))))) (-14 -1517 ((-831) (-584 (-220)) (-831))) (-14 -1518 ((-831) (-584 (-220)) (-831))) (-14 -1519 ((-1048 (-178)) (-584 (-220)))) (-14 -1520 ((-831) (-584 (-220)) (-831))) (-14 -1521 ((-329) (-584 (-220)) (-329))) (-14 -2268 ((-1 (-855 (-178)) (-855 (-178))) (-584 (-220)) (-1 (-855 (-178)) (-855 (-178))))) (-14 -3855 ((-584 (-329)) (-584 (-220)) (-584 (-329)))))) (T -221))
-((-3855 (*1 *2 *3 *2) (-11 (-5 *2 (-584 (-329))) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-2268 (*1 *2 *3 *2) (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1521 (*1 *2 *3 *2) (-11 (-5 *2 (-329)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1520 (*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1519 (*1 *2 *3) (-11 (-5 *3 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-221)))) (-1518 (*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1517 (*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1933 (*1 *2 *3 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1516 (*1 *2 *3 *2) (-11 (-5 *2 (-784)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1515 (*1 *2 *3 *2) (-11 (-5 *2 (-784)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1514 (*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1513 (*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-3887 (*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-3885 (*1 *2 *3 *2) (-11 (-5 *2 (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1512 (*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))) (-1928 (*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-((-1522 (((-3 |#1| "failed") (-584 (-220)) (-1091)) 17 T ELT)))
-(((-222 |#1|) (-10 -7 (-14 -1522 ((-3 |#1| "failed") (-584 (-220)) (-1091)))) (-1130)) (T -222))
-((-1522 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *1 (-222 *2)) (-4 *2 (-1130)))))
-((-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2672 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)))
-(((-223 |#1| |#2|) (-10 -7 (-14 -3761 (|#1| |#1|)) (-14 -2672 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -2672 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -2672 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -2672 (|#1| |#1| (-584 (-1091)))) (-14 -2672 (|#1| |#1| (-1091) (-695))) (-14 -2672 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -2672 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -2672 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|)))) (-224 |#2|) (-1130)) (T -223))
-NIL
-((-3761 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 16 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 15 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 14 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 12 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 10 (|has| |#1| (-188)) ELT) (($ $) 8 (|has| |#1| (-188)) ELT)) (-2672 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 19 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 18 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 17 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 13 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 11 (|has| |#1| (-188)) ELT) (($ $) 9 (|has| |#1| (-188)) ELT)))
-(((-224 |#1|) (-110) (-1130)) (T -224))
-((-3761 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1130)))) (-3761 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-224 *4)) (-4 *4 (-1130)))) (-2672 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1130)))) (-2672 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-224 *4)) (-4 *4 (-1130)))))
-(-12 (-1130) (-10 -8 (-14 -3761 ($ $ (-1 |t#1| |t#1|))) (-14 -3761 ($ $ (-1 |t#1| |t#1|) (-695))) (-14 -2672 ($ $ (-1 |t#1| |t#1|))) (-14 -2672 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-188)) (-6 (-188)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-812 (-1091))) |%noBranch|)))
-(((-185 $) |has| |#1| (-188)) ((-188) |has| |#1| (-188)) ((-12) . T) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3084 (((-584 |#3|) $) NIL T ELT)) (-3086 (((-1086 $) $ |#3|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 23 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#3|) NIL (|has| |#1| (-145)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| |#1| (-797 (-329))) (|has| |#3| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ELT)) (-3775 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#1|) |#3|) NIL T ELT) (($ (-1086 $) |#3|) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) NIL T ELT)) (-2823 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-189)) ELT)) (-3085 (((-3 |#3| #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1488 (((-82) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-189)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-189)) ELT)) (-3760 (($ $ |#3|) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-1490 (((-584 |#2|) $) NIL T ELT)) (-3952 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#3| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#1| |#2|)) 32 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-225 |#1| |#2| |#3|) (-12 (-212 |#1| |#2| |#3| (-470 |#3|)) (-951 (-1040 |#1| |#2|))) (-962) (-757) (-227 |#2|)) (T -225))
-NIL
-((-1523 (((-695) $) 37 T ELT)) (-3160 (((-3 |#2| "failed") $) 22 T ELT)) (-3159 ((|#2| $) 33 T ELT)) (-3761 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3950 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3059 (((-82) $ $) 26 T ELT)) (-2688 (((-82) $ $) 36 T ELT)))
-(((-226 |#1| |#2|) (-10 -7 (-14 -1523 ((-695) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3160 ((-3 |#2| "failed") |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -2688 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-227 |#2|) (-757)) (T -226))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1523 (((-695) $) 26 T ELT)) (-3834 ((|#1| $) 27 T ELT)) (-3160 (((-3 |#1| "failed") $) 31 T ELT)) (-3159 ((|#1| $) 32 T ELT)) (-3775 (((-695) $) 28 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-695)) 29 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2672 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)))
-(((-227 |#1|) (-110) (-757)) (T -227))
-((-1524 (*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-227 *2)) (-4 *2 (-757)))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-227 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3834 (*1 *2 *1) (-11 (-4 *1 (-227 *2)) (-4 *2 (-757)))) (-1523 (*1 *2 *1) (-11 (-4 *1 (-227 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
-(-12 (-757) (-188) (-951 |t#1|) (-10 -8 (-14 -1524 ($ |t#1| (-695))) (-14 -3775 ((-695) $)) (-14 -3834 (|t#1| $)) (-14 -1523 ((-695) $))))
-(((-69) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-185 $) . T) ((-188) . T) ((-12) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1526 (((-584 (-485)) $) 28 T ELT)) (-3952 (((-695) $) 26 T ELT)) (-3950 (((-773) $) 32 T ELT) (($ (-584 (-485))) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1525 (($ (-695)) 29 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 11 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 18 T ELT)))
-(((-228) (-12 (-757) (-10 -8 (-14 -3950 ($ (-584 (-485)))) (-14 -3952 ((-695) $)) (-14 -1526 ((-584 (-485)) $)) (-14 -1525 ($ (-695)))))) (T -228))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-228)))) (-3952 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-228)))) (-1526 (*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-228)))) (-1525 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-228)))))
-((-3495 ((|#2| |#2|) 77 T ELT)) (-3642 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-82))))) 123 T ELT)) (-3493 ((|#2| |#2|) 75 T ELT)) (-3641 ((|#2| |#2|) 63 T ELT)) (-3497 ((|#2| |#2|) 79 T ELT)) (-3640 ((|#2| |#2|) 67 T ELT)) (-3630 ((|#2|) 46 T ELT)) (-3598 (((-83) (-83)) 97 T ELT)) (-3946 ((|#2| |#2|) 61 T ELT)) (-1556 (((-82) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3947 ((|#2| |#2|) 62 T ELT)) (-3498 ((|#2| |#2|) 80 T ELT)) (-3639 ((|#2| |#2|) 68 T ELT)) (-3496 ((|#2| |#2|) 78 T ELT)) (-3638 ((|#2| |#2|) 66 T ELT)) (-3494 ((|#2| |#2|) 76 T ELT)) (-3637 ((|#2| |#2|) 64 T ELT)) (-2256 (((-82) (-83)) 95 T ELT)) (-3501 ((|#2| |#2|) 83 T ELT)) (-3489 ((|#2| |#2|) 71 T ELT)) (-3499 ((|#2| |#2|) 81 T ELT)) (-3487 ((|#2| |#2|) 69 T ELT)) (-3503 ((|#2| |#2|) 85 T ELT)) (-3491 ((|#2| |#2|) 73 T ELT)) (-3504 ((|#2| |#2|) 86 T ELT)) (-3492 ((|#2| |#2|) 74 T ELT)) (-3502 ((|#2| |#2|) 84 T ELT)) (-3490 ((|#2| |#2|) 72 T ELT)) (-3500 ((|#2| |#2|) 82 T ELT)) (-3488 ((|#2| |#2|) 70 T ELT)))
-(((-229 |#1| |#2|) (-10 -7 (-14 -3947 (|#2| |#2|)) (-14 -3946 (|#2| |#2|)) (-14 -3641 (|#2| |#2|)) (-14 -3637 (|#2| |#2|)) (-14 -3642 (|#2| |#2|)) (-14 -3638 (|#2| |#2|)) (-14 -3640 (|#2| |#2|)) (-14 -3639 (|#2| |#2|)) (-14 -3487 (|#2| |#2|)) (-14 -3488 (|#2| |#2|)) (-14 -3489 (|#2| |#2|)) (-14 -3490 (|#2| |#2|)) (-14 -3491 (|#2| |#2|)) (-14 -3492 (|#2| |#2|)) (-14 -3493 (|#2| |#2|)) (-14 -3494 (|#2| |#2|)) (-14 -3495 (|#2| |#2|)) (-14 -3496 (|#2| |#2|)) (-14 -3497 (|#2| |#2|)) (-14 -3498 (|#2| |#2|)) (-14 -3499 (|#2| |#2|)) (-14 -3500 (|#2| |#2|)) (-14 -3501 (|#2| |#2|)) (-14 -3502 (|#2| |#2|)) (-14 -3503 (|#2| |#2|)) (-14 -3504 (|#2| |#2|)) (-14 -3630 (|#2|)) (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 -1527 (|#2|)) (-14 -1528 (|#2|)) (-14 -1529 (|#2| |#2|)) (-14 -1530 (|#2| |#2|)) (-14 -1531 (|#2| |#2|)) (-14 -1532 (|#2| |#2|)) (-14 -1533 (|#2| |#2|)) (-14 -1534 (|#2| |#2|)) (-14 -1535 (|#2| |#2|)) (-14 -1536 (|#2| |#2|)) (-14 -1537 (|#2| |#2|)) (-14 -1538 (|#2| |#2|)) (-14 -1539 (|#2| |#2|)) (-14 -1540 (|#2| |#2|)) (-14 -1541 (|#2| |#2|)) (-14 -1542 (|#2| |#2|)) (-14 -1543 (|#2| |#2|)) (-14 -1544 (|#2| |#2|)) (-14 -1545 (|#2| |#2|)) (-14 -1546 (|#2| |#2|)) (-14 -1547 (|#2| |#2|)) (-14 -1548 (|#2| |#2|)) (-14 -1549 (|#2| |#2|)) (-14 -1550 (|#2| |#2|)) (-14 -1551 (|#2| |#2|)) (-14 -1552 (|#2| |#2|)) (-14 -1553 (|#2| |#2|)) (-14 -1554 (|#2| |#2|)) (-14 -1555 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-82)))))) (-14 -1556 ((-82) |#2|))) (-496) (-12 (-363 |#1|) (-916))) (T -229))
-((-1556 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-229 *4 *3)) (-4 *3 (-12 (-363 *4) (-916))))) (-1555 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-82))))) (-4 *2 (-12 (-363 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-229 *4 *2)))) (-1554 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1553 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1552 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1551 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1550 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1549 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1548 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1547 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1546 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1545 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1544 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1543 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1542 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1541 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1540 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1539 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1538 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1537 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1536 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1535 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1534 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1533 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1532 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1531 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1530 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1529 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-1528 (*1 *2) (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496)))) (-1527 (*1 *2) (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496)))) (-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-229 *3 *4)) (-4 *4 (-12 (-363 *3) (-916))))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-229 *4 *5)) (-4 *5 (-12 (-363 *4) (-916))))) (-3630 (*1 *2) (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496)))) (-3504 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3503 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3502 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3501 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3500 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3499 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3498 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3497 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3496 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3495 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3494 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3493 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3492 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3491 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3490 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3489 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3488 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3487 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3639 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3640 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3638 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3642 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3637 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3641 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3946 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))) (-3947 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
-((-1559 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091)) 151 T ELT)) (-1561 ((|#2| (-349 (-485)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091)) 143 T ELT)) (-1558 ((|#2| |#2| (-1091)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2446 ((|#2| |#2| (-1091)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
-(((-230 |#1| |#2|) (-10 -7 (-14 -2446 (|#2| |#2|)) (-14 -2446 (|#2| |#2| (-1091))) (-14 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091))) (-14 -1558 (|#2| |#2|)) (-14 -1558 (|#2| |#2| (-1091))) (-14 -1559 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091))) (-14 -1560 (|#2| |#2| (-551 |#2|))) (-14 -1561 (|#2| (-349 (-485)) |#2|))) (-12 (-496) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -230))
-((-1561 (*1 *2 *3 *2) (-11 (-5 *3 (-349 (-485))) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-1560 (*1 *2 *2 *3) (-11 (-5 *3 (-551 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -11 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) (-4 *2 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *5 *2)))) (-1558 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-1558 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))) (-1557 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-230 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-2446 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-2446 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))))
-((-2978 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3495 ((|#3| |#3|) 142 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3642 ((|#3| |#3|) 132 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3493 ((|#3| |#3|) 140 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3641 ((|#3| |#3|) 130 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3497 ((|#3| |#3|) 144 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3640 ((|#3| |#3|) 134 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3946 ((|#3| |#3|) 129 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3947 ((|#3| |#3|) 128 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3498 ((|#3| |#3|) 145 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3639 ((|#3| |#3|) 135 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3496 ((|#3| |#3|) 143 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3638 ((|#3| |#3|) 133 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3494 ((|#3| |#3|) 141 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3637 ((|#3| |#3|) 131 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3501 ((|#3| |#3|) 148 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3489 ((|#3| |#3|) 152 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3499 ((|#3| |#3|) 146 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3487 ((|#3| |#3|) 136 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3503 ((|#3| |#3|) 150 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3491 ((|#3| |#3|) 138 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3504 ((|#3| |#3|) 151 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3492 ((|#3| |#3|) 139 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3502 ((|#3| |#3|) 149 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3490 ((|#3| |#3|) 153 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3500 ((|#3| |#3|) 147 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3488 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-349 (-485))) 47 (|has| |#1| (-311)) ELT)))
-(((-231 |#1| |#2| |#3|) (-12 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-14 ** (|#3| |#3| (-349 (-485)))) |%noBranch|) (-14 -3947 (|#3| |#3|)) (-14 -3946 (|#3| |#3|)) (-14 -3641 (|#3| |#3|)) (-14 -3637 (|#3| |#3|)) (-14 -3642 (|#3| |#3|)) (-14 -3638 (|#3| |#3|)) (-14 -3640 (|#3| |#3|)) (-14 -3639 (|#3| |#3|)) (-14 -3487 (|#3| |#3|)) (-14 -3488 (|#3| |#3|)) (-14 -3489 (|#3| |#3|)) (-14 -3490 (|#3| |#3|)) (-14 -3491 (|#3| |#3|)) (-14 -3492 (|#3| |#3|)) (-14 -3493 (|#3| |#3|)) (-14 -3494 (|#3| |#3|)) (-14 -3495 (|#3| |#3|)) (-14 -3496 (|#3| |#3|)) (-14 -3497 (|#3| |#3|)) (-14 -3498 (|#3| |#3|)) (-14 -3499 (|#3| |#3|)) (-14 -3500 (|#3| |#3|)) (-14 -3501 (|#3| |#3|)) (-14 -3502 (|#3| |#3|)) (-14 -3503 (|#3| |#3|)) (-14 -3504 (|#3| |#3|)))) (-35 (-349 (-485))) (-1173 |#1|) (-1144 |#1| |#2|)) (T -231))
-((** (*1 *2 *2 *3) (-11 (-5 *3 (-349 (-485))) (-4 *4 (-311)) (-4 *4 (-35 *3)) (-4 *5 (-1173 *4)) (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) (-3947 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3946 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3641 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3637 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3642 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3638 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3640 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3639 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3487 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3488 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3489 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3490 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3491 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3492 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3493 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3494 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3495 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3496 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3497 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3498 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3499 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3500 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3501 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3502 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3503 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3504 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))))
-((-2978 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3495 ((|#3| |#3|) 137 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3642 ((|#3| |#3|) 125 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3493 ((|#3| |#3|) 135 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3641 ((|#3| |#3|) 123 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3497 ((|#3| |#3|) 139 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3640 ((|#3| |#3|) 127 T ELT)) (-2961 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3946 ((|#3| |#3|) 111 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3947 ((|#3| |#3|) 122 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3498 ((|#3| |#3|) 140 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3639 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3496 ((|#3| |#3|) 138 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3638 ((|#3| |#3|) 126 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3494 ((|#3| |#3|) 136 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3637 ((|#3| |#3|) 124 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3501 ((|#3| |#3|) 143 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3489 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3499 ((|#3| |#3|) 141 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3487 ((|#3| |#3|) 129 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3503 ((|#3| |#3|) 145 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3491 ((|#3| |#3|) 133 T ELT)) (-2987 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3504 ((|#3| |#3|) 146 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3492 ((|#3| |#3|) 134 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3502 ((|#3| |#3|) 144 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3490 ((|#3| |#3|) 132 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3500 ((|#3| |#3|) 142 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3488 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-349 (-485))) 44 (|has| |#1| (-311)) ELT)))
-(((-232 |#1| |#2| |#3| |#4|) (-12 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-14 ** (|#3| |#3| (-349 (-485)))) |%noBranch|) (-14 -3947 (|#3| |#3|)) (-14 -3946 (|#3| |#3|)) (-14 -3641 (|#3| |#3|)) (-14 -3637 (|#3| |#3|)) (-14 -3642 (|#3| |#3|)) (-14 -3638 (|#3| |#3|)) (-14 -3640 (|#3| |#3|)) (-14 -3639 (|#3| |#3|)) (-14 -3487 (|#3| |#3|)) (-14 -3488 (|#3| |#3|)) (-14 -3489 (|#3| |#3|)) (-14 -3490 (|#3| |#3|)) (-14 -3491 (|#3| |#3|)) (-14 -3492 (|#3| |#3|)) (-14 -3493 (|#3| |#3|)) (-14 -3494 (|#3| |#3|)) (-14 -3495 (|#3| |#3|)) (-14 -3496 (|#3| |#3|)) (-14 -3497 (|#3| |#3|)) (-14 -3498 (|#3| |#3|)) (-14 -3499 (|#3| |#3|)) (-14 -3500 (|#3| |#3|)) (-14 -3501 (|#3| |#3|)) (-14 -3502 (|#3| |#3|)) (-14 -3503 (|#3| |#3|)) (-14 -3504 (|#3| |#3|)))) (-35 (-349 (-485))) (-1142 |#1|) (-1165 |#1| |#2|) (-897 |#2|)) (T -232))
-((** (*1 *2 *2 *3) (-11 (-5 *3 (-349 (-485))) (-4 *4 (-311)) (-4 *4 (-35 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) (-3947 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3946 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3641 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3637 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3642 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3638 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3640 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3639 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3499 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3500 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3501 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3502 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3503 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3504 (*1 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))))
-((-1564 (((-82) $) 20 T ELT)) (-1566 (((-1096) $) 9 T ELT)) (-3572 (((-3 (-447) #1="failed") $) 15 T ELT)) (-3571 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-447) #1#) $) 21 T ELT)) (-1565 (((-3 (-1016) #1#) $) 19 T ELT)) (-3957 (((-82) $) 17 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1562 (((-82) $) 10 T ELT)))
-(((-233) (-12 (-553 (-773)) (-10 -8 (-14 -1566 ((-1096) $)) (-14 -3957 ((-82) $)) (-14 -1565 ((-3 (-1016) #1="failed") $)) (-14 -1564 ((-82) $)) (-14 -1563 ((-3 (-447) #1#) $)) (-14 -1562 ((-82) $)) (-14 -3572 ((-3 (-447) #1#) $)) (-14 -3571 ((-3 (-584 $) #1#) $))))) (T -233))
-((-1566 (*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-233)))) (-3957 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233)))) (-1565 (*1 *2 *1) (|partial| -11 (-5 *2 (-1016)) (-5 *1 (-233)))) (-1564 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233)))) (-1563 (*1 *2 *1) (|partial| -11 (-5 *2 (-447)) (-5 *1 (-233)))) (-1562 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233)))) (-3572 (*1 *2 *1) (|partial| -11 (-5 *2 (-447)) (-5 *1 (-233)))) (-3571 (*1 *2 *1) (|partial| -11 (-5 *2 (-584 (-233))) (-5 *1 (-233)))))
-((-1568 (((-533) $) 10 T ELT)) (-1569 (((-523) $) 8 T ELT)) (-1567 (((-246) $) 12 T ELT)) (-1570 (($ (-523) (-533) (-246)) NIL T ELT)) (-3950 (((-773) $) 19 T ELT)))
-(((-234) (-12 (-553 (-773)) (-10 -8 (-14 -1570 ($ (-523) (-533) (-246))) (-14 -1569 ((-523) $)) (-14 -1568 ((-533) $)) (-14 -1567 ((-246) $))))) (T -234))
-((-1570 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-246)) (-5 *1 (-234)))) (-1569 (*1 *2 *1) (-11 (-5 *2 (-523)) (-5 *1 (-234)))) (-1568 (*1 *2 *1) (-11 (-5 *2 (-533)) (-5 *1 (-234)))) (-1567 (*1 *2 *1) (-11 (-5 *2 (-246)) (-5 *1 (-234)))))
-((-3713 (($ (-1 (-82) |#2|) $) 24 T ELT)) (-1354 (($ $) 38 T ELT)) (-3408 (($ (-1 (-82) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3409 (($ |#2| $) 34 T ELT) (($ (-1 (-82) |#2|) $) 18 T ELT)) (-2859 (($ (-1 (-82) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2306 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2307 (($ $ (-485)) 11 T ELT) (($ $ (-1147 (-485))) 14 T ELT)) (-3794 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3805 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT)))
-(((-235 |#1| |#2|) (-10 -7 (-14 -2859 (|#1| |#1| |#1|)) (-14 -3408 (|#1| |#2| |#1|)) (-14 -2859 (|#1| (-1 (-82) |#2| |#2|) |#1| |#1|)) (-14 -3408 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3794 (|#1| |#1| |#1|)) (-14 -3794 (|#1| |#1| |#2|)) (-14 -2306 (|#1| |#1| |#1| (-485))) (-14 -2306 (|#1| |#2| |#1| (-485))) (-14 -2307 (|#1| |#1| (-1147 (-485)))) (-14 -2307 (|#1| |#1| (-485))) (-14 -3805 (|#1| (-584 |#1|))) (-14 -3805 (|#1| |#1| |#1|)) (-14 -3805 (|#1| |#2| |#1|)) (-14 -3805 (|#1| |#1| |#2|)) (-14 -3409 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3713 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3409 (|#1| |#2| |#1|)) (-14 -1354 (|#1| |#1|))) (-236 |#2|) (-1130)) (T -235))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 83 T ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 81 (|has| |#1| (-69)) ELT)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ (-1 (-82) |#1|) $) 87 T ELT) (($ |#1| $) 82 (|has| |#1| (-69)) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2859 (($ (-1 (-82) |#1| |#1|) $ $) 84 T ELT) (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3612 (($ |#1| $ (-485)) 86 T ELT) (($ $ $ (-485)) 85 T ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-1572 (($ $ (-485)) 89 T ELT) (($ $ (-1147 (-485))) 88 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3794 (($ $ |#1|) 91 T ELT) (($ $ $) 90 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-236 |#1|) (-110) (-1130)) (T -236))
-((-3794 (*1 *1 *1 *2) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)))) (-3794 (*1 *1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)))) (-1572 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-1572 (*1 *1 *1 *2) (-11 (-5 *2 (-1147 (-485))) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-3408 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-3612 (*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-236 *2)) (-4 *2 (-1130)))) (-3612 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-2859 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-1571 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))) (-3408 (*1 *1 *2 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-69)))) (-2370 (*1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-69)))) (-2859 (*1 *1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))))
-(-12 (-594 |t#1|) (-1036 |t#1|) (-10 -8 (-14 -3794 ($ $ |t#1|)) (-14 -3794 ($ $ $)) (-14 -1572 ($ $ (-485))) (-14 -1572 ($ $ (-1147 (-485)))) (-14 -3408 ($ (-1 (-82) |t#1|) $)) (-14 -3612 ($ |t#1| $ (-485))) (-14 -3612 ($ $ $ (-485))) (-14 -2859 ($ (-1 (-82) |t#1| |t#1|) $ $)) (-14 -1571 ($ (-1 (-82) |t#1|) $)) (IF (|has| |t#1| (-69)) (PROGN (-14 -3408 ($ |t#1| $)) (-14 -2370 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-14 -2859 ($ $ $)) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
+(2994629 . 3581079095)
+((|sorted?| ((#1=(|Boolean|) #2=(|Mapping| #1# |#2| |#2|) $) 86 T ELT) ((#1# $) NIL T ELT)) (|sort!| (($ #2# $) 18 T ELT) (#3=($ $) NIL T ELT)) (|setelt| #4=((|#2| $ #5=(|Integer|) |#2|) NIL T ELT) ((|#2| $ #6=(|UniversalSegment| #5#) |#2|) 44 T ELT)) (|reverse!| (#3# 80 T ELT)) (|reduce| ((|#2| #7=(|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| #7# $ |#2|) 50 T ELT) ((|#2| #7# $) 49 T ELT)) (|position| ((#5# #8=(|Mapping| #1# |#2|) $) 27 T ELT) ((#5# |#2| $) NIL T ELT) ((#5# |#2| $ #5#) 96 T ELT)) (|merge| (($ #2# $ $) 64 T ELT) (#9=($ $ $) NIL T ELT)) (|members| ((#10=(|List| |#2|) $) 13 T ELT)) (|map!| (#11=($ (|Mapping| |#2| |#2|) $) 37 T ELT)) (|map| (#11# NIL T ELT) (($ #7# $ $) 60 T ELT)) (|insert| (($ |#2| $ #5#) NIL T ELT) (#12=($ $ $ #5#) 67 T ELT)) (|find| (((|Union| |#2| "failed") #8# $) 29 T ELT)) (|every?| (#13=(#1# #8# $) 23 T ELT)) (|elt| #4# ((|#2| $ #5#) NIL T ELT) (#14=($ $ #6#) 66 T ELT)) (|delete| (($ $ #5#) 76 T ELT) (#14# 75 T ELT)) (|count| ((#15=(|NonNegativeInteger|) |#2| $) NIL T ELT) ((#15# #8# $) 34 T ELT)) (|copyInto!| (#12# 69 T ELT)) (|copy| (#3# 68 T ELT)) (|construct| (($ #10#) 73 T ELT)) (|concat| (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (#9# 87 T ELT) (($ (|List| $)) 85 T ELT)) (|coerce| (((|OutputForm|) $) 92 T ELT)) (|any?| (#13# 22 T ELT)) (= (#16=(#1# $ $) 95 T ELT)) (< (#16# 99 T ELT)))
+(((|OneDimensionalArrayAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = #1=(#2=(|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |map!| #3=(|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE < #1#) (SIGNATURE |sort!| #4=(|#1| |#1|)) (SIGNATURE |sort!| (|#1| #5=(|Mapping| #2# |#2| |#2|) |#1|)) (SIGNATURE |reverse!| #4#) (SIGNATURE |copyInto!| #6=(|#1| |#1| |#1| #7=(|Integer|))) (SIGNATURE |sorted?| (#2# |#1|)) (SIGNATURE |merge| #8=(|#1| |#1| |#1|)) (SIGNATURE |position| (#7# |#2| |#1| #7#)) (SIGNATURE |position| (#7# |#2| |#1|)) (SIGNATURE |position| (#7# #9=(|Mapping| #2# |#2|) |#1|)) (SIGNATURE |sorted?| (#2# #5# |#1|)) (SIGNATURE |merge| (|#1| #5# |#1| |#1|)) (SIGNATURE |any?| #10=(#2# #9# |#1|)) (SIGNATURE |every?| #10#) (SIGNATURE |count| (#11=(|NonNegativeInteger|) #9# |#1|)) (SIGNATURE |members| (#12=(|List| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| #13=(|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| #13# |#1| |#2|)) (SIGNATURE |find| ((|Union| |#2| "failed") #9# |#1|)) (SIGNATURE |count| (#11# |#2| |#1|)) (SIGNATURE |reduce| (|#2| #13# |#1| |#2| |#2|)) (SIGNATURE |setelt| (|#2| |#1| #14=(|UniversalSegment| #7#) |#2|)) (SIGNATURE |insert| #6#) (SIGNATURE |insert| (|#1| |#2| |#1| #7#)) (SIGNATURE |delete| #15=(|#1| |#1| #14#)) (SIGNATURE |delete| (|#1| |#1| #7#)) (SIGNATURE |map| (|#1| #13# |#1| |#1|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| #8#) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |elt| #15#) (SIGNATURE |construct| (|#1| #12#)) (SIGNATURE |elt| (|#2| |#1| #7#)) (SIGNATURE |elt| #16=(|#2| |#1| #7# |#2|)) (SIGNATURE |setelt| #16#) (SIGNATURE |map| #3#) (SIGNATURE |copy| #4#)) (|OneDimensionalArrayAggregate| |#2|) (|Type|)) (T |OneDimensionalArrayAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#4=(|Boolean|) (|Mapping| #4# |#1| |#1|) $) 96 T ELT) ((#4# $) 90 (|has| |#1| . #5=((|OrderedSet|))) ELT)) (|sort!| (($ (|Mapping| #4# |#1| |#1|) . #6=($)) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (#7=($ $) 86 (AND (|has| |#1| . #5#) (|has| $ (|ShallowlyMutableAggregate| |#1|))) ELT)) (|sort| (($ (|Mapping| #4# |#1| |#1|) . #6#) 97 T ELT) (#7# 91 (|has| |#1| . #5#) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #8=(|UniversalSegment| #3#) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #9=(|Boolean|) |#1|) . #10=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#11=($) 6 T CONST)) (|reverse!| (#7# 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|reverse| (#7# 98 T ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #12=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #12#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #9# |#1|) . #10#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| . #13=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 105 T ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|position| ((#14=(|Integer|) (|Mapping| #4# |#1|) $) 95 T ELT) ((#14# |#1| $) 94 (|has| |#1| . #15=((|BasicType|))) ELT) ((#14# |#1| $ #14#) 93 (|has| |#1| . #15#) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #16=($)) 38 (|has| #3# . #17=((|OrderedSet|))) ELT)) (|min| (#18=($ $ $) 80 (|has| |#1| . #5#) ELT)) (|merge| (($ (|Mapping| #4# |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| . #5#) ELT)) (|members| (((|List| |#1|) $) 104 T ELT)) (|member?| ((#19=(|Boolean|) |#1| $) 109 (|has| |#1| . #13#) ELT)) (|maxIndex| ((#3# . #16#) 39 (|has| #3# . #17#) ELT)) (|max| (#18# 81 (|has| |#1| . #5#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 112 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #20=((|SetCategory|))) ELT)) (|insert| (($ |#1| $ #3#) 57 T ELT) (($ $ $ #3#) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#21=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #20#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #17#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #19# |#1|) $) 107 T ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|every?| ((#19# (|Mapping| #19# |#1|) . #22=($)) 102 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT)) (|eq?| ((#23=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#21# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#23# $) 7 T ELT)) (|empty| (#11# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ #8#) 66 T ELT)) (|delete| (($ $ #3#) 59 T ELT) (($ $ #8#) 58 T ELT)) (|count| ((#24=(|NonNegativeInteger|) |#1| $) 108 (|has| |#1| . #13#) ELT) ((#24# (|Mapping| #19# |#1|) $) 103 T ELT)) (|copyInto!| (($ $ $ #14#) 89 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#25=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #25#)) ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#19# (|Mapping| #19# |#1|) . #22#) 101 T ELT)) (>= (#26=((|Boolean|) $ $) 82 (|has| |#1| . #5#) ELT)) (> (#26# 84 (|has| |#1| . #5#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (<= (#26# 83 (|has| |#1| . #5#) ELT)) (< (#26# 85 (|has| |#1| . #5#) ELT)) (|#| ((#24# $) 100 T ELT)))
+(((|OneDimensionalArrayAggregate| |#1|) (|Category|) (|Type|)) (T |OneDimensionalArrayAggregate|))
+NIL
+(|Join| (|FiniteLinearAggregate| |t#1|) (|ShallowlyMutableAggregate| |t#1|))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|FiniteLinearAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|subtractIfCan| (((|Union| $ "failed") $ $) 12 T ELT)) (|opposite?| (((|Boolean|) $ $) 27 T ELT)) (- (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) 16 T ELT) (($ (|Integer|) $) 25 T ELT)))
+(((|AbelianGroup&| |#1|) (CATEGORY |package| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE |subtractIfCan| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |opposite?| ((|Boolean|) |#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianGroup|)) (T |AbelianGroup&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT)))
+(((|AbelianGroup|) (|Category|)) (T |AbelianGroup|))
+((- (*1 *1 *1) (|ofCategory| *1 (|AbelianGroup|))) (- (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianGroup|))))
+(|Join| (|CancellationAbelianMonoid|) (|LeftLinearSet| (|Integer|)) (CATEGORY |domain| (SIGNATURE - ($ $)) (SIGNATURE - ($ $ $))))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|zero?| ((#1=(|Boolean|) $) 10 T ELT)) (|sample| (($) 15 T CONST)) (|opposite?| ((#1# $ $) 22 T ELT)) (* (($ (|PositiveInteger|) $) 14 T ELT) (($ (|NonNegativeInteger|) $) 19 T ELT)))
+(((|AbelianMonoid&| |#1|) (CATEGORY |package| (SIGNATURE |opposite?| (#1=(|Boolean|) |#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |zero?| (#1# |#1|)) (SIGNATURE |sample| (|#1|) |constant|) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianMonoid|)) (T |AbelianMonoid&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| (((|Boolean|) $) 22 T ELT)) (|sample| (($) 23 T CONST)) (|opposite?| (((|Boolean|) $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (($) 24 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT)))
+(((|AbelianMonoid|) (|Category|)) (T |AbelianMonoid|))
+((|Zero| (*1 *1) (|ofCategory| *1 (|AbelianMonoid|))) (|sample| (*1 *1) (|ofCategory| *1 (|AbelianMonoid|))) (|zero?| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|opposite?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE |Zero| ($) |constant|) (SIGNATURE |sample| ($) |constant|) (SIGNATURE |zero?| ((|Boolean|) $)) (SIGNATURE * ($ (|NonNegativeInteger|) $)) (SIGNATURE |opposite?| ((|Boolean|) $ $))))
+(((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((* (($ (|PositiveInteger|) $) 10 T ELT)))
+(((|AbelianSemiGroup&| |#1|) (CATEGORY |package| (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianSemiGroup|)) (T |AbelianSemiGroup&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT)))
+(((|AbelianSemiGroup|) (|Category|)) (T |AbelianSemiGroup|))
+((+ (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianSemiGroup|))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianSemiGroup|)) (|isDomain| *2 (|PositiveInteger|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $)) (SIGNATURE * ($ (|PositiveInteger|) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|zerosOf| (#1=(#2=(|List| $) #3=(|Polynomial| $)) 32 T ELT) (#4=(#2# #5=(|SparseUnivariatePolynomial| $)) 16 T ELT) (#6=(#2# #5# #7=(|Symbol|)) 20 T ELT)) (|zeroOf| (#8=($ #3#) 30 T ELT) (#9=($ #5#) 11 T ELT) (#10=($ #5# #7#) 60 T ELT)) (|rootsOf| (#1# 33 T ELT) (#4# 18 T ELT) (#6# 19 T ELT)) (|rootOf| (#8# 31 T ELT) (#9# 13 T ELT) (#10# NIL T ELT)))
+(((|AlgebraicallyClosedField&| |#1|) (CATEGORY |package| (SIGNATURE |zerosOf| #1=(#2=(|List| |#1|) #3=(|SparseUnivariatePolynomial| |#1|) #4=(|Symbol|))) (SIGNATURE |zerosOf| #5=(#2# #3#)) (SIGNATURE |zerosOf| #6=(#2# #7=(|Polynomial| |#1|))) (SIGNATURE |zeroOf| #8=(|#1| #3# #4#)) (SIGNATURE |zeroOf| #9=(|#1| #3#)) (SIGNATURE |zeroOf| #10=(|#1| #7#)) (SIGNATURE |rootsOf| #1#) (SIGNATURE |rootsOf| #5#) (SIGNATURE |rootsOf| #6#) (SIGNATURE |rootOf| #8#) (SIGNATURE |rootOf| #9#) (SIGNATURE |rootOf| #10#)) (|AlgebraicallyClosedField|)) (T |AlgebraicallyClosedField&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zerosOf| (((|List| $) (|Polynomial| $)) 98 T ELT) (((|List| $) (|SparseUnivariatePolynomial| $)) 97 T ELT) (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 96 T ELT)) (|zeroOf| (($ (|Polynomial| $)) 101 T ELT) (($ (|SparseUnivariatePolynomial| $)) 100 T ELT) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 99 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sqrt| (($ $) 110 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#5=($) 23 T CONST)) (|rootsOf| (((|List| $) (|Polynomial| $)) 104 T ELT) (((|List| $) (|SparseUnivariatePolynomial| $)) 103 T ELT) (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 102 T ELT)) (|rootOf| (($ (|Polynomial| $)) 107 T ELT) (($ (|SparseUnivariatePolynomial| $)) 106 T ELT) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 105 T ELT)) (|rem| (#6=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#6# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #8=(|Integer|)) 109 T ELT)) (|multiEuclidean| (((|Union| #9=(|List| $) #10="failed") #9# $) 68 T ELT)) (|lcm| (#11=($ $ $) 60 T ELT) (#12=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#13=(|SparseUnivariatePolynomial| $) #13# #13#) 58 T ELT)) (|gcd| (#11# 62 T ELT) (#12# 61 T ELT)) (|factor| (#4# 92 T ELT)) (|extendedEuclidean| (((|Record| #14=(|:| |coef1| $) #15=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #14# #15#) #10#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #7#) #7# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #16=(|Fraction| #17=(|Integer|))) 84 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #17#) 87 T ELT) (($ $ (|Fraction| #8#)) 108 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #18=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #16#) 86 T ELT) (($ #16# . #18#) 85 T ELT)))
+(((|AlgebraicallyClosedField|) (|Category|)) (T |AlgebraicallyClosedField|))
+((|rootOf| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|rootOf| (*1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|rootOf| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|rootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))) (|rootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))) (|rootsOf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))) (|zeroOf| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|zeroOf| (*1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|zeroOf| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedField|)))) (|zerosOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))) (|zerosOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))) (|zerosOf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedField|)) (|isDomain| *2 (|List| *1)))))
+(|Join| (|Field|) (|RadicalCategory|) (CATEGORY |domain| (SIGNATURE |rootOf| ($ (|Polynomial| $))) (SIGNATURE |rootOf| ($ (|SparseUnivariatePolynomial| $))) (SIGNATURE |rootOf| ($ (|SparseUnivariatePolynomial| $) (|Symbol|))) (SIGNATURE |rootsOf| ((|List| $) (|Polynomial| $))) (SIGNATURE |rootsOf| ((|List| $) (|SparseUnivariatePolynomial| $))) (SIGNATURE |rootsOf| ((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|))) (SIGNATURE |zeroOf| ($ (|Polynomial| $))) (SIGNATURE |zeroOf| ($ (|SparseUnivariatePolynomial| $))) (SIGNATURE |zeroOf| ($ (|SparseUnivariatePolynomial| $) (|Symbol|))) (SIGNATURE |zerosOf| ((|List| $) (|Polynomial| $))) (SIGNATURE |zerosOf| ((|List| $) (|SparseUnivariatePolynomial| $))) (SIGNATURE |zerosOf| ((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|zerosOf| #1=((#2=(|List| $) #3=(|Polynomial| $)) NIL T ELT) #4=((#2# #5=(|SparseUnivariatePolynomial| $)) NIL T ELT) (#6=(#2# #5# #7=(|Symbol|)) 54 T ELT) (#8=(#2# $) 22 T ELT) (#9=(#2# $ #7#) 45 T ELT)) (|zeroOf| #10=(($ #3#) NIL T ELT) #11=(($ #5#) NIL T ELT) (#12=($ #5# #7#) 56 T ELT) (#13=($ $) 20 T ELT) (#14=($ $ #7#) 39 T ELT)) (|rootsOf| #1# #4# (#6# 52 T ELT) (#8# 18 T ELT) (#9# 47 T ELT)) (|rootOf| #10# #11# (#12# NIL T ELT) (#13# 15 T ELT) (#14# 41 T ELT)))
+(((|AlgebraicallyClosedFunctionSpace&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |zerosOf| #1=(#2=(|List| |#1|) |#1| #3=(|Symbol|))) (SIGNATURE |zeroOf| #4=(|#1| |#1| #3#)) (SIGNATURE |zerosOf| #5=(#2# |#1|)) (SIGNATURE |zeroOf| #6=(|#1| |#1|)) (SIGNATURE |rootsOf| #1#) (SIGNATURE |rootOf| #4#) (SIGNATURE |rootsOf| #5#) (SIGNATURE |rootOf| #6#) (SIGNATURE |zerosOf| #7=(#2# #8=(|SparseUnivariatePolynomial| |#1|) #3#)) (SIGNATURE |zerosOf| #9=(#2# #8#)) (SIGNATURE |zerosOf| #10=(#2# #11=(|Polynomial| |#1|))) (SIGNATURE |zeroOf| #12=(|#1| #8# #3#)) (SIGNATURE |zeroOf| #13=(|#1| #8#)) (SIGNATURE |zeroOf| #14=(|#1| #11#)) (SIGNATURE |rootsOf| #7#) (SIGNATURE |rootsOf| #9#) (SIGNATURE |rootsOf| #10#) (SIGNATURE |rootOf| #12#) (SIGNATURE |rootOf| #13#) (SIGNATURE |rootOf| #14#)) (|AlgebraicallyClosedFunctionSpace| |#2|) (|IntegralDomain|)) (T |AlgebraicallyClosedFunctionSpace&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zerosOf| (#2=(#3=(|List| $) #4=(|Polynomial| $)) 98 T ELT) (#5=(#3# #6=(|SparseUnivariatePolynomial| $)) 97 T ELT) (#7=(#3# #6# #8=(|Symbol|)) 96 T ELT) (((|List| $) $) 148 T ELT) (((|List| $) $ (|Symbol|)) 146 T ELT)) (|zeroOf| (#9=($ #4#) 101 T ELT) (#10=($ #6#) 100 T ELT) (#11=($ #6# #8#) 99 T ELT) (($ $) 149 T ELT) (($ $ (|Symbol|)) 147 T ELT)) (|zero?| ((#12=(|Boolean|) $) 22 T ELT)) (|variables| ((#13=(|List| #14=(|Symbol|)) $) 217 T ELT)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ #15=(|Kernel| $)) 249 (|has| |#1| . #16=((|IntegralDomain|))) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#17=(|Boolean|) $) 52 T ELT)) (|tower| (#18=(#19=(|List| #20=(|Kernel| $)) $) 180 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|subst| (($ $ #19# #21=(|List| $)) 170 T ELT) (($ $ (|List| #22=(|Equation| $))) 169 T ELT) (($ $ #22#) 168 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#23=((|Factored| $) $) 90 T ELT)) (|sqrt| (($ $) 110 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#24=($) 23 T CONST)) (|rootsOf| (#2# 104 T ELT) (#5# 103 T ELT) (#7# 102 T ELT) (((|List| $) $) 152 T ELT) (((|List| $) $ (|Symbol|)) 150 T ELT)) (|rootOf| (#9# 107 T ELT) (#10# 106 T ELT) (#11# 105 T ELT) (($ $) 153 T ELT) (($ $ (|Symbol|)) 151 T ELT)) (|retractIfCan| (((|Union| (|Polynomial| |#1|) . #25=("failed")) . #26=($)) 268 (|has| |#1| . #27=((|Ring|))) ELT) (((|Union| (|Fraction| (|Polynomial| |#1|)) . #25#) . #26#) 251 (|has| |#1| . #16#) ELT) (((|Union| |#1| . #25#) . #26#) 213 T ELT) (((|Union| #28=(|Integer|) . #25#) . #26#) 210 (|has| |#1| . #29=((|RetractableTo| #28#))) ELT) (((|Union| #14# . #25#) . #26#) 204 T ELT) (((|Union| #20# . #25#) . #26#) 155 T ELT) (((|Union| #30=(|Fraction| #28#) . #25#) . #26#) 143 (OR (AND (|has| |#1| . #31=((|RetractableTo| #32=(|Integer|)))) (|has| |#1| . #16#)) (|has| |#1| . #33=((|RetractableTo| #30#)))) ELT)) (|retract| (((|Polynomial| |#1|) . #34=($)) 267 (|has| |#1| . #27#) ELT) (((|Fraction| (|Polynomial| |#1|)) . #34#) 250 (|has| |#1| . #16#) ELT) ((|#1| . #34#) 212 T ELT) ((#28# . #34#) 211 (|has| |#1| . #29#) ELT) ((#14# . #34#) 203 T ELT) ((#20# . #34#) 154 T ELT) ((#30# . #34#) 144 (OR (AND (|has| |#1| . #31#) (|has| |#1| . #16#)) (|has| |#1| . #33#)) ELT)) (|rem| (#35=($ $ $) 71 T ELT)) (|reducedSystem| (((|Matrix| |#1|) . #36=(#37=(|Matrix| $))) 256 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #38=(#37# #39=(|Vector| $))) 255 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| #40=(|Integer|))) (|:| |vec| (|Vector| #40#))) . #38#) 142 (OR (|and| (|has| |#1| . #27#) (|has| |#1| . #41=((|LinearlyExplicitRingOver| #40#)))) (|and| (|has| |#1| . #41#) (|has| |#1| . #27#))) ELT) (((|Matrix| #40#) . #36#) 141 (OR (|and| (|has| |#1| . #27#) (|has| |#1| . #41#)) (|and| (|has| |#1| . #41#) (|has| |#1| . #27#))) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#35# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #42=(|List| $)) (|:| |generator| $)) #42#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|patternMatch| (((|PatternMatchResult| #43=(|Float|) . #44=($)) $ (|Pattern| #43#) (|PatternMatchResult| #43# . #44#)) 209 (|has| |#1| (|PatternMatchable| #43#)) ELT) (((|PatternMatchResult| #45=(|Integer|) . #44#) $ (|Pattern| #45#) (|PatternMatchResult| #45# . #44#)) 208 (|has| |#1| (|PatternMatchable| #45#)) ELT)) (|paren| (#46=($ #21#) 174 T ELT) (#47=($ $) 173 T ELT)) (|opposite?| ((#12# $ $) 20 T ELT)) (|operators| ((#48=(|List| #49=(|BasicOperator|)) $) 181 T ELT)) (|operator| ((#49# #49#) 182 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|odd?| (#50=(#51=(|Boolean|) $) 202 #52=(|has| $ (|RetractableTo| (|Integer|))) ELT)) (|numerator| (#53=($ $) 234 (|has| |#1| . #27#) ELT)) (|numer| (((|SparseMultivariatePolynomial| |#1| . #54=(#15#)) . #55=($)) 233 (|has| |#1| . #27#) ELT)) (|nthRoot| (($ $ #56=(|Integer|)) 109 T ELT)) (|multiEuclidean| (((|Union| #57=(|List| $) #58="failed") #57# $) 68 T ELT)) (|minPoly| (((|SparseUnivariatePolynomial| $) #20#) 199 #59=(|has| $ (|Ring|)) ELT)) (|map| (($ #60=(|Mapping| $ $) #20#) 188 T ELT)) (|mainKernel| (((|Union| #20# "failed") $) 178 T ELT)) (|leftReducedSystem| (((|Matrix| |#1|) . #61=(#39#)) 258 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #62=(#39# $)) 257 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| #40#)) (|:| |vec| (|Vector| #40#))) . #62#) 140 (OR (|and| (|has| |#1| . #27#) (|has| |#1| . #41#)) (|and| (|has| |#1| . #41#) (|has| |#1| . #27#))) ELT) (((|Matrix| #40#) . #61#) 139 (OR (|and| (|has| |#1| . #27#) (|has| |#1| . #41#)) (|and| (|has| |#1| . #41#) (|has| |#1| . #27#))) ELT)) (|lcm| (#63=($ $ $) 60 T ELT) (#64=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|kernels| (#18# 179 T ELT)) (|kernel| (#65=($ #49# #21#) 187 T ELT) (#66=($ #49# $) 186 T ELT)) (|isTimes| (#67=((|Union| #68=(|List| $) #69="failed") $) 228 (|has| |#1| . #70=((|SemiGroup|))) ELT)) (|isPower| (((|Union| (|Record| (|:| |val| $) #71=(|:| |exponent| #32#)) #69#) $) 237 (|has| |#1| . #27#) ELT)) (|isPlus| (#67# 230 (|has| |#1| . #72=((|AbelianSemiGroup|))) ELT)) (|isMult| (((|Union| (|Record| (|:| |coef| #32#) #73=(|:| |var| #15#)) #69#) $) 231 (|has| |#1| . #72#) ELT)) (|isExpt| ((#74=(|Union| (|Record| #73# #71#) #69#) $ #14#) 236 (|has| |#1| . #27#) ELT) ((#74# $ #75=(|BasicOperator|)) 235 (|has| |#1| . #27#) ELT) ((#74# $) 229 (|has| |#1| . #70#) ELT)) (|is?| (#76=(#51# $ #77=(|Symbol|)) 185 T ELT) ((#51# $ #49#) 184 T ELT)) (|inv| (($ $) 88 T ELT)) (|height| (((|NonNegativeInteger|) $) 177 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 215 T ELT)) (|ground| ((|#1| $) 216 T ELT)) (|gcdPolynomial| ((#78=(|SparseUnivariatePolynomial| $) #78# #78#) 58 T ELT)) (|gcd| (#63# 62 T ELT) (#64# 61 T ELT)) (|freeOf?| (#76# 190 T ELT) ((#51# $ $) 189 T ELT)) (|factor| (#23# 92 T ELT)) (|extendedEuclidean| (((|Record| #79=(|:| |coef1| $) #80=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #79# #80#) #58#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #42#) #42# $) 65 T ELT)) (|even?| (#50# 201 #52# ELT)) (|eval| (($ $ #14# #81=(|NonNegativeInteger|) #82=(|Mapping| $ $)) 241 (|has| |#1| . #27#) ELT) (($ $ #14# #81# #83=(|Mapping| $ #68#)) 240 (|has| |#1| . #27#) ELT) (($ $ #13# #84=(|List| #81#) (|List| #83#)) 239 (|has| |#1| . #27#) ELT) (($ $ #13# #84# (|List| #82#)) 238 (|has| |#1| . #27#) ELT) (($ $ (|List| #75#) #68# #14#) 227 (|has| |#1| . #85=((|ConvertibleTo| #86=(|InputForm|)))) ELT) (($ $ #75# $ #14#) 226 (|has| |#1| . #85#) ELT) (#53# 225 (|has| |#1| . #85#) ELT) (($ $ #13#) 224 (|has| |#1| . #85#) ELT) (($ $ #14#) 223 (|has| |#1| . #85#) ELT) (($ $ #49# #60#) 198 T ELT) (($ $ #49# #87=(|Mapping| $ #21#)) 197 T ELT) (($ $ #48# #88=(|List| #87#)) 196 T ELT) (($ $ #48# #89=(|List| #60#)) 195 T ELT) (($ $ #77# #60#) 194 T ELT) (($ $ #77# #87#) 193 T ELT) (($ $ #90=(|List| #77#) #88#) 192 T ELT) (($ $ #90# #89#) 191 T ELT) (($ $ (|List| $) (|List| $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (|Equation| $)) 160 T ELT) (($ $ (|List| (|Equation| $))) 159 T ELT) (($ $ (|List| #20#) (|List| $)) 158 T ELT) (($ $ #20# $) 157 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|elt| (#65# 167 T ELT) (($ #49# $ $ $ $) 166 T ELT) (($ #49# $ $ $) 165 T ELT) (($ #49# $ $) 164 T ELT) (#66# 163 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|distribute| (($ $ $) 176 T ELT) (#47# 175 T ELT)) (|differentiate| (($ $ (|List| #14#) . #91=((|List| #92=(|NonNegativeInteger|)))) 263 (|has| |#1| . #27#) ELT) (($ $ #14# . #93=(#92#)) 262 (|has| |#1| . #27#) ELT) (($ $ (|List| #14#)) 261 (|has| |#1| . #27#) ELT) (($ $ #14#) 259 (|has| |#1| . #27#) ELT)) (|denominator| (#53# 244 (|has| |#1| . #16#) ELT)) (|denom| (((|SparseMultivariatePolynomial| |#1| . #54#) . #55#) 243 (|has| |#1| . #16#) ELT)) (|definingPolynomial| (#47# 200 #59# ELT)) (|convert| ((#86# . #94=($)) 272 (|has| |#1| . #85#) ELT) (($ (|Factored| $)) 242 (|has| |#1| . #16#) ELT) ((#95=(|Pattern| (|Float|)) . #94#) 207 (|has| |#1| (|ConvertibleTo| #95#)) ELT) ((#96=(|Pattern| (|Integer|)) . #94#) 206 (|has| |#1| (|ConvertibleTo| #96#)) ELT)) (|conjugate| (#97=($ $ $) 271 (|has| |#1| . #98=((|Group|))) ELT)) (|commutator| (#97# 270 (|has| |#1| . #98#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #99=(|Fraction| #100=(|Integer|))) 84 T ELT) (($ (|Polynomial| |#1|)) 269 (|has| |#1| . #27#) ELT) (($ (|Fraction| (|Polynomial| |#1|))) 252 (|has| |#1| . #16#) ELT) (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) 248 (|has| |#1| . #16#) ELT) (($ (|Polynomial| (|Fraction| |#1|))) 247 (|has| |#1| . #16#) ELT) (($ (|Fraction| |#1|)) 246 (|has| |#1| . #16#) ELT) (($ (|SparseMultivariatePolynomial| |#1| . #54#)) 232 (|has| |#1| . #27#) ELT) (($ |#1|) 214 T ELT) (($ #14#) 205 T ELT) (($ #20#) 156 T ELT)) (|charthRoot| (((|Maybe| $) $) 254 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|box| (#46# 172 T ELT) (#47# 171 T ELT)) (|belong?| ((#51# #49#) 183 T ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#17# $ $) 53 T ELT)) (|applyQuote| (($ #14# #68#) 222 T ELT) (($ #14# $ $ $ $) 221 T ELT) (($ #14# $ $ $) 220 T ELT) (($ #14# $ $) 219 T ELT) (($ #14# $) 218 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#24# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| #14#) . #91#) 266 (|has| |#1| . #27#) ELT) (($ $ #14# . #93#) 265 (|has| |#1| . #27#) ELT) (($ $ (|List| #14#)) 264 (|has| |#1| . #27#) ELT) (($ $ #14#) 260 (|has| |#1| . #27#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT) (($ (|SparseMultivariatePolynomial| |#1| . #54#) (|SparseMultivariatePolynomial| |#1| . #54#)) 245 (|has| |#1| . #16#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #100#) 87 T ELT) (($ $ (|Fraction| #56#)) 108 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #101=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #99#) 86 T ELT) (($ #99# . #101#) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#1| . #101#) 145 (|has| |#1| . #27#) ELT)))
+(((|AlgebraicallyClosedFunctionSpace| |#1|) (|Category|) (|IntegralDomain|)) (T |AlgebraicallyClosedFunctionSpace|))
+((|rootOf| (*1 *1 *1) (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|rootsOf| (*1 *2 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))) (|rootOf| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|rootsOf| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4)))) (|zeroOf| (*1 *1 *1) (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|zerosOf| (*1 *2 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))) (|zeroOf| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|zerosOf| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4)))))
+(|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| |t#1|) (CATEGORY |domain| (SIGNATURE |rootOf| ($ $)) (SIGNATURE |rootsOf| ((|List| $) $)) (SIGNATURE |rootOf| ($ $ (|Symbol|))) (SIGNATURE |rootsOf| ((|List| $) $ (|Symbol|))) (SIGNATURE |zeroOf| ($ $)) (SIGNATURE |zerosOf| ((|List| $) $)) (SIGNATURE |zeroOf| ($ $ (|Symbol|))) (SIGNATURE |zerosOf| ((|List| $) $ (|Symbol|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) . T) ((|AlgebraicallyClosedField|) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| |#1| |#1|) |has| |#1| (|CommutativeRing|)) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| #2=(|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #3=(|Kernel| $)) . T) ((|CoercibleFrom| #4=(|Polynomial| |#1|)) |has| |#1| (|Ring|)) ((|CoercibleFrom| #5=(|Symbol|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Evalable| $) . T) ((|ExpressionSpace|) . T) ((|Field|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|FullyPatternMatchable| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|FunctionSpace| |#1|) . T) ((|GcdDomain|) . T) ((|Group|) |has| |#1| (|Group|)) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|CommutativeRing|))) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| #6=(|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LeftModule| |#1|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|CommutativeRing|))) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) . T) ((|LinearlyExplicitRingOver| #6#) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|Module| #1#) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) . T) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #7=(|Symbol|)) |has| |#1| (|Ring|)) ((|PartialDifferentialRing| #7#) |has| |#1| (|Ring|)) ((|PartialDifferentialSpace| #7#) |has| |#1| (|Ring|)) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|))))) ((|RetractableTo| #2#) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| #3#) . T) ((|RetractableTo| #4#) |has| |#1| (|Ring|)) ((|RetractableTo| #5#) . T) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|yRange| #1=(((|Segment| #2=(|DoubleFloat|)) $) NIL T ELT)) (|xRange| #1#) (|refine| (($ $ #2#) 164 T ELT)) (|makeSketch| (($ (|Polynomial| #3=(|Integer|)) #4=(|Symbol|) #4# #5=(|Segment| (|Fraction| #3#)) #5#) 103 T ELT)) (|listBranches| (((|List| (|List| (|Point| #2#))) $) 181 T ELT)) (|coerce| (((|OutputForm|) $) 195 T ELT)))
+(((|PlaneAlgebraicCurvePlot|) (|Join| (|PlottablePlaneCurveCategory|) (CATEGORY |domain| (SIGNATURE |makeSketch| ($ (|Polynomial| #1=(|Integer|)) #2=(|Symbol|) #2# #3=(|Segment| (|Fraction| #1#)) #3#)) (SIGNATURE |refine| ($ $ (|DoubleFloat|)))))) (T |PlaneAlgebraicCurvePlot|))
+((|makeSketch| (*1 *1 *2 *3 *3 *4 *4) (AND (|isDomain| *2 (|Polynomial| #1=(|Integer|))) (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Segment| (|Fraction| #1#))) #2=(|isDomain| *1 (|PlaneAlgebraicCurvePlot|)))) (|refine| (*1 *1 *1 *2) (AND (|isDomain| *2 (|DoubleFloat|)) #2#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (#3=((|SpadAst|) $) 12 T ELT)) (|before?| #1#) (|base| (#3# 10 T ELT)) (= #1#))
+(((|AddAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |base| #1=((|SpadAst|) $)) (SIGNATURE |body| #1#)))) (T |AddAst|))
+((|base| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|AddAst|)))) (|body| #1# #2#))
+((|rootOf| ((|#2| #1=(|SparseUnivariatePolynomial| |#2|) (|Symbol|)) 39 T ELT)) (|operator| ((#2=(|BasicOperator|) #2#) 53 T ELT)) (|minPoly| ((#1# (|Kernel| |#2|)) 148 #3=(|has| |#1| (|RetractableTo| #4=(|Integer|))) ELT)) (|iroot| ((|#2| |#1| #4#) 120 #3# ELT)) (|inrootof| ((|#2| #1# |#2|) 29 T ELT)) (|droot| (((|OutputForm|) (|List| |#2|)) 87 T ELT)) (|definingPolynomial| ((|#2| |#2|) 143 #3# ELT)) (|belong?| (((|Boolean|) #2#) 17 T ELT)) (** ((|#2| |#2| (|Fraction| #4#)) 96 #3# ELT)))
+(((|AlgebraicFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rootOf| (|#2| #1=(|SparseUnivariatePolynomial| |#2|) (|Symbol|))) (SIGNATURE |operator| (#2=(|BasicOperator|) #2#)) (SIGNATURE |belong?| ((|Boolean|) #2#)) (SIGNATURE |inrootof| (|#2| #1# |#2|)) (SIGNATURE |droot| ((|OutputForm|) (|List| |#2|))) (IF (|has| |#1| (|RetractableTo| #3=(|Integer|))) (PROGN (SIGNATURE ** (|#2| |#2| (|Fraction| #3#))) (SIGNATURE |minPoly| (#1# (|Kernel| |#2|))) (SIGNATURE |definingPolynomial| (|#2| |#2|)) (SIGNATURE |iroot| (|#2| |#1| #3#))) |%noBranch|)) (|IntegralDomain|) (|FunctionSpace| |#1|)) (T |AlgebraicFunction|))
+((|iroot| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 #2=(|Integer|)) #3=(|ofCategory| *2 #4=(|FunctionSpace| *3)) #5=(|isDomain| *1 (|AlgebraicFunction| *3 *2)) (|ofCategory| *3 (|RetractableTo| *4)) #6=(|ofCategory| *3 #7=(|IntegralDomain|)))) (|definingPolynomial| #8=(*1 *2 *2) (AND (|ofCategory| *3 #9=(|RetractableTo| #2#)) #6# #5# #3#)) (|minPoly| #10=(*1 *2 *3) (AND (|isDomain| *3 (|Kernel| *5)) #11=(|ofCategory| *5 #12=(|FunctionSpace| *4)) #13=(|ofCategory| *4 #9#) #14=(|ofCategory| *4 #7#) (|isDomain| *2 (|SparseUnivariatePolynomial| *5)) #15=(|isDomain| *1 (|AlgebraicFunction| *4 *5)))) (** (*1 *2 *2 *3) (AND (|isDomain| *3 (|Fraction| #2#)) #13# #14# #16=(|isDomain| *1 (|AlgebraicFunction| *4 *2)) #17=(|ofCategory| *2 #12#))) (|droot| #10# (AND (|isDomain| *3 (|List| *5)) #11# #14# (|isDomain| *2 (|OutputForm|)) #15#)) (|inrootof| (*1 *2 *3 *2) (AND #18=(|isDomain| *3 (|SparseUnivariatePolynomial| *2)) #17# #14# #16#)) (|belong?| #10# (AND (|isDomain| *3 #19=(|BasicOperator|)) #14# (|isDomain| *2 (|Boolean|)) #15# #11#)) (|operator| #8# (AND (|isDomain| *2 #19#) #6# (|isDomain| *1 (|AlgebraicFunction| *3 *4)) (|ofCategory| *4 #4#))) (|rootOf| #1# (AND #18# (|isDomain| *4 (|Symbol|)) (|ofCategory| *2 (|FunctionSpace| *5)) (|isDomain| *1 (|AlgebraicFunction| *5 *2)) (|ofCategory| *5 #7#))))
+((|sample| (($) 10 T CONST)) (|eq?| (((|Boolean|) $ $) 8 T ELT)))
+(((|Aggregate&| |#1|) (CATEGORY |package| (SIGNATURE |sample| (|#1|) |constant|) (SIGNATURE |eq?| ((|Boolean|) |#1| |#1|))) (|Aggregate|)) (T |Aggregate&|))
+NIL
+((|sample| (($) 6 T CONST)) (|eq?| (((|Boolean|) $ $) 10 T ELT)) (|empty?| (((|Boolean|) $) 7 T ELT)) (|empty| (($) 8 T ELT)) (|copy| (($ $) 9 T ELT)))
+(((|Aggregate|) (|Category|)) (T |Aggregate|))
+((|eq?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|)))) (|copy| (*1 *1 *1) (|ofCategory| *1 (|Aggregate|))) (|empty| (*1 *1) (|ofCategory| *1 (|Aggregate|))) (|empty?| (*1 *2 *1) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|)))) (|sample| (*1 *1) (|ofCategory| *1 (|Aggregate|))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |sample| ($) |constant|)))
+(((|Join|) . T) ((|Type|) . T))
+((|atanh| (($ $) 11 T ELT)) (|asinh| (($ $) 10 T ELT)) (|asech| (($ $) 9 T ELT)) (|acsch| (($ $) 8 T ELT)) (|acoth| (($ $) 7 T ELT)) (|acosh| (($ $) 6 T ELT)))
+(((|ArcHyperbolicFunctionCategory|) (|Category|)) (T |ArcHyperbolicFunctionCategory|))
+((|atanh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asinh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asech| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acsch| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acoth| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acosh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |acosh| ($ $)) (SIGNATURE |acoth| ($ $)) (SIGNATURE |acsch| ($ $)) (SIGNATURE |asech| ($ $)) (SIGNATURE |asinh| ($ $)) (SIGNATURE |atanh| ($ $))))
+((~= (#1=((|Boolean|) $ $) 18 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2=((|BasicType|))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|value| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 136 T ELT)) (|third| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #3=($)) 159 T ELT)) (|tail| (#4=($ $) 157 T ELT)) (|table| (($) 95 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (|swap!| ((#5=(|Void|) $ |#1| |#1|) 82 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT) ((#5# $ #6=(|Integer|) #6#) 185 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|split!| (($ $ (|Integer|)) 170 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|sorted?| ((#7=(|Boolean|) (|Mapping| #7# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 219 T ELT) ((#7# $) 213 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8=((|OrderedSet|))) ELT)) (|sort!| (($ (|Mapping| #7# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #9=($)) 210 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (#10=($ $) 209 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT)) (|sort| (($ (|Mapping| #7# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #9#) 220 T ELT) (#10# 214 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (|size?| (#11=(#12=(|Boolean|) $ (|NonNegativeInteger|)) 202 T ELT)) (|setvalue!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 145 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|setrest!| (#13=($ $ $) 166 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|setlast!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 168 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|setfirst!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 164 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|setelt| ((|#2| $ |#1| |#2|) 70 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 196 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #14=(|UniversalSegment| #6#) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 171 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #15="last" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 169 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #16="rest" $) 167 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #17="first" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 165 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #18="value" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 144 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|setchildren!| (($ $ #19=(|List| $)) 143 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|select!| (($ (|Mapping| #20=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #21=($)) 42 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Mapping| #22=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #23=($)) 236 T ELT)) (|select| (($ (|Mapping| #24=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #25=($)) 49 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Mapping| #24# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #25#) 183 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|second| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #3#) 158 T ELT)) (|search| (((|Union| |#2| . #26=("failed")) |#1| . #27=($)) 59 T ELT)) (|sample| (#28=($) 6 T CONST)) (|reverse!| (#10# 211 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|reverse| (#10# 221 T ELT)) (|rest| (#29=($ $ #30=(|NonNegativeInteger|)) 153 T ELT) (#4# 151 T ELT)) (|removeDuplicates!| (($ $) 234 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #31=((|BasicType|))) ELT)) (|removeDuplicates| (($ $) 51 (OR (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #32=((|BasicType|))) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #32#) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))))) ELT)) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Mapping| #20# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #21#) 43 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Union| |#2| . #26#) |#1| . #27#) 60 T ELT) (($ (|Mapping| #22# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #23#) 240 T ELT) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 235 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #31#) ELT)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #33=($)) 50 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #32#) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT) (($ (|Mapping| #24# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #25#) 48 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #33#) 184 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #32#) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT) (($ (|Mapping| #24# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #25#) 182 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 111 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34=((|BasicType|))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 107 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #35=($)) 106 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 232 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34#) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 228 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #35#) 227 T ELT)) (|qsetelt!| ((|#2| $ |#1| |#2|) 69 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 197 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|qelt| ((|#2| $ |#1|) 71 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6#) 195 T ELT)) (|possiblyInfinite?| (#36=(#12# $) 199 T ELT)) (|position| ((#37=(|Integer|) (|Mapping| #7# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 218 T ELT) ((#37# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 217 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #38=((|BasicType|))) ELT) ((#37# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #37#) 216 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #38#) ELT)) (|nodes| (#39=(#19# $) 134 T ELT)) (|node?| (#40=(#41=(|Boolean|) $ $) 142 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #42=((|BasicType|))) ELT)) (|new| (($ (|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 179 T ELT)) (|more?| (#11# 201 T ELT)) (|minIndex| ((|#1| . #43=($)) 79 (|has| |#1| . #44=((|OrderedSet|))) ELT) ((#6# . #43#) 187 (|has| #6# . #44#) ELT)) (|min| (#45=($ $ $) 203 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (|merge!| (($ (|Mapping| #22# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (#46=($ $ $) 233 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) ELT)) (|merge| (($ (|Mapping| #7# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 222 T ELT) (($ $ $) 215 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #47=($)) 105 T ELT) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #47#) 226 T ELT)) (|member?| ((#48=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #49=($)) 110 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34#) ELT) ((#48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #49#) 231 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34#) ELT)) (|maxIndex| ((|#1| . #43#) 78 (|has| |#1| . #44#) ELT) ((#6# . #43#) 188 (|has| #6# . #44#) ELT)) (|max| (#45# 204 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #50=($)) 39 T ELT) (($ (|Mapping| |#2| |#2|) . #50#) 63 T ELT) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #50#) 245 T ELT)) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #51=($)) 26 T ELT) (($ (|Mapping| |#2| |#2|) . #51#) 64 T ELT) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #51#) 96 T ELT) (($ (|Mapping| |#2| |#2| |#2|) $ $) 93 T ELT) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 176 T ELT) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #51#) 128 T ELT)) (|list| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 246 T ELT)) (|less?| (#11# 200 T ELT)) (|leaves| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 139 T ELT)) (|leaf?| (#52=(#41# $) 135 T ELT)) (|latex| (((|String|) $) 21 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53=((|SetCategory|))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#) (|has| |#2| . #53#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT)) (|last| (#29# 156 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #3#) 154 T ELT)) (|keys| (((|List| |#1|) $) 61 T ELT)) (|key?| (((|Boolean|) |#1| $) 62 T ELT)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #54=($)) 35 T ELT)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 36 T ELT) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #55=(|Integer|)) 239 T ELT) (($ $ $ #55#) 238 T ELT)) (|insert| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6#) 173 T ELT) (($ $ $ #6#) 172 T ELT)) (|indices| (((|List| |#1|) . #56=($)) 76 T ELT) (((|List| #6#) . #56#) 190 T ELT)) (|index?| ((#57=(|Boolean|) |#1| . #58=($)) 75 T ELT) ((#57# #6# . #58#) 191 T ELT)) (|hash| (((|SingleInteger|) $) 20 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#) (|has| |#2| . #53#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT)) (|first| ((|#2| $) 80 (|has| |#1| . #44#) ELT) (#29# 150 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #3#) 148 T ELT)) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #59=("failed")) (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #60=($)) 108 T ELT) (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #59#) (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #60#) 229 T ELT)) (|fill!| (($ $ |#2|) 81 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 186 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #54#) 37 T ELT)) (|explicitlyFinite?| (#36# 198 T ELT)) (|every?| ((#48# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #61=($)) 103 T ELT) ((#48# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #61#) 224 T ELT)) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 25 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 24 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 23 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 22 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 68 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #53#)) ELT) (($ $ |#2| |#2|) 67 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #53#)) ELT) (($ $ (|Equation| |#2|)) 66 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #53#)) ELT) (($ $ (|List| (|Equation| |#2|))) 65 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #53#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 100 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 99 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 98 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 97 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 132 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 131 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 130 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT) (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 129 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #53#)) ELT)) (|eq?| ((#62=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#57# |#2| . #63=($)) 77 (AND (|has| $ (|FiniteAggregate| |#2|)) (|has| |#2| . #64=((|BasicType|)))) ELT) ((#57# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #63#) 189 (AND (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #64#)) ELT)) (|entries| (((|List| |#2|) . #65=($)) 74 T ELT) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #65#) 192 T ELT)) (|empty?| ((#62# $) 7 T ELT)) (|empty| (#28# 8 T ELT)) (|elt| ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 194 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #6#) 193 T ELT) (($ $ #14#) 180 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #15#) 155 T ELT) (($ $ #16#) 152 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #17#) 149 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ #18#) 137 T ELT)) (|distance| (((|Integer|) $ $) 140 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (|delete!| (($ $ #55#) 242 T ELT) (($ $ (|UniversalSegment| #55#)) 241 T ELT)) (|delete| (($ $ #6#) 175 T ELT) (($ $ #14#) 174 T ELT)) (|cyclic?| (#52# 138 T ELT)) (|cycleTail| (#4# 162 T ELT)) (|cycleSplit!| (#4# 163 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|cycleLength| ((#30# $) 161 T ELT)) (|cycleEntry| (#4# 160 T ELT)) (|count| ((#66=(|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #67=($)) 109 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34#) ELT) ((#66# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #68=($)) 104 T ELT) ((#66# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #67#) 230 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #34#) ELT) ((#66# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #68#) 225 T ELT)) (|copyInto!| (($ $ $ #37#) 212 (|has| $ (|ShallowlyMutableAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#69=(|InputForm|) $) 52 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #70=((|ConvertibleTo| #69#))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #70#)) ELT)) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 47 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 181 T ELT)) (|concat!| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 244 T ELT) (#46# 243 T ELT)) (|concat| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 178 T ELT) (($ (|List| $)) 177 T ELT) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 147 T ELT) (#13# 146 T ELT)) (|coerce| (((|OutputForm|) $) 16 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #71=((|CoercibleTo| (|OutputForm|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #71#) (|has| |#2| . #71#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #71#)) ELT)) (|children| (#39# 133 T ELT)) (|child?| (#40# 141 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #42#) ELT)) (|before?| (#1# 19 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) 127 T ELT)) (|any?| ((#48# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #61#) 102 T ELT) ((#48# (|Mapping| #48# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #61#) 223 T ELT)) (>= (#72=((|Boolean|) $ $) 205 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (> (#72# 207 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (= (#1# 17 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (<= (#72# 206 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (< (#72# 208 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) ELT)) (|#| ((#66# $) 101 T ELT)))
+(((|AssociationListAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |AssociationListAggregate|))
+((|assoc| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|AssociationListAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Maybe| (|Record| (|:| |key| *3) (|:| |entry| *4)))))))
+(|Join| (|TableAggregate| |t#1| |t#2|) (|ListAggregate| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))) (|ShallowlyMutableAggregate| |t#2|) (CATEGORY |domain| (SIGNATURE |assoc| ((|Maybe| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
+(((|Aggregate|) . T) ((|BagAggregate| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|BasicType|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|BasicType|)) (|has| |#2| (|SetCategory|)) (|has| |#2| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|SetCategory|)) (|has| |#2| (|CoercibleTo| (|OutputForm|)))) ((|Collection| #2=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) ((|Dictionary| #1#) . T) ((|DictionaryOperations| #1#) . T) ((|Eltable| #3=(|Integer|) #2#) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| #3# #2#) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| #2#) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|ExtensibleLinearAggregate| #2#) . T) ((|FiniteAggregate| #2#) . T) ((|FiniteLinearAggregate| #2#) . T) ((|Functorial| #2#) . T) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| #2#) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| #3# #2#) . T) ((|IndexedAggregate| |#1| |#2|) . T) ((|InnerEvalable| #2# #2#) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|KeyedDictionary| |#1| |#2|) . T) ((|LinearAggregate| #2#) . T) ((|ListAggregate| #2#) . T) ((|OrderedSet|) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) ((|OrderedType|) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) ((|RecursiveAggregate| #2#) . T) ((|SetCategory|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) (|has| |#2| (|SetCategory|))) ((|ShallowlyMutableAggregate| #2#) . T) ((|ShallowlyMutableAggregate| |#2|) . T) ((|StreamAggregate| #2#) . T) ((|TableAggregate| |#1| |#2|) . T) ((|Type|) . T) ((|UnaryRecursiveAggregate| #2#) . T))
+((|coerce| (((|OutputForm|) $) NIL T ELT) (($ (|Integer|)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((|Algebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|Algebra| |#2|) (|CommutativeRing|)) (T |Algebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #4#) 53 T ELT)))
+(((|Algebra| |#1|) (|Category|) (|CommutativeRing|)) (T |Algebra|))
+NIL
+(|Join| (|Ring|) (|Module| |t#1|) (|CoercibleFrom| |t#1|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|split| (#1=(#2=(|Factored| |#1|) |#1|) 41 T ELT)) (|factor| (#1# 30 T ELT) ((#2# |#1| (|List| (|AlgebraicNumber|))) 33 T ELT)) (|doublyTransitive?| (((|Boolean|) |#1|) 59 T ELT)))
+(((|AlgFactor| |#1|) (CATEGORY |package| (SIGNATURE |factor| (#1=(|Factored| |#1|) |#1| (|List| #2=(|AlgebraicNumber|)))) (SIGNATURE |factor| #3=(#1# |#1|)) (SIGNATURE |split| #3#) (SIGNATURE |doublyTransitive?| ((|Boolean|) |#1|))) (|UnivariatePolynomialCategory| #2#)) (T |AlgFactor|))
+((|doublyTransitive?| #1=(*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) #2=(|isDomain| *1 (|AlgFactor| *3)) #3=(|ofCategory| *3 (|UnivariatePolynomialCategory| #4=(|AlgebraicNumber|))))) (|split| #1# #5=(AND #6=(|isDomain| *2 (|Factored| *3)) #2# #3#)) (|factor| #1# #5#) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| #4#)) #6# #2# #3#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|yCoordinates| (#6=((|Record| (|:| |num| #7=(|Vector| |#2|)) #8=(|:| |den| |#2|)) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| #10=(|Fraction| |#2|) #11=(|Field|)) ELT)) (|unitCanonical| #12=(#13=($ $) NIL #9# ELT)) (|unit?| #14=(#5# NIL #9# ELT)) (|traceMatrix| #15=(#16=(#17=(|Matrix| #10#) #18=(|Vector| $)) NIL T ELT) (#19=(#17#) NIL T ELT)) (|trace| #20=((#10# $) NIL T ELT)) (|tableForDiscreteLogarithm| (((|Table| #21=(|PositiveInteger|) #22=(|NonNegativeInteger|)) #23=(|Integer|)) NIL #24=(|has| #10# (|FiniteFieldCategory|)) ELT)) (|subtractIfCan| (#25=(#26=(|Union| $ #27="failed") $ $) NIL T ELT)) (|squareFreePart| #12#) (|squareFree| #28=(((|Factored| $) $) NIL #9# ELT)) (|sizeLess?| #29=(#2# NIL #9# ELT)) (|size| (#30=(#22#) NIL #31=(|has| #10# #32=(|Finite|)) ELT)) (|singularAtInfinity?| #33=(#34=(#3#) NIL T ELT)) (|singular?| #35=(#36=(#3# |#1|) NIL T ELT) #37=(#38=(#3# |#2|) NIL T ELT)) (|sample| (#39=($) NIL T CONST)) (|retractIfCan| (((|Union| #23# . #40=(#27#)) . #41=($)) NIL #42=(|has| #10# (|RetractableTo| #23#)) ELT) (((|Union| #43=(|Fraction| #23#) . #40#) . #41#) NIL #44=(|has| #10# (|RetractableTo| #43#)) ELT) (((|Union| #10# . #40#) . #41#) NIL T ELT)) (|retract| ((#23# . #45=($)) NIL #42# ELT) ((#43# . #45#) NIL #44# ELT) #20#) (|represents| (($ #46=(|Vector| #10#) #18#) NIL T ELT) (#47=($ #46#) 60 T ELT) (#48=($ #7# |#2|) 130 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #24# ELT)) (|rem| #49=(#50=($ $ $) NIL #9# ELT)) (|regularRepresentation| ((#17# $ #18#) NIL T ELT) ((#17# $) NIL T ELT)) (|reducedSystem| ((#51=(|Matrix| #23#) . #52=(#53=(|Matrix| $))) NIL #54=(|has| #10# (|LinearlyExplicitRingOver| #23#)) ELT) ((#55=(|Record| (|:| |mat| #51#) (|:| |vec| (|Vector| #23#))) . #56=(#53# #18#)) NIL #54# ELT) ((#57=(|Record| (|:| |mat| #17#) (|:| |vec| #46#)) . #56#) NIL T ELT) ((#17# . #52#) NIL T ELT)) (|reduceBasisAtInfinity| #58=(#59=(#18# #18#) NIL T ELT)) (|reduce| #60=(($ |#3|) NIL T ELT) ((#26# (|Fraction| |#3|)) NIL #9# ELT)) (|recip| ((#26# $) NIL T ELT)) (|rationalPoints| (((|List| (|List| |#1|))) NIL (|has| |#1| #32#) ELT)) (|rationalPoint?| ((#3# |#1| |#1|) NIL T ELT)) (|rank| ((#21#) NIL T ELT)) (|random| (#39# NIL #31# ELT)) (|ramifiedAtInfinity?| #33#) (|ramified?| #35# #37#) (|quo| #49#) (|principalIdeal| (((|Record| (|:| |coef| #61=(|List| $)) #62=(|:| |generator| $)) #61#) NIL #9# ELT)) (|primitivePart| #63=(#13# NIL T ELT)) (|primitiveElement| #64=(#39# NIL #24# ELT)) (|primitive?| (#5# NIL #24# ELT)) (|primeFrobenius| (#65=($ $ #22#) NIL #24# ELT) #66=(#13# NIL #24# ELT)) (|prime?| #14#) (|order| (#67=(#21# $) NIL #24# ELT) (((|OnePointCompletion| #21#) $) NIL #24# ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfComponents| #68=(#30# NIL T ELT)) (|normalizeAtInfinity| (#59# 105 T ELT)) (|norm| #20#) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) #69=(|Symbol|)) NIL (|has| |#1| #11#) ELT)) (|nextItem| (#70=((|Maybe| $) $) NIL #24# ELT)) (|multiEuclidean| (((|Union| #61# #27#) #61# $) NIL #9# ELT)) (|minimalPolynomial| (#71=(|#3| $) NIL #9# ELT)) (|lookup| (#67# NIL #31# ELT)) (|lift| #72=(#71# NIL T ELT)) (|leftReducedSystem| ((#51# #18#) NIL #54# ELT) ((#55# . #73=(#18# $)) NIL #54# ELT) ((#57# . #73#) NIL T ELT) #15#) (|lcm| #74=(($ #61#) NIL #9# ELT) #49#) (|latex| (((|String|) $) NIL T ELT)) (|knownInfBasis| (((|Void|) #22#) 83 T ELT)) (|inverseIntegralMatrixAtInfinity| (#19# 55 T ELT)) (|inverseIntegralMatrix| (#19# 48 T ELT)) (|inv| #12#) (|integralRepresents| (#48# 131 T ELT)) (|integralMatrixAtInfinity| (#19# 49 T ELT)) (|integralMatrix| (#19# 47 T ELT)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) #8#) #75=(|Mapping| |#2| |#2|)) 129 T ELT)) (|integralCoordinates| (#6# 67 T ELT)) (|integralBasisAtInfinity| (#76=(#18#) 46 T ELT)) (|integralBasis| (#76# 45 T ELT)) (|integralAtInfinity?| #4#) (|integral?| #4# ((#3# $ |#1|) NIL T ELT) ((#3# $ |#2|) NIL T ELT)) (|init| (#39# NIL #24# CONST)) (|index| (($ #21#) NIL #31# ELT)) (|hyperelliptic| #77=(((|Union| |#2| #27#)) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|genus| #68#) (|generator| (#39# NIL T ELT)) (|gcdPolynomial| ((#78=(|SparseUnivariatePolynomial| $) #78# #78#) NIL #9# ELT)) (|gcd| #74# #49#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #23#) (|:| |exponent| #23#)))) NIL #24# ELT)) (|factor| #28#) (|extendedEuclidean| (((|Union| (|Record| #79=(|:| |coef1| $) #80=(|:| |coef2| $)) #27#) $ $ $) NIL #9# ELT) (((|Record| #79# #80# #62#) $ $) NIL #9# ELT)) (|exquo| (#25# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #61#) #61# $) NIL #9# ELT)) (|euclideanSize| (#81=(#22# $) NIL #9# ELT)) (|elt| ((|#1| $ |#1| |#1|) NIL T ELT)) (|elliptic| #77#) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #9# ELT)) (|discriminant| ((#10# #18#) NIL T ELT) ((#10#) 43 T ELT)) (|discreteLog| (#81# NIL #24# ELT) (((|Union| #22# #27#) $ $) NIL #24# ELT)) (|differentiate| #82=(($ $ #83=(|Mapping| #10# #10#)) NIL #9# ELT) #84=(($ $ #83# #22#) NIL #9# ELT) (($ $ #75#) 125 T ELT) #85=(($ $ #86=(|List| #69#) (|List| #22#)) NIL #87=(OR (AND #9# (|has| #10# (|PartialDifferentialRing| #69#))) (AND #9# (|has| #10# (|PartialDifferentialSpace| #69#)))) ELT) #88=(($ $ #69# #22#) NIL #87# ELT) #89=(($ $ #86#) NIL #87# ELT) #90=(($ $ #69#) NIL #87# ELT) #91=(#65# NIL #92=(OR (AND (|has| #10# (|DifferentialRing|)) #9#) (AND (|has| #10# (|DifferentialSpace|)) #9#) #24#) ELT) #93=(#13# NIL #92# ELT)) (|derivationCoordinates| ((#17# #18# #83#) NIL #9# ELT)) (|definingPolynomial| ((|#3|) 54 T ELT)) (|createPrimitiveElement| #64#) (|coordinates| ((#46# $ #18#) NIL T ELT) ((#17# #18# #18#) NIL T ELT) (#94=(#46# $) 61 T ELT) (#16# 106 T ELT)) (|convert| (#94# NIL T ELT) (#47# NIL T ELT) #72# #60#) (|conditionP| (((|Union| #18# #27#) #53#) NIL #24# ELT)) (|complementaryBasis| #58#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #23#) NIL T ELT) (($ #10#) NIL T ELT) (($ #43#) NIL (OR #9# #44#) ELT) #12#) (|charthRoot| #66# (#70# NIL (|has| #10# (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| #72#) (|characteristic| (#30# NIL T CONST)) (|branchPointAtInfinity?| (#34# 41 T ELT)) (|branchPoint?| (#36# 53 T ELT) (#38# 137 T ELT)) (|before?| #1#) (|basis| (#76# NIL T ELT)) (|associates?| #29#) (|annihilate?| #1#) (|algSplitSimple| (((|Record| (|:| |num| $) #8# (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ #75#) NIL T ELT)) (|absolutelyIrreducible?| #33#) (|Zero| (#39# 17 T CONST)) (|One| (#39# 27 T CONST)) (D #82# #84# #85# #88# #89# #90# #91# #93#) (= #1#) (/ #49#) (- #63# #95=(#50# NIL T ELT)) (+ #95#) (** (($ $ #21#) NIL T ELT) (#65# NIL T ELT) (($ $ #23#) NIL #9# ELT)) (* (($ #21# $) NIL T ELT) (($ #22# $) NIL T ELT) (($ #23# . #96=($)) NIL T ELT) #95# (($ $ #10#) NIL T ELT) (($ #10# . #96#) NIL T ELT) (($ #43# . #96#) NIL #9# ELT) (($ $ #43#) NIL #9# ELT)))
+(((|AlgebraicFunctionField| |#1| |#2| |#3| |#4|) (|Join| (|FunctionFieldCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |knownInfBasis| ((|Void|) (|NonNegativeInteger|))))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) |#3|) (T |AlgebraicFunctionField|))
+((|knownInfBasis| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|AlgebraicFunctionField| *4 *5 *6 *7)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofType| *7 *6))))
+((|rootSplit| (#1=(|#2| |#2|) 47 T ELT)) (|rootSimp| (#1# 136 #2=(AND (|has| |#2| (|FunctionSpace| |#1|)) (|has| |#1| (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))))) ELT)) (|rootProduct| (#1# 100 #2# ELT)) (|rootPower| (#1# 101 #2# ELT)) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) 80 #2# ELT)) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) 44 T ELT)) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) 18 T ELT) ((|#2| |#2| (|List| |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) (#1# 16 T ELT)))
+(((|AlgebraicManipulations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rootSplit| #1=(|#2| |#2|)) (SIGNATURE |ratDenom| #1#) (SIGNATURE |ratDenom| (|#2| |#2| |#2|)) (SIGNATURE |ratDenom| (|#2| |#2| (|List| |#2|))) (SIGNATURE |ratDenom| (|#2| |#2| (|List| (|Kernel| |#2|)))) (SIGNATURE |ratPoly| ((|SparseUnivariatePolynomial| |#2|) |#2|)) (IF (|has| |#1| (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)))) (IF (|has| |#2| (|FunctionSpace| |#1|)) (PROGN (SIGNATURE |rootPower| #1#) (SIGNATURE |rootProduct| #1#) (SIGNATURE |rootSimp| #1#) (SIGNATURE |rootKerSimp| (|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)))) |%noBranch|) |%noBranch|)) (|IntegralDomain|) (|Join| (|Field|) (|ExpressionSpace|) (CATEGORY |domain| (SIGNATURE |numer| #2=(#3=(|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $)) (SIGNATURE |denom| #2#) (SIGNATURE |coerce| ($ #3#))))) (T |AlgebraicManipulations|))
+((|rootKerSimp| (*1 *2 *3 *2 *4) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 #1=(|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)))) (|ofCategory| *5 #2=(|IntegralDomain|)) (|isDomain| *1 (|AlgebraicManipulations| *5 *2)) (|ofCategory| *2 (|FunctionSpace| *5)) (|ofCategory| *2 (|Join| #3=(|Field|) #4=(|ExpressionSpace|) (CATEGORY |domain| (SIGNATURE |numer| #5=(#6=(|SparseMultivariatePolynomial| *5 #7=(|Kernel| $)) $)) (SIGNATURE |denom| #5#) (SIGNATURE |coerce| ($ #6#))))))) (|rootSimp| #8=(*1 *2 *2) #9=(AND (|ofCategory| *3 #1#) #10=(|ofCategory| *3 #2#) #11=(|isDomain| *1 (|AlgebraicManipulations| *3 *2)) (|ofCategory| *2 (|FunctionSpace| *3)) #12=(|ofCategory| *2 (|Join| #3# #4# (CATEGORY |domain| (SIGNATURE |numer| #13=(#14=(|SparseMultivariatePolynomial| *3 #7#) $)) (SIGNATURE |denom| #13#) (SIGNATURE |coerce| ($ #14#))))))) (|rootProduct| #8# #9#) (|rootPower| #8# #9#) (|ratPoly| (*1 *2 *3) (AND #15=(|ofCategory| *4 #2#) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|isDomain| *1 (|AlgebraicManipulations| *4 *3)) (|ofCategory| *3 #16=(|Join| #3# #4# (CATEGORY |domain| (SIGNATURE |numer| #17=(#18=(|SparseMultivariatePolynomial| *4 #7#) $)) (SIGNATURE |denom| #17#) (SIGNATURE |coerce| ($ #18#))))))) (|ratDenom| #19=(*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|Kernel| *2))) #20=(|ofCategory| *2 #16#) #15# #21=(|isDomain| *1 (|AlgebraicManipulations| *4 *2)))) (|ratDenom| #19# (AND (|isDomain| *3 (|List| *2)) #20# #15# #21#)) (|ratDenom| (*1 *2 *2 *2) #22=(AND #10# #11# #12#)) (|ratDenom| #8# #22#) (|rootSplit| #8# #22#))
+((|factor| (((|Factored| #1=(|SparseUnivariatePolynomial| |#3|)) #1# #2=(|List| (|AlgebraicNumber|))) 23 T ELT) (((|Factored| |#3|) |#3| #2#) 19 T ELT)))
+(((|AlgebraicMultFact| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#3|) |#3| #1=(|List| #2=(|AlgebraicNumber|)))) (SIGNATURE |factor| ((|Factored| #3=(|SparseUnivariatePolynomial| |#3|)) #3# #1#))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| #2# |#2| |#1|)) (T |AlgebraicMultFact|))
+((|factor| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *4 (|List| #3=(|AlgebraicNumber|))) #4=(|ofCategory| *5 (|OrderedSet|)) #5=(|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #6=(|PolynomialCategory| #3# *6 *5)) (|isDomain| *2 (|Factored| #7=(|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|AlgebraicMultFact| *5 *6 *7)) (|isDomain| *3 #7#))) (|factor| #1# (AND #2# #4# #5# (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgebraicMultFact| *5 *6 *3)) (|ofCategory| *3 #6#))))
+((|weakBiRank| (#1=((|NonNegativeInteger|) |#2|) 70 T ELT)) (|rightRank| (#1# 74 T ELT)) (|radicalOfLeftTraceForm| (#2=(#3=(|List| |#2|)) 37 T ELT)) (|leftRank| (#1# 73 T ELT)) (|doubleRank| (#1# 69 T ELT)) (|biRank| (#1# 72 T ELT)) (|basisOfRightNucloid| (#4=((|List| (|Matrix| |#1|))) 65 T ELT)) (|basisOfRightNucleus| (#2# 60 T ELT)) (|basisOfRightAnnihilator| (#5=(#3# |#2|) 48 T ELT)) (|basisOfNucleus| (#2# 62 T ELT)) (|basisOfMiddleNucleus| (#2# 61 T ELT)) (|basisOfLeftNucloid| (#4# 53 T ELT)) (|basisOfLeftNucleus| (#2# 59 T ELT)) (|basisOfLeftAnnihilator| (#5# 47 T ELT)) (|basisOfCommutingElements| (#2# 55 T ELT)) (|basisOfCentroid| (#4# 66 T ELT)) (|basisOfCenter| (#2# 64 T ELT)) (|basis| ((#6=(|Vector| |#2|) #6#) 99 (|has| |#1| (|EuclideanDomain|)) ELT)))
+(((|AlgebraPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftRank| #1=((|NonNegativeInteger|) |#2|)) (SIGNATURE |rightRank| #1#) (SIGNATURE |doubleRank| #1#) (SIGNATURE |weakBiRank| #1#) (SIGNATURE |biRank| #1#) (SIGNATURE |basisOfCommutingElements| #2=(#3=(|List| |#2|))) (SIGNATURE |basisOfLeftAnnihilator| #4=(#3# |#2|)) (SIGNATURE |basisOfRightAnnihilator| #4#) (SIGNATURE |basisOfLeftNucleus| #2#) (SIGNATURE |basisOfRightNucleus| #2#) (SIGNATURE |basisOfMiddleNucleus| #2#) (SIGNATURE |basisOfNucleus| #2#) (SIGNATURE |basisOfCenter| #2#) (SIGNATURE |basisOfLeftNucloid| #5=((|List| (|Matrix| |#1|)))) (SIGNATURE |basisOfRightNucloid| #5#) (SIGNATURE |basisOfCentroid| #5#) (SIGNATURE |radicalOfLeftTraceForm| #2#) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |basis| (#6=(|Vector| |#2|) #6#)) |%noBranch|)) (|IntegralDomain|) (|FramedNonAssociativeAlgebra| |#1|)) (T |AlgebraPackage|))
+((|basis| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *4)) #1=(|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|EuclideanDomain|)) #2=(|ofCategory| *3 #3=(|IntegralDomain|)) #4=(|isDomain| *1 (|AlgebraPackage| *3 *4)))) (|radicalOfLeftTraceForm| #5=(*1 *2) #6=(AND #2# (|isDomain| *2 (|List| *4)) #4# #1#)) (|basisOfCentroid| #5# #7=(AND #2# (|isDomain| *2 (|List| (|Matrix| *3))) #4# #1#)) (|basisOfRightNucloid| #5# #7#) (|basisOfLeftNucloid| #5# #7#) (|basisOfCenter| #5# #6#) (|basisOfNucleus| #5# #6#) (|basisOfMiddleNucleus| #5# #6#) (|basisOfRightNucleus| #5# #6#) (|basisOfLeftNucleus| #5# #6#) (|basisOfRightAnnihilator| #8=(*1 *2 *3) #9=(AND #10=(|ofCategory| *4 #3#) (|isDomain| *2 (|List| *3)) #11=(|isDomain| *1 (|AlgebraPackage| *4 *3)) #12=(|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|basisOfLeftAnnihilator| #8# #9#) (|basisOfCommutingElements| #5# #6#) (|biRank| #8# #13=(AND #10# (|isDomain| *2 (|NonNegativeInteger|)) #11# #12#)) (|weakBiRank| #8# #13#) (|doubleRank| #8# #13#) (|rightRank| #8# #13#) (|leftRank| #8# #13#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|unit| #3=((#4=(|Union| $ #5="failed")) NIL #6=(|has| |#1| (|IntegralDomain|)) ELT)) (|subtractIfCan| ((#4# $ $) NIL T ELT)) (|structuralConstants| ((#7=(|Vector| #8=(|Matrix| |#1|)) #9=(|Vector| $)) NIL T ELT) ((#7#) 24 T ELT)) (|someBasis| (#10=(#9#) 52 T ELT)) (|sample| #11=(($) NIL T CONST)) (|rightUnits| #12=(((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #5#)) NIL #6# ELT)) (|rightUnit| #3#) (|rightTraceMatrix| #13=((#8# #9#) NIL T ELT) #14=((#8#) NIL T ELT)) (|rightTrace| #15=((|#1| $) NIL T ELT)) (|rightRegularRepresentation| #16=((#8# $ #9#) NIL T ELT) #17=((#8# $) NIL T ELT)) (|rightRecip| #18=(#19=(#4# $) NIL #6# ELT)) (|rightRankPolynomial| #20=(((|SparseUnivariatePolynomial| #21=(|Polynomial| |#1|))) NIL (|has| |#1| (|Field|)) ELT)) (|rightPower| #22=(($ $ #23=(|PositiveInteger|)) NIL T ELT)) (|rightNorm| #15#) (|rightMinimalPolynomial| #24=(#25=((|SparseUnivariatePolynomial| |#1|) $) NIL #6# ELT)) (|rightDiscriminant| #26=((|#1| #9#) NIL T ELT) #27=((|#1|) NIL T ELT)) (|rightCharacteristicPolynomial| #28=(#25# NIL T ELT)) (|rightAlternative?| (#29=(#2#) 99 T ELT)) (|represents| (($ #30=(|Vector| |#1|) #9#) NIL T ELT) #31=(#32=($ #30#) NIL T ELT)) (|recip| (#19# 14 #6# ELT)) (|rank| ((#23#) 53 T ELT)) (|powerAssociative?| #33=(#29# NIL T ELT)) (|plenaryPower| #22#) (|opposite?| #1#) (|noncommutativeJordanAlgebra?| #33#) (|lieAlgebra?| #33#) (|lieAdmissible?| (#29# 101 T ELT)) (|leftUnits| #12#) (|leftUnit| #3#) (|leftTraceMatrix| #13# #14#) (|leftTrace| #15#) (|leftRegularRepresentation| #16# #17#) (|leftRecip| #18#) (|leftRankPolynomial| #20#) (|leftPower| #22#) (|leftNorm| #15#) (|leftMinimalPolynomial| #24#) (|leftDiscriminant| #26# #27#) (|leftCharacteristicPolynomial| #28#) (|leftAlternative?| (#29# 98 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jordanAlgebra?| (#29# 106 T ELT)) (|jordanAdmissible?| (#29# 105 T ELT)) (|jacobiIdentity?| (#29# 107 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|flexible?| (#29# 100 T ELT)) (|elt| ((|#1| $ #34=(|Integer|)) 55 T ELT)) (|coordinates| ((#30# $ #9#) 48 T ELT) ((#8# #9# #9#) NIL T ELT) (#35=(#30# $) 28 T ELT) #13#) (|convert| (#35# NIL T ELT) #31#) (|conditionsForIdempotents| ((#36=(|List| #21#) #9#) NIL T ELT) ((#36#) NIL T ELT)) (|commutator| #37=(#38=($ $ $) NIL T ELT)) (|commutative?| (#29# 95 T ELT)) (|coerce| (((|OutputForm|) $) 71 T ELT) (#32# 22 T ELT)) (|before?| #1#) (|basis| (#10# 51 T ELT)) (|associatorDependence| (((|List| #30#)) NIL #6# ELT)) (|associator| (($ $ $ $) NIL T ELT)) (|associative?| (#29# 91 T ELT)) (|apply| (($ #8# $) 18 T ELT)) (|antiCommutator| #37#) (|antiCommutative?| (#29# 97 T ELT)) (|antiAssociative?| (#29# 92 T ELT)) (|alternative?| (#29# 90 T ELT)) (|Zero| #11#) (= #1#) (- (($ $) NIL T ELT) #37#) (+ #37#) (** #22#) (* (($ #23# $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #34# . #39=($)) NIL T ELT) (#38# 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| . #39#) NIL T ELT) (($ (|SquareMatrix| |#2| |#1|) $) 19 T ELT)))
+(((|AlgebraGivenByStructuralConstants| |#1| |#2| |#3| |#4|) (|Join| (|FramedNonAssociativeAlgebra| |#1|) (|LeftModule| (|SquareMatrix| |#2| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| |#1|))))) (|Field|) (|PositiveInteger|) (|List| (|Symbol|)) (|Vector| (|Matrix| |#1|))) (T |AlgebraGivenByStructuralConstants|))
+((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Field|)) (|ofType| *6 (|Vector| (|Matrix| *3))) (|isDomain| *1 (|AlgebraGivenByStructuralConstants| *3 *4 *5 *6)) (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|))))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|value| #8=(#9=(#5# $) NIL T ELT)) (|third| #8#) (|tail| #10=(#11=($ $) NIL T ELT)) (|table| (#12=($) NIL T ELT) #13=(#14=($ #15=(|List| #5#)) NIL T ELT)) (|swap!| ((#16=(|Void|) $ |#1| |#1|) NIL #17=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT) ((#16# $ #18=(|Integer|) #18#) NIL #19=(|has| $ (|ShallowlyMutableAggregate| #5#)) ELT)) (|split!| (#20=($ $ #18#) NIL #19# ELT)) (|sorted?| ((#3# #21=(|Mapping| #3# #5# #5#) $) NIL T ELT) (#22=(#3# $) NIL #23=(|has| #5# #24=(|OrderedSet|)) ELT)) (|sort!| (#25=($ #21# $) NIL #19# ELT) (#11# NIL (AND #19# #23#) ELT)) (|sort| (#25# NIL T ELT) (#11# NIL #23# ELT)) (|size?| #26=((#3# $ #27=(|NonNegativeInteger|)) NIL T ELT)) (|setvalue!| #28=(#29=(#5# $ #5#) NIL #19# ELT)) (|setrest!| (#30=($ $ $) 35 #19# ELT)) (|setlast!| #28#) (|setfirst!| (#29# 37 #19# ELT)) (|setelt| (#31=(|#2| $ |#1| |#2|) 60 #17# ELT) #32=(#33=(#5# $ #18# #5#) NIL #19# ELT) ((#5# $ #34=(|UniversalSegment| #18#) #5#) NIL #19# ELT) ((#5# $ #35="last" #5#) NIL #19# ELT) (($ $ #36="rest" $) NIL #19# ELT) ((#5# $ #37="first" #5#) NIL #19# ELT) ((#5# $ #38="value" #5#) NIL #19# ELT)) (|setchildren!| (($ $ #39=(|List| $)) NIL #19# ELT)) (|select!| #40=(#41=($ #42=(|Mapping| #3# #5#) $) NIL #43=(|has| $ (|FiniteAggregate| #5#)) ELT) #44=(#41# NIL T ELT)) (|select| #40# #40#) (|second| #8#) (|search| (#45=((|Union| |#2| #46="failed") |#1| $) 45 T ELT)) (|sample| (#12# NIL T CONST)) (|reverse!| #47=(#11# NIL #19# ELT)) (|reverse| #10#) (|rest| #48=(($ $ #27#) NIL T ELT) (#11# 31 T ELT)) (|removeDuplicates!| (#11# NIL #4# ELT)) (|removeDuplicates| (#11# NIL #49=(AND #43# #4#) ELT)) (|remove!| (#50=($ #5# $) NIL #43# ELT) #40# (#45# 63 T ELT) #44# (#50# NIL #4# ELT)) (|remove| #51=(#50# NIL #49# ELT) #40# #51# #40#) (|reduce| #52=((#5# #53=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) #54=((#5# #53# $ #5#) NIL T ELT) #55=((#5# #53# $) NIL T ELT) #52# #54# #55#) (|qsetelt!| (#31# NIL #17# ELT) #32#) (|qelt| #56=((|#2| $ |#1|) NIL T ELT) #57=((#5# $ #18#) NIL T ELT)) (|possiblyInfinite?| #58=(#22# NIL T ELT)) (|position| ((#18# #42# $) NIL T ELT) ((#18# #5# $) NIL #4# ELT) ((#18# #5# $ #18#) NIL #4# ELT)) (|nodes| #59=((#39# $) NIL T ELT)) (|node?| #60=(#2# NIL #4# ELT)) (|new| (($ #27# #5#) NIL T ELT)) (|more?| #26#) (|minIndex| #61=((|#1| $) NIL #62=(|has| |#1| #24#) ELT) (#63=(#18# $) 40 #64=(|has| #18# #24#) ELT)) (|min| #65=(#30# NIL #23# ELT)) (|merge!| #66=(($ #21# $ $) NIL T ELT) #65#) (|merge| #66# #65#) (|members| #67=(#68=(#15# $) 22 T ELT) #67#) (|member?| #69=(#70=(#3# #5# $) NIL #4# ELT) #69#) (|maxIndex| #61# (#63# 42 #64# ELT)) (|max| #65#) (|map!| #71=(($ (|Mapping| #5# #5#) . #72=($)) NIL T ELT) #73=(($ (|Mapping| |#2| |#2|) . #72#) NIL T ELT) #71#) (|map| #71# #73# #71# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT) (($ #53# $ $) NIL T ELT) #71#) (|list| (($ #5#) NIL T ELT)) (|less?| #26#) (|leaves| (#68# NIL T ELT)) (|leaf?| #58#) (|latex| (((|String|) $) 51 #74=(OR #75=(|has| #5# #76=(|SetCategory|)) #77=(|has| |#2| #76#)) ELT)) (|last| #48# #8#) (|keys| (#78=((|List| |#1|) $) 24 T ELT)) (|key?| #79=((#3# |#1| $) NIL T ELT)) (|inspect| #8#) (|insert!| (#50# NIL T ELT) #80=(($ #5# $ #18#) NIL T ELT) #81=(#82=($ $ $ #18#) NIL T ELT)) (|insert| #80# #81#) (|indices| (#78# NIL T ELT) (((|List| #18#) $) NIL T ELT)) (|index?| #79# ((#3# #18# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #74# ELT)) (|first| ((|#2| $) NIL #62# ELT) #48# (#9# 29 T ELT)) (|find| #83=(((|Union| #5# #46#) #42# $) NIL T ELT) #83#) (|fill!| (($ $ |#2|) NIL #17# ELT) (#84=($ $ #5#) NIL #19# ELT)) (|extract!| #8#) (|explicitlyFinite?| #58#) (|every?| #85=((#3# #42# $) NIL T ELT) #85#) (|eval| #86=(($ $ (|List| #87=(|Equation| #5#))) NIL #88=(AND (|has| #5# (|Evalable| #5#)) #75#) ELT) #89=(($ $ #87#) NIL #88# ELT) #90=(($ $ #5# #5#) NIL #88# ELT) #91=(($ $ #15# #15#) NIL #88# ELT) (($ $ #92=(|List| |#2|) #92#) NIL #93=(AND (|has| |#2| (|Evalable| |#2|)) #77#) ELT) (($ $ |#2| |#2|) NIL #93# ELT) (($ $ #94=(|Equation| |#2|)) NIL #93# ELT) (($ $ (|List| #94#)) NIL #93# ELT) #91# #90# #89# #86# #91# #90# #89# #86#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT) (#70# NIL #49# ELT)) (|entries| ((#92# $) NIL T ELT) (#68# 21 T ELT)) (|empty?| (#22# 20 T ELT)) (|empty| (#12# 16 T ELT)) (|elt| #56# (#31# NIL T ELT) (#33# NIL T ELT) #57# #95=(($ $ #34#) NIL T ELT) ((#5# $ #35#) NIL T ELT) (($ $ #36#) NIL T ELT) ((#5# $ #37#) NIL T ELT) ((#5# $ #38#) NIL T ELT)) (|distance| ((#18# $ $) NIL T ELT)) (|dictionary| (#12# 14 T ELT) (#14# 15 T ELT)) (|delete!| #96=(#20# NIL T ELT) #95#) (|delete| #96# #95#) (|cyclic?| #58#) (|cycleTail| #10#) (|cycleSplit!| #47#) (|cycleLength| (#97=(#27# $) NIL T ELT)) (|cycleEntry| #10#) (|count| #98=((#27# #5# $) NIL #4# ELT) #99=((#27# #42# $) NIL T ELT) #98# #99#) (|copyInto!| (#82# NIL #19# ELT)) (|copy| #10#) (|convert| ((#100=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #100#)) ELT)) (|construct| #13# #13#) (|concat!| #101=(#84# NIL T ELT) #102=(#30# NIL T ELT)) (|concat| #101# (($ #39#) NIL T ELT) (#50# 33 T ELT) #102#) (|coerce| ((#103=(|OutputForm|) $) NIL (OR (|has| #5# #104=(|CoercibleTo| #103#)) (|has| |#2| #104#)) ELT)) (|children| #59#) (|child?| #60#) (|before?| #1#) (|bag| #13#) (|assoc| (((|Maybe| #5#) |#1| $) 55 T ELT)) (|any?| #85# #85#) (>= #105=(#2# NIL #23# ELT)) (> #105#) (= #1#) (<= #105#) (< #105#) (|#| (#97# 27 T ELT)))
+(((|AssociationList| |#1| |#2|) (|AssociationListAggregate| |#1| |#2|) #1=(|SetCategory|) #1#) (T |AssociationList|))
+NIL
+((|monomial?| (((|Boolean|) $) 12 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 21 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #1=(|Integer|) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ #2=(|Fraction| #1#) $) 25 T ELT) (($ $ #2#) NIL T ELT)))
+(((|AbelianMonoidRing&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE * (|#1| |#1| #1=(|Fraction| #2=(|Integer|)))) (SIGNATURE * (|#1| #1# |#1|)) (SIGNATURE |monomial?| ((|Boolean|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| #2# |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianMonoidRing| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |AbelianMonoidRing&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #3=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 75 (|has| |#1| . #3#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#5=($) 23 T CONST)) (|reductum| (($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| |#2|) 82 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|leadingMonomial| (($ $) 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #3#) ELT)) (|degree| ((|#2| $) 84 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #6=(|Fraction| (|Integer|))) 78 (|has| |#1| . #7=((|Algebra| (|Fraction| (|Integer|))))) ELT) (($ $) 70 (|has| |#1| . #3#) ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficient| ((|#1| $ |#2|) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#4# $ $) 74 (|has| |#1| . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #8=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #8#) 88 T ELT) (($ #6# . #8#) 77 (|has| |#1| . #7#) ELT) (($ $ #6#) 76 (|has| |#1| . #7#) ELT)))
+(((|AbelianMonoidRing| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |AbelianMonoidRing|))
+((|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|leadingMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (|monomial| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Field|)))))
+(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (|Functorial| |t#1|) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingMonomial| ($ $)) (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |monomial| ($ |t#1| |t#2|)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ |t#2|)) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (ATTRIBUTE (|Algebra| (|Fraction| (|Integer|)))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Functorial| |#1|) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zerosOf| #4=((#5=(|List| $) #6=(|SparseUnivariatePolynomial| $) #7=(|Symbol|)) NIL T ELT) #8=((#5# #6#) NIL T ELT) #9=((#5# #10=(|Polynomial| $)) NIL T ELT)) (|zeroOf| #11=(($ #6# #7#) NIL T ELT) #12=(($ #6#) NIL T ELT) #13=(($ #10#) NIL T ELT)) (|zero?| (#14=(#3# $) 9 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #15=(#16=($ $) NIL T ELT)) (|unit?| #17=(#14# NIL T ELT)) (|tower| #18=((#19=(|List| #20=(|Kernel| $)) $) NIL T ELT)) (|subtractIfCan| #21=((#22=(|Union| $ #23="failed") $ $) NIL T ELT)) (|subst| #24=(($ $ #25=(|Equation| $)) NIL T ELT) #26=(($ $ (|List| #25#)) NIL T ELT) #27=(($ $ #19# #5#) NIL T ELT)) (|squareFreePart| #15#) (|squareFree| #28=(((|Factored| $) $) NIL T ELT)) (|sqrt| #15#) (|sizeLess?| #1#) (|sample| (#29=($) NIL T CONST)) (|rootsOf| #4# #8# #9#) (|rootOf| #11# #12# #13#) (|retractIfCan| #30=(((|Union| #20# . #31=(#23#)) . #32=($)) NIL T ELT) (((|Union| #33=(|Integer|) . #31#) . #32#) NIL T ELT) (((|Union| #34=(|Fraction| #33#) . #31#) . #32#) NIL T ELT)) (|retract| ((#20# . #35=($)) NIL T ELT) ((#33# . #35#) NIL T ELT) ((#34# . #35#) NIL T ELT)) (|rem| #36=(($ $ $) NIL T ELT)) (|reducedSystem| ((#37=(|Record| (|:| |mat| #38=(|Matrix| #33#)) (|:| |vec| (|Vector| #33#))) . #39=(#40=(|Matrix| $) #41=(|Vector| $))) NIL T ELT) ((#38# . #42=(#40#)) NIL T ELT) ((#43=(|Record| (|:| |mat| #44=(|Matrix| #34#)) (|:| |vec| (|Vector| #34#))) . #39#) NIL T ELT) ((#44# . #42#) NIL T ELT)) (|reduce| #15#) (|recip| ((#22# $) NIL T ELT)) (|quo| #36#) (|principalIdeal| (((|Record| (|:| |coef| #5#) #45=(|:| |generator| $)) #5#) NIL T ELT)) (|prime?| #17#) (|paren| #15# #46=(($ #5#) NIL T ELT)) (|opposite?| #1#) (|operators| ((#47=(|List| #48=(|BasicOperator|)) $) NIL T ELT)) (|operator| ((#48# #48#) NIL T ELT)) (|one?| (#14# 11 T ELT)) (|odd?| #49=(#14# NIL (|has| $ (|RetractableTo| #33#)) ELT)) (|numer| #50=((#51=(|SparseMultivariatePolynomial| #33# #20#) $) NIL T ELT)) (|nthRoot| #52=(($ $ #33#) NIL T ELT)) (|norm| ((#6# #6# #20#) NIL T ELT) ((#6# #6# #19#) NIL T ELT) (($ $ #20#) NIL T ELT) (($ $ #19#) NIL T ELT)) (|multiEuclidean| (((|Union| #5# #23#) #5# $) NIL T ELT)) (|minPoly| ((#6# #20#) NIL #53=(|has| $ (|Ring|)) ELT)) (|map| (($ #54=(|Mapping| $ $) #20#) NIL T ELT)) (|mainKernel| #30#) (|leftReducedSystem| ((#37# . #55=(#41# $)) NIL T ELT) ((#38# . #56=(#41#)) NIL T ELT) ((#43# . #55#) NIL T ELT) ((#44# . #56#) NIL T ELT)) (|lcm| #46# #36#) (|latex| (((|String|) $) NIL T ELT)) (|kernels| #18#) (|kernel| #57=(($ #48# $) NIL T ELT) #58=(($ #48# #5#) NIL T ELT)) (|is?| ((#3# $ #48#) NIL T ELT) #59=((#3# $ #7#) NIL T ELT)) (|inv| #15#) (|height| #60=((#61=(|NonNegativeInteger|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#6# #6# #6#) NIL T ELT)) (|gcd| #46# #36#) (|freeOf?| #1# #59#) (|factor| #28#) (|extendedEuclidean| (((|Union| (|Record| #62=(|:| |coef1| $) #63=(|:| |coef2| $)) #23#) $ $ $) NIL T ELT) (((|Record| #62# #63# #45#) $ $) NIL T ELT)) (|exquo| #21#) (|expressIdealMember| (((|Maybe| #5#) #5# $) NIL T ELT)) (|even?| #49#) (|eval| (($ $ #20# $) NIL T ELT) #27# #26# #24# (($ $ $ $) NIL T ELT) (($ $ #5# #5#) NIL T ELT) (($ $ #64=(|List| #7#) #65=(|List| #54#)) NIL T ELT) (($ $ #64# #66=(|List| #67=(|Mapping| $ #5#))) NIL T ELT) (($ $ #7# #67#) NIL T ELT) (($ $ #7# #54#) NIL T ELT) (($ $ #47# #65#) NIL T ELT) (($ $ #47# #66#) NIL T ELT) (($ $ #48# #67#) NIL T ELT) (($ $ #48# #54#) NIL T ELT)) (|euclideanSize| #60#) (|elt| #57# (($ #48# $ $) NIL T ELT) (($ #48# $ $ $) NIL T ELT) (($ #48# $ $ $ $) NIL T ELT) #58#) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|distribute| #15# #36#) (|differentiate| #15# #68=(($ $ #61#) NIL T ELT)) (|denom| #50#) (|definingPolynomial| (#16# NIL #53# ELT)) (|convert| ((#69=(|Float|) . #70=($)) NIL T ELT) (((|DoubleFloat|) . #70#) NIL T ELT) (((|Complex| #69#) . #70#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) (($ #34#) NIL T ELT) #15# (($ #33#) NIL T ELT) (($ #51#) NIL T ELT)) (|characteristic| ((#61#) NIL T CONST)) (|box| #15# #46#) (|belong?| ((#3# #48#) NIL T ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#29# 6 T CONST)) (|One| (#29# 10 T CONST)) (D #15# #68#) (= (#2# 13 T ELT)) (/ #36#) (- #36# #15#) (+ #36#) (** #71=(($ $ #34#) NIL T ELT) #52# #68# (($ $ #72=(|PositiveInteger|)) NIL T ELT)) (* (($ #34# . #73=($)) NIL T ELT) #71# #36# (($ #33# . #73#) NIL T ELT) (($ #61# $) NIL T ELT) (($ #72# $) NIL T ELT)))
+(((|AlgebraicNumber|) (|Join| (|ExpressionSpace|) (|AlgebraicallyClosedField|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| #2=(|Fraction| #1#)) (|LinearlyExplicitRingOver| #1#) (|RealConstant|) (|LinearlyExplicitRingOver| #2#) (|CharacteristicZero|) (|ConvertibleTo| (|Complex| (|Float|))) (|DifferentialRing|) (|CoercibleFrom| #3=(|SparseMultivariatePolynomial| #1# #4=(|Kernel| $))) (CATEGORY |domain| (SIGNATURE |numer| #5=(#3# $)) (SIGNATURE |denom| #5#) (SIGNATURE |reduce| ($ $)) (SIGNATURE |norm| (#6=(|SparseUnivariatePolynomial| $) #6# #4#)) (SIGNATURE |norm| (#6# #6# #7=(|List| #4#))) (SIGNATURE |norm| ($ $ #4#)) (SIGNATURE |norm| ($ $ #7#))))) (T |AlgebraicNumber|))
+((|numer| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SparseMultivariatePolynomial| (|Integer|) #3=(|Kernel| #4=(|AlgebraicNumber|)))) #5=(|isDomain| *1 #4#))) (|denom| #1# #2#) (|reduce| (*1 *1 *1) #5#) (|norm| #6=(*1 *2 *2 *3) (AND #7=(|isDomain| *2 (|SparseUnivariatePolynomial| #4#)) (|isDomain| *3 #3#) #5#)) (|norm| #6# (AND #7# (|isDomain| *3 #8=(|List| #3#)) #5#)) (|norm| #9=(*1 *1 *1 *2) (AND (|isDomain| *2 #3#) #5#)) (|norm| #9# (AND (|isDomain| *2 #8#) #5#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|parameters| (((|List| (|Identifier|)) $) 17 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 7 T ELT)) (|body| (((|Syntax|) $) 18 T ELT)) (|before?| #1#) (= #1#))
+(((|AnonymousFunction|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |parameters| ((|List| (|Identifier|)) $)) (SIGNATURE |body| ((|Syntax|) $))))) (T |AnonymousFunction|))
+((|parameters| #1=(*1 *2 *1) (AND (|isDomain| *2 (|List| (|Identifier|))) #2=(|isDomain| *1 (|AnonymousFunction|)))) (|body| #1# (AND (|isDomain| *2 (|Syntax|)) #2#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) 86 T ELT)) (|subtractIfCan| ((#4=(|Union| $ #5="failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|retractable?| (#3# 31 T ELT)) (|retractIfCan| (((|Union| |#1| #5#) $) 34 T ELT)) (|retract| (#7=(|#1| $) 35 T ELT)) (|reductum| (#8=($ $) 41 T ELT)) (|recip| ((#4# $) NIL T ELT)) (|opposite?| #1#) (|one?| (#3# NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingCoefficient| (#7# 32 T ELT)) (|leadingBasisTerm| (#8# 75 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|homogeneous?| (#3# 44 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (($ #9=(|NonNegativeInteger|)) 73 T ELT)) (|exp| (($ (|List| #10=(|Integer|))) 74 T ELT)) (|degree| ((#9# $) 45 T ELT)) (|coerce| (((|OutputForm|) $) 92 T ELT) (($ #10#) 70 T ELT) (($ |#1|) 68 T ELT)) (|coefficient| ((|#1| $ $) 29 T ELT)) (|characteristic| ((#9#) 72 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#6# 46 T CONST)) (|One| (#6# 17 T CONST)) (= #1#) (- (#8# NIL T ELT) (#11=($ $ $) NIL T ELT)) (+ (#11# 65 T ELT)) (** (($ $ #12=(|PositiveInteger|)) NIL T ELT) (($ $ #9#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #10# . #13=($)) NIL T ELT) (#11# 66 T ELT) (($ |#1| . #13#) 59 T ELT)))
+(((|AntiSymm| |#1| |#2|) (|Join| (|LeftAlgebra| |#1|) (|RetractableTo| |#1|) (|Functorial| |#1|) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| (|#1| $)) (SIGNATURE |leadingBasisTerm| #1=($ $)) (SIGNATURE |reductum| #1#) (SIGNATURE |coefficient| (|#1| $ $)) (SIGNATURE |generator| ($ #2=(|NonNegativeInteger|))) (SIGNATURE |exp| ($ (|List| (|Integer|)))) (SIGNATURE |homogeneous?| #3=((|Boolean|) $)) (SIGNATURE |retractable?| #3#) (SIGNATURE |degree| (#2# $)))) (|Ring|) (|List| (|Symbol|))) (T |AntiSymm|))
+((|leadingCoefficient| #1=(*1 *2 *1) #2=(AND #3=(|ofCategory| *2 #4=(|Ring|)) #5=(|isDomain| *1 (|AntiSymm| *2 *3)) #6=(|ofType| *3 #7=(|List| (|Symbol|))))) (|leadingBasisTerm| #8=(*1 *1 *1) #9=(AND #5# #3# #6#)) (|reductum| #8# #9#) (|coefficient| (*1 *2 *1 *1) #2#) (|generator| #10=(*1 *1 *2) #11=(AND (|isDomain| *2 (|NonNegativeInteger|)) #12=(|isDomain| *1 (|AntiSymm| *3 *4)) #13=(|ofCategory| *3 #4#) #14=(|ofType| *4 #7#))) (|exp| #10# (AND (|isDomain| *2 (|List| (|Integer|))) #12# #13# #14#)) (|homogeneous?| #1# #15=(AND (|isDomain| *2 (|Boolean|)) #12# #13# #14#)) (|retractable?| #1# #15#) (|degree| #1# #11#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|obj| ((#3=(|None|) $) 8 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dom| ((#4=(|SExpression|) $) 10 T ELT)) (|coerce| (((|OutputForm|) $) 15 T ELT)) (|before?| #1#) (|any| (($ #4# #3#) 16 T ELT)) (= (#2# 12 T ELT)))
+(((|Any|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |any| ($ #1=(|SExpression|) #2=(|None|))) (SIGNATURE |dom| (#1# $)) (SIGNATURE |obj| (#2# $))))) (T |Any|))
+((|any| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|SExpression|)) (|isDomain| *3 #2=(|None|)) #3=(|isDomain| *1 (|Any|)))) (|dom| #4=(*1 *2 *1) (AND #1# #3#)) (|obj| #4# (AND (|isDomain| *2 #2#) #3#)))
+((|retractable?| (((|Boolean|) #1=(|Any|)) 18 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") #1#) 20 T ELT)) (|retract| ((|#1| #1#) 21 T ELT)) (|coerce| ((#1# |#1|) 14 T ELT)))
+(((|AnyFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| (#1=(|Any|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#1| "failed") #1#)) (SIGNATURE |retractable?| ((|Boolean|) #1#)) (SIGNATURE |retract| (|#1| #1#))) (|Type|)) (T |AnyFunctions1|))
+((|retract| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|Any|)) #4=(|isDomain| *1 (|AnyFunctions1| *2)) #5=(|ofCategory| *2 #6=(|Type|)))) (|retractable?| #1# (AND #2# (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AnyFunctions1| *4)) (|ofCategory| *4 #6#))) (|retractIfCan| #1# (|partial| AND #2# #4# #5#)) (|coerce| #1# (AND (|isDomain| *2 #3#) (|isDomain| *1 (|AnyFunctions1| *3)) (|ofCategory| *3 #6#))))
+((|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) 16 T ELT)))
+(((|ApplyUnivariateSkewPolynomial| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |apply| (|#2| |#3| (|Mapping| |#2| |#2|) |#2|))) (|Ring|) (|LeftModule| |#1|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |ApplyUnivariateSkewPolynomial|))
+((|apply| (*1 *2 *3 *4 *2) (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 (|LeftModule| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|ApplyUnivariateSkewPolynomial| *5 *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))))
+((|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) 44 T ELT)) (|applyRules| ((|#3| #1=(|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) 32 T ELT) ((|#3| #1# |#3|) 31 T ELT)))
+(((|ApplyRules| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |applyRules| (|#3| #1=(|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|)) (SIGNATURE |applyRules| (|#3| #1# |#3| (|PositiveInteger|))) (SIGNATURE |localUnquote| (|#3| |#3| (|List| (|Symbol|))))) (|SetCategory|) (|Join| (|Ring|) #2=(|PatternMatchable| |#1|) #3=(|ConvertibleTo| (|Pattern| |#1|))) (|Join| (|FunctionSpace| |#2|) #2# #3#)) (T |ApplyRules|))
+((|localUnquote| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) #1=(|ofCategory| *4 #2=(|SetCategory|)) #3=(|ofCategory| *5 (|Join| #4=(|Ring|) #5=(|PatternMatchable| *4) #6=(|ConvertibleTo| (|Pattern| *4)))) #7=(|isDomain| *1 (|ApplyRules| *4 *5 *2)) #8=(|ofCategory| *2 (|Join| (|FunctionSpace| *5) #5# #6#)))) (|applyRules| (*1 *2 *3 *2 *4) (AND (|isDomain| *3 (|List| (|RewriteRule| *5 *6 *2))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 #2#) (|ofCategory| *6 (|Join| #4# #9=(|PatternMatchable| *5) #10=(|ConvertibleTo| (|Pattern| *5)))) (|ofCategory| *2 (|Join| (|FunctionSpace| *6) #9# #10#)) (|isDomain| *1 (|ApplyRules| *5 *6 *2)))) (|applyRules| (*1 *2 *3 *2) (AND (|isDomain| *3 (|List| (|RewriteRule| *4 *5 *2))) #1# #3# #8# #7#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 13 T ELT)) (|retractIfCan| (((|Union| #5=(|NonNegativeInteger|) "failed") $) 31 T ELT)) (|retract| ((#5# $) NIL T ELT)) (|one?| (#4# 15 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) 17 T ELT)) (|coerce| (((|OutputForm|) $) 22 T ELT) (($ #5#) 28 T ELT)) (|before?| #1#) (|arbitrary| (($) 10 T CONST)) (= (#2# 19 T ELT)))
+(((|Arity|) (|Join| (|SetCategory|) (|RetractableTo| (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |arbitrary| ($) |constant|) (SIGNATURE |zero?| #1=((|Boolean|) $)) (SIGNATURE |one?| #1#)))) (T |Arity|))
+((|arbitrary| (*1 *1) #1=(|isDomain| *1 (|Arity|))) (|zero?| #2=(*1 *2 *1) #3=(AND (|isDomain| *2 (|Boolean|)) #1#)) (|one?| #2# #3#))
+((|setRow!| (($ $ #1=(|Integer|) |#3|) 46 T ELT)) (|setColumn!| (($ $ #1# |#4|) 50 T ELT)) (|members| (((|List| |#2|) $) 41 T ELT)) (|member?| ((#2=(|Boolean|) |#2| $) 55 T ELT)) (|every?| (#3=(#2# #4=(|Mapping| #2# |#2|) $) 21 T ELT)) (|elt| ((|#2| $ #1# #1#) NIL T ELT) ((|#2| $ #1# #1# |#2|) 29 T ELT)) (|count| ((#5=(|NonNegativeInteger|) #4# $) 35 T ELT) ((#5# |#2| $) 57 T ELT)) (|coerce| (((|OutputForm|) $) 63 T ELT)) (|any?| (#3# 20 T ELT)) (= ((#2# $ $) 54 T ELT)) (|#| ((#5# $) 26 T ELT)))
+(((|TwoDimensionalArrayCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE = (#1=(|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |setColumn!| (|#1| |#1| #2=(|Integer|) |#4|)) (SIGNATURE |setRow!| (|#1| |#1| #2# |#3|)) (SIGNATURE |elt| (|#2| |#1| #2# #2# |#2|)) (SIGNATURE |elt| (|#2| |#1| #2# #2#)) (SIGNATURE |member?| (#1# |#2| |#1|)) (SIGNATURE |count| (#3=(|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |members| ((|List| |#2|) |#1|)) (SIGNATURE |count| (#3# #4=(|Mapping| #1# |#2|) |#1|)) (SIGNATURE |every?| #5=(#1# #4# |#1|)) (SIGNATURE |any?| #5#) (SIGNATURE |#| (#3# |#1|))) (|TwoDimensionalArrayCategory| |#2| |#3| |#4|) (|Type|) #6=(|FiniteLinearAggregate| |#2|) #6#) (T |TwoDimensionalArrayCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) 52 T ELT)) (|setRow!| (($ $ (|Integer|) |#2|) 50 T ELT)) (|setColumn!| (($ $ (|Integer|) |#3|) 49 T ELT)) (|sample| (#3=($) 6 T CONST)) (|row| ((|#2| $ (|Integer|)) 54 T ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| . #4=((|BasicType|))) ELT)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) 51 T ELT)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) 56 T ELT)) (|nrows| (((|NonNegativeInteger|) $) 59 T ELT)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 65 T ELT)) (|ncols| (((|NonNegativeInteger|) $) 58 T ELT)) (|minRowIndex| (((|Integer|) $) 63 T ELT)) (|minColIndex| (((|Integer|) $) 61 T ELT)) (|members| (((|List| |#1|) $) 40 T ELT)) (|member?| ((#5=(|Boolean|) |#1| $) 35 (|has| |#1| . #4#) ELT)) (|maxRowIndex| (((|Integer|) $) 62 T ELT)) (|maxColIndex| (((|Integer|) $) 60 T ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 66 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 48 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #6=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #6#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #5# |#1|) $) 37 T ELT)) (|fill!| (($ $ |#1|) 64 T ELT)) (|every?| ((#5# (|Mapping| #5# |#1|) . #7=($)) 42 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT)) (|eq?| ((#8=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#8# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) 57 T ELT) ((|#1| $ (|Integer|) (|Integer|) |#1|) 55 T ELT)) (|count| ((#9=(|NonNegativeInteger|) (|Mapping| #5# |#1|) $) 41 T ELT) ((#9# |#1| $) 36 (|has| |#1| . #4#) ELT)) (|copy| (($ $) 9 T ELT)) (|column| ((|#3| $ (|Integer|)) 53 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#5# (|Mapping| #5# |#1|) . #7#) 43 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#9# $) 44 T ELT)))
+(((|TwoDimensionalArrayCategory| |#1| |#2| |#3|) (|Category|) (|Type|) (|FiniteLinearAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|)) (T |TwoDimensionalArrayCategory|))
+((|new| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|fill!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *3 *4)) (|ofCategory| *2 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|minRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|minColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|nrows| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|ncols| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|qelt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|row| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *2 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|column| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *2)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|setelt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|qsetelt!| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|setRow!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *3 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)))) (|setColumn!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *3)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|map| (*1 *1 *2 *1 *1 *3) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))))
+(|Join| (|FiniteAggregate| |t#1|) (|ShallowlyMutableAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |new| ($ (|NonNegativeInteger|) (|NonNegativeInteger|) |t#1|)) (SIGNATURE |fill!| ($ $ |t#1|)) (SIGNATURE |minRowIndex| ((|Integer|) $)) (SIGNATURE |maxRowIndex| ((|Integer|) $)) (SIGNATURE |minColIndex| ((|Integer|) $)) (SIGNATURE |maxColIndex| ((|Integer|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |qelt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |row| (|t#2| $ (|Integer|))) (SIGNATURE |column| (|t#3| $ (|Integer|))) (SIGNATURE |setelt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |qsetelt!| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |setRow!| ($ $ (|Integer|) |t#2|)) (SIGNATURE |setColumn!| ($ $ (|Integer|) |t#3|)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) NIL #6=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #7=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#8=(#3# $) NIL #9=(|has| |#1| #10=(|OrderedSet|)) ELT)) (|sort!| (#11=($ #7# $) NIL #6# ELT) (#12=($ $) NIL (AND #6# #9#) ELT)) (|sort| (#11# NIL T ELT) (#12# NIL #9# ELT)) (|setelt| #13=(#14=(|#1| $ #5# |#1|) NIL #6# ELT) ((|#1| $ #15=(|UniversalSegment| #5#) |#1|) NIL #6# ELT)) (|select| #16=(($ #17=(|Mapping| #3# |#1|) $) NIL #18=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#19=($) NIL T CONST)) (|reverse!| (#12# NIL #6# ELT)) (|reverse| #20=(#12# NIL T ELT)) (|removeDuplicates| (#12# NIL #21=(AND #18# #4#) ELT)) (|remove| (#22=($ |#1| $) NIL #21# ELT) #16#) (|reduce| ((|#1| #23=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #23# $ |#1|) NIL T ELT) ((|#1| #23# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #24=((|#1| $ #5#) NIL T ELT)) (|position| ((#5# #17# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT) ((#5# |#1| $ #5#) NIL #4# ELT)) (|oneDimensionalArray| (#25=($ #26=(|List| |#1|)) 11 T ELT) (#27=($ #28=(|NonNegativeInteger|) |#1|) 14 T ELT)) (|new| (#27# 13 T ELT)) (|minIndex| #29=((#5# $) NIL #30=(|has| #5# #10#) ELT)) (|min| #31=(#32=($ $ $) NIL #9# ELT)) (|merge| (($ #7# $ $) NIL T ELT) #31#) (|members| #33=((#26# $) NIL T ELT)) (|member?| (#34=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| #29#) (|max| #31#) (|map!| #35=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #35# (($ #23# $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #36=(|has| |#1| (|SetCategory|)) ELT)) (|insert| (($ |#1| $ #5#) NIL T ELT) (#37=($ $ $ #5#) NIL T ELT)) (|indices| (((|List| #5#) $) NIL T ELT)) (|index?| ((#3# #5# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #36# ELT)) (|first| ((|#1| $) NIL #30# ELT)) (|find| (((|Union| |#1| "failed") #17# $) NIL T ELT)) (|fill!| (#38=($ $ |#1|) NIL #6# ELT)) (|every?| #39=((#3# #17# $) NIL T ELT)) (|eval| (($ $ (|List| #40=(|Equation| |#1|))) NIL #41=(AND (|has| |#1| (|Evalable| |#1|)) #36#) ELT) (($ $ #40#) NIL #41# ELT) (($ $ |#1| |#1|) NIL #41# ELT) (($ $ #26# #26#) NIL #41# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#34# NIL #21# ELT)) (|entries| #33#) (|empty?| (#8# NIL T ELT)) (|empty| (#19# NIL T ELT)) (|elt| (#14# NIL T ELT) #24# #42=(($ $ #15#) NIL T ELT)) (|delete| (($ $ #5#) NIL T ELT) #42#) (|count| ((#28# |#1| $) NIL #4# ELT) ((#28# #17# $) NIL T ELT)) (|copyInto!| (#37# NIL #6# ELT)) (|copy| #20#) (|convert| ((#43=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #43#)) ELT)) (|construct| (#25# 10 T ELT)) (|concat| (#38# NIL T ELT) (#22# NIL T ELT) (#32# NIL T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#44=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #44#)) ELT)) (|before?| #1#) (|any?| #39#) (>= #45=(#2# NIL #9# ELT)) (> #45#) (= #1#) (<= #45#) (< #45#) (|#| ((#28# $) NIL T ELT)))
+(((|OneDimensionalArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |oneDimensionalArray| ($ (|List| |#1|))) (SIGNATURE |oneDimensionalArray| ($ (|NonNegativeInteger|) |#1|)))) (|Type|)) (T |OneDimensionalArray|))
+((|oneDimensionalArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 (|Type|)) #2=(|isDomain| *1 (|OneDimensionalArray| *3)))) (|oneDimensionalArray| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) #2# #1#)))
+((|scan| ((#1=(|OneDimensionalArray| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|OneDimensionalArray| |#1|) |#2|) 16 T ELT)) (|reduce| ((|#2| #2# #3# |#2|) 18 T ELT)) (|map| ((#1# (|Mapping| |#2| |#1|) #3#) 13 T ELT)))
+(((|OneDimensionalArrayFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| (#1=(|OneDimensionalArray| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|OneDimensionalArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| #2# #3# |#2|)) (SIGNATURE |map| (#1# (|Mapping| |#2| |#1|) #3#))) #4=(|Type|) #4#) (T |OneDimensionalArrayFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #1=(|isDomain| *4 #2=(|OneDimensionalArray| *5)) #3=(|ofCategory| *5 #4=(|Type|)) #5=(|ofCategory| *6 #4#) (|isDomain| *2 #6=(|OneDimensionalArray| *6)) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #1# #3# (|ofCategory| *2 #4#) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 #6#) #5# #3# (|isDomain| *2 #2#) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *6 *5)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|setelt| #5=((|#1| $ #6=(|Integer|) #6# |#1|) NIL T ELT)) (|setRow!| #7=(($ $ #6# #8=(|OneDimensionalArray| |#1|)) NIL T ELT)) (|setColumn!| #7#) (|sample| (#9=($) NIL T CONST)) (|row| #10=((#8# $ #6#) NIL T ELT)) (|reduce| ((|#1| #11=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #11# $ |#1|) NIL T ELT) ((|#1| #11# $ |#1| |#1|) NIL #4# ELT)) (|qsetelt!| #5#) (|qelt| #12=((|#1| $ #6# #6#) NIL T ELT)) (|nrows| #13=((#14=(|NonNegativeInteger|) $) NIL T ELT)) (|new| (($ #14# #14# |#1|) NIL T ELT)) (|ncols| #13#) (|minRowIndex| #15=((#6# $) NIL T ELT)) (|minColIndex| #15#) (|members| ((#16=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|maxRowIndex| #15#) (|maxColIndex| #15#) (|map!| #17=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #17# (($ #11# $ $) NIL T ELT) (($ #11# $ $ |#1|) NIL T ELT)) (|latex| (((|String|) $) NIL #18=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #18# ELT)) (|find| (((|Union| |#1| "failed") #19=(|Mapping| #3# |#1|) $) NIL T ELT)) (|fill!| (($ $ |#1|) NIL T ELT)) (|every?| #20=((#3# #19# $) NIL T ELT)) (|eval| (($ $ (|List| #21=(|Equation| |#1|))) NIL #22=(AND (|has| |#1| (|Evalable| |#1|)) #18#) ELT) (($ $ #21#) NIL #22# ELT) (($ $ |#1| |#1|) NIL #22# ELT) (($ $ #16# #16#) NIL #22# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| (#9# NIL T ELT)) (|elt| #12# #5#) (|count| ((#14# #19# $) NIL T ELT) ((#14# |#1| $) NIL #4# ELT)) (|copy| (($ $) NIL T ELT)) (|column| #10#) (|coerce| ((#23=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #23#)) ELT)) (|before?| #1#) (|any?| #20#) (= #1#) (|#| #13#))
+(((|TwoDimensionalArray| |#1|) (|TwoDimensionalArrayCategory| |#1| #1=(|OneDimensionalArray| |#1|) #1#) (|Type|)) (T |TwoDimensionalArray|))
+NIL
+((|uncouplingMatrices| (((|Vector| #1=(|Matrix| |#1|)) #1#) 61 T ELT)) (|associatedSystem| (((|Record| (|:| |mat| #1#) (|:| |vec| (|Vector| #2=(|List| #3=(|PositiveInteger|))))) |#2| #3#) 49 T ELT)) (|associatedEquations| (((|Record| (|:| |minor| #2#) (|:| |eq| |#2|) (|:| |minors| (|List| #2#)) (|:| |ops| (|List| |#2|))) |#2| #3#) 72 (|has| |#1| (|Field|)) ELT)))
+(((|AssociatedEquations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |associatedSystem| ((|Record| (|:| |mat| #1=(|Matrix| |#1|)) (|:| |vec| (|Vector| #2=(|List| #3=(|PositiveInteger|))))) |#2| #3#)) (SIGNATURE |uncouplingMatrices| ((|Vector| #1#) #1#)) (IF (|has| |#1| (|Field|)) (SIGNATURE |associatedEquations| ((|Record| (|:| |minor| #2#) (|:| |eq| |#2|) (|:| |minors| (|List| #2#)) (|:| |ops| (|List| |#2|))) |#2| #3#)) |%noBranch|)) (|IntegralDomain|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |AssociatedEquations|))
+((|associatedEquations| #1=(*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) #2=(|ofCategory| *5 #3=(|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |minor| #4=(|List| #5=(|PositiveInteger|))) (|:| |eq| *3) (|:| |minors| (|List| #4#)) (|:| |ops| (|List| *3)))) #6=(|isDomain| *1 (|AssociatedEquations| *5 *3)) #7=(|isDomain| *4 #5#) #8=(|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|uncouplingMatrices| (*1 *2 *3) (AND (|ofCategory| *4 #3#) (|isDomain| *2 (|Vector| #9=(|Matrix| *4))) (|isDomain| *1 (|AssociatedEquations| *4 *5)) (|isDomain| *3 #9#) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|associatedSystem| #1# (AND #2# (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| #4#)))) #6# #7# #8#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|top| (#5=(|#1| $) 42 T ELT)) (|sample| (#6=($) NIL T CONST)) (|reduce| ((|#1| #7=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #7# $ |#1|) NIL T ELT) ((|#1| #7# $) NIL T ELT)) (|push!| ((|#1| |#1| $) 37 T ELT)) (|pop!| (#5# 35 T ELT)) (|members| ((#8=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #9=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #9#) (|latex| (((|String|) $) NIL #10=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| (#5# NIL T ELT)) (|insert!| (($ |#1| $) 38 T ELT)) (|hash| (((|SingleInteger|) $) NIL #10# ELT)) (|find| (((|Union| |#1| "failed") #11=(|Mapping| #3# |#1|) $) NIL T ELT)) (|extract!| (#5# 36 T ELT)) (|every?| #12=((#3# #11# $) NIL T ELT)) (|eval| (($ $ (|List| #13=(|Equation| |#1|))) NIL #14=(AND (|has| |#1| (|Evalable| |#1|)) #10#) ELT) (($ $ #13#) NIL #14# ELT) (($ $ |#1| |#1|) NIL #14# ELT) (($ $ #8# #8#) NIL #14# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| ((#3# $) 20 T ELT)) (|empty| (#6# 46 T ELT)) (|depth| (#15=(#16=(|NonNegativeInteger|) $) 33 T ELT)) (|count| ((#16# |#1| $) NIL #4# ELT) ((#16# #11# $) NIL T ELT)) (|copy| (($ $) 19 T ELT)) (|coerce| ((#17=(|OutputForm|) $) 32 (|has| |#1| (|CoercibleTo| #17#)) ELT)) (|before?| #1#) (|bag| (#18=($ #8#) NIL T ELT)) (|arrayStack| (#18# 44 T ELT)) (|any?| #12#) (= (#2# 17 #4# ELT)) (|#| (#15# 14 T ELT)))
+(((|ArrayStack| |#1|) (|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |arrayStack| ($ (|List| |#1|))))) (|SetCategory|)) (T |ArrayStack|))
+((|arrayStack| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))))
+((|coerce| (((|OutputForm|) $) 13 T ELT) (($ #1=(|Syntax|)) 9 T ELT) ((#1# $) 8 T ELT)))
+(((|AbstractSyntaxCategory&| |#1|) (CATEGORY |package| (SIGNATURE |coerce| (#1=(|Syntax|) |#1|)) (SIGNATURE |coerce| (|#1| #1#)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|AbstractSyntaxCategory|)) (T |AbstractSyntaxCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) . #2=($)) 13 T ELT) (($ #3=(|Syntax|)) 20 T ELT) ((#3# . #2#) 19 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|AbstractSyntaxCategory|) (|Category|)) (T |AbstractSyntaxCategory|))
+NIL
+(|Join| (|SetCategory|) (|HomotopicTo| (|Syntax|)))
+(((|BasicType|) . T) ((|CoercibleFrom| #1=(|Syntax|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| #1#) . T) ((|HomotopicTo| #1#) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|asec| (#1=($ $) 10 T ELT)) (|acsc| (#1# 12 T ELT)))
+(((|ArcTrigonometricFunctionCategory&| |#1|) (CATEGORY |package| (SIGNATURE |acsc| #1=(|#1| |#1|)) (SIGNATURE |asec| #1#)) (|ArcTrigonometricFunctionCategory|)) (T |ArcTrigonometricFunctionCategory&|))
+NIL
+((|atan| (($ $) 11 T ELT)) (|asin| (($ $) 10 T ELT)) (|asec| (($ $) 9 T ELT)) (|acsc| (($ $) 8 T ELT)) (|acot| (($ $) 7 T ELT)) (|acos| (($ $) 6 T ELT)))
+(((|ArcTrigonometricFunctionCategory|) (|Category|)) (T |ArcTrigonometricFunctionCategory|))
+((|atan| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|asin| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|asec| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acsc| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acot| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acos| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |acos| ($ $)) (SIGNATURE |acot| ($ $)) (SIGNATURE |acsc| ($ $)) (SIGNATURE |asec| ($ $)) (SIGNATURE |asin| ($ $)) (SIGNATURE |atan| ($ $))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|name| (((|SpadAst|) $) 11 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 17 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|AttributeAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |name| ((|SpadAst|) $))))) (T |AttributeAst|))
+((|name| (*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|AttributeAst|)))))
+NIL
+(((|AttributeRegistry|) (|Category|)) (T |AttributeRegistry|))
+NIL
+(|Join| (CATEGORY |package| (ATTRIBUTE (|commutative| "*")) (ATTRIBUTE |unitsKnown|) (ATTRIBUTE |leftUnitary|) (ATTRIBUTE |rightUnitary|) (ATTRIBUTE |noZeroDivisors|) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |partiallyOrderedSet|) (ATTRIBUTE |central|) (ATTRIBUTE |noetherian|) (ATTRIBUTE |additiveValuation|) (ATTRIBUTE |multiplicativeValuation|) (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (ATTRIBUTE |canonical|)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|sample| (#4=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|one?| ((#3# $) NIL T ELT)) (|morphism| (($ #5=(|Mapping| |#1| |#1|)) 27 T ELT) (($ #5# #5#) 26 T ELT) (($ (|Mapping| |#1| |#1| #6=(|Integer|))) 24 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (($ $) 16 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#1| $ |#1|) 13 T ELT)) (|conjugate| #7=(#8=($ $ $) NIL T ELT)) (|commutator| #7#) (|coerce| (((|OutputForm|) $) 22 T ELT)) (|before?| #1#) (|One| (#4# 8 T CONST)) (= (#2# 10 T ELT)) (/ #7#) (** (($ $ (|PositiveInteger|)) 30 T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ #6#) 18 T ELT)) (* (#8# 31 T ELT)))
+(((|Automorphism| |#1|) (|Join| (|Group|) (|Eltable| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |morphism| ($ #1=(|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ #1# #1#)) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1| (|Integer|)))))) (|Ring|)) (T |Automorphism|))
+((|morphism| #1=(*1 *1 *2) #2=(AND (|isDomain| *2 (|Mapping| *3 *3)) #3=(|ofCategory| *3 (|Ring|)) #4=(|isDomain| *1 (|Automorphism| *3)))) (|morphism| (*1 *1 *2 *2) #2#) (|morphism| #1# (AND (|isDomain| *2 (|Mapping| *3 *3 (|Integer|))) #3# #4#)))
+((|balancedFactorisation| ((#1=(|Factored| |#2|) |#2| (|List| |#2|)) 10 T ELT) ((#1# |#2| |#2|) 11 T ELT)))
+(((|BalancedFactorisation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |balancedFactorisation| (#1=(|Factored| |#2|) |#2| |#2|)) (SIGNATURE |balancedFactorisation| (#1# |#2| (|List| |#2|)))) (|Join| (|GcdDomain|) (|CharacteristicZero|)) (|UnivariatePolynomialCategory| |#1|)) (T |BalancedFactorisation|))
+((|balancedFactorisation| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #1=(|Join| (|GcdDomain|) (|CharacteristicZero|))) #2=(|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|BalancedFactorisation| *5 *3)))) (|balancedFactorisation| (*1 *2 *3 *3) (AND (|ofCategory| *4 #1#) #2# (|isDomain| *1 (|BalancedFactorisation| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+((~= (#1=((|Boolean|) $ $) 13 T ELT)) (|before?| (#1# 14 T ELT)) (= (#1# 11 T ELT)))
+(((|BasicType&| |#1|) (CATEGORY |package| (SIGNATURE |before?| #1=((|Boolean|) |#1| |#1|)) (SIGNATURE ~= #1#) (SIGNATURE = #1#)) (|BasicType|)) (T |BasicType&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|BasicType|) (|Category|)) (T |BasicType|))
+((= #1=(*1 *2 *1 *1) #2=(AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|)))) (~= #1# #2#) (|before?| #1# #2#))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE = #1=((|Boolean|) $ $)) (SIGNATURE ~= #1#) (SIGNATURE |before?| #1#)))
+(((|Join|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) NIL T ELT)) (|setvalue!| ((|#1| $ |#1|) 24 #5=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| #6=(($ $ $) NIL #5# ELT)) (|setleft!| #6#) (|setleaves!| (($ $ #7=(|List| |#1|)) 30 T ELT)) (|setelt| ((|#1| $ #8="value" |#1|) NIL #5# ELT) (($ $ #9="left" $) NIL #5# ELT) (($ $ #10="right" $) NIL #5# ELT)) (|setchildren!| (($ $ #11=(|List| $)) NIL #5# ELT)) (|sample| (#12=($) NIL T CONST)) (|right| (#13=($ $) 12 T ELT)) (|reduce| ((|#1| #14=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #14# $ |#1|) NIL T ELT) ((|#1| #14# $) NIL T ELT)) (|nodes| #15=((#11# $) NIL T ELT)) (|node?| #1#) (|node| (($ $ |#1| $) 32 T ELT)) (|members| #16=((#7# $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|mapUp!| ((|#1| $ #14#) 40 T ELT) (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (|mapDown!| (($ $ |#1| #14#) 46 T ELT) (($ $ |#1| (|Mapping| #7# |#1| |#1| |#1|)) 49 T ELT)) (|map!| #17=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #17#) (|left| (#13# 11 T ELT)) (|leaves| #16#) (|leaf?| (#18=(#3# $) 13 T ELT)) (|latex| (((|String|) $) NIL #19=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #19# ELT)) (|find| (((|Union| |#1| "failed") #20=(|Mapping| #3# |#1|) $) NIL T ELT)) (|every?| #21=((#3# #20# $) NIL T ELT)) (|eval| (($ $ (|List| #22=(|Equation| |#1|))) NIL #23=(AND (|has| |#1| (|Evalable| |#1|)) #19#) ELT) (($ $ #22#) NIL #23# ELT) (($ $ |#1| |#1|) NIL #23# ELT) (($ $ #7# #7#) NIL #23# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| (#18# 9 T ELT)) (|empty| (#12# 31 T ELT)) (|elt| ((|#1| $ #8#) NIL T ELT) (($ $ #9#) NIL T ELT) (($ $ #10#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| (#18# NIL T ELT)) (|count| ((#24=(|NonNegativeInteger|) |#1| $) NIL #4# ELT) ((#24# #20# $) NIL T ELT)) (|copy| (#13# NIL T ELT)) (|coerce| ((#25=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #25#)) ELT)) (|children| #15#) (|child?| #1#) (|before?| #1#) (|balancedBinaryTree| (($ #24# |#1|) 33 T ELT)) (|any?| #21#) (= #1#) (|#| ((#24# $) NIL T ELT)))
+(((|BalancedBinaryTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |balancedBinaryTree| ($ (|NonNegativeInteger|) |#1|)) (SIGNATURE |setleaves!| ($ $ #1=(|List| |#1|))) (SIGNATURE |mapUp!| (|#1| $ #2=(|Mapping| |#1| |#1| |#1|))) (SIGNATURE |mapUp!| ($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|))) (SIGNATURE |mapDown!| ($ $ |#1| #2#)) (SIGNATURE |mapDown!| ($ $ |#1| (|Mapping| #1# |#1| |#1| |#1|))))) (|SetCategory|)) (T |BalancedBinaryTree|))
+((|balancedBinaryTree| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) #1=(|isDomain| *1 (|BalancedBinaryTree| *3)) #2=(|ofCategory| *3 #3=(|SetCategory|)))) (|setleaves!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #2# #1#)) (|mapUp!| (*1 *2 *1 *3) (AND #4=(|isDomain| *3 (|Mapping| *2 *2 *2)) #5=(|isDomain| *1 (|BalancedBinaryTree| *2)) #6=(|ofCategory| *2 #3#))) (|mapUp!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 *3 *3 *3)) #2# #1#)) (|mapDown!| #7=(*1 *1 *1 *2 *3) (AND #4# #6# #5#)) (|mapDown!| #7# (AND (|isDomain| *3 (|Mapping| (|List| *2) *2 *2 *2)) #6# #5#)))
+((|sylvesterMatrix| (#1=(|#3| |#2| |#2|) 34 T ELT)) (|bezoutResultant| ((|#1| |#2| |#2|) 46 #2=(|has| |#1| (ATTRIBUTE (|commutative| "*"))) ELT)) (|bezoutMatrix| (#1# 36 T ELT)) (|bezoutDiscriminant| ((|#1| |#2|) 53 #2# ELT)))
+(((|BezoutMatrix| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |sylvesterMatrix| #1=(|#3| |#2| |#2|)) (SIGNATURE |bezoutMatrix| #1#) (IF (|has| |#1| (ATTRIBUTE (|commutative| "*"))) (PROGN (SIGNATURE |bezoutResultant| (|#1| |#2| |#2|)) (SIGNATURE |bezoutDiscriminant| (|#1| |#2|))) |%noBranch|)) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|MatrixCategory| |#1| |#4| |#5|) #2=(|FiniteLinearAggregate| |#1|) #2#) (T |BezoutMatrix|))
+((|bezoutDiscriminant| (*1 *2 *3) #1=(AND (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *5 #2=(|FiniteLinearAggregate| *2)) (|ofCategory| *6 #2#) (|ofCategory| *2 #3=(|Ring|)) (|isDomain| *1 (|BezoutMatrix| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|MatrixCategory| *2 *5 *6)))) (|bezoutResultant| #4=(*1 *2 *3 *3) #1#) (|bezoutMatrix| #4# #5=(AND (|ofCategory| *4 #3#) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|BezoutMatrix| *4 *3 *2 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 #6=(|FiniteLinearAggregate| *4)) (|ofCategory| *6 #6#))) (|sylvesterMatrix| #4# #5#))
+((|bag| (($ (|List| |#2|)) 11 T ELT)))
+(((|BagAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bag| (|#1| (|List| |#2|)))) (|BagAggregate| |#2|) (|Type|)) (T |BagAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|sample| (#3=($) 6 T CONST)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #4=((|SetCategory|))) ELT)) (|inspect| ((|#1| $) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #4#) ELT)) (|extract!| ((|#1| $) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT)) (|eq?| ((#5=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#5# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|BagAggregate| |#1|) (|Category|) (|Type|)) (T |BagAggregate|))
+((|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|BagAggregate| *3)))) (|extract!| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|inspect| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|HomogeneousAggregate| |t#1|) (|ShallowlyMutableAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |bag| ($ (|List| |t#1|))) (SIGNATURE |extract!| (|t#1| $)) (SIGNATURE |insert!| ($ |t#1| $)) (SIGNATURE |inspect| (|t#1| $))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|Integer|) $) NIL #8=(|has| #7# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #9=(#10=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #7# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #9#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#6# NIL #19=(|has| #7# (|OrderedIntegralDomain|)) ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (#22=((|Union| #7# . #23=(#13#)) . #24=($)) NIL T ELT) (((|Union| #25=(|Symbol|) . #23#) . #24#) NIL #26=(|has| #7# (|RetractableTo| #25#)) ELT) (((|Union| #27=(|Fraction| #7#) . #23#) . #24#) NIL #28=(|has| #7# (|RetractableTo| #7#)) ELT) (#22# NIL #28# ELT)) (|retract| #29=(#6# NIL T ELT) ((#25# $) NIL #26# ELT) (#30=(#27# $) NIL #28# ELT) (#6# NIL #28# ELT)) (|rem| #31=(#32=($ $ $) NIL T ELT)) (|reducedSystem| (#33=(#34=(|Matrix| #7#) #35=(|Matrix| $)) NIL #36=(|has| #7# (|LinearlyExplicitRingOver| #7#)) ELT) (#37=(#38=(|Record| (|:| |mat| #34#) (|:| |vec| (|Vector| #7#))) #35# #39=(|Vector| $)) NIL #36# ELT) (#37# NIL T ELT) (#33# NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#21# NIL #40=(|has| #7# (|IntegerNumberSystem|)) ELT)) (|quo| #31#) (|principalIdeal| (((|Record| (|:| |coef| #41=(|List| $)) #42=(|:| |generator| $)) #41#) NIL T ELT)) (|prime?| #4#) (|positive?| #43=(#5# NIL #19# ELT)) (|patternMatch| ((#44=(|PatternMatchResult| #7# . #45=($)) $ #46=(|Pattern| #7#) #44#) NIL (|has| #7# (|PatternMatchable| #7#)) ELT) ((#47=(|PatternMatchResult| #48=(|Float|) . #45#) $ #49=(|Pattern| #48#) #47#) NIL (|has| #7# (|PatternMatchable| #48#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #9#) (|numer| #29#) (|nextItem| (#50=((|Maybe| $) $) NIL #51=(|has| #7# (|StepThrough|)) ELT)) (|negative?| #43#) (|multiEuclidean| (((|Union| #41# #13#) #41# $) NIL T ELT)) (|min| #52=(#32# NIL #53=(|has| #7# (|OrderedSet|)) ELT)) (|max| #52#) (|map| (($ #54=(|Mapping| #7# #7#) $) NIL T ELT)) (|leftReducedSystem| (#55=(#34# #39#) NIL #36# ELT) (#56=(#38# #39# $) NIL #36# ELT) (#56# NIL T ELT) (#55# NIL T ELT)) (|lcm| #31# #57=(($ #41#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #9#) (|init| (#21# NIL #51# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #31# #57#) (|fractionPart| (#10# NIL #8# ELT) #58=(#30# NIL T ELT)) (|floor| #59=(#6# NIL #40# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #60=(|:| |coef1| $) #61=(|:| |coef2| $) #42#) $ $) NIL T ELT) (((|Union| (|Record| #60# #61#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #41#) #41# $) NIL T ELT)) (|eval| (($ $ #62=(|List| #7#) #62#) NIL #63=(|has| #7# (|Evalable| #7#)) ELT) (($ $ #7# #7#) NIL #63# ELT) (($ $ #64=(|Equation| #7#)) NIL #63# ELT) (($ $ (|List| #64#)) NIL #63# ELT) (($ $ #65=(|List| #25#) #62#) NIL #66=(|has| #7# (|InnerEvalable| #25# #7#)) ELT) (($ $ #25# #7#) NIL #66# ELT)) (|euclideanSize| ((#67=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#68=($ $ #7#) NIL (|has| #7# (|Eltable| #7# #7#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #69=(($ $ #54#) NIL T ELT) #70=(($ $ #54# #67#) NIL T ELT) #71=(($ $ #25#) NIL #72=(|has| #7# (|PartialDifferentialSpace| #25#)) ELT) #73=(($ $ #65#) NIL #72# ELT) #74=(($ $ #25# #67#) NIL #72# ELT) #75=(($ $ #65# (|List| #67#)) NIL #72# ELT) #76=(#10# NIL #77=(|has| #7# (|DifferentialSpace|)) ELT) #78=(#79=($ $ #67#) NIL #77# ELT)) (|denominator| #9#) (|denom| #29#) (|convert| ((#46# . #80=($)) NIL (|has| #7# (|ConvertibleTo| #46#)) ELT) ((#49# . #80#) NIL (|has| #7# (|ConvertibleTo| #49#)) ELT) ((#81=(|InputForm|) . #80#) NIL (|has| #7# (|ConvertibleTo| #81#)) ELT) ((#48# . #80#) NIL #82=(|has| #7# (|RealConstant|)) ELT) (((|DoubleFloat|) . #80#) NIL #82# ELT)) (|conditionP| (((|Union| #39# #13#) #35#) NIL #83=(AND (|has| $ #84=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) #85=(($ #7#) NIL T ELT) #9# (#86=($ #27#) 8 T ELT) #85# (($ #25#) NIL #26# ELT) #58# (((|RadixExpansion| 2) $) 10 T ELT)) (|charthRoot| (#50# NIL (OR #83# (|has| #7# #84#)) ELT)) (|characteristic| ((#67#) NIL T CONST)) (|ceiling| #59#) (|binary| (#86# 9 T ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#10# NIL #19# ELT)) (|Zero| #20#) (|One| #20#) (D #69# #70# #71# #73# #74# #75# #76# #78#) (>= #87=(#2# NIL #53# ELT)) (> #87#) (= #1#) (<= #87#) (< #87#) (/ #31# (($ #7# #7#) NIL T ELT)) (- #9# #31#) (+ #31#) (** (($ $ #88=(|PositiveInteger|)) NIL T ELT) (#79# NIL T ELT) #89=(#68# NIL T ELT)) (* (($ #88# $) NIL T ELT) (($ #67# $) NIL T ELT) #90=(($ #7# . #91=($)) NIL T ELT) #31# (($ $ #27#) NIL T ELT) (($ #27# . #91#) NIL T ELT) #90# #89#))
+(((|BinaryExpansion|) (|Join| (|QuotientFieldCategory| #1=(|Integer|)) (|CoercibleTo| #2=(|Fraction| #1#)) (|CoercibleTo| (|RadixExpansion| 2)) (CATEGORY |domain| (SIGNATURE |fractionPart| (#2# $)) (SIGNATURE |binary| ($ #2#))))) (T |BinaryExpansion|))
+((|fractionPart| (*1 *2 *1) #1=(AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|BinaryExpansion|)))) (|binary| (*1 *1 *2) #1#))
+((|properties| ((#1=(|List| (|Property|)) $) 14 T ELT)) (|name| ((#2=(|Identifier|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT)) (|binding| (($ #2# #1#) 16 T ELT)))
+(((|Binding|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |name| (#1=(|Identifier|) $)) (SIGNATURE |properties| (#2=(|List| (|Property|)) $)) (SIGNATURE |binding| ($ #1# #2#))))) (T |Binding|))
+((|name| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Identifier|)) #3=(|isDomain| *1 (|Binding|)))) (|properties| #1# (AND (|isDomain| *2 #4=(|List| (|Property|))) #3#)) (|binding| (*1 *1 *2 *3) (AND #2# (|isDomain| *3 #4#) #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#1| $ |#1| |#1|) 8 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|binaryOperation| (($ (|Mapping| |#1| |#1| |#1|)) 7 T ELT)) (|before?| #1#) (= #1#))
+(((|BinaryOperation| |#1|) (|Join| (|BinaryOperatorCategory| |#1|) (|SetCategory|) (CATEGORY |domain| (SIGNATURE |binaryOperation| ($ (|Mapping| |#1| |#1| |#1|))))) (|Type|)) (T |BinaryOperation|))
+((|binaryOperation| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|BinaryOperation| *3)))))
+((|elt| ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((|BinaryOperatorCategory| |#1|) (|Category|) (|Type|)) (T |BinaryOperatorCategory|))
+NIL
+(|Join| (|MappingCategory| |t#1| |t#1| |t#1|))
+(((|MappingCategory| |#1| |#1| |#1|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (~ #3=(#4=($ $) NIL T ELT)) (|xor| #5=(#6=($ $ $) NIL T ELT)) (|swap!| (((|Void|) $ #7=(|Integer|) #7#) NIL #8=(|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|sorted?| (#9=(#2# $) NIL #10=(|has| #2# #11=(|OrderedSet|)) ELT) #12=((#2# #13=(|Mapping| #2# #2# #2#) $) NIL T ELT)) (|sort!| (#4# NIL (AND #8# #10#) ELT) (#14=($ #13# $) NIL #8# ELT)) (|sort| (#4# NIL #10# ELT) (#14# NIL T ELT)) (|setelt| ((#2# $ #15=(|UniversalSegment| #7#) #2#) NIL #8# ELT) #16=(#17=(#2# $ #7# #2#) NIL #8# ELT)) (|select| #18=(#19=($ #20=(|Mapping| #2# #2#) $) NIL #21=(|has| $ (|FiniteAggregate| #2#)) ELT)) (|sample| (#22=($) NIL T CONST)) (|reverse!| (#4# NIL #8# ELT)) (|reverse| #3#) (|removeDuplicates| (#4# NIL #23=(AND #21# #24=(|has| #2# (|BasicType|))) ELT)) (|remove| #18# (#25=($ #2# $) NIL #23# ELT)) (|reduce| #12# ((#2# #13# $ #2#) NIL T ELT) ((#2# #13# $ #2# #2#) NIL #24# ELT)) (|qsetelt!| #16#) (|qelt| #26=((#2# $ #7#) NIL T ELT)) (|position| ((#7# #2# $ #7#) NIL #24# ELT) ((#7# #2# $) NIL #24# ELT) ((#7# #20# $) NIL T ELT)) (|or| #5#) (|not| #3#) (|nor| #5#) (|new| (#27=($ #28=(|NonNegativeInteger|) #2#) 10 T ELT)) (|nand| #5#) (|minIndex| #29=((#7# $) NIL #30=(|has| #7# #11#) ELT)) (|min| #5#) (|merge| (#6# NIL #10# ELT) #31=(($ #13# $ $) NIL T ELT)) (|members| #32=((#33=(|List| #2#) $) NIL T ELT)) (|member?| (#34=(#2# #2# $) NIL #24# ELT)) (|maxIndex| #29#) (|max| #5#) (|map!| #35=(#19# NIL T ELT)) (|map| #31# #35#) (|latex| (((|String|) $) NIL T ELT)) (|insert| (#36=($ $ $ #7#) NIL T ELT) (($ #2# $ #7#) NIL T ELT)) (|indices| (((|List| #7#) $) NIL T ELT)) (|index?| ((#2# #7# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#9# NIL #30# ELT)) (|find| (((|Union| #2# "failed") #20# $) NIL T ELT)) (|fill!| (#37=($ $ #2#) NIL #8# ELT)) (|every?| #38=((#2# #20# $) NIL T ELT)) (|eval| (($ $ #33# #33#) NIL #39=(AND (|has| #2# (|Evalable| #2#)) (|has| #2# (|SetCategory|))) ELT) (($ $ #2# #2#) NIL #39# ELT) (($ $ #40=(|Equation| #2#)) NIL #39# ELT) (($ $ (|List| #40#)) NIL #39# ELT)) (|eq?| #1#) (|entry?| (#34# NIL #23# ELT)) (|entries| #32#) (|empty?| (#9# NIL T ELT)) (|empty| (#22# NIL T ELT)) (|elt| #41=(($ $ #15#) NIL T ELT) #26# (#17# NIL T ELT)) (|delete| #41# (($ $ #7#) NIL T ELT)) (|count| ((#28# #20# $) NIL T ELT) ((#28# #2# $) NIL #24# ELT)) (|copyInto!| (#36# NIL #8# ELT)) (|copy| #3#) (|convert| ((#42=(|InputForm|) $) NIL (|has| #2# (|ConvertibleTo| #42#)) ELT)) (|construct| (($ #33#) NIL T ELT)) (|concat| (($ (|List| $)) NIL T ELT) #5# (#25# NIL T ELT) (#37# NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bits| (#27# 11 T ELT)) (|before?| #1#) (|any?| #38#) (|and| #5#) (|\\/| #5#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| #5#) (|#| ((#28# $) NIL T ELT)))
+(((|Bits|) (|Join| (|BitAggregate|) (CATEGORY |domain| (SIGNATURE |bits| ($ (|NonNegativeInteger|) (|Boolean|)))))) (T |Bits|))
+((|bits| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *1 (|Bits|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((|BiModule| |#1| |#2|) (|Category|) (|Ring|) (|Ring|)) (T |BiModule|))
+NIL
+(|Join| (|LeftModule| |t#1|) (|RightModule| |t#2|) (CATEGORY |package| (ATTRIBUTE |leftUnitary|) (ATTRIBUTE |rightUnitary|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|RightLinearSet| |#2|) . T) ((|RightModule| |#2|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|or| (#1=($ $ $) 12 T ELT)) (|not| (($ $) 8 T ELT)) (|and| (#1# 10 T ELT)))
+(((|BooleanLogic&| |#1|) (CATEGORY |package| (SIGNATURE |or| #1=(|#1| |#1| |#1|)) (SIGNATURE |and| #1#) (SIGNATURE |not| (|#1| |#1|))) (|BooleanLogic|)) (T |BooleanLogic&|))
+NIL
+((~ (($ $) 8 T ELT)) (|or| (($ $ $) 9 T ELT)) (|not| (($ $) 11 T ELT)) (|and| (($ $ $) 10 T ELT)) (|\\/| (#1=($ $ $) 6 T ELT)) (|/\\| (#1# 7 T ELT)))
+(((|BooleanLogic|) (|Category|)) (T |BooleanLogic|))
+((|not| (*1 *1 *1) (|ofCategory| *1 (|BooleanLogic|))) (|and| (*1 *1 *1 *1) (|ofCategory| *1 (|BooleanLogic|))) (|or| (*1 *1 *1 *1) (|ofCategory| *1 (|BooleanLogic|))))
+(|Join| (|Logic|) (CATEGORY |domain| (SIGNATURE |not| ($ $)) (SIGNATURE |and| ($ $ $)) (SIGNATURE |or| ($ $ $))))
+(((|Join|) . T) ((|Logic|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (~ (#3=($ $) 9 T ELT)) (|xor| (#4=($ $ $) 14 T ELT)) (|true| (#5=($) 6 T CONST)) (|size| (((|NonNegativeInteger|)) 23 T ELT)) (|random| (#5# 31 T ELT)) (|or| (#4# 12 T ELT)) (|not| (#3# 8 T ELT)) (|nor| (#4# 15 T ELT)) (|nand| (#4# 16 T ELT)) (|min| #6=(#4# NIL T ELT) #7=(#5# NIL T CONST)) (|max| #6# #7#) (|lookup| ((#8=(|PositiveInteger|) $) 29 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #8#) 27 T ELT)) (|implies| (#4# 19 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|false| (#5# 7 T CONST)) (|equiv| (#4# 20 T ELT)) (|convert| (((|InputForm|) $) 33 T ELT)) (|coerce| (((|OutputForm|) $) 35 T ELT)) (|before?| #1#) (|and| (#4# 10 T ELT)) (|\\/| (#4# 13 T ELT)) (>= #1#) (> #1#) (= (#2# 18 T ELT)) (<= #1#) (< (#2# 21 T ELT)) (|/\\| (#4# 11 T ELT)))
+(((|Boolean|) (|Join| (|OrderedFinite|) (|PropositionalLogic|) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE |xor| #1=($ $ $)) (SIGNATURE |nand| #1#) (SIGNATURE |nor| #1#)))) (T |Boolean|))
+((|xor| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|Boolean|))) (|nand| #1# #2#) (|nor| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|weight| ((#4=(|NonNegativeInteger|) $) 92 T ELT) (($ $ #4#) 38 T ELT)) (|unary?| (#5=(#3# $) 42 T ELT)) (|setProperty| (($ $ #6=(|String|) #7=(|None|)) 59 T ELT) (($ $ #8=(|Identifier|) #7#) 34 T ELT)) (|setProperties| (($ $ #9=(|AssociationList| #6# #7#)) 16 T ELT)) (|property| (((|Union| #7# "failed") $ #6#) 27 T ELT) (((|Maybe| #7#) $ #8#) 33 T ELT)) (|properties| ((#9# $) 15 T ELT)) (|operator| (($ #10=(|Symbol|)) 20 T ELT) (($ #10# #4#) 23 T ELT) (($ #10# #11=(|Arity|)) 24 T ELT)) (|nullary?| (#5# 40 T ELT)) (|nary?| (#5# 44 T ELT)) (|name| ((#10# $) 8 T ELT)) (|min| #12=(($ $ $) NIL T ELT)) (|max| #12#) (|latex| ((#6# $) NIL T ELT)) (|is?| ((#3# $ #10#) 11 T ELT)) (|input| (($ $ #13=(|Mapping| #14=(|InputForm|) (|List| #14#))) 65 T ELT) (((|Maybe| #13#) $) 69 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|has?| ((#3# $ #8#) 37 T ELT)) (|equality| (#15=($ $ (|Mapping| #3# $ $)) 46 T ELT)) (|display| (((|Maybe| #16=(|Mapping| #17=(|OutputForm|) (|List| #17#))) $) 67 T ELT) (($ $ #16#) 52 T ELT) (($ $ (|Mapping| #17# #17#)) 54 T ELT)) (|deleteProperty!| (($ $ #6#) 56 T ELT) (#18=($ $ #8#) 57 T ELT)) (|copy| (($ $) 75 T ELT)) (|comparison| (#15# 47 T ELT)) (|coerce| ((#17# $) 61 T ELT)) (|before?| #1#) (|assert| (#18# 35 T ELT)) (|arity| ((#11# $) 70 T ELT)) (>= #1#) (> #1#) (= (#2# 88 T ELT)) (<= #1#) (< (#2# 104 T ELT)))
+(((|BasicOperator|) (|Join| (|OrderedSet|) (|OperatorCategory| #1=(|Symbol|)) (CATEGORY |domain| (SIGNATURE |properties| (#2=(|AssociationList| #3=(|String|) #4=(|None|)) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |operator| ($ #1#)) (SIGNATURE |operator| ($ #1# #5=(|NonNegativeInteger|))) (SIGNATURE |operator| ($ #1# (|Arity|))) (SIGNATURE |nullary?| #6=(#7=(|Boolean|) $)) (SIGNATURE |unary?| #6#) (SIGNATURE |nary?| #6#) (SIGNATURE |weight| (#5# $)) (SIGNATURE |weight| ($ $ #5#)) (SIGNATURE |equality| #8=($ $ (|Mapping| #7# $ $))) (SIGNATURE |comparison| #8#) (SIGNATURE |display| ((|Maybe| #9=(|Mapping| #10=(|OutputForm|) (|List| #10#))) $)) (SIGNATURE |display| ($ $ #9#)) (SIGNATURE |display| ($ $ (|Mapping| #10# #10#))) (SIGNATURE |input| ($ $ #11=(|Mapping| #12=(|InputForm|) (|List| #12#)))) (SIGNATURE |input| ((|Maybe| #11#) $)) (SIGNATURE |has?| (#7# $ #13=(|Identifier|))) (SIGNATURE |assert| #14=($ $ #13#)) (SIGNATURE |deleteProperty!| ($ $ #3#)) (SIGNATURE |deleteProperty!| #14#) (SIGNATURE |property| ((|Union| #4# "failed") $ #3#)) (SIGNATURE |property| ((|Maybe| #4#) $ #13#)) (SIGNATURE |setProperty| ($ $ #3# #4#)) (SIGNATURE |setProperty| ($ $ #13# #4#)) (SIGNATURE |setProperties| ($ $ #2#))))) (T |BasicOperator|))
+((|properties| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|AssociationList| #3=(|String|) #4=(|None|))) #5=(|isDomain| *1 #6=(|BasicOperator|)))) (|copy| (*1 *1 *1) #5#) (|operator| (*1 *1 *2) (AND #7=(|isDomain| *2 (|Symbol|)) #5#)) (|operator| #8=(*1 *1 *2 *3) (AND #7# (|isDomain| *3 #9=(|NonNegativeInteger|)) #5#)) (|operator| #8# (AND #7# (|isDomain| *3 (|Arity|)) #5#)) (|nullary?| #1# #10=(AND #11=(|isDomain| *2 #12=(|Boolean|)) #5#)) (|unary?| #1# #10#) (|nary?| #1# #10#) (|weight| #1# #13=(AND (|isDomain| *2 #9#) #5#)) (|weight| #14=(*1 *1 *1 *2) #13#) (|equality| #14# #15=(AND (|isDomain| *2 (|Mapping| #12# #6# #6#)) #5#)) (|comparison| #14# #15#) (|display| #1# (AND (|isDomain| *2 (|Maybe| #16=(|Mapping| #17=(|OutputForm|) (|List| #17#)))) #5#)) (|display| #14# (AND (|isDomain| *2 #16#) #5#)) (|display| #14# (AND (|isDomain| *2 (|Mapping| #17# #17#)) #5#)) (|input| #14# (AND (|isDomain| *2 #18=(|Mapping| #19=(|InputForm|) (|List| #19#))) #5#)) (|input| #1# (AND (|isDomain| *2 (|Maybe| #18#)) #5#)) (|has?| #20=(*1 *2 *1 *3) (AND #21=(|isDomain| *3 #22=(|Identifier|)) #11# #5#)) (|assert| #14# #23=(AND #24=(|isDomain| *2 #22#) #5#)) (|deleteProperty!| #14# (AND #25=(|isDomain| *2 #3#) #5#)) (|deleteProperty!| #14# #23#) (|property| #20# (|partial| AND (|isDomain| *3 #3#) (|isDomain| *2 #4#) #5#)) (|property| #20# (AND #21# (|isDomain| *2 (|Maybe| #4#)) #5#)) (|setProperty| #26=(*1 *1 *1 *2 *3) (AND #25# #27=(|isDomain| *3 #4#) #5#)) (|setProperty| #26# (AND #24# #27# #5#)) (|setProperties| #14# #2#))
+((|evaluate| (((|Union| #1=(|Mapping| |#1| #2=(|List| |#1|)) #3="failed") #4=(|BasicOperator|)) 23 T ELT) (#5=(#4# #4# (|Mapping| |#1| |#1|)) 13 T ELT) ((#4# #4# #1#) 11 T ELT) ((#6=(|Union| |#1| #3#) #4# #2#) 25 T ELT)) (|derivative| (((|Union| #7=(|List| #1#) #3#) #4#) 29 T ELT) (#5# 33 T ELT) ((#4# #4# #7#) 30 T ELT)) (|constantOperator| ((#4# |#1|) 63 T ELT)) (|constantOpIfCan| ((#6# #4#) 58 T ELT)))
+(((|BasicOperatorFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |evaluate| (#1=(|Union| |#1| #2="failed") #3=(|BasicOperator|) #4=(|List| |#1|))) (SIGNATURE |evaluate| (#3# #3# #5=(|Mapping| |#1| #4#))) (SIGNATURE |evaluate| #6=(#3# #3# (|Mapping| |#1| |#1|))) (SIGNATURE |evaluate| ((|Union| #5# #2#) #3#)) (SIGNATURE |derivative| (#3# #3# #7=(|List| #5#))) (SIGNATURE |derivative| #6#) (SIGNATURE |derivative| ((|Union| #7# #2#) #3#)) (SIGNATURE |constantOperator| (#3# |#1|)) (SIGNATURE |constantOpIfCan| (#1# #3#))) (|SetCategory|)) (T |BasicOperatorFunctions1|))
+((|constantOpIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *3 #3=(|BasicOperator|)) #4=(|isDomain| *1 (|BasicOperatorFunctions1| *2)) #5=(|ofCategory| *2 #6=(|SetCategory|)))) (|constantOperator| #1# (AND #7=(|isDomain| *2 #3#) (|isDomain| *1 (|BasicOperatorFunctions1| *3)) (|ofCategory| *3 #6#))) (|derivative| #1# (|partial| AND #2# (|isDomain| *2 #8=(|List| #9=(|Mapping| *4 (|List| *4)))) #10=(|isDomain| *1 (|BasicOperatorFunctions1| *4)) #11=(|ofCategory| *4 #6#))) (|derivative| #12=(*1 *2 *2 *3) #13=(AND #7# (|isDomain| *3 (|Mapping| *4 *4)) #11# #10#)) (|derivative| #12# (AND #7# (|isDomain| *3 #8#) #11# #10#)) (|evaluate| #1# (|partial| AND #2# (|isDomain| *2 #9#) #10# #11#)) (|evaluate| #12# #13#) (|evaluate| #12# (AND #7# (|isDomain| *3 #9#) #11# #10#)) (|evaluate| (*1 *2 *3 *4) (|partial| AND #2# (|isDomain| *4 (|List| *2)) #4# #5#)))
+((|integerBound| (((|Integer|) |#2|) 41 T ELT)))
+(((|BoundIntegerRoots| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integerBound| (#1=(|Integer|) |#2|))) (|Join| (|Field|) (|RetractableTo| (|Fraction| #1#))) (|UnivariatePolynomialCategory| |#1|)) (T |BoundIntegerRoots|))
+((|integerBound| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|RetractableTo| (|Fraction| *2)))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|BoundIntegerRoots| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(($ $) NIL T ELT)) (|unit?| #3#) (|subtractIfCan| #5=((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|sqrt| #8=(($ $ #9=(|Integer|)) NIL T ELT)) (|sizeLess?| #1#) (|sample| #10=(($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| #9#) #9#) NIL T ELT)) (|rem| #11=(($ $ $) NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|quotientByP| #4#) (|quo| #11#) (|principalIdeal| (((|Record| (|:| |coef| #12=(|List| $)) #13=(|:| |generator| $)) #12#) NIL T ELT)) (|order| #14=((#15=(|NonNegativeInteger|) $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|multiEuclidean| (((|Union| #12# #7#) #12# $) NIL T ELT)) (|modulus| ((#9#) NIL T ELT)) (|moduloP| ((#9# $) NIL T ELT)) (|lcm| #11# #16=(($ #12#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#17=(|SparseUnivariatePolynomial| $) #17# #17#) NIL T ELT)) (|gcd| #11# #16#) (|extendedEuclidean| (((|Record| #18=(|:| |coef1| $) #19=(|:| |coef2| $) #13#) $ $) NIL T ELT) (((|Union| (|Record| #18# #19#) #7#) $ $ $) NIL T ELT)) (|extend| #8#) (|exquo| #5#) (|expressIdealMember| (((|Maybe| #12#) #12# $) NIL T ELT)) (|euclideanSize| #14#) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|digits| (((|Stream| #9#) $) NIL T ELT)) (|complete| #4#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #9#) NIL T ELT) #4#) (|characteristic| ((#15#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|approximate| ((#9# $ #9#) NIL T ELT)) (|annihilate?| #1#) (|Zero| #10#) (|One| #10#) (= #1#) (- #4# #11#) (+ #11#) (** (($ $ #20=(|PositiveInteger|)) NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #20# $) NIL T ELT) (($ #15# $) NIL T ELT) (($ #9# $) NIL T ELT) #11#))
+(((|BalancedPAdicInteger| |#1|) (|PAdicIntegerCategory| |#1|) (|Integer|)) (T |BalancedPAdicInteger|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|BalancedPAdicInteger| |#1|) $) NIL #8=(|has| #7# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #9=(#10=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #7# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #9#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#19=(#20=(|Integer|) $) NIL #21=(|has| #7# (|OrderedIntegralDomain|)) ELT)) (|sample| #22=(#23=($) NIL T CONST)) (|retractIfCan| (((|Union| #7# . #24=(#13#)) . #25=($)) NIL T ELT) (((|Union| #26=(|Symbol|) . #24#) . #25#) NIL #27=(|has| #7# (|RetractableTo| #26#)) ELT) (((|Union| #28=(|Fraction| #20#) . #24#) . #25#) NIL #29=(|has| #7# (|RetractableTo| #20#)) ELT) (((|Union| #20# . #24#) . #25#) NIL #29# ELT)) (|retract| #30=(#6# NIL T ELT) ((#26# . #31=($)) NIL #27# ELT) ((#28# . #31#) NIL #29# ELT) (#19# NIL #29# ELT)) (|removeZeroes| #9# #32=(($ #20# $) NIL T ELT)) (|rem| #33=(#34=($ $ $) NIL T ELT)) (|reducedSystem| ((#35=(|Matrix| #20#) . #36=(#37=(|Matrix| $))) NIL #38=(|has| #7# (|LinearlyExplicitRingOver| #20#)) ELT) ((#39=(|Record| (|:| |mat| #35#) (|:| |vec| (|Vector| #20#))) . #40=(#37# #41=(|Vector| $))) NIL #38# ELT) ((#42=(|Record| (|:| |mat| #43=(|Matrix| #7#)) (|:| |vec| (|Vector| #7#))) . #40#) NIL T ELT) ((#43# . #36#) NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#23# NIL #44=(|has| #7# (|IntegerNumberSystem|)) ELT)) (|quo| #33#) (|principalIdeal| (((|Record| (|:| |coef| #45=(|List| $)) #46=(|:| |generator| $)) #45#) NIL T ELT)) (|prime?| #4#) (|positive?| #47=(#5# NIL #21# ELT)) (|patternMatch| ((#48=(|PatternMatchResult| #20# . #49=($)) $ #50=(|Pattern| #20#) #48#) NIL (|has| #7# (|PatternMatchable| #20#)) ELT) ((#51=(|PatternMatchResult| #52=(|Float|) . #49#) $ #53=(|Pattern| #52#) #51#) NIL (|has| #7# (|PatternMatchable| #52#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #9#) (|numer| #30#) (|nextItem| (#54=((|Maybe| $) $) NIL #55=(|has| #7# (|StepThrough|)) ELT)) (|negative?| #47#) (|multiEuclidean| (((|Union| #45# #13#) #45# $) NIL T ELT)) (|min| #56=(#34# NIL #57=(|has| #7# (|OrderedSet|)) ELT)) (|max| #56#) (|map| (($ #58=(|Mapping| #7# #7#) $) NIL T ELT)) (|leftReducedSystem| ((#35# . #59=(#41#)) NIL #38# ELT) ((#39# . #60=(#41# $)) NIL #38# ELT) ((#42# . #60#) NIL T ELT) ((#43# . #59#) NIL T ELT)) (|lcm| #33# #61=(($ #45#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #9#) (|init| (#23# NIL #55# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #33# #61#) (|fractionPart| (#10# NIL #8# ELT)) (|floor| #62=(#6# NIL #44# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #63=(|:| |coef1| $) #64=(|:| |coef2| $) #46#) $ $) NIL T ELT) (((|Union| (|Record| #63# #64#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #45#) #45# $) NIL T ELT)) (|eval| (($ $ #65=(|List| #7#) #65#) NIL #66=(|has| #7# (|Evalable| #7#)) ELT) (($ $ #7# #7#) NIL #66# ELT) (($ $ #67=(|Equation| #7#)) NIL #66# ELT) (($ $ (|List| #67#)) NIL #66# ELT) (($ $ #68=(|List| #26#) #65#) NIL #69=(|has| #7# (|InnerEvalable| #26# #7#)) ELT) (($ $ #26# #7#) NIL #69# ELT)) (|euclideanSize| ((#70=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#71=($ $ #7#) NIL (|has| #7# (|Eltable| #7# #7#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #72=(($ $ #58#) NIL T ELT) #73=(($ $ #58# #70#) NIL T ELT) #74=(($ $ #26#) NIL #75=(|has| #7# (|PartialDifferentialSpace| #26#)) ELT) #76=(($ $ #68#) NIL #75# ELT) #77=(($ $ #26# #70#) NIL #75# ELT) #78=(($ $ #68# (|List| #70#)) NIL #75# ELT) #79=(#10# NIL #80=(|has| #7# (|DifferentialSpace|)) ELT) #81=(#82=($ $ #70#) NIL #80# ELT)) (|denominator| #9#) (|denom| #30#) (|convert| ((#50# . #83=($)) NIL (|has| #7# (|ConvertibleTo| #50#)) ELT) ((#53# . #83#) NIL (|has| #7# (|ConvertibleTo| #53#)) ELT) ((#84=(|InputForm|) . #83#) NIL (|has| #7# (|ConvertibleTo| #84#)) ELT) ((#52# . #83#) NIL #85=(|has| #7# (|RealConstant|)) ELT) (((|DoubleFloat|) . #83#) NIL #85# ELT)) (|continuedFraction| (((|ContinuedFraction| #28#) $) NIL T ELT)) (|conditionP| (((|Union| #41# #13#) #37#) NIL #86=(AND (|has| $ #87=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) #9# (($ #28#) NIL T ELT) (($ #7#) NIL T ELT) (($ #26#) NIL #27# ELT)) (|charthRoot| (#54# NIL (OR #86# (|has| #7# #87#)) ELT)) (|characteristic| ((#70#) NIL T CONST)) (|ceiling| #62#) (|before?| #1#) (|associates?| #1#) (|approximate| ((#28# $ #20#) NIL T ELT)) (|annihilate?| #1#) (|abs| (#10# NIL #21# ELT)) (|Zero| #22#) (|One| #22#) (D #72# #73# #74# #76# #77# #78# #79# #81#) (>= #88=(#2# NIL #57# ELT)) (> #88#) (= #1#) (<= #88#) (< #88#) (/ #33# (($ #7# #7#) NIL T ELT)) (- #9# #33#) (+ #33#) (** (($ $ #89=(|PositiveInteger|)) NIL T ELT) (#82# NIL T ELT) (($ $ #20#) NIL T ELT)) (* (($ #89# $) NIL T ELT) (($ #70# $) NIL T ELT) #32# #33# (($ $ #28#) NIL T ELT) (($ #28# . #90=($)) NIL T ELT) (($ #7# . #90#) NIL T ELT) (#71# NIL T ELT)))
+(((|BalancedPAdicRational| |#1|) (|Join| (|QuotientFieldCategory| (|BalancedPAdicInteger| |#1|)) (CATEGORY |domain| (SIGNATURE |approximate| (#1=(|Fraction| #2=(|Integer|)) $ #2#)) (SIGNATURE |continuedFraction| ((|ContinuedFraction| #1#) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ #2# $)))) #2#) (T |BalancedPAdicRational|))
+((|approximate| (*1 *2 *1 *3) (AND (|isDomain| *2 #1=(|Fraction| #2=(|Integer|))) (|isDomain| *1 (|BalancedPAdicRational| *4)) (|ofType| *4 *3) (|isDomain| *3 #2#))) (|continuedFraction| (*1 *2 *1) (AND (|isDomain| *2 (|ContinuedFraction| #1#)) #3=(|isDomain| *1 (|BalancedPAdicRational| *3)) (|ofType| *3 #2#))) (|removeZeroes| (*1 *1 *1) (AND (|isDomain| *1 (|BalancedPAdicRational| *2)) (|ofType| *2 #2#))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 #2#) #3# (|ofType| *3 *2))))
+((|setelt| ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (|nodes| (#4=((|List| $) $) 31 T ELT)) (|node?| (#5=(#6=(|Boolean|) $ $) 36 T ELT)) (|leaves| (((|List| |#2|) $) 25 T ELT)) (|leaf?| (#7=(#6# $) 18 T ELT)) (|elt| ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (|cyclic?| (#7# 55 T ELT)) (|coerce| (((|OutputForm|) $) 46 T ELT)) (|children| (#4# 32 T ELT)) (= (#5# 38 T ELT)))
+(((|BinaryRecursiveAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = #1=(#2=(|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |setelt| (|#1| |#1| #3="right" |#1|)) (SIGNATURE |setelt| (|#1| |#1| #4="left" |#1|)) (SIGNATURE |elt| (|#1| |#1| #3#)) (SIGNATURE |elt| (|#1| |#1| #4#)) (SIGNATURE |setelt| (|#2| |#1| #5="value" |#2|)) (SIGNATURE |node?| #1#) (SIGNATURE |leaves| ((|List| |#2|) |#1|)) (SIGNATURE |cyclic?| #6=(#2# |#1|)) (SIGNATURE |elt| (|#2| |#1| #5#)) (SIGNATURE |leaf?| #6#) (SIGNATURE |nodes| #7=((|List| |#1|) |#1|)) (SIGNATURE |children| #7#)) (|BinaryRecursiveAggregate| |#2|) (|Type|)) (T |BinaryRecursiveAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| (($ $ $) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setleft!| (($ $ $) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #3="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #4=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sample| (#5=($) 6 T CONST)) (|right| (($ $) 54 T ELT)) (|nodes| (#6=(#4# $) 45 T ELT)) (|node?| (#7=(#8=(|Boolean|) $ $) 37 (|has| |#1| . #9=((|BasicType|))) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|left| (($ $) 56 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#10=(#8# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #11=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #11#) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT)) (|eq?| ((#12=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#12# $) 7 T ELT)) (|empty| (#5# 8 T ELT)) (|elt| ((|#1| $ #3#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|cyclic?| (#10# 41 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#6# 46 T ELT)) (|child?| (#7# 38 (|has| |#1| . #9#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|BinaryRecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |BinaryRecursiveAggregate|))
+((|left| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "left") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|right| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "right") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "left") (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setleft!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "right") (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setright!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |left| ($ $)) (SIGNATURE |elt| ($ $ "left")) (SIGNATURE |right| ($ $)) (SIGNATURE |elt| ($ $ "right")) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (PROGN (SIGNATURE |setelt| ($ $ "left" $)) (SIGNATURE |setleft!| ($ $ $)) (SIGNATURE |setelt| ($ $ "right" $)) (SIGNATURE |setright!| ($ $ $))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((|noLinearFactor?| (#1=(#2=(|Boolean|) |#1|) 29 T ELT)) (|brillhartTrials| ((#3=(|NonNegativeInteger|) #3#) 28 T ELT) ((#3#) 27 T ELT)) (|brillhartIrreducible?| ((#2# |#1| #2#) 30 T ELT) (#1# 31 T ELT)))
+(((|BrillhartTests| |#1|) (CATEGORY |package| (SIGNATURE |brillhartIrreducible?| #1=(#2=(|Boolean|) |#1|)) (SIGNATURE |brillhartIrreducible?| (#2# |#1| #2#)) (SIGNATURE |brillhartTrials| (#3=(|NonNegativeInteger|))) (SIGNATURE |brillhartTrials| (#3# #3#)) (SIGNATURE |noLinearFactor?| #1#)) (|UnivariatePolynomialCategory| (|Integer|))) (T |BrillhartTests|))
+((|noLinearFactor?| #1=(*1 *2 *3) #2=(AND (|isDomain| *2 (|Boolean|)) #3=(|isDomain| *1 (|BrillhartTests| *3)) #4=(|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|brillhartTrials| (*1 *2 *2) #5=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3# #4#)) (|brillhartTrials| (*1 *2) #5#) (|brillhartIrreducible?| (*1 *2 *3 *2) #2#) (|brillhartIrreducible?| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) 18 T ELT)) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (|setvalue!| ((|#1| $ |#1|) NIL #5=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| (#6=($ $ $) 21 #5# ELT)) (|setleft!| (#6# 23 #5# ELT)) (|setelt| ((|#1| $ #7="value" |#1|) NIL #5# ELT) (($ $ #8="left" $) NIL #5# ELT) (($ $ #9="right" $) NIL #5# ELT)) (|setchildren!| (($ $ #10=(|List| $)) NIL #5# ELT)) (|sample| (#11=($) NIL T CONST)) (|right| (#12=($ $) 20 T ELT)) (|reduce| ((|#1| #13=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #13# $ |#1|) NIL T ELT) ((|#1| #13# $) NIL T ELT)) (|nodes| #14=((#10# $) NIL T ELT)) (|node?| #1#) (|node| (($ $ |#1| $) 27 T ELT)) (|members| #15=((#16=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #17=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #17#) (|left| (#12# 22 T ELT)) (|leaves| #15#) (|leaf?| #18=(#19=(#3# $) NIL T ELT)) (|latex| (((|String|) $) NIL #20=(|has| |#1| (|SetCategory|)) ELT)) (|insertRoot!| (#21=($ |#1| $) 28 T ELT)) (|insert!| (#21# 15 T ELT)) (|hash| (((|SingleInteger|) $) NIL #20# ELT)) (|find| (((|Union| |#1| "failed") #22=(|Mapping| #3# |#1|) $) NIL T ELT)) (|every?| #23=((#3# #22# $) NIL T ELT)) (|eval| (($ $ (|List| #24=(|Equation| |#1|))) NIL #25=(AND (|has| |#1| (|Evalable| |#1|)) #20#) ELT) (($ $ #24#) NIL #25# ELT) (($ $ |#1| |#1|) NIL #25# ELT) (($ $ #16# #16#) NIL #25# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| (#19# 17 T ELT)) (|empty| (#11# 11 T ELT)) (|elt| ((|#1| $ #7#) NIL T ELT) (($ $ #8#) NIL T ELT) (($ $ #9#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| #18#) (|count| ((#26=(|NonNegativeInteger|) |#1| $) NIL #4# ELT) ((#26# #22# $) NIL T ELT)) (|copy| (#12# NIL T ELT)) (|coerce| ((#27=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #27#)) ELT)) (|children| #14#) (|child?| #1#) (|binarySearchTree| (($ #16#) 16 T ELT)) (|before?| #1#) (|any?| #23#) (= #1#) (|#| ((#26# $) NIL T ELT)))
+(((|BinarySearchTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |binarySearchTree| ($ (|List| |#1|))) (SIGNATURE |insert!| #1=($ |#1| $)) (SIGNATURE |insertRoot!| #1#) (SIGNATURE |split| ((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $)))) (|OrderedSet|)) (T |BinarySearchTree|))
+((|binarySearchTree| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 #2=(|OrderedSet|)) #3=(|isDomain| *1 #4=(|BinarySearchTree| *3)))) (|insert!| #5=(*1 *1 *2 *1) #6=(AND (|isDomain| *1 (|BinarySearchTree| *2)) (|ofCategory| *2 #2#))) (|insertRoot!| #5# #6#) (|split| (*1 *2 *3 *1) (AND (|isDomain| *2 (|Record| (|:| |less| #4#) (|:| |greater| #4#))) #3# #1#)))
+((~ (#1=($ $) 13 T ELT)) (|not| (#1# 11 T ELT)) (|nor| (#2=($ $ $) 23 T ELT)) (|nand| (#2# 21 T ELT)) (|\\/| (#2# 19 T ELT)) (|/\\| (#2# 17 T ELT)))
+(((|BitAggregate&| |#1|) (CATEGORY |package| (SIGNATURE |nor| #1=(|#1| |#1| |#1|)) (SIGNATURE |nand| #1#) (SIGNATURE ~ #2=(|#1| |#1|)) (SIGNATURE |/\\| #1#) (SIGNATURE |\\/| #1#) (SIGNATURE |not| #2#)) (|BitAggregate|)) (T |BitAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (~ (($ $) 105 T ELT)) (|xor| (($ $ $) 34 T ELT)) (|swap!| (((|Void|) $ #2=(|Integer|) #2#) 60 (|has| $ (|ShallowlyMutableAggregate| #3=(|Boolean|))) ELT)) (|sorted?| ((#4=(|Boolean|) $) 99 (|has| #3# . #5=((|OrderedSet|))) ELT) ((#4# (|Mapping| #4# #3# #3#) $) 93 T ELT)) (|sort!| (#6=($ $) 103 (AND (|has| #3# . #5#) (|has| $ (|ShallowlyMutableAggregate| #3#))) ELT) (($ (|Mapping| #4# #3# #3#) . #7=($)) 102 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|sort| (#6# 98 (|has| #3# . #5#) ELT) (($ (|Mapping| #4# #3# #3#) . #7#) 92 T ELT)) (|setelt| ((#3# $ #8=(|UniversalSegment| #2#) #3#) 78 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT) ((#3# $ #2# #3#) 48 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|select| (($ (|Mapping| #9=(|Boolean|) #3#) . #10=($)) 64 (|has| $ (|FiniteAggregate| #3#)) ELT)) (|sample| (#11=($) 41 T CONST)) (|reverse!| (#6# 101 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|reverse| (#6# 91 T ELT)) (|removeDuplicates| (($ $) 62 (AND (|has| #3# . #12=((|BasicType|))) (|has| $ (|FiniteAggregate| #3#))) ELT)) (|remove| (($ (|Mapping| #9# #3#) . #10#) 65 (|has| $ (|FiniteAggregate| #3#)) ELT) (($ #3# $) 63 (AND (|has| #3# . #12#) (|has| $ (|FiniteAggregate| #3#))) ELT)) (|reduce| ((#3# (|Mapping| #3# #3# #3#) $) 84 T ELT) ((#3# (|Mapping| #3# #3# #3#) $ #3#) 83 T ELT) ((#3# (|Mapping| #3# #3# #3#) $ #3# #3#) 79 (|has| #3# . #13=((|BasicType|))) ELT)) (|qsetelt!| ((#3# $ #2# #3#) 47 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|qelt| ((#3# $ #2#) 49 T ELT)) (|position| ((#14=(|Integer|) #3# $ #14#) 96 (|has| #3# . #15=((|BasicType|))) ELT) ((#14# #3# $) 95 (|has| #3# . #15#) ELT) ((#14# (|Mapping| #4# #3#) $) 94 T ELT)) (|or| (#16=($ $ $) 110 T ELT)) (|not| (($ $) 108 T ELT)) (|nor| (($ $ $) 35 T ELT)) (|new| (($ (|NonNegativeInteger|) #3#) 68 T ELT)) (|nand| (($ $ $) 36 T ELT)) (|minIndex| ((#2# . #17=($)) 57 (|has| #2# . #18=((|OrderedSet|))) ELT)) (|min| (#19=($ $ $) 23 T ELT)) (|merge| (($ $ $) 97 (|has| #3# . #5#) ELT) (($ (|Mapping| #4# #3# #3#) $ $) 90 T ELT)) (|members| (((|List| #3#) $) 85 T ELT)) (|member?| ((#20=(|Boolean|) #3# $) 80 (|has| #3# . #13#) ELT)) (|maxIndex| ((#2# . #17#) 56 (|has| #2# . #18#) ELT)) (|max| (#19# 22 T ELT)) (|map!| (($ (|Mapping| #3# #3#) $) 104 T ELT)) (|map| (($ (|Mapping| #3# #3# #3#) $ $) 73 T ELT) (($ (|Mapping| #3# #3#) $) 42 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|insert| (($ $ $ #2#) 77 T ELT) (($ #3# $ #2#) 76 T ELT)) (|indices| (((|List| #2#) $) 54 T ELT)) (|index?| ((#21=(|Boolean|) #2# $) 53 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| ((#3# $) 58 (|has| #2# . #18#) ELT)) (|find| (((|Union| #3# "failed") (|Mapping| #20# #3#) $) 82 T ELT)) (|fill!| (($ $ #3#) 59 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|every?| ((#20# (|Mapping| #20# #3#) . #22=($)) 87 T ELT)) (|eval| (($ $ (|List| #3#) (|List| #3#)) 46 (AND (|has| #3# (|Evalable| #3#)) (|has| #3# . #23=((|SetCategory|)))) ELT) (($ $ #3# #3#) 45 (AND (|has| #3# (|Evalable| #3#)) (|has| #3# . #23#)) ELT) (($ $ (|Equation| #3#)) 44 (AND (|has| #3# (|Evalable| #3#)) (|has| #3# . #23#)) ELT) (($ $ (|List| (|Equation| #3#))) 43 (AND (|has| #3# (|Evalable| #3#)) (|has| #3# . #23#)) ELT)) (|eq?| ((#24=(|Boolean|) $ $) 37 T ELT)) (|entry?| ((#21# #3# $) 55 (AND (|has| $ (|FiniteAggregate| #3#)) (|has| #3# (|BasicType|))) ELT)) (|entries| (((|List| #3#) $) 52 T ELT)) (|empty?| ((#24# $) 40 T ELT)) (|empty| (#11# 39 T ELT)) (|elt| (($ $ #8#) 67 T ELT) ((#3# $ #2#) 51 T ELT) ((#3# $ #2# #3#) 50 T ELT)) (|delete| (($ $ #8#) 75 T ELT) (($ $ #2#) 74 T ELT)) (|count| ((#25=(|NonNegativeInteger|) (|Mapping| #20# #3#) $) 86 T ELT) ((#25# #3# $) 81 (|has| #3# . #13#) ELT)) (|copyInto!| (($ $ $ #14#) 100 (|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|copy| (($ $) 38 T ELT)) (|convert| ((#26=(|InputForm|) $) 61 (|has| #3# (|ConvertibleTo| #26#)) ELT)) (|construct| (($ (|List| #3#)) 66 T ELT)) (|concat| (($ (|List| $)) 72 T ELT) (($ $ $) 71 T ELT) (($ #3# $) 70 T ELT) (($ $ #3#) 69 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|any?| ((#20# (|Mapping| #20# #3#) . #22#) 88 T ELT)) (|and| (#16# 109 T ELT)) (|\\/| (#27=($ $ $) 107 T ELT)) (>= (#28=((|Boolean|) $ $) 21 T ELT)) (> (#28# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#28# 20 T ELT)) (< (#28# 18 T ELT)) (|/\\| (#27# 106 T ELT)) (|#| ((#25# $) 89 T ELT)))
+(((|BitAggregate|) (|Category|)) (T |BitAggregate|))
+((|nand| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|nor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|xor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))))
+(|Join| (|OrderedSet|) (|BooleanLogic|) (|Logic|) (|OneDimensionalArrayAggregate| (|Boolean|)) (CATEGORY |domain| (SIGNATURE |nand| ($ $ $)) (SIGNATURE |nor| ($ $ $)) (SIGNATURE |xor| ($ $ $))))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|BooleanLogic|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| #1=(|Boolean|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Boolean|) (|ConvertibleTo| (|InputForm|))) ((|Eltable| #2=(|Integer|) #1#) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #2# #1#) . T) ((|Evalable| #1#) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|FiniteAggregate| #1#) . T) ((|FiniteLinearAggregate| #1#) . T) ((|Functorial| #1#) . T) ((|HomogeneousAggregate| #1#) . T) ((|IndexedAggregate| #2# #1#) . T) ((|InnerEvalable| #1# #1#) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| #1#) . T) ((|Logic|) . T) ((|OneDimensionalArrayAggregate| #1#) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| #1#) . T) ((|Type|) . T))
+((|map!| (($ (|Mapping| |#2| |#2|) $) 22 T ELT)) (|copy| (($ $) 16 T ELT)) (|#| (((|NonNegativeInteger|) $) 25 T ELT)))
+(((|BinaryTreeCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|BinaryTreeCategory| |#2|) (|SetCategory|)) (T |BinaryTreeCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| (#3=($ $ $) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setleft!| (#3# 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #4="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ #5="left" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ #6="right" $) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #7=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sample| (#8=($) 6 T CONST)) (|right| (#9=($ $) 54 T ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (|has| |#1| . #10=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 67 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 66 T ELT)) (|nodes| (#11=(#7# $) 45 T ELT)) (|node?| (#12=(#13=(|Boolean|) $ $) 37 (|has| |#1| . #14=((|BasicType|))) ELT)) (|node| (($ $ |#1| $) 59 T ELT)) (|members| (((|List| |#1|) $) 65 T ELT)) (|member?| ((#15=(|Boolean|) |#1| $) 70 (|has| |#1| . #10#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 60 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|left| (#9# 56 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#16=(#13# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #17=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #17#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #15# |#1|) $) 68 T ELT)) (|every?| ((#15# (|Mapping| #15# |#1|) . #18=($)) 63 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT)) (|eq?| ((#19=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#19# $) 7 T ELT)) (|empty| (#8# 8 T ELT)) (|elt| ((|#1| $ #4#) 42 T ELT) (($ $ #5#) 55 T ELT) (($ $ #6#) 53 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|cyclic?| (#16# 41 T ELT)) (|count| ((#20=(|NonNegativeInteger|) |#1| $) 69 (|has| |#1| . #10#) ELT) ((#20# (|Mapping| #15# |#1|) $) 64 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#11# 46 T ELT)) (|child?| (#12# 38 (|has| |#1| . #14#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#15# (|Mapping| #15# |#1|) . #18#) 62 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#20# $) 61 T ELT)))
+(((|BinaryTreeCategory| |#1|) (|Category|) (|SetCategory|)) (T |BinaryTreeCategory|))
+((|node| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|BinaryTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(|Join| (|BinaryRecursiveAggregate| |t#1|) (|FiniteAggregate| |t#1|) (|ShallowlyMutableAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |node| ($ $ |t#1| $))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|BinaryRecursiveAggregate| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) 18 T ELT)) (|setvalue!| ((|#1| $ |#1|) 22 #5=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| (#6=($ $ $) 23 #5# ELT)) (|setleft!| (#6# 21 #5# ELT)) (|setelt| ((|#1| $ #7="value" |#1|) NIL #5# ELT) (($ $ #8="left" $) NIL #5# ELT) (($ $ #9="right" $) NIL #5# ELT)) (|setchildren!| (($ $ #10=(|List| $)) NIL #5# ELT)) (|sample| (#11=($) NIL T CONST)) (|right| (#12=($ $) 24 T ELT)) (|reduce| ((|#1| #13=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #13# $ |#1|) NIL T ELT) ((|#1| #13# $) NIL T ELT)) (|nodes| #14=((#10# $) NIL T ELT)) (|node?| #1#) (|node| (($ $ |#1| $) NIL T ELT)) (|members| #15=((#16=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #17=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #17#) (|left| (#12# NIL T ELT)) (|leaves| #15#) (|leaf?| #18=(#19=(#3# $) NIL T ELT)) (|latex| (((|String|) $) NIL #20=(|has| |#1| (|SetCategory|)) ELT)) (|insert!| (($ |#1| $) 15 T ELT)) (|hash| (((|SingleInteger|) $) NIL #20# ELT)) (|find| (((|Union| |#1| "failed") #21=(|Mapping| #3# |#1|) $) NIL T ELT)) (|every?| #22=((#3# #21# $) NIL T ELT)) (|eval| (($ $ (|List| #23=(|Equation| |#1|))) NIL #24=(AND (|has| |#1| (|Evalable| |#1|)) #20#) ELT) (($ $ #23#) NIL #24# ELT) (($ $ |#1| |#1|) NIL #24# ELT) (($ $ #16# #16#) NIL #24# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| (#19# 17 T ELT)) (|empty| (#11# 11 T ELT)) (|elt| ((|#1| $ #7#) NIL T ELT) (($ $ #8#) NIL T ELT) (($ $ #9#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| #18#) (|count| ((#25=(|NonNegativeInteger|) |#1| $) NIL #4# ELT) ((#25# #21# $) NIL T ELT)) (|copy| (#12# 20 T ELT)) (|coerce| ((#26=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #26#)) ELT)) (|children| #14#) (|child?| #1#) (|binaryTournament| (($ #16#) 16 T ELT)) (|before?| #1#) (|any?| #22#) (= #1#) (|#| ((#25# $) NIL T ELT)))
+(((|BinaryTournament| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |binaryTournament| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)))) (|OrderedSet|)) (T |BinaryTournament|))
+((|binaryTournament| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 #1=(|OrderedSet|)) (|isDomain| *1 (|BinaryTournament| *3)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinaryTournament| *2)) (|ofCategory| *2 #1#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) 31 T ELT)) (|setvalue!| ((|#1| $ |#1|) 33 #5=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| (#6=($ $ $) 37 #5# ELT)) (|setleft!| (#6# 35 #5# ELT)) (|setelt| ((|#1| $ #7="value" |#1|) NIL #5# ELT) (($ $ #8="left" $) NIL #5# ELT) (($ $ #9="right" $) NIL #5# ELT)) (|setchildren!| (($ $ #10=(|List| $)) NIL #5# ELT)) (|sample| (#11=($) NIL T CONST)) (|right| (#12=($ $) 24 T ELT)) (|reduce| ((|#1| #13=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #13# $ |#1|) NIL T ELT) ((|#1| #13# $) NIL T ELT)) (|nodes| #14=((#10# $) NIL T ELT)) (|node?| #1#) (|node| (#15=($ $ |#1| $) 17 T ELT)) (|members| #16=((#17=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #18=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #18#) (|left| (#12# 23 T ELT)) (|leaves| #16#) (|leaf?| (#19=(#3# $) 26 T ELT)) (|latex| (((|String|) $) NIL #20=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #20# ELT)) (|find| (((|Union| |#1| "failed") #21=(|Mapping| #3# |#1|) $) NIL T ELT)) (|every?| #22=((#3# #21# $) NIL T ELT)) (|eval| (($ $ (|List| #23=(|Equation| |#1|))) NIL #24=(AND (|has| |#1| (|Evalable| |#1|)) #20#) ELT) (($ $ #23#) NIL #24# ELT) (($ $ |#1| |#1|) NIL #24# ELT) (($ $ #17# #17#) NIL #24# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| (#19# 21 T ELT)) (|empty| (#11# 13 T ELT)) (|elt| ((|#1| $ #7#) NIL T ELT) (($ $ #8#) NIL T ELT) (($ $ #9#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| (#19# NIL T ELT)) (|count| ((#25=(|NonNegativeInteger|) |#1| $) NIL #4# ELT) ((#25# #21# $) NIL T ELT)) (|copy| (#12# NIL T ELT)) (|coerce| ((#26=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #26#)) ELT)) (|children| #14#) (|child?| #1#) (|binaryTree| (($ |#1|) 19 T ELT) (#15# 18 T ELT)) (|before?| #1#) (|any?| #22#) (= (#2# 12 #4# ELT)) (|#| ((#25# $) NIL T ELT)))
+(((|BinaryTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |binaryTree| ($ |#1|)) (SIGNATURE |binaryTree| ($ $ |#1| $)))) (|SetCategory|)) (T |BinaryTree|))
+((|binaryTree| (*1 *1 *2) #1=(AND (|isDomain| *1 (|BinaryTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|binaryTree| (*1 *1 *1 *2 *1) #1#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (~ (($ $) 32 T ELT)) (|size| ((#3=(|NonNegativeInteger|)) 17 T ELT)) (|sample| (#4=($) 9 T CONST)) (|random| (#4# 27 T ELT)) (|min| #5=(#6=($ $ $) NIL T ELT) (#4# 15 T CONST)) (|max| #5# (#4# 16 T CONST)) (|lookup| ((#7=(|PositiveInteger|) $) 25 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #7#) 23 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|byte| (($ #3#) 8 T ELT)) (|bitior| (#6# 29 T ELT)) (|bitand| (#6# 28 T ELT)) (|before?| #1#) (|\\/| (#6# 31 T ELT)) (>= (#2# 14 T ELT)) (> (#2# 12 T ELT)) (= (#2# 10 T ELT)) (<= (#2# 13 T ELT)) (< (#2# 11 T ELT)) (|/\\| (#6# 30 T ELT)))
+(((|Byte|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |byte| ($ (|NonNegativeInteger|))) (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|)))) (T |Byte|))
+((|byte| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) #1=(|isDomain| *1 (|Byte|)))) (|bitand| #2=(*1 *1 *1 *1) #1#) (|bitior| #2# #1#) (|sample| (*1 *1) #1#))
+((|NonNegativeInteger|) (|%ilt| |#1| 256))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| #5=(|Byte|) (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #6=(|Integer|) #6#) NIL #7=(|has| $ (|ShallowlyMutableAggregate| #5#)) ELT)) (|sorted?| ((#3# #8=(|Mapping| #3# #5# #5#) $) NIL T ELT) (#9=(#3# $) NIL #10=(|has| #5# #11=(|OrderedSet|)) ELT)) (|sort!| (#12=($ #8# $) NIL #7# ELT) (#13=($ $) NIL (AND #7# #10#) ELT)) (|sort| (#12# NIL T ELT) (#13# NIL #10# ELT)) (|setelt| (#14=(#5# $ #6# #5#) 26 #7# ELT) ((#5# $ #15=(|UniversalSegment| #6#) #5#) NIL #7# ELT)) (|setLength!| ((#16=(|NonNegativeInteger|) $ #16#) 35 T ELT)) (|select| #17=(($ #18=(|Mapping| #3# #5#) $) NIL #19=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|sample| (#20=($) NIL T CONST)) (|reverse!| (#13# NIL #7# ELT)) (|reverse| #21=(#13# NIL T ELT)) (|removeDuplicates| (#13# NIL #22=(AND #19# #4#) ELT)) (|remove| (#23=($ #5# $) NIL #22# ELT) #17#) (|reduce| ((#5# #24=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #24# $ #5#) NIL T ELT) ((#5# #24# $) NIL T ELT)) (|qsetelt!| (#14# 25 #7# ELT)) (|qelt| (#25=(#5# $ #6#) 20 T ELT)) (|position| ((#6# #18# $) NIL T ELT) ((#6# #5# $) NIL #4# ELT) ((#6# #5# $ #6#) NIL #4# ELT)) (|new| (($ #16# #5#) 14 T ELT)) (|minIndex| (#26=(#6# $) 27 #27=(|has| #6# #11#) ELT)) (|min| #28=(#29=($ $ $) NIL #10# ELT)) (|merge| (($ #8# $ $) NIL T ELT) #28#) (|members| #30=((#31=(|List| #5#) $) NIL T ELT)) (|member?| (#32=(#3# #5# $) NIL #4# ELT)) (|maxIndex| (#26# 30 #27# ELT)) (|max| #28#) (|map!| #33=(($ (|Mapping| #5# #5#) $) NIL T ELT)) (|map| #33# (($ #24# $ $) NIL T ELT)) (|latex| (#34=((|String|) $) NIL #35=(|has| #5# (|SetCategory|)) ELT)) (|insert| (($ #5# $ #6#) NIL T ELT) (#36=($ $ $ #6#) NIL T ELT)) (|indices| (((|List| #6#) $) NIL T ELT)) (|index?| ((#3# #6# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #35# ELT)) (|first| ((#5# $) NIL #27# ELT)) (|find| (((|Union| #5# "failed") #18# $) NIL T ELT)) (|fill!| (#37=($ $ #5#) NIL #7# ELT)) (|every?| #38=((#3# #18# $) NIL T ELT)) (|eval| (($ $ (|List| #39=(|Equation| #5#))) NIL #40=(AND (|has| #5# (|Evalable| #5#)) #35#) ELT) (($ $ #39#) NIL #40# ELT) (($ $ #5# #5#) NIL #40# ELT) (($ $ #31# #31#) NIL #40# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#32# NIL #22# ELT)) (|entries| #30#) (|empty?| (#9# NIL T ELT)) (|empty| (#20# 12 T ELT)) (|elt| (#14# NIL T ELT) (#25# 23 T ELT) #41=(($ $ #15#) NIL T ELT)) (|delete| (($ $ #6#) NIL T ELT) #41#) (|count| ((#16# #5# $) NIL #4# ELT) ((#16# #18# $) NIL T ELT)) (|copyInto!| (#36# NIL #7# ELT)) (|copy| #21#) (|convert| ((#42=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #42#)) ELT)) (|construct| (($ #31#) 41 T ELT)) (|concat| (#37# NIL T ELT) (#23# NIL T ELT) (#29# 45 T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| (((|PrimitiveArray| #5#) $) 36 T ELT) (#34# 38 T ELT) ((#43=(|OutputForm|) $) NIL (|has| #5# (|CoercibleTo| #43#)) ELT)) (|capacity| (#44=(#16# $) 18 T ELT)) (|byteBuffer| (($ #16#) 8 T ELT)) (|before?| #1#) (|any?| #38#) (>= #45=(#2# NIL #10# ELT)) (> #45#) (= (#2# 33 #4# ELT)) (<= #45#) (< #45#) (|#| (#44# 15 T ELT)))
+(((|ByteBuffer|) (|Join| (|OneDimensionalArrayAggregate| #1=(|Byte|)) (|CoercibleTo| (|PrimitiveArray| #1#)) (|CoercibleTo| (|String|)) (CATEGORY |domain| (SIGNATURE |byteBuffer| ($ #2=(|NonNegativeInteger|))) (SIGNATURE |capacity| (#2# $)) (SIGNATURE |setLength!| (#2# $ #2#))))) (T |ByteBuffer|))
+((|byteBuffer| (*1 *1 *2) #1=(AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ByteBuffer|)))) (|capacity| (*1 *2 *1) #1#) (|setLength!| (*1 *2 *1 *2) #1#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|unknownEndian| (#3=($) 6 T CONST)) (|littleEndian| (#3# 7 T CONST)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 14 T ELT)) (|bigEndian| (#3# 8 T CONST)) (|before?| #1#) (= (#2# 10 T ELT)))
+(((|ByteOrder|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |littleEndian| #1=($) |constant|) (SIGNATURE |bigEndian| #1# |constant|) (SIGNATURE |unknownEndian| #1# |constant|)))) (T |ByteOrder|))
+((|littleEndian| #1=(*1 *1) #2=(|isDomain| *1 (|ByteOrder|))) (|bigEndian| #1# #2#) (|unknownEndian| #1# #2#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT)))
+(((|CancellationAbelianMonoid|) (|Category|)) (T |CancellationAbelianMonoid|))
+((|subtractIfCan| (*1 *1 *1 *1) (|partial| |ofCategory| *1 (|CancellationAbelianMonoid|))))
+(|Join| (|AbelianMonoid|) (CATEGORY |domain| (SIGNATURE |subtractIfCan| ((|Union| $ "failed") $ $))))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) 17 T ELT)) (|position| (((|NonNegativeInteger|) $) 18 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|CachableSet|) (|Category|)) (T |CachableSet|))
+((|position| (*1 *2 *1) (AND (|ofCategory| *1 (|CachableSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|setPosition| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|CachableSet|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |position| ((|NonNegativeInteger|) $)) (SIGNATURE |setPosition| ((|Void|) $ (|NonNegativeInteger|)))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (((|List| (|SpadAst|)) $) 12 T ELT)) (|before?| #1#) (= #1#))
+(((|CapsuleAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |body| ((|List| (|SpadAst|)) $))))) (T |CapsuleAst|))
+((|body| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CapsuleAst|)))))
+((~= (#1=(#2=(|Boolean|) $ $) 49 T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|retractIfCan| (((|Union| #6=(|NonNegativeInteger|) #7="failed") $) 60 T ELT)) (|retract| ((#6# $) 58 T ELT)) (|recip| ((#8=(|Union| $ #7#) $) NIL T ELT)) (|opposite?| #9=(#1# NIL T ELT)) (|one?| #3#) (|min| (#10=($ $ $) NIL T ELT)) (|max| (#10# 37 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generalizedContinuumHypothesisAssumed?| ((#2#) 61 T ELT)) (|generalizedContinuumHypothesisAssumed| ((#2# #2#) 63 T ELT)) (|finite?| (#4# 30 T ELT)) (|countable?| (#4# 57 T ELT)) (|coerce| (((|OutputForm|) $) 28 T ELT) (#11=($ #6#) 20 T ELT)) (|before?| #9#) (|Zero| (#5# 18 T CONST)) (|One| (#5# 19 T CONST)) (|Aleph| (#11# 21 T ELT)) (>= #9#) (> (#1# 40 T ELT)) (= (#1# 32 T ELT)) (<= #9#) (< (#1# 35 T ELT)) (- ((#8# $ $) 42 T ELT)) (+ (#10# 38 T ELT)) (** (($ $ #6#) NIL T ELT) (($ $ #12=(|PositiveInteger|)) NIL T ELT) (#10# 56 T ELT)) (* (($ #6# $) 48 T ELT) (($ #12# $) NIL T ELT) (#10# 45 T ELT)))
+(((|CardinalNumber|) (|Join| (|OrderedSet|) (|AbelianMonoid|) (|Monoid|) (|RetractableTo| #1=(|NonNegativeInteger|)) (CATEGORY |domain| (ATTRIBUTE (|commutative| "*")) (SIGNATURE - ((|Union| $ "failed") $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |Aleph| ($ #1#)) (SIGNATURE |finite?| #2=(#3=(|Boolean|) $)) (SIGNATURE |countable?| #2#) (SIGNATURE |generalizedContinuumHypothesisAssumed?| (#3#)) (SIGNATURE |generalizedContinuumHypothesisAssumed| (#3# #3#))))) (T |CardinalNumber|))
+((- #1=(*1 *1 *1 *1) (|partial| |isDomain| *1 #2=(|CardinalNumber|))) (** #1# #3=(|isDomain| *1 #2#)) (|Aleph| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) #3#)) (|finite?| #4=(*1 *2 *1) #5=(AND (|isDomain| *2 (|Boolean|)) #3#)) (|countable?| #4# #5#) (|generalizedContinuumHypothesisAssumed?| (*1 *2) #5#) (|generalizedContinuumHypothesisAssumed| (*1 *2 *2) #5#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|unravel| (#3=($ #4=(|List| |#3|)) 63 T ELT)) (|transpose| (#5=($ $) 125 T ELT) (#6=($ $ #7=(|Integer|) #7#) 124 T ELT)) (|sample| (#8=($) 17 T ELT)) (|retractIfCan| (((|Union| |#3| "failed") $) 86 T ELT)) (|retract| (#9=(|#3| $) NIL T ELT)) (|reindex| (($ $ #10=(|List| #7#)) 126 T ELT)) (|ravel| ((#4# $) 58 T ELT)) (|rank| (#11=((|NonNegativeInteger|) $) 68 T ELT)) (|product| (#12=($ $ $) 120 T ELT)) (|leviCivitaSymbol| (#8# 67 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|kroneckerDelta| (#8# 16 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#3| $ #7#) 72 T ELT) (#9# 71 T ELT) ((|#3| $ #7# #7#) 73 T ELT) ((|#3| $ #7# #7# #7#) 74 T ELT) ((|#3| $ #7# #7# #7# #7#) 75 T ELT) ((|#3| $ #10#) 76 T ELT)) (|degree| (#11# 69 T ELT)) (|contract| (($ $ #7# $ #7#) 121 T ELT) (#6# 123 T ELT)) (|coerce| (((|OutputForm|) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (|DirectProduct| |#2| |#3|)) 102 T ELT) (($ (|SquareMatrix| |#2| |#3|)) 105 T ELT) (#3# 77 T ELT) (($ (|List| $)) 83 T ELT)) (|before?| #1#) (|Zero| (#8# 96 T CONST)) (|One| (#8# 97 T CONST)) (= (#2# 107 T ELT)) (- (#5# 113 T ELT) (#12# 111 T ELT)) (+ (#12# 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ #7#) 116 T ELT) (($ #7# $) 115 T ELT) (#12# 122 T ELT)))
+(((|CartesianTensor| |#1| |#2| |#3|) (|Join| (|GradedAlgebra| |#3| #1=(|NonNegativeInteger|)) (|GradedModule| #2=(|Integer|) #1#) (|Eltable| #2# |#3|) (|CoercibleFrom| (|DirectProduct| |#2| |#3|)) (|CoercibleFrom| (|SquareMatrix| |#2| |#3|)) (|CoercibleFrom| #3=(|List| |#3|)) (|CoercibleFrom| (|List| $)) (CATEGORY |domain| (SIGNATURE |rank| (#1# $)) (SIGNATURE |elt| (|#3| $)) (SIGNATURE |elt| (|#3| $ #2# #2#)) (SIGNATURE |elt| (|#3| $ #2# #2# #2#)) (SIGNATURE |elt| (|#3| $ #2# #2# #2# #2#)) (SIGNATURE |elt| (|#3| $ #4=(|List| #2#))) (SIGNATURE |product| #5=($ $ $)) (SIGNATURE * #5#) (SIGNATURE |contract| ($ $ #2# $ #2#)) (SIGNATURE |contract| #6=($ $ #2# #2#)) (SIGNATURE |transpose| ($ $)) (SIGNATURE |transpose| #6#) (SIGNATURE |reindex| ($ $ #4#)) (SIGNATURE |kroneckerDelta| #7=($)) (SIGNATURE |leviCivitaSymbol| #7#) (SIGNATURE |ravel| (#3# $)) (SIGNATURE |unravel| ($ #3#)) (SIGNATURE |sample| #7#))) #2# #1# (|CommutativeRing|)) (T |CartesianTensor|))
+((|product| #1=(*1 *1 *1 *1) #2=(AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 #3=(|Integer|)) (|ofType| *3 #4=(|NonNegativeInteger|)) (|ofCategory| *4 #5=(|CommutativeRing|)))) (|rank| #6=(*1 *2 *1) (AND (|isDomain| *2 #4#) #7=(|isDomain| *1 (|CartesianTensor| *3 *4 *5)) #8=(|ofType| *3 #3#) (|ofType| *4 *2) #9=(|ofCategory| *5 #5#))) (|elt| #6# (AND #10=(|ofCategory| *2 #5#) (|isDomain| *1 (|CartesianTensor| *3 *4 *2)) #8# #11=(|ofType| *4 #4#))) (|elt| (*1 *2 *1 *3 *3) #12=(AND (|isDomain| *3 #3#) #10# #13=(|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3) #14=(|ofType| *5 #4#))) (|elt| (*1 *2 *1 *3 *3 *3) #12#) (|elt| (*1 *2 *1 *3 *3 *3 *3) #12#) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 #15=(|List| #3#)) #10# #13# (|ofType| *4 #3#) #14#)) (* #1# #2#) (|contract| (*1 *1 *1 *2 *1 *2) #16=(AND (|isDomain| *2 #3#) #7# (|ofType| *3 *2) #11# #9#)) (|contract| #17=(*1 *1 *1 *2 *2) #16#) (|transpose| (*1 *1 *1) #2#) (|transpose| #17# #16#) (|reindex| (*1 *1 *1 *2) (AND (|isDomain| *2 #15#) #7# #8# #11# #9#)) (|kroneckerDelta| #18=(*1 *1) #2#) (|leviCivitaSymbol| #18# #2#) (|ravel| #6# (AND #19=(|isDomain| *2 (|List| *5)) #7# #8# #11# #9#)) (|unravel| (*1 *1 *2) (AND #19# #9# #7# #8# #11#)) (|sample| #18# #2#))
+((|reshape| ((#1=(|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) #2=(|CartesianTensor| |#1| |#2| |#3|)) 14 T ELT)) (|map| ((#1# (|Mapping| |#4| |#3|) #2#) 18 T ELT)))
+(((|CartesianTensorFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |reshape| (#1=(|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) #2=(|CartesianTensor| |#1| |#2| |#3|))) (SIGNATURE |map| (#1# (|Mapping| |#4| |#3|) #2#))) (|Integer|) (|NonNegativeInteger|) #3=(|CommutativeRing|) #3#) (T |CartesianTensorFunctions2|))
+((|map| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *7)) #2=(|isDomain| *4 (|CartesianTensor| *5 *6 *7)) #3=(|ofType| *5 (|Integer|)) #4=(|ofType| *6 (|NonNegativeInteger|)) #5=(|ofCategory| *7 #6=(|CommutativeRing|)) #7=(|ofCategory| *8 #6#) #8=(|isDomain| *2 (|CartesianTensor| *5 *6 *8)) #9=(|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8)))) (|reshape| #1# (AND (|isDomain| *3 (|List| *8)) #2# #3# #4# #5# #7# #8# #9#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| (#2=((|SpadAst|) $) 12 T ELT)) (|lhs| (#2# 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|CaseAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |lhs| #1=((|SpadAst|) $)) (SIGNATURE |rhs| #1#)))) (T |CaseAst|))
+((|lhs| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|CaseAst|)))) (|rhs| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|kind| (((|ConstructorKind|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (((|List| (|SpadAst|)) $) 13 T ELT)) (|before?| #1#) (= #1#))
+(((|CategoryAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |kind| ((|ConstructorKind|) $)) (SIGNATURE |body| ((|List| (|SpadAst|)) $))))) (T |CategoryAst|))
+((|kind| #1=(*1 *2 *1) (AND (|isDomain| *2 (|ConstructorKind|)) #2=(|isDomain| *1 (|CategoryAst|)))) (|body| #1# (AND (|isDomain| *2 (|List| (|SpadAst|))) #2#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|operations| (((|List| (|OverloadSet|)) $) NIL T ELT)) (|name| ((#3=(|Identifier|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|kind| (((|ConstructorKind|) $) NIL T ELT)) (|is?| ((#2# $ #3#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dualSignature| (((|List| #2#) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (((|Constructor|) $) 6 T ELT)) (|before?| #1#) (|arity| (((|Arity|) $) NIL T ELT)) (= #1#))
+(((|CategoryConstructor|) (|Join| (|ConstructorCategory|) (|CoercibleTo| (|Constructor|)))) (T |CategoryConstructor|))
+NIL
+((|principalAncestors| (#1=((|List| (|ConstructorCall| #2=(|CategoryConstructor|))) $) 13 T ELT)) (|parents| (#1# 14 T ELT)) (|exportedOperators| (((|List| (|OperatorSignature|)) $) 10 T ELT)) (|constructor| ((#2# $) 7 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)))
+(((|Category|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |constructor| (#1=(|CategoryConstructor|) $)) (SIGNATURE |exportedOperators| ((|List| (|OperatorSignature|)) $)) (SIGNATURE |principalAncestors| #2=((|List| (|ConstructorCall| #1#)) $)) (SIGNATURE |parents| #2#)))) (T |Category|))
+((|constructor| #1=(*1 *2 *1) (AND (|isDomain| *2 #2=(|CategoryConstructor|)) #3=(|isDomain| *1 (|Category|)))) (|exportedOperators| #1# (AND (|isDomain| *2 (|List| (|OperatorSignature|))) #3#)) (|principalAncestors| #1# #4=(AND (|isDomain| *2 (|List| (|ConstructorCall| #2#))) #3#)) (|parents| #1# #4#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|upperCase| (#4=($) 17 T CONST)) (|universe| #5=(#4# NIL #6=(|has| #7=(|Character|) (|Finite|)) ELT)) (|union| (#8=($ $ $) 19 T ELT) #9=(($ $ #7#) NIL T ELT) (#10=($ #7# $) NIL T ELT)) (|symmetricDifference| (#8# NIL T ELT)) (|subset?| #1#) (|size| ((#11=(|NonNegativeInteger|)) NIL #6# ELT)) (|set| #12=(#4# NIL T ELT) #13=(#14=($ #15=(|List| #7#)) NIL T ELT)) (|select!| #16=(($ #17=(|Mapping| #3# #7#) $) NIL #18=(|has| $ (|FiniteAggregate| #7#)) ELT)) (|select| #16#) (|sample| (#4# NIL T CONST)) (|removeDuplicates| (#19=($ $) NIL #20=(AND #18# #21=(|has| #7# (|BasicType|))) ELT)) (|remove!| #16# (#10# 56 #18# ELT)) (|remove| #16# (#10# NIL #20# ELT)) (|reduce| ((#7# #22=(|Mapping| #7# #7# #7#) $) NIL T ELT) ((#7# #22# $ #7#) NIL T ELT) ((#7# #22# $ #7# #7#) NIL #21# ELT)) (|random| #5#) (|part?| #1#) (|min| #23=(#24=(#7# $) NIL (|has| #7# (|OrderedSet|)) ELT)) (|members| (#25=(#15# $) 65 T ELT)) (|member?| ((#3# #7# $) 29 #21# ELT)) (|max| #23#) (|map!| (#26=($ (|Mapping| #7# #7#) $) 64 T ELT)) (|map| (#26# 60 T ELT)) (|lowerCase| (#4# 18 T CONST)) (|lookup| ((#27=(|PositiveInteger|) $) NIL #6# ELT)) (|latex| (#28=(#29=(|String|) $) NIL T ELT)) (|intersect| (#8# 32 T ELT)) (|inspect| (#24# 57 T ELT)) (|insert!| (#10# 55 T ELT)) (|index| (($ #27#) NIL #6# ELT)) (|hexDigit| (#4# 16 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| (((|Union| #7# "failed") #17# $) NIL T ELT)) (|extract!| (#24# 58 T ELT)) (|every?| #30=((#3# #17# $) NIL T ELT)) (|eval| (($ $ #15# #15#) NIL #31=(AND (|has| #7# (|Evalable| #7#)) (|has| #7# (|SetCategory|))) ELT) (($ $ #7# #7#) NIL #31# ELT) (($ $ #32=(|Equation| #7#)) NIL #31# ELT) (($ $ (|List| #32#)) NIL #31# ELT)) (|eq?| #1#) (|empty?| ((#3# $) NIL T ELT)) (|empty| (#4# 53 T ELT)) (|digit| (#4# 15 T CONST)) (|difference| (#8# 34 T ELT) #9#) (|dictionary| #13# #12#) (|count| ((#11# #17# $) NIL T ELT) ((#11# #7# $) NIL #21# ELT)) (|copy| (#19# NIL T ELT)) (|convert| (#28# 39 T ELT) ((#33=(|InputForm|) $) NIL (|has| #7# (|ConvertibleTo| #33#)) ELT) (#25# 37 T ELT)) (|construct| #13#) (|complement| (#19# 35 #6# ELT)) (|coerce| (((|OutputForm|) $) 51 T ELT)) (|charClass| (($ #29#) 14 T ELT) (#14# 48 T ELT)) (|cardinality| (#34=(#11# $) NIL T ELT)) (|brace| (#4# 54 T ELT) #13#) (|before?| #1#) (|bag| #13#) (|any?| #30#) (|alphanumeric| (#4# 21 T CONST)) (|alphabetic| (#4# 20 T CONST)) (= (#2# 26 T ELT)) (|#| (#34# 52 T ELT)))
+(((|CharacterClass|) (|Join| (|SetCategory|) (|ConvertibleTo| #1=(|String|)) (|FiniteSetAggregate| #2=(|Character|)) (|ConvertibleTo| #3=(|List| #2#)) (CATEGORY |domain| (SIGNATURE |charClass| ($ #1#)) (SIGNATURE |charClass| ($ #3#)) (SIGNATURE |digit| #4=($) |constant|) (SIGNATURE |hexDigit| #4# |constant|) (SIGNATURE |upperCase| #4# |constant|) (SIGNATURE |lowerCase| #4# |constant|) (SIGNATURE |alphabetic| #4# |constant|) (SIGNATURE |alphanumeric| #4# |constant|)))) (T |CharacterClass|))
+((|charClass| #1=(*1 *1 *2) (AND (|isDomain| *2 (|String|)) #2=(|isDomain| *1 (|CharacterClass|)))) (|charClass| #1# (AND (|isDomain| *2 (|List| (|Character|))) #2#)) (|digit| #3=(*1 *1) #2#) (|hexDigit| #3# #2#) (|upperCase| #3# #2#) (|lowerCase| #3# #2#) (|alphabetic| #3# #2#) (|alphanumeric| #3# #2#))
+((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (|commonDenominator| ((|#1| |#3|) 9 T ELT)) (|clearDenominator| ((|#3| |#3|) 15 T ELT)))
+(((|CommonDenominator| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|FiniteLinearAggregate| |#2|)) (T |CommonDenominator|))
+((|splitDenominator| #1=(*1 *2 *3) (AND (|ofCategory| *4 #2=(|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))) (|isDomain| *1 (|CommonDenominator| *4 *5 *3)) (|ofCategory| *3 (|FiniteLinearAggregate| *5)))) (|clearDenominator| (*1 *2 *2) (AND (|ofCategory| *3 #2#) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|CommonDenominator| *3 *4 *2)) (|ofCategory| *2 #3=(|FiniteLinearAggregate| *4)))) (|commonDenominator| #1# (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 #2#) (|isDomain| *1 (|CommonDenominator| *2 *4 *3)) (|ofCategory| *3 #3#))))
+((|permutation| (($ $ $) 8 T ELT)) (|factorial| (($ $) 7 T ELT)) (|binomial| (($ $ $) 6 T ELT)))
+(((|CombinatorialFunctionCategory|) (|Category|)) (T |CombinatorialFunctionCategory|))
+((|permutation| (*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|))) (|factorial| (*1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|))) (|binomial| (*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |binomial| ($ $ $)) (SIGNATURE |factorial| ($ $)) (SIGNATURE |permutation| ($ $ $))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|verticalTab| (#4=($) 30 T CONST)) (|upperCase?| (#5=(#3# $) 42 T ELT)) (|upperCase| (#6=($ $) 52 T ELT)) (|underscore| (#4# 23 T CONST)) (|space| (#4# 21 T CONST)) (|size| ((#7=(|NonNegativeInteger|)) 13 T ELT)) (|random| (#4# 20 T ELT)) (|quote| (#4# 22 T CONST)) (|ord| ((#7# $) 17 T ELT)) (|newline| (#4# 24 T CONST)) (|min| #8=(($ $ $) NIL T ELT) #9=(#4# NIL T CONST)) (|max| #8# #9#) (|lowerCase?| (#5# 44 T ELT)) (|lowerCase| (#6# 53 T ELT)) (|lookup| ((#10=(|PositiveInteger|) $) 18 T ELT)) (|linefeed| (#4# 26 T CONST)) (|latex| ((#11=(|String|) $) 50 T ELT)) (|index| (($ #10#) 16 T ELT)) (|horizontalTab| (#4# 29 T CONST)) (|hexDigit?| (#5# 40 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|formfeed| (#4# 27 T CONST)) (|escape| (#4# 31 T CONST)) (|digit?| (#5# 38 T ELT)) (|coerce| (((|OutputForm|) $) 33 T ELT)) (|char| (($ #7#) 14 T ELT) (($ #11#) 51 T ELT)) (|carriageReturn| (#4# 25 T CONST)) (|before?| #1#) (|backspace| (#4# 28 T CONST)) (|alphanumeric?| (#5# 48 T ELT)) (|alphabetic?| (#5# 46 T ELT)) (>= (#2# 11 T ELT)) (> (#2# 9 T ELT)) (= (#2# 7 T ELT)) (<= (#2# 10 T ELT)) (< (#2# 8 T ELT)))
+(((|Character|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |ord| (#1=(|NonNegativeInteger|) $)) (SIGNATURE |char| ($ #1#)) (SIGNATURE |char| ($ (|String|))) (SIGNATURE |space| #2=($) |constant|) (SIGNATURE |quote| #2# |constant|) (SIGNATURE |underscore| #2# |constant|) (SIGNATURE |newline| #2# |constant|) (SIGNATURE |carriageReturn| #2# |constant|) (SIGNATURE |linefeed| #2# |constant|) (SIGNATURE |formfeed| #2# |constant|) (SIGNATURE |backspace| #2# |constant|) (SIGNATURE |horizontalTab| #2# |constant|) (SIGNATURE |verticalTab| #2# |constant|) (SIGNATURE |escape| #2# |constant|) (SIGNATURE |upperCase| #3=($ $)) (SIGNATURE |lowerCase| #3#) (SIGNATURE |digit?| #4=((|Boolean|) $)) (SIGNATURE |hexDigit?| #4#) (SIGNATURE |alphabetic?| #4#) (SIGNATURE |upperCase?| #4#) (SIGNATURE |lowerCase?| #4#) (SIGNATURE |alphanumeric?| #4#)))) (T |Character|))
+((|ord| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3=(|isDomain| *1 (|Character|)))) (|char| #4=(*1 *1 *2) #2#) (|char| #4# (AND (|isDomain| *2 (|String|)) #3#)) (|space| #5=(*1 *1) #3#) (|quote| #5# #3#) (|underscore| #5# #3#) (|newline| #5# #3#) (|carriageReturn| #5# #3#) (|linefeed| #5# #3#) (|formfeed| #5# #3#) (|backspace| #5# #3#) (|horizontalTab| #5# #3#) (|verticalTab| #5# #3#) (|escape| #5# #3#) (|upperCase| #6=(*1 *1 *1) #3#) (|lowerCase| #6# #3#) (|digit?| #1# #7=(AND (|isDomain| *2 (|Boolean|)) #3#)) (|hexDigit?| #1# #7#) (|alphabetic?| #1# #7#) (|upperCase?| #1# #7#) (|lowerCase?| #1# #7#) (|alphanumeric?| #1# #7#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|charthRoot| (((|Maybe| $) $) 47 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|CharacteristicNonZero|) (|Category|)) (T |CharacteristicNonZero|))
+((|charthRoot| (*1 *2 *1) (AND (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|CharacteristicNonZero|)))))
+(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |charthRoot| ((|Maybe| $) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) 19 T ELT)))
+(((|CharacteristicPolynomialPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#1| (|Matrix| |#1|) |#1|))) (|CommutativeRing|)) (T |CharacteristicPolynomialPackage|))
+((|characteristicPolynomial| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Matrix| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CharacteristicPolynomialPackage| *2)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|CharacteristicZero|) (|Category|)) (T |CharacteristicZero|))
+NIL
+(|Join| (|Ring|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|rootPoly| (((|Record| (|:| |exponent| #1=(|NonNegativeInteger|)) #2=(|:| |coef| #3=(|Fraction| |#2|)) (|:| |radicand| |#2|)) #3# #1#) 76 T ELT)) (|radPoly| (((|Union| (|Record| (|:| |radicand| #3#) #4=(|:| |deg| #1#)) "failed") |#3|) 56 T ELT)) (|mkIntegral| (((|Record| #2# #5=(|:| |poly| |#3|)) |#3|) 41 T ELT)) (|goodPoint| ((|#1| |#3| |#3|) 44 T ELT)) (|eval| ((|#3| |#3| #3# #3#) 20 T ELT)) (|chvar| (((|Record| (|:| |func| |#3|) #5# (|:| |c1| #3#) (|:| |c2| #3#) #4#) |#3| |#3|) 53 T ELT)))
+(((|ChangeOfVariable| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |mkIntegral| ((|Record| #1=(|:| |coef| #2=(|Fraction| |#2|)) #3=(|:| |poly| |#3|)) |#3|)) (SIGNATURE |radPoly| ((|Union| (|Record| (|:| |radicand| #2#) #4=(|:| |deg| #5=(|NonNegativeInteger|))) "failed") |#3|)) (SIGNATURE |rootPoly| ((|Record| (|:| |exponent| #5#) #1# (|:| |radicand| |#2|)) #2# #5#)) (SIGNATURE |goodPoint| (|#1| |#3| |#3|)) (SIGNATURE |eval| (|#3| |#3| #2# #2#)) (SIGNATURE |chvar| ((|Record| (|:| |func| |#3|) #3# (|:| |c1| #2#) (|:| |c2| #2#) #4#) |#3| |#3|))) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| #2#)) (T |ChangeOfVariable|))
+((|chvar| #1=(*1 *2 *3 *3) (AND #2=(|ofCategory| *4 #3=(|UniqueFactorizationDomain|)) #4=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Record| (|:| |func| *3) #5=(|:| |poly| *3) (|:| |c1| #6=(|Fraction| *5)) (|:| |c2| #6#) #7=(|:| |deg| #8=(|NonNegativeInteger|)))) #9=(|isDomain| *1 (|ChangeOfVariable| *4 *5 *3)) #10=(|ofCategory| *3 (|UnivariatePolynomialCategory| #6#)))) (|eval| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 #6#) #2# #4# (|isDomain| *1 (|ChangeOfVariable| *4 *5 *2)) (|ofCategory| *2 #11=(|UnivariatePolynomialCategory| *3)))) (|goodPoint| #1# (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 #3#) (|isDomain| *1 (|ChangeOfVariable| *2 *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|rootPoly| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| *6)) (|ofCategory| *5 #3#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|Record| (|:| |exponent| #8#) (|:| |coef| *3) (|:| |radicand| *6))) (|isDomain| *1 (|ChangeOfVariable| *5 *6 *7)) (|isDomain| *4 #8#) (|ofCategory| *7 #11#))) (|radPoly| #12=(*1 *2 *3) (|partial| AND #2# #4# (|isDomain| *2 (|Record| (|:| |radicand| #6#) #7#)) #9# #10#)) (|mkIntegral| #12# (AND #2# #4# (|isDomain| *2 (|Record| (|:| |coef| #6#) #5#)) #9# #10#)))
+((|solveLinearPolynomialEquation| (((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#2|)) "failed") #1# #2#) 35 T ELT)))
+(((|ComplexIntegerSolveLinearPolynomialEquation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#2|)) "failed") #1# #2#))) (|IntegerNumberSystem|) (|ComplexCategory| |#1|)) (T |ComplexIntegerSolveLinearPolynomialEquation|))
+((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| #1=(|SparseUnivariatePolynomial| *5))) (|isDomain| *3 #1#) (|ofCategory| *5 (|ComplexCategory| *4)) (|ofCategory| *4 (|IntegerNumberSystem|)) (|isDomain| *1 (|ComplexIntegerSolveLinearPolynomialEquation| *4 *5)))))
+((|select| (#1=($ (|Mapping| (|Boolean|) |#2|) $) 16 T ELT)) (|removeDuplicates| (($ $) 21 T ELT)) (|remove| (#1# 14 T ELT) (($ |#2| $) 19 T ELT)))
+(((|Collection&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |removeDuplicates| (|#1| |#1|)) (SIGNATURE |remove| (|#1| |#2| |#1|)) (SIGNATURE |select| #1=(|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove| #1#)) (|Collection| |#2|) (|Type|)) (T |Collection&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 38 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#3=($) 6 T CONST)) (|removeDuplicates| (($ $) 36 (AND (|has| |#1| (|BasicType|)) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) 39 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ |#1| $) 37 (AND (|has| |#1| (|BasicType|)) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #4=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #4#) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT)) (|eq?| ((#5=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#5# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| (((|InputForm|) $) 35 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT)) (|construct| (($ (|List| |#1|)) 40 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|Collection| |#1|) (|Category|) (|Type|)) (T |Collection|))
+((|construct| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|Collection| *3)))) (|remove| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *1 (|Collection| *3)) (|ofCategory| *3 (|Type|)))) (|select| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *1 (|Collection| *3)) (|ofCategory| *3 (|Type|)))) (|remove| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *1 (|Collection| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|)))) (|removeDuplicates| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *1 (|Collection| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|)))))
+(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |construct| ($ (|List| |t#1|))) (IF (|has| $ (|FiniteAggregate| |t#1|)) (PROGN (SIGNATURE |remove| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|BasicType|)) (PROGN (SIGNATURE |remove| ($ |t#1| $)) (SIGNATURE |removeDuplicates| ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|subtractIfCan| ((#5=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|recip| ((#5# $) 113 T ELT)) (|opposite?| #1#) (|one?| #4#) (|monomial| (($ |#2| #7=(|List| #8=(|PositiveInteger|))) 72 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|e| (($ #8#) 58 T ELT)) (|dimension| (((|CardinalNumber|)) 23 T ELT)) (|coerce| (((|OutputForm|) $) 88 T ELT) (($ #9=(|Integer|)) 54 T ELT) (($ |#2|) 55 T ELT)) (|coefficient| ((|#2| $ #7#) 75 T ELT)) (|characteristic| ((#10=(|NonNegativeInteger|)) 20 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#6# 48 T CONST)) (|One| (#6# 52 T CONST)) (= (#2# 34 T ELT)) (/ #11=(($ $ |#2|) NIL T ELT)) (- (($ $) 43 T ELT) (#12=($ $ $) 41 T ELT)) (+ (#12# 39 T ELT)) (** (($ $ #8#) NIL T ELT) (($ $ #10#) NIL T ELT)) (* (($ #8# $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #9# $) 45 T ELT) (#12# 64 T ELT) (($ |#2| $) 47 T ELT) #11#))
+(((|CliffordAlgebra| |#1| |#2| |#3|) (|Join| (|Ring|) (|Algebra| |#2|) (|VectorSpace| |#2|) (CATEGORY |domain| (SIGNATURE |e| ($ #1=(|PositiveInteger|))) (SIGNATURE |monomial| ($ |#2| #2=(|List| #1#))) (SIGNATURE |coefficient| (|#2| $ #2#)) (SIGNATURE |recip| ((|Union| $ "failed") $)))) #1# (|Field|) (|QuadraticForm| |#1| |#2|)) (T |CliffordAlgebra|))
+((|recip| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|CliffordAlgebra| *2 *3 *4)) (|ofType| *2 #1=(|PositiveInteger|)) (|ofCategory| *3 #2=(|Field|)) (|ofType| *4 (|QuadraticForm| *2 *3)))) (|e| (*1 *1 *2) (AND (|isDomain| *2 #1#) (|isDomain| *1 (|CliffordAlgebra| *3 *4 *5)) (|ofType| *3 *2) (|ofCategory| *4 #2#) (|ofType| *5 (|QuadraticForm| *3 *4)))) (|monomial| (*1 *1 *2 *3) (AND #3=(|isDomain| *3 (|List| #1#)) #4=(|isDomain| *1 (|CliffordAlgebra| *4 *2 *5)) #5=(|ofType| *4 #1#) #6=(|ofCategory| *2 #2#) #7=(|ofType| *5 (|QuadraticForm| *4 *2)))) (|coefficient| (*1 *2 *1 *3) (AND #3# #6# #4# #5# #7#)))
+((|clipWithRanges| ((#1=(|Record| (|:| |brans| #2=(|List| #3=(|List| (|Point| #4=(|DoubleFloat|))))) (|:| |xValues| #5=(|Segment| #4#)) (|:| |yValues| #5#)) #2# #4# #4# #4# #4#) 59 T ELT)) (|clipParametric| (#6=(#1# #7=(|Plot|) #8=(|Fraction| (|Integer|)) #8#) 95 T ELT) (#9=(#1# #7#) 96 T ELT)) (|clip| ((#1# #2#) 99 T ELT) ((#1# #3#) 98 T ELT) (#6# 89 T ELT) (#9# 90 T ELT)))
+(((|TwoDimensionalPlotClipping|) (CATEGORY |package| (SIGNATURE |clip| #1=(#2=(|Record| (|:| |brans| #3=(|List| #4=(|List| (|Point| #5=(|DoubleFloat|))))) (|:| |xValues| #6=(|Segment| #5#)) (|:| |yValues| #6#)) #7=(|Plot|))) (SIGNATURE |clip| #8=(#2# #7# #9=(|Fraction| (|Integer|)) #9#)) (SIGNATURE |clipParametric| #1#) (SIGNATURE |clipParametric| #8#) (SIGNATURE |clipWithRanges| (#2# #3# #5# #5# #5# #5#)) (SIGNATURE |clip| (#2# #4#)) (SIGNATURE |clip| (#2# #3#)))) (T |TwoDimensionalPlotClipping|))
+((|clip| #1=(*1 *2 *3) (AND #2=(|isDomain| *2 (|Record| (|:| |brans| #3=(|List| #4=(|List| (|Point| #5=(|DoubleFloat|))))) (|:| |xValues| #6=(|Segment| #5#)) (|:| |yValues| #6#))) #7=(|isDomain| *1 (|TwoDimensionalPlotClipping|)) (|isDomain| *3 #3#))) (|clip| #1# (AND #2# #7# (|isDomain| *3 #4#))) (|clipWithRanges| (*1 *2 *3 *4 *4 *4 *4) (AND (|isDomain| *4 #5#) (|isDomain| *2 (|Record| (|:| |brans| #8=(|List| (|List| (|Point| *4)))) (|:| |xValues| #9=(|Segment| *4)) (|:| |yValues| #9#))) #7# (|isDomain| *3 #8#))) (|clipParametric| #10=(*1 *2 *3 *4 *4) #11=(AND #12=(|isDomain| *3 (|Plot|)) (|isDomain| *4 (|Fraction| (|Integer|))) #2# #7#)) (|clipParametric| #1# #13=(AND #12# #2# #7#)) (|clip| #10# #11#) (|clip| #1# #13#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|iterators| (((|List| #2=(|SpadAst|)) $) 20 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 27 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|body| ((#2# $) 10 T ELT)) (|before?| #1#) (= #1#))
+(((|CollectAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |iterators| ((|List| #1=(|SpadAst|)) $)) (SIGNATURE |body| (#1# $))))) (T |CollectAst|))
+((|iterators| #1=(*1 *2 *1) (AND (|isDomain| *2 (|List| #2=(|SpadAst|))) #3=(|isDomain| *1 (|CollectAst|)))) (|body| #1# (AND (|isDomain| *2 #2#) #3#)))
+((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) 50 T ELT)))
+(((|ComplexRootPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexZeros| ((|List| (|Complex| |#2|)) |#1| |#2|))) (|UnivariatePolynomialCategory| (|Complex| (|Integer|))) (|Join| (|Field|) (|OrderedRing|))) (T |ComplexRootPackage|))
+((|complexZeros| (*1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Complex| *4))) (|isDomain| *1 (|ComplexRootPackage| *3 *4)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| (|Integer|)))) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| (((|TypeAst|) $) 13 T ELT)) (|lhs| (((|SpadAst|) $) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|ColonAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |lhs| ((|SpadAst|) $)) (SIGNATURE |rhs| ((|TypeAst|) $))))) (T |ColonAst|))
+((|lhs| #1=(*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) #2=(|isDomain| *1 (|ColonAst|)))) (|rhs| #1# (AND (|isDomain| *2 (|TypeAst|)) #2#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|yellow| (#3=($) 38 T ELT)) (|red| (#3# 37 T ELT)) (|numberOfHues| ((#4=(|PositiveInteger|)) 43 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hue| ((#5=(|Integer|) $) 41 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|green| (#3# 39 T ELT)) (|color| (($ #5#) 44 T ELT)) (|coerce| (((|OutputForm|) $) 50 T ELT)) (|blue| (#3# 40 T ELT)) (|before?| #1#) (= (#2# 35 T ELT)) (+ (($ $ $) 32 T ELT)) (* (($ #4# $) 42 T ELT) (($ (|DoubleFloat|) $) 11 T ELT)))
+(((|Color|) (|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE * ($ #1=(|PositiveInteger|) $)) (SIGNATURE * ($ (|DoubleFloat|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE |red| #2=($)) (SIGNATURE |yellow| #2#) (SIGNATURE |green| #2#) (SIGNATURE |blue| #2#) (SIGNATURE |hue| (#3=(|Integer|) $)) (SIGNATURE |numberOfHues| (#1#)) (SIGNATURE |color| ($ #3#))))) (T |Color|))
+((+ (*1 *1 *1 *1) #1=(|isDomain| *1 (|Color|))) (* #2=(*1 *1 *2 *1) #3=(AND (|isDomain| *2 (|PositiveInteger|)) #1#)) (* #2# (AND (|isDomain| *2 (|DoubleFloat|)) #1#)) (|red| #4=(*1 *1) #1#) (|yellow| #4# #1#) (|green| #4# #1#) (|blue| #4# #1#) (|hue| (*1 *2 *1) #5=(AND (|isDomain| *2 (|Integer|)) #1#)) (|numberOfHues| (*1 *2) #3#) (|color| (*1 *1 *2) #5#))
+((|summation| (#1=(|#2| |#2| (|SegmentBinding| |#2|)) 98 T ELT) (#2=(|#2| |#2| (|Symbol|)) 75 T ELT)) (|product| (#1# 97 T ELT) (#2# 74 T ELT)) (|permutation| (#3=(|#2| |#2| |#2|) 25 T ELT)) (|operator| ((#4=(|BasicOperator|) #4#) 111 T ELT)) (|ipow| (#5=(|#2| (|List| |#2|)) 130 T ELT)) (|iipow| (#5# 150 T ELT)) (|iiperm| (#5# 138 T ELT)) (|iifact| (#6=(|#2| |#2|) 136 T ELT)) (|iidsum| (#5# 124 T ELT)) (|iidprod| (#5# 125 T ELT)) (|iibinom| (#5# 148 T ELT)) (|factorials| (#2# 63 T ELT) (#6# 62 T ELT)) (|factorial| (#6# 21 T ELT)) (|binomial| (#3# 24 T ELT)) (|belong?| (((|Boolean|) #4#) 55 T ELT)) (** (#3# 46 T ELT)))
+(((|CombinatorialFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |belong?| ((|Boolean|) #1=(|BasicOperator|))) (SIGNATURE |operator| (#1# #1#)) (SIGNATURE ** #2=(|#2| |#2| |#2|)) (SIGNATURE |binomial| #2#) (SIGNATURE |permutation| #2#) (SIGNATURE |factorial| #3=(|#2| |#2|)) (SIGNATURE |factorials| #3#) (SIGNATURE |factorials| #4=(|#2| |#2| (|Symbol|))) (SIGNATURE |summation| #4#) (SIGNATURE |summation| #5=(|#2| |#2| (|SegmentBinding| |#2|))) (SIGNATURE |product| #4#) (SIGNATURE |product| #5#) (SIGNATURE |iifact| #3#) (SIGNATURE |iibinom| #6=(|#2| (|List| |#2|))) (SIGNATURE |iiperm| #6#) (SIGNATURE |iipow| #6#) (SIGNATURE |iidsum| #6#) (SIGNATURE |iidprod| #6#) (SIGNATURE |ipow| #6#)) (|IntegralDomain|) (|FunctionSpace| |#1|)) (T |CombinatorialFunction|))
+((|ipow| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|List| *2)) #3=(|ofCategory| *2 #4=(|FunctionSpace| *4)) #5=(|isDomain| *1 (|CombinatorialFunction| *4 *2)) #6=(|ofCategory| *4 #7=(|IntegralDomain|)))) (|iidprod| #1# #2#) (|iidsum| #1# #2#) (|iipow| #1# #2#) (|iiperm| #1# #2#) (|iibinom| #1# #2#) (|iifact| #8=(*1 *2 *2) #9=(AND #10=(|ofCategory| *3 #7#) (|isDomain| *1 (|CombinatorialFunction| *3 *2)) (|ofCategory| *2 #11=(|FunctionSpace| *3)))) (|product| #12=(*1 *2 *2 *3) #13=(AND (|isDomain| *3 (|SegmentBinding| *2)) #3# #6# #5#)) (|product| #12# #14=(AND (|isDomain| *3 (|Symbol|)) #6# #5# #3#)) (|summation| #12# #13#) (|summation| #12# #14#) (|factorials| #12# #14#) (|factorials| #8# #9#) (|factorial| #8# #9#) (|permutation| #15=(*1 *2 *2 *2) #9#) (|binomial| #15# #9#) (** #15# #9#) (|operator| #8# (AND (|isDomain| *2 #16=(|BasicOperator|)) #10# (|isDomain| *1 (|CombinatorialFunction| *3 *4)) (|ofCategory| *4 #11#))) (|belong?| #1# (AND (|isDomain| *3 #16#) #6# (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CombinatorialFunction| *4 *5)) (|ofCategory| *5 #4#))))
+((|stirling2| (#1=(|#1| |#1| |#1|) 66 T ELT)) (|stirling1| (#1# 63 T ELT)) (|permutation| (#1# 57 T ELT)) (|partition| (#2=(|#1| |#1|) 43 T ELT)) (|multinomial| ((|#1| |#1| (|List| |#1|)) 55 T ELT)) (|factorial| (#2# 47 T ELT)) (|binomial| (#1# 51 T ELT)))
+(((|IntegerCombinatoricFunctions| |#1|) (CATEGORY |package| (SIGNATURE |binomial| #1=(|#1| |#1| |#1|)) (SIGNATURE |factorial| #2=(|#1| |#1|)) (SIGNATURE |multinomial| (|#1| |#1| (|List| |#1|))) (SIGNATURE |partition| #2#) (SIGNATURE |permutation| #1#) (SIGNATURE |stirling1| #1#) (SIGNATURE |stirling2| #1#)) (|IntegerNumberSystem|)) (T |IntegerCombinatoricFunctions|))
+((|stirling2| #1=(*1 *2 *2 *2) #2=(AND #3=(|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) #4=(|ofCategory| *2 (|IntegerNumberSystem|)))) (|stirling1| #1# #2#) (|permutation| #1# #2#) (|partition| #5=(*1 *2 *2) #2#) (|multinomial| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) #4# #3#)) (|factorial| #5# #2#) (|binomial| #1# #2#))
+((|summation| (($ $ (|Symbol|)) 12 T ELT) (($ $ (|SegmentBinding| $)) 11 T ELT)) (|product| (($ $ (|Symbol|)) 10 T ELT) (($ $ (|SegmentBinding| $)) 9 T ELT)) (|permutation| (#1=($ $ $) 8 T ELT)) (|factorials| (($ $) 14 T ELT) (($ $ (|Symbol|)) 13 T ELT)) (|factorial| (($ $) 7 T ELT)) (|binomial| (#1# 6 T ELT)))
+(((|CombinatorialOpsCategory|) (|Category|)) (T |CombinatorialOpsCategory|))
+((|factorials| (*1 *1 *1) (|ofCategory| *1 (|CombinatorialOpsCategory|))) (|factorials| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|summation| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|summation| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|CombinatorialOpsCategory|)))) (|product| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|product| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|CombinatorialOpsCategory|)))))
+(|Join| (|CombinatorialFunctionCategory|) (CATEGORY |domain| (SIGNATURE |factorials| ($ $)) (SIGNATURE |factorials| ($ $ (|Symbol|))) (SIGNATURE |summation| ($ $ (|Symbol|))) (SIGNATURE |summation| ($ $ (|SegmentBinding| $))) (SIGNATURE |product| ($ $ (|Symbol|))) (SIGNATURE |product| ($ $ (|SegmentBinding| $)))))
+(((|CombinatorialFunctionCategory|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|mkcomm| (($ (|Integer|)) 15 T ELT) (($ $ $) 16 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 19 T ELT)) (|before?| #1#) (= (#2# 11 T ELT)))
+(((|Commutator|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |mkcomm| ($ (|Integer|))) (SIGNATURE |mkcomm| ($ $ $))))) (T |Commutator|))
+((|mkcomm| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #1=(|isDomain| *1 (|Commutator|)))) (|mkcomm| (*1 *1 *1 *1) #1#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (((|List| (|SpadAst|)) $) 10 T ELT)) (|before?| #1#) (= #1#))
+(((|CommaAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |body| ((|List| (|SpadAst|)) $))))) (T |CommaAst|))
+((|body| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CommaAst|)))))
+((|operator| (((|BasicOperator|) (|Symbol|)) 103 T ELT)))
+(((|CommonOperators|) (CATEGORY |package| (SIGNATURE |operator| ((|BasicOperator|) (|Symbol|))))) (T |CommonOperators|))
+((|operator| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|BasicOperator|)) (|isDomain| *1 (|CommonOperators|)))))
+((|swap| ((|#3| |#3|) 19 T ELT)))
+(((|CommuteUnivariatePolynomialCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |swap| (|#3| |#3|))) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |CommuteUnivariatePolynomialCategory|))
+((|swap| (*1 *2 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|CommuteUnivariatePolynomialCategory| *3 *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
+((|elt| ((|#1| $ |#1| |#1|) NIL T ELT)) (|commutativeOperation| (($ (|Mapping| |#1| |#1| |#1|)) 9 T ELT)) (|coerce| (((|BinaryOperation| |#1|) $) 10 T ELT)))
+(((|CommutativeOperation| |#1|) (|Join| (|CommutativeOperatorCategory| |#1|) (|CoercibleTo| (|BinaryOperation| |#1|)) (CATEGORY |domain| (SIGNATURE |commutativeOperation| ($ (|Mapping| |#1| |#1| |#1|))))) (|BasicType|)) (T |CommutativeOperation|))
+((|commutativeOperation| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *1 (|CommutativeOperation| *3)))))
+((|elt| ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((|CommutativeOperatorCategory| |#1|) (|Category|) (|BasicType|)) (T |CommutativeOperatorCategory|))
+NIL
+(|Join| (|BinaryOperatorCategory| |t#1|) (CATEGORY |domain| (ATTRIBUTE (|%Rule| |commutativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|)) (= (|f| |x| |y|) (|f| |y| |x|)))))))
+(((|BinaryOperatorCategory| |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((|Type|) . T))
+((|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 222 T ELT)) (|trace| (#1=(|#2| $) 102 T ELT)) (|tanh| (#2=($ $) 255 T ELT)) (|tan| (#2# 249 T ELT)) (|solveLinearPolynomialEquation| (((|Union| #3=(|List| #4=(|SparseUnivariatePolynomial| $)) #5="failed") #3# #4#) 47 T ELT)) (|sinh| (#2# 253 T ELT)) (|sin| (#2# 247 T ELT)) (|retractIfCan| (((|Union| #6=(|Integer|) #5#) $) NIL T ELT) (#7=((|Union| #8=(|Fraction| #6#) #5#) $) NIL T ELT) (((|Union| |#2| #5#) $) 146 T ELT)) (|retract| ((#6# $) NIL T ELT) (#9=(#8# $) NIL T ELT) (#1# 144 T ELT)) (|rem| (#10=($ $ $) 228 T ELT)) (|reducedSystem| ((#11=(|Matrix| #6#) #12=(|Matrix| $)) NIL T ELT) (((|Record| (|:| |mat| #11#) (|:| |vec| (|Vector| #6#))) #12# #13=(|Vector| $)) NIL T ELT) (((|Record| (|:| |mat| #14=(|Matrix| |#2|)) (|:| |vec| #15=(|Vector| |#2|))) #12# #13#) 160 T ELT) ((#14# #12#) 154 T ELT)) (|reduce| (#16=($ #17=(|SparseUnivariatePolynomial| |#2|)) 125 T ELT) ((#18=(|Union| $ #5#) (|Fraction| #17#)) NIL T ELT)) (|recip| ((#18# $) 213 T ELT)) (|rationalIfCan| (#7# 203 T ELT)) (|rational?| ((#19=(|Boolean|) $) 198 T ELT)) (|rational| (#9# 201 T ELT)) (|rank| ((#20=(|PositiveInteger|)) 96 T ELT)) (|quo| (#10# 230 T ELT)) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (|pi| (#21=($) 244 T ELT)) (|patternMatch| ((#22=(|PatternMatchResult| #6# $) $ #23=(|Pattern| #6#) #22#) 192 T ELT) ((#24=(|PatternMatchResult| #25=(|Float|) $) $ #26=(|Pattern| #25#) #24#) 197 T ELT)) (|norm| (#1# 100 T ELT)) (|minimalPolynomial| (#27=(#17# $) 127 T ELT)) (|map| (($ #28=(|Mapping| |#2| |#2|) $) 108 T ELT)) (|log| (#2# 246 T ELT)) (|lift| (#27# 126 T ELT)) (|inv| (#2# 206 T ELT)) (|imaginary| (#21# 103 T ELT)) (|factorSquareFreePolynomial| (#29=((|Factored| #4#) #4#) 95 T ELT)) (|factorPolynomial| (#29# 64 T ELT)) (|exquo| ((#18# $ |#2|) 208 T ELT) ((#18# $ $) 211 T ELT)) (|exp| (#2# 245 T ELT)) (|euclideanSize| ((#30=(|NonNegativeInteger|) $) 225 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 234 T ELT)) (|discriminant| ((|#2| #13#) NIL T ELT) ((|#2|) 98 T ELT)) (|differentiate| (($ $ #28#) 119 T ELT) (($ $ #28# #30#) NIL T ELT) (($ $ #31=(|List| #32=(|Symbol|)) (|List| #30#)) NIL T ELT) (($ $ #32# #30#) NIL T ELT) (($ $ #31#) NIL T ELT) (($ $ #32#) NIL T ELT) #33=(($ $ #30#) NIL T ELT) #34=(#2# NIL T ELT)) (|definingPolynomial| ((#17#) 120 T ELT)) (|cosh| (#2# 254 T ELT)) (|cos| (#2# 248 T ELT)) (|coordinates| ((#15# $ #13#) 136 T ELT) ((#14# #13# #13#) NIL T ELT) (#35=(#15# $) 116 T ELT) ((#14# #13#) NIL T ELT)) (|convert| (#35# NIL T ELT) (($ #15#) NIL T ELT) (#27# NIL T ELT) (#16# NIL T ELT) ((#23# $) 183 T ELT) ((#26# $) 187 T ELT) (((|Complex| #25#) $) 172 T ELT) (((|Complex| (|DoubleFloat|)) $) 167 T ELT) (((|InputForm|) $) 179 T ELT)) (|conjugate| (#2# 104 T ELT)) (|coerce| (((|OutputForm|) $) 143 T ELT) (($ #6#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #8#) NIL T ELT) #34#) (|characteristicPolynomial| (#27# 32 T ELT)) (|characteristic| ((#30#) 106 T CONST)) (|before?| (#36=(#19# $ $) 13 T ELT)) (|atanh| (#2# 258 T ELT)) (|atan| (#2# 252 T ELT)) (|asinh| (#2# 256 T ELT)) (|asin| (#2# 250 T ELT)) (|argument| (#1# 241 T ELT)) (|acosh| (#2# 257 T ELT)) (|acos| (#2# 251 T ELT)) (|abs| (#2# 162 T ELT)) (= (#36# 110 T ELT)) (- (#2# 112 T ELT) #37=(#10# NIL T ELT)) (+ (#10# 111 T ELT)) (** (($ $ #20#) NIL T ELT) #33# (#38=($ $ #8#) 274 T ELT) #37# (($ $ #6#) NIL T ELT)) (* (($ #20# $) NIL T ELT) (($ #30# $) NIL T ELT) (($ #6# $) 118 T ELT) (#10# 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ #8# $) NIL T ELT) (#38# NIL T ELT)))
+(((|ComplexCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |differentiate| #1=(|#1| |#1|)) (SIGNATURE |differentiate| #2=(|#1| |#1| #3=(|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| #4=(|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| #5=(|List| #4#))) (SIGNATURE |differentiate| (|#1| |#1| #4# #3#)) (SIGNATURE |differentiate| (|#1| |#1| #5# (|List| #3#))) (SIGNATURE |coerce| #1#) (SIGNATURE |exquo| (#6=(|Union| |#1| #7="failed") |#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |euclideanSize| (#3# |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |quo| #8=(|#1| |#1| |#1|)) (SIGNATURE |rem| #8#) (SIGNATURE |inv| #1#) (SIGNATURE ** (|#1| |#1| #9=(|Integer|))) (SIGNATURE * #10=(|#1| |#1| #11=(|Fraction| #9#))) (SIGNATURE * (|#1| #11# |#1|)) (SIGNATURE |coerce| (|#1| #11#)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Complex| (|DoubleFloat|)) |#1|)) (SIGNATURE |convert| ((|Complex| #12=(|Float|)) |#1|)) (SIGNATURE |tan| #1#) (SIGNATURE |sin| #1#) (SIGNATURE |cos| #1#) (SIGNATURE |acos| #1#) (SIGNATURE |asin| #1#) (SIGNATURE |atan| #1#) (SIGNATURE |cosh| #1#) (SIGNATURE |sinh| #1#) (SIGNATURE |tanh| #1#) (SIGNATURE |acosh| #1#) (SIGNATURE |asinh| #1#) (SIGNATURE |atanh| #1#) (SIGNATURE |log| #1#) (SIGNATURE |exp| #1#) (SIGNATURE ** #8#) (SIGNATURE |pi| #13=(|#1|)) (SIGNATURE ** #10#) (SIGNATURE |factorPolynomial| #14=((|Factored| #15=(|SparseUnivariatePolynomial| |#1|)) #15#)) (SIGNATURE |factorSquareFreePolynomial| #14#) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #16=(|List| #15#) #7#) #16# #15#)) (SIGNATURE |rationalIfCan| #17=((|Union| #11# #7#) |#1|)) (SIGNATURE |rational| #18=(#11# |#1|)) (SIGNATURE |rational?| (#19=(|Boolean|) |#1|)) (SIGNATURE |polarCoordinates| ((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (SIGNATURE |argument| #20=(|#2| |#1|)) (SIGNATURE |abs| #1#) (SIGNATURE |exquo| (#6# |#1| |#2|)) (SIGNATURE |conjugate| #1#) (SIGNATURE |imaginary| #13#) (SIGNATURE |convert| (#21=(|Pattern| #12#) |#1|)) (SIGNATURE |convert| (#22=(|Pattern| #9#) |#1|)) (SIGNATURE |patternMatch| (#23=(|PatternMatchResult| #12# |#1|) |#1| #21# #23#)) (SIGNATURE |patternMatch| (#24=(|PatternMatchResult| #9# |#1|) |#1| #22# #24#)) (SIGNATURE |map| (|#1| #25=(|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #25# #3#)) (SIGNATURE |differentiate| (|#1| |#1| #25#)) (SIGNATURE |reduce| (#6# (|Fraction| #26=(|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |lift| #27=(#26# |#1|)) (SIGNATURE |convert| #28=(|#1| #26#)) (SIGNATURE |reduce| #28#) (SIGNATURE |definingPolynomial| (#26#)) (SIGNATURE |reducedSystem| (#29=(|Matrix| |#2|) #30=(|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #29#) (|:| |vec| #31=(|Vector| |#2|))) #30# #32=(|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #33=(|Matrix| #9#)) (|:| |vec| (|Vector| #9#))) #30# #32#)) (SIGNATURE |reducedSystem| (#33# #30#)) (SIGNATURE |retractIfCan| ((|Union| |#2| #7#) |#1|)) (SIGNATURE |retract| #20#) (SIGNATURE |retract| #18#) (SIGNATURE |retractIfCan| #17#) (SIGNATURE |retract| (#9# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #9# #7#) |#1|)) (SIGNATURE |convert| #27#) (SIGNATURE |discriminant| (|#2|)) (SIGNATURE |convert| (|#1| #31#)) (SIGNATURE |convert| #34=(#31# |#1|)) (SIGNATURE |coordinates| (#29# #32#)) (SIGNATURE |coordinates| #34#) (SIGNATURE |minimalPolynomial| #27#) (SIGNATURE |characteristicPolynomial| #27#) (SIGNATURE |discriminant| (|#2| #32#)) (SIGNATURE |coordinates| (#29# #32# #32#)) (SIGNATURE |coordinates| (#31# |#1| #32#)) (SIGNATURE |norm| #20#) (SIGNATURE |trace| #20#) (SIGNATURE |rank| (#35=(|PositiveInteger|))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |characteristic| (#3#) |constant|) (SIGNATURE |coerce| (|#1| #9#)) (SIGNATURE |recip| (#6# |#1|)) (SIGNATURE ** #2#) (SIGNATURE * #8#) (SIGNATURE ** (|#1| |#1| #35#)) (SIGNATURE - #8#) (SIGNATURE - #1#) (SIGNATURE * (|#1| #9# |#1|)) (SIGNATURE * (|#1| #3# |#1|)) (SIGNATURE * (|#1| #35# |#1|)) (SIGNATURE + #8#) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |before?| #36=(#19# |#1| |#1|)) (SIGNATURE = #36#)) (|ComplexCategory| |#2|) (|CommutativeRing|)) (T |ComplexCategory&|))
+((|characteristic| #1=(*1 *2) (AND #2=(|ofCategory| *4 #3=(|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)) #4=(|isDomain| *1 (|ComplexCategory&| *3 *4)) #5=(|ofCategory| *3 (|ComplexCategory| *4)))) (|rank| #1# (AND #2# (|isDomain| *2 (|PositiveInteger|)) #4# #5#)) (|discriminant| #1# (AND (|ofCategory| *2 #3#) (|isDomain| *1 (|ComplexCategory&| *3 *2)) (|ofCategory| *3 (|ComplexCategory| *2)))) (|definingPolynomial| #1# (AND #2# (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) #4# #5#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 114 (OR (|has| |#1| . #3=((|IntegralDomain|))) (AND (|has| |#1| . #4=((|EuclideanDomain|))) (|has| |#1| . #5=((|PolynomialFactorizationExplicit|))))) ELT)) (|unitCanonical| (($ $) 115 (OR (|has| |#1| . #3#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|unit?| ((#6=(|Boolean|) $) 117 (OR (|has| |#1| . #3#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|traceMatrix| (((|Matrix| |#1|) #7=(|Vector| $)) 61 T ELT) (((|Matrix| |#1|)) 77 T ELT)) (|trace| ((|#1| . #8=($)) 67 T ELT)) (|tanh| (#9=($ $) 250 (|has| |#1| . #10=((|TranscendentalFunctionCategory|))) ELT)) (|tan| (#11=($ $) 233 (|has| |#1| . #10#) ELT)) (|tableForDiscreteLogarithm| (((|Table| #12=(|PositiveInteger|) #13=(|NonNegativeInteger|)) #14=(|Integer|)) 167 (|has| |#1| . #15=((|FiniteFieldCategory|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (#16=((|Factored| #17=(|SparseUnivariatePolynomial| $)) #17#) 264 (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (|squareFreePart| (($ $) 134 (OR (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) (|has| |#1| . #18=((|Field|)))) ELT)) (|squareFree| (#19=((|Factored| $) $) 135 (OR (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) (|has| |#1| . #18#)) ELT)) (|sqrt| (($ $) 263 (AND (|has| |#1| . #20=((|RadicalCategory|))) (|has| |#1| . #21=((|TranscendentalFunctionCategory|)))) ELT)) (|solveLinearPolynomialEquation| (((|Union| #22=(|List| #17#) "failed") #22# #17#) 267 (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (|sizeLess?| (((|Boolean|) $ $) 125 (|has| |#1| . #23=((|EuclideanDomain|))) ELT)) (|size| (((|NonNegativeInteger|)) 108 (|has| |#1| . #24=((|Finite|))) ELT)) (|sinh| (#9# 249 (|has| |#1| . #10#) ELT)) (|sin| (#11# 234 (|has| |#1| . #10#) ELT)) (|sech| (#9# 248 (|has| |#1| . #10#) ELT)) (|sec| (#11# 235 (|has| |#1| . #10#) ELT)) (|sample| (#25=($) 23 T CONST)) (|retractIfCan| (((|Union| #26=(|Integer|) . #27=("failed")) . #28=($)) 194 (|has| |#1| . #29=((|RetractableTo| #26#))) ELT) (((|Union| #30=(|Fraction| #26#) . #27#) . #28#) 192 (|has| |#1| . #31=((|RetractableTo| #30#))) ELT) (((|Union| |#1| . #27#) . #28#) 189 T ELT)) (|retract| ((#26# . #32=($)) 193 (|has| |#1| . #29#) ELT) ((#30# . #32#) 191 (|has| |#1| . #31#) ELT) ((|#1| . #32#) 190 T ELT)) (|represents| (($ (|Vector| |#1|) #7#) 63 T ELT) (($ (|Vector| |#1|)) 80 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| . #15#) ELT)) (|rem| (#33=($ $ $) 129 (|has| |#1| . #23#) ELT)) (|regularRepresentation| (((|Matrix| |#1|) $ #7#) 68 T ELT) (((|Matrix| |#1|) $) 75 T ELT)) (|reducedSystem| (((|Matrix| #34=(|Integer|)) . #35=(#36=(|Matrix| $))) 186 (|has| |#1| . #37=((|LinearlyExplicitRingOver| #34#))) ELT) (((|Record| (|:| |mat| (|Matrix| #34#)) (|:| |vec| (|Vector| #34#))) . #38=(#36# #39=(|Vector| $))) 185 (|has| |#1| . #37#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #38#) 184 T ELT) (((|Matrix| |#1|) . #35#) 183 T ELT)) (|reduce| (($ (|SparseUnivariatePolynomial| |#1|)) 178 T ELT) (((|Union| $ "failed") (|Fraction| (|SparseUnivariatePolynomial| |#1|))) 175 (|has| |#1| . #18#) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|real| ((|#1| $) 275 T ELT)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 268 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (((|Boolean|) $) 270 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational| (((|Fraction| (|Integer|)) $) 269 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rank| (((|PositiveInteger|)) 69 T ELT)) (|random| (($) 111 (|has| |#1| . #24#) ELT)) (|quo| (#33# 128 (|has| |#1| . #23#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #40=(|List| $)) (|:| |generator| $)) #40#) 123 (|has| |#1| . #23#) ELT)) (|primitiveElement| (#41=($) 169 (|has| |#1| . #15#) ELT)) (|primitive?| (((|Boolean|) $) 170 (|has| |#1| . #15#) ELT)) (|primeFrobenius| (($ $ #42=(|NonNegativeInteger|)) 161 (|has| |#1| . #15#) ELT) (($ $) 160 (|has| |#1| . #15#) ELT)) (|prime?| (((|Boolean|) $) 136 (OR (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) (|has| |#1| . #18#)) ELT)) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (AND (|has| |#1| (|RealNumberSystem|)) (|has| |#1| (|TranscendentalFunctionCategory|))) ELT)) (|pi| (($) 260 (|has| |#1| . #10#) ELT)) (|patternMatch| (((|PatternMatchResult| #43=(|Integer|) . #44=($)) $ (|Pattern| #43#) (|PatternMatchResult| #43# . #44#)) 283 (|has| |#1| (|PatternMatchable| #43#)) ELT) (((|PatternMatchResult| #45=(|Float|) . #44#) $ (|Pattern| #45#) (|PatternMatchResult| #45# . #44#)) 282 (|has| |#1| (|PatternMatchable| #45#)) ELT)) (|order| ((#12# $) 172 (|has| |#1| . #15#) ELT) (((|OnePointCompletion| (|PositiveInteger|)) $) 158 (|has| |#1| . #15#) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #46=(|Integer|)) 262 (AND (|has| |#1| . #20#) (|has| |#1| . #21#)) ELT)) (|norm| ((|#1| . #8#) 66 T ELT)) (|nextItem| (((|Maybe| $) $) 162 (|has| |#1| . #15#) ELT)) (|multiEuclidean| (((|Union| #47=(|List| $) #48="failed") #47# $) 132 (|has| |#1| . #23#) ELT)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #49=($)) 59 (|has| |#1| (|Field|)) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 284 T ELT)) (|lookup| ((#50=(|PositiveInteger|) $) 110 (|has| |#1| . #24#) ELT)) (|log| (#51=($ $) 257 (|has| |#1| . #10#) ELT)) (|lift| (((|SparseUnivariatePolynomial| |#1|) $) 176 T ELT)) (|leftReducedSystem| (((|Matrix| #34#) . #52=(#39#)) 188 (|has| |#1| . #37#) ELT) (((|Record| (|:| |mat| (|Matrix| #34#)) (|:| |vec| (|Vector| #34#))) . #53=(#39# $)) 187 (|has| |#1| . #37#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #53#) 182 T ELT) (((|Matrix| |#1|) . #52#) 181 T ELT)) (|lcm| (#54=($ (|List| $)) 121 (OR (|has| |#1| . #23#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT) (#55=($ $ $) 120 (OR (|has| |#1| . #23#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 137 (|has| |#1| . #18#) ELT)) (|init| (($) 163 (|has| |#1| . #15#) CONST)) (|index| (($ #50#) 109 (|has| |#1| . #24#) ELT)) (|imaginary| (($) 279 T ELT)) (|imag| ((|#1| $) 276 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|generator| (($) 180 T ELT)) (|gcdPolynomial| ((#56=(|SparseUnivariatePolynomial| $) #56# #56#) 122 (OR (|has| |#1| . #23#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|gcd| (#54# 119 (OR (|has| |#1| . #23#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT) (#55# 118 (OR (|has| |#1| . #23#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #14#) (|:| |exponent| #14#)))) 166 (|has| |#1| . #15#) ELT)) (|factorSquareFreePolynomial| (#16# 266 (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (|factorPolynomial| (#16# 265 (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (|factor| (#19# 133 (OR (AND (|has| |#1| . #4#) (|has| |#1| . #5#)) (|has| |#1| . #18#)) ELT)) (|extendedEuclidean| (((|Union| (|Record| #57=(|:| |coef1| $) #58=(|:| |coef2| $)) #48#) $ $ $) 131 (|has| |#1| . #23#) ELT) (((|Record| #57# #58# (|:| |generator| $)) $ $) 130 (|has| |#1| . #23#) ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 274 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| $ "failed") $ $) 113 (OR (|has| |#1| . #3#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|expressIdealMember| (((|Maybe| #40#) #40# $) 124 (|has| |#1| . #23#) ELT)) (|exp| (#51# 258 (|has| |#1| . #10#) ELT)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 290 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|Equation| |#1|)) 288 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| (|Equation| |#1|))) 287 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| #59=(|Symbol|)) (|List| |#1|)) 286 (|has| |#1| (|InnerEvalable| #59# |#1|)) ELT) (($ $ #59# |#1|) 285 (|has| |#1| (|InnerEvalable| #59# |#1|)) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 126 (|has| |#1| . #23#) ELT)) (|elt| (($ $ |#1|) 291 (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 127 (|has| |#1| . #23#) ELT)) (|discriminant| ((|#1| #7#) 62 T ELT) ((|#1|) 76 T ELT)) (|discreteLog| ((#13# $) 171 (|has| |#1| . #15#) ELT) (((|Union| #42# "failed") $ $) 159 (|has| |#1| . #15#) ELT)) (|differentiate| (($ $ (|Mapping| |#1| |#1|)) 145 T ELT) (($ $ (|Mapping| |#1| |#1|) . #60=((|NonNegativeInteger|))) 144 T ELT) (($ $ (|List| #61=(|Symbol|)) . #62=((|List| #63=(|NonNegativeInteger|)))) 150 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64=((|PartialDifferentialSpace| #61#)))) (|and| (|has| |#1| . #18#) (|has| |#1| . #65=((|PartialDifferentialRing| (|Symbol|))))) (|has| |#1| . #64#)) ELT) (($ $ #61# . #66=(#63#)) 149 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (($ $ (|List| #61#)) 148 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (($ $ #61#) 146 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (#67=($ $ (|NonNegativeInteger|)) 156 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #68=((|DifferentialSpace|)))) (|and| (|has| |#1| . #18#) (|has| |#1| . #69=((|DifferentialRing|)))) (|has| |#1| . #68#) (|and| (|has| |#1| . #68#) (|has| |#1| . #18#))) ELT) (($ . #70=($)) 154 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #68#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #69#)) (|has| |#1| . #68#) (|and| (|has| |#1| . #68#) (|has| |#1| . #18#))) ELT)) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) 174 (|has| |#1| . #18#) ELT)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) 179 T ELT)) (|csch| (#9# 247 (|has| |#1| . #10#) ELT)) (|csc| (#11# 236 (|has| |#1| . #10#) ELT)) (|createPrimitiveElement| (#41# 168 (|has| |#1| . #15#) ELT)) (|coth| (#9# 246 (|has| |#1| . #10#) ELT)) (|cot| (#11# 237 (|has| |#1| . #10#) ELT)) (|cosh| (#9# 245 (|has| |#1| . #10#) ELT)) (|cos| (#11# 238 (|has| |#1| . #10#) ELT)) (|coordinates| (((|Vector| |#1|) $ #7#) 65 T ELT) (((|Matrix| |#1|) #7# #7#) 64 T ELT) (((|Vector| |#1|) . #71=($)) 82 T ELT) (((|Matrix| |#1|) #72=(|Vector| $)) 81 T ELT)) (|convert| (((|Vector| |#1|) . #71#) 79 T ELT) (($ (|Vector| |#1|)) 78 T ELT) (((|SparseUnivariatePolynomial| |#1|) . #73=($)) 195 T ELT) (($ (|SparseUnivariatePolynomial| |#1|)) 177 T ELT) ((#74=(|Pattern| (|Integer|)) . #73#) 281 (|has| |#1| (|ConvertibleTo| #74#)) ELT) ((#75=(|Pattern| (|Float|)) . #73#) 280 (|has| |#1| (|ConvertibleTo| #75#)) ELT) (((|Complex| (|Float|)) . #73#) 232 (|has| |#1| (|RealConstant|)) ELT) (((|Complex| (|DoubleFloat|)) . #73#) 231 (|has| |#1| (|RealConstant|)) ELT) (((|InputForm|) . #73#) 230 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT)) (|conjugate| (($ $) 278 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 165 (OR (|and| #76=(|has| $ (|CharacteristicNonZero|)) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) (|has| |#1| . #15#)) ELT)) (|complex| (($ |#1| |#1|) 277 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT) (($ #77=(|Fraction| #78=(|Integer|))) 107 (OR (|has| |#1| . #18#) (|has| |#1| . #31#)) ELT) (($ $) 112 (OR (|has| |#1| . #3#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|charthRoot| (($ $) 164 (|has| |#1| . #15#) ELT) (((|Maybe| $) $) 58 (OR (|and| #76# (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #49#) 60 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|basis| ((#72#) 83 T ELT)) (|atanh| (#79=($ $) 256 (|has| |#1| . #10#) ELT)) (|atan| (#80=($ $) 244 (|has| |#1| . #10#) ELT)) (|associates?| ((#6# $ $) 116 (OR (|has| |#1| . #3#) (AND (|has| |#1| . #4#) (|has| |#1| . #5#))) ELT)) (|asinh| (#79# 255 (|has| |#1| . #10#) ELT)) (|asin| (#80# 243 (|has| |#1| . #10#) ELT)) (|asech| (#79# 254 (|has| |#1| . #10#) ELT)) (|asec| (#80# 242 (|has| |#1| . #10#) ELT)) (|argument| ((|#1| $) 272 (|has| |#1| (|TranscendentalFunctionCategory|)) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#79# 253 (|has| |#1| . #10#) ELT)) (|acsc| (#80# 241 (|has| |#1| . #10#) ELT)) (|acoth| (#79# 252 (|has| |#1| . #10#) ELT)) (|acot| (#80# 240 (|has| |#1| . #10#) ELT)) (|acosh| (#79# 251 (|has| |#1| . #10#) ELT)) (|acos| (#80# 239 (|has| |#1| . #10#) ELT)) (|abs| (($ $) 273 (|has| |#1| (|RealNumberSystem|)) ELT)) (|Zero| (#25# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#1| |#1|)) 143 T ELT) (($ $ (|Mapping| |#1| |#1|) . #60#) 142 T ELT) (($ $ (|List| #61#) . #62#) 153 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (($ $ #61# . #66#) 152 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (($ $ (|List| #61#)) 151 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (($ $ #61#) 147 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #64#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #65#)) (|has| |#1| . #64#)) ELT) (#67# 157 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #68#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #69#)) (|has| |#1| . #68#) (|and| (|has| |#1| . #68#) (|has| |#1| . #18#))) ELT) (($ . #70#) 155 (OR (|and| (|has| |#1| . #18#) (|has| |#1| . #68#)) (|and| (|has| |#1| . #18#) (|has| |#1| . #69#)) (|has| |#1| . #68#) (|and| (|has| |#1| . #68#) (|has| |#1| . #18#))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 141 (|has| |#1| . #18#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ (|Fraction| #46#)) 261 (AND (|has| |#1| . #20#) (|has| |#1| . #21#)) ELT) (($ $ $) 259 (|has| |#1| . #10#) ELT) (($ $ #78#) 138 (|has| |#1| . #18#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #81=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #81#) 53 T ELT) (($ #77# . #81#) 140 (|has| |#1| . #18#) ELT) (($ $ #77#) 139 (|has| |#1| . #18#) ELT)))
+(((|ComplexCategory| |#1|) (|Category|) (|CommutativeRing|)) (T |ComplexCategory|))
+((|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imaginary| (*1 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|complex| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imag| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|real| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|abs| (*1 *1 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|RealNumberSystem|)))) (|argument| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|polarCoordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|RealNumberSystem|)) (|ofCategory| *3 (|TranscendentalFunctionCategory|)) (|isDomain| *2 (|Record| (|:| |r| *3) (|:| |phi| *3))))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|ComplexCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|ComplexCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))))
+(|Join| (|MonogenicAlgebra| |t#1| (|SparseUnivariatePolynomial| |t#1|)) (|FullyRetractableTo| |t#1|) (|DifferentialExtension| |t#1|) (|FullyEvalableOver| |t#1|) (|FullyPatternMatchable| |t#1|) (|Patternable| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (|CommutativeRing|) (CATEGORY |domain| (ATTRIBUTE |complex|) (SIGNATURE |imaginary| ($)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |complex| ($ |t#1| |t#1|)) (SIGNATURE |imag| (|t#1| $)) (SIGNATURE |real| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (ATTRIBUTE (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (|EuclideanDomain|)) (ATTRIBUTE (|EuclideanDomain|)) |%noBranch|) (IF (|has| |t#1| (ATTRIBUTE |multiplicativeValuation|)) (ATTRIBUTE |multiplicativeValuation|) |%noBranch|) (IF (|has| |t#1| (ATTRIBUTE |additiveValuation|)) (ATTRIBUTE |additiveValuation|) |%noBranch|) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|Field|)) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|RealConstant|)) (PROGN (ATTRIBUTE (|ConvertibleTo| (|Complex| (|DoubleFloat|)))) (ATTRIBUTE (|ConvertibleTo| (|Complex| (|Float|))))) |%noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |abs| ($ $)) |%noBranch|) (IF (|has| |t#1| (|TranscendentalFunctionCategory|)) (PROGN (ATTRIBUTE (|TranscendentalFunctionCategory|)) (SIGNATURE |argument| (|t#1| $)) (IF (|has| |t#1| (|RadicalCategory|)) (ATTRIBUTE (|RadicalCategory|)) |%noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |polarCoordinates| ((|Record| (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (|PolynomialFactorizationExplicit|)) (IF (|has| |t#1| (|EuclideanDomain|)) (ATTRIBUTE (|PolynomialFactorizationExplicit|)) |%noBranch|) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Algebra| |#1|) . T) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|Complex| (|DoubleFloat|))) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|Complex| (|Float|))) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|ConvertibleTo| #2=(|SparseUnivariatePolynomial| |#1|)) . T) ((|DifferentialDomain| $) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpace|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#1|) . T) ((|DivisionRing|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|ElementaryFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|EuclideanDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Field|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|FieldOfPrimeCharacteristic|) |has| |#1| (|FiniteFieldCategory|)) ((|Finite|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Finite|))) ((|FiniteFieldCategory|) |has| |#1| (|FiniteFieldCategory|)) ((|FiniteRankAlgebra| |#1| #2#) . T) ((|FramedAlgebra| |#1| #2#) . T) ((|FullyEvalableOver| |#1|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyPatternMatchable| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|HyperbolicFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|Join|) . T) ((|LeftLinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LeftModule| #3=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LinearSet| |#1|) . T) ((|LinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|LinearlyExplicitRingOver| #3#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Module| |#1|) . T) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|MonogenicAlgebra| |#1| #2#) . T) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #4=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #4#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PolynomialFactorizationExplicit|) AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|PrincipalIdealDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (|has| |#1| (|EuclideanDomain|))) ((|RadicalCategory|) AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|FiniteFieldCategory|)) ((|TranscendentalFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|TrigonometricFunctionCategory|) |has| |#1| (|TranscendentalFunctionCategory|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))))
+((|factor| (((|Factored| |#2|) |#2|) 67 T ELT)))
+(((|ComplexFactorization| |#1| |#2|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#2|) |#2|))) (|EuclideanDomain|) (|UnivariatePolynomialCategory| (|Complex| |#1|))) (T |ComplexFactorization|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexFactorization| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))))
+((|macroExpand| ((#1=(|SpadAst|) #1# (|Environment|)) 8 T ELT)) (|elaborateFile| (((|List| #2=(|Maybe| (|Elaboration|))) (|String|)) 81 T ELT)) (|elaborate| ((#2# #1#) 76 T ELT)))
+(((|CompilerPackage|) (|Join| (|Type|) (CATEGORY |package| (SIGNATURE |macroExpand| (#1=(|SpadAst|) #1# (|Environment|))) (SIGNATURE |elaborate| (#2=(|Maybe| (|Elaboration|)) #1#)) (SIGNATURE |elaborateFile| ((|List| #2#) (|String|)))))) (T |CompilerPackage|))
+((|macroExpand| (*1 *2 *2 *3) (AND (|isDomain| *2 #1=(|SpadAst|)) (|isDomain| *3 (|Environment|)) #2=(|isDomain| *1 (|CompilerPackage|)))) (|elaborate| #3=(*1 *2 *3) (AND (|isDomain| *3 #1#) (|isDomain| *2 #4=(|Maybe| (|Elaboration|))) #2#)) (|elaborateFile| #3# (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|List| #4#)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 15 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #5=(OR #6=(AND #7=(|has| |#1| (|EuclideanDomain|)) #8=(|has| |#1| (|PolynomialFactorizationExplicit|))) #9=(|has| |#1| (|IntegralDomain|))) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #5# ELT)) (|unit?| (#4# NIL #5# ELT)) (|traceMatrix| #12=((#13=(|Matrix| |#1|) #14=(|Vector| $)) NIL T ELT) ((#13#) NIL T ELT)) (|trace| #15=(#16=(|#1| $) NIL T ELT)) (|tanh| #17=(#11# NIL #18=(|has| |#1| (|TranscendentalFunctionCategory|)) ELT)) (|tan| #17#) (|tableForDiscreteLogarithm| (((|Table| #19=(|PositiveInteger|) #20=(|NonNegativeInteger|)) #21=(|Integer|)) NIL #22=(|has| |#1| (|FiniteFieldCategory|)) ELT)) (|subtractIfCan| (#23=(#24=(|Union| $ #25="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #26=(((|Factored| #27=(|SparseUnivariatePolynomial| $)) #27#) NIL #6# ELT)) (|squareFreePart| (#11# NIL #28=(OR #6# #29=(|has| |#1| (|Field|))) ELT)) (|squareFree| #30=(((|Factored| $) $) NIL #28# ELT)) (|sqrt| (#11# NIL #31=(AND (|has| |#1| (|RadicalCategory|)) #18#) ELT)) (|solveLinearPolynomialEquation| (((|Union| #32=(|List| #27#) #25#) #32# #27#) NIL #6# ELT)) (|sizeLess?| (#2# NIL #7# ELT)) (|size| (#33=(#20#) NIL #34=(|has| |#1| (|Finite|)) ELT)) (|sinh| #17#) (|sin| #17#) (|sech| #17#) (|sec| #17#) (|sample| (#35=($) NIL T CONST)) (|retractIfCan| (((|Union| #21# . #36=(#25#)) . #37=($)) NIL #38=(|has| |#1| (|RetractableTo| #21#)) ELT) (#39=((|Union| #40=(|Fraction| #21#) . #36#) . #37#) NIL #41=(|has| |#1| (|RetractableTo| #40#)) ELT) (((|Union| |#1| . #36#) . #37#) NIL T ELT)) (|retract| ((#21# . #42=($)) NIL #38# ELT) (#43=(#40# . #42#) NIL #41# ELT) #15#) (|represents| (($ #44=(|Vector| |#1|) #14#) NIL T ELT) #45=(($ #44#) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #22# ELT)) (|rem| #46=(#47=($ $ $) NIL #7# ELT)) (|regularRepresentation| ((#13# $ #14#) NIL T ELT) ((#13# $) NIL T ELT)) (|reducedSystem| ((#48=(|Matrix| #21#) . #49=(#50=(|Matrix| $))) NIL #51=(|has| |#1| (|LinearlyExplicitRingOver| #21#)) ELT) ((#52=(|Record| (|:| |mat| #48#) (|:| |vec| (|Vector| #21#))) . #53=(#50# #14#)) NIL #51# ELT) ((#54=(|Record| (|:| |mat| #13#) (|:| |vec| #44#)) . #53#) NIL T ELT) ((#13# . #49#) NIL T ELT)) (|reduce| #55=(($ #56=(|SparseUnivariatePolynomial| |#1|)) NIL T ELT) ((#24# (|Fraction| #56#)) NIL #29# ELT)) (|recip| ((#24# $) NIL T ELT)) (|real| (#16# 20 T ELT)) (|rationalIfCan| (#39# NIL #57=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#4# NIL #57# ELT)) (|rational| (#43# NIL #57# ELT)) (|rank| ((#19#) NIL T ELT)) (|random| (#35# NIL #34# ELT)) (|quo| #46#) (|principalIdeal| (((|Record| (|:| |coef| #58=(|List| $)) #59=(|:| |generator| $)) #58#) NIL #7# ELT)) (|primitiveElement| #60=(#35# NIL #22# ELT)) (|primitive?| (#4# NIL #22# ELT)) (|primeFrobenius| (#61=($ $ #20#) NIL #22# ELT) #62=(#11# NIL #22# ELT)) (|prime?| (#4# NIL #28# ELT)) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (AND #63=(|has| |#1| (|RealNumberSystem|)) #18#) ELT)) (|pi| (#35# NIL #18# ELT)) (|patternMatch| ((#64=(|PatternMatchResult| #21# . #65=($)) $ #66=(|Pattern| #21#) #64#) NIL (|has| |#1| (|PatternMatchable| #21#)) ELT) ((#67=(|PatternMatchResult| #68=(|Float|) . #65#) $ #69=(|Pattern| #68#) #67#) NIL (|has| |#1| (|PatternMatchable| #68#)) ELT)) (|order| (#70=(#19# $) NIL #22# ELT) (((|OnePointCompletion| #19#) $) NIL #22# ELT)) (|opposite?| #1#) (|one?| (#4# 17 T ELT)) (|nthRoot| (#71=($ $ #21#) NIL #31# ELT)) (|norm| (#16# 30 T ELT)) (|nextItem| (#72=((|Maybe| $) $) NIL #22# ELT)) (|multiEuclidean| (((|Union| #58# #25#) #58# $) NIL #7# ELT)) (|minimalPolynomial| (#73=(#56# $) NIL #29# ELT)) (|map| (($ #74=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|lookup| (#70# NIL #34# ELT)) (|log| #17#) (|lift| #75=(#73# NIL T ELT)) (|leftReducedSystem| ((#48# #14#) NIL #51# ELT) ((#52# . #76=(#14# $)) NIL #51# ELT) ((#54# . #76#) NIL T ELT) #12#) (|lcm| #77=(($ #58#) NIL #7# ELT) #46#) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#11# NIL #29# ELT)) (|init| (#35# NIL #22# CONST)) (|index| (($ #19#) NIL #34# ELT)) (|imaginary| #78=(#35# NIL T ELT)) (|imag| (#16# 21 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| #78#) (|gcdPolynomial| ((#27# #27# #27#) NIL #7# ELT)) (|gcd| #77# #46#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #21#) (|:| |exponent| #21#)))) NIL #22# ELT)) (|factorSquareFreePolynomial| #26#) (|factorPolynomial| #26#) (|factor| #30#) (|extendedEuclidean| (((|Union| (|Record| #79=(|:| |coef1| $) #80=(|:| |coef2| $)) #25#) $ $ $) NIL #7# ELT) (((|Record| #79# #80# #59#) $ $) NIL #7# ELT)) (|exquo| ((#24# $ |#1|) 28 #9# ELT) (#23# 31 #5# ELT)) (|expressIdealMember| (((|Maybe| #58#) #58# $) NIL #7# ELT)) (|exp| #17#) (|eval| (($ $ #81=(|List| |#1|) #81#) NIL #82=(|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) NIL #82# ELT) (($ $ #83=(|Equation| |#1|)) NIL #82# ELT) (($ $ (|List| #83#)) NIL #82# ELT) (($ $ #84=(|List| #85=(|Symbol|)) #81#) NIL #86=(|has| |#1| (|InnerEvalable| #85# |#1|)) ELT) (($ $ #85# |#1|) NIL #86# ELT)) (|euclideanSize| (#87=(#20# $) NIL #7# ELT)) (|elt| (#88=($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #7# ELT)) (|discriminant| ((|#1| #14#) NIL T ELT) ((|#1|) NIL T ELT)) (|discreteLog| (#87# NIL #22# ELT) (((|Union| #20# #25#) $ $) NIL #22# ELT)) (|differentiate| #89=(($ $ #74#) NIL T ELT) #90=(($ $ #74# #20#) NIL T ELT) #91=(($ $ #84# (|List| #20#)) NIL #92=(OR (AND #29# (|has| |#1| (|PartialDifferentialRing| #85#))) (|has| |#1| (|PartialDifferentialSpace| #85#))) ELT) #93=(($ $ #85# #20#) NIL #92# ELT) #94=(($ $ #84#) NIL #92# ELT) #95=(($ $ #85#) NIL #92# ELT) #96=(#61# NIL #97=(OR (AND (|has| |#1| (|DifferentialRing|)) #29#) (|has| |#1| (|DifferentialSpace|))) ELT) #98=(#11# NIL #97# ELT)) (|derivationCoordinates| ((#13# #14# #74#) NIL #29# ELT)) (|definingPolynomial| ((#56#) NIL T ELT)) (|csch| #17#) (|csc| #17#) (|createPrimitiveElement| #60#) (|coth| #17#) (|cot| #17#) (|cosh| #17#) (|cos| #17#) (|coordinates| ((#44# $ #14#) NIL T ELT) ((#13# #14# #14#) NIL T ELT) #99=((#44# $) NIL T ELT) #12#) (|convert| #99# #45# #75# #55# ((#66# . #100=($)) NIL (|has| |#1| (|ConvertibleTo| #66#)) ELT) ((#69# . #100#) NIL (|has| |#1| (|ConvertibleTo| #69#)) ELT) (((|Complex| #68#) . #100#) NIL #101=(|has| |#1| (|RealConstant|)) ELT) (((|Complex| (|DoubleFloat|)) . #100#) NIL #101# ELT) ((#102=(|InputForm|) . #100#) NIL (|has| |#1| (|ConvertibleTo| #102#)) ELT)) (|conjugate| (#11# 29 T ELT)) (|conditionP| (((|Union| #14# #25#) #50#) NIL (OR #103=(AND (|has| $ #104=(|CharacteristicNonZero|)) #7# #8#) #22#) ELT)) (|complex| (($ |#1| |#1|) 19 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #21#) NIL T ELT) (($ |#1|) 18 T ELT) (($ #40#) NIL (OR #29# #41#) ELT) #10#) (|charthRoot| #62# (#72# NIL (OR #103# (|has| |#1| #104#)) ELT)) (|characteristicPolynomial| #75#) (|characteristic| (#33# NIL T CONST)) (|before?| #1#) (|basis| ((#14#) NIL T ELT)) (|atanh| #17#) (|atan| #17#) (|associates?| (#2# NIL #5# ELT)) (|asinh| #17#) (|asin| #17#) (|asech| #17#) (|asec| #17#) (|argument| (#16# NIL #18# ELT)) (|annihilate?| #1#) (|acsch| #17#) (|acsc| #17#) (|acoth| #17#) (|acot| #17#) (|acosh| #17#) (|acos| #17#) (|abs| (#11# NIL #63# ELT)) (|Zero| (#35# 8 T CONST)) (|One| (#35# 10 T CONST)) (D #89# #90# #91# #93# #94# #95# #96# #98#) (= #1#) (/ (#47# NIL #29# ELT)) (- (#11# NIL T ELT) (#47# NIL T ELT)) (+ (#47# 23 T ELT)) (** (($ $ #19#) NIL T ELT) (#61# NIL T ELT) (#105=($ $ #40#) NIL #31# ELT) (#47# NIL #18# ELT) (#71# NIL #29# ELT)) (* (($ #19# $) NIL T ELT) (($ #20# $) NIL T ELT) (($ #21# . #106=($)) NIL T ELT) (#47# 26 T ELT) (#88# NIL T ELT) (($ |#1| . #106#) NIL T ELT) (($ #40# . #106#) NIL #29# ELT) (#105# NIL #29# ELT)))
+(((|Complex| |#1|) (|ComplexCategory| |#1|) (|CommutativeRing|)) (T |Complex|))
+NIL
+((|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) 14 T ELT)))
+(((|ComplexFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)))) #1=(|CommutativeRing|) #1#) (T |ComplexFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Complex| *5)) (|ofCategory| *5 #1=(|CommutativeRing|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Complex| *6)) (|isDomain| *1 (|ComplexFunctions2| *5 *6)))))
+((|convert| (((|Pattern| |#1|) |#3|) 22 T ELT)))
+(((|ComplexPattern| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |convert| (#1=(|Pattern| |#1|) |#3|))) (|SetCategory|) (|Join| (|ConvertibleTo| #1#) (|CommutativeRing|)) (|ComplexCategory| |#2|)) (T |ComplexPattern|))
+((|convert| (*1 *2 *3) (AND (|ofCategory| *5 (|Join| (|ConvertibleTo| *2) (|CommutativeRing|))) (|isDomain| *2 (|Pattern| *4)) (|isDomain| *1 (|ComplexPattern| *4 *5 *3)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|ComplexCategory| *5)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|solid?| (#3=(#2# $) 9 T ELT)) (|solid| (#4=(#2# $ #2#) 11 T ELT)) (|new| (($) 13 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|copy| (($ $) 14 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT)) (|closed?| (#3# 8 T ELT)) (|close| (#4# 10 T ELT)) (|before?| #1#) (= #1#))
+(((|SubSpaceComponentProperty|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |closed?| #1=(#2=(|Boolean|) $)) (SIGNATURE |solid?| #1#) (SIGNATURE |close| #3=(#2# $ #2#)) (SIGNATURE |solid| #3#) (SIGNATURE |copy| ($ $))))) (T |SubSpaceComponentProperty|))
+((|new| (*1 *1) #1=(|isDomain| *1 (|SubSpaceComponentProperty|))) (|closed?| #2=(*1 *2 *1) #3=(AND (|isDomain| *2 (|Boolean|)) #1#)) (|solid?| #2# #3#) (|close| #4=(*1 *2 *1 *2) #3#) (|solid| #4# #3#) (|copy| (*1 *1 *1) #1#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|CommutativeRing|) (|Category|)) (T |CommutativeRing|))
+NIL
+(|Join| (|Ring|) (|BiModule| $ $) (CATEGORY |package| (ATTRIBUTE (|commutative| "*"))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|close!| (($ $) 6 T ELT)))
+(((|Conduit|) (|Category|)) (T |Conduit|))
+((|close!| (*1 *1 *1) (|ofCategory| *1 (|Conduit|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |close!| ($ $))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|wholePart| ((|#1| $) 79 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #7=((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #10=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sample| (#11=($) NIL T CONST)) (|rem| #12=(#13=($ $ $) NIL T ELT)) (|reducedForm| (#6# 21 T ELT)) (|reducedContinuedFraction| (($ |#1| #14=(|Stream| |#1|)) 48 T ELT)) (|recip| ((#8# $) 123 T ELT)) (|quo| #12#) (|principalIdeal| (((|Record| (|:| |coef| #15=(|List| $)) #16=(|:| |generator| $)) #15#) NIL T ELT)) (|prime?| #4#) (|partialQuotients| (#17=(#14# $) 86 T ELT)) (|partialNumerators| (#17# 83 T ELT)) (|partialDenominators| (#17# 84 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numerators| (#17# 93 T ELT)) (|multiEuclidean| (((|Union| #15# #9#) #15# $) NIL T ELT)) (|lcm| #18=(($ #15#) NIL T ELT) #12#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#19=(|SparseUnivariatePolynomial| $) #19# #19#) NIL T ELT)) (|gcd| #18# #12#) (|factor| #10#) (|extendedEuclidean| (((|Union| (|Record| #20=(|:| |coef1| $) #21=(|:| |coef2| $)) #9#) $ $ $) NIL T ELT) (((|Record| #20# #21# #16#) $ $) NIL T ELT)) (|extend| (#22=($ $ #23=(|Integer|)) 96 T ELT)) (|exquo| #7#) (|expressIdealMember| (((|Maybe| #15#) #15# $) NIL T ELT)) (|euclideanSize| ((#24=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|denominators| (#17# 94 T ELT)) (|convergents| (#25=((|Stream| #26=(|Fraction| |#1|)) $) 14 T ELT)) (|continuedFraction| (#27=($ #26#) 17 T ELT) (($ |#1| #14# #14#) 38 T ELT)) (|complete| (#6# 98 T ELT)) (|coerce| (((|OutputForm|) $) 139 T ELT) (($ #23#) 51 T ELT) (($ |#1|) 52 T ELT) (#27# 36 T ELT) (($ #28=(|Fraction| #23#)) NIL T ELT) #5#) (|characteristic| ((#24#) 67 T CONST)) (|before?| #1#) (|associates?| #1#) (|approximants| (#25# 20 T ELT)) (|annihilate?| #1#) (|Zero| (#11# 103 T CONST)) (|One| (#11# 28 T CONST)) (= (#2# 35 T ELT)) (/ (#13# 121 T ELT)) (- (#6# 112 T ELT) (#13# 109 T ELT)) (+ (#13# 107 T ELT)) (** (($ $ #29=(|PositiveInteger|)) NIL T ELT) (($ $ #24#) NIL T ELT) (#22# NIL T ELT)) (* (($ #29# $) NIL T ELT) (($ #24# $) NIL T ELT) (($ #23# $) 119 T ELT) (#13# 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ #26# $) 117 T ELT) (($ $ #26#) NIL T ELT) (($ #28# $) NIL T ELT) (($ $ #28#) NIL T ELT)))
+(((|ContinuedFraction| |#1|) (|Join| (|Algebra| |#1|) (|Algebra| #1=(|Fraction| |#1|)) (|Field|) (CATEGORY |domain| (SIGNATURE |continuedFraction| ($ #1#)) (SIGNATURE |continuedFraction| ($ |#1| #2=(|Stream| |#1|) #2#)) (SIGNATURE |reducedContinuedFraction| ($ |#1| #2#)) (SIGNATURE |partialNumerators| #3=(#2# $)) (SIGNATURE |partialDenominators| #3#) (SIGNATURE |partialQuotients| #3#) (SIGNATURE |wholePart| (|#1| $)) (SIGNATURE |reducedForm| #4=($ $)) (SIGNATURE |approximants| #5=((|Stream| #1#) $)) (SIGNATURE |convergents| #5#) (SIGNATURE |numerators| #3#) (SIGNATURE |denominators| #3#) (SIGNATURE |extend| ($ $ (|Integer|))) (SIGNATURE |complete| #4#))) (|EuclideanDomain|)) (T |ContinuedFraction|))
+((|continuedFraction| (*1 *1 *2) (AND (|isDomain| *2 #1=(|Fraction| *3)) #2=(|ofCategory| *3 #3=(|EuclideanDomain|)) #4=(|isDomain| *1 (|ContinuedFraction| *3)))) (|continuedFraction| (*1 *1 *2 *3 *3) #5=(AND (|isDomain| *3 (|Stream| *2)) #6=(|ofCategory| *2 #3#) #7=(|isDomain| *1 (|ContinuedFraction| *2)))) (|reducedContinuedFraction| (*1 *1 *2 *3) #5#) (|partialNumerators| #8=(*1 *2 *1) #9=(AND (|isDomain| *2 (|Stream| *3)) #4# #2#)) (|partialDenominators| #8# #9#) (|partialQuotients| #8# #9#) (|wholePart| #8# #10=(AND #7# #6#)) (|reducedForm| #11=(*1 *1 *1) #10#) (|approximants| #8# #12=(AND (|isDomain| *2 (|Stream| #1#)) #4# #2#)) (|convergents| #8# #12#) (|numerators| #8# #9#) (|denominators| #8# #9#) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #4# #2#)) (|complete| #11# #10#))
+((|push| (($ #1=(|Binding|) $) 15 T ELT)) (|findBinding| (((|Maybe| #1#) (|Identifier|) $) 14 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT)) (|bindings| (((|List| #1#) $) 8 T ELT)))
+(((|Contour|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |bindings| ((|List| #1=(|Binding|)) $)) (SIGNATURE |push| ($ #1# $)) (SIGNATURE |findBinding| ((|Maybe| #1#) (|Identifier|) $))))) (T |Contour|))
+((|bindings| (*1 *2 *1) (AND (|isDomain| *2 (|List| #1=(|Binding|))) #2=(|isDomain| *1 (|Contour|)))) (|push| (*1 *1 *2 *1) (AND (|isDomain| *2 #1#) #2#)) (|findBinding| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| #1#)) #2#)))
+((|toroidal| (#1=(#2=(|Mapping| #3=(|Point| |#1|) #3#) |#1|) 38 T ELT)) (|spherical| (#4=(#3# #3#) 22 T ELT)) (|prolateSpheroidal| (#1# 34 T ELT)) (|polar| (#4# 20 T ELT)) (|paraboloidal| (#4# 28 T ELT)) (|parabolicCylindrical| (#4# 27 T ELT)) (|parabolic| (#4# 26 T ELT)) (|oblateSpheroidal| (#1# 35 T ELT)) (|ellipticCylindrical| (#1# 33 T ELT)) (|elliptic| (#1# 32 T ELT)) (|cylindrical| (#4# 21 T ELT)) (|conical| ((#2# |#1| |#1|) 41 T ELT)) (|cartesian| (#4# 8 T ELT)) (|bipolarCylindrical| (#1# 37 T ELT)) (|bipolar| (#1# 36 T ELT)))
+(((|CoordinateSystems| |#1|) (CATEGORY |package| (SIGNATURE |cartesian| #1=(#2=(|Point| |#1|) #2#)) (SIGNATURE |polar| #1#) (SIGNATURE |cylindrical| #1#) (SIGNATURE |spherical| #1#) (SIGNATURE |parabolic| #1#) (SIGNATURE |parabolicCylindrical| #1#) (SIGNATURE |paraboloidal| #1#) (SIGNATURE |elliptic| #3=(#4=(|Mapping| #2# #2#) |#1|)) (SIGNATURE |ellipticCylindrical| #3#) (SIGNATURE |prolateSpheroidal| #3#) (SIGNATURE |oblateSpheroidal| #3#) (SIGNATURE |bipolar| #3#) (SIGNATURE |bipolarCylindrical| #3#) (SIGNATURE |toroidal| #3#) (SIGNATURE |conical| (#4# |#1| |#1|))) (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (T |CoordinateSystems|))
+((|conical| (*1 *2 *3 *3) #1=(AND (|isDomain| *2 (|Mapping| #2=(|Point| *3) #2#)) #3=(|isDomain| *1 (|CoordinateSystems| *3)) #4=(|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|toroidal| #5=(*1 *2 *3) #1#) (|bipolarCylindrical| #5# #1#) (|bipolar| #5# #1#) (|oblateSpheroidal| #5# #1#) (|prolateSpheroidal| #5# #1#) (|ellipticCylindrical| #5# #1#) (|elliptic| #5# #1#) (|paraboloidal| #6=(*1 *2 *2) #7=(AND (|isDomain| *2 #2#) #4# #3#)) (|parabolicCylindrical| #6# #7#) (|parabolic| #6# #7#) (|spherical| #6# #7#) (|cylindrical| #6# #7#) (|polar| #6# #7#) (|cartesian| #6# #7#))
+((|characteristicPolynomial| ((|#2| |#3|) 28 T ELT)))
+(((|CharacteristicPolynomialInMonogenicalAlgebra| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#2| |#3|))) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#1|) (|MonogenicAlgebra| |#1| |#2|)) (T |CharacteristicPolynomialInMonogenicalAlgebra|))
+((|characteristicPolynomial| (*1 *2 *3) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|CharacteristicPolynomialInMonogenicalAlgebra| *4 *2 *3)) (|ofCategory| *3 (|MonogenicAlgebra| *4 *2)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) #1#) 44 (|has| (|Polynomial| |#2|) (|PatternMatchable| |#1|)) ELT)))
+(((|ComplexPatternMatch| |#1| |#2| |#3|) (CATEGORY |package| (IF (|has| (|Polynomial| |#2|) #1=(|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| (#2=(|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) #2#)) |%noBranch|)) (|SetCategory|) (|Join| #1# (|CommutativeRing|)) (|ComplexCategory| |#2|)) (T |ComplexPatternMatch|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|ComplexCategory| *6)) (|ofCategory| (|Polynomial| *6) #1=(|PatternMatchable| *5)) (|ofCategory| *6 (|Join| #1# (|CommutativeRing|))) (|isDomain| *1 (|ComplexPatternMatch| *5 *6 *3)))))
+((|multiEuclideanTree| ((#1=(|List| |#1|) #1# |#1|) 41 T ELT)) (|modTree| ((#1# |#1| #1#) 20 T ELT)) (|chineseRemainder| ((#1# (|List| #1#) #1#) 36 T ELT) ((|#1| #1# #1#) 32 T ELT)))
+(((|CRApackage| |#1|) (CATEGORY |package| (SIGNATURE |modTree| (#1=(|List| |#1|) |#1| #1#)) (SIGNATURE |chineseRemainder| (|#1| #1# #1#)) (SIGNATURE |chineseRemainder| (#1# (|List| #1#) #1#)) (SIGNATURE |multiEuclideanTree| (#1# #1# |#1|))) (|EuclideanDomain|)) (T |CRApackage|))
+((|multiEuclideanTree| (*1 *2 *2 *3) #1=(AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 #2=(|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *3)))) (|chineseRemainder| #3=(*1 *2 *3 *2) (AND (|isDomain| *3 (|List| #4=(|List| *4))) (|isDomain| *2 #4#) (|ofCategory| *4 #2#) (|isDomain| *1 (|CRApackage| *4)))) (|chineseRemainder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|CRApackage| *2)) (|ofCategory| *2 #2#))) (|modTree| #3# #1#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|target| (((|TypeAst|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|CoerceAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $)) (SIGNATURE |target| ((|TypeAst|) $))))) (T |CoerceAst|))
+((|expression| #1=(*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) #2=(|isDomain| *1 (|CoerceAst|)))) (|target| #1# (AND (|isDomain| *2 (|TypeAst|)) #2#)))
+((|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| #1=(|Factored| |#2|))) |#2|) 66 T ELT)) (|setErrorBound| ((|#1| |#1|) 58 T ELT)) (|schwerpunkt| ((#2=(|Complex| |#1|) |#2|) 94 T ELT)) (|rootRadius| (#3=(|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (|reciprocalPolynomial| (#4=(|#2| |#2|) 91 T ELT)) (|pleskenSplit| (#5=(#1# |#2| |#1|) 119 T ELT) (#6=(#1# |#2| |#1| #7=(|Boolean|)) 88 T ELT)) (|norm| (#3# 118 T ELT)) (|graeffe| (#4# 131 T ELT)) (|factor| ((#1# |#2|) 154 T ELT) (#5# 33 T ELT) (#6# 153 T ELT)) (|divisorCascade| ((#8=(|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) 152 T ELT) ((#8# |#2| |#2| #7#) 82 T ELT)) (|complexZeros| ((#9=(|List| #2#) |#2| |#1|) 42 T ELT) ((#9# |#2|) 43 T ELT)))
+(((|ComplexRootFindingPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexZeros| (#1=(|List| #2=(|Complex| |#1|)) |#2|)) (SIGNATURE |complexZeros| (#1# |#2| |#1|)) (SIGNATURE |divisorCascade| (#3=(|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| #4=(|Boolean|))) (SIGNATURE |divisorCascade| (#3# |#2| |#2|)) (SIGNATURE |factor| #5=(#6=(|Factored| |#2|) |#2| |#1| #4#)) (SIGNATURE |factor| #7=(#6# |#2| |#1|)) (SIGNATURE |factor| (#6# |#2|)) (SIGNATURE |graeffe| #8=(|#2| |#2|)) (SIGNATURE |norm| #9=(|#1| |#2|)) (SIGNATURE |pleskenSplit| #5#) (SIGNATURE |pleskenSplit| #7#) (SIGNATURE |reciprocalPolynomial| #8#) (SIGNATURE |rootRadius| (|#1| |#2| |#1|)) (SIGNATURE |rootRadius| #9#) (SIGNATURE |schwerpunkt| (#2# |#2|)) (SIGNATURE |setErrorBound| (|#1| |#1|)) (SIGNATURE |startPolynomial| ((|Record| (|:| |start| |#2|) (|:| |factors| #6#)) |#2|))) (|Join| (|Field|) (|OrderedRing|)) (|UnivariatePolynomialCategory| #2#)) (T |ComplexRootFindingPackage|))
+((|startPolynomial| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Record| (|:| |start| *3) (|:| |factors| #4=(|Factored| *3)))) #5=(|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) #6=(|ofCategory| *3 (|UnivariatePolynomialCategory| #7=(|Complex| *4))))) (|setErrorBound| #8=(*1 *2 *2) #9=(AND (|ofCategory| *2 #3#) (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))) (|schwerpunkt| #1# (AND (|isDomain| *2 #7#) #5# #2# (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|rootRadius| #1# #9#) (|rootRadius| (*1 *2 *3 *2) #9#) (|reciprocalPolynomial| #8# #10=(AND (|ofCategory| *3 #3#) (|isDomain| *1 (|ComplexRootFindingPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Complex| *3))))) (|pleskenSplit| #11=(*1 *2 *3 *4) #12=(AND #2# #13=(|isDomain| *2 #4#) #5# #6#)) (|pleskenSplit| #14=(*1 *2 *3 *4 *5) #15=(AND (|isDomain| *5 #16=(|Boolean|)) #2# #13# #5# #6#)) (|norm| #1# #9#) (|graeffe| #8# #10#) (|factor| #1# #12#) (|factor| #11# #12#) (|factor| #14# #15#) (|divisorCascade| (*1 *2 *3 *3) (AND #2# (|isDomain| *2 (|List| (|Record| #17=(|:| |factors| (|List| *3)) (|:| |error| *4)))) #5# #6#)) (|divisorCascade| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 #16#) (|ofCategory| *5 #3#) (|isDomain| *2 (|List| (|Record| #17# (|:| |error| *5)))) (|isDomain| *1 (|ComplexRootFindingPackage| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *5))))) (|complexZeros| #11# #18=(AND #2# (|isDomain| *2 (|List| #7#)) #5# #6#)) (|complexZeros| #1# #18#))
+((|cycleElt| (((|Union| |#2| "failed") |#2|) 16 T ELT)) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) 18 T ELT)) (|computeCycleEntry| ((|#2| |#2| |#2|) 20 T ELT)))
+(((|CyclicStreamTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |cycleElt| ((|Union| |#2| "failed") |#2|)) (SIGNATURE |computeCycleLength| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |computeCycleEntry| (|#2| |#2| |#2|))) (|Type|) (|LazyStreamAggregate| |#1|)) (T |CyclicStreamTools|))
+((|computeCycleEntry| (*1 *2 *2 *2) (AND #1=(|ofCategory| *3 #2=(|Type|)) #3=(|isDomain| *1 (|CyclicStreamTools| *3 *2)) #4=(|ofCategory| *2 (|LazyStreamAggregate| *3)))) (|computeCycleLength| (*1 *2 *3) (AND (|ofCategory| *4 #2#) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CyclicStreamTools| *4 *3)) (|ofCategory| *3 (|LazyStreamAggregate| *4)))) (|cycleElt| (*1 *2 *2) (|partial| AND #1# #3# #4#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|operations| (((|List| (|OverloadSet|)) $) NIL T ELT)) (|name| ((#3=(|Identifier|) $) 8 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|kind| (((|ConstructorKind|) $) 10 T ELT)) (|is?| ((#2# $ #3#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|findConstructor| (((|Maybe| $) #3#) 17 T ELT)) (|dualSignature| (((|List| #2#) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|arity| (((|Arity|) $) 12 T ELT)) (= #1#))
+(((|Constructor|) (|Join| (|ConstructorCategory|) (CATEGORY |domain| (SIGNATURE |findConstructor| ((|Maybe| $) (|Identifier|)))))) (T |Constructor|))
+((|findConstructor| (*1 *2 *3) (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| #1=(|Constructor|))) (|isDomain| *1 #1#))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|constructor| ((|#1| $) 7 T ELT)) (|coerce| (((|OutputForm|) $) 14 T ELT)) (|before?| #1#) (|arguments| (((|List| (|Syntax|)) $) 10 T ELT)) (= (#2# 12 T ELT)))
+(((|ConstructorCall| |#1|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |constructor| (|#1| $)) (SIGNATURE |arguments| ((|List| (|Syntax|)) $)))) (|ConstructorCategory|)) (T |ConstructorCall|))
+((|constructor| #1=(*1 *2 *1) (AND (|isDomain| *1 (|ConstructorCall| *2)) (|ofCategory| *2 #2=(|ConstructorCategory|)))) (|arguments| #1# (AND (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|ConstructorCall| *3)) (|ofCategory| *3 #2#))))
+((|operations| (((|List| (|OverloadSet|)) $) 16 T ELT)) (|kind| (((|ConstructorKind|) $) 8 T ELT)) (|dualSignature| (((|List| (|Boolean|)) $) 13 T ELT)) (|arity| (((|Arity|) $) 10 T ELT)))
+(((|ConstructorCategory&| |#1|) (CATEGORY |package| (SIGNATURE |operations| ((|List| (|OverloadSet|)) |#1|)) (SIGNATURE |dualSignature| ((|List| (|Boolean|)) |#1|)) (SIGNATURE |kind| ((|ConstructorKind|) |#1|)) (SIGNATURE |arity| ((|Arity|) |#1|))) (|ConstructorCategory|)) (T |ConstructorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|operations| (((|List| (|OverloadSet|)) $) 22 T ELT)) (|name| ((#2=(|Identifier|) $) 19 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|kind| (((|ConstructorKind|) $) 24 T ELT)) (|is?| (((|Boolean|) $ #2#) 17 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|dualSignature| (((|List| (|Boolean|)) $) 23 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|arity| (((|Arity|) $) 18 T ELT)) (= (#1# 8 T ELT)))
+(((|ConstructorCategory|) (|Category|)) (T |ConstructorCategory|))
+((|kind| (*1 *2 *1) (AND (|ofCategory| *1 (|ConstructorCategory|)) (|isDomain| *2 (|ConstructorKind|)))) (|dualSignature| (*1 *2 *1) (AND (|ofCategory| *1 (|ConstructorCategory|)) (|isDomain| *2 (|List| (|Boolean|))))) (|operations| (*1 *2 *1) (AND (|ofCategory| *1 (|ConstructorCategory|)) (|isDomain| *2 (|List| (|OverloadSet|))))))
+(|Join| (|OperatorCategory| (|Identifier|)) (CATEGORY |domain| (SIGNATURE |kind| ((|ConstructorKind|) $)) (SIGNATURE |dualSignature| ((|List| (|Boolean|)) $)) (SIGNATURE |operations| ((|List| (|OverloadSet|)) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OperatorCategory| (|Identifier|)) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|package| (#3=($) 8 T CONST)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|domain| (#3# 7 T CONST)) (|coerce| (((|OutputForm|) $) 12 T ELT)) (|category| (#3# 6 T CONST)) (|before?| #1#) (= (#2# 10 T ELT)))
+(((|ConstructorKind|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |category| #1=($) |constant|) (SIGNATURE |domain| #1# |constant|) (SIGNATURE |package| #1# |constant|)))) (T |ConstructorKind|))
+((|category| #1=(*1 *1) #2=(|isDomain| *1 (|ConstructorKind|))) (|domain| #1# #2#) (|package| #1# #2#))
+((|trigs| (#1=(|#2| |#2|) 28 T ELT)) (|real?| (((|Boolean|) |#2|) 19 T ELT)) (|real| (#2=(#3=(|Expression| |#1|) |#2|) 12 T ELT)) (|imag| (#2# 14 T ELT)) (|complexNormalize| (#4=(|#2| |#2| (|Symbol|)) 69 T ELT) (#1# 70 T ELT)) (|complexForm| (((|Complex| #3#) |#2|) 10 T ELT)) (|complexElementary| (#4# 66 T ELT) (#1# 60 T ELT)))
+(((|ComplexTrigonometricManipulations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexNormalize| #1=(|#2| |#2|)) (SIGNATURE |complexNormalize| #2=(|#2| |#2| (|Symbol|))) (SIGNATURE |complexElementary| #1#) (SIGNATURE |complexElementary| #2#) (SIGNATURE |real| #3=(#4=(|Expression| |#1|) |#2|)) (SIGNATURE |imag| #3#) (SIGNATURE |real?| ((|Boolean|) |#2|)) (SIGNATURE |trigs| #1#) (SIGNATURE |complexForm| ((|Complex| #4#) |#2|))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| (|Complex| |#1|)))) (T |ComplexTrigonometricManipulations|))
+((|complexForm| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Complex| #4=(|Expression| *4))) #5=(|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *3)) #6=(|ofCategory| *3 #7=(|Join| #8=(|AlgebraicallyClosedField|) #9=(|TranscendentalFunctionCategory|) (|FunctionSpace| (|Complex| *4)))))) (|trigs| #10=(*1 *2 *2) #11=(AND (|ofCategory| *3 #3#) (|isDomain| *1 (|ComplexTrigonometricManipulations| *3 *2)) (|ofCategory| *2 (|Join| #8# #9# (|FunctionSpace| (|Complex| *3)))))) (|real?| #1# (AND #2# (|isDomain| *2 (|Boolean|)) #5# #6#)) (|imag| #1# #12=(AND #2# (|isDomain| *2 #4#) #5# #6#)) (|real| #1# #12#) (|complexElementary| #13=(*1 *2 *2 *3) #14=(AND (|isDomain| *3 (|Symbol|)) #2# (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *2)) (|ofCategory| *2 #7#))) (|complexElementary| #10# #11#) (|complexNormalize| #13# #14#) (|complexNormalize| #10# #11#))
+((|coerceP| (((|Vector| (|Matrix| #1=(|Polynomial| |#1|))) #2=(|Vector| (|Matrix| |#1|))) 26 T ELT)) (|coerce| (((|Vector| (|Matrix| (|Fraction| #1#))) #2#) 37 T ELT)))
+(((|CoerceVectorMatrixPackage| |#1|) (CATEGORY |package| (SIGNATURE |coerceP| ((|Vector| (|Matrix| #1=(|Polynomial| |#1|))) #2=(|Vector| (|Matrix| |#1|)))) (SIGNATURE |coerce| ((|Vector| (|Matrix| (|Fraction| #1#))) #2#))) (|CommutativeRing|)) (T |CoerceVectorMatrixPackage|))
+((|coerce| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 (|Vector| (|Matrix| *4))) #3=(|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| (|Fraction| #4=(|Polynomial| *4))))) #5=(|isDomain| *1 (|CoerceVectorMatrixPackage| *4)))) (|coerceP| #1# (AND #2# #3# (|isDomain| *2 (|Vector| (|Matrix| #4#))) #5#)))
+((|wreath| (#1=(#2=(|SymmetricPolynomial| #3=(|Fraction| #4=(|Integer|))) #2# #2#) 93 T ELT)) (|skewSFunction| ((#2# #5=(|List| #4#) #5#) 109 T ELT)) (|powerSum| (#6=(#2# #7=(|PositiveInteger|)) 54 T ELT)) (|graphs| (#6# 79 T ELT)) (|eval| ((#3# #2#) 89 T ELT)) (|elementary| (#8=(#2# (|NonNegativeInteger|)) 37 T ELT)) (|dihedral| (#6# 66 T ELT)) (|cyclic| (#6# 61 T ELT)) (|cup| (#1# 87 T ELT)) (|complete| (#8# 29 T ELT)) (|cap| ((#3# #2# #2#) 91 T ELT)) (|alternating| (#8# 35 T ELT)) (|SFunction| ((#2# (|List| #7#)) 103 T ELT)))
+(((|CycleIndicators|) (CATEGORY |package| (SIGNATURE |complete| #1=(#2=(|SymmetricPolynomial| #3=(|Fraction| #4=(|Integer|))) (|NonNegativeInteger|))) (SIGNATURE |powerSum| #5=(#2# #6=(|PositiveInteger|))) (SIGNATURE |elementary| #1#) (SIGNATURE |alternating| #1#) (SIGNATURE |cyclic| #5#) (SIGNATURE |dihedral| #5#) (SIGNATURE |graphs| #5#) (SIGNATURE |cap| (#3# #2# #2#)) (SIGNATURE |cup| #7=(#2# #2# #2#)) (SIGNATURE |eval| (#3# #2#)) (SIGNATURE |wreath| #7#) (SIGNATURE |SFunction| (#2# (|List| #6#))) (SIGNATURE |skewSFunction| (#2# #8=(|List| #4#) #8#)))) (T |CycleIndicators|))
+((|skewSFunction| #1=(*1 *2 *3 *3) (AND (|isDomain| *3 (|List| #2=(|Integer|))) #3=(|isDomain| *2 #4=(|SymmetricPolynomial| #5=(|Fraction| #2#))) #6=(|isDomain| *1 (|CycleIndicators|)))) (|SFunction| #7=(*1 *2 *3) (AND (|isDomain| *3 (|List| #8=(|PositiveInteger|))) #3# #6#)) (|wreath| #9=(*1 *2 *2 *2) #10=(AND #3# #6#)) (|eval| #7# #11=(AND (|isDomain| *3 #4#) (|isDomain| *2 #5#) #6#)) (|cup| #9# #10#) (|cap| #1# #11#) (|graphs| #7# #12=(AND (|isDomain| *3 #8#) #3# #6#)) (|dihedral| #7# #12#) (|cyclic| #7# #12#) (|alternating| #7# #13=(AND (|isDomain| *3 (|NonNegativeInteger|)) #3# #6#)) (|elementary| #7# #13#) (|powerSum| #7# #12#) (|complete| #7# #13#))
+((|cyclotomicFactorization| (((|Factored| #1=(|SparseUnivariatePolynomial| #2=(|Integer|))) #2#) 38 T ELT)) (|cyclotomicDecomposition| (((|List| #1#) #2#) 33 T ELT)) (|cyclotomic| ((#1# #2#) 28 T ELT)))
+(((|CyclotomicPolynomialPackage|) (CATEGORY |package| (SIGNATURE |cyclotomicDecomposition| ((|List| #1=(|SparseUnivariatePolynomial| #2=(|Integer|))) #2#)) (SIGNATURE |cyclotomic| (#1# #2#)) (SIGNATURE |cyclotomicFactorization| ((|Factored| #1#) #2#)))) (T |CyclotomicPolynomialPackage|))
+((|cyclotomicFactorization| #1=(*1 *2 *3) (AND (|isDomain| *2 (|Factored| #2=(|SparseUnivariatePolynomial| #3=(|Integer|)))) #4=(|isDomain| *1 (|CyclotomicPolynomialPackage|)) #5=(|isDomain| *3 #3#))) (|cyclotomic| #1# (AND (|isDomain| *2 #2#) #4# #5#)) (|cyclotomicDecomposition| #1# (AND (|isDomain| *2 (|List| #2#)) #4# #5#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|qsetelt| ((|#2| $ #3=(|NonNegativeInteger|) |#2|) 11 T ELT)) (|qelt| ((|#2| $ #3#) 10 T ELT)) (|new| (($) 8 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 23 T ELT)) (|before?| #1#) (= (#2# 13 T ELT)))
+(((|DataArray| |#1| |#2|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |qelt| (|#2| $ #2=(|NonNegativeInteger|))) (SIGNATURE |qsetelt| (|#2| $ #2# |#2|)))) (|PositiveInteger|) #1#) (T |DataArray|))
+((|new| (*1 *1) (AND (|isDomain| *1 (|DataArray| *2 *3)) (|ofType| *2 #1=(|PositiveInteger|)) (|ofCategory| *3 #2=(|SetCategory|)))) (|qelt| (*1 *2 *1 *3) (AND #3=(|isDomain| *3 (|NonNegativeInteger|)) #4=(|ofCategory| *2 #2#) #5=(|isDomain| *1 (|DataArray| *4 *2)) #6=(|ofType| *4 #1#))) (|qsetelt| (*1 *2 *1 *3 *2) (AND #3# #5# #6# #4#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| ((#2=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fullDisplay| (#3=(#4=(|Void|) $) 36 T ELT) ((#4# $ #5=(|PositiveInteger|) #5#) 40 T ELT)) (|elt| (($ $ (|QueryEquation|)) 19 T ELT) (((|DataList| #2#) $ (|Symbol|)) 15 T ELT)) (|display| (#3# 34 T ELT)) (|coerce| (((|OutputForm|) $) 31 T ELT) (($ (|List| |#1|)) 8 T ELT)) (|before?| #1#) (= #1#) (- (#6=($ $ $) 26 T ELT)) (+ (#6# 22 T ELT)))
+(((|Database| |#1|) (|Join| (|SetCategory|) (|CoercibleFrom| (|List| |#1|)) (CATEGORY |domain| (SIGNATURE |elt| ($ $ (|QueryEquation|))) (SIGNATURE |elt| ((|DataList| #1=(|String|)) $ #2=(|Symbol|))) (SIGNATURE + #3=($ $ $)) (SIGNATURE - #3#) #4=(SIGNATURE |display| #5=(#6=(|Void|) $)) #7=(SIGNATURE |fullDisplay| #5#) (SIGNATURE |fullDisplay| (#6# $ #8=(|PositiveInteger|) #8#)))) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |elt| (#1# $ #2#)) #4# #7#))) (T |Database|))
+((|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 (|QueryEquation|)) #1=(|isDomain| *1 (|Database| *3)) (|ofCategory| *3 #2=(|Join| #3=(|OrderedSet|) (CATEGORY |domain| #4=(SIGNATURE |elt| (#5=(|String|) $ #6=(|Symbol|))) #7=(SIGNATURE |display| #8=(#9=(|Void|) $)) #10=(SIGNATURE |fullDisplay| #8#)))))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 #6#) (|isDomain| *2 (|DataList| #5#)) #11=(|isDomain| *1 (|Database| *4)) (|ofCategory| *4 (|Join| #3# (CATEGORY |domain| (SIGNATURE |elt| (#5# $ *3)) #7# #10#))))) (+ #12=(*1 *1 *1 *1) #13=(AND (|isDomain| *1 (|Database| *2)) (|ofCategory| *2 #2#))) (- #12# #13#) (|display| #14=(*1 *2 *1) #15=(AND #16=(|isDomain| *2 #9#) #1# (|ofCategory| *3 #17=(|Join| #3# (CATEGORY |domain| #4# (SIGNATURE |display| #18=(*2 $)) (SIGNATURE |fullDisplay| #18#)))))) (|fullDisplay| #14# #15#) (|fullDisplay| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) #16# #11# (|ofCategory| *4 #17#))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|random| (#2=($) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT) #4=(#2# NIL T CONST)) (|max| #3# #4#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) 10 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dual| (($ (|LinearBasis| |#1|)) 11 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|DualBasis| |#1|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |dual| ($ (|LinearBasis| |#1|))))) (|List| (|Symbol|))) (T |DualBasis|))
+((|dual| (*1 *1 *2) (AND (|isDomain| *2 (|LinearBasis| *3)) (|ofType| *3 (|List| (|Symbol|))) (|isDomain| *1 (|DualBasis| *3)))))
+((|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) 49 T ELT)))
+(((|DoubleResultantPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |doubleResultant| (|#2| |#4| (|Mapping| |#2| |#2|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |DoubleResultantPackage|))
+((|doubleResultant| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|isDomain| *1 (|DoubleResultantPackage| *5 *2 *6 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *5 *2 *6)))))
+((|tracePowMod| (#1=(|#2| |#2| #2=(|NonNegativeInteger|) |#2|) 55 T ELT)) (|trace2PowMod| (#1# 51 T ELT)) (|separateFactors| (((|List| |#2|) #3=(|List| (|Record| (|:| |deg| #2#) (|:| |prod| |#2|)))) 79 T ELT)) (|separateDegrees| ((#3# |#2|) 72 T ELT)) (|irreducible?| ((#4=(|Boolean|) |#2|) 70 T ELT)) (|factorSquareFree| (#5=((|Factored| |#2|) |#2|) 92 T ELT)) (|factor| (#5# 91 T ELT)) (|exptMod| (#1# 49 T ELT)) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| #4#) 86 T ELT)))
+(((|DistinctDegreeFactorize| |#1| |#2|) (CATEGORY |package| (SIGNATURE |factor| #1=((|Factored| |#2|) |#2|)) (SIGNATURE |factorSquareFree| #1#) (SIGNATURE |distdfact| ((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| #2=(|Boolean|))) (SIGNATURE |separateDegrees| (#3=(|List| (|Record| (|:| |deg| #4=(|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|)) (SIGNATURE |separateFactors| ((|List| |#2|) #3#)) (SIGNATURE |exptMod| #5=(|#2| |#2| #4# |#2|)) (SIGNATURE |trace2PowMod| #5#) (SIGNATURE |tracePowMod| #5#) (SIGNATURE |irreducible?| (#2# |#2|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|)) (T |DistinctDegreeFactorize|))
+((|irreducible?| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|FiniteFieldCategory|)) (|isDomain| *2 #4=(|Boolean|)) #5=(|isDomain| *1 (|DistinctDegreeFactorize| *4 *3)) #6=(|ofCategory| *3 #7=(|UnivariatePolynomialCategory| *4)))) (|tracePowMod| #8=(*1 *2 *2 *3 *2) #9=(AND (|isDomain| *3 #10=(|NonNegativeInteger|)) #2# (|isDomain| *1 (|DistinctDegreeFactorize| *4 *2)) (|ofCategory| *2 #7#))) (|trace2PowMod| #8# #9#) (|exptMod| #8# #9#) (|separateFactors| #1# (AND (|isDomain| *3 (|List| (|Record| #11=(|:| |deg| #10#) (|:| |prod| *5)))) (|ofCategory| *5 #7#) #2# (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|DistinctDegreeFactorize| *4 *5)))) (|separateDegrees| #1# (AND #2# (|isDomain| *2 (|List| (|Record| #11# (|:| |prod| *3)))) #5# #6#)) (|distdfact| (*1 *2 *3 *4) (AND (|isDomain| *4 #4#) (|ofCategory| *5 #3#) (|isDomain| *2 (|Record| (|:| |cont| *5) (|:| |factors| (|List| (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|))))))) (|isDomain| *1 (|DistinctDegreeFactorize| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|factorSquareFree| #1# #12=(AND #2# (|isDomain| *2 (|Factored| *3)) #5# #6#)) (|factor| #1# #12#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|Integer|) $) NIL #8=(|has| #7# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #9=(#10=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #7# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #9#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#6# NIL #19=(|has| #7# (|OrderedIntegralDomain|)) ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (#22=((|Union| #7# . #23=(#13#)) . #24=($)) NIL T ELT) (((|Union| #25=(|Symbol|) . #23#) . #24#) NIL #26=(|has| #7# (|RetractableTo| #25#)) ELT) (((|Union| #27=(|Fraction| #7#) . #23#) . #24#) NIL #28=(|has| #7# (|RetractableTo| #7#)) ELT) (#22# NIL #28# ELT)) (|retract| #29=(#6# NIL T ELT) ((#25# $) NIL #26# ELT) (#30=(#27# $) NIL #28# ELT) (#6# NIL #28# ELT)) (|rem| #31=(#32=($ $ $) NIL T ELT)) (|reducedSystem| (#33=(#34=(|Matrix| #7#) #35=(|Matrix| $)) NIL #36=(|has| #7# (|LinearlyExplicitRingOver| #7#)) ELT) (#37=(#38=(|Record| (|:| |mat| #34#) (|:| |vec| (|Vector| #7#))) #35# #39=(|Vector| $)) NIL #36# ELT) (#37# NIL T ELT) (#33# NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#21# NIL #40=(|has| #7# (|IntegerNumberSystem|)) ELT)) (|quo| #31#) (|principalIdeal| (((|Record| (|:| |coef| #41=(|List| $)) #42=(|:| |generator| $)) #41#) NIL T ELT)) (|prime?| #4#) (|positive?| #43=(#5# NIL #19# ELT)) (|patternMatch| ((#44=(|PatternMatchResult| #7# . #45=($)) $ #46=(|Pattern| #7#) #44#) NIL (|has| #7# (|PatternMatchable| #7#)) ELT) ((#47=(|PatternMatchResult| #48=(|Float|) . #45#) $ #49=(|Pattern| #48#) #47#) NIL (|has| #7# (|PatternMatchable| #48#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #9#) (|numer| #29#) (|nextItem| (#50=((|Maybe| $) $) NIL #51=(|has| #7# (|StepThrough|)) ELT)) (|negative?| #43#) (|multiEuclidean| (((|Union| #41# #13#) #41# $) NIL T ELT)) (|min| #52=(#32# NIL #53=(|has| #7# (|OrderedSet|)) ELT)) (|max| #52#) (|map| (($ #54=(|Mapping| #7# #7#) $) NIL T ELT)) (|leftReducedSystem| (#55=(#34# #39#) NIL #36# ELT) (#56=(#38# #39# $) NIL #36# ELT) (#56# NIL T ELT) (#55# NIL T ELT)) (|lcm| #31# #57=(($ #41#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #9#) (|init| (#21# NIL #51# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #31# #57#) (|fractionPart| (#10# NIL #8# ELT) #58=(#30# NIL T ELT)) (|floor| #59=(#6# NIL #40# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #60=(|:| |coef1| $) #61=(|:| |coef2| $) #42#) $ $) NIL T ELT) (((|Union| (|Record| #60# #61#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #41#) #41# $) NIL T ELT)) (|eval| (($ $ #62=(|List| #7#) #62#) NIL #63=(|has| #7# (|Evalable| #7#)) ELT) (($ $ #7# #7#) NIL #63# ELT) (($ $ #64=(|Equation| #7#)) NIL #63# ELT) (($ $ (|List| #64#)) NIL #63# ELT) (($ $ #65=(|List| #25#) #62#) NIL #66=(|has| #7# (|InnerEvalable| #25# #7#)) ELT) (($ $ #25# #7#) NIL #66# ELT)) (|euclideanSize| ((#67=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#68=($ $ #7#) NIL (|has| #7# (|Eltable| #7# #7#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #69=(($ $ #54#) NIL T ELT) #70=(($ $ #54# #67#) NIL T ELT) #71=(($ $ #25#) NIL #72=(|has| #7# (|PartialDifferentialSpace| #25#)) ELT) #73=(($ $ #65#) NIL #72# ELT) #74=(($ $ #25# #67#) NIL #72# ELT) #75=(($ $ #65# (|List| #67#)) NIL #72# ELT) #76=(#10# NIL #77=(|has| #7# (|DifferentialSpace|)) ELT) #78=(#79=($ $ #67#) NIL #77# ELT)) (|denominator| #9#) (|denom| #29#) (|decimal| (#80=($ #27#) 9 T ELT)) (|convert| ((#46# . #81=($)) NIL (|has| #7# (|ConvertibleTo| #46#)) ELT) ((#49# . #81#) NIL (|has| #7# (|ConvertibleTo| #49#)) ELT) ((#82=(|InputForm|) . #81#) NIL (|has| #7# (|ConvertibleTo| #82#)) ELT) ((#48# . #81#) NIL #83=(|has| #7# (|RealConstant|)) ELT) (((|DoubleFloat|) . #81#) NIL #83# ELT)) (|conditionP| (((|Union| #39# #13#) #35#) NIL #84=(AND (|has| $ #85=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) #86=(($ #7#) NIL T ELT) #9# (#80# 8 T ELT) #86# (($ #25#) NIL #26# ELT) #58# (((|RadixExpansion| 10) $) 10 T ELT)) (|charthRoot| (#50# NIL (OR #84# (|has| #7# #85#)) ELT)) (|characteristic| ((#67#) NIL T CONST)) (|ceiling| #59#) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#10# NIL #19# ELT)) (|Zero| #20#) (|One| #20#) (D #69# #70# #71# #73# #74# #75# #76# #78#) (>= #87=(#2# NIL #53# ELT)) (> #87#) (= #1#) (<= #87#) (< #87#) (/ #31# (($ #7# #7#) NIL T ELT)) (- #9# #31#) (+ #31#) (** (($ $ #88=(|PositiveInteger|)) NIL T ELT) (#79# NIL T ELT) #89=(#68# NIL T ELT)) (* (($ #88# $) NIL T ELT) (($ #67# $) NIL T ELT) #90=(($ #7# . #91=($)) NIL T ELT) #31# (($ $ #27#) NIL T ELT) (($ #27# . #91#) NIL T ELT) #90# #89#))
+(((|DecimalExpansion|) (|Join| (|QuotientFieldCategory| #1=(|Integer|)) (|CoercibleTo| #2=(|Fraction| #1#)) (|CoercibleTo| (|RadixExpansion| 10)) (CATEGORY |domain| (SIGNATURE |fractionPart| (#2# $)) (SIGNATURE |decimal| ($ #2#))))) (T |DecimalExpansion|))
+((|fractionPart| (*1 *2 *1) #1=(AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|DecimalExpansion|)))) (|decimal| (*1 *1 *2) #1#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|signature| (((|Signature|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|head| (((|HeadAst|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (((|SpadAst|) $) 16 T ELT)) (|before?| #1#) (= #1#))
+(((|DefinitionAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |head| ((|HeadAst|) $)) (SIGNATURE |signature| ((|Signature|) $)) (SIGNATURE |body| ((|SpadAst|) $))))) (T |DefinitionAst|))
+((|head| #1=(*1 *2 *1) (AND (|isDomain| *2 (|HeadAst|)) #2=(|isDomain| *1 (|DefinitionAst|)))) (|signature| #1# (AND (|isDomain| *2 (|Signature|)) #2#)) (|body| #1# (AND (|isDomain| *2 (|SpadAst|)) #2#)))
+((|integrate| ((#1=(|Union| (|:| |f1| #2=(|OrderedCompletion| |#2|)) (|:| |f2| (|List| #2#)) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| #3=(|SegmentBinding| #2#) (|String|)) 29 T ELT) ((#1# |#2| #3#) 25 T ELT)) (|innerint| ((#1# |#2| (|Symbol|) #2# #2# (|Boolean|)) 17 T ELT)))
+(((|ElementaryFunctionDefiniteIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integrate| (#1=(|Union| (|:| |f1| #2=(|OrderedCompletion| |#2|)) (|:| |f2| (|List| #2#)) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| #3=(|SegmentBinding| #2#))) (SIGNATURE |integrate| (#1# |#2| #3# (|String|))) (SIGNATURE |innerint| (#1# |#2| (|Symbol|) #2# #2# (|Boolean|)))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#)) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |ElementaryFunctionDefiniteIntegration|))
+((|innerint| (*1 *2 *3 *4 *5 *5 *6) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *6 (|Boolean|)) (|ofCategory| *7 #1=(|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#))) (|ofCategory| *3 (|Join| #3=(|TranscendentalFunctionCategory|) #4=(|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *7))) #5=(|isDomain| *2 (|Union| (|:| |f1| #6=(|OrderedCompletion| *3)) (|:| |f2| (|List| #6#)) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *7 *3)) (|isDomain| *5 #6#))) (|integrate| (*1 *2 *3 *4 *5) (AND #7=(|isDomain| *4 (|SegmentBinding| #6#)) (|isDomain| *5 (|String|)) (|ofCategory| *3 (|Join| #3# #4# (|AlgebraicallyClosedFunctionSpace| *6))) (|ofCategory| *6 #1#) #5# (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *6 *3)))) (|integrate| (*1 *2 *3 *4) (AND #7# (|ofCategory| *3 (|Join| #3# #4# (|AlgebraicallyClosedFunctionSpace| *5))) (|ofCategory| *5 #1#) #5# (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *5 *3)))))
+((|integrate| ((#1=(|Union| (|:| |f1| #2=(|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| #2#)) (|:| |fail| "failed") (|:| |pole| "potentialPole")) #3=(|Fraction| (|Polynomial| |#1|)) #4=(|SegmentBinding| (|OrderedCompletion| #3#)) #5=(|String|)) 49 T ELT) ((#1# #3# #4#) 46 T ELT) ((#1# #3# #6=(|SegmentBinding| #2#) #5#) 50 T ELT) ((#1# #3# #6#) 22 T ELT)))
+(((|RationalFunctionDefiniteIntegration| |#1|) (CATEGORY |package| (SIGNATURE |integrate| (#1=(|Union| (|:| |f1| #2=(|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| #2#)) (|:| |fail| "failed") (|:| |pole| "potentialPole")) #3=(|Fraction| (|Polynomial| |#1|)) #4=(|SegmentBinding| #2#))) (SIGNATURE |integrate| (#1# #3# #4# #5=(|String|))) (SIGNATURE |integrate| (#1# #3# #6=(|SegmentBinding| (|OrderedCompletion| #3#)))) (SIGNATURE |integrate| (#1# #3# #6# #5#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #7=(|Integer|)) (|LinearlyExplicitRingOver| #7#))) (T |RationalFunctionDefiniteIntegration|))
+((|integrate| #1=(*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| #2=(|Fraction| (|Polynomial| *6))))) #3=(|isDomain| *5 (|String|)) #4=(|isDomain| *3 #2#) #5=(|ofCategory| *6 #6=(|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #7=(|Integer|)) (|LinearlyExplicitRingOver| #7#))) #8=(|isDomain| *2 (|Union| (|:| |f1| #9=(|OrderedCompletion| (|Expression| *6))) (|:| |f2| (|List| #9#)) #10=(|:| |fail| "failed") #11=(|:| |pole| "potentialPole"))) #12=(|isDomain| *1 (|RationalFunctionDefiniteIntegration| *6)))) (|integrate| #13=(*1 *2 *3 *4) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| #14=(|Fraction| (|Polynomial| *5))))) #15=(|isDomain| *3 #14#) #16=(|ofCategory| *5 #6#) #17=(|isDomain| *2 (|Union| (|:| |f1| #18=(|OrderedCompletion| (|Expression| *5))) (|:| |f2| (|List| #18#)) #10# #11#)) #19=(|isDomain| *1 (|RationalFunctionDefiniteIntegration| *5)))) (|integrate| #1# (AND #4# (|isDomain| *4 (|SegmentBinding| #9#)) #3# #5# #8# #12#)) (|integrate| #13# (AND #15# (|isDomain| *4 (|SegmentBinding| #18#)) #16# #17# #19#)))
+((|reduce| (((|Record| (|:| |pol| #1=(|SparseUnivariatePolynomial| |#1|)) (|:| |deg| #2=(|PositiveInteger|))) #1#) 26 T ELT)) (|expand| (((|List| #3=(|Expression| |#2|)) #3# #2#) 51 T ELT)))
+(((|DegreeReductionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |reduce| ((|Record| (|:| |pol| #1=(|SparseUnivariatePolynomial| |#1|)) (|:| |deg| #2=(|PositiveInteger|))) #1#)) (SIGNATURE |expand| ((|List| #3=(|Expression| |#2|)) #3# #2#))) (|Ring|) (|IntegralDomain|)) (T |DegreeReductionPackage|))
+((|expand| (*1 *2 *3 *4) (AND (|isDomain| *4 #1=(|PositiveInteger|)) (|ofCategory| *6 #2=(|IntegralDomain|)) (|isDomain| *2 (|List| #3=(|Expression| *6))) (|isDomain| *1 (|DegreeReductionPackage| *5 *6)) (|isDomain| *3 #3#) (|ofCategory| *5 #4=(|Ring|)))) (|reduce| (*1 *2 *3) (AND (|ofCategory| *4 #4#) (|isDomain| *2 (|Record| (|:| |pol| #5=(|SparseUnivariatePolynomial| *4)) (|:| |deg| #1#))) (|isDomain| *1 (|DegreeReductionPackage| *4 *5)) (|isDomain| *3 #5#) (|ofCategory| *5 #2#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|top!| #5=(#6=(|#1| $) NIL T ELT)) (|top| (#6# 31 T ELT)) (|sample| (#7=($) NIL T CONST)) (|rotate!| #8=(#9=($ $) NIL T ELT)) (|reverse!| (#9# 40 T ELT)) (|reduce| ((|#1| #10=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #10# $ |#1|) NIL T ELT) ((|#1| #10# $) NIL T ELT)) (|push!| #11=(#12=(|#1| |#1| $) NIL T ELT)) (|pop!| #5#) (|members| ((#13=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #14=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #14#) (|length| #15=(#16=(#17=(|NonNegativeInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL #18=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| #5#) (|insertTop!| (#12# 36 T ELT)) (|insertBottom!| (#12# 38 T ELT)) (|insert!| (($ |#1| $) NIL T ELT)) (|height| (#16# 34 T ELT)) (|hash| (((|SingleInteger|) $) NIL #18# ELT)) (|front| #5#) (|find| (((|Union| |#1| "failed") #19=(|Mapping| #3# |#1|) $) NIL T ELT)) (|extractTop!| (#6# 32 T ELT)) (|extractBottom!| (#6# 30 T ELT)) (|extract!| #5#) (|every?| #20=((#3# #19# $) NIL T ELT)) (|eval| (($ $ (|List| #21=(|Equation| |#1|))) NIL #22=(AND (|has| |#1| (|Evalable| |#1|)) #18#) ELT) (($ $ #21#) NIL #22# ELT) (($ $ |#1| |#1|) NIL #22# ELT) (($ $ #13# #13#) NIL #22# ELT)) (|eq?| (#2# NIL T ELT)) (|enqueue!| #11#) (|empty?| ((#3# $) 9 T ELT)) (|empty| #23=(#7# NIL T ELT)) (|dequeue!| #5#) (|dequeue| #23# (#24=($ #13#) 17 T ELT)) (|depth| #15#) (|count| ((#17# |#1| $) NIL #4# ELT) ((#17# #19# $) NIL T ELT)) (|copy| #8#) (|coerce| ((#25=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #25#)) ELT)) (|bottom!| (#6# 14 T ELT)) (|before?| #1#) (|bag| (#24# NIL T ELT)) (|back| #5#) (|any?| #20#) (= #1#) (|#| #15#))
+(((|Dequeue| |#1|) (|Join| (|DequeueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |dequeue| ($ (|List| |#1|))))) (|SetCategory|)) (T |Dequeue|))
+((|dequeue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Dequeue| *3)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|totalDifferential| (#5=($ #6=(|Expression| |#1|)) 24 T ELT)) (|subtractIfCan| ((#7=(|Union| $ #8="failed") $ $) NIL T ELT)) (|sample| #9=(#10=($) NIL T CONST)) (|retractable?| #4#) (|retractIfCan| (((|Union| #6# #8#) $) NIL T ELT)) (|retract| #11=((#6# $) NIL T ELT)) (|reductum| (#12=($ $) 32 T ELT)) (|recip| ((#7# $) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|map| (($ (|Mapping| #6# #6#) $) NIL T ELT)) (|leadingCoefficient| #11#) (|leadingBasisTerm| (#12# 31 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|homogeneous?| #4#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (($ #13=(|NonNegativeInteger|)) NIL T ELT)) (|exteriorDifferential| (#12# 33 T ELT)) (|degree| ((#14=(|Integer|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 65 T ELT) (($ #14#) NIL T ELT) (#5# NIL T ELT)) (|coefficient| ((#6# $ $) NIL T ELT)) (|characteristic| ((#13#) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#10# 26 T CONST)) (|One| #9#) (= (#2# 29 T ELT)) (- (#12# NIL T ELT) (#15=($ $ $) NIL T ELT)) (+ (#15# 20 T ELT)) (** (($ $ #16=(|PositiveInteger|)) NIL T ELT) (($ $ #13#) NIL T ELT)) (* (($ #16# $) NIL T ELT) (($ #13# $) NIL T ELT) (($ #14# . #17=($)) NIL T ELT) (#15# 25 T ELT) (($ #6# . #17#) 19 T ELT)))
+(((|DeRhamComplex| |#1| |#2|) (|Join| (|LeftAlgebra| #1=(|Expression| |#1|)) (|RetractableTo| #1#) (|Functorial| #1#) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| (#1# $)) (SIGNATURE |leadingBasisTerm| #2=($ $)) (SIGNATURE |reductum| #2#) (SIGNATURE |coefficient| (#1# $ $)) (SIGNATURE |generator| ($ (|NonNegativeInteger|))) (SIGNATURE |homogeneous?| #3=((|Boolean|) $)) (SIGNATURE |retractable?| #3#) (SIGNATURE |degree| ((|Integer|) $)) (SIGNATURE |totalDifferential| ($ #1#)) (SIGNATURE |exteriorDifferential| #2#))) (|Join| (|Ring|) (|OrderedSet|)) (|List| (|Symbol|))) (T |DeRhamComplex|))
+((|leadingCoefficient| #1=(*1 *2 *1) #2=(AND #3=(|isDomain| *2 (|Expression| *3)) #4=(|isDomain| *1 (|DeRhamComplex| *3 *4)) #5=(|ofCategory| *3 #6=(|Join| (|Ring|) (|OrderedSet|))) #7=(|ofType| *4 #8=(|List| (|Symbol|))))) (|leadingBasisTerm| #9=(*1 *1 *1) #10=(AND (|isDomain| *1 (|DeRhamComplex| *2 *3)) (|ofCategory| *2 #6#) (|ofType| *3 #8#))) (|reductum| #9# #10#) (|coefficient| (*1 *2 *1 *1) #2#) (|generator| #11=(*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) #4# #5# #7#)) (|homogeneous?| #1# #12=(AND (|isDomain| *2 (|Boolean|)) #4# #5# #7#)) (|retractable?| #1# #12#) (|degree| #1# (AND (|isDomain| *2 (|Integer|)) #4# #5# #7#)) (|totalDifferential| #11# (AND #3# #5# #4# #7#)) (|exteriorDifferential| #9# #10#))
+((|ignore?| ((#1=(|Boolean|) (|String|)) 26 T ELT)) (|computeInt| (((|Union| #2=(|OrderedCompletion| |#2|) #3="failed") (|Kernel| |#2|) |#2| #2# #2# #1#) 35 T ELT)) (|checkForZero| ((#4=(|Union| #1# #3#) (|SparseUnivariatePolynomial| |#2|) #2# #2# #1#) 83 T ELT) ((#4# (|Polynomial| |#1|) (|Symbol|) #2# #2# #1#) 84 T ELT)))
+(((|DefiniteIntegrationTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |ignore?| (#1=(|Boolean|) (|String|))) (SIGNATURE |computeInt| ((|Union| #2=(|OrderedCompletion| |#2|) #3="failed") (|Kernel| |#2|) |#2| #2# #2# #1#)) (SIGNATURE |checkForZero| (#4=(|Union| #1# #3#) (|Polynomial| |#1|) (|Symbol|) #2# #2# #1#)) (SIGNATURE |checkForZero| (#4# (|SparseUnivariatePolynomial| |#2|) #2# #2# #1#))) (|Join| (|GcdDomain|) (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#)) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |DefiniteIntegrationTools|))
+((|checkForZero| (*1 *2 *3 *4 *4 *2) (|partial| AND #1=(|isDomain| *2 #2=(|Boolean|)) (|isDomain| *3 (|SparseUnivariatePolynomial| *6)) (|isDomain| *4 (|OrderedCompletion| *6)) (|ofCategory| *6 (|Join| #3=(|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5))) (|ofCategory| *5 #4=(|Join| (|GcdDomain|) (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#))) (|isDomain| *1 (|DefiniteIntegrationTools| *5 *6)))) (|checkForZero| (*1 *2 *3 *4 *5 *5 *2) (|partial| AND #1# (|isDomain| *3 (|Polynomial| *6)) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|OrderedCompletion| *7)) #6=(|ofCategory| *6 #4#) (|ofCategory| *7 #7=(|Join| #3# (|AlgebraicallyClosedFunctionSpace| *6))) (|isDomain| *1 (|DefiniteIntegrationTools| *6 *7)))) (|computeInt| (*1 *2 *3 *4 *2 *2 *5) (|partial| AND (|isDomain| *2 (|OrderedCompletion| *4)) (|isDomain| *3 (|Kernel| *4)) (|isDomain| *5 #2#) (|ofCategory| *4 #7#) #6# (|isDomain| *1 (|DefiniteIntegrationTools| *6 *4)))) (|ignore?| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 #4#) #1# (|isDomain| *1 (|DefiniteIntegrationTools| *4 *5)) (|ofCategory| *5 (|Join| #3# (|AlgebraicallyClosedFunctionSpace| *4))))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 86 T ELT)) (|wholePart| (#5=(#6=(|Integer|) $) 18 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #7=(#8=($ $) NIL T ELT)) (|unit?| #9=(#4# NIL T ELT)) (|truncate| #7#) (|tanh| (#8# 73 T ELT)) (|tan| (#8# 61 T ELT)) (|subtractIfCan| #10=((#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|squareFreePart| #7#) (|squareFree| #13=(((|Factored| $) $) NIL T ELT)) (|sqrt| (#8# 52 T ELT)) (|sizeLess?| #1#) (|sinh| (#8# 71 T ELT)) (|sin| (#8# 59 T ELT)) (|sign| (#5# 83 T ELT)) (|sech| (#8# 76 T ELT)) (|sec| (#8# 63 T ELT)) (|sample| (#14=($) NIL T CONST)) (|round| #7#) (|retractIfCan| (((|Union| #6# . #15=(#12#)) $) 116 T ELT) (((|Union| #16=(|Fraction| #6#) . #15#) $) 113 T ELT)) (|retract| (#5# 114 T ELT) ((#16# $) 111 T ELT)) (|rem| #17=(#18=($ $ $) NIL T ELT)) (|recip| ((#11# $) 91 T ELT)) (|rationalApproximation| ((#16# $ #19=(|NonNegativeInteger|)) 106 T ELT) ((#16# $ #19# #19#) 105 T ELT)) (|quo| #17#) (|principalIdeal| (((|Record| (|:| |coef| #20=(|List| $)) #21=(|:| |generator| $)) #20#) NIL T ELT)) (|prime?| #9#) (|precision| (#22=(#23=(|PositiveInteger|)) 12 T ELT) #24=((#23# #23#) NIL #25=(|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|positive?| (#4# 107 T ELT)) (|pi| (#14# 31 T ELT)) (|patternMatch| ((#26=(|PatternMatchResult| #27=(|Float|) $) $ #28=(|Pattern| #27#) #26#) NIL T ELT)) (|order| (#5# 25 T ELT)) (|opposite?| (#2# 141 T ELT)) (|one?| (#4# 87 T ELT)) (|nthRoot| (#29=($ $ #6#) NIL T ELT)) (|norm| #7#) (|negative?| (#4# 85 T ELT)) (|nan?| (#4# 140 T ELT)) (|multiEuclidean| (((|Union| #20# #12#) #20# $) NIL T ELT)) (|min| (#18# 49 T ELT) (#14# 21 #30=(AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) (|not| #25#)) ELT)) (|max| (#18# 48 T ELT) (#14# 20 #30# ELT)) (|mantissa| (#5# 10 T ELT)) (|log2| (#8# 16 T ELT)) (|log10| (#8# 53 T ELT)) (|log| (#8# 58 T ELT)) (|lcm| #17# #31=(($ #20#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #7#) (|increasePrecision| #32=((#23# #6#) NIL #25# ELT)) (|hash| (((|SingleInteger|) $) 89 T ELT)) (|gcdPolynomial| ((#33=(|SparseUnivariatePolynomial| $) #33# #33#) NIL T ELT)) (|gcd| #17# #31#) (|fractionPart| #7#) (|floor| #7#) (|float| (($ #6# #6#) NIL T ELT) (($ #6# #6# #23#) 98 T ELT)) (|factor| #13#) (|extendedEuclidean| (((|Record| #34=(|:| |coef1| $) #35=(|:| |coef2| $) #21#) $ $) NIL T ELT) (((|Union| (|Record| #34# #35#) #12#) $ $ $) NIL T ELT)) (|exquo| #10#) (|expressIdealMember| (((|Maybe| #20#) #20# $) NIL T ELT)) (|exponent| (#5# 11 T ELT)) (|exp1| (#14# 30 T ELT)) (|exp| (#8# 57 T ELT)) (|euclideanSize| ((#19# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|digits| (#22# NIL T ELT) #24#) (|differentiate| (#8# 92 T ELT) #36=(($ $ #19#) NIL T ELT)) (|decreasePrecision| #32#) (|csch| (#8# 74 T ELT)) (|csc| (#8# 64 T ELT)) (|coth| (#8# 75 T ELT)) (|cot| (#8# 62 T ELT)) (|cosh| (#8# 72 T ELT)) (|cos| (#8# 60 T ELT)) (|convert| ((#27# $) 102 T ELT) (((|DoubleFloat|) $) 99 T ELT) ((#28# $) NIL T ELT) (((|InputForm|) $) 38 T ELT)) (|coerce| (((|OutputForm|) $) 35 T ELT) #37=(($ #6#) 56 T ELT) #7# #38=(($ #16#) NIL T ELT) #37# #38#) (|characteristic| ((#19#) NIL T CONST)) (|ceiling| #7#) (|bits| (#22# 19 T ELT) #24#) (|before?| #1#) (|base| (#22# 7 T ELT)) (|atanh| (#8# 79 T ELT)) (|atan| (#8# 67 T ELT) (#18# 109 T ELT)) (|associates?| #1#) (|asinh| (#8# 77 T ELT)) (|asin| (#8# 65 T ELT)) (|asech| (#8# 82 T ELT)) (|asec| (#8# 70 T ELT)) (|annihilate?| (#2# 143 T ELT)) (|acsch| (#8# 80 T ELT)) (|acsc| (#8# 68 T ELT)) (|acoth| (#8# 81 T ELT)) (|acot| (#8# 69 T ELT)) (|acosh| (#8# 78 T ELT)) (|acos| (#8# 66 T ELT)) (|abs| (#8# 108 T ELT)) (|Zero| (#14# 27 T CONST)) (|One| (#14# 28 T CONST)) (|Gamma| (#8# 95 T ELT)) (D #7# #36#) (|Beta| (#18# 97 T ELT)) (>= (#2# 42 T ELT)) (> (#2# 40 T ELT)) (= (#2# 50 T ELT)) (<= (#2# 41 T ELT)) (< (#2# 39 T ELT)) (/ (#18# 29 T ELT) (#29# 51 T ELT)) (- (#8# 43 T ELT) (#18# 45 T ELT)) (+ (#18# 44 T ELT)) (** (($ $ #23#) NIL T ELT) #36# (#29# 54 T ELT) (#39=($ $ #16#) 139 T ELT) (#18# 55 T ELT)) (* (($ #23# $) 17 T ELT) (($ #19# $) NIL T ELT) (($ #6# $) 47 T ELT) (#18# 46 T ELT) (#39# NIL T ELT) (($ #16# $) NIL T ELT)))
+(((|DoubleFloat|) (|Join| (|FloatingPointSystem|) (|DifferentialRing|) (|TranscendentalFunctionCategory|) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE / ($ $ #1=(|Integer|))) (SIGNATURE ** #2=($ $ $)) (SIGNATURE |exp1| ($)) (SIGNATURE |log2| #3=($ $)) (SIGNATURE |log10| #3#) (SIGNATURE |atan| #2#) (SIGNATURE |Gamma| #3#) (SIGNATURE |Beta| #2#) (SIGNATURE |rationalApproximation| (#4=(|Fraction| #1#) $ #5=(|NonNegativeInteger|))) (SIGNATURE |rationalApproximation| (#4# $ #5# #5#)) (SIGNATURE |nan?| ((|Boolean|) $))))) (T |DoubleFloat|))
+((** #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|DoubleFloat|))) (/ (*1 *1 *1 *2) (AND (|isDomain| *2 #3=(|Integer|)) #2#)) (|exp1| (*1 *1) #2#) (|log2| #4=(*1 *1 *1) #2#) (|log10| #4# #2#) (|atan| #1# #2#) (|Gamma| #4# #2#) (|Beta| #1# #2#) (|rationalApproximation| (*1 *2 *1 *3) #5=(AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Fraction| #3#)) #2#)) (|rationalApproximation| (*1 *2 *1 *3 *3) #5#) (|nan?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #2#)))
+((|polygamma| ((#1=(|Complex| #2=(|DoubleFloat|)) #3=(|NonNegativeInteger|) #1#) 11 T ELT) ((#2# #3# #2#) 12 T ELT)) (|logGamma| (#4=(#1# #1#) 13 T ELT) (#5=(#2# #2#) 14 T ELT)) (|hypergeometric0F1| (#6=(#1# #1# #1#) 19 T ELT) (#7=(#2# #2# #2#) 22 T ELT)) (|digamma| (#4# 27 T ELT) (#5# 26 T ELT)) (|besselY| (#6# 57 T ELT) (#7# 49 T ELT)) (|besselK| (#6# 62 T ELT) (#7# 60 T ELT)) (|besselJ| (#6# 15 T ELT) (#7# 16 T ELT)) (|besselI| (#6# 17 T ELT) (#7# 18 T ELT)) (|airyBi| (#4# 74 T ELT) (#5# 73 T ELT)) (|airyAi| (#5# 68 T ELT) (#4# 72 T ELT)) (|Gamma| (#4# 8 T ELT) (#5# 9 T ELT)) (|Beta| (#6# 35 T ELT) (#7# 31 T ELT)))
+(((|DoubleFloatSpecialFunctions|) (CATEGORY |package| (SIGNATURE |Gamma| #1=(#2=(|DoubleFloat|) #2#)) (SIGNATURE |Gamma| #3=(#4=(|Complex| #2#) #4#)) (SIGNATURE |Beta| #5=(#2# #2# #2#)) (SIGNATURE |Beta| #6=(#4# #4# #4#)) (SIGNATURE |logGamma| #1#) (SIGNATURE |logGamma| #3#) (SIGNATURE |digamma| #1#) (SIGNATURE |digamma| #3#) (SIGNATURE |polygamma| (#2# #7=(|NonNegativeInteger|) #2#)) (SIGNATURE |polygamma| (#4# #7# #4#)) (SIGNATURE |besselJ| #5#) (SIGNATURE |besselJ| #6#) (SIGNATURE |besselY| #5#) (SIGNATURE |besselY| #6#) (SIGNATURE |besselI| #5#) (SIGNATURE |besselI| #6#) (SIGNATURE |besselK| #5#) (SIGNATURE |besselK| #6#) (SIGNATURE |airyAi| #3#) (SIGNATURE |airyAi| #1#) (SIGNATURE |airyBi| #1#) (SIGNATURE |airyBi| #3#) (SIGNATURE |hypergeometric0F1| #5#) (SIGNATURE |hypergeometric0F1| #6#))) (T |DoubleFloatSpecialFunctions|))
+((|hypergeometric0F1| #1=(*1 *2 *2 *2) #2=(AND #3=(|isDomain| *2 (|Complex| #4=(|DoubleFloat|))) #5=(|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|hypergeometric0F1| #1# #6=(AND #7=(|isDomain| *2 #4#) #5#)) (|airyBi| #8=(*1 *2 *2) #2#) (|airyBi| #8# #6#) (|airyAi| #8# #6#) (|airyAi| #8# #2#) (|besselK| #1# #2#) (|besselK| #1# #6#) (|besselI| #1# #2#) (|besselI| #1# #6#) (|besselY| #1# #2#) (|besselY| #1# #6#) (|besselJ| #1# #2#) (|besselJ| #1# #6#) (|polygamma| #9=(*1 *2 *3 *2) (AND #3# #10=(|isDomain| *3 (|NonNegativeInteger|)) #5#)) (|polygamma| #9# (AND #7# #10# #5#)) (|digamma| #8# #2#) (|digamma| #8# #6#) (|logGamma| #8# #2#) (|logGamma| #8# #6#) (|Beta| #1# #2#) (|Beta| #1# #6#) (|Gamma| #8# #2#) (|Gamma| #8# #6#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|zero| (($ #5=(|NonNegativeInteger|) #5#) NIL T ELT)) (|vertConcat| #6=(($ $ $) NIL T ELT)) (|transpose| #7=(($ #8=(|Vector| |#1|)) NIL T ELT) #9=(#10=($ $) NIL T ELT)) (|translate| (#11=($ |#1| |#1| |#1|) 33 T ELT)) (|symmetric?| #12=((#3# $) NIL T ELT)) (|swapRows!| #13=(($ $ #14=(|Integer|) #14#) NIL T ELT)) (|swapColumns!| #13#) (|subMatrix| (($ $ #14# #14# #14# #14#) NIL T ELT)) (|squareTop| #9#) (|square?| #12#) (|setsubMatrix!| (($ $ #14# #14# $) NIL T ELT)) (|setelt| #15=((|#1| $ #14# #14# |#1|) NIL T ELT) (($ $ #16=(|List| #14#) #16# $) NIL T ELT)) (|setRow!| #17=(($ $ #14# #8#) NIL T ELT)) (|setColumn!| #17#) (|scale| (#11# 32 T ELT)) (|scalarMatrix| (($ #5# |#1|) NIL T ELT)) (|sample| (#18=($) NIL T CONST)) (|rowEchelon| (#10# NIL (|has| |#1| (|EuclideanDomain|)) ELT)) (|row| #19=((#8# $ #14#) NIL T ELT)) (|rotatez| (#20=($ |#1|) 31 T ELT)) (|rotatey| (#20# 30 T ELT)) (|rotatex| (#20# 29 T ELT)) (|reduce| ((|#1| #21=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #21# $ |#1|) NIL T ELT) ((|#1| #21# $ |#1| |#1|) NIL #4# ELT)) (|rank| #22=(#23=(#5# $) NIL #24=(|has| |#1| (|IntegralDomain|)) ELT)) (|qsetelt!| #15#) (|qelt| #25=((|#1| $ #14# #14#) NIL T ELT)) (|nullity| #22#) (|nullSpace| (((|List| #8#) $) NIL #24# ELT)) (|nrows| #26=(#23# NIL T ELT)) (|new| (($ #5# #5# |#1|) NIL T ELT)) (|ncols| #26#) (|minordet| #27=((|#1| $) NIL (|has| |#1| (ATTRIBUTE (|commutative| "*"))) ELT)) (|minRowIndex| #28=((#14# $) NIL T ELT)) (|minColIndex| #28#) (|members| ((#29=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|maxRowIndex| #28#) (|maxColIndex| #28#) (|matrix| (($ #30=(|List| #29#)) 11 T ELT) (($ #5# #5# (|Mapping| |#1| #14# #14#)) NIL T ELT)) (|map!| #31=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #31# (($ #21# $ $) NIL T ELT) (($ #21# $ $ |#1|) NIL T ELT)) (|listOfLists| ((#30# $) NIL T ELT)) (|latex| (((|String|) $) NIL #32=(|has| |#1| (|SetCategory|)) ELT)) (|inverse| ((#33=(|Union| $ #34="failed") $) NIL #35=(|has| |#1| (|Field|)) ELT)) (|identity| (#18# 12 T ELT)) (|horizConcat| #6#) (|hash| (((|SingleInteger|) $) NIL #32# ELT)) (|find| (((|Union| |#1| #34#) #36=(|Mapping| #3# |#1|) $) NIL T ELT)) (|fill!| #37=(#38=($ $ |#1|) NIL T ELT)) (|exquo| ((#33# $ |#1|) NIL #24# ELT)) (|every?| #39=((#3# #36# $) NIL T ELT)) (|eval| (($ $ (|List| #40=(|Equation| |#1|))) NIL #41=(AND (|has| |#1| (|Evalable| |#1|)) #32#) ELT) (($ $ #40#) NIL #41# ELT) (($ $ |#1| |#1|) NIL #41# ELT) (($ $ #29# #29#) NIL #41# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| #12#) (|empty| (#18# NIL T ELT)) (|elt| #25# #15# (($ $ #16# #16#) NIL T ELT)) (|diagonalMatrix| (($ #29#) NIL T ELT) (($ (|List| $)) NIL T ELT)) (|diagonal?| #12#) (|determinant| #27#) (|count| ((#5# #36# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT)) (|copy| #9#) (|column| #19#) (|coerce| #7# ((#42=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #42#)) ELT)) (|before?| #1#) (|any?| #39#) (|antisymmetric?| #12#) (= #1#) (/ (#38# NIL #35# ELT)) (- #6# #9#) (+ #6#) (** (($ $ #5#) NIL T ELT) (($ $ #14#) NIL #35# ELT)) (* #6# (($ |#1| $) NIL T ELT) #37# (($ #14# $) NIL T ELT) ((#8# $ #8#) 15 T ELT) ((#8# #8# $) NIL T ELT) ((#43=(|Point| |#1|) $ #43#) 21 T ELT)) (|#| #26#))
+(((|DenavitHartenbergMatrix| |#1|) (|Join| (|MatrixCategory| |#1| #1=(|Vector| |#1|) #1#) (CATEGORY |domain| (SIGNATURE * (#2=(|Point| |#1|) $ #2#)) (SIGNATURE |identity| ($)) (SIGNATURE |rotatex| #3=($ |#1|)) (SIGNATURE |rotatey| #3#) (SIGNATURE |rotatez| #3#) (SIGNATURE |scale| #4=($ |#1| |#1| |#1|)) (SIGNATURE |translate| #4#))) (|Join| (|Field|) (|TranscendentalFunctionCategory|))) (T |DenavitHartenbergMatrix|))
+((* (*1 *2 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 #1=(|Join| (|Field|) (|TranscendentalFunctionCategory|))) (|isDomain| *1 (|DenavitHartenbergMatrix| *3)))) (|identity| (*1 *1) #2=(AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2)) (|ofCategory| *2 #1#))) (|rotatex| #3=(*1 *1 *2) #2#) (|rotatey| #3# #2#) (|rotatez| #3# #2#) (|scale| #4=(*1 *1 *2 *2 *2) #2#) (|translate| #4# #2#))
+((|select!| (#1=($ (|Mapping| #2=(|Boolean|) |#2|) $) 16 T ELT)) (|remove!| (($ |#2| $) NIL T ELT) (#1# 28 T ELT)) (|dictionary| (($) NIL T ELT) (($ (|List| |#2|)) 11 T ELT)) (= ((#2# $ $) 26 T ELT)))
+(((|Dictionary&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = (#1=(|Boolean|) |#1| |#1|)) (SIGNATURE |select!| #2=(|#1| (|Mapping| #1# |#2|) |#1|)) (SIGNATURE |remove!| #2#) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |dictionary| (|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|))) (|Dictionary| |#2|) (|SetCategory|)) (T |Dictionary&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|select!| (($ (|Mapping| #3=(|Boolean|) |#1|) . #4=($)) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#7=($) 6 T CONST)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #8=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| #3# |#1|) . #4#) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #8#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #5# |#1|) . #6#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #9=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #10=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #9#) ELT)) (|extract!| ((|#1| . #10#) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT)) (|eq?| ((#11=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#11# $) 7 T ELT)) (|empty| (#7# 8 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#12=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #12#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|Dictionary| |#1|) (|Category|) (|SetCategory|)) (T |Dictionary|))
+NIL
+(|Join| (|DictionaryOperations| |t#1|))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (($ $ (|Mapping| |#1| |#1|) . #4=((|NonNegativeInteger|))) 65 T ELT) (($ $ (|Mapping| |#1| |#1|)) 64 T ELT) (($ $ #5=(|Symbol|)) 63 (|has| |#1| . #6=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #5#)) 61 (|has| |#1| . #6#) ELT) (($ $ #5# . #7=(#8=(|NonNegativeInteger|))) 60 (|has| |#1| . #6#) ELT) (($ $ (|List| #5#) . #9=((|List| #8#))) 59 (|has| |#1| . #6#) ELT) (($ . #10=($)) 55 (|has| |#1| . #11=((|DifferentialSpace|))) ELT) (#12=($ $ (|NonNegativeInteger|)) 53 (|has| |#1| . #11#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#1| |#1|) . #4#) 67 T ELT) (($ $ (|Mapping| |#1| |#1|)) 66 T ELT) (($ $ #5#) 62 (|has| |#1| . #6#) ELT) (($ $ (|List| #5#)) 58 (|has| |#1| . #6#) ELT) (($ $ #5# . #7#) 57 (|has| |#1| . #6#) ELT) (($ $ (|List| #5#) . #9#) 56 (|has| |#1| . #6#) ELT) (($ . #10#) 54 (|has| |#1| . #11#) ELT) (#12# 52 (|has| |#1| . #11#) ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|DifferentialExtension| |#1|) (|Category|) (|Ring|)) (T |DifferentialExtension|))
+NIL
+(|Join| (|Ring|) (|DifferentialSpaceExtension| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|DifferentialRing|)) (ATTRIBUTE (|DifferentialRing|)) |%noBranch|) (IF (|has| |t#1| (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DifferentialSpace|) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #1=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #1#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((D ((|#2| $) 9 T ELT)))
+(((|DifferentialDomain&| |#1| |#2|) (CATEGORY |package| (SIGNATURE D (|#2| |#1|))) (|DifferentialDomain| |#2|) (|Type|)) (T |DifferentialDomain&|))
+NIL
+((|differentiate| ((|#1| $) 7 T ELT)) (D ((|#1| $) 6 T ELT)))
+(((|DifferentialDomain| |#1|) (|Category|) (|Type|)) (T |DifferentialDomain|))
+((|differentiate| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialDomain| *2)) (|ofCategory| *2 (|Type|)))) (D (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialDomain| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |differentiate| (|t#1| $)) (SIGNATURE D (|t#1| $))))
+(((|Join|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (#4=($ $ (|NonNegativeInteger|)) 43 T ELT) (($ . #5=($)) 41 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (D (#4# 44 T ELT) (($ . #5#) 42 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #6=($)) 30 T ELT) (($ |#1| . #6#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|DifferentialModule| |#1|) (|Category|) (|Ring|)) (T |DifferentialModule|))
+NIL
+(|Join| (|BiModule| |t#1| |t#1|) (|DifferentialSpace|) (CATEGORY |package| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) . T) ((|DifferentialSpace|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|differentiate| #1=(($ $) NIL T ELT) (#2=($ $ (|NonNegativeInteger|)) 9 T ELT)) (D #1# (#2# 11 T ELT)))
+(((|DifferentialSpace&| |#1|) (CATEGORY |package| (SIGNATURE D #1=(|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| #1#) (SIGNATURE D #2=(|#1| |#1|)) (SIGNATURE |differentiate| #2#)) (|DifferentialSpace|)) (T |DifferentialSpace&|))
+NIL
+((|differentiate| (($ . #1=($)) 7 T ELT) (($ $ (|NonNegativeInteger|)) 10 T ELT)) (D (($ . #1#) 6 T ELT) (($ $ (|NonNegativeInteger|)) 9 T ELT)))
+(((|DifferentialSpace|) (|Category|)) (T |DifferentialSpace|))
+((|differentiate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DifferentialSpace|)) (|isDomain| *2 (|NonNegativeInteger|)))) (D (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DifferentialSpace|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|DifferentialDomain| $) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|NonNegativeInteger|)))))
+(((|DifferentialDomain| $) . T) ((|Join|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (#4=($ $ (|NonNegativeInteger|)) 50 T ELT) (($ . #5=($)) 48 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (D (#4# 51 T ELT) (($ . #5#) 49 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|DifferentialRing|) (|Category|)) (T |DifferentialRing|))
+NIL
+(|Join| (|Ring|) (|DifferentialSpace|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) . T) ((|DifferentialSpace|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|sample| (#3=($) 30 T CONST)) (|recip| (((|Union| $ "failed") $) 36 T ELT)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|one?| (((|Boolean|) $) 38 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 29 T CONST)) (|One| (($) 39 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (+ (($ $ $) 25 T ELT)) (** (($ $ (|PositiveInteger|)) 40 T ELT) (($ $ (|NonNegativeInteger|)) 37 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT) (($ $ $) 41 T ELT)))
+(((|Dioid|) (|Category|)) (T |Dioid|))
+NIL
+(|Join| (|OrderedAbelianMonoid|) (|SemiRing|))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monoid|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|dictionary| (($) 12 T ELT) (#1=($ (|List| |#2|)) NIL T ELT)) (|copy| (($ $) 14 T ELT)) (|construct| (#1# 10 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT)))
+(((|DictionaryOperations&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |dictionary| #1=(|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|)) (SIGNATURE |construct| #1#) (SIGNATURE |copy| (|#1| |#1|))) (|DictionaryOperations| |#2|) (|SetCategory|)) (T |DictionaryOperations&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #3=(|Boolean|) |#1|) . #4=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#5=($) 6 T CONST)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #6=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| (|Boolean|) |#1|) $) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #6#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #3# |#1|) . #4#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #7=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #8=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #7#) ELT)) (|extract!| ((|#1| . #8#) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT)) (|eq?| ((#9=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#9# $) 7 T ELT)) (|empty| (#5# 8 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#10=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #10#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|DictionaryOperations| |#1|) (|Category|) (|SetCategory|)) (T |DictionaryOperations|))
+((|dictionary| (*1 *1) (AND (|ofCategory| *1 (|DictionaryOperations| *2)) (|ofCategory| *2 (|SetCategory|)))) (|dictionary| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|DictionaryOperations| *3)))) (|remove!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *1 (|DictionaryOperations| *2)) (|ofCategory| *2 (|SetCategory|)))) (|remove!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *1 (|DictionaryOperations| *3)) (|ofCategory| *3 (|SetCategory|)))) (|select!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *1 (|DictionaryOperations| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(|Join| (|BagAggregate| |t#1|) (|Collection| |t#1|) (CATEGORY |domain| (SIGNATURE |dictionary| ($)) (SIGNATURE |dictionary| ($ (|List| |t#1|))) (IF (|has| $ (|FiniteAggregate| |t#1|)) (PROGN (SIGNATURE |remove!| ($ |t#1| $)) (SIGNATURE |remove!| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |select!| ($ (|Mapping| (|Boolean|) |t#1|) $))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| #1=(|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| #1#)) (|Equation| (|Polynomial| (|Integer|)))) 42 T ELT)))
+(((|DiophantineSolutionPackage|) (CATEGORY |package| (SIGNATURE |dioSolve| ((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| #1=(|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| #1#)) (|Equation| (|Polynomial| (|Integer|))))))) (T |DiophantineSolutionPackage|))
+((|dioSolve| (*1 *2 *3) (AND (|isDomain| *3 (|Equation| (|Polynomial| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| #1=(|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| #1#))) (|isDomain| *1 (|DiophantineSolutionPackage|)))))
+((|size| (#1=(#2=(|NonNegativeInteger|)) 56 T ELT)) (|reducedSystem| (((|Record| (|:| |mat| #3=(|Matrix| |#3|)) (|:| |vec| #4=(|Vector| |#3|))) #5=(|Matrix| $) #6=(|Vector| $)) 53 T ELT) ((#3# #5#) 44 T ELT) (((|Record| (|:| |mat| #7=(|Matrix| #8=(|Integer|))) (|:| |vec| (|Vector| #8#))) #5# #6#) NIL T ELT) ((#7# #5#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) 62 T ELT)) (|differentiate| (($ $ #9=(|Mapping| |#3| |#3|)) 18 T ELT) (($ $ #9# #2#) NIL T ELT) (($ $ #10=(|List| #11=(|Symbol|)) (|List| #2#)) NIL T ELT) (($ $ #11# #2#) NIL T ELT) (($ $ #10#) NIL T ELT) (($ $ #11#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $) NIL T ELT)) (|coerce| ((#4# $) NIL T ELT) (($ |#3|) NIL T ELT) (((|OutputForm|) $) NIL T ELT) (($ #8#) 12 T ELT) (($ (|Fraction| #8#)) NIL T ELT)) (|characteristic| (#1# 15 T CONST)) (/ (($ $ |#3|) 59 T ELT)))
+(((|DirectProductCategory&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| (|Fraction| #1=(|Integer|)))) (SIGNATURE |coerce| (|#1| #1#)) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #2=(|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| #3=(|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| #4=(|List| #3#))) (SIGNATURE |differentiate| (|#1| |#1| #3# #2#)) (SIGNATURE |differentiate| (|#1| |#1| #4# (|List| #2#))) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |characteristic| #5=(#2#) |constant|) (SIGNATURE |reducedSystem| (#6=(|Matrix| #1#) #7=(|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #6#) (|:| |vec| (|Vector| #1#))) #7# #8=(|Vector| |#1|))) (SIGNATURE |coerce| (|#1| |#3|)) (SIGNATURE |differentiate| (|#1| |#1| #9=(|Mapping| |#3| |#3|) #2#)) (SIGNATURE |differentiate| (|#1| |#1| #9#)) (SIGNATURE |reducedSystem| (#10=(|Matrix| |#3|) #7#)) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #10#) (|:| |vec| #11=(|Vector| |#3|))) #7# #8#)) (SIGNATURE |size| #5#) (SIGNATURE / (|#1| |#1| |#3|)) (SIGNATURE |dimension| ((|CardinalNumber|))) (SIGNATURE |coerce| (#11# |#1|))) (|DirectProductCategory| |#2| |#3|) #2# (|Type|)) (T |DirectProductCategory&|))
+((|dimension| #1=(*1 *2) (AND (|ofType| *4 #2=(|NonNegativeInteger|)) #3=(|ofCategory| *5 (|Type|)) (|isDomain| *2 (|CardinalNumber|)) #4=(|isDomain| *1 (|DirectProductCategory&| *3 *4 *5)) #5=(|ofCategory| *3 (|DirectProductCategory| *4 *5)))) (|size| #1# #6=(AND (|ofType| *4 *2) #3# (|isDomain| *2 #2#) #4# #5#)) (|characteristic| #1# #6#))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#2| . #2=((|BasicType|))) ELT)) (|zero?| ((#3=(|Boolean|) $) 72 (|has| |#2| . #4=((|AbelianMonoid|))) ELT)) (|unitVector| (($ (|PositiveInteger|)) 128 (|has| |#2| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) 35 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sup| (($ $ $) 124 (|has| |#2| . #6=((|OrderedAbelianMonoidSup|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 75 (|has| |#2| (|CancellationAbelianMonoid|)) ELT)) (|size| (((|NonNegativeInteger|)) 113 (|has| |#2| . #7=((|Finite|))) ELT)) (|setelt| ((|#2| $ #5# |#2|) 47 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sample| (#8=($) 6 T CONST)) (|retractIfCan| (((|Union| #9=(|Integer|) . #10=("failed")) . #11=($)) 67 (|and| (|has| |#2| . #12=((|RetractableTo| #9#))) (|has| |#2| . #13=((|SetCategory|)))) ELT) (((|Union| #14=(|Fraction| #9#) . #10#) . #11#) 64 (|and| (|has| |#2| . #15=((|RetractableTo| #14#))) (|has| |#2| . #13#)) ELT) (((|Union| |#2| . #10#) . #11#) 61 (|has| |#2| . #13#) ELT)) (|retract| ((#9# . #16=($)) 66 (|and| (|has| |#2| . #12#) (|has| |#2| . #13#)) ELT) ((#14# . #16#) 63 (|and| (|has| |#2| . #15#) (|has| |#2| . #13#)) ELT) ((|#2| . #16#) 62 (|has| |#2| . #13#) ELT)) (|reducedSystem| (((|Matrix| #17=(|Integer|)) . #18=(#19=(|Matrix| $))) 110 (|and| (|has| |#2| . #20=((|LinearlyExplicitRingOver| #17#))) (|has| |#2| . #21=((|Ring|)))) ELT) (((|Record| (|:| |mat| (|Matrix| #17#)) (|:| |vec| (|Vector| #17#))) . #22=(#19# #23=(|Vector| $))) 109 (|and| (|has| |#2| . #20#) (|has| |#2| . #21#)) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #22#) 108 (|has| |#2| . #21#) ELT) (((|Matrix| |#2|) . #18#) 107 (|has| |#2| . #21#) ELT)) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 141 (|has| |#2| . #24=((|BasicType|))) ELT) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (|Mapping| |#2| |#2| |#2|) $) 136 T ELT)) (|recip| (((|Union| $ "failed") $) 87 (|has| |#2| . #25=((|Ring|))) ELT)) (|random| (($) 116 (|has| |#2| . #7#) ELT)) (|qsetelt!| ((|#2| $ #5# |#2|) 48 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qelt| ((|#2| $ #5#) 46 T ELT)) (|positive?| (((|Boolean|) $) 123 (|has| |#2| . #6#) ELT)) (|opposite?| ((#3# $ $) 74 (|has| |#2| . #4#) ELT)) (|one?| (((|Boolean|) $) 85 (|has| |#2| . #25#) ELT)) (|minIndex| ((#5# . #26=($)) 38 (|has| #5# . #27=((|OrderedSet|))) ELT)) (|min| (#28=($ $ $) 117 (|has| |#2| . #29=((|OrderedSet|))) ELT)) (|members| (((|List| |#2|) $) 135 T ELT)) (|member?| ((#30=(|Boolean|) |#2| $) 140 (|has| |#2| . #24#) ELT)) (|maxIndex| ((#5# . #26#) 39 (|has| #5# . #27#) ELT)) (|max| (#28# 118 (|has| |#2| . #29#) ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 26 T ELT)) (|lookup| ((#31=(|PositiveInteger|) $) 115 (|has| |#2| . #7#) ELT)) (|leftReducedSystem| (((|Matrix| #17#) . #32=(#23#)) 112 (|and| (|has| |#2| . #20#) (|has| |#2| . #21#)) ELT) (((|Record| (|:| |mat| (|Matrix| #17#)) (|:| |vec| (|Vector| #17#))) . #33=(#23# $)) 111 (|and| (|has| |#2| . #20#) (|has| |#2| . #21#)) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #33#) 106 (|has| |#2| . #21#) ELT) (((|Matrix| |#2|) . #32#) 105 (|has| |#2| . #21#) ELT)) (|latex| (((|String|) $) 21 (|has| |#2| . #34=((|SetCategory|))) ELT)) (|indices| (((|List| #5#) $) 41 T ELT)) (|index?| ((#35=(|Boolean|) #5# $) 42 T ELT)) (|index| (($ #31#) 114 (|has| |#2| . #7#) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#2| . #34#) ELT)) (|first| ((|#2| $) 37 (|has| #5# . #27#) ELT)) (|find| (((|Union| |#2| "failed") (|Mapping| #30# |#2|) $) 138 T ELT)) (|fill!| (($ $ |#2|) 36 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|every?| ((#30# (|Mapping| #30# |#2|) . #36=($)) 133 T ELT)) (|eval| (($ $ (|List| (|Equation| |#2|))) 25 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #34#)) ELT) (($ $ (|Equation| |#2|)) 24 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #34#)) ELT) (($ $ |#2| |#2|) 23 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #34#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 22 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #34#)) ELT)) (|eq?| ((#37=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#35# |#2| $) 40 (AND (|has| $ (|FiniteAggregate| |#2|)) (|has| |#2| (|BasicType|))) ELT)) (|entries| (((|List| |#2|) $) 43 T ELT)) (|empty?| ((#37# $) 7 T ELT)) (|empty| (#8# 8 T ELT)) (|elt| ((|#2| $ #5# |#2|) 45 T ELT) ((|#2| $ #5#) 44 T ELT)) (|dot| ((|#2| $ $) 127 (|has| |#2| (|Ring|)) ELT)) (|directProduct| (($ (|Vector| |#2|)) 129 T ELT)) (|dimension| (((|CardinalNumber|)) 126 (|has| |#2| . #38=((|Field|))) ELT)) (|differentiate| (#39=($ $ (|NonNegativeInteger|)) 103 (|and| (|has| |#2| . #40=((|DifferentialSpace|))) (|has| |#2| . #25#)) ELT) (($ . #41=($)) 101 (|and| (|has| |#2| . #40#) (|has| |#2| . #25#)) ELT) (($ $ (|List| #42=(|Symbol|)) . #43=((|List| #44=(|NonNegativeInteger|)))) 97 (|and| (|has| |#2| . #45=((|PartialDifferentialSpace| (|Symbol|)))) (|has| |#2| . #25#)) ELT) (($ $ #42# . #46=(#44#)) 96 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ (|List| #42#)) 95 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ #42#) 93 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ (|Mapping| |#2| |#2|)) 92 (|has| |#2| . #25#) ELT) (($ $ (|Mapping| |#2| |#2|) . #47=((|NonNegativeInteger|))) 91 (|has| |#2| . #25#) ELT)) (|count| ((#48=(|NonNegativeInteger|) |#2| $) 139 (|has| |#2| . #24#) ELT) ((#48# (|Mapping| #30# |#2|) $) 134 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|Vector| |#2|) . #49=($)) 130 T ELT) (($ #9#) 68 (OR (|and| (|has| |#2| . #12#) (|has| |#2| . #13#)) (|has| |#2| . #25#)) ELT) (($ #14#) 65 (|and| (|has| |#2| . #15#) (|has| |#2| . #13#)) ELT) (($ |#2|) 60 (|has| |#2| . #13#) ELT) (((|OutputForm|) . #49#) 16 (|has| |#2| (|CoercibleTo| (|OutputForm|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 88 (|has| |#2| . #25#) CONST)) (|before?| (#1# 19 (|has| |#2| . #2#) ELT)) (|any?| ((#30# (|Mapping| #30# |#2|) . #36#) 132 T ELT)) (|annihilate?| (((|Boolean|) $ $) 83 (|has| |#2| . #25#) ELT)) (|Zero| (($) 71 (|has| |#2| . #4#) CONST)) (|One| (($) 84 (|has| |#2| . #25#) CONST)) (D (#39# 104 (|and| (|has| |#2| . #40#) (|has| |#2| . #25#)) ELT) (($ . #41#) 102 (|and| (|has| |#2| . #40#) (|has| |#2| . #25#)) ELT) (($ $ (|List| #42#) . #43#) 100 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ #42# . #46#) 99 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ (|List| #42#)) 98 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ #42#) 94 (|and| (|has| |#2| . #45#) (|has| |#2| . #25#)) ELT) (($ $ (|Mapping| |#2| |#2|)) 90 (|has| |#2| . #25#) ELT) (($ $ (|Mapping| |#2| |#2|) . #47#) 89 (|has| |#2| . #25#) ELT)) (>= (#50=((|Boolean|) $ $) 119 (|has| |#2| . #29#) ELT)) (> (#50# 121 (|has| |#2| . #29#) ELT)) (= (#1# 17 (|has| |#2| . #2#) ELT)) (<= (#50# 120 (|has| |#2| . #29#) ELT)) (< (#50# 122 (|has| |#2| . #29#) ELT)) (/ (($ $ |#2|) 125 (|has| |#2| . #38#) ELT)) (- (($ $ $) 78 (|has| |#2| . #51=((|AbelianGroup|))) ELT) (($ $) 77 (|has| |#2| . #51#) ELT)) (+ (($ $ $) 69 (|has| |#2| . #52=((|AbelianSemiGroup|))) ELT)) (** (($ $ (|NonNegativeInteger|)) 86 (|has| |#2| . #25#) ELT) (($ $ (|PositiveInteger|)) 81 (|has| |#2| . #25#) ELT)) (* (($ $ $) 82 (|has| |#2| . #25#) ELT) (($ $ |#2|) 80 (|has| |#2| . #53=((|Monoid|))) ELT) (($ |#2| . #54=($)) 79 (|has| |#2| . #53#) ELT) (($ (|Integer|) . #54#) 76 (|has| |#2| . #51#) ELT) (($ (|NonNegativeInteger|) $) 73 (|has| |#2| . #4#) ELT) (($ (|PositiveInteger|) $) 70 (|has| |#2| . #52#) ELT)) (|#| ((#48# $) 131 T ELT)))
+(((|DirectProductCategory| |#1| |#2|) (|Category|) (|NonNegativeInteger|) (|Type|)) (T |DirectProductCategory|))
+((|directProduct| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|Type|)) (|ofCategory| *1 (|DirectProductCategory| *3 *4)))) (|unitVector| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|DirectProductCategory| *3 *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|Type|)))) (|dot| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))))
+(|Join| (|IndexedAggregate| (|Integer|) |t#2|) (|FiniteAggregate| |t#2|) (|CoercibleTo| (|Vector| |t#2|)) (CATEGORY |domain| (SIGNATURE |directProduct| ($ (|Vector| |t#2|))) (IF (|has| |t#2| (|SetCategory|)) (ATTRIBUTE (|FullyRetractableTo| |t#2|)) |%noBranch|) (IF (|has| |t#2| (|Ring|)) (PROGN (ATTRIBUTE (|BiModule| |t#2| |t#2|)) (ATTRIBUTE (|DifferentialExtension| |t#2|)) (ATTRIBUTE (|FullyLinearlyExplicitRingOver| |t#2|)) (SIGNATURE |unitVector| ($ (|PositiveInteger|))) (SIGNATURE |dot| (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (|AbelianSemiGroup|)) (ATTRIBUTE (|AbelianSemiGroup|)) |%noBranch|) (IF (|has| |t#2| (|CancellationAbelianMonoid|)) (ATTRIBUTE (|CancellationAbelianMonoid|)) |%noBranch|) (IF (|has| |t#2| (|AbelianMonoid|)) (ATTRIBUTE (|AbelianMonoid|)) |%noBranch|) (IF (|has| |t#2| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |%noBranch|) (IF (|has| |t#2| (|Monoid|)) (ATTRIBUTE (|LinearSet| |t#2|)) |%noBranch|) (IF (|has| |t#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |%noBranch|) (IF (|has| |t#2| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#2|)) |%noBranch|) (IF (|has| |t#2| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |%noBranch|) (IF (|has| |t#2| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|) (IF (|has| |t#2| (|OrderedAbelianMonoidSup|)) (ATTRIBUTE (|OrderedAbelianMonoidSup|)) |%noBranch|) (IF (|has| |t#2| (|Field|)) (ATTRIBUTE (|VectorSpace| |t#2|)) |%noBranch|)))
+(((|AbelianGroup|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|AbelianGroup|))) ((|AbelianMonoid|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|AbelianSemiGroup|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|Aggregate|) . T) ((|BasicType|) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|BasicType|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|BiModule| |#2| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|CoercibleFrom| #1=(|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))) ((|CoercibleFrom| (|Integer|)) OR (|has| |#2| (|Ring|)) (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) ((|CoercibleFrom| |#2|) |has| |#2| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|CoercibleTo| (|Vector| |#2|)) . T) ((|DifferentialDomain| $) OR (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) ((|DifferentialExtension| |#2|) |has| |#2| (|Ring|)) ((|DifferentialRing|) AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) ((|DifferentialSpace|) OR (AND (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) ((|DifferentialSpaceExtension| |#2|) |has| |#2| (|Ring|)) ((|Eltable| #2=(|Integer|) |#2|) . T) ((|EltableAggregate| #2# |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Finite|) |has| |#2| (|Finite|)) ((|FiniteAggregate| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#2|) |has| |#2| (|Ring|)) ((|FullyRetractableTo| |#2|) |has| |#2| (|SetCategory|)) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| #2# |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|AbelianGroup|))) ((|LeftLinearSet| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|LeftLinearSet| $) |has| |#2| (|Ring|)) ((|LeftModule| #3=(|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))) ((|LeftModule| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|LeftModule| $) |has| |#2| (|Ring|)) ((|LinearSet| |#2|) OR (|has| |#2| (|Monoid|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|LinearlyExplicitRingOver| #3#) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))) ((|LinearlyExplicitRingOver| |#2|) |has| |#2| (|Ring|)) ((|Module| |#2|) OR (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|Monoid|) |has| |#2| (|Ring|)) ((|OrderedAbelianMonoid|) |has| |#2| (|OrderedAbelianMonoidSup|)) ((|OrderedAbelianMonoidSup|) |has| |#2| (|OrderedAbelianMonoidSup|)) ((|OrderedAbelianSemiGroup|) |has| |#2| (|OrderedAbelianMonoidSup|)) ((|OrderedCancellationAbelianMonoid|) |has| |#2| (|OrderedAbelianMonoidSup|)) ((|OrderedSet|) OR (|has| |#2| (|OrderedSet|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|OrderedType|) OR (|has| |#2| (|OrderedSet|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|PartialDifferentialDomain| $ #4=(|Symbol|)) OR (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) ((|PartialDifferentialSpace| #4#) OR (AND (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|Ring|))) (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) ((|RetractableTo| #1#) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))) ((|RetractableTo| (|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) ((|RetractableTo| |#2|) |has| |#2| (|SetCategory|)) ((|RightLinearSet| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|RightModule| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|Ring|) |has| |#2| (|Ring|)) ((|Rng|) |has| |#2| (|Ring|)) ((|SemiGroup|) |has| |#2| (|Ring|)) ((|SemiRing|) |has| |#2| (|Ring|)) ((|SetCategory|) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedSet|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|AbelianMonoid|)) (|has| |#2| (|AbelianGroup|))) ((|Type|) . T) ((|VectorSpace| |#2|) |has| |#2| (|Field|)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#2| (|BasicType|)) ELT)) (|zero?| (#5=(#3# $) NIL #6=(|has| |#2| (|AbelianMonoid|)) ELT)) (|unitVector| (#7=($ #8=(|PositiveInteger|)) 63 #9=(|has| |#2| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #10=(|Integer|) #10#) NIL #11=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sup| (#12=($ $ $) 69 #13=(|has| |#2| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#14=(|Union| $ #15="failed") $ $) 54 (|has| |#2| (|CancellationAbelianMonoid|)) ELT)) (|size| (#16=(#17=(|NonNegativeInteger|)) NIL #18=(|has| |#2| (|Finite|)) ELT)) (|setelt| #19=(#20=(|#2| $ #10# |#2|) NIL #11# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# . #22=(#15#)) . #23=($)) NIL #24=(AND (|has| |#2| (|RetractableTo| #10#)) #25=(|has| |#2| (|SetCategory|))) ELT) (((|Union| #26=(|Fraction| #10#) . #22#) . #23#) NIL #27=(AND (|has| |#2| (|RetractableTo| #26#)) #25#) ELT) ((#28=(|Union| |#2| . #22#) $) 31 #25# ELT)) (|retract| (#29=(#10# . #30=($)) NIL #24# ELT) ((#26# . #30#) NIL #27# ELT) (#31=(|#2| $) 29 #25# ELT)) (|reducedSystem| ((#32=(|Matrix| #10#) . #33=(#34=(|Matrix| $))) NIL #35=(AND (|has| |#2| (|LinearlyExplicitRingOver| #10#)) #9#) ELT) ((#36=(|Record| (|:| |mat| #32#) (|:| |vec| (|Vector| #10#))) . #37=(#34# #38=(|Vector| $))) NIL #35# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| |#2|)) (|:| |vec| #41=(|Vector| |#2|))) . #37#) NIL #9# ELT) ((#40# . #33#) NIL #9# ELT)) (|reduce| ((|#2| #42=(|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) NIL #4# ELT) ((|#2| #42# $ |#2|) NIL T ELT) ((|#2| #42# $) NIL T ELT)) (|recip| ((#14# $) 59 #9# ELT)) (|random| (#21# NIL #18# ELT)) (|qsetelt!| #19#) (|qelt| (#43=(|#2| $ #10#) 57 T ELT)) (|positive?| (#5# NIL #13# ELT)) (|opposite?| (#2# NIL #6# ELT)) (|one?| (#5# NIL #9# ELT)) (|minIndex| (#29# 20 #44=(|has| #10# #45=(|OrderedSet|)) ELT)) (|min| #46=(#12# NIL #47=(|has| |#2| #45#) ELT)) (|members| (#48=(#49=(|List| |#2|) $) 14 T ELT)) (|member?| (#50=(#3# |#2| $) NIL #4# ELT)) (|maxIndex| (#29# NIL #44# ELT)) (|max| #46#) (|map| (($ #51=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|lookup| ((#8# $) NIL #18# ELT)) (|leftReducedSystem| ((#32# . #52=(#38#)) NIL #35# ELT) ((#36# . #53=(#38# $)) NIL #35# ELT) ((#39# . #53#) NIL #9# ELT) ((#40# . #52#) NIL #9# ELT)) (|latex| (((|String|) $) NIL #25# ELT)) (|indices| (((|List| #10#) $) NIL T ELT)) (|index?| ((#3# #10# $) NIL T ELT)) (|index| (#7# NIL #18# ELT)) (|hash| (((|SingleInteger|) $) NIL #25# ELT)) (|first| (#31# NIL #44# ELT)) (|find| ((#28# #54=(|Mapping| #3# |#2|) $) NIL T ELT)) (|fill!| (#55=($ $ |#2|) NIL #11# ELT)) (|every?| (#56=(#3# #54# $) 24 T ELT)) (|eval| (($ $ (|List| #57=(|Equation| |#2|))) NIL #58=(AND (|has| |#2| (|Evalable| |#2|)) #25#) ELT) (($ $ #57#) NIL #58# ELT) (($ $ |#2| |#2|) NIL #58# ELT) (($ $ #49# #49#) NIL #58# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#50# NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #4#) ELT)) (|entries| (#48# NIL T ELT)) (|empty?| (#5# NIL T ELT)) (|empty| (#21# NIL T ELT)) (|elt| (#20# NIL T ELT) (#43# 21 T ELT)) (|dot| ((|#2| $ $) NIL #9# ELT)) (|directProduct| (($ #41#) 18 T ELT)) (|dimension| (((|CardinalNumber|)) NIL #59=(|has| |#2| (|Field|)) ELT)) (|differentiate| #60=(#61=($ $ #17#) NIL #62=(AND (|has| |#2| (|DifferentialSpace|)) #9#) ELT) #63=(#64=($ $) NIL #62# ELT) #65=(($ $ #66=(|List| #67=(|Symbol|)) (|List| #17#)) NIL #68=(AND (|has| |#2| (|PartialDifferentialSpace| #67#)) #9#) ELT) #69=(($ $ #67# #17#) NIL #68# ELT) #70=(($ $ #66#) NIL #68# ELT) #71=(($ $ #67#) NIL #68# ELT) #72=(($ $ #51#) NIL #9# ELT) #73=(($ $ #51# #17#) NIL #9# ELT)) (|count| ((#17# |#2| $) NIL #4# ELT) ((#17# #54# $) NIL T ELT)) (|copy| (#64# NIL T ELT)) (|coerce| ((#41# $) 9 T ELT) (($ #10#) NIL (OR #24# #9#) ELT) (($ #26#) NIL #27# ELT) (($ |#2|) 12 #25# ELT) ((#74=(|OutputForm|) $) NIL (|has| |#2| (|CoercibleTo| #74#)) ELT)) (|characteristic| (#16# NIL #9# CONST)) (|before?| #1#) (|any?| (#56# NIL T ELT)) (|annihilate?| (#2# NIL #9# ELT)) (|Zero| (#21# 37 #6# CONST)) (|One| (#21# 41 #9# CONST)) (D #60# #63# #65# #69# #70# #71# #72# #73#) (>= #75=(#2# NIL #47# ELT)) (> #75#) (= (#2# 28 #4# ELT)) (<= #75#) (< (#2# 67 #47# ELT)) (/ (#55# NIL #59# ELT)) (- (#12# NIL #76=(|has| |#2| (|AbelianGroup|)) ELT) (#64# NIL #76# ELT)) (+ (#12# 35 #77=(|has| |#2| (|AbelianSemiGroup|)) ELT)) (** (#61# NIL #9# ELT) (($ $ #8#) NIL #9# ELT)) (* (#12# 47 #9# ELT) (#55# 45 #78=(|has| |#2| (|Monoid|)) ELT) (($ |#2| $) 46 #78# ELT) (($ #10# $) NIL #76# ELT) (($ #17# $) NIL #6# ELT) (($ #8# $) NIL #77# ELT)) (|#| ((#17# $) NIL T ELT)))
+(((|DirectProduct| |#1| |#2|) (|DirectProductCategory| |#1| |#2|) (|NonNegativeInteger|) (|Type|)) (T |DirectProduct|))
+NIL
+((|scan| ((#1=(|DirectProduct| |#1| |#3|) #2=(|Mapping| |#3| |#2| |#3|) #3=(|DirectProduct| |#1| |#2|) |#3|) 21 T ELT)) (|reduce| ((|#3| #2# #3# |#3|) 23 T ELT)) (|map| ((#1# (|Mapping| |#3| |#2|) #3#) 18 T ELT)))
+(((|DirectProductFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |scan| (#1=(|DirectProduct| |#1| |#3|) #2=(|Mapping| |#3| |#2| |#3|) #3=(|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |reduce| (|#3| #2# #3# |#3|)) (SIGNATURE |map| (#1# (|Mapping| |#3| |#2|) #3#))) (|NonNegativeInteger|) #4=(|Type|) #4#) (T |DirectProductFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) #1=(|isDomain| *4 (|DirectProduct| *5 *6)) #2=(|ofType| *5 #3=(|NonNegativeInteger|)) #4=(|ofCategory| *6 #5=(|Type|)) #6=(|ofCategory| *7 #5#) (|isDomain| *2 (|DirectProduct| *5 *7)) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *7)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *6 *2)) #1# #2# #4# (|ofCategory| *2 #5#) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *7 *5)) (|isDomain| *4 (|DirectProduct| *6 *7)) (|ofType| *6 #3#) #6# (|ofCategory| *5 #5#) (|isDomain| *2 (|DirectProduct| *6 *5)) (|isDomain| *1 (|DirectProductFunctions2| *6 *7 *5)))))
+((|sayLength| ((#1=(|Integer|) #2=(|List| #3=(|String|))) 36 T ELT) ((#1# #3#) 29 T ELT)) (|say| ((#4=(|Void|) #2#) 40 T ELT) ((#4# #3#) 39 T ELT)) (|newLine| ((#3#) 16 T ELT)) (|copies| ((#3# #1# #3#) 23 T ELT)) (|center| ((#2# #2# #1# #3#) 37 T ELT) ((#3# #3# #1# #3#) 35 T ELT)) (|bright| ((#2# #2#) 15 T ELT) ((#2# #3#) 11 T ELT)))
+(((|DisplayPackage|) (CATEGORY |package| (SIGNATURE |bright| (#1=(|List| #2=(|String|)) #2#)) (SIGNATURE |bright| (#1# #1#)) (SIGNATURE |newLine| (#2#)) (SIGNATURE |copies| (#2# #3=(|Integer|) #2#)) (SIGNATURE |center| (#2# #2# #3# #2#)) (SIGNATURE |center| (#1# #1# #3# #2#)) (SIGNATURE |say| (#4=(|Void|) #2#)) (SIGNATURE |say| (#4# #1#)) (SIGNATURE |sayLength| (#3# #2#)) (SIGNATURE |sayLength| (#3# #1#)))) (T |DisplayPackage|))
+((|sayLength| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|List| #4=(|String|))) #5=(|isDomain| *2 #6=(|Integer|)) #7=(|isDomain| *1 (|DisplayPackage|)))) (|sayLength| #1# (AND #8=(|isDomain| *3 #4#) #5# #7#)) (|say| #1# (AND #2# #9=(|isDomain| *2 (|Void|)) #7#)) (|say| #1# (AND #8# #9# #7#)) (|center| (*1 *2 *2 *3 *4) (AND #10=(|isDomain| *2 #3#) #11=(|isDomain| *3 #6#) (|isDomain| *4 #4#) #7#)) (|center| (*1 *2 *2 *3 *2) #12=(AND #13=(|isDomain| *2 #4#) #11# #7#)) (|copies| (*1 *2 *3 *2) #12#) (|newLine| (*1 *2) (AND #13# #7#)) (|bright| (*1 *2 *2) (AND #10# #7#)) (|bright| #1# (AND #10# #7# #8#)))
+((** (($ $ #1=(|PositiveInteger|)) NIL T ELT) (($ $ #2=(|NonNegativeInteger|)) NIL T ELT) (($ $ #3=(|Integer|)) 18 T ELT)) (* (($ #1# $) NIL T ELT) (($ #2# $) NIL T ELT) (($ #3# $) NIL T ELT) (($ $ $) NIL T ELT) (($ #4=(|Fraction| #3#) $) 25 T ELT) (($ $ #4#) NIL T ELT)))
+(((|DivisionRing&| |#1|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| #1=(|Integer|))) (SIGNATURE * (|#1| |#1| #2=(|Fraction| #1#))) (SIGNATURE * (|#1| #2# |#1|)) (SIGNATURE ** (|#1| |#1| #3=(|NonNegativeInteger|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| #4=(|PositiveInteger|))) (SIGNATURE * (|#1| #1# |#1|)) (SIGNATURE * (|#1| #3# |#1|)) (SIGNATURE * (|#1| #4# |#1|))) (|DivisionRing|)) (T |DivisionRing&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 55 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #4=(|Fraction| (|Integer|))) 59 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ (|Integer|)) 56 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #5=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ #4# . #5#) 58 T ELT) (($ $ #4#) 57 T ELT)))
+(((|DivisionRing|) (|Category|)) (T |DivisionRing|))
+((** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DivisionRing|)) (|isDomain| *2 (|Integer|)))) (|inv| (*1 *1 *1) (|ofCategory| *1 (|DivisionRing|))))
+(|Join| (|EntireRing|) (|Algebra| (|Fraction| #1=(|Integer|))) (CATEGORY |domain| (SIGNATURE ** ($ $ #1#)) (SIGNATURE |inv| ($ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|EntireRing|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|Module| #1#) . T) ((|Monoid|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|tail| (($ $) 54 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setprevious!| (($ $ $) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setnext!| (($ $ $) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #3="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #4=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sample| (#5=($) 6 T CONST)) (|previous| (($ $) 53 T ELT)) (|nodes| (#6=(#4# $) 45 T ELT)) (|node?| (#7=(#8=(|Boolean|) $ $) 37 (|has| |#1| . #9=((|BasicType|))) ELT)) (|next| (($ $) 52 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#10=(#8# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #11=((|SetCategory|))) ELT)) (|last| ((|#1| $) 56 T ELT)) (|head| (($ $) 55 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #11#) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT)) (|eq?| ((#12=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#12# $) 7 T ELT)) (|empty| (#5# 8 T ELT)) (|elt| ((|#1| $ #3#) 42 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|cyclic?| (#10# 41 T ELT)) (|copy| (($ $) 9 T ELT)) (|concat!| (($ $ $) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#6# 46 T ELT)) (|child?| (#7# 38 (|has| |#1| . #9#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|DoublyLinkedAggregate| |#1|) (|Category|) (|Type|)) (T |DoublyLinkedAggregate|))
+((|last| (*1 *2 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|head| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|previous| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|next| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setprevious!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setnext!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |last| (|t#1| $)) (SIGNATURE |head| ($ $)) (SIGNATURE |tail| ($ $)) (SIGNATURE |previous| ($ $)) (SIGNATURE |next| ($ $)) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (PROGN (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |setprevious!| ($ $ $)) (SIGNATURE |setnext!| ($ $ $))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| #5=((|#1| $) NIL T ELT)) (|third| #5#) (|tail| #6=(#7=($ $) NIL T ELT)) (|swap!| (((|Void|) $ #8=(|Integer|) #8#) NIL #9=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (#10=($ $ #8#) NIL #9# ELT)) (|sorted?| (#11=(#3# $) NIL #12=(|has| |#1| #13=(|OrderedSet|)) ELT) ((#3# #14=(|Mapping| #3# |#1| |#1|) $) NIL T ELT)) (|sort!| (#7# NIL (AND #9# #12#) ELT) (#15=($ #14# $) NIL #9# ELT)) (|sort| (#7# 10 #12# ELT) (#15# NIL T ELT)) (|size?| #16=((#3# $ #17=(|NonNegativeInteger|)) NIL T ELT)) (|setvalue!| #18=((|#1| $ |#1|) NIL #9# ELT)) (|setrest!| (#19=($ $ $) NIL #9# ELT)) (|setlast!| #18#) (|setfirst!| #18#) (|setelt| ((|#1| $ #20="value" |#1|) NIL #9# ELT) ((|#1| $ #21="first" |#1|) NIL #9# ELT) (($ $ #22="rest" $) NIL #9# ELT) ((|#1| $ #23="last" |#1|) NIL #9# ELT) ((|#1| $ #24=(|UniversalSegment| #8#) |#1|) NIL #9# ELT) #25=(#26=(|#1| $ #8# |#1|) NIL #9# ELT)) (|setchildren!| (($ $ #27=(|List| $)) NIL #9# ELT)) (|select!| #28=(#29=($ #30=(|Mapping| #3# |#1|) $) NIL T ELT)) (|select| #31=(#29# NIL #32=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|second| #5#) (|sample| (#33=($) NIL T CONST)) (|reverse!| #34=(#7# NIL #9# ELT)) (|reverse| #6#) (|rest| #6# #35=(($ $ #17#) NIL T ELT)) (|removeDuplicates!| (#7# NIL #4# ELT)) (|removeDuplicates| (#7# 7 #36=(AND #32# #4#) ELT)) (|remove!| (#37=($ |#1| $) NIL #4# ELT) #28#) (|remove| #31# (#37# NIL #36# ELT)) (|reduce| ((|#1| #38=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #38# $ |#1|) NIL T ELT) ((|#1| #38# $ |#1| |#1|) NIL #4# ELT)) (|qsetelt!| #25#) (|qelt| #39=((|#1| $ #8#) NIL T ELT)) (|possiblyInfinite?| #40=(#11# NIL T ELT)) (|position| ((#8# |#1| $ #8#) NIL #4# ELT) ((#8# |#1| $) NIL #4# ELT) ((#8# #30# $) NIL T ELT)) (|nodes| #41=((#27# $) NIL T ELT)) (|node?| #1#) (|new| (($ #17# |#1|) NIL T ELT)) (|more?| #16#) (|minIndex| #42=((#8# $) NIL (|has| #8# #13#) ELT)) (|min| #43=(#19# NIL #12# ELT)) (|merge!| #43# #44=(($ #14# $ $) NIL T ELT)) (|merge| #43# #44#) (|members| #45=(#46=(#47=(|List| |#1|) $) NIL T ELT)) (|member?| (#48=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| #42#) (|max| #43#) (|map!| #49=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #49# (($ #38# $ $) NIL T ELT)) (|list| (($ |#1|) NIL T ELT)) (|less?| #16#) (|leaves| #45#) (|leaf?| #40#) (|latex| (((|String|) $) NIL #50=(|has| |#1| (|SetCategory|)) ELT)) (|last| #5# #35#) (|insert!| #51=(#52=($ $ $ #8#) NIL T ELT) #53=(($ |#1| $ #8#) NIL T ELT)) (|insert| #51# #53#) (|indices| (((|List| #8#) $) NIL T ELT)) (|index?| ((#3# #8# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #50# ELT)) (|first| #5# #35#) (|find| (((|Union| |#1| "failed") #30# $) NIL T ELT)) (|fill!| (#54=($ $ |#1|) NIL #9# ELT)) (|explicitlyFinite?| #40#) (|every?| #55=((#3# #30# $) NIL T ELT)) (|eval| (($ $ (|List| #56=(|Equation| |#1|))) NIL #57=(AND (|has| |#1| (|Evalable| |#1|)) #50#) ELT) (($ $ #56#) NIL #57# ELT) (($ $ |#1| |#1|) NIL #57# ELT) (($ $ #47# #47#) NIL #57# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#48# NIL #36# ELT)) (|entries| #45#) (|empty?| #40#) (|empty| (#33# NIL T ELT)) (|elt| ((|#1| $ #20#) NIL T ELT) ((|#1| $ #21#) NIL T ELT) (($ $ #22#) NIL T ELT) ((|#1| $ #23#) NIL T ELT) #58=(($ $ #24#) NIL T ELT) #39# (#26# NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) ((#17# $ "count") 16 T ELT)) (|distance| ((#8# $ $) NIL T ELT)) (|delete!| #58# #59=(#10# NIL T ELT)) (|delete| #58# #59#) (|datalist| (#60=($ #47#) 22 T ELT)) (|cyclic?| #40#) (|cycleTail| #6#) (|cycleSplit!| #34#) (|cycleLength| (#61=(#17# $) NIL T ELT)) (|cycleEntry| #6#) (|count| ((#17# #30# $) NIL T ELT) ((#17# |#1| $) NIL #4# ELT)) (|copyInto!| (#52# NIL #9# ELT)) (|copy| #6#) (|convert| ((#62=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #62#)) ELT)) (|construct| (#60# NIL T ELT)) (|concat!| #63=(#19# NIL T ELT) #64=(#54# NIL T ELT)) (|concat| #63# (#37# NIL T ELT) (($ #27#) NIL T ELT) #64#) (|coerce| (#60# 17 T ELT) (#46# 18 T ELT) ((#65=(|OutputForm|) $) 21 (|has| |#1| (|CoercibleTo| #65#)) ELT)) (|children| #41#) (|child?| #1#) (|before?| #1#) (|any?| #55#) (>= #66=(#2# NIL #12# ELT)) (> #66#) (= #1#) (<= #66#) (< #66#) (|#| (#61# 14 T ELT)))
+(((|DataList| |#1|) (|Join| (|ListAggregate| |#1|) (|HomotopicTo| #1=(|List| |#1|)) (CATEGORY |domain| (SIGNATURE |datalist| ($ #1#)) (SIGNATURE |elt| ($ $ "unique")) (SIGNATURE |elt| ($ $ "sort")) (SIGNATURE |elt| ((|NonNegativeInteger|) $ "count")))) (|OrderedSet|)) (T |DataList|))
+((|datalist| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 #2=(|OrderedSet|)) #3=(|isDomain| *1 (|DataList| *3)))) (|elt| #4=(*1 *1 *1 *2) (AND (|isDomain| *2 "unique") #3# #1#)) (|elt| #4# (AND (|isDomain| *2 "sort") #3# #1#)) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "count") (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DataList| *4)) (|ofCategory| *4 #2#))))
+((|shanksDiscLogAlgorithm| (((|Union| #1=(|NonNegativeInteger|) "failed") |#1| |#1| #1#) 40 T ELT)))
+(((|DiscreteLogarithmPackage| |#1|) (CATEGORY |package| (SIGNATURE |shanksDiscLogAlgorithm| ((|Union| #1=(|NonNegativeInteger|) "failed") |#1| |#1| #1#))) (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| (|Integer|)))))) (T |DiscreteLogarithmPackage|))
+((|shanksDiscLogAlgorithm| (*1 *2 *3 *3 *2) (|partial| AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (*3 *3 (|Integer|)))))) (|isDomain| *1 (|DiscreteLogarithmPackage| *3)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (($ . #4=($)) 60 (|has| |#1| . #5=((|DifferentialSpace|))) ELT) (#6=($ $ (|NonNegativeInteger|)) 58 (|has| |#1| . #5#) ELT) (($ $ #7=(|Symbol|)) 56 (|has| |#1| . #8=((|PartialDifferentialSpace| #7#))) ELT) (($ $ (|List| #7#)) 54 (|has| |#1| . #8#) ELT) (($ $ #7# . #9=(#10=(|NonNegativeInteger|))) 53 (|has| |#1| . #8#) ELT) (($ $ (|List| #7#) . #11=((|List| #10#))) 52 (|has| |#1| . #8#) ELT) (($ $ (|Mapping| |#1| |#1|) . #12=((|NonNegativeInteger|))) 46 T ELT) (($ $ (|Mapping| |#1| |#1|)) 45 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (D (($ . #4#) 59 (|has| |#1| . #5#) ELT) (#6# 57 (|has| |#1| . #5#) ELT) (($ $ #7#) 55 (|has| |#1| . #8#) ELT) (($ $ (|List| #7#)) 51 (|has| |#1| . #8#) ELT) (($ $ #7# . #9#) 50 (|has| |#1| . #8#) ELT) (($ $ (|List| #7#) . #11#) 49 (|has| |#1| . #8#) ELT) (($ $ (|Mapping| |#1| |#1|) . #12#) 48 T ELT) (($ $ (|Mapping| |#1| |#1|)) 47 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #13=($)) 30 T ELT) (($ |#1| . #13#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|DifferentialModuleExtension| |#1|) (|Category|) (|Ring|)) (T |DifferentialModuleExtension|))
+NIL
+(|Join| (|BiModule| |t#1| |t#1|) (|DifferentialSpaceExtension| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|DifferentialSpace|)) (ATTRIBUTE (|DifferentialModule| |t#1|)) |%noBranch|) (IF (|has| |t#1| (|PartialDifferentialSpace| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialModule| |t#1| (|Symbol|))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) |has| |#1| (|DifferentialSpace|)) ((|DifferentialModule| |#1|) |has| |#1| (|DifferentialSpace|)) ((|DifferentialSpace|) |has| |#1| (|DifferentialSpace|)) ((|DifferentialSpaceExtension| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) OR (AND (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|DifferentialSpace|)))) ((|Module| |#1|) OR (AND (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|DifferentialSpace|)))) ((|PartialDifferentialDomain| $ #1=(|Symbol|)) |has| |#1| (|PartialDifferentialSpace| (|Symbol|))) ((|PartialDifferentialModule| |#1| (|Symbol|)) |has| |#1| (|PartialDifferentialSpace| (|Symbol|))) ((|PartialDifferentialSpace| #1#) |has| |#1| (|PartialDifferentialSpace| (|Symbol|))) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|OrderedVariableList| |#1|)) $) NIL T ELT)) (|univariate| ((#8=(|SparseUnivariatePolynomial| $) $ #7#) NIL T ELT) ((#9=(|SparseUnivariatePolynomial| |#2|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #10=(|has| |#2| (|IntegralDomain|)) ELT)) (|unitCanonical| #11=(#12=($ $) NIL #10# ELT)) (|unit?| (#5# NIL #10# ELT)) (|totalDegree| #13=((#14=(|NonNegativeInteger|) $) NIL T ELT) ((#14# $ #6#) NIL T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #18=(((|Factored| #8#) #8#) NIL #19=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #20=(#12# NIL #21=(|has| |#2| (|GcdDomain|)) ELT)) (|squareFree| (#22=((|Factored| $) $) NIL #21# ELT)) (|solveLinearPolynomialEquation| (((|Union| #23=(|List| #8#) #17#) #23# #8#) NIL #19# ELT)) (|sample| #24=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #25=(#17#)) . #26=($)) NIL T ELT) (((|Union| #27=(|Fraction| #28=(|Integer|)) . #25#) . #26#) NIL #29=(|has| |#2| (|RetractableTo| #27#)) ELT) (((|Union| #28# . #25#) . #26#) NIL #30=(|has| |#2| (|RetractableTo| #28#)) ELT) #31=(((|Union| #7# . #25#) . #26#) NIL T ELT)) (|retract| #32=(#33=(|#2| . #34=($)) NIL T ELT) ((#27# . #34#) NIL #29# ELT) ((#28# . #34#) NIL #30# ELT) ((#7# . #34#) NIL T ELT)) (|resultant| (($ $ $ #7#) NIL #35=(|has| |#2| (|CommutativeRing|)) ELT)) (|reorder| (($ $ (|List| #28#)) NIL T ELT)) (|reductum| #36=(#12# NIL T ELT)) (|reducedSystem| ((#37=(|Matrix| #28#) . #38=(#39=(|Matrix| $))) NIL #40=(|has| |#2| (|LinearlyExplicitRingOver| #28#)) ELT) ((#41=(|Record| (|:| |mat| #37#) (|:| |vec| (|Vector| #28#))) . #42=(#39# #43=(|Vector| $))) NIL #40# ELT) ((#44=(|Record| (|:| |mat| #45=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #42#) NIL T ELT) ((#45# . #38#) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|primitivePart| #20# #46=(#47=($ $ #7#) NIL #21# ELT)) (|primitiveMonomials| #48=((#49=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #19# ELT)) (|pomopo!| (($ $ |#2| #50=(|DirectProduct| (|#| |#1|) #14#) $) NIL T ELT)) (|patternMatch| ((#51=(|PatternMatchResult| #52=(|Float|) . #53=($)) $ #54=(|Pattern| #52#) #51#) NIL (AND (|has| #7# #55=(|PatternMatchable| #52#)) (|has| |#2| #55#)) ELT) ((#56=(|PatternMatchResult| #28# . #53#) $ #57=(|Pattern| #28#) #56#) NIL (AND (|has| #7# #58=(|PatternMatchable| #28#)) (|has| |#2| #58#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #13#) (|multivariate| (($ #9# #7#) NIL T ELT) (($ #8# #7#) NIL T ELT)) (|monomials| #48#) (|monomial?| #4#) (|monomial| (($ |#2| #50#) NIL T ELT) #59=(($ $ #7# #14#) NIL T ELT) #60=(($ $ #6# #61=(|List| #14#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #7#) NIL T ELT)) (|minimumDegree| #62=((#50# $) NIL T ELT) #63=((#14# $ #7#) NIL T ELT) #64=((#61# $ #6#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #50# #50#) $) NIL T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|mainVariable| #31#) (|leftReducedSystem| ((#37# . #65=(#43#)) NIL #40# ELT) ((#41# . #66=(#43# $)) NIL #40# ELT) ((#44# . #66#) NIL T ELT) ((#45# . #65#) NIL T ELT)) (|leadingMonomial| #36#) (|leadingCoefficient| #32#) (|lcm| #67=(($ #49#) NIL #21# ELT) #68=(#69=($ $ $) NIL #21# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #70=(((|Union| #49# #17#) $) NIL T ELT)) (|isPlus| #70#) (|isExpt| (((|Union| (|Record| (|:| |var| #7#) (|:| |exponent| #14#)) #17#) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #32#) (|gcdPolynomial| ((#8# #8# #8#) NIL #21# ELT)) (|gcd| #67# #68#) (|factorSquareFreePolynomial| #18#) (|factorPolynomial| #18#) (|factor| (#22# NIL #19# ELT)) (|exquo| ((#16# $ |#2|) NIL #10# ELT) (#15# NIL #10# ELT)) (|eval| (($ $ (|List| #71=(|Equation| $))) NIL T ELT) (($ $ #71#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #49# #49#) NIL T ELT) (($ $ #7# |#2|) NIL T ELT) (($ $ #6# #72=(|List| |#2|)) NIL T ELT) (($ $ #7# $) NIL T ELT) (($ $ #6# #49#) NIL T ELT)) (|discriminant| (#47# NIL #35# ELT)) (|differentiate| #60# #59# #73=(($ $ #6#) NIL T ELT) #74=(#47# NIL T ELT)) (|degree| #62# #63# #64#) (|convert| ((#54# . #75=($)) NIL (AND (|has| #7# #76=(|ConvertibleTo| #54#)) (|has| |#2| #76#)) ELT) ((#57# . #75#) NIL (AND (|has| #7# #77=(|ConvertibleTo| #57#)) (|has| |#2| #77#)) ELT) ((#78=(|InputForm|) . #75#) NIL (AND (|has| #7# #79=(|ConvertibleTo| #78#)) (|has| |#2| #79#)) ELT)) (|content| (#33# NIL #21# ELT) #46#) (|conditionP| (((|Union| #43# #17#) #39#) NIL #80=(AND (|has| $ #81=(|CharacteristicNonZero|)) #19#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #28#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #7#) NIL T ELT) (($ #27#) NIL (OR #82=(|has| |#2| (|Algebra| #27#)) #29#) ELT) #11#) (|coefficients| ((#72# $) NIL T ELT)) (|coefficient| ((|#2| $ #50#) NIL T ELT) #59# #60#) (|charthRoot| (((|Maybe| $) $) NIL (OR #80# (|has| |#2| #81#)) ELT)) (|characteristic| ((#14#) NIL T CONST)) (|binomThmExpt| (($ $ $ #14#) NIL #35# ELT)) (|before?| #1#) (|associates?| (#2# NIL #10# ELT)) (|annihilate?| #1#) (|Zero| #24#) (|One| #24#) (D #60# #59# #73# #74#) (= #1#) (/ (#83=($ $ |#2|) NIL (|has| |#2| (|Field|)) ELT)) (- #36# #84=(#69# NIL T ELT)) (+ #84#) (** (($ $ #85=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #85# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #28# . #86=($)) NIL T ELT) #84# (($ $ #27#) NIL #82# ELT) (($ #27# . #86#) NIL #82# ELT) (($ |#2| . #86#) NIL T ELT) (#83# NIL T ELT)))
+(((|DistributedMultivariatePolynomial| |#1| |#2|) (|Join| (|PolynomialCategory| |#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) (|List| (|Symbol|)) (|Ring|)) (T |DistributedMultivariatePolynomial|))
+((|reorder| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|DistributedMultivariatePolynomial| *3 *4)) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Ring|)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|showSummary| (((|Void|) $) 17 T ELT)) (|reify| ((#3=(|ConstructorCall| #4=(|DomainConstructor|)) $) 11 T ELT)) (|reflect| (($ #3#) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|constructor| ((#4# $) 7 T ELT)) (|coerce| (((|OutputForm|) $) 9 T ELT)) (|before?| #1#) (= (#2# 15 T ELT)))
+(((|Domain|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |constructor| (#1=(|DomainConstructor|) $)) (SIGNATURE |reify| (#2=(|ConstructorCall| #1#) $)) (SIGNATURE |reflect| ($ #2#)) (SIGNATURE |showSummary| ((|Void|) $))))) (T |Domain|))
+((|constructor| #1=(*1 *2 *1) (AND (|isDomain| *2 #2=(|DomainConstructor|)) #3=(|isDomain| *1 (|Domain|)))) (|reify| #1# #4=(AND (|isDomain| *2 (|ConstructorCall| #2#)) #3#)) (|reflect| (*1 *1 *2) #4#) (|showSummary| #1# (AND (|isDomain| *2 (|Void|)) #3#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|operations| (((|List| (|OverloadSet|)) $) NIL T ELT)) (|name| ((#3=(|Identifier|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|kind| (((|ConstructorKind|) $) NIL T ELT)) (|is?| ((#2# $ #3#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|functorData| (((|FunctorData|) $) 7 T ELT)) (|dualSignature| (((|List| #2#) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (((|Constructor|) $) 8 T ELT)) (|before?| #1#) (|arity| (((|Arity|) $) NIL T ELT)) (= #1#))
+(((|DomainConstructor|) (|Join| (|ConstructorCategory|) (|CoercibleTo| (|Constructor|)) (CATEGORY |domain| (SIGNATURE |functorData| ((|FunctorData|) $))))) (T |DomainConstructor|))
+((|functorData| (*1 *2 *1) (AND (|isDomain| *2 (|FunctorData|)) (|isDomain| *1 (|DomainConstructor|)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| (((|Syntax|) $ #3=(|NonNegativeInteger|)) 14 T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT)) (|before?| #1#) (= (#2# 17 T ELT)) (|#| ((#3# $) 11 T ELT)))
+(((|DomainTemplate|) (|Join| (|SetCategory|) (|Eltable| #1=(|NonNegativeInteger|) (|Syntax|)) (CATEGORY |domain| (SIGNATURE |#| (#1# $))))) (T |DomainTemplate|))
+((|#| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DomainTemplate|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitVector| (#6=($ #7=(|PositiveInteger|)) NIL #8=(|has| |#4| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #9=(|Integer|) #9#) NIL #10=(|has| $ (|ShallowlyMutableAggregate| |#4|)) ELT)) (|sup| (#11=($ $ $) NIL #12=(|has| |#4| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#13=(|Union| $ #14="failed") $ $) NIL T ELT)) (|size| (#15=(#16=(|NonNegativeInteger|)) NIL #17=(|has| |#4| (|Finite|)) ELT)) (|setelt| #18=(#19=(|#4| $ #9# |#4|) NIL #10# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| ((#22=(|Union| |#4| . #23=(#14#)) . #24=($)) NIL #25=(|has| |#4| (|SetCategory|)) ELT) (((|Union| #9# . #23#) . #24#) NIL #26=(AND (|has| |#4| (|RetractableTo| #9#)) #25#) ELT) (((|Union| #27=(|Fraction| #9#) . #23#) . #24#) NIL #28=(AND (|has| |#4| (|RetractableTo| #27#)) #25#) ELT)) (|retract| (#29=(|#4| . #30=($)) NIL #25# ELT) (#31=(#9# . #30#) NIL #26# ELT) ((#27# . #30#) NIL #28# ELT)) (|reducedSystem| ((#32=(|Record| (|:| |mat| #33=(|Matrix| |#4|)) (|:| |vec| #34=(|Vector| |#4|))) . #35=(#36=(|Matrix| $) #37=(|Vector| $))) NIL #8# ELT) ((#33# . #38=(#36#)) NIL #8# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| #9#)) (|:| |vec| (|Vector| #9#))) . #35#) NIL #41=(AND (|has| |#4| (|LinearlyExplicitRingOver| #9#)) #8#) ELT) ((#40# . #38#) NIL #41# ELT)) (|reduce| ((|#4| #42=(|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) NIL #43=(|has| |#4| (|BasicType|)) ELT) ((|#4| #42# $ |#4|) NIL T ELT) ((|#4| #42# $) NIL T ELT)) (|recip| ((#13# $) NIL #8# ELT)) (|random| (#21# NIL #17# ELT)) (|qsetelt!| #18#) (|qelt| (#44=(|#4| $ #9#) NIL T ELT)) (|positive?| (#5# NIL #12# ELT)) (|opposite?| #1#) (|one?| (#5# NIL #8# ELT)) (|minIndex| #45=(#31# NIL #46=(|has| #9# #47=(|OrderedSet|)) ELT)) (|min| #48=(#11# NIL #49=(|has| |#4| #47#) ELT)) (|members| #50=((#51=(|List| |#4|) $) NIL T ELT)) (|member?| (#52=(#3# |#4| $) NIL #43# ELT)) (|maxIndex| #45#) (|max| #48#) (|map| (($ #53=(|Mapping| |#4| |#4|) $) NIL T ELT)) (|lookup| ((#7# $) NIL #17# ELT)) (|leftReducedSystem| ((#32# . #54=(#37# $)) NIL #8# ELT) ((#33# . #55=(#37#)) NIL #8# ELT) ((#39# . #54#) NIL #41# ELT) ((#40# . #55#) NIL #41# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|indices| (((|List| #9#) $) NIL T ELT)) (|index?| ((#3# #9# $) NIL T ELT)) (|index| (#6# NIL #17# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#29# NIL #46# ELT)) (|find| ((#22# #56=(|Mapping| #3# |#4|) $) NIL T ELT)) (|fill!| (#57=($ $ |#4|) NIL #10# ELT)) (|every?| #58=((#3# #56# $) NIL T ELT)) (|eval| (($ $ (|List| #59=(|Equation| |#4|))) NIL #60=(AND (|has| |#4| (|Evalable| |#4|)) #25#) ELT) (($ $ #59#) NIL #60# ELT) (($ $ |#4| |#4|) NIL #60# ELT) (($ $ #51# #51#) NIL #60# ELT)) (|eq?| #1#) (|entry?| (#52# NIL (AND (|has| $ (|FiniteAggregate| |#4|)) #43#) ELT)) (|entries| #50#) (|empty?| #4#) (|empty| (#21# NIL T ELT)) (|elt| (#19# NIL T ELT) (#44# 12 T ELT)) (|dot| ((|#4| $ $) NIL #8# ELT)) (|directProduct| (($ #34#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) NIL #61=(|has| |#4| (|Field|)) ELT)) (|differentiate| #62=(($ $ #53#) NIL #8# ELT) #63=(($ $ #53# #16#) NIL #8# ELT) #64=(($ $ #65=(|List| #66=(|Symbol|)) (|List| #16#)) NIL #67=(OR (AND (|has| |#4| (|PartialDifferentialRing| #66#)) #8#) (AND (|has| |#4| (|PartialDifferentialSpace| #66#)) #8#)) ELT) #68=(($ $ #66# #16#) NIL #67# ELT) #69=(($ $ #65#) NIL #67# ELT) #70=(($ $ #66#) NIL #67# ELT) #71=(#72=($ $ #16#) NIL #73=(OR (AND (|has| |#4| (|DifferentialRing|)) #8#) (AND (|has| |#4| (|DifferentialSpace|)) #8#)) ELT) #74=(#75=($ $) NIL #73# ELT)) (|count| ((#16# |#4| $) NIL #43# ELT) ((#16# #56# $) NIL T ELT)) (|copy| #76=(#75# NIL T ELT)) (|coerce| ((#34# . #77=($)) NIL T ELT) (($ |#4|) NIL #25# ELT) (((|OutputForm|) . #77#) NIL T ELT) (($ #9#) NIL (OR #26# #8#) ELT) (($ #27#) NIL #28# ELT)) (|characteristic| (#15# NIL #8# CONST)) (|before?| #1#) (|any?| #58#) (|annihilate?| (#2# NIL #8# ELT)) (|Zero| #20#) (|One| (#21# NIL #8# CONST)) (D #62# #63# #64# #68# #69# #70# #71# #74#) (>= #78=(#2# NIL #49# ELT)) (> #78#) (= #1#) (<= #78#) (< #78#) (/ (#57# NIL #61# ELT)) (- #79=(#11# NIL T ELT) #76#) (+ #79#) (** (#72# NIL #8# ELT) (($ $ #7#) NIL #8# ELT)) (* (($ |#2| $) 14 T ELT) (($ #9# . #80=($)) NIL T ELT) (($ #16# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ |#3| $) 18 T ELT) (#57# NIL #81=(|has| |#4| (|Monoid|)) ELT) (($ |#4| . #80#) NIL #81# ELT) (#11# NIL #8# ELT)) (|#| ((#16# $) NIL T ELT)))
+(((|DirectProductMatrixModule| |#1| |#2| |#3| |#4|) (|Join| (|DirectProductCategory| |#1| |#4|) #1=(|LeftModule| |#2|) (|LeftModule| |#3|)) (|PositiveInteger|) (|Ring|) (|SquareMatrixCategory| |#1| |#2| #2=(|DirectProduct| |#1| |#2|) #2#) #1#) (T |DirectProductMatrixModule|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitVector| (#6=($ #7=(|PositiveInteger|)) NIL #8=(|has| |#3| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #9=(|Integer|) #9#) NIL #10=(|has| $ (|ShallowlyMutableAggregate| |#3|)) ELT)) (|sup| (#11=($ $ $) NIL #12=(|has| |#3| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#13=(|Union| $ #14="failed") $ $) NIL T ELT)) (|size| (#15=(#16=(|NonNegativeInteger|)) NIL #17=(|has| |#3| (|Finite|)) ELT)) (|setelt| #18=(#19=(|#3| $ #9# |#3|) NIL #10# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| ((#22=(|Union| |#3| . #23=(#14#)) . #24=($)) NIL #25=(|has| |#3| (|SetCategory|)) ELT) (((|Union| #9# . #23#) . #24#) NIL #26=(AND (|has| |#3| (|RetractableTo| #9#)) #25#) ELT) (((|Union| #27=(|Fraction| #9#) . #23#) . #24#) NIL #28=(AND (|has| |#3| (|RetractableTo| #27#)) #25#) ELT)) (|retract| (#29=(|#3| . #30=($)) NIL #25# ELT) (#31=(#9# . #30#) NIL #26# ELT) ((#27# . #30#) NIL #28# ELT)) (|reducedSystem| ((#32=(|Record| (|:| |mat| #33=(|Matrix| |#3|)) (|:| |vec| #34=(|Vector| |#3|))) . #35=(#36=(|Matrix| $) #37=(|Vector| $))) NIL #8# ELT) ((#33# . #38=(#36#)) NIL #8# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| #9#)) (|:| |vec| (|Vector| #9#))) . #35#) NIL #41=(AND (|has| |#3| (|LinearlyExplicitRingOver| #9#)) #8#) ELT) ((#40# . #38#) NIL #41# ELT)) (|reduce| ((|#3| #42=(|Mapping| |#3| |#3| |#3|) $ |#3| |#3|) NIL #43=(|has| |#3| (|BasicType|)) ELT) ((|#3| #42# $ |#3|) NIL T ELT) ((|#3| #42# $) NIL T ELT)) (|recip| ((#13# $) NIL #8# ELT)) (|random| (#21# NIL #17# ELT)) (|qsetelt!| #18#) (|qelt| (#44=(|#3| $ #9#) NIL T ELT)) (|positive?| (#5# NIL #12# ELT)) (|opposite?| #1#) (|one?| (#5# NIL #8# ELT)) (|minIndex| #45=(#31# NIL #46=(|has| #9# #47=(|OrderedSet|)) ELT)) (|min| #48=(#11# NIL #49=(|has| |#3| #47#) ELT)) (|members| #50=((#51=(|List| |#3|) $) NIL T ELT)) (|member?| (#52=(#3# |#3| $) NIL #43# ELT)) (|maxIndex| #45#) (|max| #48#) (|map| (($ #53=(|Mapping| |#3| |#3|) $) NIL T ELT)) (|lookup| ((#7# $) NIL #17# ELT)) (|leftReducedSystem| ((#32# . #54=(#37# $)) NIL #8# ELT) ((#33# . #55=(#37#)) NIL #8# ELT) ((#39# . #54#) NIL #41# ELT) ((#40# . #55#) NIL #41# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|indices| (((|List| #9#) $) NIL T ELT)) (|index?| ((#3# #9# $) NIL T ELT)) (|index| (#6# NIL #17# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#29# NIL #46# ELT)) (|find| ((#22# #56=(|Mapping| #3# |#3|) $) NIL T ELT)) (|fill!| (#57=($ $ |#3|) NIL #10# ELT)) (|every?| #58=((#3# #56# $) NIL T ELT)) (|eval| (($ $ (|List| #59=(|Equation| |#3|))) NIL #60=(AND (|has| |#3| (|Evalable| |#3|)) #25#) ELT) (($ $ #59#) NIL #60# ELT) (($ $ |#3| |#3|) NIL #60# ELT) (($ $ #51# #51#) NIL #60# ELT)) (|eq?| #1#) (|entry?| (#52# NIL (AND (|has| $ (|FiniteAggregate| |#3|)) #43#) ELT)) (|entries| #50#) (|empty?| #4#) (|empty| (#21# NIL T ELT)) (|elt| (#19# NIL T ELT) (#44# 11 T ELT)) (|dot| ((|#3| $ $) NIL #8# ELT)) (|directProduct| (($ #34#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) NIL #61=(|has| |#3| (|Field|)) ELT)) (|differentiate| #62=(($ $ #53#) NIL #8# ELT) #63=(($ $ #53# #16#) NIL #8# ELT) #64=(($ $ #65=(|List| #66=(|Symbol|)) (|List| #16#)) NIL #67=(OR (AND (|has| |#3| (|PartialDifferentialRing| #66#)) #8#) (AND (|has| |#3| (|PartialDifferentialSpace| #66#)) #8#)) ELT) #68=(($ $ #66# #16#) NIL #67# ELT) #69=(($ $ #65#) NIL #67# ELT) #70=(($ $ #66#) NIL #67# ELT) #71=(#72=($ $ #16#) NIL #73=(OR (AND (|has| |#3| (|DifferentialRing|)) #8#) (AND (|has| |#3| (|DifferentialSpace|)) #8#)) ELT) #74=(#75=($ $) NIL #73# ELT)) (|count| ((#16# |#3| $) NIL #43# ELT) ((#16# #56# $) NIL T ELT)) (|copy| #76=(#75# NIL T ELT)) (|coerce| ((#34# . #77=($)) NIL T ELT) (($ |#3|) NIL #25# ELT) (((|OutputForm|) . #77#) NIL T ELT) (($ #9#) NIL (OR #26# #8#) ELT) (($ #27#) NIL #28# ELT)) (|characteristic| (#15# NIL #8# CONST)) (|before?| #1#) (|any?| #58#) (|annihilate?| (#2# NIL #8# ELT)) (|Zero| #20#) (|One| (#21# NIL #8# CONST)) (D #62# #63# #64# #68# #69# #70# #71# #74#) (>= #78=(#2# NIL #49# ELT)) (> #78#) (= #1#) (<= #78#) (< #78#) (/ (#57# NIL #61# ELT)) (- #79=(#11# NIL T ELT) #76#) (+ #79#) (** (#72# NIL #8# ELT) (($ $ #7#) NIL #8# ELT)) (* (($ |#2| $) 13 T ELT) (($ #9# . #80=($)) NIL T ELT) (($ #16# $) NIL T ELT) (($ #7# $) NIL T ELT) (#57# NIL #81=(|has| |#3| (|Monoid|)) ELT) (($ |#3| . #80#) NIL #81# ELT) (#11# NIL #8# ELT)) (|#| ((#16# $) NIL T ELT)))
+(((|DirectProductModule| |#1| |#2| |#3|) (|Join| (|DirectProductCategory| |#1| |#3|) #1=(|LeftModule| |#2|)) (|NonNegativeInteger|) (|Ring|) #1#) (T |DirectProductModule|))
+NIL
+((|weights| ((#1=(|List| #2=(|NonNegativeInteger|)) $) 56 T ELT) ((#1# $ |#3|) 59 T ELT)) (|weight| (#3=(#2# $) 58 T ELT) (#4=(#2# $ |#3|) 61 T ELT)) (|separant| (#5=($ $) 76 T ELT)) (|retractIfCan| (((|Union| |#2| #6="failed") $) NIL T ELT) (((|Union| #7=(|Fraction| #8=(|Integer|)) #6#) $) NIL T ELT) (((|Union| #8# #6#) $) NIL T ELT) (((|Union| |#4| #6#) $) NIL T ELT) (((|Union| |#3| #6#) $) 83 T ELT)) (|order| (#4# 43 T ELT) (#3# 38 T ELT)) (|makeVariable| ((#9=(|Mapping| $ #2#) |#3|) 15 T ELT) ((#9# $) 88 T ELT)) (|leader| ((|#4| $) 69 T ELT)) (|isobaric?| (((|Boolean|) $) 67 T ELT)) (|initial| (#5# 75 T ELT)) (|eval| (($ $ (|List| #10=(|Equation| $))) 111 T ELT) (($ $ #10#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #11=(|List| $) #11#) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ #12=(|List| |#4|) #13=(|List| |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ #12# #11#) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ #14=(|List| |#3|) #11#) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ #14# #13#) 97 T ELT)) (|differentiate| (($ $ #12# #1#) NIL T ELT) (($ $ |#4| #2#) NIL T ELT) (($ $ #12#) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ #15=(|Mapping| |#2| |#2|)) 32 T ELT) (($ $ #15# #2#) NIL T ELT) (($ $ #16=(|Symbol|)) NIL T ELT) (($ $ #17=(|List| #16#)) NIL T ELT) (($ $ #16# #2#) NIL T ELT) (($ $ #17# #1#) NIL T ELT) #18=(#5# NIL T ELT) (($ $ #2#) NIL T ELT)) (|differentialVariables| ((#14# $) 86 T ELT)) (|degree| ((|#5| $) NIL T ELT) ((#2# $ |#4|) NIL T ELT) ((#1# $ #12#) NIL T ELT) (#4# 49 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #8#) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ #7#) NIL T ELT) #18#))
+(((|DifferentialPolynomialCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |differentiate| (|#1| |#1| #1=(|NonNegativeInteger|))) (SIGNATURE |differentiate| #2=(|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #3=(|List| #4=(|Symbol|)) #5=(|List| #1#))) (SIGNATURE |differentiate| (|#1| |#1| #4# #1#)) (SIGNATURE |differentiate| (|#1| |#1| #3#)) (SIGNATURE |differentiate| (|#1| |#1| #4#)) (SIGNATURE |coerce| #2#) (SIGNATURE |coerce| (|#1| #6=(|Fraction| #7=(|Integer|)))) (SIGNATURE |eval| (|#1| |#1| #8=(|List| |#3|) #9=(|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#3| |#2|)) (SIGNATURE |eval| (|#1| |#1| #8# #10=(|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#3| |#1|)) (SIGNATURE |makeVariable| (#11=(|Mapping| |#1| #1#) |#1|)) (SIGNATURE |separant| #2#) (SIGNATURE |initial| #2#) (SIGNATURE |leader| (|#4| |#1|)) (SIGNATURE |isobaric?| ((|Boolean|) |#1|)) (SIGNATURE |weight| #12=(#1# |#1| |#3|)) (SIGNATURE |weights| (#5# |#1| |#3|)) (SIGNATURE |weight| #13=(#1# |#1|)) (SIGNATURE |weights| (#5# |#1|)) (SIGNATURE |degree| #12#) (SIGNATURE |order| #13#) (SIGNATURE |order| #12#) (SIGNATURE |differentialVariables| (#8# |#1|)) (SIGNATURE |makeVariable| (#11# |#3|)) (SIGNATURE |coerce| (|#1| |#3|)) (SIGNATURE |retractIfCan| ((|Union| |#3| #14="failed") |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #15=(|Mapping| |#2| |#2|) #1#)) (SIGNATURE |differentiate| (|#1| |#1| #15#)) (SIGNATURE |degree| (#5# |#1| #16=(|List| |#4|))) (SIGNATURE |degree| (#1# |#1| |#4|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |retractIfCan| ((|Union| |#4| #14#) |#1|)) (SIGNATURE |eval| (|#1| |#1| #16# #10#)) (SIGNATURE |eval| (|#1| |#1| |#4| |#1|)) (SIGNATURE |eval| (|#1| |#1| #16# #9#)) (SIGNATURE |eval| (|#1| |#1| |#4| |#2|)) (SIGNATURE |eval| (|#1| |#1| #10# #10#)) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| #17=(|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| #17#))) (SIGNATURE |degree| (|#5| |#1|)) (SIGNATURE |retractIfCan| ((|Union| #7# #14#) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #6# #14#) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #14#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |differentiate| (|#1| |#1| |#4|)) (SIGNATURE |differentiate| (|#1| |#1| #16#)) (SIGNATURE |differentiate| (|#1| |#1| |#4| #1#)) (SIGNATURE |differentiate| (|#1| |#1| #16# #5#)) (SIGNATURE |coerce| (|#1| #7#)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|DifferentialPolynomialCategory| |#2| |#3| |#4| |#5|) (|Ring|) (|OrderedSet|) (|DifferentialVariableCategory| |#3|) (|OrderedAbelianMonoidSup|)) (T |DifferentialPolynomialCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|weights| (((|List| (|NonNegativeInteger|)) $) 252 T ELT) (((|List| (|NonNegativeInteger|)) $ |#2|) 250 T ELT)) (|weight| (((|NonNegativeInteger|) $) 251 T ELT) (((|NonNegativeInteger|) $ |#2|) 249 T ELT)) (|variables| (((|List| |#3|) $) 124 T ELT)) (|univariate| ((#3=(|SparseUnivariatePolynomial| $) $ |#3|) 139 T ELT) (((|SparseUnivariatePolynomial| |#1|) $) 138 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 101 (|has| |#1| . #4=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 102 (|has| |#1| . #4#) ELT)) (|unit?| ((#5=(|Boolean|) $) 104 (|has| |#1| . #4#) ELT)) (|totalDegree| ((#6=(|NonNegativeInteger|) $) 126 T ELT) ((#6# $ (|List| |#3|)) 125 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (#7=((|Factored| #8=(|SparseUnivariatePolynomial| $)) #8#) 114 (|has| |#1| . #9=((|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| (($ $) 112 (|has| |#1| . #10=((|GcdDomain|))) ELT)) (|squareFree| (#11=((|Factored| $) $) 111 (|has| |#1| . #10#) ELT)) (|solveLinearPolynomialEquation| (((|Union| #12=(|List| #8#) #13="failed") #12# #8#) 117 (|has| |#1| . #9#) ELT)) (|separant| (($ $) 245 T ELT)) (|sample| (#14=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| . #15=("failed")) . #16=($)) 182 T ELT) (((|Union| #17=(|Fraction| #18=(|Integer|)) . #15#) . #16#) 179 (|has| |#1| . #19=((|RetractableTo| #17#))) ELT) (((|Union| #18# . #15#) . #16#) 177 (|has| |#1| . #20=((|RetractableTo| #18#))) ELT) (((|Union| |#3| . #15#) . #16#) 154 T ELT) (((|Union| |#2| . #15#) . #16#) 259 T ELT)) (|retract| ((|#1| . #21=($)) 181 T ELT) ((#17# . #21#) 180 (|has| |#1| . #19#) ELT) ((#18# . #21#) 178 (|has| |#1| . #20#) ELT) ((|#3| . #21#) 155 T ELT) ((|#2| . #21#) 260 T ELT)) (|resultant| (($ $ $ |#3|) 122 (|has| |#1| . #22=((|CommutativeRing|))) ELT)) (|reductum| (#23=($ $) 172 T ELT)) (|reducedSystem| (((|Matrix| #24=(|Integer|)) . #25=(#26=(|Matrix| $))) 150 (|has| |#1| . #27=((|LinearlyExplicitRingOver| #24#))) ELT) (((|Record| (|:| |mat| (|Matrix| #24#)) (|:| |vec| (|Vector| #24#))) . #28=(#26# #29=(|Vector| $))) 149 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #28#) 148 T ELT) (((|Matrix| |#1|) . #25#) 147 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|primitivePart| (($ $) 194 (|has| |#1| . #30=((|GcdDomain|))) ELT) (($ $ |#3|) 119 (|has| |#1| . #10#) ELT)) (|primitiveMonomials| (#31=(#32=(|List| $) $) 123 T ELT)) (|prime?| (((|Boolean|) $) 110 (|has| |#1| . #9#) ELT)) (|pomopo!| (($ $ |#1| |#4| $) 190 T ELT)) (|patternMatch| (((|PatternMatchResult| #33=(|Float|) . #34=($)) $ (|Pattern| #33#) (|PatternMatchResult| #33# . #34#)) 98 (AND (|has| |#3| #35=(|PatternMatchable| #33#)) (|has| |#1| #35#)) ELT) (((|PatternMatchResult| #36=(|Integer|) . #34#) $ (|Pattern| #36#) (|PatternMatchResult| #36# . #34#)) 97 (AND (|has| |#3| #37=(|PatternMatchable| #36#)) (|has| |#1| #37#)) ELT)) (|order| (((|NonNegativeInteger|) $ |#2|) 255 T ELT) (((|NonNegativeInteger|) $) 254 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfMonomials| ((#38=(|NonNegativeInteger|) $) 187 T ELT)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#3|) 131 T ELT) (($ #3# |#3|) 130 T ELT)) (|monomials| (#31# 140 T ELT)) (|monomial?| (((|Boolean|) $) 170 T ELT)) (|monomial| (($ |#1| |#4|) 171 T ELT) (($ $ |#3| . #39=(#6#)) 133 T ELT) (($ $ (|List| |#3|) . #40=(#41=(|List| #6#))) 132 T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 134 T ELT)) (|minimumDegree| ((|#4| $) 188 T ELT) ((#6# $ |#3|) 136 T ELT) ((#41# $ (|List| |#3|)) 135 T ELT)) (|mapExponents| (($ (|Mapping| |#4| |#4|) $) 189 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 166 T ELT)) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) |#2|) 257 T ELT) (((|Mapping| $ (|NonNegativeInteger|)) $) 244 (|has| |#1| (|DifferentialRing|)) ELT)) (|mainVariable| (((|Union| |#3| #42="failed") $) 137 T ELT)) (|leftReducedSystem| (((|Matrix| #24#) . #43=(#29#)) 152 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| #24#)) (|:| |vec| (|Vector| #24#))) . #44=(#29# $)) 151 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #44#) 146 T ELT) (((|Matrix| |#1|) . #43#) 145 T ELT)) (|leadingMonomial| (#23# 168 T ELT)) (|leadingCoefficient| ((|#1| $) 167 T ELT)) (|leader| ((|#3| $) 247 T ELT)) (|lcm| (#45=($ (|List| $)) 108 (|has| |#1| . #10#) ELT) (#46=($ $ $) 107 (|has| |#1| . #10#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|isobaric?| (((|Boolean|) $) 248 T ELT)) (|isTimes| (#47=((|Union| #32# #42#) $) 128 T ELT)) (|isPlus| (#47# 129 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| #6#)) #42#) $) 127 T ELT)) (|initial| (($ $) 246 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 184 T ELT)) (|ground| ((|#1| . #48=($)) 185 T ELT)) (|gcdPolynomial| ((#49=(|SparseUnivariatePolynomial| $) #49# #49#) 109 (|has| |#1| . #10#) ELT)) (|gcd| (#45# 106 (|has| |#1| . #10#) ELT) (#46# 105 (|has| |#1| . #10#) ELT)) (|factorSquareFreePolynomial| (#7# 116 (|has| |#1| . #9#) ELT)) (|factorPolynomial| (#7# 115 (|has| |#1| . #9#) ELT)) (|factor| (#11# 113 (|has| |#1| . #9#) ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 192 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| $ "failed") $ $) 100 (|has| |#1| . #4#) ELT)) (|eval| (($ $ (|List| (|Equation| $))) 163 T ELT) (($ $ (|Equation| $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (|List| $) (|List| $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (|List| |#3|) (|List| |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (|List| |#3|) (|List| $)) 156 T ELT) (($ $ |#2| $) 243 (|has| |#1| . #50=((|DifferentialRing|))) ELT) (($ $ (|List| |#2|) (|List| $)) 242 (|has| |#1| . #50#) ELT) (($ $ |#2| |#1|) 241 (|has| |#1| . #51=((|DifferentialRing|))) ELT) (($ $ (|List| |#2|) (|List| |#1|)) 240 (|has| |#1| . #51#) ELT)) (|discriminant| (($ $ |#3|) 121 (|has| |#1| . #22#) ELT)) (|differentiate| (($ $ (|List| |#3|) . #52=((|List| #53=(|NonNegativeInteger|)))) 52 T ELT) (($ $ |#3| . #54=(#53#)) 51 T ELT) (($ $ (|List| |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (|Mapping| |#1| |#1|)) 264 T ELT) (($ $ (|Mapping| |#1| |#1|) . #55=((|NonNegativeInteger|))) 263 T ELT) (($ . #56=($)) 239 (|has| |#1| . #57=((|DifferentialSpace|))) ELT) (#58=($ $ (|NonNegativeInteger|)) 237 (|has| |#1| . #57#) ELT) (($ $ #59=(|Symbol|)) 235 (|has| |#1| . #60=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #59#)) 233 (|has| |#1| . #60#) ELT) (($ $ #59# . #54#) 232 (|has| |#1| . #60#) ELT) (($ $ (|List| #59#) . #52#) 231 (|has| |#1| . #60#) ELT)) (|differentialVariables| (((|List| |#2|) $) 256 T ELT)) (|degree| ((|#4| $) 169 T ELT) ((#6# $ |#3|) 144 T ELT) ((#41# $ (|List| |#3|)) 143 T ELT) (((|NonNegativeInteger|) $ |#2|) 253 T ELT)) (|convert| ((#61=(|Pattern| #33#) . #62=($)) 96 (AND (|has| |#3| #63=(|ConvertibleTo| #61#)) (|has| |#1| #63#)) ELT) ((#64=(|Pattern| #36#) . #62#) 95 (AND (|has| |#3| #65=(|ConvertibleTo| #64#)) (|has| |#1| #65#)) ELT) ((#66=(|InputForm|) . #62#) 94 (AND (|has| |#3| #67=(|ConvertibleTo| #66#)) (|has| |#1| #67#)) ELT)) (|content| ((|#1| . #48#) 193 (|has| |#1| . #30#) ELT) (($ $ |#3|) 120 (|has| |#1| . #10#) ELT)) (|conditionP| (((|Union| (|Vector| $) #13#) (|Matrix| $)) 118 (|and| #68=(|has| $ (|CharacteristicNonZero|)) (|has| |#1| . #9#)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ |#2|) 258 T ELT) (($ #69=(|Fraction| (|Integer|))) 92 (OR (|has| |#1| . #19#) (|has| |#1| . #70=((|Algebra| #69#)))) ELT) (($ $) 99 (|has| |#1| . #4#) ELT)) (|coefficients| (((|List| |#1|) $) 186 T ELT)) (|coefficient| ((|#1| $ |#4|) 173 T ELT) (($ $ |#3| . #39#) 142 T ELT) (($ $ (|List| |#3|) . #40#) 141 T ELT)) (|charthRoot| (((|Maybe| $) $) 93 (OR (|and| #68# (|has| |#1| . #9#)) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|binomThmExpt| (($ $ $ #38#) 191 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#5# $ $) 103 (|has| |#1| . #4#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#14# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| |#3|) . #52#) 55 T ELT) (($ $ |#3| . #54#) 54 T ELT) (($ $ (|List| |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (|Mapping| |#1| |#1|)) 262 T ELT) (($ $ (|Mapping| |#1| |#1|) . #55#) 261 T ELT) (($ . #56#) 238 (|has| |#1| . #57#) ELT) (#58# 236 (|has| |#1| . #57#) ELT) (($ $ #59#) 234 (|has| |#1| . #60#) ELT) (($ $ (|List| #59#)) 230 (|has| |#1| . #60#) ELT) (($ $ #59# . #54#) 229 (|has| |#1| . #60#) ELT) (($ $ (|List| #59#) . #52#) 228 (|has| |#1| . #60#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 174 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #71=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #69#) 176 (|has| |#1| . #70#) ELT) (($ #69# . #71#) 175 (|has| |#1| . #70#) ELT) (($ |#1| . #71#) 165 T ELT) (($ $ |#1|) 164 T ELT)))
+(((|DifferentialPolynomialCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Ring|) (|OrderedSet|) (|DifferentialVariableCategory| |t#2|) (|OrderedAbelianMonoidSup|)) (T |DifferentialPolynomialCategory|))
+((|makeVariable| (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|))) (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)))) (|differentialVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| *4)))) (|order| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|degree| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|weights| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|weight| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|weights| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|weight| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|isobaric?| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)))) (|leader| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|DifferentialVariableCategory| *4)))) (|initial| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|DifferentialVariableCategory| *3)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))) (|separant| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|DifferentialVariableCategory| *3)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))) (|makeVariable| (*1 *2 *1) (AND (|ofCategory| *3 (|DifferentialRing|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|))) (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)))))
+(|Join| (|PolynomialCategory| |t#1| |t#4| |t#3|) (|DifferentialExtension| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE |makeVariable| ((|Mapping| $ (|NonNegativeInteger|)) |t#2|)) (SIGNATURE |differentialVariables| ((|List| |t#2|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |weights| ((|List| (|NonNegativeInteger|)) $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |weights| ((|List| (|NonNegativeInteger|)) $ |t#2|)) (SIGNATURE |weight| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |isobaric?| ((|Boolean|) $)) (SIGNATURE |leader| (|t#3| $)) (SIGNATURE |initial| ($ $)) (SIGNATURE |separant| ($ $)) (IF (|has| |t#1| (|DifferentialRing|)) (PROGN (ATTRIBUTE (|InnerEvalable| |t#2| |t#1|)) (ATTRIBUTE (|InnerEvalable| |t#2| $)) (ATTRIBUTE (|Evalable| $)) (SIGNATURE |makeVariable| ((|Mapping| $ (|NonNegativeInteger|)) $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#4|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| |#2|) . T) ((|CoercibleFrom| |#3|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|DifferentialDomain| $) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DifferentialSpace|) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#1|) . T) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| |#4|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|InnerEvalable| |#2| |#1|) |has| |#1| (|DifferentialRing|)) ((|InnerEvalable| |#2| $) |has| |#1| (|DifferentialRing|)) ((|InnerEvalable| |#3| |#1|) . T) ((|InnerEvalable| |#3| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| #2=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|LinearlyExplicitRingOver| #2#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialDomain| $ |#3|) . T) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialRing| |#3|) . T) ((|PartialDifferentialSpace| #3#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialSpace| |#3|) . T) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) ((|PolynomialCategory| |#1| |#4| |#3|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RetractableTo| |#2|) . T) ((|RetractableTo| |#3|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|)))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|top!| ((|#1| $) 64 T ELT)) (|top| ((|#1| . #3=($)) 42 T ELT)) (|sample| (#4=($) 6 T CONST)) (|rotate!| (($ $) 70 T ELT)) (|reverse!| (($ $) 58 T ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| . #5=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 50 T ELT)) (|push!| ((|#1| |#1| $) 44 T ELT)) (|pop!| ((|#1| . #3#) 43 T ELT)) (|members| (((|List| |#1|) $) 49 T ELT)) (|member?| ((#6=(|Boolean|) |#1| $) 54 (|has| |#1| . #5#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|length| (((|NonNegativeInteger|) $) 71 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #7=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #8=($)) 35 T ELT)) (|insertTop!| ((|#1| |#1| $) 62 T ELT)) (|insertBottom!| ((|#1| |#1| $) 61 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|height| (((|NonNegativeInteger|) $) 65 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #7#) ELT)) (|front| ((|#1| . #9=($)) 72 T ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #6# |#1|) $) 52 T ELT)) (|extractTop!| ((|#1| $) 60 T ELT)) (|extractBottom!| ((|#1| $) 59 T ELT)) (|extract!| ((|#1| . #8#) 37 T ELT)) (|every?| ((#6# (|Mapping| #6# |#1|) . #10=($)) 47 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #7#)) ELT)) (|eq?| ((#11=(|Boolean|) $ $) 10 T ELT)) (|enqueue!| ((|#1| |#1| $) 68 T ELT)) (|empty?| ((#11# $) 7 T ELT)) (|empty| (#4# 8 T ELT)) (|dequeue!| ((|#1| . #9#) 69 T ELT)) (|dequeue| (($) 67 T ELT) (($ (|List| |#1|)) 66 T ELT)) (|depth| (((|NonNegativeInteger|) $) 41 T ELT)) (|count| ((#12=(|NonNegativeInteger|) |#1| $) 53 (|has| |#1| . #5#) ELT) ((#12# (|Mapping| #6# |#1|) $) 48 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|bottom!| ((|#1| $) 63 T ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|back| ((|#1| . #9#) 73 T ELT)) (|any?| ((#6# (|Mapping| #6# |#1|) . #10#) 46 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#12# $) 45 T ELT)))
+(((|DequeueAggregate| |#1|) (|Category|) (|Type|)) (T |DequeueAggregate|))
+((|dequeue| (*1 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|dequeue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|DequeueAggregate| *3)))) (|height| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|top!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|bottom!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insertTop!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insertBottom!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|extractTop!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|extractBottom!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|reverse!| (*1 *1 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|StackAggregate| |t#1|) (|QueueAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |dequeue| ($)) (SIGNATURE |dequeue| ($ (|List| |t#1|))) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |top!| (|t#1| $)) (SIGNATURE |bottom!| (|t#1| $)) (SIGNATURE |insertTop!| (|t#1| |t#1| $)) (SIGNATURE |insertBottom!| (|t#1| |t#1| $)) (SIGNATURE |extractTop!| (|t#1| $)) (SIGNATURE |extractBottom!| (|t#1| $)) (SIGNATURE |reverse!| ($ $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|QueueAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|StackAggregate| |#1|) . T) ((|Type|) . T))
+((|makeObject| ((#1=(|ThreeSpace| (|DoubleFloat|)) #2=(|ParametricSurface| |#1|) #3=(|SegmentBinding| (|Float|)) #3#) 75 T ELT) ((#1# #2# #3# #3# #4=(|List| (|DrawOption|))) 74 T ELT) ((#1# |#1| #3# #3#) 65 T ELT) ((#1# |#1| #3# #3# #4#) 64 T ELT) ((#1# #5=(|ParametricSpaceCurve| |#1|) #3#) 56 T ELT) ((#1# #5# #3# #4#) 55 T ELT)) (|draw| ((#6=(|ThreeDimensionalViewport|) #2# #3# #3#) 78 T ELT) ((#6# #2# #3# #3# #4#) 77 T ELT) ((#6# |#1| #3# #3#) 68 T ELT) ((#6# |#1| #3# #3# #4#) 67 T ELT) ((#6# #5# #3#) 60 T ELT) ((#6# #5# #3# #4#) 59 T ELT) ((#7=(|TwoDimensionalViewport|) #8=(|ParametricPlaneCurve| |#1|) #3#) 47 T ELT) ((#7# #8# #3# #4#) 46 T ELT) ((#7# |#1| #3#) 38 T ELT) ((#7# |#1| #3# #4#) 36 T ELT)))
+(((|TopLevelDrawFunctions| |#1|) (CATEGORY |package| (SIGNATURE |draw| (#1=(|TwoDimensionalViewport|) |#1| #2=(|SegmentBinding| (|Float|)) #3=(|List| (|DrawOption|)))) (SIGNATURE |draw| (#1# |#1| #2#)) (SIGNATURE |draw| (#1# #4=(|ParametricPlaneCurve| |#1|) #2# #3#)) (SIGNATURE |draw| (#1# #4# #2#)) (SIGNATURE |draw| (#5=(|ThreeDimensionalViewport|) #6=(|ParametricSpaceCurve| |#1|) #2# #3#)) (SIGNATURE |draw| (#5# #6# #2#)) (SIGNATURE |makeObject| (#7=(|ThreeSpace| (|DoubleFloat|)) #6# #2# #3#)) (SIGNATURE |makeObject| (#7# #6# #2#)) (SIGNATURE |draw| (#5# |#1| #2# #2# #3#)) (SIGNATURE |draw| (#5# |#1| #2# #2#)) (SIGNATURE |makeObject| (#7# |#1| #2# #2# #3#)) (SIGNATURE |makeObject| (#7# |#1| #2# #2#)) (SIGNATURE |draw| (#5# #8=(|ParametricSurface| |#1|) #2# #2# #3#)) (SIGNATURE |draw| (#5# #8# #2# #2#)) (SIGNATURE |makeObject| (#7# #8# #2# #2# #3#)) (SIGNATURE |makeObject| (#7# #8# #2# #2#))) (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (T |TopLevelDrawFunctions|))
+((|makeObject| #1=(*1 *2 *3 *4 *4) (AND #2=(|isDomain| *3 (|ParametricSurface| *5)) #3=(|isDomain| *4 (|SegmentBinding| (|Float|))) #4=(|ofCategory| *5 #5=(|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) #6=(|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) #7=(|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|makeObject| #8=(*1 *2 *3 *4 *4 *5) (AND #9=(|isDomain| *3 (|ParametricSurface| *6)) #3# #10=(|isDomain| *5 (|List| (|DrawOption|))) #11=(|ofCategory| *6 #5#) #6# #12=(|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|draw| #1# (AND #2# #3# #4# #13=(|isDomain| *2 (|ThreeDimensionalViewport|)) #7#)) (|draw| #8# (AND #9# #3# #10# #11# #13# #12#)) (|makeObject| #1# (AND #3# #6# #14=(|isDomain| *1 (|TopLevelDrawFunctions| *3)) #15=(|ofCategory| *3 #5#))) (|makeObject| #8# (AND #3# #10# #6# #14# #15#)) (|draw| #1# (AND #3# #13# #14# #15#)) (|draw| #8# (AND #3# #10# #13# #14# #15#)) (|makeObject| #16=(*1 *2 *3 *4) (AND #17=(|isDomain| *3 (|ParametricSpaceCurve| *5)) #3# #4# #6# #7#)) (|makeObject| #18=(*1 *2 *3 *4 *5) (AND #19=(|isDomain| *3 (|ParametricSpaceCurve| *6)) #3# #10# #11# #6# #12#)) (|draw| #16# (AND #17# #3# #4# #13# #7#)) (|draw| #18# (AND #19# #3# #10# #11# #13# #12#)) (|draw| #16# (AND (|isDomain| *3 (|ParametricPlaneCurve| *5)) #3# #4# #20=(|isDomain| *2 (|TwoDimensionalViewport|)) #7#)) (|draw| #18# (AND (|isDomain| *3 (|ParametricPlaneCurve| *6)) #3# #10# #11# #20# #12#)) (|draw| #16# (AND #3# #20# #14# #15#)) (|draw| #18# (AND #3# #10# #20# #14# #15#)))
+((|recolor| ((#1=(|Mapping| #2=(|Point| #3=(|DoubleFloat|)) #3# #3#) #1# (|Mapping| #3# #3# #3# #3#)) 158 T ELT)) (|makeObject| ((#4=(|ThreeSpace| #3#) #5=(|ParametricSurface| #6=(|Mapping| #3# #3# #3#)) #7=(|Segment| (|Float|)) #7#) 178 T ELT) ((#4# #5# #7# #7# #8=(|List| (|DrawOption|))) 176 T ELT) ((#4# #1# #7# #7#) 181 T ELT) ((#4# #1# #7# #7# #8#) 177 T ELT) ((#4# #6# #7# #7#) 169 T ELT) ((#4# #6# #7# #7# #8#) 168 T ELT) ((#4# #9=(|Mapping| #2# #3#) #7#) 150 T ELT) ((#4# #9# #7# #8#) 148 T ELT) ((#4# #10=(|ParametricSpaceCurve| #11=(|Mapping| #3# #3#)) #7#) 149 T ELT) ((#4# #10# #7# #8#) 146 T ELT)) (|draw| ((#12=(|ThreeDimensionalViewport|) #5# #7# #7#) 180 T ELT) ((#12# #5# #7# #7# #8#) 179 T ELT) ((#12# #1# #7# #7#) 183 T ELT) ((#12# #1# #7# #7# #8#) 182 T ELT) ((#12# #6# #7# #7#) 171 T ELT) ((#12# #6# #7# #7# #8#) 170 T ELT) ((#12# #9# #7#) 156 T ELT) ((#12# #9# #7# #8#) 155 T ELT) ((#12# #10# #7#) 154 T ELT) ((#12# #10# #7# #8#) 153 T ELT) ((#13=(|TwoDimensionalViewport|) #14=(|ParametricPlaneCurve| #11#) #7#) 118 T ELT) ((#13# #14# #7# #8#) 117 T ELT) ((#13# #11# #7#) 112 T ELT) ((#13# #11# #7# #8#) 110 T ELT)))
+(((|TopLevelDrawFunctionsForCompiledFunctions|) (CATEGORY |package| (SIGNATURE |draw| (#1=(|TwoDimensionalViewport|) #2=(|Mapping| #3=(|DoubleFloat|) #3#) #4=(|Segment| (|Float|)) #5=(|List| (|DrawOption|)))) (SIGNATURE |draw| (#1# #2# #4#)) (SIGNATURE |draw| (#1# #6=(|ParametricPlaneCurve| #2#) #4# #5#)) (SIGNATURE |draw| (#1# #6# #4#)) (SIGNATURE |draw| (#7=(|ThreeDimensionalViewport|) #8=(|ParametricSpaceCurve| #2#) #4# #5#)) (SIGNATURE |draw| (#7# #8# #4#)) (SIGNATURE |draw| (#7# #9=(|Mapping| #10=(|Point| #3#) #3#) #4# #5#)) (SIGNATURE |draw| (#7# #9# #4#)) (SIGNATURE |makeObject| (#11=(|ThreeSpace| #3#) #8# #4# #5#)) (SIGNATURE |makeObject| (#11# #8# #4#)) (SIGNATURE |makeObject| (#11# #9# #4# #5#)) (SIGNATURE |makeObject| (#11# #9# #4#)) (SIGNATURE |draw| (#7# #12=(|Mapping| #3# #3# #3#) #4# #4# #5#)) (SIGNATURE |draw| (#7# #12# #4# #4#)) (SIGNATURE |makeObject| (#11# #12# #4# #4# #5#)) (SIGNATURE |makeObject| (#11# #12# #4# #4#)) (SIGNATURE |draw| (#7# #13=(|Mapping| #10# #3# #3#) #4# #4# #5#)) (SIGNATURE |draw| (#7# #13# #4# #4#)) (SIGNATURE |makeObject| (#11# #13# #4# #4# #5#)) (SIGNATURE |makeObject| (#11# #13# #4# #4#)) (SIGNATURE |draw| (#7# #14=(|ParametricSurface| #12#) #4# #4# #5#)) (SIGNATURE |draw| (#7# #14# #4# #4#)) (SIGNATURE |makeObject| (#11# #14# #4# #4# #5#)) (SIGNATURE |makeObject| (#11# #14# #4# #4#)) (SIGNATURE |recolor| (#13# #13# (|Mapping| #3# #3# #3# #3#))))) (T |TopLevelDrawFunctionsForCompiledFunctions|))
+((|recolor| (*1 *2 *2 *3) (AND (|isDomain| *2 #1=(|Mapping| #2=(|Point| #3=(|DoubleFloat|)) #3# #3#)) (|isDomain| *3 (|Mapping| #3# #3# #3# #3#)) #4=(|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|)))) (|makeObject| #5=(*1 *2 *3 *4 *4) (AND #6=(|isDomain| *3 (|ParametricSurface| #7=(|Mapping| #3# #3# #3#))) #8=(|isDomain| *4 (|Segment| (|Float|))) #9=(|isDomain| *2 (|ThreeSpace| #3#)) #4#)) (|makeObject| #10=(*1 *2 *3 *4 *4 *5) (AND #6# #8# #11=(|isDomain| *5 (|List| (|DrawOption|))) #9# #4#)) (|draw| #5# (AND #6# #8# #12=(|isDomain| *2 (|ThreeDimensionalViewport|)) #4#)) (|draw| #10# (AND #6# #8# #11# #12# #4#)) (|makeObject| #5# (AND #13=(|isDomain| *3 #1#) #8# #9# #4#)) (|makeObject| #10# (AND #13# #8# #11# #9# #4#)) (|draw| #5# (AND #13# #8# #12# #4#)) (|draw| #10# (AND #13# #8# #11# #12# #4#)) (|makeObject| #5# (AND #14=(|isDomain| *3 #7#) #8# #9# #4#)) (|makeObject| #10# (AND #14# #8# #11# #9# #4#)) (|draw| #5# (AND #14# #8# #12# #4#)) (|draw| #10# (AND #14# #8# #11# #12# #4#)) (|makeObject| #15=(*1 *2 *3 *4) (AND #16=(|isDomain| *3 (|Mapping| #2# #3#)) #8# #9# #4#)) (|makeObject| #17=(*1 *2 *3 *4 *5) (AND #16# #8# #11# #9# #4#)) (|makeObject| #15# (AND #18=(|isDomain| *3 (|ParametricSpaceCurve| #19=(|Mapping| #3# #3#))) #8# #9# #4#)) (|makeObject| #17# (AND #18# #8# #11# #9# #4#)) (|draw| #15# (AND #16# #8# #12# #4#)) (|draw| #17# (AND #16# #8# #11# #12# #4#)) (|draw| #15# (AND #18# #8# #12# #4#)) (|draw| #17# (AND #18# #8# #11# #12# #4#)) (|draw| #15# (AND #20=(|isDomain| *3 (|ParametricPlaneCurve| #19#)) #8# #21=(|isDomain| *2 (|TwoDimensionalViewport|)) #4#)) (|draw| #17# (AND #20# #8# #11# #21# #4#)) (|draw| #15# (AND #22=(|isDomain| *3 #19#) #8# #21# #4#)) (|draw| #17# (AND #22# #8# #11# #21# #4#)))
+((|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) #1=(|Symbol|) #1# (|List| (|DrawOption|))) 102 T ELT)))
+(((|TopLevelDrawFunctionsForAlgebraicCurves| |#1| |#2|) (CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|Equation| |#2|) #1=(|Symbol|) #1# (|List| (|DrawOption|))))) (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|))) (|FunctionSpace| |#1|)) (T |TopLevelDrawFunctionsForAlgebraicCurves|))
+((|draw| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *7 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForAlgebraicCurves| *6 *7)))))
+((|setRealSteps| (#1=(#2=(|Integer|) #2#) 71 T ELT)) (|setImagSteps| (#1# 72 T ELT)) (|setClipValue| ((#3=(|DoubleFloat|) #3#) 73 T ELT)) (|drawComplexVectorField| ((#4=(|ThreeDimensionalViewport|) #5=(|Mapping| #6=(|Complex| #3#) #6#) #7=(|Segment| #3#) #7#) 70 T ELT)) (|drawComplex| ((#4# #5# #7# #7# (|Boolean|)) 68 T ELT)))
+(((|DrawComplex|) (CATEGORY |package| (SIGNATURE |drawComplex| (#1=(|ThreeDimensionalViewport|) #2=(|Mapping| #3=(|Complex| #4=(|DoubleFloat|)) #3#) #5=(|Segment| #4#) #5# (|Boolean|))) (SIGNATURE |drawComplexVectorField| (#1# #2# #5# #5#)) (SIGNATURE |setRealSteps| #6=(#7=(|Integer|) #7#)) (SIGNATURE |setImagSteps| #6#) (SIGNATURE |setClipValue| (#4# #4#)))) (T |DrawComplex|))
+((|setClipValue| #1=(*1 *2 *2) (AND (|isDomain| *2 #2=(|DoubleFloat|)) #3=(|isDomain| *1 (|DrawComplex|)))) (|setImagSteps| #1# #4=(AND (|isDomain| *2 (|Integer|)) #3#)) (|setRealSteps| #1# #4#) (|drawComplexVectorField| (*1 *2 *3 *4 *4) (AND #5=(|isDomain| *3 (|Mapping| #6=(|Complex| #2#) #6#)) #7=(|isDomain| *4 (|Segment| #2#)) #8=(|isDomain| *2 (|ThreeDimensionalViewport|)) #3#)) (|drawComplex| (*1 *2 *3 *4 *4 *5) (AND #5# #7# (|isDomain| *5 (|Boolean|)) #8# #3#)))
+((|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) 16 T ELT)))
+(((|DrawNumericHack| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|SegmentBinding| #1=(|Float|)) (|SegmentBinding| (|Expression| |#1|))))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| #1#))) (T |DrawNumericHack|))
+((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|SegmentBinding| (|Expression| *4))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| #1=(|Float|)))) (|isDomain| *2 (|SegmentBinding| #1#)) (|isDomain| *1 (|DrawNumericHack| *4)))))
+((|draw| ((#1=(|ThreeDimensionalViewport|) #2=(|List| #3=(|DoubleFloat|)) #2# #2# #4=(|List| (|DrawOption|))) 23 T ELT) ((#1# #2# #2# #2#) 24 T ELT) ((#5=(|TwoDimensionalViewport|) #6=(|List| (|Point| #3#)) #4#) 16 T ELT) ((#5# #6#) 17 T ELT) ((#5# #2# #2# #4#) 20 T ELT) ((#5# #2# #2#) 21 T ELT)))
+(((|TopLevelDrawFunctionsForPoints|) (CATEGORY |package| (SIGNATURE |draw| (#1=(|TwoDimensionalViewport|) #2=(|List| #3=(|DoubleFloat|)) #2#)) (SIGNATURE |draw| (#1# #2# #2# #4=(|List| (|DrawOption|)))) (SIGNATURE |draw| (#1# #5=(|List| (|Point| #3#)))) (SIGNATURE |draw| (#1# #5# #4#)) (SIGNATURE |draw| (#6=(|ThreeDimensionalViewport|) #2# #2# #2#)) (SIGNATURE |draw| (#6# #2# #2# #2# #4#)))) (T |TopLevelDrawFunctionsForPoints|))
+((|draw| (*1 *2 *3 *3 *3 *4) (AND #1=(|isDomain| *3 (|List| #2=(|DoubleFloat|))) #3=(|isDomain| *4 (|List| (|DrawOption|))) #4=(|isDomain| *2 (|ThreeDimensionalViewport|)) #5=(|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3 *3 *3) (AND #1# #4# #5#)) (|draw| (*1 *2 *3 *4) (AND #6=(|isDomain| *3 (|List| (|Point| #2#))) #3# #7=(|isDomain| *2 (|TwoDimensionalViewport|)) #5#)) (|draw| (*1 *2 *3) (AND #6# #7# #5#)) (|draw| (*1 *2 *3 *3 *4) (AND #1# #3# #7# #5#)) (|draw| (*1 *2 *3 *3) (AND #1# #7# #5#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|viewpoint| (($ (|Record| (|:| |theta| #4=(|DoubleFloat|)) (|:| |phi| #4#) (|:| |scale| #4#) (|:| |scaleX| #4#) (|:| |scaleY| #4#) (|:| |scaleZ| #4#) (|:| |deltaX| #4#) (|:| |deltaY| #4#))) 24 T ELT)) (|var2Steps| (#5=($ (|PositiveInteger|)) 81 T ELT)) (|var1Steps| (#5# 80 T ELT)) (|unit| (($ (|List| #6=(|Float|))) 87 T ELT)) (|tubeRadius| (#7=($ #6#) 66 T ELT)) (|tubePoints| (#5# 82 T ELT)) (|toScale| (#8=($ #3#) 33 T ELT)) (|title| (#9=($ #10=(|String|)) 28 T ELT)) (|style| (#9# 29 T ELT)) (|space| (($ (|ThreeSpace| #4#)) 76 T ELT)) (|ranges| (#11=($ (|List| (|Segment| #6#))) 72 T ELT)) (|range| (#11# 68 T ELT) (($ (|List| (|Segment| (|Fraction| (|Integer|))))) 71 T ELT)) (|pointColor| (#7# 38 T ELT) (#12=($ (|Palette|)) 42 T ELT)) (|option?| ((#3# #13=(|List| $) #14=(|Symbol|)) 100 T ELT)) (|option| (((|Union| (|Any|) "failed") #13# #14#) 102 T ELT)) (|latex| ((#10# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|curveColor| (#7# 43 T ELT) (#12# 44 T ELT)) (|coordinates| (#15=($ (|Mapping| #16=(|Point| #4#) #16#)) 65 T ELT)) (|coord| (#15# 83 T ELT)) (|colorFunction| (($ (|Mapping| #4# #4#)) 48 T ELT) (($ (|Mapping| #4# #4# #4#)) 52 T ELT) (($ (|Mapping| #4# #4# #4# #4#)) 56 T ELT)) (|coerce| (((|OutputForm|) $) 93 T ELT)) (|clip| (#8# 34 T ELT) (#11# 60 T ELT)) (|before?| #1#) (|adaptive| (#8# 35 T ELT)) (= (#2# 97 T ELT)))
+(((|DrawOption|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |adaptive| #1=($ #2=(|Boolean|))) (SIGNATURE |clip| #1#) (SIGNATURE |viewpoint| ($ (|Record| (|:| |theta| #3=(|DoubleFloat|)) (|:| |phi| #3#) (|:| |scale| #3#) (|:| |scaleX| #3#) (|:| |scaleY| #3#) (|:| |scaleZ| #3#) (|:| |deltaX| #3#) (|:| |deltaY| #3#)))) (SIGNATURE |title| #4=($ (|String|))) (SIGNATURE |style| #4#) (SIGNATURE |toScale| #1#) (SIGNATURE |clip| #5=($ (|List| (|Segment| #6=(|Float|))))) (SIGNATURE |coordinates| #7=($ (|Mapping| #8=(|Point| #3#) #8#))) (SIGNATURE |pointColor| #9=($ #6#)) (SIGNATURE |pointColor| #10=($ (|Palette|))) (SIGNATURE |curveColor| #9#) (SIGNATURE |curveColor| #10#) (SIGNATURE |colorFunction| ($ (|Mapping| #3# #3#))) (SIGNATURE |colorFunction| ($ (|Mapping| #3# #3# #3#))) (SIGNATURE |colorFunction| ($ (|Mapping| #3# #3# #3# #3#))) (SIGNATURE |tubeRadius| #9#) (SIGNATURE |range| #5#) (SIGNATURE |range| ($ (|List| (|Segment| (|Fraction| (|Integer|)))))) (SIGNATURE |ranges| #5#) (SIGNATURE |space| ($ (|ThreeSpace| #3#))) (SIGNATURE |var1Steps| #11=($ (|PositiveInteger|))) (SIGNATURE |var2Steps| #11#) (SIGNATURE |tubePoints| #11#) (SIGNATURE |coord| #7#) (SIGNATURE |unit| ($ (|List| #6#))) (SIGNATURE |option| ((|Union| (|Any|) "failed") #12=(|List| $) #13=(|Symbol|))) (SIGNATURE |option?| (#2# #12# #13#))))) (T |DrawOption|))
+((|adaptive| #1=(*1 *1 *2) #2=(AND #3=(|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 #5=(|DrawOption|)))) (|clip| #1# #2#) (|viewpoint| #1# (AND (|isDomain| *2 (|Record| (|:| |theta| #6=(|DoubleFloat|)) (|:| |phi| #6#) (|:| |scale| #6#) (|:| |scaleX| #6#) (|:| |scaleY| #6#) (|:| |scaleZ| #6#) (|:| |deltaX| #6#) (|:| |deltaY| #6#))) #4#)) (|title| #1# #7=(AND (|isDomain| *2 (|String|)) #4#)) (|style| #1# #7#) (|toScale| #1# #2#) (|clip| #1# #8=(AND (|isDomain| *2 (|List| (|Segment| #9=(|Float|)))) #4#)) (|coordinates| #1# #10=(AND (|isDomain| *2 (|Mapping| #11=(|Point| #6#) #11#)) #4#)) (|pointColor| #1# #12=(AND (|isDomain| *2 #9#) #4#)) (|pointColor| #1# #13=(AND (|isDomain| *2 (|Palette|)) #4#)) (|curveColor| #1# #12#) (|curveColor| #1# #13#) (|colorFunction| #1# (AND (|isDomain| *2 (|Mapping| #6# #6#)) #4#)) (|colorFunction| #1# (AND (|isDomain| *2 (|Mapping| #6# #6# #6#)) #4#)) (|colorFunction| #1# (AND (|isDomain| *2 (|Mapping| #6# #6# #6# #6#)) #4#)) (|tubeRadius| #1# #12#) (|range| #1# #8#) (|range| #1# (AND (|isDomain| *2 (|List| (|Segment| (|Fraction| (|Integer|))))) #4#)) (|ranges| #1# #8#) (|space| #1# (AND (|isDomain| *2 (|ThreeSpace| #6#)) #4#)) (|var1Steps| #1# #14=(AND (|isDomain| *2 (|PositiveInteger|)) #4#)) (|var2Steps| #1# #14#) (|tubePoints| #1# #14#) (|coord| #1# #10#) (|unit| #1# (AND (|isDomain| *2 (|List| #9#)) #4#)) (|option| #15=(*1 *2 *3 *4) (|partial| AND #16=(|isDomain| *3 (|List| #5#)) #17=(|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Any|)) #4#)) (|option?| #15# (AND #16# #17# #3# #4#)))
+((|viewpoint| ((#1=(|Record| (|:| |theta| #2=(|DoubleFloat|)) (|:| |phi| #2#) (|:| |scale| #2#) (|:| |scaleX| #2#) (|:| |scaleY| #2#) (|:| |scaleZ| #2#) (|:| |deltaX| #2#) (|:| |deltaY| #2#)) #3=(|List| (|DrawOption|)) #1#) 25 T ELT)) (|var2Steps| (#4=(#5=(|PositiveInteger|) #3# #5#) 52 T ELT)) (|var1Steps| (#4# 51 T ELT)) (|units| ((#6=(|List| #7=(|Float|)) #3# #6#) 68 T ELT)) (|tubeRadius| ((#7# #3# #7#) 57 T ELT)) (|tubePoints| (#4# 53 T ELT)) (|toScale| (#8=(#9=(|Boolean|) #3# #9#) 27 T ELT)) (|title| (#10=(#11=(|String|) #3# #11#) 19 T ELT)) (|style| (#10# 26 T ELT)) (|space| (((|ThreeSpace| #2#) #3#) 46 T ELT)) (|ranges| ((#12=(|List| (|Segment| #7#)) #3# #12#) 40 T ELT)) (|pointColorPalette| (#13=(#14=(|Palette|) #3# #14#) 32 T ELT)) (|curveColorPalette| (#13# 33 T ELT)) (|coord| ((#15=(|Mapping| #16=(|Point| #2#) #16#) #3# #15#) 63 T ELT)) (|clipBoolean| (#8# 14 T ELT)) (|adaptive| (#8# 13 T ELT)))
+(((|DrawOptionFunctions0|) (CATEGORY |package| (SIGNATURE |adaptive| #1=(#2=(|Boolean|) #3=(|List| (|DrawOption|)) #2#)) (SIGNATURE |clipBoolean| #1#) (SIGNATURE |viewpoint| (#4=(|Record| (|:| |theta| #5=(|DoubleFloat|)) (|:| |phi| #5#) (|:| |scale| #5#) (|:| |scaleX| #5#) (|:| |scaleY| #5#) (|:| |scaleZ| #5#) (|:| |deltaX| #5#) (|:| |deltaY| #5#)) #3# #4#)) (SIGNATURE |title| #6=(#7=(|String|) #3# #7#)) (SIGNATURE |style| #6#) (SIGNATURE |toScale| #1#) (SIGNATURE |pointColorPalette| #8=(#9=(|Palette|) #3# #9#)) (SIGNATURE |curveColorPalette| #8#) (SIGNATURE |ranges| (#10=(|List| (|Segment| #11=(|Float|))) #3# #10#)) (SIGNATURE |var1Steps| #12=(#13=(|PositiveInteger|) #3# #13#)) (SIGNATURE |var2Steps| #12#) (SIGNATURE |space| ((|ThreeSpace| #5#) #3#)) (SIGNATURE |tubePoints| #12#) (SIGNATURE |tubeRadius| (#11# #3# #11#)) (SIGNATURE |coord| (#14=(|Mapping| #15=(|Point| #5#) #15#) #3# #14#)) (SIGNATURE |units| (#16=(|List| #11#) #3# #16#)))) (T |DrawOptionFunctions0|))
+((|units| #1=(*1 *2 *3 *2) (AND (|isDomain| *2 (|List| #2=(|Float|))) #3=(|isDomain| *3 (|List| (|DrawOption|))) #4=(|isDomain| *1 (|DrawOptionFunctions0|)))) (|coord| #1# (AND (|isDomain| *2 (|Mapping| #5=(|Point| #6=(|DoubleFloat|)) #5#)) #3# #4#)) (|tubeRadius| #1# (AND (|isDomain| *2 #2#) #3# #4#)) (|tubePoints| #1# #7=(AND (|isDomain| *2 (|PositiveInteger|)) #3# #4#)) (|space| (*1 *2 *3) (AND #3# (|isDomain| *2 (|ThreeSpace| #6#)) #4#)) (|var2Steps| #1# #7#) (|var1Steps| #1# #7#) (|ranges| #1# (AND (|isDomain| *2 (|List| (|Segment| #2#))) #3# #4#)) (|curveColorPalette| #1# #8=(AND (|isDomain| *2 (|Palette|)) #3# #4#)) (|pointColorPalette| #1# #8#) (|toScale| #1# #9=(AND (|isDomain| *2 (|Boolean|)) #3# #4#)) (|style| #1# #10=(AND (|isDomain| *2 (|String|)) #3# #4#)) (|title| #1# #10#) (|viewpoint| #1# (AND (|isDomain| *2 (|Record| (|:| |theta| #6#) (|:| |phi| #6#) (|:| |scale| #6#) (|:| |scaleX| #6#) (|:| |scaleY| #6#) (|:| |scaleZ| #6#) (|:| |deltaX| #6#) (|:| |deltaY| #6#))) #3# #4#)) (|clipBoolean| #1# #9#) (|adaptive| #1# #9#))
+((|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) 17 T ELT)))
+(((|DrawOptionFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |option| ((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)))) (|Type|)) (T |DrawOptionFunctions1|))
+((|option| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *1 (|DrawOptionFunctions1| *2)) (|ofCategory| *2 (|Type|)))))
+((|differentiate| (#1=($ $ #2=(|Mapping| |#2| |#2|)) NIL T ELT) (#3=($ $ #2# #4=(|NonNegativeInteger|)) 11 T ELT) #5=(($ $ #6=(|List| #7=(|Symbol|)) (|List| #4#)) NIL T ELT) #8=(($ $ #7# #4#) NIL T ELT) #9=(($ $ #6#) NIL T ELT) (#10=($ $ #7#) 19 T ELT) #11=(($ $ #4#) NIL T ELT) (#12=($ $) 16 T ELT)) (D (#1# 12 T ELT) (#3# 14 T ELT) #5# #8# #9# (#10# NIL T ELT) #11# (#12# NIL T ELT)))
+(((|DifferentialSpaceExtension&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |differentiate| #1=(|#1| |#1|)) (SIGNATURE D #1#) (SIGNATURE |differentiate| #2=(|#1| |#1| #3=(|NonNegativeInteger|))) (SIGNATURE D #2#) (SIGNATURE |differentiate| #4=(|#1| |#1| #5=(|Symbol|))) (SIGNATURE D #4#) (SIGNATURE |differentiate| #6=(|#1| |#1| #7=(|List| #5#))) (SIGNATURE |differentiate| #8=(|#1| |#1| #5# #3#)) (SIGNATURE |differentiate| #9=(|#1| |#1| #7# (|List| #3#))) (SIGNATURE D #6#) (SIGNATURE D #8#) (SIGNATURE D #9#) (SIGNATURE D #10=(|#1| |#1| #11=(|Mapping| |#2| |#2|) #3#)) (SIGNATURE D #12=(|#1| |#1| #11#)) (SIGNATURE |differentiate| #10#) (SIGNATURE |differentiate| #12#)) (|DifferentialSpaceExtension| |#2|) (|Type|)) (T |DifferentialSpaceExtension&|))
+NIL
+((|differentiate| (($ $ (|Mapping| |#1| |#1|)) 23 T ELT) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 22 T ELT) (($ $ (|List| #1=(|Symbol|)) . #2=((|List| #3=(|NonNegativeInteger|)))) 16 (|has| |#1| . #4=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ #1# . #5=(#3#)) 15 (|has| |#1| . #4#) ELT) (($ $ (|List| #1#)) 14 (|has| |#1| . #4#) ELT) (($ $ #1#) 12 (|has| |#1| . #4#) ELT) (#6=($ $ (|NonNegativeInteger|)) 10 (|has| |#1| . #7=((|DifferentialSpace|))) ELT) (($ . #8=($)) 8 (|has| |#1| . #7#) ELT)) (D (($ $ (|Mapping| |#1| |#1|)) 21 T ELT) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 20 T ELT) (($ $ (|List| #1#) . #2#) 19 (|has| |#1| . #4#) ELT) (($ $ #1# . #5#) 18 (|has| |#1| . #4#) ELT) (($ $ (|List| #1#)) 17 (|has| |#1| . #4#) ELT) (($ $ #1#) 13 (|has| |#1| . #4#) ELT) (#6# 11 (|has| |#1| . #7#) ELT) (($ . #8#) 9 (|has| |#1| . #7#) ELT)))
+(((|DifferentialSpaceExtension| |#1|) (|Category|) (|Type|)) (T |DifferentialSpaceExtension|))
+((|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|DifferentialSpaceExtension| *3)) (|ofCategory| *3 (|Type|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialSpaceExtension| *4)) (|ofCategory| *4 (|Type|)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|DifferentialSpaceExtension| *3)) (|ofCategory| *3 (|Type|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialSpaceExtension| *4)) (|ofCategory| *4 (|Type|)))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ (|Mapping| |t#1| |t#1|))) (SIGNATURE |differentiate| ($ $ (|Mapping| |t#1| |t#1|) (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|Mapping| |t#1| |t#1|))) (SIGNATURE D ($ $ (|Mapping| |t#1| |t#1|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|DifferentialSpace|)) (ATTRIBUTE (|DifferentialSpace|)) |%noBranch|) (IF (|has| |t#1| (|PartialDifferentialSpace| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialSpace| (|Symbol|))) |%noBranch|)))
+(((|DifferentialDomain| $) |has| |#1| (|DifferentialSpace|)) ((|DifferentialSpace|) |has| |#1| (|DifferentialSpace|)) ((|Join|) . T) ((|PartialDifferentialDomain| $ #1=(|Symbol|)) |has| |#1| (|PartialDifferentialSpace| (|Symbol|))) ((|PartialDifferentialSpace| #1#) |has| |#1| (|PartialDifferentialSpace| (|Symbol|))) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|weights| ((#6=(|List| #7=(|NonNegativeInteger|)) $) NIL T ELT) ((#6# $ |#2|) NIL T ELT)) (|weight| #8=(#9=(#7# $) NIL T ELT) #10=((#7# $ |#2|) NIL T ELT)) (|variables| ((#11=(|List| |#3|) $) NIL T ELT)) (|univariate| ((#12=(|SparseUnivariatePolynomial| $) $ |#3|) NIL T ELT) ((#13=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #14=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #15=(#16=($ $) NIL #14# ELT)) (|unit?| (#5# NIL #14# ELT)) (|totalDegree| #8# ((#7# $ #11#) NIL T ELT)) (|subtractIfCan| (#17=(#18=(|Union| $ #19="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #20=(((|Factored| #12#) #12#) NIL #21=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #22=(#16# NIL #23=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#24=((|Factored| $) $) NIL #23# ELT)) (|solveLinearPolynomialEquation| (((|Union| #25=(|List| #12#) #19#) #25# #12#) NIL #21# ELT)) (|separant| #26=(#16# NIL T ELT)) (|sample| #27=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #28=(#19#)) . #29=($)) NIL T ELT) (((|Union| #30=(|Fraction| #31=(|Integer|)) . #28#) . #29#) NIL #32=(|has| |#1| (|RetractableTo| #30#)) ELT) (((|Union| #31# . #28#) . #29#) NIL #33=(|has| |#1| (|RetractableTo| #31#)) ELT) #34=(((|Union| |#3| . #28#) . #29#) NIL T ELT) (((|Union| |#2| . #28#) . #29#) NIL T ELT) (((|Union| #35=(|SparseMultivariatePolynomial| |#1| |#2|) . #28#) $) 23 T ELT)) (|retract| #36=(#37=(|#1| $) NIL T ELT) ((#30# . #38=($)) NIL #32# ELT) ((#31# . #38#) NIL #33# ELT) #39=((|#3| . #38#) NIL T ELT) ((|#2| . #38#) NIL T ELT) ((#35# . #38#) NIL T ELT)) (|resultant| (($ $ $ |#3|) NIL #40=(|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| #26#) (|reducedSystem| ((#41=(|Matrix| #31#) . #42=(#43=(|Matrix| $))) NIL #44=(|has| |#1| (|LinearlyExplicitRingOver| #31#)) ELT) ((#45=(|Record| (|:| |mat| #41#) (|:| |vec| (|Vector| #31#))) . #46=(#43# #47=(|Vector| $))) NIL #44# ELT) ((#48=(|Record| (|:| |mat| #49=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #46#) NIL T ELT) ((#49# . #42#) NIL T ELT)) (|recip| ((#18# $) NIL T ELT)) (|primitivePart| #22# #50=(#51=($ $ |#3|) NIL #23# ELT)) (|primitiveMonomials| #52=((#53=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #21# ELT)) (|pomopo!| (($ $ |#1| #54=(|IndexedExponents| |#3|) $) NIL T ELT)) (|patternMatch| ((#55=(|PatternMatchResult| #56=(|Float|) . #57=($)) $ #58=(|Pattern| #56#) #55#) NIL (AND (|has| |#1| #59=(|PatternMatchable| #56#)) (|has| |#3| #59#)) ELT) ((#60=(|PatternMatchResult| #31# . #57#) $ #61=(|Pattern| #31#) #60#) NIL (AND (|has| |#1| #62=(|PatternMatchable| #31#)) (|has| |#3| #62#)) ELT)) (|order| #10# (#9# 10 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #8#) (|multivariate| (($ #13# |#3|) NIL T ELT) (($ #12# |#3|) NIL T ELT)) (|monomials| #52#) (|monomial?| #4#) (|monomial| (($ |#1| #54#) NIL T ELT) #63=(($ $ |#3| #7#) NIL T ELT) #64=(($ $ #11# #6#) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) NIL T ELT)) (|minimumDegree| #65=((#54# $) NIL T ELT) #66=((#7# $ |#3|) NIL T ELT) #67=((#6# $ #11#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #54# #54#) $) NIL T ELT)) (|map| (($ #68=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeVariable| ((#69=(|Mapping| $ #7#) |#2|) NIL T ELT) ((#69# $) NIL #70=(|has| |#1| (|DifferentialRing|)) ELT)) (|mainVariable| #34#) (|leftReducedSystem| ((#41# . #71=(#47#)) NIL #44# ELT) ((#45# . #72=(#47# $)) NIL #44# ELT) ((#48# . #72#) NIL T ELT) ((#49# . #71#) NIL T ELT)) (|leadingMonomial| #26#) (|leadingCoefficient| #36#) (|leader| #39#) (|lcm| #73=(($ #53#) NIL #23# ELT) #74=(#75=($ $ $) NIL #23# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isobaric?| #4#) (|isTimes| #76=(((|Union| #53# #19#) $) NIL T ELT)) (|isPlus| #76#) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| #7#)) #19#) $) NIL T ELT)) (|initial| #26#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #36#) (|gcdPolynomial| ((#12# #12# #12#) NIL #23# ELT)) (|gcd| #73# #74#) (|factorSquareFreePolynomial| #20#) (|factorPolynomial| #20#) (|factor| (#24# NIL #21# ELT)) (|exquo| ((#18# $ |#1|) NIL #14# ELT) (#17# NIL #14# ELT)) (|eval| (($ $ (|List| #77=(|Equation| $))) NIL T ELT) (($ $ #77#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #53# #53#) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ #11# #78=(|List| |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ #11# #53#) NIL T ELT) (($ $ |#2| $) NIL #70# ELT) (($ $ #79=(|List| |#2|) #53#) NIL #70# ELT) (($ $ |#2| |#1|) NIL #70# ELT) (($ $ #79# #78#) NIL #70# ELT)) (|discriminant| (#51# NIL #40# ELT)) (|differentiate| #64# #63# #80=(($ $ #11#) NIL T ELT) #81=(#51# NIL T ELT) #82=(($ $ #68#) NIL T ELT) #83=(($ $ #68# #7#) NIL T ELT) #84=(($ $ #85=(|Symbol|)) NIL #86=(|has| |#1| (|PartialDifferentialSpace| #85#)) ELT) #87=(($ $ #88=(|List| #85#)) NIL #86# ELT) #89=(($ $ #85# #7#) NIL #86# ELT) #90=(($ $ #88# #6#) NIL #86# ELT) #91=(#16# NIL #92=(|has| |#1| (|DifferentialSpace|)) ELT) #93=(#94=($ $ #7#) NIL #92# ELT)) (|differentialVariables| ((#79# $) NIL T ELT)) (|degree| #65# #66# #67# #10#) (|convert| ((#58# . #95=($)) NIL (AND (|has| |#1| #96=(|ConvertibleTo| #58#)) (|has| |#3| #96#)) ELT) ((#61# . #95#) NIL (AND (|has| |#1| #97=(|ConvertibleTo| #61#)) (|has| |#3| #97#)) ELT) ((#98=(|InputForm|) . #95#) NIL (AND (|has| |#1| #99=(|ConvertibleTo| #98#)) (|has| |#3| #99#)) ELT)) (|content| (#37# NIL #23# ELT) #50#) (|conditionP| (((|Union| #47# #19#) #43#) NIL #100=(AND (|has| $ #101=(|CharacteristicNonZero|)) #21#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #31#) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ #35#) 32 T ELT) (($ #30#) NIL (OR #102=(|has| |#1| (|Algebra| #30#)) #32#) ELT) #15#) (|coefficients| ((#78# $) NIL T ELT)) (|coefficient| ((|#1| $ #54#) NIL T ELT) #63# #64#) (|charthRoot| (((|Maybe| $) $) NIL (OR #100# (|has| |#1| #101#)) ELT)) (|characteristic| ((#7#) NIL T CONST)) (|binomThmExpt| (($ $ $ #7#) NIL #40# ELT)) (|before?| #1#) (|associates?| (#2# NIL #14# ELT)) (|annihilate?| #1#) (|Zero| #27#) (|One| #27#) (D #64# #63# #80# #81# #82# #83# #84# #87# #89# #90# #91# #93#) (= #1#) (/ (#103=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #26# #104=(#75# NIL T ELT)) (+ #104#) (** (($ $ #105=(|PositiveInteger|)) NIL T ELT) (#94# NIL T ELT)) (* (($ #105# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #31# . #106=($)) NIL T ELT) #104# (($ $ #30#) NIL #102# ELT) (($ #30# . #106#) NIL #102# ELT) (($ |#1| . #106#) NIL T ELT) (#103# NIL T ELT)))
+(((|DifferentialSparseMultivariatePolynomial| |#1| |#2| |#3|) (|Join| (|DifferentialPolynomialCategory| |#1| |#2| |#3| (|IndexedExponents| |#3|)) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| |#2|))) (|Ring|) (|OrderedSet|) (|DifferentialVariableCategory| |#2|)) (T |DifferentialSparseMultivariatePolynomial|))
+NIL
+((|weight| ((#1=(|NonNegativeInteger|) $) 37 T ELT)) (|retractIfCan| (((|Union| |#2| "failed") $) 22 T ELT)) (|retract| ((|#2| $) 33 T ELT)) (|differentiate| (($ $ #1#) 18 T ELT) (($ $) 14 T ELT)) (|coerce| (((|OutputForm|) $) 32 T ELT) (($ |#2|) 11 T ELT)) (= (#2=((|Boolean|) $ $) 26 T ELT)) (< (#2# 36 T ELT)))
+(((|DifferentialVariableCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |weight| (#1=(|NonNegativeInteger|) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #1#)) (SIGNATURE < #2=((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = #2#)) (|DifferentialVariableCategory| |#2|) (|OrderedSet|)) (T |DifferentialVariableCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|weight| (((|NonNegativeInteger|) $) 26 T ELT)) (|variable| ((|#1| $) 27 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) 31 T ELT)) (|retract| ((|#1| $) 32 T ELT)) (|order| (((|NonNegativeInteger|) $) 28 T ELT)) (|min| (#2=($ $ $) 23 T ELT)) (|max| (#2# 22 T ELT)) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) 29 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (#3=($ $ (|NonNegativeInteger|)) 35 T ELT) (($ . #4=($)) 33 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ |#1|) 30 T ELT)) (|before?| (#1# 6 T ELT)) (D (#3# 36 T ELT) (($ . #4#) 34 T ELT)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)))
+(((|DifferentialVariableCategory| |#1|) (|Category|) (|OrderedSet|)) (T |DifferentialVariableCategory|))
+((|makeVariable| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|weight| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|OrderedSet|) (|DifferentialSpace|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |makeVariable| ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |variable| (|t#1| $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $))))
+(((|BasicType|) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) . T) ((|DifferentialSpace|) . T) ((|Join|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT)) (|max| #3#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exponents| ((#4=(|List| (|Integer|)) $) 28 T ELT)) (|degree| ((#5=(|NonNegativeInteger|) $) 26 T ELT)) (|coerce| (((|OutputForm|) $) 32 T ELT) (($ #4#) 22 T ELT)) (|before?| #1#) (|Nul| (($ #5#) 29 T ELT)) (>= #1#) (> #1#) (= (#2# 11 T ELT)) (<= #1#) (< (#2# 18 T ELT)))
+(((|ExtAlgBasis|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1=(|List| (|Integer|)))) (SIGNATURE |degree| (#2=(|NonNegativeInteger|) $)) (SIGNATURE |exponents| (#1# $)) (SIGNATURE |Nul| ($ #2#))))) (T |ExtAlgBasis|))
+((|coerce| #1=(*1 *1 *2) #2=(AND (|isDomain| *2 (|List| (|Integer|))) #3=(|isDomain| *1 (|ExtAlgBasis|)))) (|degree| #4=(*1 *2 *1) #5=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3#)) (|exponents| #4# #2#) (|Nul| #1# #5#))
+((|tanh| (#1=(|#2| |#2|) 77 T ELT)) (|tan| (#1# 65 T ELT)) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| #2=(|Boolean|))))) 123 T ELT)) (|sinh| (#1# 75 T ELT)) (|sin| (#1# 63 T ELT)) (|sech| (#1# 79 T ELT)) (|sec| (#1# 67 T ELT)) (|pi| (#3=(|#2|) 46 T ELT)) (|operator| ((#4=(|BasicOperator|) #4#) 97 T ELT)) (|log| (#1# 61 T ELT)) (|localReal?| ((#2# |#2|) 146 T ELT)) (|iitanh| (#1# 193 T ELT)) (|iitan| (#1# 169 T ELT)) (|iisqrt3| (#3# 59 T ELT)) (|iisqrt2| (#3# 58 T ELT)) (|iisinh| (#1# 189 T ELT)) (|iisin| (#1# 165 T ELT)) (|iisech| (#1# 197 T ELT)) (|iisec| (#1# 173 T ELT)) (|iilog| (#1# 161 T ELT)) (|iiexp| (#1# 163 T ELT)) (|iicsch| (#1# 199 T ELT)) (|iicsc| (#1# 175 T ELT)) (|iicoth| (#1# 195 T ELT)) (|iicot| (#1# 171 T ELT)) (|iicosh| (#1# 191 T ELT)) (|iicos| (#1# 167 T ELT)) (|iiatanh| (#1# 205 T ELT)) (|iiatan| (#1# 181 T ELT)) (|iiasinh| (#1# 201 T ELT)) (|iiasin| (#1# 177 T ELT)) (|iiasech| (#1# 209 T ELT)) (|iiasec| (#1# 185 T ELT)) (|iiacsch| (#1# 211 T ELT)) (|iiacsc| (#1# 187 T ELT)) (|iiacoth| (#1# 207 T ELT)) (|iiacot| (#1# 183 T ELT)) (|iiacosh| (#1# 203 T ELT)) (|iiacos| (#1# 179 T ELT)) (|exp| (#1# 62 T ELT)) (|csch| (#1# 80 T ELT)) (|csc| (#1# 68 T ELT)) (|coth| (#1# 78 T ELT)) (|cot| (#1# 66 T ELT)) (|cosh| (#1# 76 T ELT)) (|cos| (#1# 64 T ELT)) (|belong?| ((#2# #4#) 95 T ELT)) (|atanh| (#1# 83 T ELT)) (|atan| (#1# 71 T ELT)) (|asinh| (#1# 81 T ELT)) (|asin| (#1# 69 T ELT)) (|asech| (#1# 85 T ELT)) (|asec| (#1# 73 T ELT)) (|acsch| (#1# 86 T ELT)) (|acsc| (#1# 74 T ELT)) (|acoth| (#1# 84 T ELT)) (|acot| (#1# 72 T ELT)) (|acosh| (#1# 82 T ELT)) (|acos| (#1# 70 T ELT)))
+(((|ElementaryFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |exp| #1=(|#2| |#2|)) (SIGNATURE |log| #1#) (SIGNATURE |sin| #1#) (SIGNATURE |cos| #1#) (SIGNATURE |tan| #1#) (SIGNATURE |cot| #1#) (SIGNATURE |sec| #1#) (SIGNATURE |csc| #1#) (SIGNATURE |asin| #1#) (SIGNATURE |acos| #1#) (SIGNATURE |atan| #1#) (SIGNATURE |acot| #1#) (SIGNATURE |asec| #1#) (SIGNATURE |acsc| #1#) (SIGNATURE |sinh| #1#) (SIGNATURE |cosh| #1#) (SIGNATURE |tanh| #1#) (SIGNATURE |coth| #1#) (SIGNATURE |sech| #1#) (SIGNATURE |csch| #1#) (SIGNATURE |asinh| #1#) (SIGNATURE |acosh| #1#) (SIGNATURE |atanh| #1#) (SIGNATURE |acoth| #1#) (SIGNATURE |asech| #1#) (SIGNATURE |acsch| #1#) (SIGNATURE |pi| #2=(|#2|)) (SIGNATURE |belong?| (#3=(|Boolean|) #4=(|BasicOperator|))) (SIGNATURE |operator| (#4# #4#)) (SIGNATURE |iisqrt2| #2#) (SIGNATURE |iisqrt3| #2#) (SIGNATURE |iiexp| #1#) (SIGNATURE |iilog| #1#) (SIGNATURE |iisin| #1#) (SIGNATURE |iicos| #1#) (SIGNATURE |iitan| #1#) (SIGNATURE |iicot| #1#) (SIGNATURE |iisec| #1#) (SIGNATURE |iicsc| #1#) (SIGNATURE |iiasin| #1#) (SIGNATURE |iiacos| #1#) (SIGNATURE |iiatan| #1#) (SIGNATURE |iiacot| #1#) (SIGNATURE |iiasec| #1#) (SIGNATURE |iiacsc| #1#) (SIGNATURE |iisinh| #1#) (SIGNATURE |iicosh| #1#) (SIGNATURE |iitanh| #1#) (SIGNATURE |iicoth| #1#) (SIGNATURE |iisech| #1#) (SIGNATURE |iicsch| #1#) (SIGNATURE |iiasinh| #1#) (SIGNATURE |iiacosh| #1#) (SIGNATURE |iiatanh| #1#) (SIGNATURE |iiacoth| #1#) (SIGNATURE |iiasech| #1#) (SIGNATURE |iiacsch| #1#) (SIGNATURE |specialTrigs| ((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| #3#))))) (SIGNATURE |localReal?| (#3# |#2|))) (|IntegralDomain|) (|Join| (|FunctionSpace| |#1|) (|RadicalCategory|))) (T |ElementaryFunction|))
+((|localReal?| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|IntegralDomain|)) #4=(|isDomain| *2 #5=(|Boolean|)) (|isDomain| *1 (|ElementaryFunction| *4 *3)) (|ofCategory| *3 #6=(|Join| (|FunctionSpace| *4) #7=(|RadicalCategory|))))) (|specialTrigs| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|List| (|Record| (|:| |func| *2) (|:| |pole| #5#)))) (|ofCategory| *2 #6#) #2# (|isDomain| *1 (|ElementaryFunction| *4 *2)))) (|iiacsch| #8=(*1 *2 *2) #9=(AND #10=(|ofCategory| *3 #3#) #11=(|isDomain| *1 (|ElementaryFunction| *3 *2)) #12=(|ofCategory| *2 #13=(|Join| (|FunctionSpace| *3) #7#)))) (|iiasech| #8# #9#) (|iiacoth| #8# #9#) (|iiatanh| #8# #9#) (|iiacosh| #8# #9#) (|iiasinh| #8# #9#) (|iicsch| #8# #9#) (|iisech| #8# #9#) (|iicoth| #8# #9#) (|iitanh| #8# #9#) (|iicosh| #8# #9#) (|iisinh| #8# #9#) (|iiacsc| #8# #9#) (|iiasec| #8# #9#) (|iiacot| #8# #9#) (|iiatan| #8# #9#) (|iiacos| #8# #9#) (|iiasin| #8# #9#) (|iicsc| #8# #9#) (|iisec| #8# #9#) (|iicot| #8# #9#) (|iitan| #8# #9#) (|iicos| #8# #9#) (|iisin| #8# #9#) (|iilog| #8# #9#) (|iiexp| #8# #9#) (|iisqrt3| #14=(*1 *2) #15=(AND #12# #11# #10#)) (|iisqrt2| #14# #15#) (|operator| #8# (AND (|isDomain| *2 #16=(|BasicOperator|)) #10# (|isDomain| *1 (|ElementaryFunction| *3 *4)) (|ofCategory| *4 #13#))) (|belong?| #1# (AND (|isDomain| *3 #16#) #2# #4# (|isDomain| *1 (|ElementaryFunction| *4 *5)) (|ofCategory| *5 #6#))) (|pi| #14# #15#) (|acsch| #8# #9#) (|asech| #8# #9#) (|acoth| #8# #9#) (|atanh| #8# #9#) (|acosh| #8# #9#) (|asinh| #8# #9#) (|csch| #8# #9#) (|sech| #8# #9#) (|coth| #8# #9#) (|tanh| #8# #9#) (|cosh| #8# #9#) (|sinh| #8# #9#) (|acsc| #8# #9#) (|asec| #8# #9#) (|acot| #8# #9#) (|atan| #8# #9#) (|acos| #8# #9#) (|asin| #8# #9#) (|csc| #8# #9#) (|sec| #8# #9#) (|cot| #8# #9#) (|tan| #8# #9#) (|cos| #8# #9#) (|sin| #8# #9#) (|log| #8# #9#) (|exp| #8# #9#))
+((|validExponential| (((|Union| |#2| "failed") #1=(|List| #2=(|Kernel| |#2|)) |#2| #3=(|Symbol|)) 151 T ELT)) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) 49 T ELT)) (|rootNormalize| ((|#2| |#2| #2#) 144 T ELT)) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| #1#) (|:| |vals| (|List| |#2|))) |#2| #3#) 143 T ELT)) (|realElementary| (#4=(|#2| |#2| #3#) 20 T ELT) (#5=(|#2| |#2|) 23 T ELT)) (|normalize| (#4# 157 T ELT) (#5# 155 T ELT)))
+(((|ElementaryFunctionStructurePackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |normalize| #1=(|#2| |#2|)) (SIGNATURE |normalize| #2=(|#2| |#2| #3=(|Symbol|))) (SIGNATURE |rischNormalize| ((|Record| (|:| |func| |#2|) (|:| |kers| #4=(|List| #5=(|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| #3#)) (SIGNATURE |realElementary| #1#) (SIGNATURE |realElementary| #2#) (SIGNATURE |validExponential| ((|Union| |#2| "failed") #4# |#2| #3#)) (SIGNATURE |rootNormalize| (|#2| |#2| #5#)) (SIGNATURE |tanQ| (|#2| (|Fraction| #6=(|Integer|)) |#2|))) (|Join| (|IntegralDomain|) (|RetractableTo| #6#) (|LinearlyExplicitRingOver| #6#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ElementaryFunctionStructurePackage|))
+((|tanQ| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Fraction| #1=(|Integer|))) #2=(|ofCategory| *4 #3=(|Join| (|IntegralDomain|) (|RetractableTo| #1#) (|LinearlyExplicitRingOver| #1#))) #4=(|isDomain| *1 (|ElementaryFunctionStructurePackage| *4 *2)) #5=(|ofCategory| *2 (|Join| #6=(|AlgebraicallyClosedField|) #7=(|TranscendentalFunctionCategory|) (|FunctionSpace| *4))))) (|rootNormalize| #8=(*1 *2 *2 *3) (AND (|isDomain| *3 #9=(|Kernel| *2)) #5# #2# #4#)) (|validExponential| (*1 *2 *3 *2 *4) (|partial| AND (|isDomain| *3 (|List| #9#)) #10=(|isDomain| *4 #11=(|Symbol|)) (|ofCategory| *2 #12=(|Join| #6# #7# (|FunctionSpace| *5))) #13=(|ofCategory| *5 #3#) (|isDomain| *1 (|ElementaryFunctionStructurePackage| *5 *2)))) (|realElementary| #8# #14=(AND (|isDomain| *3 #11#) #2# #4# #5#)) (|realElementary| #15=(*1 *2 *2) #16=(AND (|ofCategory| *3 #3#) (|isDomain| *1 (|ElementaryFunctionStructurePackage| *3 *2)) (|ofCategory| *2 (|Join| #6# #7# (|FunctionSpace| *3))))) (|rischNormalize| (*1 *2 *3 *4) (AND #10# #13# (|isDomain| *2 (|Record| (|:| |func| *3) (|:| |kers| (|List| (|Kernel| *3))) (|:| |vals| (|List| *3)))) (|isDomain| *1 (|ElementaryFunctionStructurePackage| *5 *3)) (|ofCategory| *3 #12#))) (|normalize| #8# #14#) (|normalize| #15# #16#))
+((|tanhIfCan| (#1=(#2=(|Union| |#3| "failed") |#3|) 120 T ELT)) (|tanh| (#3=(|#3| |#3|) 142 T ELT)) (|tanIfCan| (#1# 89 T ELT)) (|tan| (#3# 132 T ELT)) (|sinhIfCan| (#1# 65 T ELT)) (|sinh| (#3# 140 T ELT)) (|sinIfCan| (#1# 53 T ELT)) (|sin| (#3# 130 T ELT)) (|sechIfCan| (#1# 122 T ELT)) (|sech| (#3# 144 T ELT)) (|secIfCan| (#1# 91 T ELT)) (|sec| (#3# 134 T ELT)) (|nthRootIfCan| ((#2# |#3| (|NonNegativeInteger|)) 41 T ELT)) (|logIfCan| (#1# 81 T ELT)) (|log| (#3# 129 T ELT)) (|expIfCan| (#1# 51 T ELT)) (|exp| (#3# 128 T ELT)) (|cschIfCan| (#1# 123 T ELT)) (|csch| (#3# 145 T ELT)) (|cscIfCan| (#1# 92 T ELT)) (|csc| (#3# 135 T ELT)) (|cothIfCan| (#1# 121 T ELT)) (|coth| (#3# 143 T ELT)) (|cotIfCan| (#1# 90 T ELT)) (|cot| (#3# 133 T ELT)) (|coshIfCan| (#1# 67 T ELT)) (|cosh| (#3# 141 T ELT)) (|cosIfCan| (#1# 55 T ELT)) (|cos| (#3# 131 T ELT)) (|atanhIfCan| (#1# 73 T ELT)) (|atanh| (#3# 148 T ELT)) (|atanIfCan| (#1# 114 T ELT)) (|atan| (#3# 152 T ELT)) (|asinhIfCan| (#1# 69 T ELT)) (|asinh| (#3# 146 T ELT)) (|asinIfCan| (#1# 57 T ELT)) (|asin| (#3# 136 T ELT)) (|asechIfCan| (#1# 77 T ELT)) (|asech| (#3# 150 T ELT)) (|asecIfCan| (#1# 61 T ELT)) (|asec| (#3# 138 T ELT)) (|acschIfCan| (#1# 79 T ELT)) (|acsch| (#3# 151 T ELT)) (|acscIfCan| (#1# 63 T ELT)) (|acsc| (#3# 139 T ELT)) (|acothIfCan| (#1# 75 T ELT)) (|acoth| (#3# 149 T ELT)) (|acotIfCan| (#1# 117 T ELT)) (|acot| (#3# 153 T ELT)) (|acoshIfCan| (#1# 71 T ELT)) (|acosh| (#3# 147 T ELT)) (|acosIfCan| (#1# 59 T ELT)) (|acos| (#3# 137 T ELT)) (** ((|#3| |#3| (|Fraction| (|Integer|))) 47 (|has| |#1| (|Field|)) ELT)))
+(((|ElementaryFunctionsUnivariateLaurentSeries| |#1| |#2| |#3|) (|Join| (|PartialTranscendentalFunctions| |#3|) (CATEGORY |package| (IF (|has| |#1| (|Field|)) (SIGNATURE ** (|#3| |#3| #1=(|Fraction| (|Integer|)))) |%noBranch|) (SIGNATURE |exp| #2=(|#3| |#3|)) (SIGNATURE |log| #2#) (SIGNATURE |sin| #2#) (SIGNATURE |cos| #2#) (SIGNATURE |tan| #2#) (SIGNATURE |cot| #2#) (SIGNATURE |sec| #2#) (SIGNATURE |csc| #2#) (SIGNATURE |asin| #2#) (SIGNATURE |acos| #2#) (SIGNATURE |atan| #2#) (SIGNATURE |acot| #2#) (SIGNATURE |asec| #2#) (SIGNATURE |acsc| #2#) (SIGNATURE |sinh| #2#) (SIGNATURE |cosh| #2#) (SIGNATURE |tanh| #2#) (SIGNATURE |coth| #2#) (SIGNATURE |sech| #2#) (SIGNATURE |csch| #2#) (SIGNATURE |asinh| #2#) (SIGNATURE |acosh| #2#) (SIGNATURE |atanh| #2#) (SIGNATURE |acoth| #2#) (SIGNATURE |asech| #2#) (SIGNATURE |acsch| #2#))) (|Algebra| #1#) (|UnivariateTaylorSeriesCategory| |#1|) (|UnivariateLaurentSeriesConstructorCategory| |#1| |#2|)) (T |ElementaryFunctionsUnivariateLaurentSeries|))
+((** (*1 *2 *2 *3) (AND (|isDomain| *3 #1=(|Fraction| (|Integer|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Algebra| *3)) (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4)) (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *4 *5 *2)) (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *4 *5)))) (|exp| #2=(*1 *2 *2) #3=(AND (|ofCategory| *3 (|Algebra| #1#)) (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3)) (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2)) (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4)))) (|log| #2# #3#) (|sin| #2# #3#) (|cos| #2# #3#) (|tan| #2# #3#) (|cot| #2# #3#) (|sec| #2# #3#) (|csc| #2# #3#) (|asin| #2# #3#) (|acos| #2# #3#) (|atan| #2# #3#) (|acot| #2# #3#) (|asec| #2# #3#) (|acsc| #2# #3#) (|sinh| #2# #3#) (|cosh| #2# #3#) (|tanh| #2# #3#) (|coth| #2# #3#) (|sech| #2# #3#) (|csch| #2# #3#) (|asinh| #2# #3#) (|acosh| #2# #3#) (|atanh| #2# #3#) (|acoth| #2# #3#) (|asech| #2# #3#) (|acsch| #2# #3#))
+((|tanhIfCan| (#1=(#2=(|Union| |#3| "failed") |#3|) 70 T ELT)) (|tanh| (#3=(|#3| |#3|) 137 T ELT)) (|tanIfCan| (#1# 54 T ELT)) (|tan| (#3# 125 T ELT)) (|sinhIfCan| (#1# 66 T ELT)) (|sinh| (#3# 135 T ELT)) (|sinIfCan| (#1# 50 T ELT)) (|sin| (#3# 123 T ELT)) (|sechIfCan| (#1# 74 T ELT)) (|sech| (#3# 139 T ELT)) (|secIfCan| (#1# 58 T ELT)) (|sec| (#3# 127 T ELT)) (|nthRootIfCan| ((#2# |#3| (|NonNegativeInteger|)) 38 T ELT)) (|logIfCan| (#1# 48 T ELT)) (|log| (#3# 111 T ELT)) (|expIfCan| (#1# 46 T ELT)) (|exp| (#3# 122 T ELT)) (|cschIfCan| (#1# 76 T ELT)) (|csch| (#3# 140 T ELT)) (|cscIfCan| (#1# 60 T ELT)) (|csc| (#3# 128 T ELT)) (|cothIfCan| (#1# 72 T ELT)) (|coth| (#3# 138 T ELT)) (|cotIfCan| (#1# 56 T ELT)) (|cot| (#3# 126 T ELT)) (|coshIfCan| (#1# 68 T ELT)) (|cosh| (#3# 136 T ELT)) (|cosIfCan| (#1# 52 T ELT)) (|cos| (#3# 124 T ELT)) (|atanhIfCan| (#1# 78 T ELT)) (|atanh| (#3# 143 T ELT)) (|atanIfCan| (#1# 62 T ELT)) (|atan| (#3# 131 T ELT)) (|asinhIfCan| (#1# 112 T ELT)) (|asinh| (#3# 141 T ELT)) (|asinIfCan| (#1# 100 T ELT)) (|asin| (#3# 129 T ELT)) (|asechIfCan| (#1# 116 T ELT)) (|asech| (#3# 145 T ELT)) (|asecIfCan| (#1# 107 T ELT)) (|asec| (#3# 133 T ELT)) (|acschIfCan| (#1# 117 T ELT)) (|acsch| (#3# 146 T ELT)) (|acscIfCan| (#1# 109 T ELT)) (|acsc| (#3# 134 T ELT)) (|acothIfCan| (#1# 80 T ELT)) (|acoth| (#3# 144 T ELT)) (|acotIfCan| (#1# 64 T ELT)) (|acot| (#3# 132 T ELT)) (|acoshIfCan| (#1# 113 T ELT)) (|acosh| (#3# 142 T ELT)) (|acosIfCan| (#1# 103 T ELT)) (|acos| (#3# 130 T ELT)) (** ((|#3| |#3| (|Fraction| (|Integer|))) 44 (|has| |#1| (|Field|)) ELT)))
+(((|ElementaryFunctionsUnivariatePuiseuxSeries| |#1| |#2| |#3| |#4|) (|Join| (|PartialTranscendentalFunctions| |#3|) (CATEGORY |package| (IF (|has| |#1| (|Field|)) (SIGNATURE ** (|#3| |#3| #1=(|Fraction| (|Integer|)))) |%noBranch|) (SIGNATURE |exp| #2=(|#3| |#3|)) (SIGNATURE |log| #2#) (SIGNATURE |sin| #2#) (SIGNATURE |cos| #2#) (SIGNATURE |tan| #2#) (SIGNATURE |cot| #2#) (SIGNATURE |sec| #2#) (SIGNATURE |csc| #2#) (SIGNATURE |asin| #2#) (SIGNATURE |acos| #2#) (SIGNATURE |atan| #2#) (SIGNATURE |acot| #2#) (SIGNATURE |asec| #2#) (SIGNATURE |acsc| #2#) (SIGNATURE |sinh| #2#) (SIGNATURE |cosh| #2#) (SIGNATURE |tanh| #2#) (SIGNATURE |coth| #2#) (SIGNATURE |sech| #2#) (SIGNATURE |csch| #2#) (SIGNATURE |asinh| #2#) (SIGNATURE |acosh| #2#) (SIGNATURE |atanh| #2#) (SIGNATURE |acoth| #2#) (SIGNATURE |asech| #2#) (SIGNATURE |acsch| #2#))) (|Algebra| #1#) (|UnivariateLaurentSeriesCategory| |#1|) (|UnivariatePuiseuxSeriesConstructorCategory| |#1| |#2|) (|PartialTranscendentalFunctions| |#2|)) (T |ElementaryFunctionsUnivariatePuiseuxSeries|))
+((** (*1 *2 *2 *3) (AND (|isDomain| *3 #1=(|Fraction| (|Integer|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Algebra| *3)) (|ofCategory| *5 (|UnivariateLaurentSeriesCategory| *4)) (|isDomain| *1 (|ElementaryFunctionsUnivariatePuiseuxSeries| *4 *5 *2 *6)) (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *4 *5)) (|ofCategory| *6 (|PartialTranscendentalFunctions| *5)))) (|exp| #2=(*1 *2 *2) #3=(AND (|ofCategory| *3 (|Algebra| #1#)) (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3)) (|isDomain| *1 (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5)) (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4)) (|ofCategory| *5 (|PartialTranscendentalFunctions| *4)))) (|log| #2# #3#) (|sin| #2# #3#) (|cos| #2# #3#) (|tan| #2# #3#) (|cot| #2# #3#) (|sec| #2# #3#) (|csc| #2# #3#) (|asin| #2# #3#) (|acos| #2# #3#) (|atan| #2# #3#) (|acot| #2# #3#) (|asec| #2# #3#) (|acsc| #2# #3#) (|sinh| #2# #3#) (|cosh| #2# #3#) (|tanh| #2# #3#) (|coth| #2# #3#) (|sech| #2# #3#) (|csch| #2# #3#) (|asinh| #2# #3#) (|acosh| #2# #3#) (|atanh| #2# #3#) (|acoth| #2# #3#) (|asech| #2# #3#) (|acsch| #2# #3#))
+((|variable?| (#1=((|Boolean|) $) 20 T ELT)) (|type| (((|Syntax|) $) 9 T ELT)) (|getOperator| (#2=((|Union| (|Identifier|) #3="failed") $) 15 T ELT)) (|getOperands| (((|Union| (|List| $) #3#) $) NIL T ELT)) (|getIdentifier| (#2# 21 T ELT)) (|getConstant| (((|Union| (|SExpression|) #3#) $) 19 T ELT)) (|constant?| (#1# 17 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|callForm?| (#1# 10 T ELT)))
+(((|ElaboratedExpression|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |type| ((|Syntax|) $)) (SIGNATURE |constant?| #1=((|Boolean|) $)) (SIGNATURE |getConstant| ((|Union| (|SExpression|) #2="failed") $)) (SIGNATURE |variable?| #1#) (SIGNATURE |getIdentifier| #3=((|Union| (|Identifier|) #2#) $)) (SIGNATURE |callForm?| #1#) (SIGNATURE |getOperator| #3#) (SIGNATURE |getOperands| ((|Union| (|List| $) #2#) $))))) (T |ElaboratedExpression|))
+((|type| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Syntax|)) #2=(|isDomain| *1 #3=(|ElaboratedExpression|)))) (|constant?| #1# #4=(AND (|isDomain| *2 (|Boolean|)) #2#)) (|getConstant| #1# (|partial| AND (|isDomain| *2 (|SExpression|)) #2#)) (|variable?| #1# #4#) (|getIdentifier| #1# #5=(|partial| AND (|isDomain| *2 (|Identifier|)) #2#)) (|callForm?| #1# #4#) (|getOperator| #1# #5#) (|getOperands| #1# (|partial| AND (|isDomain| *2 (|List| #3#)) #2#)))
+((|typeForm| ((#1=(|InternalTypeForm|) $) 10 T ELT)) (|irForm| ((#2=(|InternalRepresentationForm|) $) 8 T ELT)) (|environment| ((#3=(|Environment|) $) 12 T ELT)) (|elaboration| (($ #2# #1# #3#) NIL T ELT)) (|coerce| (((|OutputForm|) $) 19 T ELT)))
+(((|Elaboration|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |elaboration| ($ #1=(|InternalRepresentationForm|) #2=(|InternalTypeForm|) #3=(|Environment|))) (SIGNATURE |irForm| (#1# $)) (SIGNATURE |typeForm| (#2# $)) (SIGNATURE |environment| (#3# $))))) (T |Elaboration|))
+((|elaboration| (*1 *1 *2 *3 *4) (AND #1=(|isDomain| *2 (|InternalRepresentationForm|)) (|isDomain| *3 #2=(|InternalTypeForm|)) (|isDomain| *4 #3=(|Environment|)) #4=(|isDomain| *1 (|Elaboration|)))) (|irForm| #5=(*1 *2 *1) (AND #1# #4#)) (|typeForm| #5# (AND (|isDomain| *2 #2#) #4#)) (|environment| #5# (AND (|isDomain| *2 #3#) #4#)))
+((|select| (#1=($ (|Mapping| #2=(|Boolean|) |#2|) $) 24 T ELT)) (|removeDuplicates| (($ $) 38 T ELT)) (|remove!| (#1# NIL T ELT) (#3=($ |#2| $) 36 T ELT)) (|remove| (#3# 34 T ELT) (#1# 18 T ELT)) (|merge!| (($ (|Mapping| #2# |#2| |#2|) $ $) NIL T ELT) (#4=($ $ $) 42 T ELT)) (|insert| (($ |#2| $ #5=(|Integer|)) 20 T ELT) (($ $ $ #5#) 22 T ELT)) (|delete| (($ $ #5#) 11 T ELT) (($ $ (|UniversalSegment| #5#)) 14 T ELT)) (|concat!| (#6=($ $ |#2|) 32 T ELT) (#4# NIL T ELT)) (|concat| (#6# 31 T ELT) (#3# NIL T ELT) (#4# 26 T ELT) (($ (|List| $)) NIL T ELT)))
+(((|ExtensibleLinearAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |merge!| #1=(|#1| |#1| |#1|)) (SIGNATURE |remove!| #2=(|#1| |#2| |#1|)) (SIGNATURE |merge!| (|#1| (|Mapping| #3=(|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |remove!| #4=(|#1| (|Mapping| #3# |#2|) |#1|)) (SIGNATURE |concat!| #1#) (SIGNATURE |concat!| #5=(|#1| |#1| |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| #6=(|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| #6#)) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| #6#))) (SIGNATURE |delete| (|#1| |#1| #6#)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| #1#) (SIGNATURE |concat| #2#) (SIGNATURE |concat| #5#) (SIGNATURE |remove| #4#) (SIGNATURE |select| #4#) (SIGNATURE |remove| #2#) (SIGNATURE |removeDuplicates| (|#1| |#1|))) (|ExtensibleLinearAggregate| |#2|) (|Type|)) (T |ExtensibleLinearAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #4=(|UniversalSegment| #3#) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 83 T ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#7=($) 6 T CONST)) (|removeDuplicates!| (($ $) 81 (|has| |#1| (|BasicType|)) ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #8=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) 87 T ELT) (($ |#1| $) 82 (|has| |#1| (|BasicType|)) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #8#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #5# |#1|) . #6#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #9=($)) 38 (|has| #3# . #10=((|OrderedSet|))) ELT)) (|merge!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 84 T ELT) (($ $ $) 80 (|has| |#1| (|OrderedSet|)) ELT)) (|maxIndex| ((#3# . #9#) 39 (|has| #3# . #10#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 92 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #11=((|SetCategory|))) ELT)) (|insert!| (($ |#1| $ (|Integer|)) 86 T ELT) (($ $ $ (|Integer|)) 85 T ELT)) (|insert| (($ |#1| $ #3#) 57 T ELT) (($ $ $ #3#) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#12=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #11#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #10#) ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT)) (|eq?| ((#13=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#12# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#13# $) 7 T ELT)) (|empty| (#7# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ #4#) 66 T ELT)) (|delete!| (($ $ (|Integer|)) 89 T ELT) (($ $ (|UniversalSegment| (|Integer|))) 88 T ELT)) (|delete| (($ $ #3#) 59 T ELT) (($ $ #4#) 58 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#14=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #14#)) ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat!| (($ $ |#1|) 91 T ELT) (($ $ $) 90 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|ExtensibleLinearAggregate| |#1|) (|Category|) (|Type|)) (T |ExtensibleLinearAggregate|))
+((|concat!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|delete!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|delete!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|UniversalSegment| (|Integer|))) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|remove!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|insert!| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|merge!| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|select!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|remove!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|)))) (|removeDuplicates!| (*1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|)))) (|merge!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))))
+(|Join| (|LinearAggregate| |t#1|) (|ShallowlyMutableAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |concat!| ($ $ |t#1|)) (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |delete!| ($ $ (|Integer|))) (SIGNATURE |delete!| ($ $ (|UniversalSegment| (|Integer|)))) (SIGNATURE |remove!| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |insert!| ($ |t#1| $ (|Integer|))) (SIGNATURE |insert!| ($ $ $ (|Integer|))) (SIGNATURE |merge!| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $ $)) (SIGNATURE |select!| ($ (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|BasicType|)) (PROGN (SIGNATURE |remove!| ($ |t#1| $)) (SIGNATURE |removeDuplicates!| ($ $))) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (SIGNATURE |merge!| ($ $ $)) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
((** (($ $ $) 10 T ELT)))
-(((-237 |#1|) (-10 -7 (-14 ** (|#1| |#1| |#1|))) (-238)) (T -237))
-NIL
-((-3946 (($ $) 6 T ELT)) (-3947 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
-(((-238) (-110)) (T -238))
-((** (*1 *1 *1 *1) (-4 *1 (-238))) (-3947 (*1 *1 *1) (-4 *1 (-238))) (-3946 (*1 *1 *1) (-4 *1 (-238))))
-(-12 (-10 -8 (-14 -3946 ($ $)) (-14 -3947 ($ $)) (-14 ** ($ $ $))))
-((-1576 (((-584 (-1070 |#1|)) (-1070 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT)))
-(((-239 |#1| |#2|) (-10 -7 (-14 -1573 (|#2| |#2| |#1|)) (-14 -1574 (|#2| |#2| |#1|)) (-14 -1575 (|#2| |#2| |#1|)) (-14 -1576 ((-584 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-311) (-1173 |#1|)) (T -239))
-((-1576 (*1 *2 *3 *4) (-11 (-4 *4 (-311)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-239 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))) (-1575 (*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))) (-1574 (*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))) (-1573 (*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))))
-((-3803 ((|#2| $ |#1|) 6 T ELT)))
-(((-240 |#1| |#2|) (-110) (-1130) (-1130)) (T -240))
-((-3803 (*1 *2 *1 *3) (-11 (-4 *1 (-240 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))))
-(-12 (-1130) (-10 -8 (-14 -3803 (|t#2| $ |t#1|))))
-(((-12) . T) ((-1130) . T))
-((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3115 ((|#3| $ |#2|) 10 T ELT)))
-(((-241 |#1| |#2| |#3|) (-10 -7 (-14 -1577 (|#3| |#1| |#2| |#3|)) (-14 -3115 (|#3| |#1| |#2|))) (-242 |#2| |#3|) (-69) (-1130)) (T -241))
-NIL
-((-3791 ((|#2| $ |#1| |#2|) 10 (|has| $ (-1036 |#2|)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 11 T ELT)) (-3803 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
-(((-242 |#1| |#2|) (-110) (-69) (-1130)) (T -242))
-((-3803 (*1 *2 *1 *3 *2) (-11 (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))) (-3115 (*1 *2 *1 *3) (-11 (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))) (-3791 (*1 *2 *1 *3 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))) (-1577 (*1 *2 *1 *3 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))))
-(-12 (-240 |t#1| |t#2|) (-10 -8 (-14 -3803 (|t#2| $ |t#1| |t#2|)) (-14 -3115 (|t#2| $ |t#1|)) (IF (|has| $ (-1036 |t#2|)) (PROGN (-14 -3791 (|t#2| $ |t#1| |t#2|)) (-14 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-240 |#1| |#2|) . T) ((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 44 T ELT)) (-2065 (($ $) 41 T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) 35 T ELT)) (-3845 (($ |#2| |#3|) 18 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2617 ((|#3| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 19 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) 36 T ELT)) (-3803 ((|#2| $ |#2|) 46 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 23 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 39 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT)))
-(((-243 |#1| |#2| |#3| |#4| |#5| |#6|) (-12 (-257) (-240 |#2| |#2|) (-10 -8 (-14 -2617 (|#3| $)) (-14 -3950 (|#2| $)) (-14 -3845 ($ |#2| |#3|)) (-14 -2404 ((-3 $ #1="failed") $ $)) (-14 -3470 ((-3 $ #1#) $)) (-14 -2487 ($ $)))) (-145) (-1156 |#1|) (-20) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -243))
-((-3470 (*1 *1 *1) (|partial| -11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4)) (-13 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-13 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2617 (*1 *2 *1) (-11 (-4 *3 (-145)) (-4 *2 (-20)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1156 *3)) (-13 *5 (-1 *4 *4 *2)) (-13 *6 (-1 (-3 *2 #1#) *2 *2)) (-13 *7 (-1 (-3 *4 #1#) *4 *4 *2)))) (-3950 (*1 *2 *1) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-145)) (-4 *4 (-20)) (-13 *5 (-1 *2 *2 *4)) (-13 *6 (-1 (-3 *4 #1#) *4 *4)) (-13 *7 (-1 (-3 *2 #1#) *2 *2 *4)))) (-3845 (*1 *1 *2 *3) (-11 (-4 *4 (-145)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-20)) (-13 *5 (-1 *2 *2 *3)) (-13 *6 (-1 (-3 *3 #1#) *3 *3)) (-13 *7 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4)) (-13 *6 (-1 (-3 *4 #1#) *4 *4)) (-13 *7 (-1 (-3 *3 #1#) *3 *3 *4)))) (-2487 (*1 *1 *1) (-11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4)) (-13 *6 (-1 (-3 *4 #1#) *4 *4)) (-13 *7 (-1 (-3 *3 #1#) *3 *3 *4)))))
-((-3128 (((-82) $ $) 10 T ELT)))
-(((-244 |#1|) (-10 -7 (-14 -3128 ((-82) |#1| |#1|))) (-245)) (T -244))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-245) (-110)) (T -245))
-NIL
-(-12 (-962) (-79 $ $) (-10 -7 (-6 -3990)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1585 (((-584 (-998)) $) 10 T ELT)) (-1583 (($ (-447) (-447) (-1016) $) 19 T ELT)) (-1581 (($ (-447) (-584 (-877)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-633 (-1016)) (-447) (-447) $) 18 T ELT)) (-1582 (((-584 (-877)) (-447) $) 22 T ELT)) (-3568 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3950 (((-773) $) 29 T ELT)) (-1578 (($) 26 T ELT)))
-(((-246) (-12 (-553 (-773)) (-10 -8 (-14 -3568 ($)) (-14 -1585 ((-584 (-998)) $)) (-14 -1584 ((-633 (-1016)) (-447) (-447) $)) (-14 -1583 ($ (-447) (-447) (-1016) $)) (-14 -1582 ((-584 (-877)) (-447) $)) (-14 -1581 ($ (-447) (-584 (-877)) $)) (-14 -1580 ($)) (-14 -1579 ($)) (-14 -1578 ($))))) (T -246))
-((-3568 (*1 *1) (-5 *1 (-246))) (-1585 (*1 *2 *1) (-11 (-5 *2 (-584 (-998))) (-5 *1 (-246)))) (-1584 (*1 *2 *3 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-246)))) (-1583 (*1 *1 *2 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-246)))) (-1582 (*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-246)))) (-1581 (*1 *1 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-246)))) (-1580 (*1 *1) (-5 *1 (-246))) (-1579 (*1 *1) (-5 *1 (-246))) (-1578 (*1 *1) (-5 *1 (-246))))
-((-1589 (((-584 (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-349 (-858 |#1|))))))) (-631 (-349 (-858 |#1|)))) 103 T ELT)) (-1588 (((-584 (-631 (-349 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 |#1|)))))) (-631 (-349 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-349 (-858 |#1|)))) (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-349 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1590 (((-584 (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 |#1|))))))) (-631 (-349 (-858 |#1|)))) 100 T ELT)) (-1587 (((-584 (-631 (-349 (-858 |#1|)))) (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-349 (-858 |#1|)))) 76 T ELT)) (-1586 (((-584 (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-349 (-858 |#1|)))) 75 T ELT)) (-2452 (((-858 |#1|) (-631 (-349 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-349 (-858 |#1|))) (-1091)) 57 T ELT)))
-(((-247 |#1|) (-10 -7 (-14 -2452 ((-858 |#1|) (-631 (-349 (-858 |#1|))) (-1091))) (-14 -2452 ((-858 |#1|) (-631 (-349 (-858 |#1|))))) (-14 -1586 ((-584 (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-349 (-858 |#1|))))) (-14 -1587 ((-584 (-631 (-349 (-858 |#1|)))) (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-349 (-858 |#1|))))) (-14 -1588 ((-584 (-631 (-349 (-858 |#1|)))) (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-349 (-858 |#1|))) (-695) (-695))) (-14 -1588 ((-584 (-631 (-349 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 |#1|)))))) (-631 (-349 (-858 |#1|))))) (-14 -1589 ((-584 (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-349 (-858 |#1|))))))) (-631 (-349 (-858 |#1|))))) (-14 -1590 ((-584 (-2 (|:| |eigval| (-3 (-349 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 |#1|))))))) (-631 (-349 (-858 |#1|)))))) (-392)) (T -247))
-((-1590 (*1 *2 *3) (-11 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-349 (-858 *4)))))) (-1589 (*1 *2 *3) (-11 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-349 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-349 (-858 *4)))))) (-1588 (*1 *2 *3 *4) (-11 (-5 *3 (-2 (|:| |eigval| (-3 (-349 (-858 *5)) (-1081 (-1091) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-349 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-349 (-858 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-11 (-5 *3 (-3 (-349 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-392)) (-5 *2 (-584 (-631 (-349 (-858 *6))))) (-5 *1 (-247 *6)) (-5 *4 (-631 (-349 (-858 *6)))))) (-1587 (*1 *2 *3 *4) (-11 (-5 *3 (-3 (-349 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-349 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-349 (-858 *5)))))) (-1586 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-858 *4)))) (-4 *4 (-392)) (-5 *2 (-584 (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4))))) (-5 *1 (-247 *4)))) (-2452 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4)) (-4 *4 (-392)))) (-2452 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-349 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) (-5 *1 (-247 *5)) (-4 *5 (-392)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3191 (((-82) $) NIL (|has| |#1| (-18)) ELT)) (-1596 (($ $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-18)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-253)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-18)) (|has| |#1| (-664))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-18)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3531 ((|#1| $) 11 T ELT)) (-3470 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#1| (-18)) ELT)) (-2412 (((-82) $) NIL (|has| |#1| (-664)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-18)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2487 (($ $) 64 (OR (|has| |#1| (-311)) (|has| |#1| (-413))) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1591 (((-584 $) $) 85 (|has| |#1| (-496)) ELT)) (-3771 (($ $ $) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 $)) 28 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 21 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3229 (($ |#1| |#1|) 9 T ELT)) (-3915 (((-104)) 90 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 87 (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3950 (($ (-485)) NIL (|has| |#1| (-962)) ELT) (((-82) $) 37 (|has| |#1| (-1014)) ELT) (((-773) $) 36 (|has| |#1| (-1014)) ELT)) (-3129 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1266 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3128 (((-82) $ $) NIL (|has| |#1| (-962)) ELT)) (-2663 (($) 47 (|has| |#1| (-18)) CONST)) (-2669 (($) 57 (|has| |#1| (-664)) CONST)) (-2672 (($ $ (-1091)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3059 (($ |#1| |#1|) 8 T ELT) (((-82) $ $) 32 (|has| |#1| (-1014)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 92 (OR (|has| |#1| (-311)) (|has| |#1| (-413))) ELT)) (-3840 (($ |#1| $) 45 (|has| |#1| (-18)) ELT) (($ $ |#1|) 46 (|has| |#1| (-18)) ELT) (($ $ $) 44 (|has| |#1| (-18)) ELT) (($ $) 43 (|has| |#1| (-18)) ELT)) (-3842 (($ |#1| $) 40 (|has| |#1| (-22)) ELT) (($ $ |#1|) 41 (|has| |#1| (-22)) ELT) (($ $ $) 39 (|has| |#1| (-22)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-413)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1026)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1026)) ELT) (($ |#1| $) 54 (|has| |#1| (-1026)) ELT) (($ $ $) 53 (|has| |#1| (-1026)) ELT) (($ (-485) $) 70 (|has| |#1| (-18)) ELT) (($ (-695) $) NIL (|has| |#1| (-18)) ELT) (($ (-831) $) NIL (|has| |#1| (-22)) ELT)))
-(((-248 |#1|) (-12 (-380 |#1|) (-10 -8 (-14 -3059 ($ |#1| |#1|)) (-14 -3229 ($ |#1| |#1|)) (-14 -1596 ($ $)) (-14 -3532 (|#1| $)) (-14 -3531 (|#1| $)) (IF (|has| |#1| (-456 (-1091) |#1|)) (-6 (-456 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-553 (-82))) (IF (|has| |#1| (-259 |#1|)) (PROGN (-14 -3771 ($ $ $)) (-14 -3771 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-22)) (PROGN (-6 (-22)) (-14 -3842 ($ |#1| $)) (-14 -3842 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-18)) (PROGN (-6 (-18)) (-14 -1595 ($ $)) (-14 -1594 ($ $)) (-14 -3840 ($ |#1| $)) (-14 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-14 * ($ |#1| $)) (-14 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-14 -1593 ((-3 $ #1="failed") $)) (-14 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-14 -1593 ((-3 $ #1#) $)) (-14 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-79 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-14 -1591 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-1188 |#1|)) (-14 -3953 ($ $ $)) (-14 -2487 ($ $))) |%noBranch|) (IF (|has| |#1| (-253)) (-14 -1605 ($ $ $)) |%noBranch|))) (-1130)) (T -248))
-((-3059 (*1 *1 *2 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))) (-3229 (*1 *1 *2 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))) (-1596 (*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))) (-3532 (*1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))) (-3531 (*1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))) (-3771 (*1 *1 *1 *1) (-11 (-4 *2 (-259 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-248 *2)))) (-3771 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)) (-5 *1 (-248 *3)))) (-3842 (*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-22)) (-4 *2 (-1130)))) (-3842 (*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-22)) (-4 *2 (-1130)))) (-1595 (*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))) (-1594 (*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))) (-3840 (*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))) (-3840 (*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))) (-1593 (*1 *1 *1) (|partial| -11 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1592 (*1 *1 *1) (|partial| -11 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1591 (*1 *2 *1) (-11 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-496)) (-4 *3 (-1130)))) (-1605 (*1 *1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (* (*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (-3953 (*1 *1 *1 *1) (OR (-11 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1130))) (-11 (-5 *1 (-248 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) (-2487 (*1 *1 *1) (OR (-11 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1130))) (-11 (-5 *1 (-248 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))))
-((-3846 (((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)) 14 T ELT)))
-(((-249 |#1| |#2|) (-10 -7 (-14 -3846 ((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)))) (-1130) (-1130)) (T -249))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6)))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) NIL T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-250 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -250))
-NIL
-((-1597 (((-261) (-1074) (-584 (-1074))) 17 T ELT) (((-261) (-1074) (-1074)) 16 T ELT) (((-261) (-584 (-1074))) 15 T ELT) (((-261) (-1074)) 14 T ELT)))
-(((-251) (-10 -7 (-14 -1597 ((-261) (-1074))) (-14 -1597 ((-261) (-584 (-1074)))) (-14 -1597 ((-261) (-1074) (-1074))) (-14 -1597 ((-261) (-1074) (-584 (-1074)))))) (T -251))
-((-1597 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1597 (*1 *2 *3 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1597 (*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-261)) (-5 *1 (-251)))) (-1597 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251)))))
-((-1601 (((-584 (-551 $)) $) 27 T ELT)) (-1605 (($ $ (-248 $)) 78 T ELT) (($ $ (-584 (-248 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3160 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3159 (((-551 $) $) 127 T ELT)) (-2576 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1600 (((-584 (-83)) $) 35 T ELT)) (-3598 (((-83) (-83)) 89 T ELT)) (-2676 (((-82) $) 151 T ELT)) (-3846 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2237 (($ (-83) $) 59 T ELT) (($ (-83) (-584 $)) 111 T ELT)) (-2636 (((-82) $ (-83)) 133 T ELT) (((-82) $ (-1091)) 132 T ELT)) (-2606 (((-695) $) 44 T ELT)) (-1599 (((-82) $ $) 57 T ELT) (((-82) $ (-1091)) 49 T ELT)) (-2677 (((-82) $) 149 T ELT)) (-3771 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) 138 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1091) (-1 $ $)) 72 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-83) (-1 $ (-584 $))) 68 T ELT) (($ $ (-83) (-1 $ $)) 74 T ELT)) (-3803 (($ (-83) $) 60 T ELT) (($ (-83) $ $) 61 T ELT) (($ (-83) $ $ $) 62 T ELT) (($ (-83) $ $ $ $) 63 T ELT) (($ (-83) (-584 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2593 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2256 (((-82) (-83)) 21 T ELT)))
-(((-252 |#1|) (-10 -7 (-14 -2676 ((-82) |#1|)) (-14 -2677 ((-82) |#1|)) (-14 -3771 (|#1| |#1| (-83) (-1 |#1| |#1|))) (-14 -3771 (|#1| |#1| (-83) (-1 |#1| (-584 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-83)) (-584 (-1 |#1| (-584 |#1|))))) (-14 -3771 (|#1| |#1| (-584 (-83)) (-584 (-1 |#1| |#1|)))) (-14 -3771 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-14 -3771 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-14 -1599 ((-82) |#1| (-1091))) (-14 -1599 ((-82) |#1| |#1|)) (-14 -3846 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-14 -2237 (|#1| (-83) (-584 |#1|))) (-14 -2237 (|#1| (-83) |#1|)) (-14 -2636 ((-82) |#1| (-1091))) (-14 -2636 ((-82) |#1| (-83))) (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 -1600 ((-584 (-83)) |#1|)) (-14 -1601 ((-584 (-551 |#1|)) |#1|)) (-14 -1603 ((-3 (-551 |#1|) #1="failed") |#1|)) (-14 -2606 ((-695) |#1|)) (-14 -1604 (|#1| |#1| |#1|)) (-14 -1604 (|#1| |#1|)) (-14 -2576 (|#1| (-584 |#1|))) (-14 -2576 (|#1| |#1|)) (-14 -2593 (|#1| (-584 |#1|))) (-14 -2593 (|#1| |#1|)) (-14 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-14 -1605 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -1605 (|#1| |#1| (-248 |#1|))) (-14 -3803 (|#1| (-83) (-584 |#1|))) (-14 -3803 (|#1| (-83) |#1| |#1| |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1| |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1|)) (-14 -3771 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#1| |#1|)) (-14 -3771 (|#1| |#1| (-248 |#1|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-14 -3771 (|#1| |#1| (-551 |#1|) |#1|)) (-14 -3160 ((-3 (-551 |#1|) #1#) |#1|)) (-14 -3159 ((-551 |#1|) |#1|))) (-253)) (T -252))
-((-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-5 *2 (-82)) (-5 *1 (-252 *4)) (-4 *4 (-253)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1605 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3160 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3159 (((-551 $) $) 68 T ELT)) (-2576 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1600 (((-584 (-83)) $) 41 T ELT)) (-3598 (((-83) (-83)) 40 T ELT)) (-2676 (((-82) $) 20 (|has| $ (-951 (-485))) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2237 (($ (-83) $) 36 T ELT) (($ (-83) (-584 $)) 35 T ELT)) (-2636 (((-82) $ (-83)) 38 T ELT) (((-82) $ (-1091)) 37 T ELT)) (-2606 (((-695) $) 45 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1599 (((-82) $ $) 33 T ELT) (((-82) $ (-1091)) 32 T ELT)) (-2677 (((-82) $) 21 (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-83) (-1 $ (-584 $))) 25 T ELT) (($ $ (-83) (-1 $ $)) 24 T ELT)) (-3803 (($ (-83) $) 59 T ELT) (($ (-83) $ $) 58 T ELT) (($ (-83) $ $ $) 57 T ELT) (($ (-83) $ $ $ $) 56 T ELT) (($ (-83) (-584 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3188 (($ $) 22 (|has| $ (-962)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2593 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2256 (((-82) (-83)) 39 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-253) (-110)) (T -253))
-((-3803 (*1 *1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-3803 (*1 *1 *2 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-3803 (*1 *1 *2 *1 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-3803 (*1 *1 *2 *1 *1 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-3803 (*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-1605 (*1 *1 *1 *2) (-11 (-5 *2 (-248 *1)) (-4 *1 (-253)))) (-1605 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253)))) (-1605 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-2593 (*1 *1 *1) (-4 *1 (-253))) (-2593 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-2576 (*1 *1 *1) (-4 *1 (-253))) (-2576 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-1604 (*1 *1 *1) (-4 *1 (-253))) (-1604 (*1 *1 *1 *1) (-4 *1 (-253))) (-2606 (*1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-695)))) (-1603 (*1 *2 *1) (|partial| -11 (-5 *2 (-551 *1)) (-4 *1 (-253)))) (-1602 (*1 *2 *1) (-11 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1601 (*1 *2 *1) (-11 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1600 (*1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-584 (-83))))) (-3598 (*1 *2 *2) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-2256 (*1 *2 *3) (-11 (-4 *1 (-253)) (-5 *3 (-83)) (-5 *2 (-82)))) (-2636 (*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-83)) (-5 *2 (-82)))) (-2636 (*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-1091)) (-5 *2 (-82)))) (-2237 (*1 *1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83)))) (-2237 (*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-3846 (*1 *1 *2 *3) (-11 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253)))) (-1599 (*1 *2 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-82)))) (-1599 (*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-1091)) (-5 *2 (-82)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-1598 (*1 *2 *3) (-11 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1086 *1)))) (-3188 (*1 *1 *1) (-11 (-4 *1 (-962)) (-4 *1 (-253)))) (-2677 (*1 *2 *1) (-11 (-4 *1 (-951 (-485))) (-4 *1 (-253)) (-5 *2 (-82)))) (-2676 (*1 *2 *1) (-11 (-4 *1 (-951 (-485))) (-4 *1 (-253)) (-5 *2 (-82)))))
-(-12 (-1014) (-951 (-551 $)) (-456 (-551 $) $) (-259 $) (-10 -8 (-14 -3803 ($ (-83) $)) (-14 -3803 ($ (-83) $ $)) (-14 -3803 ($ (-83) $ $ $)) (-14 -3803 ($ (-83) $ $ $ $)) (-14 -3803 ($ (-83) (-584 $))) (-14 -1605 ($ $ (-248 $))) (-14 -1605 ($ $ (-584 (-248 $)))) (-14 -1605 ($ $ (-584 (-551 $)) (-584 $))) (-14 -2593 ($ $)) (-14 -2593 ($ (-584 $))) (-14 -2576 ($ $)) (-14 -2576 ($ (-584 $))) (-14 -1604 ($ $)) (-14 -1604 ($ $ $)) (-14 -2606 ((-695) $)) (-14 -1603 ((-3 (-551 $) "failed") $)) (-14 -1602 ((-584 (-551 $)) $)) (-14 -1601 ((-584 (-551 $)) $)) (-14 -1600 ((-584 (-83)) $)) (-14 -3598 ((-83) (-83))) (-14 -2256 ((-82) (-83))) (-14 -2636 ((-82) $ (-83))) (-14 -2636 ((-82) $ (-1091))) (-14 -2237 ($ (-83) $)) (-14 -2237 ($ (-83) (-584 $))) (-14 -3846 ($ (-1 $ $) (-551 $))) (-14 -1599 ((-82) $ $)) (-14 -1599 ((-82) $ (-1091))) (-14 -3771 ($ $ (-584 (-1091)) (-584 (-1 $ $)))) (-14 -3771 ($ $ (-584 (-1091)) (-584 (-1 $ (-584 $))))) (-14 -3771 ($ $ (-1091) (-1 $ (-584 $)))) (-14 -3771 ($ $ (-1091) (-1 $ $))) (-14 -3771 ($ $ (-584 (-83)) (-584 (-1 $ $)))) (-14 -3771 ($ $ (-584 (-83)) (-584 (-1 $ (-584 $))))) (-14 -3771 ($ $ (-83) (-1 $ (-584 $)))) (-14 -3771 ($ $ (-83) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-14 -1598 ((-1086 $) (-551 $))) (-14 -3188 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-485))) (PROGN (-14 -2677 ((-82) $)) (-14 -2676 ((-82) $))) |%noBranch|)))
-(((-69) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-259 $) . T) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-12) . T) ((-951 (-551 $)) . T) ((-1014) . T) ((-1130) . T))
-((-3846 ((|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)) 18 T ELT)))
-(((-254 |#1| |#2|) (-10 -7 (-14 -3846 (|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)))) (-253) (-1130)) (T -254))
-((-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-253)) (-4 *2 (-1130)) (-5 *1 (-254 *6 *2)))))
-((-3846 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT)))
-(((-255 |#1| |#2|) (-10 -7 (-14 -3846 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-253) (-253)) (T -255))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253)) (-5 *1 (-255 *5 *2)))))
-((-1609 (((-82) $ $) 14 T ELT)) (-2567 (($ $ $) 18 T ELT)) (-2566 (($ $ $) 17 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 50 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3147 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3469 (((-3 $ #1#) $ $) 21 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 55 T ELT)))
-(((-256 |#1|) (-10 -7 (-14 -1606 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-14 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-14 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-14 -2567 (|#1| |#1| |#1|)) (-14 -2566 (|#1| |#1| |#1|)) (-14 -1609 ((-82) |#1| |#1|)) (-14 -2743 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-14 -2744 ((-2 (|:| -3958 (-584 |#1|)) (|:| -2411 |#1|)) (-584 |#1|))) (-14 -3147 (|#1| (-584 |#1|))) (-14 -3147 (|#1| |#1| |#1|)) (-14 -3469 ((-3 |#1| #1#) |#1| |#1|))) (-257)) (T -256))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1606 (((-3 (-584 $) "failed") (-584 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-257) (-110)) (T -257))
-((-1609 (*1 *2 *1 *1) (-11 (-4 *1 (-257)) (-5 *2 (-82)))) (-1608 (*1 *2 *1) (-11 (-4 *1 (-257)) (-5 *2 (-695)))) (-2882 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-257)))) (-2566 (*1 *1 *1 *1) (-4 *1 (-257))) (-2567 (*1 *1 *1 *1) (-4 *1 (-257))) (-1607 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-257)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -11 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-257)))) (-1606 (*1 *2 *2 *1) (|partial| -11 (-5 *2 (-584 *1)) (-4 *1 (-257)))))
-(-12 (-833) (-10 -8 (-14 -1609 ((-82) $ $)) (-14 -1608 ((-695) $)) (-14 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -2566 ($ $ $)) (-14 -2567 ($ $ $)) (-14 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-14 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-14 -1606 ((-3 (-584 $) "failed") (-584 $) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3771 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-248 |#2|)) 11 T ELT) (($ $ (-584 (-248 |#2|))) NIL T ELT)))
-(((-258 |#1| |#2|) (-10 -7 (-14 -3771 (|#1| |#1| (-584 (-248 |#2|)))) (-14 -3771 (|#1| |#1| (-248 |#2|))) (-14 -3771 (|#1| |#1| |#2| |#2|)) (-14 -3771 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-259 |#2|) (-1014)) (T -258))
-NIL
-((-3771 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-248 |#1|)) 13 T ELT) (($ $ (-584 (-248 |#1|))) 12 T ELT)))
-(((-259 |#1|) (-110) (-1014)) (T -259))
-((-3771 (*1 *1 *1 *2) (-11 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1014)))) (-3771 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1014)))))
-(-12 (-456 |t#1| |t#1|) (-10 -8 (-14 -3771 ($ $ (-248 |t#1|))) (-14 -3771 ($ $ (-584 (-248 |t#1|))))))
-(((-456 |#1| |#1|) . T))
-((-3771 ((|#1| (-1 |#1| (-485)) (-1093 (-349 (-485)))) 26 T ELT)))
-(((-260 |#1|) (-10 -7 (-14 -3771 (|#1| (-1 |#1| (-485)) (-1093 (-349 (-485)))))) (-35 (-349 (-485)))) (T -260))
-((-3771 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-349 (-485)))) (-5 *1 (-260 *2)) (-4 *2 (-35 (-349 (-485)))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 7 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 9 T ELT)))
-(((-261) (-1014)) (T -261))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3509 (((-485) $) 13 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 10 T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-262) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $)) (-14 -3509 ((-485) $))))) (T -262))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-262)))) (-3509 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-262)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 60 T ELT)) (-3132 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1167 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3159 (((-1167 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1091) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-1167 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3448 (((-633 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3846 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-1180 $) $) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-3133 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-1167 |#1| |#2| |#3| |#4|)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-248 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-248 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-259 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1091)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1091) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-240 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1167 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-178) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (($ (-1161 |#2| |#3| |#4|)) 37 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3953 (($ $ $) 35 T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL T ELT)))
-(((-263 |#1| |#2| |#3| |#4|) (-12 (-905 (-1167 |#1| |#2| |#3| |#4|)) (-951 (-1161 |#2| |#3| |#4|)) (-10 -8 (-14 -3787 ((-3 (-751 |#2|) "failed") $)) (-14 -3950 ($ (-1161 |#2| |#3| |#4|))))) (-12 (-951 (-485)) (-581 (-485)) (-392)) (-12 (-24) (-1116) (-363 |#1|)) (-1091) |#2|) (T -263))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4) (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-263 *3 *4 *5 *6)))) (-3787 (*1 *2 *1) (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1216 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-1217 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3191 (((-82) $) 29 (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3084 (((-584 (-1091)) $) 365 T ELT)) (-3086 (((-349 (-1086 $)) $ (-551 $)) NIL (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-3495 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3642 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1372 (($ $ (-1005 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 227 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-18)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1605 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 305 (-11 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-496)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3641 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1610 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3640 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3727 (($) NIL (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) (|has| |#1| (-1026))) CONST)) (-1218 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3186 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) 133 (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-45) #1#) $) 333 (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-349 (-485)) #1#) $) 48 (OR (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3159 (((-551 $) $) 12 T ELT) (((-1091) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-45) $) NIL (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-858 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-349 (-485)) $) 316 (OR (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-3845 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3948 (($ $ (-1005 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-496)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3389 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3630 (($) 136 (|has| |#1| (-496)) ELT)) (-1369 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 389 (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 396 (|has| |#1| (-797 (-329))) ELT)) (-2576 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-82) $ $) NIL (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1600 (((-584 (-83)) $) NIL T ELT)) (-3598 (((-83) (-83)) 275 T ELT)) (-2412 (((-82) $) 27 (|has| |#1| (-1026)) ELT)) (-2676 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-2999 (($ $) 73 (|has| |#1| (-962)) ELT)) (-3001 (((-1040 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1611 (((-82) $) 49 (|has| |#1| (-496)) ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3946 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2259 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2282 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) 51 T ELT)) (-2237 (($ (-83) $) NIL T ELT) (($ (-83) (-584 $)) 439 T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2825 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-22)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-22)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $) NIL (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $ (-83)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $ (-1091)) NIL (|has| |#1| (-962)) ELT)) (-2636 (((-82) $ (-83)) NIL T ELT) (((-82) $ (-1091)) 53 T ELT)) (-2487 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2835 (($ $ (-1091)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1005 $)) 252 (|has| |#1| (-496)) ELT)) (-2606 (((-695) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) 45 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 298 (|has| |#1| (-496)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1599 (((-82) $ $) NIL T ELT) (((-82) $ (-1091)) NIL T ELT)) (-1373 (($ $ (-1091)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1367 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 303 (-11 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2677 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-83) (-1 $ (-584 $))) NIL T ELT) (($ $ (-83) (-1 $ $)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-554 (-474))) ELT) (($ $) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-83) $ (-1091)) 363 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-83)) (-584 $) (-1091)) 362 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-2257 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3803 (($ (-83) $) NIL T ELT) (($ (-83) $ $) NIL T ELT) (($ (-83) $ $ $) NIL T ELT) (($ (-83) $ $ $ $) NIL T ELT) (($ (-83) (-584 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2258 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3388 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3761 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2998 (($ $) 74 (|has| |#1| (-496)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3188 (($ $) 314 (|has| $ (-962)) ELT)) (-3498 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3975 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| |#1| (-554 (-801 (-329)))) ELT) (($ (-347 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2438 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3950 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1091)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-45)) 309 (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (($ (-1040 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-349 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-858 (-349 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-349 (-858 (-349 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-349 (-858 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2593 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3104 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3392 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3394 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3393 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2256 (((-82) (-83)) 10 T ELT)) (-1266 (((-82) $ $) 85 T ELT)) (-3501 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3503 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1800 (($ (-1091) $) NIL T ELT) (($ (-1091) $ $) NIL T ELT) (($ (-1091) $ $ $) NIL T ELT) (($ (-1091) $ $ $ $) NIL T ELT) (($ (-1091) (-584 $)) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#1| (-962)) ELT)) (-3396 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3395 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3504 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3492 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3502 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3490 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3500 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3386 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2663 (($) 23 (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) CONST)) (-2261 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2669 (($) 25 (|has| |#1| (-1026)) CONST)) (-3390 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2262 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2672 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2260 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3387 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3059 (((-82) $ $) 87 T ELT)) (-3953 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3840 (($ $ $) 42 (OR (|has| |#1| (-18)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-18)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3842 (($ $ $) 40 (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-349 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1026)) ELT)) (* (($ (-349 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-145)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1026)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-18)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-22)) (-11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)))
-(((-264 |#1|) (-12 (-363 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-26 |#1|)) (-6 (-1116)) (-6 (-130)) (-6 (-570)) (-6 (-1054)) (-14 -3845 ($ $)) (-14 -1611 ((-82) $)) (-14 -1610 ($ $ (-485))) (IF (|has| |#1| (-392)) (PROGN (-14 -2709 ((-347 (-1086 $)) (-1086 $))) (-14 -2710 ((-347 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-485))) (-6 (-951 (-45))) |%noBranch|)) |%noBranch|))) (-1014)) (T -264))
-((-3845 (*1 *1 *1) (-11 (-5 *1 (-264 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) (-1611 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-264 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-1610 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-264 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2709 (*1 *2 *3) (-11 (-5 *2 (-347 (-1086 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) (-2710 (*1 *2 *3) (-11 (-5 *2 (-347 (-1086 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))))
-((-3846 (((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)) 13 T ELT)))
-(((-265 |#1| |#2|) (-10 -7 (-14 -3846 ((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)))) (-1014) (-1014)) (T -265))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6)))))
-((-3732 (((-48) |#2| (-248 |#2|) (-695)) 40 T ELT) (((-48) |#2| (-248 |#2|)) 32 T ELT) (((-48) |#2| (-695)) 35 T ELT) (((-48) |#2|) 33 T ELT) (((-48) (-1091)) 26 T ELT)) (-3821 (((-48) |#2| (-248 |#2|) (-349 (-485))) 59 T ELT) (((-48) |#2| (-248 |#2|)) 56 T ELT) (((-48) |#2| (-349 (-485))) 58 T ELT) (((-48) |#2|) 57 T ELT) (((-48) (-1091)) 55 T ELT)) (-3785 (((-48) |#2| (-248 |#2|) (-349 (-485))) 54 T ELT) (((-48) |#2| (-248 |#2|)) 51 T ELT) (((-48) |#2| (-349 (-485))) 53 T ELT) (((-48) |#2|) 52 T ELT) (((-48) (-1091)) 50 T ELT)) (-3782 (((-48) |#2| (-248 |#2|) (-485)) 47 T ELT) (((-48) |#2| (-248 |#2|)) 44 T ELT) (((-48) |#2| (-485)) 46 T ELT) (((-48) |#2|) 45 T ELT) (((-48) (-1091)) 43 T ELT)))
-(((-266 |#1| |#2|) (-10 -7 (-14 -3732 ((-48) (-1091))) (-14 -3732 ((-48) |#2|)) (-14 -3732 ((-48) |#2| (-695))) (-14 -3732 ((-48) |#2| (-248 |#2|))) (-14 -3732 ((-48) |#2| (-248 |#2|) (-695))) (-14 -3782 ((-48) (-1091))) (-14 -3782 ((-48) |#2|)) (-14 -3782 ((-48) |#2| (-485))) (-14 -3782 ((-48) |#2| (-248 |#2|))) (-14 -3782 ((-48) |#2| (-248 |#2|) (-485))) (-14 -3785 ((-48) (-1091))) (-14 -3785 ((-48) |#2|)) (-14 -3785 ((-48) |#2| (-349 (-485)))) (-14 -3785 ((-48) |#2| (-248 |#2|))) (-14 -3785 ((-48) |#2| (-248 |#2|) (-349 (-485)))) (-14 -3821 ((-48) (-1091))) (-14 -3821 ((-48) |#2|)) (-14 -3821 ((-48) |#2| (-349 (-485)))) (-14 -3821 ((-48) |#2| (-248 |#2|))) (-14 -3821 ((-48) |#2| (-248 |#2|) (-349 (-485))))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -266))
-((-3821 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-248 *3)) (-5 *5 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *6 *3)))) (-3821 (*1 *2 *3 *4) (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)))) (-3821 (*1 *2 *3 *4) (-11 (-5 *4 (-349 (-485))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-3821 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3821 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4))))) (-3785 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-248 *3)) (-5 *5 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *6 *3)))) (-3785 (*1 *2 *3 *4) (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)))) (-3785 (*1 *2 *3 *4) (-11 (-5 *4 (-349 (-485))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-3785 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3785 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4))))) (-3782 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-48)) (-5 *1 (-266 *6 *3)))) (-3782 (*1 *2 *3 *4) (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)))) (-3782 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-4 *5 (-12 (-392) (-951 *4) (-581 *4))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-3782 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3782 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4))))) (-3732 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *6 *3)))) (-3732 (*1 *2 *3 *4) (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)))) (-3732 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-3732 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3732 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4))))))
-((-1612 (((-48) |#2| (-83) (-248 |#2|) (-584 |#2|)) 89 T ELT) (((-48) |#2| (-83) (-248 |#2|) (-248 |#2|)) 85 T ELT) (((-48) |#2| (-83) (-248 |#2|) |#2|) 87 T ELT) (((-48) (-248 |#2|) (-83) (-248 |#2|) |#2|) 88 T ELT) (((-48) (-584 |#2|) (-584 (-83)) (-248 |#2|) (-584 (-248 |#2|))) 81 T ELT) (((-48) (-584 |#2|) (-584 (-83)) (-248 |#2|) (-584 |#2|)) 83 T ELT) (((-48) (-584 (-248 |#2|)) (-584 (-83)) (-248 |#2|) (-584 |#2|)) 84 T ELT) (((-48) (-584 (-248 |#2|)) (-584 (-83)) (-248 |#2|) (-584 (-248 |#2|))) 82 T ELT) (((-48) (-248 |#2|) (-83) (-248 |#2|) (-584 |#2|)) 90 T ELT) (((-48) (-248 |#2|) (-83) (-248 |#2|) (-248 |#2|)) 86 T ELT)))
-(((-267 |#1| |#2|) (-10 -7 (-14 -1612 ((-48) (-248 |#2|) (-83) (-248 |#2|) (-248 |#2|))) (-14 -1612 ((-48) (-248 |#2|) (-83) (-248 |#2|) (-584 |#2|))) (-14 -1612 ((-48) (-584 (-248 |#2|)) (-584 (-83)) (-248 |#2|) (-584 (-248 |#2|)))) (-14 -1612 ((-48) (-584 (-248 |#2|)) (-584 (-83)) (-248 |#2|) (-584 |#2|))) (-14 -1612 ((-48) (-584 |#2|) (-584 (-83)) (-248 |#2|) (-584 |#2|))) (-14 -1612 ((-48) (-584 |#2|) (-584 (-83)) (-248 |#2|) (-584 (-248 |#2|)))) (-14 -1612 ((-48) (-248 |#2|) (-83) (-248 |#2|) |#2|)) (-14 -1612 ((-48) |#2| (-83) (-248 |#2|) |#2|)) (-14 -1612 ((-48) |#2| (-83) (-248 |#2|) (-248 |#2|))) (-14 -1612 ((-48) |#2| (-83) (-248 |#2|) (-584 |#2|)))) (-12 (-496) (-554 (-474))) (-363 |#1|)) (T -267))
-((-1612 (*1 *2 *3 *4 *5 *6) (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-363 *7)) (-4 *7 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-4 *3 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-4 *3 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-11 (-5 *3 (-248 *5)) (-5 *4 (-83)) (-4 *5 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 (-83))) (-5 *6 (-584 (-248 *8))) (-4 *8 (-363 *7)) (-5 *5 (-248 *8)) (-4 *7 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-11 (-5 *3 (-584 *7)) (-5 *4 (-584 (-83))) (-5 *5 (-248 *7)) (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-83))) (-5 *5 (-248 *8)) (-5 *6 (-584 *8)) (-4 *8 (-363 *7)) (-4 *7 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-11 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-83))) (-5 *5 (-248 *7)) (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-11 (-5 *3 (-248 *7)) (-5 *4 (-83)) (-5 *5 (-584 *7)) (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-11 (-5 *3 (-248 *6)) (-5 *4 (-83)) (-4 *6 (-363 *5)) (-4 *5 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *5 *6)))))
-((-1614 (((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-178) (-485) (-1074)) 67 T ELT) (((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-178) (-485)) 68 T ELT) (((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-1 (-178) (-178)) (-485) (-1074)) 64 T ELT) (((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-1 (-178) (-178)) (-485)) 65 T ELT)) (-1613 (((-1 (-178) (-178)) (-178)) 66 T ELT)))
-(((-268) (-10 -7 (-14 -1613 ((-1 (-178) (-178)) (-178))) (-14 -1614 ((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-1 (-178) (-178)) (-485))) (-14 -1614 ((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-1 (-178) (-178)) (-485) (-1074))) (-14 -1614 ((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-178) (-485))) (-14 -1614 ((-1126 (-839)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-178) (-485) (-1074))))) (T -268))
-((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178))) (-5 *6 (-178)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-268)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178))) (-5 *6 (-178)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-268)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178))) (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-268)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178))) (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-268)))) (-1613 (*1 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-268)) (-5 *3 (-178)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 26 T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) NIL T ELT) (($ $ (-349 (-485)) (-349 (-485))) NIL T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) 36 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-3189 (((-82) $) NIL T ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) NIL T ELT) (((-349 (-485)) $ (-349 (-485))) 16 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-349 (-485))) NIL T ELT) (($ $ (-995) (-349 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1615 (((-349 (-485)) $) 17 T ELT)) (-3093 (($ (-1161 |#1| |#2| |#3|)) 11 T ELT)) (-2403 (((-1161 |#1| |#2| |#3|) $) 12 T ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3952 (((-349 (-485)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 10 T ELT)) (-3950 (((-773) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) 34 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 28 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 37 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-269 |#1| |#2| |#3|) (-12 (-1163 |#1|) (-717) (-10 -8 (-14 -3093 ($ (-1161 |#1| |#2| |#3|))) (-14 -2403 ((-1161 |#1| |#2| |#3|) $)) (-14 -1615 ((-349 (-485)) $)))) (-311) (-1091) |#1|) (T -269))
-((-3093 (*1 *1 *2) (-11 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-311)) (-13 *4 (-1091)) (-13 *5 *3) (-5 *1 (-269 *3 *4 *5)))) (-2403 (*1 *2 *1) (-11 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-13 *4 (-1091)) (-13 *5 *3))) (-1615 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-13 *4 (-1091)) (-13 *5 *3))))
-((-3014 (((-2 (|:| -2403 (-695)) (|:| -3958 |#1|) (|:| |radicand| (-584 |#1|))) (-347 |#1|) (-695)) 35 T ELT)) (-3946 (((-584 (-2 (|:| -3958 (-695)) (|:| |logand| |#1|))) (-347 |#1|)) 40 T ELT)))
-(((-270 |#1|) (-10 -7 (-14 -3014 ((-2 (|:| -2403 (-695)) (|:| -3958 |#1|) (|:| |radicand| (-584 |#1|))) (-347 |#1|) (-695))) (-14 -3946 ((-584 (-2 (|:| -3958 (-695)) (|:| |logand| |#1|))) (-347 |#1|)))) (-496)) (T -270))
-((-3946 (*1 *2 *3) (-11 (-5 *3 (-347 *4)) (-4 *4 (-496)) (-5 *2 (-584 (-2 (|:| -3958 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) (-3014 (*1 *2 *3 *4) (-11 (-5 *3 (-347 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-270 *5)) (-5 *4 (-695)))))
-((-3084 (((-584 |#2|) (-1086 |#4|)) 45 T ELT)) (-1620 ((|#3| (-485)) 48 T ELT)) (-1618 (((-1086 |#4|) (-1086 |#3|)) 30 T ELT)) (-1619 (((-1086 |#4|) (-1086 |#4|) (-485)) 67 T ELT)) (-1617 (((-1086 |#3|) (-1086 |#4|)) 21 T ELT)) (-3952 (((-584 (-695)) (-1086 |#4|) (-584 |#2|)) 41 T ELT)) (-1616 (((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT)))
-(((-271 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1616 ((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|))) (-14 -3952 ((-584 (-695)) (-1086 |#4|) (-584 |#2|))) (-14 -3084 ((-584 |#2|) (-1086 |#4|))) (-14 -1617 ((-1086 |#3|) (-1086 |#4|))) (-14 -1618 ((-1086 |#4|) (-1086 |#3|))) (-14 -1619 ((-1086 |#4|) (-1086 |#4|) (-485))) (-14 -1620 (|#3| (-485)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -271))
-((-1620 (*1 *2 *3) (-11 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-11 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1617 (*1 *2 *3) (-11 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3084 (*1 *2 *3) (-11 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3952 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-271 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) (-5 *1 (-271 *6 *7 *8 *9)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 19 T ELT)) (-3777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-485)))) $) 21 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-485) $ (-485)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-485) (-717)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-485) |#1| $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 30 (|has| |#1| (-757)) ELT)) (-3840 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT)))
-(((-272 |#1|) (-12 (-18) (-655 (-485)) (-273 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1014)) (T -272))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 34 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-695) $) 35 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 39 T ELT)) (-3159 ((|#1| $) 40 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2301 ((|#1| $ (-485)) 32 T ELT)) (-1623 ((|#2| $ (-485)) 33 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-717)) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3680 ((|#2| |#1| $) 31 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
-(((-273 |#1| |#2|) (-110) (-1014) (-101)) (T -273))
-((-3842 (*1 *1 *2 *1) (-11 (-4 *1 (-273 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-101)))) (* (*1 *1 *2 *3) (-11 (-4 *1 (-273 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-101)))) (-3139 (*1 *2 *1) (-11 (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)) (-5 *2 (-695)))) (-3777 (*1 *2 *1) (-11 (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4)))))) (-1623 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-101)))) (-2301 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-273 *2 *4)) (-4 *4 (-101)) (-4 *2 (-1014)))) (-3680 (*1 *2 *3 *1) (-11 (-4 *1 (-273 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-101)))) (-1622 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)))) (-2292 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)))) (-1621 (*1 *1 *1 *1) (-11 (-4 *1 (-273 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-101)) (-4 *3 (-717)))))
-(-12 (-101) (-951 |t#1|) (-10 -8 (-14 -3842 ($ |t#1| $)) (-14 * ($ |t#2| |t#1|)) (-14 -3139 ((-695) $)) (-14 -3777 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3947 |t#2|))) $)) (-14 -1623 (|t#2| $ (-485))) (-14 -2301 (|t#1| $ (-485))) (-14 -3680 (|t#2| |t#1| $)) (-14 -1622 ($ (-1 |t#2| |t#2|) $)) (-14 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-14 -1621 ($ $ $)) |%noBranch|)))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-12) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-695)))) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-695) $ (-485)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3680 (((-695) |#1| $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT)))
-(((-274 |#1|) (-273 |#1| (-695)) (-1014)) (T -274))
-NIL
-((-3506 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1802 (((-82) $) 42 T ELT)) (-1801 ((|#2| $) 44 T ELT)) (-3469 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2820 ((|#2| $) 68 T ELT)) (-3820 (((-584 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-695)) 37 T ELT)) (-3953 (($ $ |#2|) 60 T ELT)))
-(((-275 |#1| |#2| |#3|) (-10 -7 (-14 -3506 (|#1| |#1|)) (-14 -2820 (|#2| |#1|)) (-14 -3469 ((-3 |#1| #1="failed") |#1| |#2|)) (-14 -1624 (|#1| |#1| |#1| (-695))) (-14 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-14 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-14 -3820 ((-584 |#2|) |#1|)) (-14 -1801 (|#2| |#1|)) (-14 -1802 ((-82) |#1|)) (-14 -3469 ((-3 |#1| #1#) |#1| |#1|)) (-14 -3953 (|#1| |#1| |#2|))) (-276 |#2| |#3|) (-962) (-717)) (T -275))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 110 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 108 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 105 T ELT)) (-3159 (((-485) $) 109 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 107 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 106 T ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 94 (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 98 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2422 (((-695) $) 101 T ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT)) (-2823 ((|#2| $) 100 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 99 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 104 T ELT)) (-1801 ((|#1| $) 103 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 96 (|has| |#1| (-496)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2820 ((|#1| $) 95 (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 70 (|has| |#1| (-496)) ELT) (($ |#1|) 68 T ELT) (($ (-349 (-485))) 78 (OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ELT)) (-3820 (((-584 |#1|) $) 102 T ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 97 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-276 |#1| |#2|) (-110) (-962) (-717)) (T -276))
-((-1802 (*1 *2 *1) (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-82)))) (-1801 (*1 *2 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3820 (*1 *2 *1) (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2422 (*1 *2 *1) (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2823 (*1 *2 *1) (-11 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1626 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1625 (*1 *1 *1 *2 *3 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1624 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-145)))) (-3469 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-496)))) (-2820 (*1 *2 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3506 (*1 *1 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392)))))
-(-12 (-44 |t#1| |t#2|) (-354 |t#1|) (-10 -8 (-14 -1802 ((-82) $)) (-14 -1801 (|t#1| $)) (-14 -3820 ((-584 |t#1|) $)) (-14 -2422 ((-695) $)) (-14 -2823 (|t#2| $)) (-14 -1626 ($ (-1 |t#2| |t#2|) $)) (-14 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-145)) (-14 -1624 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-496)) (-14 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-14 -2820 (|t#1| $)) (-14 -3506 ($ $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#2|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-245) |has| |#1| (-496)) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1988 (((-82) (-82)) NIL T ELT)) (-3791 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-69)) ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-69)) ELT) (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-1989 (($ $ (-485)) NIL T ELT)) (-1990 (((-695) $) NIL T ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3612 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1991 (($ (-584 |#1|)) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3794 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-277 |#1|) (-12 (-16 |#1|) (-236 |#1|) (-10 -8 (-14 -1991 ($ (-584 |#1|))) (-14 -1990 ((-695) $)) (-14 -1989 ($ $ (-485))) (-14 -1988 ((-82) (-82))))) (-1130)) (T -277))
-((-1991 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-277 *3)))) (-1990 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1130)))) (-1989 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-277 *3)) (-4 *3 (-1130)))) (-1988 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-277 *3)) (-4 *3 (-1130)))))
-((-3936 (((-82) $) 47 T ELT)) (-3933 (((-695)) 23 T ELT)) (-3333 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3139 (((-695)) 124 T ELT)) (-1797 (($ (-1180 |#2|)) 20 T ELT)) (-2013 (((-82) $) 136 T ELT)) (-3135 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2016 (((-1086 |#2|) $) NIL T ELT) (((-1086 $) $ (-831)) 111 T ELT)) (-1628 (((-1086 |#2|) $) 95 T ELT)) (-1627 (((-1086 |#2|) $) 91 T ELT) (((-3 (-1086 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1086 |#2|)) 58 T ELT)) (-3934 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3915 (((-104)) 27 T ELT)) (-3952 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3227 (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $)) 42 T ELT)) (-2705 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3937 (((-82) $) 45 T ELT)))
-(((-278 |#1| |#2|) (-10 -7 (-14 -2705 ((-633 |#1|) |#1|)) (-14 -3139 ((-695))) (-14 -2705 (|#1| |#1|)) (-14 -1627 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-14 -1627 ((-1086 |#2|) |#1|)) (-14 -1628 ((-1086 |#2|) |#1|)) (-14 -1629 (|#1| |#1| (-1086 |#2|))) (-14 -2013 ((-82) |#1|)) (-14 -1630 (|#1|)) (-14 -3333 (|#1| |#1| (-831))) (-14 -3135 (|#1| |#1| (-831))) (-14 -2016 ((-1086 |#1|) |#1| (-831))) (-14 -3333 (|#2| |#1|)) (-14 -3135 (|#2| |#1|)) (-14 -3952 ((-831) |#1|)) (-14 -3934 ((-831))) (-14 -2016 ((-1086 |#2|) |#1|)) (-14 -1797 (|#1| (-1180 |#2|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1|)) (-14 -3933 ((-695))) (-14 -3934 ((-744 (-831)))) (-14 -3952 ((-744 (-831)) |#1|)) (-14 -3936 ((-82) |#1|)) (-14 -3937 ((-82) |#1|)) (-14 -3915 ((-104)))) (-279 |#2|) (-311)) (T -278))
-((-3915 (*1 *2) (-11 (-4 *4 (-311)) (-5 *2 (-104)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3934 (*1 *2) (-11 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3933 (*1 *2) (-11 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3934 (*1 *2) (-11 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3139 (*1 *2) (-11 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-3936 (((-82) $) 114 T ELT)) (-3933 (((-695)) 110 T ELT)) (-3333 ((|#1| $) 162 T ELT) (($ $ (-831)) 159 (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 144 (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3139 (((-695)) 134 (|has| |#1| (-319)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-1797 (($ (-1180 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 131 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-2836 (($) 146 (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) 147 (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) 107 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) 89 T ELT)) (-3775 (((-831) $) 149 (|has| |#1| (-319)) ELT) (((-744 (-831)) $) 104 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2015 (($) 157 (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) 156 (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) 163 T ELT) (($ $ (-831)) 160 (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) 135 (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2016 (((-1086 |#1|) $) 167 T ELT) (((-1086 $) $ (-831)) 161 (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) 132 (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) 153 (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) 152 (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) "failed") $ $) 151 (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) 154 (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 136 (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) 133 (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) 113 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2411 (($) 155 (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 143 (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-3934 (((-744 (-831))) 111 T ELT) (((-831)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-695) $) 148 (|has| |#1| (-319)) ELT) (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) 119 T ELT)) (-3761 (($ $ (-695)) 139 (|has| |#1| (-319)) ELT) (($ $) 137 (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) 112 T ELT) (((-831) $) 164 T ELT)) (-3188 (((-1086 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-319)) ELT)) (-1630 (($) 158 (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) 170 T ELT) (((-631 |#1|) (-1180 $)) 169 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 142 (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (($ $) 141 (|has| |#1| (-319)) ELT) (((-633 $) $) 103 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 172 T ELT) (((-1180 $) (-831)) 171 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3937 (((-82) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3932 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-695)) 108 (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) 140 (|has| |#1| (-319)) ELT) (($ $) 138 (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
-(((-279 |#1|) (-110) (-311)) (T -279))
-((-2014 (*1 *2) (-11 (-4 *3 (-311)) (-5 *2 (-1180 *1)) (-4 *1 (-279 *3)))) (-2014 (*1 *2 *3) (-11 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1180 *1)) (-4 *1 (-279 *4)))) (-3227 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1180 *3)))) (-3227 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)))) (-1797 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) (-2016 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1086 *3)))) (-3188 (*1 *2) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1086 *3)))) (-3934 (*1 *2) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3135 (*1 *2 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-3333 (*1 *2 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-2016 (*1 *2 *1 *3) (-11 (-5 *3 (-831)) (-4 *4 (-319)) (-4 *4 (-311)) (-5 *2 (-1086 *1)) (-4 *1 (-279 *4)))) (-3135 (*1 *1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)))) (-3333 (*1 *1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)))) (-1630 (*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311)))) (-2015 (*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311)))) (-2013 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-82)))) (-2411 (*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311)))) (-1629 (*1 *1 *1 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-319)) (-4 *1 (-279 *3)) (-4 *3 (-311)))) (-1628 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-1086 *3)))))
-(-12 (-1199 |t#1|) (-951 |t#1|) (-10 -8 (-14 -2014 ((-1180 $))) (-14 -2014 ((-1180 $) (-831))) (-14 -3227 ((-1180 |t#1|) $)) (-14 -3227 ((-631 |t#1|) (-1180 $))) (-14 -1797 ($ (-1180 |t#1|))) (-14 -2016 ((-1086 |t#1|) $)) (-14 -3188 ((-1086 |t#1|))) (-14 -3934 ((-831))) (-14 -3952 ((-831) $)) (-14 -3135 (|t#1| $)) (-14 -3333 (|t#1| $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-298)) (-14 -2016 ((-1086 $) $ (-831))) (-14 -3135 ($ $ (-831))) (-14 -3333 ($ $ (-831))) (-14 -1630 ($)) (-14 -2015 ($)) (-14 -2013 ((-82) $)) (-14 -2411 ($)) (-14 -1629 ($ $ (-1086 |t#1|))) (-14 -1628 ((-1086 |t#1|) $)) (-14 -1627 ((-1086 |t#1|) $)) (-14 -1627 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 |#1| |#1|) . T) ((-79 $ $) . T) ((-101) . T) ((-115) OR (|has| |#1| (-319)) (|has| |#1| (-115))) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-185 $) |has| |#1| (-319)) ((-189) |has| |#1| (-319)) ((-188) |has| |#1| (-319)) ((-200) . T) ((-245) . T) ((-257) . T) ((-1199 |#1|) . T) ((-311) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-115))) ((-319) |has| |#1| (-319)) ((-298) |has| |#1| (-319)) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-349 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-319)) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-1631 (((-82) $) 13 T ELT)) (-3641 (($ |#1|) 10 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3637 (($ |#1|) 12 T ELT)) (-3950 (((-773) $) 19 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2238 ((|#1| $) 14 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 21 T ELT)))
-(((-280 |#1|) (-12 (-757) (-10 -8 (-14 -3641 ($ |#1|)) (-14 -3637 ($ |#1|)) (-14 -1631 ((-82) $)) (-14 -2238 (|#1| $)))) (-757)) (T -280))
-((-3641 (*1 *1 *2) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-3637 (*1 *1 *2) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-1631 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-280 *3)) (-4 *3 (-757)))) (-2238 (*1 *2 *1) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1632 (((-447) $) 20 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1633 (((-870 (-695)) $) 18 T ELT)) (-1635 (((-208) $) 7 T ELT)) (-3950 (((-773) $) 26 T ELT)) (-2208 (((-870 (-157 (-109))) $) 16 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1634 (((-584 (-783 (-1096) (-695))) $) 12 T ELT)) (-3059 (((-82) $ $) 22 T ELT)))
-(((-281) (-12 (-1014) (-10 -8 (-14 -1635 ((-208) $)) (-14 -1634 ((-584 (-783 (-1096) (-695))) $)) (-14 -1633 ((-870 (-695)) $)) (-14 -2208 ((-870 (-157 (-109))) $)) (-14 -1632 ((-447) $))))) (T -281))
-((-1635 (*1 *2 *1) (-11 (-5 *2 (-208)) (-5 *1 (-281)))) (-1634 (*1 *2 *1) (-11 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-281)))) (-1633 (*1 *2 *1) (-11 (-5 *2 (-870 (-695))) (-5 *1 (-281)))) (-2208 (*1 *2 *1) (-11 (-5 *2 (-870 (-157 (-109)))) (-5 *1 (-281)))) (-1632 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-281)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 34 T ELT)) (-1638 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1636 (((-1180 |#4|) $) 133 T ELT)) (-1970 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 32 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1180 |#4|) $) 125 T ELT)) (-1639 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3438 (((-2 (|:| -2338 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3950 (((-773) $) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-82) $ $) 21 T ELT)) (-3840 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 24 T ELT)))
-(((-282 |#1| |#2| |#3| |#4|) (-12 (-285 |#1| |#2| |#3| |#4|) (-10 -8 (-14 -1637 ((-1180 |#4|) $)) (-14 -1636 ((-1180 |#4|) $)))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -282))
-((-1637 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))) (-1636 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
-((-3846 (((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)) 33 T ELT)))
-(((-283 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-14 -3846 ((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|) (-311) (-1156 |#5|) (-1156 (-349 |#6|)) (-290 |#5| |#6| |#7|)) (T -283))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *9 (-311)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-349 *10))) (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-290 *9 *10 *11)))))
-((-1638 (((-82) $) 14 T ELT)))
-(((-284 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -1638 ((-82) |#1|))) (-285 |#2| |#3| |#4| |#5|) (-311) (-1156 |#2|) (-1156 (-349 |#3|)) (-290 |#2| |#3| |#4|)) (T -284))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3845 (($ $) 35 T ELT)) (-1638 (((-82) $) 34 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1970 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 41 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2411 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3438 (((-2 (|:| -2338 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
-(((-285 |#1| |#2| |#3| |#4|) (-110) (-311) (-1156 |t#1|) (-1156 (-349 |t#2|)) (-290 |t#1| |t#2| |t#3|)) (T -285))
-((-1970 (*1 *2 *1) (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-355 *4 (-349 *4) *5 *6)))) (-1639 (*1 *1 *2) (-11 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) (-4 *1 (-285 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-11 (-4 *2 (-311)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-349 *3))) (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-11 (-5 *3 (-485)) (-4 *2 (-311)) (-4 *4 (-1156 *2)) (-4 *5 (-1156 (-349 *4))) (-4 *1 (-285 *2 *4 *5 *6)) (-4 *6 (-290 *2 *4 *5)))) (-3438 (*1 *2 *1) (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-2 (|:| -2338 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6))))) (-3845 (*1 *1 *1) (-11 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-349 *3))) (-4 *5 (-290 *2 *3 *4)))) (-1638 (*1 *2 *1) (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-82)))) (-2411 (*1 *2 *1) (|partial| -11 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *2 (-290 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-11 (-4 *4 (-311)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3))) (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5)))))
-(-12 (-18) (-10 -8 (-14 -1970 ((-355 |t#2| (-349 |t#2|) |t#3| |t#4|) $)) (-14 -1639 ($ (-355 |t#2| (-349 |t#2|) |t#3| |t#4|))) (-14 -1639 ($ |t#4|)) (-14 -1639 ($ |t#1| |t#1|)) (-14 -1639 ($ |t#1| |t#1| (-485))) (-14 -3438 ((-2 (|:| -2338 (-355 |t#2| (-349 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-14 -3845 ($ $)) (-14 -1638 ((-82) $)) (-14 -2411 ((-3 |t#4| "failed") $)) (-14 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T))
-((-3771 (($ $ (-1091) |#2|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-248 |#2|))) 15 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3803 (($ $ |#2|) 11 T ELT)))
-(((-286 |#1| |#2|) (-10 -7 (-14 -3803 (|#1| |#1| |#2|)) (-14 -3771 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-14 -3771 (|#1| |#1| |#2| |#2|)) (-14 -3771 (|#1| |#1| (-248 |#2|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#2|)))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 |#2|))) (-14 -3771 (|#1| |#1| (-1091) |#2|))) (-287 |#2|) (-1014)) (T -286))
-NIL
-((-3846 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3771 (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 16 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 15 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 14 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-259 |#1|)) ELT)) (-3803 (($ $ |#1|) 11 (|has| |#1| (-240 |#1| |#1|)) ELT)))
-(((-287 |#1|) (-110) (-1014)) (T -287))
-NIL
-(-12 (-380 |t#1|) (-10 -8 (IF (|has| |t#1| (-240 |t#1| |t#1|)) (-6 (-240 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456 (-1091) |t#1|)) (-6 (-456 (-1091) |t#1|)) |%noBranch|)))
-(((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-380 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3159 (((-818 |#1|) $) NIL T ELT)) (-1797 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1681 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2013 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3135 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2012 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-818 |#1|) (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3227 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-288 |#1| |#2|) (-279 (-818 |#1|)) (-831) (-831)) (T -288))
-NIL
-((-1648 (((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1797 (($ (-1180 (-349 |#3|)) (-1180 $)) NIL T ELT) (($ (-1180 (-349 |#3|))) NIL T ELT) (($ (-1180 |#3|) |#3|) 172 T ELT)) (-1653 (((-1180 $) (-1180 $)) 156 T ELT)) (-1640 (((-584 (-584 |#2|))) 126 T ELT)) (-1665 (((-82) |#2| |#2|) 76 T ELT)) (-3506 (($ $) 148 T ELT)) (-3380 (((-695)) 171 T ELT)) (-1654 (((-1180 $) (-1180 $)) 219 T ELT)) (-1641 (((-584 (-858 |#2|)) (-1091)) 115 T ELT)) (-1657 (((-82) $) 168 T ELT)) (-1656 (((-82) $) 27 T ELT) (((-82) $ |#2|) 31 T ELT) (((-82) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-695)) 183 T ELT)) (-3803 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3761 (($ $ (-1 (-349 |#3|) (-349 |#3|))) NIL T ELT) (($ $ (-1 (-349 |#3|) (-349 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1180 $) (-1180 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-82)) 34 T ELT)))
-(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -1640 ((-584 (-584 |#2|)))) (-14 -1641 ((-584 (-858 |#2|)) (-1091))) (-14 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-14 -1643 ((-3 |#3| #1="failed"))) (-14 -1644 ((-3 |#3| #1#))) (-14 -3803 (|#2| |#1| |#2| |#2|)) (-14 -3506 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-14 -1656 ((-82) |#1| |#3|)) (-14 -1656 ((-82) |#1| |#2|)) (-14 -1797 (|#1| (-1180 |#3|) |#3|)) (-14 -1648 ((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) |#1|)) (-14 -1653 ((-1180 |#1|) (-1180 |#1|))) (-14 -1654 ((-1180 |#1|) (-1180 |#1|))) (-14 -1655 ((-1180 |#1|) (-1180 |#1|))) (-14 -1656 ((-82) |#1|)) (-14 -1657 ((-82) |#1|)) (-14 -1665 ((-82) |#2| |#2|)) (-14 -1666 ((-82))) (-14 -1667 ((-695))) (-14 -3380 ((-695))) (-14 -3761 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)) (-695))) (-14 -3761 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)))) (-14 -1797 (|#1| (-1180 (-349 |#3|)))) (-14 -1797 (|#1| (-1180 (-349 |#3|)) (-1180 |#1|)))) (-290 |#2| |#3| |#4|) (-1135) (-1156 |#2|) (-1156 (-349 |#3|))) (T -289))
-((-3380 (*1 *2) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1667 (*1 *2) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1666 (*1 *2) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-82)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-11 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-82)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1641 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) (-1640 (*1 *2) (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| (-349 |#2|) (-311)) ELT)) (-2065 (($ $) 115 (|has| (-349 |#2|) (-311)) ELT)) (-2063 (((-82) $) 117 (|has| (-349 |#2|) (-311)) ELT)) (-1787 (((-631 (-349 |#2|)) (-1180 $)) 61 T ELT) (((-631 (-349 |#2|))) 77 T ELT)) (-3333 (((-349 |#2|) $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| (-349 |#2|) (-298)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| (-349 |#2|) (-311)) ELT)) (-3974 (((-347 $) $) 135 (|has| (-349 |#2|) (-311)) ELT)) (-1609 (((-82) $ $) 125 (|has| (-349 |#2|) (-311)) ELT)) (-3139 (((-695)) 108 (|has| (-349 |#2|) (-319)) ELT)) (-1662 (((-82)) 242 T ELT)) (-1661 (((-82) |#1|) 241 T ELT) (((-82) |#2|) 240 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 194 (|has| (-349 |#2|) (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 192 (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-3 (-349 |#2|) #1#) $) 189 T ELT)) (-3159 (((-485) $) 193 (|has| (-349 |#2|) (-951 (-485))) ELT) (((-349 (-485)) $) 191 (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-349 |#2|) $) 190 T ELT)) (-1797 (($ (-1180 (-349 |#2|)) (-1180 $)) 63 T ELT) (($ (-1180 (-349 |#2|))) 80 T ELT) (($ (-1180 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-349 |#2|) (-298)) ELT)) (-2567 (($ $ $) 129 (|has| (-349 |#2|) (-311)) ELT)) (-1786 (((-631 (-349 |#2|)) $ (-1180 $)) 68 T ELT) (((-631 (-349 |#2|)) $) 75 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 186 (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-631 $) (-1180 $)) 184 T ELT) (((-631 (-349 |#2|)) (-631 $)) 183 T ELT)) (-1653 (((-1180 $) (-1180 $)) 230 T ELT)) (-3845 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-349 |#3|)) 175 (|has| (-349 |#2|) (-311)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-584 (-584 |#1|))) 211 (|has| |#1| (-319)) ELT)) (-1665 (((-82) |#1| |#1|) 246 T ELT)) (-3111 (((-831)) 69 T ELT)) (-2997 (($) 111 (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-82)) 239 T ELT)) (-1659 (((-82) |#1|) 238 T ELT) (((-82) |#2|) 237 T ELT)) (-2566 (($ $ $) 128 (|has| (-349 |#2|) (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 123 (|has| (-349 |#2|) (-311)) ELT)) (-3506 (($ $) 217 T ELT)) (-2836 (($) 169 (|has| (-349 |#2|) (-298)) ELT)) (-1681 (((-82) $) 170 (|has| (-349 |#2|) (-298)) ELT)) (-1769 (($ $ (-695)) 161 (|has| (-349 |#2|) (-298)) ELT) (($ $) 160 (|has| (-349 |#2|) (-298)) ELT)) (-3726 (((-82) $) 136 (|has| (-349 |#2|) (-311)) ELT)) (-3775 (((-831) $) 172 (|has| (-349 |#2|) (-298)) ELT) (((-744 (-831)) $) 158 (|has| (-349 |#2|) (-298)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3380 (((-695)) 249 T ELT)) (-1654 (((-1180 $) (-1180 $)) 231 T ELT)) (-3135 (((-349 |#2|) $) 66 T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) 212 (|has| |#1| (-311)) ELT)) (-3448 (((-633 $) $) 162 (|has| (-349 |#2|) (-298)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| (-349 |#2|) (-311)) ELT)) (-2016 ((|#3| $) 59 (|has| (-349 |#2|) (-311)) ELT)) (-2012 (((-831) $) 110 (|has| (-349 |#2|) (-319)) ELT)) (-3082 ((|#3| $) 176 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 188 (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-1180 $) $) 182 T ELT) (((-631 (-349 |#2|)) (-1180 $)) 181 T ELT)) (-1896 (($ (-584 $)) 121 (|has| (-349 |#2|) (-311)) ELT) (($ $ $) 120 (|has| (-349 |#2|) (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1649 (((-631 (-349 |#2|))) 226 T ELT)) (-1651 (((-631 (-349 |#2|))) 228 T ELT)) (-2487 (($ $) 137 (|has| (-349 |#2|) (-311)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 222 T ELT)) (-1650 (((-631 (-349 |#2|))) 227 T ELT)) (-1652 (((-631 (-349 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1180 $)) 235 T ELT)) (-3922 (((-1180 $)) 236 T ELT)) (-1657 (((-82) $) 234 T ELT)) (-1656 (((-82) $) 233 T ELT) (((-82) $ |#1|) 220 T ELT) (((-82) $ |#2|) 219 T ELT)) (-3449 (($) 163 (|has| (-349 |#2|) (-298)) CONST)) (-2402 (($ (-831)) 109 (|has| (-349 |#2|) (-319)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1667 (((-695)) 248 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| (-349 |#2|) (-311)) ELT)) (-3147 (($ (-584 $)) 119 (|has| (-349 |#2|) (-311)) ELT) (($ $ $) 118 (|has| (-349 |#2|) (-311)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 166 (|has| (-349 |#2|) (-298)) ELT)) (-3735 (((-347 $) $) 133 (|has| (-349 |#2|) (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-349 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| (-349 |#2|) (-311)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| (-349 |#2|) (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 124 (|has| (-349 |#2|) (-311)) ELT)) (-1608 (((-695) $) 126 (|has| (-349 |#2|) (-311)) ELT)) (-3803 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| (-349 |#2|) (-311)) ELT)) (-3760 (((-349 |#2|) (-1180 $)) 62 T ELT) (((-349 |#2|)) 76 T ELT)) (-1770 (((-695) $) 171 (|has| (-349 |#2|) (-298)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| (-349 |#2|) (-298)) ELT)) (-3761 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 145 (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) 144 (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-1091)) 146 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-695)) 156 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-188))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-189))) (-2565 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) 154 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-188))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-189))) (-2565 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-2410 (((-631 (-349 |#2|)) (-1180 $) (-1 (-349 |#2|) (-349 |#2|))) 174 (|has| (-349 |#2|) (-311)) ELT)) (-3188 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-349 |#2|) (-298)) ELT)) (-3227 (((-1180 (-349 |#2|)) $ (-1180 $)) 65 T ELT) (((-631 (-349 |#2|)) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 (-349 |#2|)) $) 82 T ELT) (((-631 (-349 |#2|)) (-1180 $)) 81 T ELT)) (-3975 (((-1180 (-349 |#2|)) $) 79 T ELT) (($ (-1180 (-349 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| (-349 |#2|) (-298)) ELT)) (-1655 (((-1180 $) (-1180 $)) 232 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 |#2|)) 52 T ELT) (($ (-349 (-485))) 107 (OR (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-951 (-349 (-485))))) ELT) (($ $) 112 (|has| (-349 |#2|) (-311)) ELT)) (-2705 (($ $) 164 (|has| (-349 |#2|) (-298)) ELT) (((-633 $) $) 58 (|has| (-349 |#2|) (-115)) ELT)) (-2452 ((|#3| $) 60 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1664 (((-82)) 245 T ELT)) (-1663 (((-82) |#1|) 244 T ELT) (((-82) |#2|) 243 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-2064 (((-82) $ $) 116 (|has| (-349 |#2|) (-311)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-82)) 247 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 143 (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) 142 (|has| (-349 |#2|) (-311)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-1091)) 147 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-2565 (|has| (-349 |#2|) (-812 (-1091))) (|has| (-349 |#2|) (-311)))) ELT) (($ $ (-695)) 157 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-188))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-189))) (-2565 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) 155 (OR (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-188))) (-2565 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-189))) (-2565 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| (-349 |#2|) (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| (-349 |#2|) (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 |#2|)) 54 T ELT) (($ (-349 |#2|) $) 53 T ELT) (($ (-349 (-485)) $) 140 (|has| (-349 |#2|) (-311)) ELT) (($ $ (-349 (-485))) 139 (|has| (-349 |#2|) (-311)) ELT)))
-(((-290 |#1| |#2| |#3|) (-110) (-1135) (-1156 |t#1|) (-1156 (-349 |t#2|))) (T -290))
-((-3380 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-695)))) (-1667 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-695)))) (-1666 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1665 (*1 *2 *3 *3) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1664 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1663 (*1 *2 *3) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1663 (*1 *2 *3) (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82)))) (-1662 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1661 (*1 *2 *3) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1661 (*1 *2 *3) (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82)))) (-1660 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1659 (*1 *2 *3) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1659 (*1 *2 *3) (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82)))) (-3922 (*1 *2) (-11 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1658 (*1 *2) (-11 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1657 (*1 *2 *1) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1656 (*1 *2 *1) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1655 (*1 *2 *2) (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))) (-1654 (*1 *2 *2) (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))) (-1653 (*1 *2 *2) (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))) (-1652 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))) (-1651 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))) (-1650 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))) (-1649 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))) (-1648 (*1 *2 *1) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1797 (*1 *1 *2 *3) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1156 (-349 *3))))) (-1647 (*1 *2 *1) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1156 (-349 *3))))) (-1645 (*1 *2 *3) (-11 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))) (-1656 (*1 *2 *1 *3) (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82)))) (-3761 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))) (-3506 (*1 *1 *1) (-11 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-349 *3))))) (-3803 (*1 *2 *1 *2 *2) (-11 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-349 *3))))) (-1644 (*1 *2) (|partial| -11 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-349 *2))) (-4 *2 (-1156 *3)))) (-1643 (*1 *2) (|partial| -11 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-349 *2))) (-4 *2 (-1156 *3)))) (-1642 (*1 *2 *1 *3) (-11 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) (-4 *6 (-1156 (-349 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-290 *4 *5 *6)))) (-1641 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-4 *4 (-311)) (-5 *2 (-584 (-858 *4))))) (-1640 (*1 *2) (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-584 (-584 *3))))))
-(-12 (-662 (-349 |t#2|) |t#3|) (-10 -8 (-14 -3380 ((-695))) (-14 -1667 ((-695))) (-14 -1666 ((-82))) (-14 -1665 ((-82) |t#1| |t#1|)) (-14 -1664 ((-82))) (-14 -1663 ((-82) |t#1|)) (-14 -1663 ((-82) |t#2|)) (-14 -1662 ((-82))) (-14 -1661 ((-82) |t#1|)) (-14 -1661 ((-82) |t#2|)) (-14 -1660 ((-82))) (-14 -1659 ((-82) |t#1|)) (-14 -1659 ((-82) |t#2|)) (-14 -3922 ((-1180 $))) (-14 -1658 ((-1180 $))) (-14 -1657 ((-82) $)) (-14 -1656 ((-82) $)) (-14 -1655 ((-1180 $) (-1180 $))) (-14 -1654 ((-1180 $) (-1180 $))) (-14 -1653 ((-1180 $) (-1180 $))) (-14 -1652 ((-631 (-349 |t#2|)))) (-14 -1651 ((-631 (-349 |t#2|)))) (-14 -1650 ((-631 (-349 |t#2|)))) (-14 -1649 ((-631 (-349 |t#2|)))) (-14 -1648 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-14 -1797 ($ (-1180 |t#2|) |t#2|)) (-14 -1647 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-14 -1646 ($ (-1180 |t#2|) |t#2|)) (-14 -1645 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-14 -1656 ((-82) $ |t#1|)) (-14 -1656 ((-82) $ |t#2|)) (-14 -3761 ($ $ (-1 |t#2| |t#2|))) (-14 -3506 ($ $)) (-14 -3803 (|t#1| $ |t#1| |t#1|)) (-14 -1644 ((-3 |t#2| "failed"))) (-14 -1643 ((-3 |t#2| "failed"))) (-14 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-311)) (-14 -1641 ((-584 (-858 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-319)) (-14 -1640 ((-584 (-584 |t#1|)))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-35 (-349 |#2|)) . T) ((-35 $) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-79 (-349 |#2|) (-349 |#2|)) . T) ((-79 $ $) . T) ((-101) . T) ((-115) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-115))) ((-117) |has| (-349 |#2|) (-117)) ((-556 (-349 (-485))) OR (|has| (-349 |#2|) (-951 (-349 (-485)))) (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-556 (-349 |#2|)) . T) ((-556 (-485)) . T) ((-556 $) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-553 (-773)) . T) ((-145) . T) ((-554 |#3|) . T) ((-185 $) OR (|has| (-349 |#2|) (-298)) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311)))) ((-183 (-349 |#2|)) |has| (-349 |#2|) (-311)) ((-189) OR (|has| (-349 |#2|) (-298)) (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311)))) ((-188) OR (|has| (-349 |#2|) (-298)) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311)))) ((-224 (-349 |#2|)) |has| (-349 |#2|) (-311)) ((-200) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-245) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-257) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-311) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-344) |has| (-349 |#2|) (-298)) ((-319) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-319))) ((-298) |has| (-349 |#2|) (-298)) ((-321 (-349 |#2|) |#3|) . T) ((-352 (-349 |#2|) |#3|) . T) ((-328 (-349 |#2|)) . T) ((-354 (-349 |#2|)) . T) ((-392) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-496) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-589 (-349 |#2|)) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-591 (-349 |#2|)) . T) ((-591 (-485)) |has| (-349 |#2|) (-581 (-485))) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-583 (-349 |#2|)) . T) ((-583 $) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-581 (-349 |#2|)) . T) ((-581 (-485)) |has| (-349 |#2|) (-581 (-485))) ((-655 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-655 (-349 |#2|)) . T) ((-655 $) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-662 (-349 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1091)) OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091))))) ((-810 (-1091)) -11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) ((-812 (-1091)) OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091))))) ((-833) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-951 (-349 (-485))) |has| (-349 |#2|) (-951 (-349 (-485)))) ((-951 (-349 |#2|)) . T) ((-951 (-485)) |has| (-349 |#2|) (-951 (-485))) ((-964 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-964 (-349 |#2|)) . T) ((-964 $) . T) ((-969 (-349 (-485))) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))) ((-969 (-349 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| (-349 |#2|) (-298)) ((-1130) . T) ((-1135) OR (|has| (-349 |#2|) (-298)) (|has| (-349 |#2|) (-311))))
-((-3846 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
-(((-291 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-14 -3846 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|) (-1135) (-1156 |#5|) (-1156 (-349 |#6|)) (-290 |#5| |#6| |#7|)) (T -291))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-290 *8 *9 *10)) (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) (-4 *10 (-1156 (-349 *9))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3159 (((-818 |#1|) $) NIL T ELT)) (-1797 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1681 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2013 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3135 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2012 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-818 |#1|) (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2411 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3227 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-292 |#1| |#2|) (-12 (-279 (-818 |#1|)) (-10 -7 (-14 -1668 ((-870 (-1034)))))) (-831) (-831)) (T -292))
-((-1668 (*1 *2) (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-292 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 56 (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 139 T ELT)) (-3159 ((|#1| $) 111 T ELT)) (-1797 (($ (-1180 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 122 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) 155 (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) 65 (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) 60 (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 62 T ELT)) (-2015 (($) 157 (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 115 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) 165 (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 172 T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) 94 (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) 142 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) 57 T ELT)) (-2411 (($) 153 (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 117 (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) 156 (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-319)) ELT)) (-1630 (($) 162 (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) 76 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) 150 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 141 T ELT) (((-1180 $) (-831)) 96 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) 66 T CONST)) (-2669 (($) 101 T CONST)) (-3932 (($ $) 105 (|has| |#1| (-319)) ELT) (($ $ (-695)) NIL (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) 64 T ELT)) (-3953 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3840 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
-(((-293 |#1| |#2|) (-12 (-279 |#1|) (-10 -7 (-14 -1668 ((-870 (-1034)))))) (-298) (-1086 |#1|)) (T -293))
-((-1668 (*1 *2) (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) (-13 *4 (-1086 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-319)) ELT)) (-1630 (($) NIL (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-695)) NIL (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-294 |#1| |#2|) (-12 (-279 |#1|) (-10 -7 (-14 -1668 ((-870 (-1034)))))) (-298) (-831)) (T -294))
-((-1668 (*1 *2) (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))))
-((-1678 (((-695) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) 61 T ELT)) (-1669 (((-870 (-1034)) (-1086 |#1|)) 112 T ELT)) (-1670 (((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) (-1086 |#1|)) 103 T ELT)) (-1671 (((-631 |#1|) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) 113 T ELT)) (-1672 (((-3 (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) "failed") (-831)) 13 T ELT)) (-1673 (((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) (-831)) 18 T ELT)))
-(((-295 |#1|) (-10 -7 (-14 -1669 ((-870 (-1034)) (-1086 |#1|))) (-14 -1670 ((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) (-1086 |#1|))) (-14 -1671 ((-631 |#1|) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))))) (-14 -1678 ((-695) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))))) (-14 -1672 ((-3 (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) "failed") (-831))) (-14 -1673 ((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) (-831)))) (-298)) (T -295))
-((-1673 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1672 (*1 *2 *3) (|partial| -11 (-5 *3 (-831)) (-5 *2 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1678 (*1 *2 *3) (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))) (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4)))) (-1671 (*1 *2 *3) (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))) (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4)))) (-1670 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))) (-5 *1 (-295 *4)))) (-1669 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1034))) (-5 *1 (-295 *4)))))
-((-3950 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
-(((-296 |#1| |#2| |#3|) (-10 -7 (-14 -3950 (|#3| |#1|)) (-14 -3950 (|#1| |#3|))) (-279 |#2|) (-298) (-279 |#2|)) (T -296))
-((-3950 (*1 *2 *3) (-11 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) (-4 *3 (-279 *4)))) (-3950 (*1 *2 *3) (-11 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) (-4 *3 (-279 *4)))))
-((-1681 (((-82) $) 65 T ELT)) (-3775 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3448 (((-633 $) $) 21 T ELT)) (-3449 (($) 9 T CONST)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 120 T ELT)) (-1770 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3761 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 41 T ELT)) (-2705 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT)))
-(((-297 |#1|) (-10 -7 (-14 -3775 ((-831) |#1|)) (-14 -1770 ((-695) |#1|)) (-14 -1681 ((-82) |#1|)) (-14 -1675 (|#1|)) (-14 -2706 ((-3 (-1180 |#1|) #1="failed") (-631 |#1|))) (-14 -2705 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -3449 (|#1|) -3956) (-14 -3448 ((-633 |#1|) |#1|)) (-14 -1770 ((-3 (-695) #1#) |#1| |#1|)) (-14 -3775 ((-744 (-831)) |#1|)) (-14 -2705 ((-633 |#1|) |#1|)) (-14 -2711 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-298)) (T -297))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 113 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3139 (((-695)) 123 T ELT)) (-3727 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 126 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-2836 (($) 111 T ELT)) (-1681 (((-82) $) 110 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-3775 (((-744 (-831)) $) 99 T ELT) (((-831) $) 108 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3448 (((-633 $) $) 122 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2012 (((-831) $) 125 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 121 T CONST)) (-2402 (($ (-831)) 124 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 114 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-695) "failed") $ $) 98 T ELT) (((-695) $) 109 T ELT)) (-3761 (($ $) 120 T ELT) (($ $ (-695)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 115 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT)) (-2705 (((-633 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 119 T ELT) (($ $ (-695)) 117 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-298) (-110)) (T -298))
-((-2705 (*1 *1 *1) (-4 *1 (-298))) (-2706 (*1 *2 *3) (|partial| -11 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1180 *1)))) (-1677 (*1 *2) (-11 (-4 *1 (-298)) (-5 *2 (-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))))) (-1676 (*1 *2 *3) (-11 (-4 *1 (-298)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))) (-1675 (*1 *1) (-4 *1 (-298))) (-2836 (*1 *1) (-4 *1 (-298))) (-1681 (*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-82)))) (-1770 (*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-695)))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-831)))) (-1674 (*1 *2) (-11 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-12 (-344) (-319) (-1067) (-189) (-10 -8 (-14 -2705 ($ $)) (-14 -2706 ((-3 (-1180 $) "failed") (-631 $))) (-14 -1677 ((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485)))))) (-14 -1676 ((-1103 (-831) (-695)) (-485))) (-14 -1675 ($)) (-14 -2836 ($)) (-14 -1681 ((-82) $)) (-14 -1770 ((-695) $)) (-14 -3775 ((-831) $)) (-14 -1674 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-115) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-185 $) . T) ((-189) . T) ((-188) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-344) . T) ((-319) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T))
-((-3923 (((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3922 (((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT)))
-(((-299 |#1| |#2| |#3|) (-10 -7 (-14 -3922 ((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-14 -3923 ((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))) (-1156 |#1|) (-352 |#1| |#2|)) (T -299))
-((-3923 (*1 *2 *3) (-11 (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3922 (*1 *2) (-11 (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3159 (((-818 |#1|) $) NIL T ELT)) (-1797 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1681 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2013 (((-82) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3135 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2012 (((-831) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-818 |#1|) (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3405 (-818 |#1|)) (|:| -2402 (-1034)))))) NIL T ELT)) (-1679 (((-631 (-818 |#1|))) NIL T ELT)) (-2411 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3227 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-115)) (|has| (-818 |#1|) (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| (-818 |#1|) (-319)) ELT) (($ $) NIL (|has| (-818 |#1|) (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-300 |#1| |#2|) (-12 (-279 (-818 |#1|)) (-10 -7 (-14 -1680 ((-1180 (-584 (-2 (|:| -3405 (-818 |#1|)) (|:| -2402 (-1034))))))) (-14 -1679 ((-631 (-818 |#1|)))) (-14 -1678 ((-695))))) (-831) (-831)) (T -300))
-((-1680 (*1 *2) (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 (-818 *3)) (|:| -2402 (-1034)))))) (-5 *1 (-300 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))) (-1679 (*1 *2) (-11 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))) (-1678 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))))
-((-2571 (((-82) $ $) 72 T ELT)) (-3191 (((-82) $) 87 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 168 (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1678 (((-695)) 102 T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) 185 (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 126 T ELT)) (-3159 ((|#1| $) 104 T ELT)) (-1797 (($ (-1180 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 180 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) 169 (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) 112 (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) 198 (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 212 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) 146 (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) 86 (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) 83 (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) 95 (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) 82 (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 216 T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) 148 (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) 122 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) 96 T ELT)) (-1679 (((-631 |#1|)) 100 T ELT)) (-2411 (($) 109 (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 171 (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3188 (((-1086 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-319)) ELT)) (-1630 (($) NIL (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) 120 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) 178 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 195 T ELT) (((-1180 $) (-831)) 115 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) 184 T CONST)) (-2669 (($) 159 T CONST)) (-3932 (($ $) 121 (|has| |#1| (-319)) ELT) (($ $ (-695)) 113 (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) 206 T ELT)) (-3953 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3840 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3842 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
-(((-301 |#1| |#2|) (-12 (-279 |#1|) (-10 -7 (-14 -1680 ((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))))) (-14 -1679 ((-631 |#1|))) (-14 -1678 ((-695))))) (-298) (-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))))) (T -301))
-((-1680 (*1 *2) (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034)))))) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-13 *4 (-3 (-1086 *3) *2)))) (-1679 (*1 *2) (-11 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-13 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034))))))))) (-1678 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-13 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034))))))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034)))))) NIL T ELT)) (-1679 (((-631 |#1|)) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-319)) ELT)) (-1630 (($) NIL (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-695)) NIL (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-302 |#1| |#2|) (-12 (-279 |#1|) (-10 -7 (-14 -1680 ((-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))))) (-14 -1679 ((-631 |#1|))) (-14 -1678 ((-695))))) (-298) (-831)) (T -302))
-((-1680 (*1 *2) (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))) (-1679 (*1 *2) (-11 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))) (-1678 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 130 (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) 156 (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 104 T ELT)) (-3159 ((|#1| $) 101 T ELT)) (-1797 (($ (-1180 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) 93 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) 52 (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) 131 (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) 85 (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 76 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) 108 (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) 106 (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) 158 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) 45 (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 125 (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3188 (((-1086 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-319)) ELT)) (-1630 (($) NIL (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) 64 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) 160 T CONST)) (-1266 (((-82) $ $) 162 T ELT)) (-2014 (((-1180 $)) 120 T ELT) (((-1180 $) (-831)) 59 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) 122 T CONST)) (-2669 (($) 40 T CONST)) (-3932 (($ $) 79 (|has| |#1| (-319)) ELT) (($ $ (-695)) NIL (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) 118 T ELT)) (-3953 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3842 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
-(((-303 |#1| |#2|) (-279 |#1|) (-298) (-1086 |#1|)) (T -303))
-NIL
-((-1696 (((-870 (-1086 |#1|)) (-1086 |#1|)) 49 T ELT)) (-2997 (((-1086 |#1|) (-831) (-831)) 159 T ELT) (((-1086 |#1|) (-831)) 155 T ELT)) (-1681 (((-82) (-1086 |#1|)) 110 T ELT)) (-1683 (((-831) (-831)) 85 T ELT)) (-1684 (((-831) (-831)) 94 T ELT)) (-1682 (((-831) (-831)) 83 T ELT)) (-2013 (((-82) (-1086 |#1|)) 114 T ELT)) (-1691 (((-3 (-1086 |#1|) #1="failed") (-1086 |#1|)) 139 T ELT)) (-1694 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 144 T ELT)) (-1693 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 143 T ELT)) (-1692 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 142 T ELT)) (-1690 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 134 T ELT)) (-1695 (((-1086 |#1|) (-1086 |#1|)) 71 T ELT)) (-1686 (((-1086 |#1|) (-831)) 149 T ELT)) (-1689 (((-1086 |#1|) (-831)) 152 T ELT)) (-1688 (((-1086 |#1|) (-831)) 151 T ELT)) (-1687 (((-1086 |#1|) (-831)) 150 T ELT)) (-1685 (((-1086 |#1|) (-831)) 147 T ELT)))
-(((-304 |#1|) (-10 -7 (-14 -1681 ((-82) (-1086 |#1|))) (-14 -2013 ((-82) (-1086 |#1|))) (-14 -1682 ((-831) (-831))) (-14 -1683 ((-831) (-831))) (-14 -1684 ((-831) (-831))) (-14 -1685 ((-1086 |#1|) (-831))) (-14 -1686 ((-1086 |#1|) (-831))) (-14 -1687 ((-1086 |#1|) (-831))) (-14 -1688 ((-1086 |#1|) (-831))) (-14 -1689 ((-1086 |#1|) (-831))) (-14 -1690 ((-3 (-1086 |#1|) #1="failed") (-1086 |#1|))) (-14 -1691 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-14 -1692 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-14 -1693 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-14 -1694 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-14 -2997 ((-1086 |#1|) (-831))) (-14 -2997 ((-1086 |#1|) (-831) (-831))) (-14 -1695 ((-1086 |#1|) (-1086 |#1|))) (-14 -1696 ((-870 (-1086 |#1|)) (-1086 |#1|)))) (-298)) (T -304))
-((-1696 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-304 *4)) (-5 *3 (-1086 *4)))) (-1695 (*1 *2 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-2997 (*1 *2 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-2997 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1694 (*1 *2 *2) (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1693 (*1 *2 *2) (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1692 (*1 *2 *2) (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1691 (*1 *2 *2) (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1690 (*1 *2 *2) (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1689 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1688 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1687 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1686 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1685 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1684 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1683 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1682 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-2013 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-304 *4)))) (-1681 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-304 *4)))))
-((-1697 ((|#1| (-1086 |#2|)) 60 T ELT)))
-(((-305 |#1| |#2|) (-10 -7 (-14 -1697 (|#1| (-1086 |#2|)))) (-12 (-344) (-10 -7 (-14 -3950 (|#1| |#2|)) (-14 -2012 ((-831) |#1|)) (-14 -2014 ((-1180 |#1|) (-831))) (-14 -3932 (|#1| |#1|)))) (-298)) (T -305))
-((-1697 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-4 *2 (-12 (-344) (-10 -7 (-14 -3950 (*2 *4)) (-14 -2012 ((-831) *2)) (-14 -2014 ((-1180 *2) (-831))) (-14 -3932 (*2 *2))))) (-5 *1 (-305 *2 *4)))))
-((-2707 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT)))
-(((-306 |#1| |#2| |#3|) (-10 -7 (-14 -2707 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-298) (-1156 |#1|) (-1156 |#2|)) (T -306))
-((-2707 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1797 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| |#1| (-319)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-319)) ELT)) (-2013 (((-82) $) NIL (|has| |#1| (-319)) ELT)) (-3135 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-319)) ELT)) (-1630 (($) NIL (|has| |#1| (-319)) ELT)) (-3227 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2705 (($ $) NIL (|has| |#1| (-319)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-695)) NIL (|has| |#1| (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-307 |#1| |#2|) (-279 |#1|) (-298) (-831)) (T -307))
-NIL
-((-2251 (((-82) (-584 (-858 |#1|))) 41 T ELT)) (-2253 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2252 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT)))
-(((-308 |#1| |#2|) (-10 -7 (-14 -2251 ((-82) (-584 (-858 |#1|)))) (-14 -2252 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-14 -2253 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-392) (-584 (-1091))) (T -308))
-((-2253 (*1 *2 *2) (-11 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-308 *3 *4)) (-13 *4 (-584 (-1091))))) (-2252 (*1 *2 *2) (|partial| -11 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-308 *3 *4)) (-13 *4 (-584 (-1091))))) (-2251 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-82)) (-5 *1 (-308 *4 *5)) (-13 *5 (-584 (-1091))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2412 (((-82) $) 17 T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-485) $ (-485)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2293 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 28 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1784 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-485)))) $) 30 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
-(((-309 |#1|) (-12 (-413) (-951 |#1|) (-10 -8 (-14 * ($ |#1| $)) (-14 * ($ $ |#1|)) (-14 ** ($ |#1| (-485))) (-14 -3139 ((-695) $)) (-14 -2302 ((-485) $ (-485))) (-14 -2301 (|#1| $ (-485))) (-14 -2293 ($ (-1 (-485) (-485)) $)) (-14 -2292 ($ (-1 |#1| |#1|) $)) (-14 -1784 ((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-485)))) $)))) (-1014)) (T -309))
-((* (*1 *1 *2 *1) (-11 (-5 *1 (-309 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-11 (-5 *1 (-309 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-309 *2)) (-4 *2 (-1014)))) (-3139 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1014)))) (-2302 (*1 *2 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-309 *3)) (-4 *3 (-1014)))) (-2301 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-309 *2)) (-4 *2 (-1014)))) (-2293 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-309 *3)) (-4 *3 (-1014)))) (-2292 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-309 *3)))) (-1784 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 (-485))))) (-5 *1 (-309 *3)) (-4 *3 (-1014)))))
-((-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 13 T ELT)) (-2065 (($ $) 14 T ELT)) (-3974 (((-347 $) $) 31 T ELT)) (-3726 (((-82) $) 27 T ELT)) (-2487 (($ $) 19 T ELT)) (-3147 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3735 (((-347 $) $) 32 T ELT)) (-3469 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-695) $) 25 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 36 T ELT)) (-2064 (((-82) $ $) 16 T ELT)) (-3953 (($ $ $) 34 T ELT)))
-(((-310 |#1|) (-10 -7 (-14 -3953 (|#1| |#1| |#1|)) (-14 -2487 (|#1| |#1|)) (-14 -3726 ((-82) |#1|)) (-14 -3974 ((-347 |#1|) |#1|)) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -1608 ((-695) |#1|)) (-14 -3147 (|#1| (-584 |#1|))) (-14 -3147 (|#1| |#1| |#1|)) (-14 -2064 ((-82) |#1| |#1|)) (-14 -2065 (|#1| |#1|)) (-14 -2066 ((-2 (|:| -1777 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-14 -3469 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-311) (-110)) (T -311))
-((-3953 (*1 *1 *1 *1) (-4 *1 (-311))))
-(-12 (-257) (-1135) (-200) (-10 -8 (-14 -3953 ($ $ $)) (-6 -3995) (-6 -3989)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1074)) 23 T ELT)) (-3622 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-337)) 22 T ELT) (($ (-337) (-1074)) 21 T ELT)) (-3545 (((-337) $) 25 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) 26 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 19 T ELT)))
-(((-312 |#1|) (-12 (-313 (-337) |#1|) (-10 -8 (-14 -3622 ((-3 |#1| "failed") $)))) (-1014)) (T -312))
-((-3622 (*1 *2 *1) (|partial| -11 (-5 *1 (-312 *2)) (-4 *2 (-1014)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1074)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1074)) 23 T ELT)) (-3545 ((|#1| $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1700 (((-1074) $) 19 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-313 |#1| |#2|) (-110) (-1014) (-1014)) (T -313))
-((-1703 (*1 *1 *2) (-11 (-4 *1 (-313 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1703 (*1 *1 *2 *3) (-11 (-5 *3 (-1074)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-1702 (*1 *1 *1 *2) (-11 (-5 *2 (-1074)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1701 (*1 *1 *1) (-11 (-4 *1 (-313 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3545 (*1 *2 *1) (-11 (-4 *1 (-313 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1700 (*1 *2 *1) (-11 (-4 *1 (-313 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1) (-11 (-4 *1 (-313 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1698 (*1 *2 *1 *2) (-11 (-4 *1 (-313 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(-12 (-1014) (-10 -8 (-14 -1703 ($ |t#1|)) (-14 -1703 ($ |t#1| (-1074))) (-14 -1702 ($ $ (-1074))) (-14 -1701 ($ $)) (-14 -3545 (|t#1| $)) (-14 -1700 ((-1074) $)) (-14 -1699 (|t#2| $)) (-14 -1698 (|t#2| $ |t#2|))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3226 (((-1180 (-631 |#2|)) (-1180 $)) 67 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) 142 T ELT)) (-2406 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1086 |#2|) $) 98 T ELT)) (-1795 ((|#2| (-1180 $)) 122 T ELT)) (-1724 (((-1086 |#2|) $) 32 T ELT)) (-1718 (((-82)) 116 T ELT)) (-1797 (($ (-1180 |#2|) (-1180 $)) 132 T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-82)) 111 T ELT)) (-1709 (((-82)) 106 T ELT)) (-1713 (((-82)) 58 T ELT)) (-1794 (((-631 |#2|) (-1180 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1792 (((-631 |#2|) $ (-1180 $)) 141 T ELT)) (-2407 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1086 |#2|) $) 97 T ELT)) (-1796 ((|#2| (-1180 $)) 120 T ELT)) (-1725 (((-1086 |#2|) $) 30 T ELT)) (-1719 (((-82)) 115 T ELT)) (-1710 (((-82)) 108 T ELT)) (-1712 (((-82)) 56 T ELT)) (-1714 (((-82)) 103 T ELT)) (-1717 (((-82)) 117 T ELT)) (-3227 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 128 T ELT)) (-1723 (((-82)) 113 T ELT)) (-1708 (((-584 (-1180 |#2|))) 102 T ELT)) (-1721 (((-82)) 114 T ELT)) (-1722 (((-82)) 112 T ELT)) (-1720 (((-82)) 51 T ELT)) (-1716 (((-82)) 118 T ELT)))
-(((-314 |#1| |#2|) (-10 -7 (-14 -1706 ((-1086 |#2|) |#1|)) (-14 -1707 ((-1086 |#2|) |#1|)) (-14 -1708 ((-584 (-1180 |#2|)))) (-14 -2406 ((-3 |#1| #1="failed") |#1|)) (-14 -2407 ((-3 |#1| #1#) |#1|)) (-14 -3470 ((-3 |#1| #1#) |#1|)) (-14 -1709 ((-82))) (-14 -1710 ((-82))) (-14 -1711 ((-82))) (-14 -1712 ((-82))) (-14 -1713 ((-82))) (-14 -1714 ((-82))) (-14 -1716 ((-82))) (-14 -1717 ((-82))) (-14 -1718 ((-82))) (-14 -1719 ((-82))) (-14 -1720 ((-82))) (-14 -1721 ((-82))) (-14 -1722 ((-82))) (-14 -1723 ((-82))) (-14 -1724 ((-1086 |#2|) |#1|)) (-14 -1725 ((-1086 |#2|) |#1|)) (-14 -1793 ((-631 |#2|) (-1180 |#1|))) (-14 -1794 ((-631 |#2|) (-1180 |#1|))) (-14 -1795 (|#2| (-1180 |#1|))) (-14 -1796 (|#2| (-1180 |#1|))) (-14 -1797 (|#1| (-1180 |#2|) (-1180 |#1|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1| (-1180 |#1|))) (-14 -1726 (|#2| |#1|)) (-14 -1727 (|#2| |#1|)) (-14 -1728 (|#2| |#1|)) (-14 -1729 (|#2| |#1|)) (-14 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-14 -1792 ((-631 |#2|) |#1| (-1180 |#1|))) (-14 -3226 ((-1180 (-631 |#2|)) (-1180 |#1|)))) (-315 |#2|) (-145)) (T -314))
-((-1723 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1722 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1721 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1720 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1719 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1718 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1717 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1716 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1714 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1713 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1712 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1711 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1710 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1709 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1708 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1777 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 87 T ELT)) (-2406 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2409 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 78 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-82)) 68 T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) 80 T ELT)) (-3470 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3111 (((-831)) 91 T ELT)) (-1715 (((-82)) 65 T ELT)) (-2436 (($ $ (-831)) 44 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-1711 (((-82)) 61 T ELT)) (-1709 (((-82)) 59 T ELT)) (-1713 (((-82)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1794 (((-631 |#1|) (-1180 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1792 (((-631 |#1|) $ (-1180 $)) 88 T ELT)) (-2407 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1796 ((|#1| (-1180 $)) 79 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-82)) 69 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1710 (((-82)) 60 T ELT)) (-1712 (((-82)) 62 T ELT)) (-1714 (((-82)) 64 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1717 (((-82)) 67 T ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT)) (-1897 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1723 (((-82)) 73 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1721 (((-82)) 71 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1722 (((-82)) 72 T ELT)) (-1720 (((-82)) 70 T ELT)) (-1716 (((-82)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-315 |#1|) (-110) (-145)) (T -315))
-((-1730 (*1 *2) (-11 (-4 *3 (-145)) (-5 *2 (-1180 *1)) (-4 *1 (-315 *3)))) (-3111 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-831)))) (-1897 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-584 (-858 *4))))) (-3226 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-1180 (-631 *4))))) (-1792 (*1 *2 *1 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-1791 (*1 *2 *1 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-1729 (*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-1728 (*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-1727 (*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-1726 (*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-3227 (*1 *2 *1 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-1180 *4)))) (-3227 (*1 *2 *3 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-1797 (*1 *1 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-145)) (-4 *1 (-315 *4)))) (-1796 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-1795 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *2)) (-4 *2 (-145)))) (-1794 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-1793 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-1725 (*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-1086 *3)))) (-1724 (*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-1086 *3)))) (-1723 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1722 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1721 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1720 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1719 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1718 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1717 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1716 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1715 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1714 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1713 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1712 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1711 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1710 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-1709 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))) (-3470 (*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496)))) (-2407 (*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496)))) (-1708 (*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496)) (-5 *2 (-584 (-1180 *3))))) (-1707 (*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1706 (*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1912 (*1 *2) (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-584 *1)))) (-4 *1 (-315 *3)))) (-1911 (*1 *2) (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-584 *1)))) (-4 *1 (-315 *3)))) (-1705 (*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145)))) (-1704 (*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145)))) (-1777 (*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145)))))
-(-12 (-684 |t#1|) (-10 -8 (-14 -1730 ((-1180 $))) (-14 -3111 ((-831))) (-14 -1897 ((-584 (-858 |t#1|)) (-1180 $))) (-14 -3226 ((-1180 (-631 |t#1|)) (-1180 $))) (-14 -1792 ((-631 |t#1|) $ (-1180 $))) (-14 -1791 ((-631 |t#1|) $ (-1180 $))) (-14 -1729 (|t#1| $)) (-14 -1728 (|t#1| $)) (-14 -1727 (|t#1| $)) (-14 -1726 (|t#1| $)) (-14 -3227 ((-1180 |t#1|) $ (-1180 $))) (-14 -3227 ((-631 |t#1|) (-1180 $) (-1180 $))) (-14 -1797 ($ (-1180 |t#1|) (-1180 $))) (-14 -1796 (|t#1| (-1180 $))) (-14 -1795 (|t#1| (-1180 $))) (-14 -1794 ((-631 |t#1|) (-1180 $))) (-14 -1793 ((-631 |t#1|) (-1180 $))) (-14 -1725 ((-1086 |t#1|) $)) (-14 -1724 ((-1086 |t#1|) $)) (-14 -1723 ((-82))) (-14 -1722 ((-82))) (-14 -1721 ((-82))) (-14 -1720 ((-82))) (-14 -1719 ((-82))) (-14 -1718 ((-82))) (-14 -1717 ((-82))) (-14 -1716 ((-82))) (-14 -1715 ((-82))) (-14 -1714 ((-82))) (-14 -1713 ((-82))) (-14 -1712 ((-82))) (-14 -1711 ((-82))) (-14 -1710 ((-82))) (-14 -1709 ((-82))) (IF (|has| |t#1| (-496)) (PROGN (-14 -3470 ((-3 $ "failed") $)) (-14 -2407 ((-3 $ "failed") $)) (-14 -2406 ((-3 $ "failed") $)) (-14 -1708 ((-584 (-1180 |t#1|)))) (-14 -1707 ((-1086 |t#1|) $)) (-14 -1706 ((-1086 |t#1|) $)) (-14 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) "failed"))) (-14 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) "failed"))) (-14 -1705 ((-3 $ "failed"))) (-14 -1704 ((-3 $ "failed"))) (-14 -1777 ((-3 $ "failed"))) (-6 -3994)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 38 T ELT)) (-3248 (((-82) |#2| $) 35 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-82) |#2|) $) 30 T ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 24 T ELT)) (-3406 (((-82) $) 13 T ELT)) (-1732 (((-695) (-1 (-82) |#2|) $) 27 T ELT) (((-695) |#2| $) 33 T ELT)) (-3950 (((-773) $) 46 T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) 21 T ELT)) (-3059 (((-82) $ $) 40 T ELT)) (-3961 (((-695) $) 17 T ELT)))
-(((-316 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-14 -3248 ((-82) |#2| |#1|)) (-14 -1732 ((-695) |#2| |#1|)) (-14 -1731 ((-3 |#2| "failed") (-1 (-82) |#2|) |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-14 -1732 ((-695) (-1 (-82) |#2|) |#1|)) (-14 -1733 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -1734 ((-82) (-1 (-82) |#2|) |#1|)) (-14 -3961 ((-695) |#1|)) (-14 -3406 ((-82) |#1|))) (-317 |#2|) (-1130)) (T -316))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-69)) ELT)) (-2611 (((-584 |#1|) $) 40 T ELT)) (-3248 (((-82) |#1| $) 35 (|has| |#1| (-69)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 42 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) 41 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-69)) ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 43 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-317 |#1|) (-110) (-1130)) (T -317))
-((-3961 (*1 *2 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1734 (*1 *2 *3 *1) (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-1733 (*1 *2 *3 *1) (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-1732 (*1 *2 *3 *1) (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2611 (*1 *2 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3845 (*1 *2 *3 *1) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130)))) (-3845 (*1 *2 *3 *1 *2) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130)))) (-1731 (*1 *2 *3 *1) (|partial| -11 (-5 *3 (-1 (-82) *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130)))) (-1732 (*1 *2 *3 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-695)))) (-3248 (*1 *2 *3 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82)))) (-3845 (*1 *2 *3 *1 *2 *2) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-69)) (-4 *1 (-317 *2)) (-4 *2 (-1130)))))
-(-12 (-429 |t#1|) (-10 -8 (-14 -3961 ((-695) $)) (-14 -1734 ((-82) (-1 (-82) |t#1|) $)) (-14 -1733 ((-82) (-1 (-82) |t#1|) $)) (-14 -1732 ((-695) (-1 (-82) |t#1|) $)) (-14 -2611 ((-584 |t#1|) $)) (-14 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-14 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-14 -1731 ((-3 |t#1| "failed") (-1 (-82) |t#1|) $)) (IF (|has| |t#1| (-69)) (PROGN (-14 -1732 ((-695) |t#1| $)) (-14 -3248 ((-82) |t#1| $)) (-14 -3845 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2997 (($) 15 T ELT)))
-(((-318 |#1|) (-10 -7 (-14 -2997 (|#1|))) (-319)) (T -318))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3139 (((-695)) 20 T ELT)) (-2997 (($) 17 T ELT)) (-2012 (((-831) $) 18 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2402 (($ (-831)) 19 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-319) (-110)) (T -319))
-((-3139 (*1 *2) (-11 (-4 *1 (-319)) (-5 *2 (-695)))) (-2402 (*1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-319)))) (-2012 (*1 *2 *1) (-11 (-4 *1 (-319)) (-5 *2 (-831)))) (-2997 (*1 *1) (-4 *1 (-319))))
-(-12 (-1014) (-10 -8 (-14 -3139 ((-695))) (-14 -2402 ($ (-831))) (-14 -2012 ((-831) $)) (-14 -2997 ($))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-1787 (((-631 |#2|) (-1180 $)) 45 T ELT)) (-1797 (($ (-1180 |#2|) (-1180 $)) 39 T ELT)) (-1786 (((-631 |#2|) $ (-1180 $)) 47 T ELT)) (-3760 ((|#2| (-1180 $)) 13 T ELT)) (-3227 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 27 T ELT)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-14 -1787 ((-631 |#2|) (-1180 |#1|))) (-14 -3760 (|#2| (-1180 |#1|))) (-14 -1797 (|#1| (-1180 |#2|) (-1180 |#1|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1| (-1180 |#1|))) (-14 -1786 ((-631 |#2|) |#1| (-1180 |#1|)))) (-321 |#2| |#3|) (-145) (-1156 |#2|)) (T -320))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1787 (((-631 |#1|) (-1180 $)) 61 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1180 |#1|) (-1180 $)) 63 T ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) 68 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-831)) 69 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3760 ((|#1| (-1180 $)) 62 T ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-633 $) $) 58 (|has| |#1| (-115)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-321 |#1| |#2|) (-110) (-145) (-1156 |t#1|)) (T -321))
-((-3111 (*1 *2) (-11 (-4 *1 (-321 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) (-1786 (*1 *2 *1 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-3333 (*1 *2 *1) (-11 (-4 *1 (-321 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145)))) (-3135 (*1 *2 *1) (-11 (-4 *1 (-321 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145)))) (-3227 (*1 *2 *1 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) (-3227 (*1 *2 *3 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1797 (*1 *1 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-145)) (-4 *1 (-321 *4 *5)) (-4 *5 (-1156 *4)))) (-3760 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-145)))) (-1787 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-2452 (*1 *2 *1) (-11 (-4 *1 (-321 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3)))) (-2016 (*1 *2 *1) (-11 (-4 *1 (-321 *3 *2)) (-4 *3 (-145)) (-4 *3 (-311)) (-4 *2 (-1156 *3)))))
-(-12 (-35 |t#1|) (-10 -8 (-14 -3111 ((-831))) (-14 -1786 ((-631 |t#1|) $ (-1180 $))) (-14 -3333 (|t#1| $)) (-14 -3135 (|t#1| $)) (-14 -3227 ((-1180 |t#1|) $ (-1180 $))) (-14 -3227 ((-631 |t#1|) (-1180 $) (-1180 $))) (-14 -1797 ($ (-1180 |t#1|) (-1180 $))) (-14 -3760 (|t#1| (-1180 $))) (-14 -1787 ((-631 |t#1|) (-1180 $))) (-14 -2452 (|t#2| $)) (IF (|has| |t#1| (-311)) (-14 -2016 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1737 (((-82) (-1 (-82) |#2| |#2|) $) NIL T ELT) (((-82) $) 18 T ELT)) (-1735 (($ (-1 (-82) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2912 (($ (-1 (-82) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2300 (($ $) 25 T ELT)) (-3422 (((-485) (-1 (-82) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3521 (($ (-1 (-82) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
-(((-322 |#1| |#2|) (-10 -7 (-14 -1735 (|#1| |#1|)) (-14 -1735 (|#1| (-1 (-82) |#2| |#2|) |#1|)) (-14 -1737 ((-82) |#1|)) (-14 -2912 (|#1| |#1|)) (-14 -3521 (|#1| |#1| |#1|)) (-14 -3422 ((-485) |#2| |#1| (-485))) (-14 -3422 ((-485) |#2| |#1|)) (-14 -3422 ((-485) (-1 (-82) |#2|) |#1|)) (-14 -1737 ((-82) (-1 (-82) |#2| |#2|) |#1|)) (-14 -2912 (|#1| (-1 (-82) |#2| |#2|) |#1|)) (-14 -2300 (|#1| |#1|)) (-14 -3521 (|#1| (-1 (-82) |#2| |#2|) |#1| |#1|))) (-323 |#2|) (-1130)) (T -322))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) 96 T ELT) (((-82) $) 90 (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-11 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 104 T ELT)) (-3248 (((-82) |#1| $) 109 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 102 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1732 (((-695) |#1| $) 108 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 101 T ELT)) (-2569 (((-82) $ $) 82 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 84 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) 83 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 85 (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 100 T ELT)))
-(((-323 |#1|) (-110) (-1130)) (T -323))
-((-3521 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130)))) (-2300 (*1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130)))) (-2912 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130)))) (-1737 (*1 *2 *3 *1) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-3422 (*1 *2 *3 *1) (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) (-3422 (*1 *2 *3 *1) (-11 (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-485)))) (-3422 (*1 *2 *3 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-69)))) (-3521 (*1 *1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-2912 (*1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-1737 (*1 *2 *1) (-11 (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-82)))) (-1736 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130)))) (-2299 (*1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-323 *2)) (-4 *2 (-1130)))) (-1735 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130)))) (-1735 (*1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))))
-(-12 (-594 |t#1|) (-317 |t#1|) (-10 -8 (-14 -3521 ($ (-1 (-82) |t#1| |t#1|) $ $)) (-14 -2300 ($ $)) (-14 -2912 ($ (-1 (-82) |t#1| |t#1|) $)) (-14 -1737 ((-82) (-1 (-82) |t#1| |t#1|) $)) (-14 -3422 ((-485) (-1 (-82) |t#1|) $)) (IF (|has| |t#1| (-69)) (PROGN (-14 -3422 ((-485) |t#1| $)) (-14 -3422 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-14 -3521 ($ $ $)) (-14 -2912 ($ $)) (-14 -1737 ((-82) $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-14 -1736 ($ $ $ (-485))) (-14 -2299 ($ $)) (-14 -1735 ($ (-1 (-82) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-14 -1735 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1130) . T))
-((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3846 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
-(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#3| |#1|) |#2|)) (-14 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-14 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-323 |#1|) (-1130) (-323 |#3|)) (T -324))
-((-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-323 *5)) (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-323 *6)) (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3938 (((-584 |#1|) $) 43 T ELT)) (-3951 (($ $ (-695)) 44 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3943 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 47 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-3940 (($ $) 45 T ELT)) (-3944 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 48 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3771 (($ $ |#1| $) 42 T ELT) (($ $ (-584 |#1|) (-584 $)) 41 T ELT)) (-3952 (((-695) $) 49 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1196 |#1| |#2|) $) 51 T ELT) (((-1205 |#1| |#2|) $) 50 T ELT)) (-3958 ((|#2| (-1205 |#1| |#2|) $) 53 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-1738 (($ (-615 |#1|)) 46 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#2|) 39 (|has| |#2| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-325 |#1| |#2|) (-110) (-757) (-145)) (T -325))
-((-3958 (*1 *2 *3 *1) (-11 (-5 *3 (-1205 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-757)) (-4 *2 (-145)))) (-3950 (*1 *1 *2) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145)))) (-3950 (*1 *2 *1) (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-1196 *3 *4)))) (-3950 (*1 *2 *1) (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-1205 *3 *4)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-695)))) (-3944 (*1 *2 *2 *1) (-11 (-5 *2 (-1205 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3943 (*1 *2 *2 *1) (-11 (-5 *2 (-1205 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-1738 (*1 *1 *2) (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-325 *3 *4)) (-4 *4 (-145)))) (-3940 (*1 *1 *1) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145)))) (-3951 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3938 (*1 *2 *1) (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-584 *3)))) (-3771 (*1 *1 *1 *2 *1) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-757)) (-4 *5 (-145)))))
-(-12 (-575 |t#2|) (-10 -8 (-14 -3958 (|t#2| (-1205 |t#1| |t#2|) $)) (-14 -3950 ($ |t#1|)) (-14 -3950 ((-1196 |t#1| |t#2|) $)) (-14 -3950 ((-1205 |t#1| |t#2|) $)) (-14 -3952 ((-695) $)) (-14 -3944 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-14 -3943 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-14 -1738 ($ (-615 |t#1|))) (-14 -3940 ($ $)) (-14 -3951 ($ $ (-695))) (-14 -3938 ((-584 |t#1|) $)) (-14 -3771 ($ $ |t#1| $)) (-14 -3771 ($ $ (-584 |t#1|) (-584 $)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#2| |#2|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T))
-((-1741 ((|#2| (-1 (-82) |#1| |#1|) |#2|) 40 T ELT)) (-1739 ((|#2| (-1 (-82) |#1| |#1|) |#2|) 13 T ELT)) (-1740 ((|#2| (-1 (-82) |#1| |#1|) |#2|) 33 T ELT)))
-(((-326 |#1| |#2|) (-10 -7 (-14 -1739 (|#2| (-1 (-82) |#1| |#1|) |#2|)) (-14 -1740 (|#2| (-1 (-82) |#1| |#1|) |#2|)) (-14 -1741 (|#2| (-1 (-82) |#1| |#1|) |#2|))) (-1130) (-12 (-323 |#1|) (-1036 |#1|))) (T -326))
-((-1741 (*1 *2 *3 *2) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2)) (-4 *2 (-12 (-323 *4) (-1036 *4))))) (-1740 (*1 *2 *3 *2) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2)) (-4 *2 (-12 (-323 *4) (-1036 *4))))) (-1739 (*1 *2 *3 *2) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2)) (-4 *2 (-12 (-323 *4) (-1036 *4))))))
-((-2281 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 22 T ELT) (((-631 (-485)) (-631 $)) 14 T ELT)))
-(((-327 |#1| |#2|) (-10 -7 (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-631 |#2|) (-631 |#1|)))) (-328 |#2|) (-962)) (T -327))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 47 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-631 $)) 46 (|has| |#1| (-581 (-485))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2282 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 45 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-1180 $)) 44 (|has| |#1| (-581 (-485))) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-328 |#1|) (-110) (-962)) (T -328))
-NIL
-(-12 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-485))) (-6 (-581 (-485))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 16 T ELT)) (-3132 (((-485) $) 44 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3774 (($ $) 120 T ELT)) (-3495 (($ $) 81 T ELT)) (-3642 (($ $) 72 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-3040 (($ $) 28 T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3493 (($ $) 79 T ELT)) (-3641 (($ $) 67 T ELT)) (-3626 (((-485) $) 60 T ELT)) (-2444 (($ $ (-485)) 55 T ELT)) (-3497 (($ $) NIL T ELT)) (-3640 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3130 (($ $) 122 T ELT)) (-3160 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-349 (-485)) #1#) $) 213 T ELT)) (-3159 (((-485) $) 215 T ELT) (((-349 (-485)) $) 211 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-1750 (((-485) $ $) 110 T ELT)) (-3470 (((-3 $ #1#) $) 125 T ELT)) (-1749 (((-349 (-485)) $ (-695)) 218 T ELT) (((-349 (-485)) $ (-695) (-695)) 210 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-1773 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3988)) ELT)) (-3189 (((-82) $) 38 T ELT)) (-3630 (($) 22 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL T ELT)) (-1742 (((-1186) (-695)) 177 T ELT)) (-1743 (((-1186)) 182 T ELT) (((-1186) (-695)) 183 T ELT)) (-1745 (((-1186)) 184 T ELT) (((-1186) (-695)) 185 T ELT)) (-1744 (((-1186)) 180 T ELT) (((-1186) (-695)) 181 T ELT)) (-3775 (((-485) $) 50 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 21 T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-2446 (($ $) 32 T ELT)) (-3135 (($ $) NIL T ELT)) (-3190 (((-82) $) 18 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL (-11 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3988)))) ELT)) (-2860 (($ $ $) NIL T ELT) (($) NIL (-11 (-2563 (|has| $ (-6 -3981))) (-2563 (|has| $ (-6 -3988)))) ELT)) (-1775 (((-485) $) 112 T ELT)) (-1748 (($) 90 T ELT) (($ $) 97 T ELT)) (-1747 (($) 96 T ELT) (($ $) 98 T ELT)) (-3946 (($ $) 84 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 127 T ELT)) (-1772 (((-831) (-485)) 27 (|has| $ (-6 -3988)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) 41 T ELT)) (-3133 (($ $) 119 T ELT)) (-3257 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-831)) 116 T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-485) $) 113 T ELT)) (-1746 (($) 99 T ELT)) (-3947 (($ $) 78 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3988)) ELT)) (-3761 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1771 (((-831) (-485)) 31 (|has| $ (-6 -3988)) ELT)) (-3498 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3496 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3494 (($ $) 80 T ELT)) (-3637 (($ $) 71 T ELT)) (-3975 (((-329) $) 202 T ELT) (((-178) $) 204 T ELT) (((-801 (-329)) $) NIL T ELT) (((-1074) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-178)) 209 T ELT)) (-3950 (((-773) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-349 (-485))) NIL T ELT) (((-178) $) 205 T ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (($ $) 121 T ELT)) (-1774 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3988)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (((-831)) 111 T ELT)) (-3501 (($ $) 87 T ELT)) (-3489 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3499 (($ $) 85 T ELT)) (-3487 (($ $) 20 T ELT)) (-3503 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) 86 T ELT)) (-3488 (($ $) 33 T ELT)) (-3386 (($ $) 39 T ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 24 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2569 (((-82) $ $) 189 T ELT)) (-2570 (((-82) $ $) 26 T ELT)) (-3059 (((-82) $ $) 37 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 43 T ELT)) (-3953 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3842 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-349 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-329) (-12 (-346) (-189) (-554 (-1074)) (-553 (-178)) (-1116) (-554 (-474)) (-558 (-178)) (-10 -8 (-14 -3953 ($ $ (-485))) (-14 ** ($ $ $)) (-14 -2446 ($ $)) (-14 -1750 ((-485) $ $)) (-14 -2444 ($ $ (-485))) (-14 -1749 ((-349 (-485)) $ (-695))) (-14 -1749 ((-349 (-485)) $ (-695) (-695))) (-14 -1748 ($)) (-14 -1747 ($)) (-14 -1746 ($)) (-14 -3489 ($ $ $)) (-14 -1748 ($ $)) (-14 -1747 ($ $)) (-14 -1745 ((-1186))) (-14 -1745 ((-1186) (-695))) (-14 -1744 ((-1186))) (-14 -1744 ((-1186) (-695))) (-14 -1743 ((-1186))) (-14 -1743 ((-1186) (-695))) (-14 -1742 ((-1186) (-695))) (-6 -3988) (-6 -3981)))) (T -329))
-((** (*1 *1 *1 *1) (-5 *1 (-329))) (-3953 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-329)))) (-2446 (*1 *1 *1) (-5 *1 (-329))) (-1750 (*1 *2 *1 *1) (-11 (-5 *2 (-485)) (-5 *1 (-329)))) (-2444 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-329)))) (-1749 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-329)))) (-1749 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-329)))) (-1748 (*1 *1) (-5 *1 (-329))) (-1747 (*1 *1) (-5 *1 (-329))) (-1746 (*1 *1) (-5 *1 (-329))) (-3489 (*1 *1 *1 *1) (-5 *1 (-329))) (-1748 (*1 *1 *1) (-5 *1 (-329))) (-1747 (*1 *1 *1) (-5 *1 (-329))) (-1745 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))) (-1745 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329)))) (-1744 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))) (-1744 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329)))) (-1743 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))) (-1743 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329)))) (-1742 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329)))))
-((-1751 (((-584 (-248 (-858 (-141 |#1|)))) (-248 (-349 (-858 (-141 (-485))))) |#1|) 52 T ELT) (((-584 (-248 (-858 (-141 |#1|)))) (-349 (-858 (-141 (-485)))) |#1|) 51 T ELT) (((-584 (-584 (-248 (-858 (-141 |#1|))))) (-584 (-248 (-349 (-858 (-141 (-485)))))) |#1|) 48 T ELT) (((-584 (-584 (-248 (-858 (-141 |#1|))))) (-584 (-349 (-858 (-141 (-485))))) |#1|) 42 T ELT)) (-1752 (((-584 (-584 (-141 |#1|))) (-584 (-349 (-858 (-141 (-485))))) (-584 (-1091)) |#1|) 30 T ELT) (((-584 (-141 |#1|)) (-349 (-858 (-141 (-485)))) |#1|) 18 T ELT)))
-(((-330 |#1|) (-10 -7 (-14 -1751 ((-584 (-584 (-248 (-858 (-141 |#1|))))) (-584 (-349 (-858 (-141 (-485))))) |#1|)) (-14 -1751 ((-584 (-584 (-248 (-858 (-141 |#1|))))) (-584 (-248 (-349 (-858 (-141 (-485)))))) |#1|)) (-14 -1751 ((-584 (-248 (-858 (-141 |#1|)))) (-349 (-858 (-141 (-485)))) |#1|)) (-14 -1751 ((-584 (-248 (-858 (-141 |#1|)))) (-248 (-349 (-858 (-141 (-485))))) |#1|)) (-14 -1752 ((-584 (-141 |#1|)) (-349 (-858 (-141 (-485)))) |#1|)) (-14 -1752 ((-584 (-584 (-141 |#1|))) (-584 (-349 (-858 (-141 (-485))))) (-584 (-1091)) |#1|))) (-12 (-311) (-756))) (T -330))
-((-1752 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-349 (-858 (-141 (-485)))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-141 *5)))) (-5 *1 (-330 *5)) (-4 *5 (-12 (-311) (-756))))) (-1752 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 (-141 (-485))))) (-5 *2 (-584 (-141 *4))) (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756))))) (-1751 (*1 *2 *3 *4) (-11 (-5 *3 (-248 (-349 (-858 (-141 (-485)))))) (-5 *2 (-584 (-248 (-858 (-141 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756))))) (-1751 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 (-141 (-485))))) (-5 *2 (-584 (-248 (-858 (-141 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756))))) (-1751 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-248 (-349 (-858 (-141 (-485))))))) (-5 *2 (-584 (-584 (-248 (-858 (-141 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756))))) (-1751 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 (-141 (-485)))))) (-5 *2 (-584 (-584 (-248 (-858 (-141 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756))))))
-((-3576 (((-584 (-248 (-858 |#1|))) (-248 (-349 (-858 (-485)))) |#1|) 47 T ELT) (((-584 (-248 (-858 |#1|))) (-349 (-858 (-485))) |#1|) 46 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-349 (-858 (-485))))) |#1|) 43 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-349 (-858 (-485)))) |#1|) 37 T ELT)) (-1753 (((-584 |#1|) (-349 (-858 (-485))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-349 (-858 (-485)))) (-584 (-1091)) |#1|) 30 T ELT)))
-(((-331 |#1|) (-10 -7 (-14 -3576 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-349 (-858 (-485)))) |#1|)) (-14 -3576 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-349 (-858 (-485))))) |#1|)) (-14 -3576 ((-584 (-248 (-858 |#1|))) (-349 (-858 (-485))) |#1|)) (-14 -3576 ((-584 (-248 (-858 |#1|))) (-248 (-349 (-858 (-485)))) |#1|)) (-14 -1753 ((-584 (-584 |#1|)) (-584 (-349 (-858 (-485)))) (-584 (-1091)) |#1|)) (-14 -1753 ((-584 |#1|) (-349 (-858 (-485))) |#1|))) (-12 (-756) (-311))) (T -331))
-((-1753 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311))))) (-1753 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-349 (-858 (-485))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-331 *5)) (-4 *5 (-12 (-756) (-311))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-248 (-349 (-858 (-485))))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 (-485)))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-248 (-349 (-858 (-485)))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 (-485))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3950 (((-773) $) 34 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
-(((-332 |#1| |#2|) (-12 (-79 |#1| |#1|) (-450 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-145)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -332))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 29 T ELT)) (-3159 ((|#2| $) 31 T ELT)) (-3962 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2422 (((-695) $) 13 T ELT)) (-2824 (((-584 $) $) 23 T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ |#2| |#1|) 21 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2897 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3820 (((-584 |#1|) $) 20 T ELT)) (-3680 ((|#1| $ |#2|) 54 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2668 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ $ |#1|) 36 T ELT) (($ |#1| $) 35 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
-(((-333 |#1| |#2|) (-12 (-334 |#1| |#2|) (-10 -8 (-14 * ($ |#2| |#1|)))) (-962) (-757)) (T -333))
-((* (*1 *1 *2 *3) (-11 (-5 *1 (-333 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))))
-((-2571 (((-82) $ $) 31 T ELT)) (-3191 (((-82) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 43 T ELT)) (-3727 (($) 39 T CONST)) (-3160 (((-3 |#2| "failed") $) 28 T ELT)) (-3159 ((|#2| $) 29 T ELT)) (-3962 (($ $) 15 T ELT)) (-1215 (((-82) $ $) 42 T ELT)) (-2422 (((-695) $) 19 T ELT)) (-2824 (((-584 $) $) 20 T ELT)) (-3941 (((-82) $) 23 T ELT)) (-3942 (($ |#2| |#1|) 24 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 16 T ELT)) (-2897 ((|#2| $) 18 T ELT)) (-3177 ((|#1| $) 17 T ELT)) (-3245 (((-1074) $) 35 T ELT)) (-3246 (((-1034) $) 34 T ELT)) (-3950 (((-773) $) 33 T ELT) (($ |#2|) 27 T ELT)) (-3820 (((-584 |#1|) $) 21 T ELT)) (-3680 ((|#1| $ |#2|) 25 T ELT)) (-1266 (((-82) $ $) 32 T ELT)) (-2663 (($) 38 T CONST)) (-2668 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 22 T ELT)) (-3059 (((-82) $ $) 30 T ELT)) (-3840 (($ $ $) 46 T ELT) (($ $) 45 T ELT)) (-3842 (($ $ $) 36 T ELT)) (* (($ $ |#1|) 48 T ELT) (($ |#1| $) 47 T ELT) (($ (-485) $) 44 T ELT) (($ (-695) $) 41 T ELT) (($ (-831) $) 37 T ELT) (($ |#1| |#2|) 26 T ELT)))
-(((-334 |#1| |#2|) (-110) (-962) (-1014)) (T -334))
-((* (*1 *1 *2 *3) (-11 (-4 *1 (-334 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) (-3680 (*1 *2 *1 *3) (-11 (-4 *1 (-334 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-3942 (*1 *1 *2 *3) (-11 (-4 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3941 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-82)))) (-2668 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3820 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-2824 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-334 *3 *4)))) (-2422 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2897 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3177 (*1 *2 *1) (-11 (-4 *1 (-334 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-1754 (*1 *2 *1) (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3962 (*1 *1 *1) (-11 (-4 *1 (-334 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))))
-(-12 (-380 |t#1|) (-79 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-14 * ($ |t#1| |t#2|)) (-14 -3680 (|t#1| $ |t#2|)) (-14 -3942 ($ |t#2| |t#1|)) (-14 -3941 ((-82) $)) (-14 -2668 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-14 -3820 ((-584 |t#1|) $)) (-14 -2824 ((-584 $) $)) (-14 -2422 ((-695) $)) (-14 -2897 (|t#2| $)) (-14 -3177 (|t#1| $)) (-14 -1754 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-14 -3962 ($ $)) (IF (|has| |t#1| (-145)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-380 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3139 (((-695) $) 40 T ELT)) (-3727 (($) 23 T CONST)) (-3943 (((-3 $ "failed") $ $) 43 T ELT)) (-3160 (((-3 |#1| "failed") $) 51 T ELT)) (-3159 ((|#1| $) 52 T ELT)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2412 (((-82) $) 22 T ELT)) (-2301 ((|#1| $ (-485)) 37 T ELT)) (-2302 (((-695) $ (-485)) 38 T ELT)) (-2534 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2293 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3944 (((-3 $ "failed") $ $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1756 (($ $ $) 45 T ELT)) (-1757 (($ $ $) 46 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1784 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-695)))) $) 39 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-82) $ $) 31 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 33 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 32 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
-(((-335 |#1|) (-110) (-1014)) (T -335))
-((* (*1 *1 *2 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-1757 (*1 *1 *1 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-1756 (*1 *1 *1 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-3944 (*1 *1 *1 *1) (|partial| -11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-3943 (*1 *1 *1 *1) (|partial| -11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-2882 (*1 *2 *1 *1) (|partial| -11 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-1755 (*1 *2 *1 *1) (-11 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-3139 (*1 *2 *1) (-11 (-4 *1 (-335 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1784 (*1 *2 *1) (-11 (-4 *1 (-335 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 (-695))))))) (-2302 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-335 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2301 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-335 *2)) (-4 *2 (-1014)))) (-2293 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-335 *3)) (-4 *3 (-1014)))) (-2292 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1014)))))
-(-12 (-664) (-951 |t#1|) (-10 -8 (-14 * ($ |t#1| $)) (-14 * ($ $ |t#1|)) (-14 ** ($ |t#1| (-695))) (-14 -1757 ($ $ $)) (-14 -1756 ($ $ $)) (-14 -3944 ((-3 $ "failed") $ $)) (-14 -3943 ((-3 $ "failed") $ $)) (-14 -2882 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-14 -1755 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-14 -3139 ((-695) $)) (-14 -1784 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3947 (-695)))) $)) (-14 -2302 ((-695) $ (-485))) (-14 -2301 (|t#1| $ (-485))) (-14 -2293 ($ (-1 (-695) (-695)) $)) (-14 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|)))
-(((-69) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-12) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695) $) 74 T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2412 (((-82) $) 17 T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-695) $ (-485)) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2293 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3944 (((-3 $ #1#) $ $) 60 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1756 (($ $ $) 28 T ELT)) (-1757 (($ $ $) 26 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1784 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-695)))) $) 34 T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3950 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
-(((-336 |#1|) (-335 |#1|) (-1014)) (T -336))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1758 (((-82) $) 25 T ELT)) (-1759 (((-82) $) 22 T ELT)) (-3617 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-3545 (((-1074) $) 16 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1763 (($ (-1074) (-1074) (-1074)) 14 T ELT)) (-1761 (((-1074) $) 17 T ELT)) (-1760 (((-82) $) 18 T ELT)) (-1762 (((-1074) $) 15 T ELT)) (-3950 (((-773) $) 12 T ELT) (($ (-1074)) 13 T ELT) (((-1074) $) 9 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 7 T ELT)))
-(((-337) (-338)) (T -337))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-1758 (((-82) $) 20 T ELT)) (-1759 (((-82) $) 21 T ELT)) (-3617 (($ (-1074) (-1074) (-1074)) 19 T ELT)) (-3545 (((-1074) $) 24 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1763 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-1761 (((-1074) $) 23 T ELT)) (-1760 (((-82) $) 22 T ELT)) (-1762 (((-1074) $) 25 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-1074)) 28 T ELT) (((-1074) $) 27 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-338) (-110)) (T -338))
-((-1763 (*1 *1 *2 *2 *2) (-11 (-5 *2 (-1074)) (-4 *1 (-338)))) (-1762 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074)))) (-3545 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074)))) (-1761 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074)))) (-1760 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))) (-1759 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))) (-1758 (*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))) (-3617 (*1 *1 *2 *2 *2) (-11 (-5 *2 (-1074)) (-4 *1 (-338)))))
-(-12 (-1014) (-430 (-1074)) (-10 -8 (-14 -1763 ($ (-1074) (-1074) (-1074))) (-14 -1762 ((-1074) $)) (-14 -3545 ((-1074) $)) (-14 -1761 ((-1074) $)) (-14 -1760 ((-82) $)) (-14 -1759 ((-82) $)) (-14 -1758 ((-82) $)) (-14 -3617 ($ (-1074) (-1074) (-1074)))))
-(((-69) . T) ((-556 (-1074)) . T) ((-553 (-773)) . T) ((-553 (-1074)) . T) ((-430 (-1074)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-1764 (((-773) $) 64 T ELT)) (-3727 (($) NIL T CONST)) (-2409 (($ $ (-831)) NIL T ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($ (-695)) 38 T ELT)) (-3915 (((-695)) 18 T ELT)) (-1765 (((-773) $) 66 T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 41 T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
-(((-339 |#1| |#2| |#3|) (-12 (-684 |#3|) (-10 -8 (-14 -3915 ((-695))) (-14 -1765 ((-773) $)) (-14 -1764 ((-773) $)) (-14 -2411 ($ (-695))))) (-695) (-695) (-145)) (T -339))
-((-3915 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 *2) (-13 *4 *2) (-4 *5 (-145)))) (-1765 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 (-695)) (-13 *4 (-695)) (-4 *5 (-145)))) (-1764 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 (-695)) (-13 *4 (-695)) (-4 *5 (-145)))) (-2411 (*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 *2) (-13 *4 *2) (-4 *5 (-145)))))
-((-3775 (((-695) (-282 |#1| |#2| |#3| |#4|)) 16 T ELT)))
-(((-340 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3775 ((-695) (-282 |#1| |#2| |#3| |#4|)))) (-12 (-319) (-311)) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -340))
-((-3775 (*1 *2 *3) (-11 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-12 (-319) (-311))) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-4 *7 (-290 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-340 *4 *5 *6 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1767 ((|#2| $) 38 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1768 (($ (-349 |#2|)) 93 T ELT)) (-1766 (((-584 (-2 (|:| -2403 (-695)) (|:| -3776 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3761 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3975 (((-349 |#2|) $) 49 T ELT)) (-3533 (($ (-584 (-2 (|:| -2403 (-695)) (|:| -3776 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3950 (((-773) $) 131 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2672 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3842 (($ |#2| $) 41 T ELT)))
-(((-341 |#1| |#2|) (-12 (-1014) (-188) (-554 (-349 |#2|)) (-10 -8 (-14 -3842 ($ |#2| $)) (-14 -1768 ($ (-349 |#2|))) (-14 -1767 (|#2| $)) (-14 -1766 ((-584 (-2 (|:| -2403 (-695)) (|:| -3776 |#2|) (|:| |num| |#2|))) $)) (-14 -3533 ($ (-584 (-2 (|:| -2403 (-695)) (|:| -3776 |#2|) (|:| |num| |#2|))))))) (-12 (-311) (-117)) (-1156 |#1|)) (T -341))
-((-3842 (*1 *1 *2 *1) (-11 (-4 *3 (-12 (-311) (-117))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1156 *3)))) (-1768 (*1 *1 *2) (-11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-12 (-311) (-117))) (-5 *1 (-341 *3 *4)))) (-1767 (*1 *2 *1) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-12 (-311) (-117))))) (-1766 (*1 *2 *1) (-11 (-4 *3 (-12 (-311) (-117))) (-5 *2 (-584 (-2 (|:| -2403 (-695)) (|:| -3776 *4) (|:| |num| *4)))) (-5 *1 (-341 *3 *4)) (-4 *4 (-1156 *3)))) (-3533 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| -2403 (-695)) (|:| -3776 *4) (|:| |num| *4)))) (-4 *4 (-1156 *3)) (-4 *3 (-12 (-311) (-117))) (-5 *1 (-341 *3 *4)))))
-((-2571 (((-82) $ $) 10 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 16 (|has| |#1| (-797 (-329))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 15 (|has| |#1| (-797 (-485))) ELT)) (-3245 (((-1074) $) 14 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)) (-3246 (((-1034) $) 13 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)) (-3950 (((-773) $) 12 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)) (-1266 (((-82) $ $) 11 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)) (-3059 (((-82) $ $) 9 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ELT)))
-(((-342 |#1|) (-110) (-1130)) (T -342))
-NIL
-(-12 (-1130) (-10 -7 (IF (|has| |t#1| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) (IF (|has| |t#1| (-797 (-329))) (-6 (-797 (-329))) |%noBranch|)))
-(((-69) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ((-553 (-773)) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ((-12) . T) ((-797 (-329)) |has| |#1| (-797 (-329))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-1014) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-329)))) ((-1130) . T))
-((-1769 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT)))
-(((-343 |#1|) (-10 -7 (-14 -1769 (|#1| |#1| (-695))) (-14 -1769 (|#1| |#1|))) (-344)) (T -343))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-1769 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-3775 (((-744 (-831)) $) 99 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-695) "failed") $ $) 98 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT)) (-2705 (((-633 $) $) 100 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-344) (-110)) (T -344))
-((-3775 (*1 *2 *1) (-11 (-4 *1 (-344)) (-5 *2 (-744 (-831))))) (-1770 (*1 *2 *1 *1) (|partial| -11 (-4 *1 (-344)) (-5 *2 (-695)))) (-1769 (*1 *1 *1) (-4 *1 (-344))) (-1769 (*1 *1 *1 *2) (-11 (-4 *1 (-344)) (-5 *2 (-695)))))
-(-12 (-311) (-115) (-10 -8 (-14 -3775 ((-744 (-831)) $)) (-14 -1770 ((-3 (-695) "failed") $ $)) (-14 -1769 ($ $)) (-14 -1769 ($ $ (-695)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-115) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-3257 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-831)) NIL T ELT)) (-2618 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT)))
-(((-345 |#1|) (-10 -7 (-14 -2618 ((-831) (-831))) (-14 -2618 ((-831))) (-14 -3257 (|#1| (-485) (-485) (-831))) (-14 -3257 (|#1| (-485) (-485)))) (-346)) (T -345))
-((-2618 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-345 *3)) (-4 *3 (-346)))) (-2618 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-345 *3)) (-4 *3 (-346)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3132 (((-485) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3626 (((-485) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-349 (-485)) #1#) $) 118 T ELT)) (-3159 (((-485) $) 122 T ELT) (((-349 (-485)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-1773 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3988)) ELT)) (-3189 (((-82) $) 131 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 112 T ELT)) (-3775 (((-485) $) 155 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-82) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT) (($) 143 (-11 (-2563 (|has| $ (-6 -3988))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-2860 (($ $ $) 126 T ELT) (($) 142 (-11 (-2563 (|has| $ (-6 -3988))) (-2563 (|has| $ (-6 -3981)))) ELT)) (-1775 (((-485) $) 152 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-1772 (((-831) (-485)) 145 (|has| $ (-6 -3988)) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3257 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-831)) 156 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2403 (((-485) $) 153 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-831)) 150 T ELT) (((-831) (-831)) 147 (|has| $ (-6 -3988)) ELT)) (-1771 (((-831) (-485)) 144 (|has| $ (-6 -3988)) ELT)) (-3975 (((-329) $) 124 T ELT) (((-178) $) 123 T ELT) (((-801 (-329)) $) 113 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-349 (-485))) 117 T ELT)) (-3129 (((-695)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1774 (((-831)) 151 T ELT) (((-831) (-831)) 148 (|has| $ (-6 -3988)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2697 (((-831)) 154 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 127 T ELT)) (-2570 (((-82) $ $) 129 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 128 T ELT)) (-2688 (((-82) $ $) 130 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-349 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-346) (-110)) (T -346))
-((-3257 (*1 *1 *2 *2) (-11 (-5 *2 (-485)) (-4 *1 (-346)))) (-3257 (*1 *1 *2 *2 *3) (-11 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-346)))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485)))) (-2697 (*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))) (-2403 (*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485)))) (-1775 (*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485)))) (-1774 (*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))) (-2618 (*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))) (-1773 (*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))) (-1774 (*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346)))) (-2618 (*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346)))) (-1773 (*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346)))) (-1772 (*1 *2 *3) (-11 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-346)) (-5 *2 (-831)))) (-1771 (*1 *2 *3) (-11 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-346)) (-5 *2 (-831)))) (-2534 (*1 *1) (-11 (-4 *1 (-346)) (-2563 (|has| *1 (-6 -3988))) (-2563 (|has| *1 (-6 -3981))))) (-2860 (*1 *1) (-11 (-4 *1 (-346)) (-2563 (|has| *1 (-6 -3988))) (-2563 (|has| *1 (-6 -3981))))))
-(-12 (-974) (-10 -8 (-6 -3773) (-14 -3257 ($ (-485) (-485))) (-14 -3257 ($ (-485) (-485) (-831))) (-14 -3775 ((-485) $)) (-14 -2697 ((-831))) (-14 -2403 ((-485) $)) (-14 -1775 ((-485) $)) (-14 -1774 ((-831))) (-14 -2618 ((-831))) (-14 -1773 ((-831))) (IF (|has| $ (-6 -3988)) (PROGN (-14 -1774 ((-831) (-831))) (-14 -2618 ((-831) (-831))) (-14 -1773 ((-831) (-831))) (-14 -1772 ((-831) (-485))) (-14 -1771 ((-831) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3981)) |%noBranch| (IF (|has| $ (-6 -3988)) |%noBranch| (PROGN (-14 -2534 ($)) (-14 -2860 ($)))))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-554 (-178)) . T) ((-554 (-329)) . T) ((-554 (-801 (-329))) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-329)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-974) . T) ((-951 (-349 (-485))) . T) ((-951 (-485)) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 59 T ELT)) (-1776 (($ $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 189 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) 48 T ELT)) (-1777 ((|#1| $) 16 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-1135)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-1135)) ELT)) (-1779 (($ |#1| (-485)) 42 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3470 (((-3 $ #1#) $) 163 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 80 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1780 (($ |#1| (-485)) 44 T ELT)) (-3726 (((-82) $) 209 (|has| |#1| (-1135)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 61 T ELT)) (-1839 (((-695) $) 51 T ELT)) (-1781 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2301 ((|#1| $ (-485)) 173 T ELT)) (-1782 (((-485) $ (-485)) 172 T ELT)) (-1785 (($ |#1| (-485)) 41 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1836 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1783 (($ |#1| (-485)) 43 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1778 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1784 (((-584 (-2 (|:| -3735 |#1|) (|:| -2403 (-485)))) $) 72 T ELT)) (-1953 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-1135)) ELT)) (-3469 (((-3 $ #1#) $ $) 175 T ELT)) (-2403 (((-485) $) 166 T ELT)) (-3966 ((|#1| $) 74 T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 105 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) $) NIL (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-1091)) (-584 $)) 106 (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-248 $))) 102 (|has| |#1| (-259 $)) ELT) (($ $ (-248 $)) NIL (|has| |#1| (-259 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-259 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-259 $)) ELT)) (-3803 (($ $ |#1|) 91 (|has| |#1| (-240 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-240 $ $)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3975 (((-474) $) 39 (|has| |#1| (-554 (-474))) ELT) (((-329) $) 112 (|has| |#1| (-934)) ELT) (((-178) $) 118 (|has| |#1| (-934)) ELT)) (-3950 (((-773) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT)) (-3129 (((-695)) 66 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 53 T CONST)) (-2669 (($) 52 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 158 T ELT)) (-3840 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-347 |#1|) (-12 (-496) (-183 |#1|) (-35 |#1|) (-287 |#1|) (-354 |#1|) (-380 |#1|) (-10 -8 (-14 -3966 (|#1| $)) (-14 -2403 ((-485) $)) (-14 -1836 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-14 -1953 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-14 -1785 ($ |#1| (-485))) (-14 -1784 ((-584 (-2 (|:| -3735 |#1|) (|:| -2403 (-485)))) $)) (-14 -1783 ($ |#1| (-485))) (-14 -1782 ((-485) $ (-485))) (-14 -2301 (|#1| $ (-485))) (-14 -1781 ((-3 #1# #2# #3# #4#) $ (-485))) (-14 -1839 ((-695) $)) (-14 -1780 ($ |#1| (-485))) (-14 -1779 ($ |#1| (-485))) (-14 -1778 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-14 -1777 (|#1| $)) (-14 -1776 ($ $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-240 $ $)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |#1| (-259 $)) (-6 (-259 $)) |%noBranch|) (IF (|has| |#1| (-456 (-1091) $)) (-6 (-456 (-1091) $)) |%noBranch|))) (-496)) (T -347))
-((-3966 (*1 *2 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-2403 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-347 *3)) (-4 *3 (-496)))) (-1836 (*1 *1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-347 *2)))) (-1953 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-347 *3)) (-4 *3 (-496)))) (-1785 (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1784 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| -3735 *3) (|:| -2403 (-485))))) (-5 *1 (-347 *3)) (-4 *3 (-496)))) (-1783 (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1782 (*1 *2 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-347 *3)) (-4 *3 (-496)))) (-2301 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1781 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *4)) (-4 *4 (-496)))) (-1839 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-347 *3)) (-4 *3 (-496)))) (-1780 (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1779 (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1778 (*1 *1 *2 *3 *4) (-11 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1777 (*1 *2 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-1776 (*1 *1 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496)))) (-3026 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-347 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3025 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-347 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3027 (*1 *2 *1) (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-347 *3)) (-4 *3 (-484)) (-4 *3 (-496)))))
-((-3846 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 20 T ELT)))
-(((-348 |#1| |#2|) (-10 -7 (-14 -3846 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-496) (-496)) (T -348))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 13 T ELT)) (-3132 ((|#1| $) 21 (|has| |#1| (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| |#1| (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) 54 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-3159 ((|#1| $) 15 T ELT) (((-1091) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-349 (-485)) $) 51 (|has| |#1| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 32 T ELT)) (-2997 (($) NIL (|has| |#1| (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#1| (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| |#1| (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 38 T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#1| $) 55 T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3190 (((-82) $) 22 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| |#1| (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 82 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3133 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 128 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 57 T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| |#1| (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (((-329) $) NIL (|has| |#1| (-934)) ELT) (((-178) $) NIL (|has| |#1| (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 112 (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1091)) NIL (|has| |#1| (-951 (-1091))) ELT)) (-2705 (((-633 $) $) 92 (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 93 T CONST)) (-3134 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 48 T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
-(((-349 |#1|) (-12 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3984)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3995)) (-6 -3984) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -349))
-NIL
-((-3846 (((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)) 13 T ELT)))
-(((-350 |#1| |#2|) (-10 -7 (-14 -3846 ((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)))) (-496) (-496)) (T -350))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6)))))
-((-1787 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1797 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT)) (-1786 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2016 ((|#3| $) 69 T ELT)) (-3760 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3227 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 22 T ELT) (((-631 |#2|) (-1180 $)) 38 T ELT)) (-3975 (((-1180 |#2|) $) 11 T ELT) (($ (-1180 |#2|)) 13 T ELT)) (-2452 ((|#3| $) 55 T ELT)))
-(((-351 |#1| |#2| |#3|) (-10 -7 (-14 -1786 ((-631 |#2|) |#1|)) (-14 -3760 (|#2|)) (-14 -1787 ((-631 |#2|))) (-14 -3975 (|#1| (-1180 |#2|))) (-14 -3975 ((-1180 |#2|) |#1|)) (-14 -1797 (|#1| (-1180 |#2|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1|)) (-14 -2016 (|#3| |#1|)) (-14 -2452 (|#3| |#1|)) (-14 -1787 ((-631 |#2|) (-1180 |#1|))) (-14 -3760 (|#2| (-1180 |#1|))) (-14 -1797 (|#1| (-1180 |#2|) (-1180 |#1|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1| (-1180 |#1|))) (-14 -1786 ((-631 |#2|) |#1| (-1180 |#1|)))) (-352 |#2| |#3|) (-145) (-1156 |#2|)) (T -351))
-((-1787 (*1 *2) (-11 (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5)))) (-3760 (*1 *2) (-11 (-4 *4 (-1156 *2)) (-4 *2 (-145)) (-5 *1 (-351 *3 *2 *4)) (-4 *3 (-352 *2 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1787 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1797 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-831)) 69 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3760 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3975 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2705 (((-633 $) $) 58 (|has| |#1| (-115)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-352 |#1| |#2|) (-110) (-145) (-1156 |t#1|)) (T -352))
-((-2014 (*1 *2) (-11 (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-352 *3 *4)))) (-3227 (*1 *2 *1) (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3227 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1797 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1156 *3)))) (-3975 (*1 *2 *1) (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1156 *3)))) (-1787 (*1 *2) (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))) (-3760 (*1 *2) (-11 (-4 *1 (-352 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145)))) (-1786 (*1 *2 *1) (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))))
-(-12 (-321 |t#1| |t#2|) (-10 -8 (-14 -2014 ((-1180 $))) (-14 -3227 ((-1180 |t#1|) $)) (-14 -3227 ((-631 |t#1|) (-1180 $))) (-14 -1797 ($ (-1180 |t#1|))) (-14 -3975 ((-1180 |t#1|) $)) (-14 -3975 ($ (-1180 |t#1|))) (-14 -1787 ((-631 |t#1|))) (-14 -3760 (|t#1|)) (-14 -1786 ((-631 |t#1|) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-321 |#1| |#2|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3950 (($ |#2|) NIL T ELT) (($ (-349 (-485))) 22 T ELT) (($ (-485)) 11 T ELT)))
-(((-353 |#1| |#2|) (-10 -7 (-14 -3950 (|#1| (-485))) (-14 -3160 ((-3 (-485) #1="failed") |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3950 (|#1| |#2|))) (-354 |#2|) (-1130)) (T -353))
-NIL
-((-3160 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-349 (-485)) #1#) $) 16 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-951 (-485))) ELT)) (-3159 ((|#1| $) 8 T ELT) (((-349 (-485)) $) 17 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-951 (-485))) ELT)) (-3950 (($ |#1|) 6 T ELT) (($ (-349 (-485))) 15 (|has| |#1| (-951 (-349 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-951 (-485))) ELT)))
-(((-354 |#1|) (-110) (-1130)) (T -354))
-NIL
-(-12 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-485))) |%noBranch|) (IF (|has| |t#1| (-951 (-349 (-485)))) (-6 (-951 (-349 (-485)))) |%noBranch|)))
-(((-556 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-556 (-485)) |has| |#1| (-951 (-485))) ((-556 |#1|) . T) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-1788 ((|#4| (-695) (-1180 |#4|)) 55 T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3001 (((-1180 |#4|) $) 15 T ELT)) (-3135 ((|#2| $) 53 T ELT)) (-1789 (($ $) 156 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 103 T ELT)) (-1970 (($ (-1180 |#4|)) 102 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3000 ((|#1| $) 16 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) 147 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 |#4|) $) 140 T ELT)) (-2669 (($) 11 T CONST)) (-3059 (((-82) $ $) 39 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
-(((-355 |#1| |#2| |#3| |#4|) (-12 (-413) (-10 -8 (-14 -1970 ($ (-1180 |#4|))) (-14 -2014 ((-1180 |#4|) $)) (-14 -3135 (|#2| $)) (-14 -3001 ((-1180 |#4|) $)) (-14 -3000 (|#1| $)) (-14 -1789 ($ $)) (-14 -1788 (|#4| (-695) (-1180 |#4|))))) (-257) (-905 |#1|) (-1156 |#2|) (-12 (-352 |#2| |#3|) (-951 |#2|))) (T -355))
-((-1970 (*1 *1 *2) (-11 (-5 *2 (-1180 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6)))) (-2014 (*1 *2 *1) (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4))))) (-3135 (*1 *2 *1) (-11 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5)) (-4 *3 (-257)) (-4 *5 (-12 (-352 *2 *4) (-951 *2))))) (-3001 (*1 *2 *1) (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4))))) (-3000 (*1 *2 *1) (-11 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-257)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-12 (-352 *3 *4) (-951 *3))))) (-1789 (*1 *1 *1) (-11 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-12 (-352 *3 *4) (-951 *3))))) (-1788 (*1 *2 *3 *4) (-11 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *2 (-12 (-352 *6 *7) (-951 *6))) (-5 *1 (-355 *5 *6 *7 *2)) (-4 *7 (-1156 *6)))))
-((-3846 (((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)) 35 T ELT)))
-(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-14 -3846 ((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)))) (-257) (-905 |#1|) (-1156 |#2|) (-12 (-352 |#2| |#3|) (-951 |#2|)) (-257) (-905 |#5|) (-1156 |#6|) (-12 (-352 |#6| |#7|) (-951 |#6|))) (T -356))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-12 (-352 *6 *7) (-951 *6))) (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-12 (-352 *10 *11) (-951 *10))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3135 ((|#2| $) 69 T ELT)) (-1790 (($ (-1180 |#4|)) 27 T ELT) (($ (-355 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 37 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 |#4|) $) 28 T ELT)) (-2669 (($) 26 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
-(((-357 |#1| |#2| |#3| |#4| |#5|) (-12 (-664) (-10 -8 (-14 -2014 ((-1180 |#4|) $)) (-14 -3135 (|#2| $)) (-14 -1790 ($ (-1180 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-14 -1790 ($ (-355 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-257) (-905 |#1|) (-1156 |#2|) (-352 |#2| |#3|) (-1180 |#4|)) (T -357))
-((-2014 (*1 *2 *1) (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-13 *7 *2))) (-3135 (*1 *2 *1) (-11 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6)) (-4 *3 (-257)) (-4 *5 (-352 *2 *4)) (-13 *6 (-1180 *5)))) (-1790 (*1 *1 *2) (-11 (-5 *2 (-1180 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-257)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-13 *7 *2))) (-1790 (*1 *1 *2) (-11 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-352 *4 *5)) (-13 *7 (-1180 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)))))
-((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
-(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-360 |#2|) (-145) (-360 |#4|) (-145)) (T -358))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-360 *6)) (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5)))))
-((-1777 (((-3 $ #1="failed")) 99 T ELT)) (-3226 (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#2|))) 104 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1905 (((-1086 (-858 |#2|))) 64 T ELT)) (-1795 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1797 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 125 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1794 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1792 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1909 (((-1086 (-858 |#2|))) 63 T ELT)) (-1796 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3227 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 124 T ELT) (((-631 |#2|) (-1180 $)) 133 T ELT)) (-3975 (((-1180 |#2|) $) 109 T ELT) (($ (-1180 |#2|)) 111 T ELT)) (-1897 (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2548 (($ (-631 |#2|) $) 103 T ELT)))
-(((-359 |#1| |#2|) (-10 -7 (-14 -2548 (|#1| (-631 |#2|) |#1|)) (-14 -1905 ((-1086 (-858 |#2|)))) (-14 -1909 ((-1086 (-858 |#2|)))) (-14 -1791 ((-631 |#2|) |#1|)) (-14 -1792 ((-631 |#2|) |#1|)) (-14 -1793 ((-631 |#2|))) (-14 -1794 ((-631 |#2|))) (-14 -1795 (|#2|)) (-14 -1796 (|#2|)) (-14 -3975 (|#1| (-1180 |#2|))) (-14 -3975 ((-1180 |#2|) |#1|)) (-14 -1797 (|#1| (-1180 |#2|))) (-14 -1897 ((-584 (-858 |#2|)))) (-14 -3226 ((-1180 (-631 |#2|)))) (-14 -3227 ((-631 |#2|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1|)) (-14 -1777 ((-3 |#1| #1="failed"))) (-14 -1704 ((-3 |#1| #1#))) (-14 -1705 ((-3 |#1| #1#))) (-14 -1911 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-584 |#1|))) #1#))) (-14 -1912 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-584 |#1|))) #1#))) (-14 -1793 ((-631 |#2|) (-1180 |#1|))) (-14 -1794 ((-631 |#2|) (-1180 |#1|))) (-14 -1795 (|#2| (-1180 |#1|))) (-14 -1796 (|#2| (-1180 |#1|))) (-14 -1797 (|#1| (-1180 |#2|) (-1180 |#1|))) (-14 -3227 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-14 -3227 ((-1180 |#2|) |#1| (-1180 |#1|))) (-14 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-14 -1792 ((-631 |#2|) |#1| (-1180 |#1|))) (-14 -3226 ((-1180 (-631 |#2|)) (-1180 |#1|))) (-14 -1897 ((-584 (-858 |#2|)) (-1180 |#1|)))) (-360 |#2|) (-145)) (T -359))
-((-3226 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1897 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1796 (*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1795 (*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1794 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-631 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1793 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-631 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1909 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1905 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1777 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3226 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT) (((-1180 (-631 |#1|))) 115 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3727 (($) 23 T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2406 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-858 |#1|))) 103 (|has| |#1| (-311)) ELT)) (-2409 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-82)) 68 T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) 80 T ELT) (($ (-1180 |#1|)) 113 T ELT)) (-3470 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3111 (((-831)) 91 T ELT)) (-1715 (((-82)) 65 T ELT)) (-2436 (($ $ (-831)) 44 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-1711 (((-82)) 61 T ELT)) (-1709 (((-82)) 59 T ELT)) (-1713 (((-82)) 63 T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1794 (((-631 |#1|) (-1180 $)) 77 T ELT) (((-631 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1792 (((-631 |#1|) $ (-1180 $)) 88 T ELT) (((-631 |#1|) $) 106 T ELT)) (-2407 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1909 (((-1086 (-858 |#1|))) 104 (|has| |#1| (-311)) ELT)) (-2408 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1796 ((|#1| (-1180 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-82)) 69 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1710 (((-82)) 60 T ELT)) (-1712 (((-82)) 62 T ELT)) (-1714 (((-82)) 64 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1717 (((-82)) 67 T ELT)) (-3803 ((|#1| $ (-485)) 119 T ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT) (((-1180 |#1|) $) 117 T ELT) (((-631 |#1|) (-1180 $)) 116 T ELT)) (-3975 (((-1180 |#1|) $) 112 T ELT) (($ (-1180 |#1|)) 111 T ELT)) (-1897 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT) (((-584 (-858 |#1|))) 114 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-1723 (((-82)) 73 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 118 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-1721 (((-82)) 71 T ELT)) (-2548 (($ (-631 |#1|) $) 102 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-1722 (((-82)) 72 T ELT)) (-1720 (((-82)) 70 T ELT)) (-1716 (((-82)) 66 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-360 |#1|) (-110) (-145)) (T -360))
-((-2014 (*1 *2) (-11 (-4 *3 (-145)) (-5 *2 (-1180 *1)) (-4 *1 (-360 *3)))) (-3227 (*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 *3)))) (-3227 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-360 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4)))) (-3226 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 (-631 *3))))) (-1897 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-584 (-858 *3))))) (-1797 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-360 *3)))) (-3975 (*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 *3)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-360 *3)))) (-1796 (*1 *2) (-11 (-4 *1 (-360 *2)) (-4 *2 (-145)))) (-1795 (*1 *2) (-11 (-4 *1 (-360 *2)) (-4 *2 (-145)))) (-1794 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))) (-1793 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))) (-1792 (*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))) (-1791 (*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))) (-1909 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-4 *3 (-311)) (-5 *2 (-1086 (-858 *3))))) (-1905 (*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-4 *3 (-311)) (-5 *2 (-1086 (-858 *3))))) (-2548 (*1 *1 *2 *1) (-11 (-5 *2 (-631 *3)) (-4 *1 (-360 *3)) (-4 *3 (-145)))))
-(-12 (-315 |t#1|) (-240 (-485) |t#1|) (-10 -8 (-14 -2014 ((-1180 $))) (-14 -3227 ((-1180 |t#1|) $)) (-14 -3227 ((-631 |t#1|) (-1180 $))) (-14 -3226 ((-1180 (-631 |t#1|)))) (-14 -1897 ((-584 (-858 |t#1|)))) (-14 -1797 ($ (-1180 |t#1|))) (-14 -3975 ((-1180 |t#1|) $)) (-14 -3975 ($ (-1180 |t#1|))) (-14 -1796 (|t#1|)) (-14 -1795 (|t#1|)) (-14 -1794 ((-631 |t#1|))) (-14 -1793 ((-631 |t#1|))) (-14 -1792 ((-631 |t#1|) $)) (-14 -1791 ((-631 |t#1|) $)) (IF (|has| |t#1| (-311)) (PROGN (-14 -1909 ((-1086 (-858 |t#1|)))) (-14 -1905 ((-1086 (-858 |t#1|))))) |%noBranch|) (-14 -2548 ($ (-631 |t#1|) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-240 (-485) |#1|) . T) ((-315 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3137 (((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|)) 28 T ELT)) (-1798 (((-347 |#1|) (-347 |#1|) (-347 |#1|)) 17 T ELT)))
-(((-361 |#1|) (-10 -7 (-14 -3137 ((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|))) (-14 -1798 ((-347 |#1|) (-347 |#1|) (-347 |#1|)))) (-496)) (T -361))
-((-1798 (*1 *2 *2 *2) (-11 (-5 *2 (-347 *3)) (-4 *3 (-496)) (-5 *1 (-361 *3)))) (-3137 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-496)) (-5 *2 (-347 *4)) (-5 *1 (-361 *4)))))
-((-3084 (((-584 (-1091)) $) 81 T ELT)) (-3086 (((-349 (-1086 $)) $ (-551 $)) 313 T ELT)) (-1605 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3160 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-349 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3159 (((-551 $) $) NIL T ELT) (((-1091) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-349 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-349 (-485)) $) NIL T ELT)) (-3598 (((-83) (-83)) 47 T ELT)) (-2999 (($ $) 99 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1602 (((-584 (-551 $)) $) 269 T ELT)) (-2826 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #1#) $) 294 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1799 (((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $ (-83)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) #1#) $ (-1091)) 257 T ELT)) (-1802 (((-82) $) 17 T ELT)) (-1801 ((|#2| $) 19 T ELT)) (-3771 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-83) (-1 $ (-584 $))) NIL T ELT) (($ $ (-83) (-1 $ $)) NIL T ELT) (($ $ (-1091)) 62 T ELT) (($ $ (-584 (-1091))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-83) $ (-1091)) 65 T ELT) (($ $ (-584 (-83)) (-584 $) (-1091)) 72 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1091) (-695) (-1 $ $)) 104 T ELT)) (-3803 (($ (-83) $) NIL T ELT) (($ (-83) $ $) NIL T ELT) (($ (-83) $ $ $) NIL T ELT) (($ (-83) $ $ $ $) NIL T ELT) (($ (-83) (-584 $)) 119 T ELT)) (-3761 (($ $ (-1091)) 278 T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2998 (($ $) 324 T ELT)) (-3975 (((-801 (-485)) $) 297 T ELT) (((-801 (-329)) $) 301 T ELT) (($ (-347 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3950 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1091)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#2| (-551 $))) NIL T ELT) (($ (-349 |#2|)) 329 T ELT) (($ (-858 (-349 |#2|))) 368 T ELT) (($ (-349 (-858 (-349 |#2|)))) 341 T ELT) (($ (-349 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) 373 T ELT)) (-3129 (((-695)) 88 T CONST)) (-2256 (((-82) (-83)) 42 T ELT)) (-1800 (($ (-1091) $) 31 T ELT) (($ (-1091) $ $) 32 T ELT) (($ (-1091) $ $ $) 33 T ELT) (($ (-1091) $ $ $ $) 34 T ELT) (($ (-1091) (-584 $)) 39 T ELT)) (* (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-362 |#1| |#2|) (-10 -7 (-14 * (|#1| (-831) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3160 ((-3 (-349 (-485)) #1="failed") |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 * (|#1| |#1| |#1|)) (-14 -3950 (|#1| (-485))) (-14 -3129 ((-695)) -3956) (-14 * (|#1| |#2| |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3950 (|#1| (-858 |#2|))) (-14 -3160 ((-3 (-858 |#2|) #1#) |#1|)) (-14 -3159 ((-858 |#2|) |#1|)) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 * (|#1| |#1| |#2|)) (-14 -3950 (|#1| |#1|)) (-14 * (|#1| |#1| (-349 (-485)))) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 -3950 (|#1| (-349 (-858 |#2|)))) (-14 -3160 ((-3 (-349 (-858 |#2|)) #1#) |#1|)) (-14 -3159 ((-349 (-858 |#2|)) |#1|)) (-14 -3086 ((-349 (-1086 |#1|)) |#1| (-551 |#1|))) (-14 -3950 (|#1| (-349 (-858 (-349 |#2|))))) (-14 -3950 (|#1| (-858 (-349 |#2|)))) (-14 -3950 (|#1| (-349 |#2|))) (-14 -2998 (|#1| |#1|)) (-14 -3975 (|#1| (-347 |#1|))) (-14 -3771 (|#1| |#1| (-1091) (-695) (-1 |#1| |#1|))) (-14 -3771 (|#1| |#1| (-1091) (-695) (-1 |#1| (-584 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-14 -2828 ((-3 (-2 (|:| |val| |#1|) (|:| -2403 (-485))) #1#) |#1|)) (-14 -2827 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2403 (-485))) #1#) |#1| (-1091))) (-14 -2827 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2403 (-485))) #1#) |#1| (-83))) (-14 -2999 (|#1| |#1|)) (-14 -3950 (|#1| (-1040 |#2| (-551 |#1|)))) (-14 -1799 ((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-14 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-14 -2827 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2403 (-485))) #1#) |#1|)) (-14 -2826 ((-3 (-584 |#1|) #1#) |#1|)) (-14 -3771 (|#1| |#1| (-584 (-83)) (-584 |#1|) (-1091))) (-14 -3771 (|#1| |#1| (-83) |#1| (-1091))) (-14 -3771 (|#1| |#1|)) (-14 -3771 (|#1| |#1| (-584 (-1091)))) (-14 -3771 (|#1| |#1| (-1091))) (-14 -1800 (|#1| (-1091) (-584 |#1|))) (-14 -1800 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-14 -1800 (|#1| (-1091) |#1| |#1| |#1|)) (-14 -1800 (|#1| (-1091) |#1| |#1|)) (-14 -1800 (|#1| (-1091) |#1|)) (-14 -3084 ((-584 (-1091)) |#1|)) (-14 -1801 (|#2| |#1|)) (-14 -1802 ((-82) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -3950 (|#1| (-1091))) (-14 -3160 ((-3 (-1091) #1#) |#1|)) (-14 -3159 ((-1091) |#1|)) (-14 -3771 (|#1| |#1| (-83) (-1 |#1| |#1|))) (-14 -3771 (|#1| |#1| (-83) (-1 |#1| (-584 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-83)) (-584 (-1 |#1| (-584 |#1|))))) (-14 -3771 (|#1| |#1| (-584 (-83)) (-584 (-1 |#1| |#1|)))) (-14 -3771 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-14 -3771 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-14 -3771 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 -1602 ((-584 (-551 |#1|)) |#1|)) (-14 -1603 ((-3 (-551 |#1|) #1#) |#1|)) (-14 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-14 -1605 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -1605 (|#1| |#1| (-248 |#1|))) (-14 -3803 (|#1| (-83) (-584 |#1|))) (-14 -3803 (|#1| (-83) |#1| |#1| |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1| |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1| |#1|)) (-14 -3803 (|#1| (-83) |#1|)) (-14 -3771 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#1| |#1|)) (-14 -3771 (|#1| |#1| (-248 |#1|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -3771 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-14 -3771 (|#1| |#1| (-551 |#1|) |#1|)) (-14 -3950 (|#1| (-551 |#1|))) (-14 -3160 ((-3 (-551 |#1|) #1#) |#1|)) (-14 -3159 ((-551 |#1|) |#1|)) (-14 -3950 ((-773) |#1|))) (-363 |#2|) (-1014)) (T -362))
-((-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *4 (-1014)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-362 *4 *5)) (-4 *4 (-363 *5)))) (-3129 (*1 *2) (-11 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 129 (|has| |#1| (-22)) ELT)) (-3084 (((-584 (-1091)) $) 222 T ELT)) (-3086 (((-349 (-1086 $)) $ (-551 $)) 190 (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 165 (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1313 (((-3 $ "failed") $ $) 132 (|has| |#1| (-18)) ELT)) (-1605 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3778 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3974 (((-347 $) $) 183 (|has| |#1| (-496)) ELT)) (-1609 (((-82) $ $) 173 (|has| |#1| (-496)) ELT)) (-3727 (($) 117 (OR (|has| |#1| (-1026)) (|has| |#1| (-22))) CONST)) (-3160 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1091) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-951 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-349 (-858 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) 137 (|has| |#1| (-962)) ELT) (((-3 (-349 (-485)) #1#) $) 111 (OR (-11 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3159 (((-551 $) $) 68 T ELT) (((-1091) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-951 (-485))) ELT) ((|#1| $) 227 T ELT) (((-349 (-858 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-858 |#1|) $) 138 (|has| |#1| (-962)) ELT) (((-349 (-485)) $) 112 (OR (-11 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2567 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2281 (((-631 (-485)) (-631 $)) 155 (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 154 (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 153 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 152 (|has| |#1| (-962)) ELT)) (-3470 (((-3 $ "failed") $) 119 (|has| |#1| (-1026)) ELT)) (-2566 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 171 (|has| |#1| (-496)) ELT)) (-3726 (((-82) $) 184 (|has| |#1| (-496)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 231 (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 230 (|has| |#1| (-797 (-329))) ELT)) (-2576 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1215 (((-82) $ $) 131 (|has| |#1| (-22)) ELT)) (-1600 (((-584 (-83)) $) 41 T ELT)) (-3598 (((-83) (-83)) 40 T ELT)) (-2412 (((-82) $) 118 (|has| |#1| (-1026)) ELT)) (-2676 (((-82) $) 20 (|has| $ (-951 (-485))) ELT)) (-2999 (($ $) 205 (|has| |#1| (-962)) ELT)) (-3001 (((-1040 |#1| (-551 $)) $) 206 (|has| |#1| (-962)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 180 (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 157 (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 156 (-2565 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) 150 (|has| |#1| (-962)) ELT)) (-1896 (($ (-584 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2237 (($ (-83) $) 36 T ELT) (($ (-83) (-584 $)) 35 T ELT)) (-2826 (((-3 (-584 $) "failed") $) 211 (|has| |#1| (-1026)) ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) "failed") $) 202 (|has| |#1| (-962)) ELT)) (-2825 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-22)) ELT)) (-1799 (((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 $))) "failed") $) 208 (|has| |#1| (-22)) ELT)) (-2827 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $) 210 (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $ (-83)) 204 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $ (-1091)) 203 (|has| |#1| (-962)) ELT)) (-2636 (((-82) $ (-83)) 38 T ELT) (((-82) $ (-1091)) 37 T ELT)) (-2487 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2606 (((-695) $) 45 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 224 T ELT)) (-1801 ((|#1| $) 223 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 170 (|has| |#1| (-496)) ELT)) (-3147 (($ (-584 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1599 (((-82) $ $) 33 T ELT) (((-82) $ (-1091)) 32 T ELT)) (-3735 (((-347 $) $) 181 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 172 (|has| |#1| (-496)) ELT)) (-2677 (((-82) $) 21 (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-83) (-1 $ (-584 $))) 25 T ELT) (($ $ (-83) (-1 $ $)) 24 T ELT) (($ $ (-1091)) 216 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 215 (|has| |#1| (-554 (-474))) ELT) (($ $) 214 (|has| |#1| (-554 (-474))) ELT) (($ $ (-83) $ (-1091)) 213 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-83)) (-584 $) (-1091)) 212 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 201 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 200 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) 198 (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) 174 (|has| |#1| (-496)) ELT)) (-3803 (($ (-83) $) 59 T ELT) (($ (-83) $ $) 58 T ELT) (($ (-83) $ $ $) 57 T ELT) (($ (-83) $ $ $ $) 56 T ELT) (($ (-83) (-584 $)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3761 (($ $ (-1091)) 148 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 146 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 144 (|has| |#1| (-962)) ELT)) (-2998 (($ $) 195 (|has| |#1| (-496)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3188 (($ $) 22 (|has| $ (-962)) ELT)) (-3975 (((-801 (-485)) $) 233 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) 232 (|has| |#1| (-554 (-801 (-329)))) ELT) (($ (-347 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2438 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1091)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1040 |#1| (-551 $))) 207 (|has| |#1| (-962)) ELT) (($ (-349 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-858 (-349 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-349 (-858 (-349 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-349 (-858 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) 136 (|has| |#1| (-962)) ELT) (($ (-349 (-485))) 110 (OR (|has| |#1| (-496)) (-11 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485)))) ELT)) (-2705 (((-633 $) $) 158 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 140 (|has| |#1| (-962)) CONST)) (-2593 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2256 (((-82) (-83)) 39 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 164 (|has| |#1| (-496)) ELT)) (-1800 (($ (-1091) $) 221 T ELT) (($ (-1091) $ $) 220 T ELT) (($ (-1091) $ $ $) 219 T ELT) (($ (-1091) $ $ $ $) 218 T ELT) (($ (-1091) (-584 $)) 217 T ELT)) (-3128 (((-82) $ $) 139 (|has| |#1| (-962)) ELT)) (-2663 (($) 128 (|has| |#1| (-22)) CONST)) (-2669 (($) 116 (|has| |#1| (-1026)) CONST)) (-2672 (($ $ (-1091)) 147 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 143 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 142 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 141 (|has| |#1| (-962)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3840 (($ $ $) 135 (|has| |#1| (-18)) ELT) (($ $) 134 (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) 126 (|has| |#1| (-22)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1026)) ELT)) (* (($ (-349 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-349 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-145)) ELT) (($ |#1| $) 149 (|has| |#1| (-962)) ELT) (($ (-485) $) 133 (|has| |#1| (-18)) ELT) (($ (-695) $) 130 (|has| |#1| (-22)) ELT) (($ (-831) $) 127 (|has| |#1| (-22)) ELT) (($ $ $) 114 (|has| |#1| (-1026)) ELT)))
-(((-363 |#1|) (-110) (-1014)) (T -363))
-((-1802 (*1 *2 *1) (-11 (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))) (-1801 (*1 *2 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)))) (-3084 (*1 *2 *1) (-11 (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) (-1800 (*1 *1 *2 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)))) (-1800 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)))) (-1800 (*1 *1 *2 *1 *1 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)))) (-1800 (*1 *1 *2 *1 *1 *1 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)))) (-1800 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1014)))) (-3771 (*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3771 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-1091))) (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3771 (*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) (-3771 (*1 *1 *1 *2 *1 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1091)) (-4 *1 (-363 *4)) (-4 *4 (-1014)) (-4 *4 (-554 (-474))))) (-3771 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) (-2826 (*1 *2 *1) (|partial| -11 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-363 *3)))) (-2827 (*1 *2 *1) (|partial| -11 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *3)))) (-2825 (*1 *2 *1) (|partial| -11 (-4 *3 (-22)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-363 *3)))) (-1799 (*1 *2 *1) (|partial| -11 (-4 *3 (-22)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| -3958 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-363 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-363 *3)))) (-3001 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-363 *3)))) (-2999 (*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) (-2827 (*1 *2 *1 *3) (|partial| -11 (-5 *3 (-83)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *4)))) (-2827 (*1 *2 *1 *3) (|partial| -11 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *4)))) (-2828 (*1 *2 *1) (|partial| -11 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-485)))) (-4 *1 (-363 *3)))) (-3771 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3771 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3771 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3771 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-3000 (*1 *2 *1) (-11 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-363 *3)))) (-2998 (*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) (-3953 (*1 *1 *2 *2) (-11 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-363 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-349 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-363 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-858 (-349 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-363 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-349 (-858 (-349 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-363 *3)))) (-3086 (*1 *2 *1 *3) (-11 (-5 *3 (-551 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) (-5 *2 (-349 (-1086 *1))))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-4 *3 (-1026)))))
-(-12 (-253) (-951 (-1091)) (-795 |t#1|) (-342 |t#1|) (-354 |t#1|) (-10 -8 (-14 -1802 ((-82) $)) (-14 -1801 (|t#1| $)) (-14 -3084 ((-584 (-1091)) $)) (-14 -1800 ($ (-1091) $)) (-14 -1800 ($ (-1091) $ $)) (-14 -1800 ($ (-1091) $ $ $)) (-14 -1800 ($ (-1091) $ $ $ $)) (-14 -1800 ($ (-1091) (-584 $))) (IF (|has| |t#1| (-554 (-474))) (PROGN (-6 (-554 (-474))) (-14 -3771 ($ $ (-1091))) (-14 -3771 ($ $ (-584 (-1091)))) (-14 -3771 ($ $)) (-14 -3771 ($ $ (-83) $ (-1091))) (-14 -3771 ($ $ (-584 (-83)) (-584 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-14 ** ($ $ (-695))) (-14 -2826 ((-3 (-584 $) "failed") $)) (-14 -2827 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-22)) (PROGN (-6 (-20)) (-14 -2825 ((-3 (-584 $) "failed") $)) (-14 -1799 ((-3 (-2 (|:| -3958 (-485)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-18)) (-6 (-18)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1091))) (-6 (-328 |t#1|)) (-14 -3950 ($ (-1040 |t#1| (-551 $)))) (-14 -3001 ((-1040 |t#1| (-551 $)) $)) (-14 -2999 ($ $)) (-14 -2827 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $ (-83))) (-14 -2827 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2403 (-485))) "failed") $ (-1091))) (-14 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) "failed") $)) (-14 -3771 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $)))) (-14 -3771 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-14 -3771 ($ $ (-1091) (-695) (-1 $ (-584 $)))) (-14 -3771 ($ $ (-1091) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-35 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-311)) (-6 (-951 (-349 (-858 |t#1|)))) (-14 -3975 ($ (-347 $))) (-14 -3000 ((-1040 |t#1| (-551 $)) $)) (-14 -2998 ($ $)) (-14 -3953 ($ (-1040 |t#1| (-551 $)) (-1040 |t#1| (-551 $)))) (-14 -3950 ($ (-349 |t#1|))) (-14 -3950 ($ (-858 (-349 |t#1|)))) (-14 -3950 ($ (-349 (-858 (-349 |t#1|))))) (-14 -3086 ((-349 (-1086 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-349 (-485)))) |%noBranch|)) |%noBranch|)))
-(((-18) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115)) (|has| |#1| (-18))) ((-20) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115)) (|has| |#1| (-22)) (|has| |#1| (-18))) ((-22) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115)) (|has| |#1| (-22)) (|has| |#1| (-18))) ((-35 (-349 (-485))) |has| |#1| (-496)) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-496)) ((-79 |#1| |#1|) |has| |#1| (-145)) ((-79 $ $) |has| |#1| (-496)) ((-101) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115)) (|has| |#1| (-18))) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-496))) ((-556 (-349 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485))) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) |has| |#1| (-496)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-329))) |has| |#1| (-554 (-801 (-329)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-200) |has| |#1| (-496)) ((-245) |has| |#1| (-496)) ((-257) |has| |#1| (-496)) ((-259 $) . T) ((-253) . T) ((-311) |has| |#1| (-496)) ((-328 |#1|) |has| |#1| (-962)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-392) |has| |#1| (-496)) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-496)) ((-589 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115)) (|has| |#1| (-18))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-145))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-591 (-349 (-485))) |has| |#1| (-496)) ((-591 (-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-145))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-583 (-349 (-485))) |has| |#1| (-496)) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-581 (-485)) -11 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-349 (-485))) |has| |#1| (-496)) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-329)) |has| |#1| (-797 (-329))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) |has| |#1| (-496)) ((-951 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (-11 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-349 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-349 (-485))) |has| |#1| (-496)) ((-964 |#1|) |has| |#1| (-145)) ((-964 $) |has| |#1| (-496)) ((-969 (-349 (-485))) |has| |#1| (-496)) ((-969 |#1|) |has| |#1| (-145)) ((-969 $) |has| |#1| (-496)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-971) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-1026) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-1062) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-145)) (|has| |#1| (-117)) (|has| |#1| (-115))) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-496)))
-((-3846 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
-(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-363 |#1|) (-962) (-363 |#3|)) (T -364))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-363 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5)))))
-((-1806 ((|#2| |#2|) 182 T ELT)) (-1803 (((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82)) 60 T ELT)))
-(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1803 ((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82))) (-14 -1806 (|#2| |#2|))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|)) (-1091) |#2|) (T -365))
-((-1806 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-12 (-24) (-1116) (-363 *3))) (-13 *4 (-1091)) (-13 *5 *2))) (-1803 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-13 *6 (-1091)) (-13 *7 *3))))
-((-1806 ((|#2| |#2|) 105 T ELT)) (-1804 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82) (-1074)) 52 T ELT)) (-1805 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82) (-1074)) 169 T ELT)))
-(((-366 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -1804 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82) (-1074))) (-14 -1805 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-82) (-1074))) (-14 -1806 (|#2| |#2|))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|) (-10 -8 (-14 -3950 ($ |#3|)))) (-756) (-12 (-1159 |#2| |#3|) (-311) (-1116) (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $)))) (-897 |#4|) (-1091)) (T -366))
-((-1806 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-4 *2 (-12 (-24) (-1116) (-363 *3) (-10 -8 (-14 -3950 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-12 (-1159 *2 *4) (-311) (-1116) (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $))))) (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-13 *7 (-1091)))) (-1805 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-82)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-12 (-24) (-1116) (-363 *6) (-10 -8 (-14 -3950 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-12 (-1159 *3 *7) (-311) (-1116) (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-13 *10 (-1091)))) (-1804 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-82)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-12 (-24) (-1116) (-363 *6) (-10 -8 (-14 -3950 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-12 (-1159 *3 *7) (-311) (-1116) (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-13 *10 (-1091)))))
-((-1807 (($) 51 T ELT)) (-3237 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3239 (($ $ $) 46 T ELT)) (-3238 (((-82) $ $) 35 T ELT)) (-3139 (((-695)) 55 T ELT)) (-3242 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2997 (($) 66 T ELT)) (-3244 (((-82) $ $) 15 T ELT)) (-2534 ((|#2| $) 77 T ELT)) (-2860 ((|#2| $) 75 T ELT)) (-2012 (((-831) $) 70 T ELT)) (-3241 (($ $ $) 42 T ELT)) (-2402 (($ (-831)) 60 T ELT)) (-3240 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1732 (((-695) |#2| $) 31 T ELT) (((-695) (-1 (-82) |#2|) $) NIL T ELT)) (-3533 (($ (-584 |#2|)) 27 T ELT)) (-1808 (($ $) 53 T ELT)) (-3950 (((-773) $) 40 T ELT)) (-1809 (((-695) $) 24 T ELT)) (-3243 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3059 (((-82) $ $) 19 T ELT)))
-(((-367 |#1| |#2|) (-10 -7 (-14 -3139 ((-695))) (-14 -2402 (|#1| (-831))) (-14 -2012 ((-831) |#1|)) (-14 -2997 (|#1|)) (-14 -2534 (|#2| |#1|)) (-14 -2860 (|#2| |#1|)) (-14 -1807 (|#1|)) (-14 -1808 (|#1| |#1|)) (-14 -1809 ((-695) |#1|)) (-14 -1732 ((-695) (-1 (-82) |#2|) |#1|)) (-14 -1732 ((-695) |#2| |#1|)) (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3244 ((-82) |#1| |#1|)) (-14 -3243 (|#1|)) (-14 -3243 (|#1| (-584 |#2|))) (-14 -3242 (|#1|)) (-14 -3242 (|#1| (-584 |#2|))) (-14 -3241 (|#1| |#1| |#1|)) (-14 -3240 (|#1| |#1| |#1|)) (-14 -3240 (|#1| |#1| |#2|)) (-14 -3239 (|#1| |#1| |#1|)) (-14 -3238 ((-82) |#1| |#1|)) (-14 -3237 (|#1| |#1| |#1|)) (-14 -3237 (|#1| |#1| |#2|)) (-14 -3237 (|#1| |#2| |#1|)) (-14 -3533 (|#1| (-584 |#2|)))) (-368 |#2|) (-1014)) (T -367))
-((-3139 (*1 *2) (-11 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4)))))
-((-2571 (((-82) $ $) 18 T ELT)) (-1807 (($) 61 (|has| |#1| (-319)) ELT)) (-3237 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3239 (($ $ $) 83 T ELT)) (-3238 (((-82) $ $) 84 T ELT)) (-3139 (((-695)) 55 (|has| |#1| (-319)) ELT)) (-3242 (($ (-584 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 70 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 69 T ELT)) (-2997 (($) 58 (|has| |#1| (-319)) ELT)) (-3244 (((-82) $ $) 75 T ELT)) (-2534 ((|#1| $) 59 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 68 T ELT)) (-3248 (((-82) |#1| $) 73 (|has| |#1| (-69)) ELT)) (-2860 ((|#1| $) 60 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2012 (((-831) $) 57 (|has| |#1| (-319)) ELT)) (-3245 (((-1074) $) 21 T ELT)) (-3241 (($ $ $) 80 T ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-2402 (($ (-831)) 56 (|has| |#1| (-319)) ELT)) (-3246 (((-1034) $) 20 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 71 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 66 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3240 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-1732 (((-695) |#1| $) 72 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 67 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-1808 (($ $) 62 (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) 16 T ELT)) (-1809 (((-695) $) 63 T ELT)) (-3243 (($ (-584 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1266 (((-82) $ $) 19 T ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 65 T ELT)) (-3059 (((-82) $ $) 17 T ELT)) (-3961 (((-695) $) 64 T ELT)))
-(((-368 |#1|) (-110) (-1014)) (T -368))
-((-1809 (*1 *2 *1) (-11 (-4 *1 (-368 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1808 (*1 *1 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-319)))) (-1807 (*1 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1014)))) (-2860 (*1 *2 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2534 (*1 *2 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))))
-(-12 (-182 |t#1|) (-1012 |t#1|) (-317 |t#1|) (-10 -8 (-14 -1809 ((-695) $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-319)) (-14 -1808 ($ $)) (-14 -1807 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-14 -2860 (|t#1| $)) (-14 -2534 (|t#1| $))) |%noBranch|)))
-(((-31) . T) ((-73 |#1|) . T) ((-69) . T) ((-553 (-773)) . T) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-182 |#1|) . T) ((-192 |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-319) |has| |#1| (-319)) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-3844 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3845 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3846 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
-(((-369 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#3| |#1|) |#2|)) (-14 -3845 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-14 -3844 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-368 |#1|) (-1014) (-368 |#3|)) (T -369))
-((-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-368 *5)) (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-368 *6)) (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5)))))
-((-1810 (((-520 |#2|) |#2| (-1091)) 36 T ELT)) (-2102 (((-520 |#2|) |#2| (-1091)) 21 T ELT)) (-2151 ((|#2| |#2| (-1091)) 26 T ELT)))
-(((-370 |#1| |#2|) (-10 -7 (-14 -2102 ((-520 |#2|) |#2| (-1091))) (-14 -1810 ((-520 |#2|) |#2| (-1091))) (-14 -2151 (|#2| |#2| (-1091)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-26 |#1|))) (T -370))
-((-2151 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-370 *4 *2)) (-4 *2 (-12 (-1116) (-26 *4))))) (-1810 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-12 (-1116) (-26 *5))))) (-2102 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-12 (-1116) (-26 *5))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1812 (($ |#2| |#1|) 37 T ELT)) (-1811 (($ |#2| |#1|) 35 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-280 |#2|)) 25 T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 16 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-371 |#1| |#2|) (-12 (-35 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3984)) (IF (|has| |#1| (-6 -3984)) (-6 -3984) |%noBranch|) |%noBranch|) (-14 -3950 ($ |#1|)) (-14 -3950 ($ (-280 |#2|))) (-14 -1812 ($ |#2| |#1|)) (-14 -1811 ($ |#2| |#1|)))) (-12 (-145) (-35 (-349 (-485)))) (-12 (-757) (-18))) (T -371))
-((-3950 (*1 *1 *2) (-11 (-5 *1 (-371 *2 *3)) (-4 *2 (-12 (-145) (-35 (-349 (-485))))) (-4 *3 (-12 (-757) (-18))))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-280 *4)) (-4 *4 (-12 (-757) (-18))) (-5 *1 (-371 *3 *4)) (-4 *3 (-12 (-145) (-35 (-349 (-485))))))) (-1812 (*1 *1 *2 *3) (-11 (-5 *1 (-371 *3 *2)) (-4 *3 (-12 (-145) (-35 (-349 (-485))))) (-4 *2 (-12 (-757) (-18))))) (-1811 (*1 *1 *2 *3) (-11 (-5 *1 (-371 *3 *2)) (-4 *3 (-12 (-145) (-35 (-349 (-485))))) (-4 *2 (-12 (-757) (-18))))))
-((-3815 (((-3 |#2| (-584 |#2|)) |#2| (-1091)) 115 T ELT)))
-(((-372 |#1| |#2|) (-10 -7 (-14 -3815 ((-3 |#2| (-584 |#2|)) |#2| (-1091)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-872) (-26 |#1|))) (T -372))
-((-3815 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-372 *5 *3)) (-4 *3 (-12 (-1116) (-872) (-26 *5))))))
-((-3389 ((|#2| |#2| |#2|) 31 T ELT)) (-3598 (((-83) (-83)) 43 T ELT)) (-1814 ((|#2| |#2|) 63 T ELT)) (-1813 ((|#2| |#2|) 66 T ELT)) (-3388 ((|#2| |#2|) 30 T ELT)) (-3392 ((|#2| |#2| |#2|) 33 T ELT)) (-3394 ((|#2| |#2| |#2|) 35 T ELT)) (-3391 ((|#2| |#2| |#2|) 32 T ELT)) (-3393 ((|#2| |#2| |#2|) 34 T ELT)) (-2256 (((-82) (-83)) 41 T ELT)) (-3396 ((|#2| |#2|) 37 T ELT)) (-3395 ((|#2| |#2|) 36 T ELT)) (-3386 ((|#2| |#2|) 25 T ELT)) (-3390 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3387 ((|#2| |#2| |#2|) 29 T ELT)))
-(((-373 |#1| |#2|) (-10 -7 (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 -3386 (|#2| |#2|)) (-14 -3390 (|#2| |#2|)) (-14 -3390 (|#2| |#2| |#2|)) (-14 -3387 (|#2| |#2| |#2|)) (-14 -3388 (|#2| |#2|)) (-14 -3389 (|#2| |#2| |#2|)) (-14 -3391 (|#2| |#2| |#2|)) (-14 -3392 (|#2| |#2| |#2|)) (-14 -3393 (|#2| |#2| |#2|)) (-14 -3394 (|#2| |#2| |#2|)) (-14 -3395 (|#2| |#2|)) (-14 -3396 (|#2| |#2|)) (-14 -1813 (|#2| |#2|)) (-14 -1814 (|#2| |#2|))) (-496) (-363 |#1|)) (T -373))
-((-1814 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-1813 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3396 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3395 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3394 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3393 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3392 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3391 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3389 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3388 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3387 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3390 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3390 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3386 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3)))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-373 *4 *5)) (-4 *5 (-363 *4)))))
-((-2836 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 103 (|has| |#2| (-24)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|)) 65 T ELT)))
-(((-374 |#1| |#2|) (-10 -7 (-14 -2836 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-24)) (-14 -2836 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-12 (-496) (-117)) (-363 |#1|)) (T -374))
-((-2836 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-496) (-117))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-374 *4 *3)) (-4 *3 (-24)) (-4 *3 (-363 *4)))) (-2836 (*1 *2 *3) (-11 (-5 *3 (-584 *5)) (-4 *5 (-363 *4)) (-4 *4 (-12 (-496) (-117))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-374 *4 *5)))))
-((-1816 (((-1186)) 18 T ELT)) (-1815 (((-1086 (-349 (-485))) |#2| (-551 |#2|)) 40 T ELT) (((-349 (-485)) |#2|) 27 T ELT)))
-(((-375 |#1| |#2|) (-10 -7 (-14 -1815 ((-349 (-485)) |#2|)) (-14 -1815 ((-1086 (-349 (-485))) |#2| (-551 |#2|))) (-14 -1816 ((-1186)))) (-12 (-496) (-951 (-485))) (-363 |#1|)) (T -375))
-((-1816 (*1 *2) (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-375 *3 *4)) (-4 *4 (-363 *3)))) (-1815 (*1 *2 *3 *4) (-11 (-5 *4 (-551 *3)) (-4 *3 (-363 *5)) (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-375 *5 *3)))) (-1815 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-349 (-485))) (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4)))))
-((-3648 (((-82) $) 33 T ELT)) (-1817 (((-82) $) 35 T ELT)) (-3262 (((-82) $) 36 T ELT)) (-1819 (((-82) $) 39 T ELT)) (-1821 (((-82) $) 34 T ELT)) (-1820 (((-82) $) 38 T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1074)) 32 T ELT) (($ (-1091)) 30 T ELT) (((-1091) $) 24 T ELT) (((-1016) $) 23 T ELT)) (-1818 (((-82) $) 37 T ELT)) (-3059 (((-82) $ $) 17 T ELT)))
-(((-376) (-12 (-553 (-773)) (-10 -8 (-14 -3950 ($ (-1074))) (-14 -3950 ($ (-1091))) (-14 -3950 ((-1091) $)) (-14 -3950 ((-1016) $)) (-14 -3648 ((-82) $)) (-14 -1821 ((-82) $)) (-14 -3262 ((-82) $)) (-14 -1820 ((-82) $)) (-14 -1819 ((-82) $)) (-14 -1818 ((-82) $)) (-14 -1817 ((-82) $)) (-14 -3059 ((-82) $ $))))) (T -376))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-376)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-376)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-376)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-376)))) (-3648 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-1821 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-3262 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-1820 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-1819 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-1818 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-1817 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))) (-3059 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
-((-1823 (((-3 (-347 (-1086 (-349 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1822 (((-347 |#3|) |#3|) 34 T ELT)) (-1825 (((-3 (-347 (-1086 (-45))) #1#) |#3|) 29 (|has| |#2| (-951 (-45))) ELT)) (-1824 (((-3 (|:| |overq| (-1086 (-349 (-485)))) (|:| |overan| (-1086 (-45))) (|:| -2642 (-82))) |#3|) 37 T ELT)))
-(((-377 |#1| |#2| |#3|) (-10 -7 (-14 -1822 ((-347 |#3|) |#3|)) (-14 -1823 ((-3 (-347 (-1086 (-349 (-485)))) #1="failed") |#3|)) (-14 -1824 ((-3 (|:| |overq| (-1086 (-349 (-485)))) (|:| |overan| (-1086 (-45))) (|:| -2642 (-82))) |#3|)) (IF (|has| |#2| (-951 (-45))) (-14 -1825 ((-3 (-347 (-1086 (-45))) #1#) |#3|)) |%noBranch|)) (-12 (-496) (-951 (-485))) (-363 |#1|) (-1156 |#2|)) (T -377))
-((-1825 (*1 *2 *3) (|partial| -11 (-4 *5 (-951 (-45))) (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1086 (-45)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1824 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-349 (-485)))) (|:| |overan| (-1086 (-45))) (|:| -2642 (-82)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1823 (*1 *2 *3) (|partial| -11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1086 (-349 (-485))))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1822 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3)) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1835 (((-3 (|:| |fst| (-376)) (|:| -3914 #1="void")) $) 11 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1832 (($) 35 T ELT)) (-1829 (($) 41 T ELT)) (-1830 (($) 37 T ELT)) (-1827 (($) 39 T ELT)) (-1831 (($) 36 T ELT)) (-1828 (($) 38 T ELT)) (-1826 (($) 40 T ELT)) (-1833 (((-82) $) 8 T ELT)) (-1834 (((-584 (-858 (-485))) $) 19 T ELT)) (-3533 (($ (-3 (|:| |fst| (-376)) (|:| -3914 #1#)) (-584 (-1091)) (-82)) 29 T ELT) (($ (-3 (|:| |fst| (-376)) (|:| -3914 #1#)) (-584 (-858 (-485))) (-82)) 30 T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-376)) 32 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-378) (-12 (-1014) (-10 -8 (-14 -3950 ($ (-376))) (-14 -1835 ((-3 (|:| |fst| (-376)) (|:| -3914 #1="void")) $)) (-14 -1834 ((-584 (-858 (-485))) $)) (-14 -1833 ((-82) $)) (-14 -3533 ($ (-3 (|:| |fst| (-376)) (|:| -3914 #1#)) (-584 (-1091)) (-82))) (-14 -3533 ($ (-3 (|:| |fst| (-376)) (|:| -3914 #1#)) (-584 (-858 (-485))) (-82))) (-14 -1832 ($)) (-14 -1831 ($)) (-14 -1830 ($)) (-14 -1829 ($)) (-14 -1828 ($)) (-14 -1827 ($)) (-14 -1826 ($))))) (T -378))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-376)) (-5 *1 (-378)))) (-1835 (*1 *2 *1) (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1="void"))) (-5 *1 (-378)))) (-1834 (*1 *2 *1) (-11 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-378)))) (-1833 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-378)))) (-3533 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *3 (-584 (-1091))) (-5 *4 (-82)) (-5 *1 (-378)))) (-3533 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-82)) (-5 *1 (-378)))) (-1832 (*1 *1) (-5 *1 (-378))) (-1831 (*1 *1) (-5 *1 (-378))) (-1830 (*1 *1) (-5 *1 (-378))) (-1829 (*1 *1) (-5 *1 (-378))) (-1828 (*1 *1) (-5 *1 (-378))) (-1827 (*1 *1) (-5 *1 (-378))) (-1826 (*1 *1) (-5 *1 (-378))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3545 (((-1091) $) 8 T ELT)) (-3245 (((-1074) $) 17 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 14 T ELT)))
-(((-379 |#1|) (-12 (-1014) (-10 -8 (-14 -3545 ((-1091) $)))) (-1091)) (T -379))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-379 *3)) (-13 *3 *2))))
-((-3846 (($ (-1 |#1| |#1|) $) 6 T ELT)))
-(((-380 |#1|) (-110) (-1130)) (T -380))
-((-3846 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1130)))))
-(-12 (-1130) (-10 -8 (-14 -3846 ($ (-1 |t#1| |t#1|) $))))
-(((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3322 (((-1029) $) 7 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 9 T ELT)))
-(((-381) (-12 (-1014) (-10 -8 (-14 -3322 ((-1029) $))))) (T -381))
-((-3322 (*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-381)))))
-((-1841 (((-82)) 18 T ELT)) (-1842 (((-82) (-82)) 19 T ELT)) (-1843 (((-82)) 14 T ELT)) (-1844 (((-82) (-82)) 15 T ELT)) (-1846 (((-82)) 16 T ELT)) (-1847 (((-82) (-82)) 17 T ELT)) (-1838 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1839 (((-695) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485))))) 52 T ELT)) (-1837 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1840 (((-2 (|:| -2581 (-485)) (|:| -1784 (-584 |#1|))) |#1|) 94 T ELT)) (-1836 (((-347 |#1|) (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485))))))) 176 T ELT)) (-3737 (((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82)) 209 T ELT)) (-3736 (((-347 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-347 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-347 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-347 |#1|) |#1| (-695)) 222 T ELT) (((-347 |#1|) |#1|) 220 T ELT)) (-1858 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-82)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3735 (((-347 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-347 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-347 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-347 |#1|) |#1| (-695)) 216 T ELT) (((-347 |#1|) |#1|) 214 T ELT)) (-1845 (((-82) |#1|) 43 T ELT)) (-1857 (((-676 (-695)) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485))))) 99 T ELT)) (-1848 (((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82) (-1010 (-695)) (-695)) 213 T ELT)))
-(((-382 |#1|) (-10 -7 (-14 -1836 ((-347 |#1|) (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))))) (-14 -1857 ((-676 (-695)) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))))) (-14 -1837 ((-831))) (-14 -1837 ((-831) (-831))) (-14 -1838 ((-831))) (-14 -1838 ((-831) (-831))) (-14 -1839 ((-695) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))))) (-14 -1840 ((-2 (|:| -2581 (-485)) (|:| -1784 (-584 |#1|))) |#1|)) (-14 -1841 ((-82))) (-14 -1842 ((-82) (-82))) (-14 -1843 ((-82))) (-14 -1844 ((-82) (-82))) (-14 -1845 ((-82) |#1|)) (-14 -1846 ((-82))) (-14 -1847 ((-82) (-82))) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3735 ((-347 |#1|) |#1| (-695))) (-14 -3735 ((-347 |#1|) |#1| (-584 (-695)))) (-14 -3735 ((-347 |#1|) |#1| (-584 (-695)) (-695))) (-14 -3735 ((-347 |#1|) |#1| (-695) (-695))) (-14 -3736 ((-347 |#1|) |#1|)) (-14 -3736 ((-347 |#1|) |#1| (-695))) (-14 -3736 ((-347 |#1|) |#1| (-584 (-695)))) (-14 -3736 ((-347 |#1|) |#1| (-584 (-695)) (-695))) (-14 -3736 ((-347 |#1|) |#1| (-695) (-695))) (-14 -1858 ((-3 |#1| #1="failed") (-831) |#1|)) (-14 -1858 ((-3 |#1| #1#) (-831) |#1| (-695))) (-14 -1858 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-14 -1858 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-14 -1858 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-82))) (-14 -3737 ((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82))) (-14 -1848 ((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82) (-1010 (-695)) (-695)))) (-1156 (-485))) (T -382))
-((-1848 (*1 *2 *3 *4 *5 *6) (-11 (-5 *4 (-82)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3737 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1858 (*1 *2 *3 *2 *4 *5 *6) (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-82)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1858 (*1 *2 *3 *2 *4 *5) (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1858 (*1 *2 *3 *2 *4) (|partial| -11 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1858 (*1 *2 *3 *2) (|partial| -11 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-3736 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-695))) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-695))) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1847 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1846 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1845 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1844 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1843 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1842 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1841 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1840 (*1 *2 *3) (-11 (-5 *2 (-2 (|:| -2581 (-485)) (|:| -1784 (-584 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1839 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3735 *4) (|:| -3952 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))) (-1838 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1838 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1857 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3735 *4) (|:| -3952 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) (-1836 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| *4) (|:| -2397 (-485))))))) (-4 *4 (-1156 (-485))) (-5 *2 (-347 *4)) (-5 *1 (-382 *4)))))
-((-1852 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-695)) 51 T ELT)) (-1851 (((-485) |#2|) 64 T ELT)) (-1853 ((|#3| |#2|) 26 T ELT)) (-3135 ((|#3| |#2| (-831)) 15 T ELT)) (-3836 ((|#3| |#2|) 16 T ELT)) (-1854 ((|#3| |#2|) 9 T ELT)) (-2606 ((|#3| |#2|) 10 T ELT)) (-1850 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1849 (((-485) |#2|) 66 T ELT)))
-(((-383 |#1| |#2| |#3|) (-10 -7 (-14 -1849 ((-485) |#2|)) (-14 -1850 (|#3| |#2|)) (-14 -1850 (|#3| |#2| (-831))) (-14 -1851 ((-485) |#2|)) (-14 -1852 ((-485) |#2| (-695))) (-14 -1852 ((-485) |#2|)) (-14 -3135 (|#3| |#2| (-831))) (-14 -1853 (|#3| |#2|)) (-14 -1854 (|#3| |#2|)) (-14 -2606 (|#3| |#2|)) (-14 -3836 (|#3| |#2|))) (-962) (-1156 |#1|) (-12 (-346) (-951 |#1|) (-311) (-1116) (-238))) (T -383))
-((-3836 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-2606 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1854 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1853 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-3135 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-12 (-346) (-951 *5) (-311) (-1116) (-238))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1852 (*1 *2 *3) (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))) (-1852 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1156 *5)) (-4 *6 (-12 (-346) (-951 *5) (-311) (-1116) (-238))))) (-1851 (*1 *2 *3) (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))) (-1850 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-12 (-346) (-951 *5) (-311) (-1116) (-238))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1850 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1849 (*1 *2 *3) (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))))
-((-3357 ((|#2| (-1180 |#1|)) 42 T ELT)) (-1856 ((|#2| |#2| |#1|) 58 T ELT)) (-1855 ((|#2| |#2| |#1|) 49 T ELT)) (-2300 ((|#2| |#2|) 44 T ELT)) (-3176 (((-82) |#2|) 32 T ELT)) (-1859 (((-584 |#2|) (-831) (-347 |#2|)) 21 T ELT)) (-1858 ((|#2| (-831) (-347 |#2|)) 25 T ELT)) (-1857 (((-676 (-695)) (-347 |#2|)) 29 T ELT)))
-(((-384 |#1| |#2|) (-10 -7 (-14 -3176 ((-82) |#2|)) (-14 -3357 (|#2| (-1180 |#1|))) (-14 -2300 (|#2| |#2|)) (-14 -1855 (|#2| |#2| |#1|)) (-14 -1856 (|#2| |#2| |#1|)) (-14 -1857 ((-676 (-695)) (-347 |#2|))) (-14 -1858 (|#2| (-831) (-347 |#2|))) (-14 -1859 ((-584 |#2|) (-831) (-347 |#2|)))) (-962) (-1156 |#1|)) (T -384))
-((-1859 (*1 *2 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-347 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))) (-1858 (*1 *2 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-347 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-962)))) (-1857 (*1 *2 *3) (-11 (-5 *3 (-347 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))) (-1856 (*1 *2 *2 *3) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-1855 (*1 *2 *2 *3) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-2300 (*1 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-3357 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) (-5 *1 (-384 *4 *2)))) (-3176 (*1 *2 *3) (-11 (-4 *4 (-962)) (-5 *2 (-82)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4)))))
-((-1862 (((-695)) 59 T ELT)) (-1866 (((-695)) 29 (|has| |#1| (-346)) ELT) (((-695) (-695)) 28 (|has| |#1| (-346)) ELT)) (-1865 (((-485) |#1|) 25 (|has| |#1| (-346)) ELT)) (-1864 (((-485) |#1|) 27 (|has| |#1| (-346)) ELT)) (-1861 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1860 ((|#1| (-695) (-485)) 37 T ELT)) (-1863 (((-1186)) 61 T ELT)))
-(((-385 |#1|) (-10 -7 (-14 -1860 (|#1| (-695) (-485))) (-14 -1861 ((-695) (-695))) (-14 -1861 ((-695))) (-14 -1862 ((-695))) (-14 -1863 ((-1186))) (IF (|has| |#1| (-346)) (PROGN (-14 -1864 ((-485) |#1|)) (-14 -1865 ((-485) |#1|)) (-14 -1866 ((-695) (-695))) (-14 -1866 ((-695)))) |%noBranch|)) (-962)) (T -385))
-((-1866 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))) (-1866 (*1 *2 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))) (-1865 (*1 *2 *3) (-11 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))) (-1864 (*1 *2 *3) (-11 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))) (-1863 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1862 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1861 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1861 (*1 *2 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1860 (*1 *2 *3 *4) (-11 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
-((-1867 (((-584 (-485)) (-485)) 76 T ELT)) (-3726 (((-82) (-141 (-485))) 84 T ELT)) (-3735 (((-347 (-141 (-485))) (-141 (-485))) 75 T ELT)))
-(((-386) (-10 -7 (-14 -3735 ((-347 (-141 (-485))) (-141 (-485)))) (-14 -1867 ((-584 (-485)) (-485))) (-14 -3726 ((-82) (-141 (-485)))))) (T -386))
-((-3726 (*1 *2 *3) (-11 (-5 *3 (-141 (-485))) (-5 *2 (-82)) (-5 *1 (-386)))) (-1867 (*1 *2 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 (-141 (-485)))) (-5 *1 (-386)) (-5 *3 (-141 (-485))))))
-((-2949 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-311)) ELT)) (-2253 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2253 ((-584 |#4|) (-584 |#4|))) (-14 -2253 ((-584 |#4|) (-584 |#4|) (-1074))) (-14 -2253 ((-584 |#4|) (-584 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-311)) (-14 -2949 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387))
-((-2949 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2253 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2253 (*1 *2 *2 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2253 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))))
-((-1868 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1869 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT)))
-(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1868 (|#4| |#4| (-584 |#4|))) (-14 -1869 ((-584 |#4|) (-584 |#4|))) (-14 -1869 ((-584 |#4|) (-584 |#4|) (-1074))) (-14 -1869 ((-584 |#4|) (-584 |#4|) (-1074) (-1074)))) (-257) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -388))
-((-1869 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1869 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1868 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
-((-1871 (((-584 (-584 |#4|)) (-584 |#4|) (-82)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-82)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1870 (((-584 (-584 |#4|)) (-584 |#4|) (-82)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT)))
-(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1870 ((-584 (-584 |#4|)) (-584 |#4|))) (-14 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-82))) (-14 -1871 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-14 -1871 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-82))) (-14 -1871 ((-584 (-584 |#4|)) (-584 |#4|))) (-14 -1871 ((-584 (-584 |#4|)) (-584 |#4|) (-82)))) (-12 (-257) (-117)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -389))
-((-1871 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1871 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1871 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1871 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1870 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1870 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-((-1895 (((-695) |#4|) 12 T ELT)) (-1883 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|)))) 39 T ELT)) (-1885 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1884 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1873 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1881 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1888 (((-1186) |#4|) 59 T ELT)) (-1891 (((-1186) (-584 |#4|)) 69 T ELT)) (-1889 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1892 (((-1186) (-485)) 110 T ELT)) (-1886 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1894 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|)) |#4| (-695)) 31 T ELT)) (-1887 (((-485) |#4|) 109 T ELT)) (-1882 ((|#4| |#4|) 37 T ELT)) (-1874 (((-584 |#4|) (-584 |#4|) (-485) (-485)) 74 T ELT)) (-1890 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1893 (((-82) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1875 (((-82) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1880 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1879 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1876 (((-82) |#2| |#2|) 75 T ELT)) (-1878 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1877 (((-82) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1872 ((|#4| |#4| (-584 |#4|)) 97 T ELT)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1872 (|#4| |#4| (-584 |#4|))) (-14 -1873 (|#4| |#4| (-584 |#4|))) (-14 -1874 ((-584 |#4|) (-584 |#4|) (-485) (-485))) (-14 -1875 ((-82) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-14 -1876 ((-82) |#2| |#2|)) (-14 -1877 ((-82) |#2| |#2| |#2| |#2|)) (-14 -1878 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-14 -1879 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-14 -1880 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-14 -1881 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-14 -1882 (|#4| |#4|)) (-14 -1883 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|))))) (-14 -1884 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-14 -1885 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-14 -1886 ((-584 |#4|) (-584 |#4|))) (-14 -1887 ((-485) |#4|)) (-14 -1888 ((-1186) |#4|)) (-14 -1889 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-14 -1890 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-14 -1891 ((-1186) (-584 |#4|))) (-14 -1892 ((-1186) (-485))) (-14 -1893 ((-82) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-14 -1894 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2006 |#4|)) |#4| (-695))) (-14 -1895 ((-695) |#4|))) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -390))
-((-1895 (*1 *2 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1894 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2006 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1893 (*1 *2 *3 *3) (-11 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1892 (*1 *2 *3) (-11 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1891 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1890 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1889 (*1 *2 *3 *4 *4 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1888 (*1 *2 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1887 (*1 *2 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1886 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1885 (*1 *2 *2 *2) (-11 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1884 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-757)))) (-1883 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1882 (*1 *2 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1881 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1880 (*1 *2 *3 *2) (-11 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1879 (*1 *2 *2) (-11 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1878 (*1 *2 *3 *2) (-11 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1877 (*1 *2 *3 *3 *3 *3) (-11 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1876 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1875 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1874 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1873 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1872 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
-((-1896 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 45 T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT)))
-(((-391 |#1|) (-10 -7 (-14 -2711 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-14 -1896 (|#1| (-584 |#1|))) (-14 -1896 (|#1| |#1| |#1|)) (-14 -3147 (|#1| (-584 |#1|))) (-14 -3147 (|#1| |#1| |#1|))) (-392)) (T -391))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-392) (-110)) (T -392))
-((-3147 (*1 *1 *1 *1) (-4 *1 (-392))) (-3147 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-1896 (*1 *1 *1 *1) (-4 *1 (-392))) (-1896 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-2711 (*1 *2 *2 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-392)))))
-(-12 (-496) (-10 -8 (-14 -3147 ($ $ $)) (-14 -3147 ($ (-584 $))) (-14 -1896 ($ $ $)) (-14 -1896 ($ (-584 $))) (-14 -2711 ((-1086 $) (-1086 $) (-1086 $)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1180 (-631 (-349 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-1180 (-631 (-349 (-858 |#1|))))) NIL T ELT)) (-1730 (((-1180 $)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1793 (((-631 (-349 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-349 (-858 |#1|)))) NIL T ELT)) (-1728 (((-349 (-858 |#1|)) $) NIL T ELT)) (-1791 (((-631 (-349 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-349 (-858 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1905 (((-1086 (-858 (-349 (-858 |#1|))))) NIL (|has| (-349 (-858 |#1|)) (-311)) ELT) (((-1086 (-349 (-858 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2409 (($ $ (-831)) NIL T ELT)) (-1726 (((-349 (-858 |#1|)) $) NIL T ELT)) (-1706 (((-1086 (-349 (-858 |#1|))) $) 87 (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1795 (((-349 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-349 (-858 |#1|))) NIL T ELT)) (-1724 (((-1086 (-349 (-858 |#1|))) $) NIL T ELT)) (-1718 (((-82)) NIL T ELT)) (-1797 (($ (-1180 (-349 (-858 |#1|))) (-1180 $)) 111 T ELT) (($ (-1180 (-349 (-858 |#1|)))) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-3111 (((-831)) NIL T ELT)) (-1715 (((-82)) NIL T ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1711 (((-82)) NIL T ELT)) (-1709 (((-82)) NIL T ELT)) (-1713 (((-82)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1794 (((-631 (-349 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-349 (-858 |#1|)))) NIL T ELT)) (-1729 (((-349 (-858 |#1|)) $) NIL T ELT)) (-1792 (((-631 (-349 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-349 (-858 |#1|))) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1909 (((-1086 (-858 (-349 (-858 |#1|))))) NIL (|has| (-349 (-858 |#1|)) (-311)) ELT) (((-1086 (-349 (-858 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1727 (((-349 (-858 |#1|)) $) NIL T ELT)) (-1707 (((-1086 (-349 (-858 |#1|))) $) 84 (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-1796 (((-349 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-349 (-858 |#1|))) NIL T ELT)) (-1725 (((-1086 (-349 (-858 |#1|))) $) NIL T ELT)) (-1719 (((-82)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1710 (((-82)) NIL T ELT)) (-1712 (((-82)) NIL T ELT)) (-1714 (((-82)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1899 (((-349 (-858 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1903 (((-349 (-858 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1902 (((-349 (-858 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-349 (-858 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1898 (((-349 (-858 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1901 (((-349 (-858 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1907 (((-349 (-858 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1906 (((-349 (-858 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1908 (((-1086 (-349 (-858 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1900 (((-349 (-858 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1910 (($) 107 T ELT) (($ (-1091)) 115 T ELT) (($ (-1180 (-1091))) 114 T ELT) (($ (-1180 $)) 102 T ELT) (($ (-1091) (-1180 $)) 113 T ELT) (($ (-1180 (-1091)) (-1180 $)) 112 T ELT)) (-1717 (((-82)) NIL T ELT)) (-3803 (((-349 (-858 |#1|)) $ (-485)) NIL T ELT)) (-3227 (((-1180 (-349 (-858 |#1|))) $ (-1180 $)) 104 T ELT) (((-631 (-349 (-858 |#1|))) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-349 (-858 |#1|))) $) 44 T ELT) (((-631 (-349 (-858 |#1|))) (-1180 $)) NIL T ELT)) (-3975 (((-1180 (-349 (-858 |#1|))) $) NIL T ELT) (($ (-1180 (-349 (-858 |#1|)))) 41 T ELT)) (-1897 (((-584 (-858 (-349 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-584 (-858 (-349 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1180 $)) 105 (|has| |#1| (-496)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-82)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-1180 (-349 (-858 |#1|)))) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 66 T ELT)) (-1708 (((-584 (-1180 (-349 (-858 |#1|))))) NIL (|has| (-349 (-858 |#1|)) (-496)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-82)) NIL T ELT)) (-2548 (($ (-631 (-349 (-858 |#1|))) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-82)) NIL T ELT)) (-1720 (((-82)) NIL T ELT)) (-1716 (((-82)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-858 |#1|))) NIL T ELT) (($ (-349 (-858 |#1|)) $) NIL T ELT) (($ (-1057 |#2| (-349 (-858 |#1|))) $) NIL T ELT)))
-(((-393 |#1| |#2| |#3| |#4|) (-12 (-360 (-349 (-858 |#1|))) (-591 (-1057 |#2| (-349 (-858 |#1|)))) (-10 -8 (-14 -3950 ($ (-1180 (-349 (-858 |#1|))))) (-14 -1912 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1="failed"))) (-14 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#))) (-14 -1910 ($)) (-14 -1910 ($ (-1091))) (-14 -1910 ($ (-1180 (-1091)))) (-14 -1910 ($ (-1180 $))) (-14 -1910 ($ (-1091) (-1180 $))) (-14 -1910 ($ (-1180 (-1091)) (-1180 $))) (IF (|has| |#1| (-496)) (PROGN (-14 -1909 ((-1086 (-349 (-858 |#1|))))) (-14 -1908 ((-1086 (-349 (-858 |#1|))) $)) (-14 -1907 ((-349 (-858 |#1|)) $)) (-14 -1906 ((-349 (-858 |#1|)) $)) (-14 -1905 ((-1086 (-349 (-858 |#1|))))) (-14 -1904 ((-1086 (-349 (-858 |#1|))) $)) (-14 -1903 ((-349 (-858 |#1|)) $)) (-14 -1902 ((-349 (-858 |#1|)) $)) (-14 -1901 ((-349 (-858 |#1|)) $ $)) (-14 -1900 ((-349 (-858 |#1|)))) (-14 -1899 ((-349 (-858 |#1|)) $ $)) (-14 -1898 ((-349 (-858 |#1|)))) (-14 -1897 ((-584 (-858 |#1|)) (-1180 $))) (-14 -1897 ((-584 (-858 |#1|))))) |%noBranch|))) (-145) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -393))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1180 (-349 (-858 *3)))) (-4 *3 (-145)) (-13 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))))) (-1912 (*1 *2) (|partial| -11 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2014 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1911 (*1 *2) (|partial| -11 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2014 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1910 (*1 *1) (-11 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-145)) (-13 *3 (-831)) (-13 *4 (-584 (-1091))) (-13 *5 (-1180 (-631 *2))))) (-1910 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 *2)) (-13 *6 (-1180 (-631 *3))))) (-1910 (*1 *1 *2) (-11 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1910 (*1 *1 *2) (-11 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1910 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-145)) (-13 *5 (-831)) (-13 *6 (-584 *2)) (-13 *7 (-1180 (-631 *4))))) (-1910 (*1 *1 *2 *3) (-11 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-145)) (-13 *5 (-831)) (-13 *6 (-584 (-1091))) (-13 *7 (-1180 (-631 *4))))) (-1909 (*1 *2) (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1908 (*1 *2 *1) (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1907 (*1 *2 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1906 (*1 *2 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1905 (*1 *2) (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1904 (*1 *2 *1) (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1903 (*1 *2 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1902 (*1 *2 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1901 (*1 *2 *1 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1900 (*1 *2) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1899 (*1 *2 *1 *1) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1898 (*1 *2) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))) (-1897 (*1 *2 *3) (-11 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-145)) (-13 *5 (-831)) (-13 *6 (-584 (-1091))) (-13 *7 (-1180 (-631 *4))))) (-1897 (*1 *2) (-11 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 19 T ELT)) (-3084 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3086 (((-1086 $) $ (-774 |#1|)) 53 T ELT) (((-1086 |#2|) $) 140 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 49 T ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-1942 (($ $ (-584 (-485))) 95 T ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) 66 T ELT)) (-3087 (($ (-1086 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1086 $) (-774 |#1|)) 59 T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) 69 T ELT)) (-2896 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2823 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) 48 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) 47 T ELT)) (-1801 ((|#2| $) 138 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3760 (($ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-3761 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3952 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3950 (((-773) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) 77 (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-394 |#1| |#2| |#3|) (-12 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-14 -1942 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962) (-195 (-3961 |#1|) (-695))) (T -394))
-((-1942 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-13 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-195 (-3961 *3) (-695))))))
-((-1916 (((-82) |#1| (-584 |#2|)) 90 T ELT)) (-1914 (((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1915 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|))) 101 T ELT)) (-2039 ((|#2| |#2| |#1|) 35 T ELT)) (-1913 (((-695) |#2| (-584 |#2|)) 26 T ELT)))
-(((-395 |#1| |#2|) (-10 -7 (-14 -2039 (|#2| |#2| |#1|)) (-14 -1913 ((-695) |#2| (-584 |#2|))) (-14 -1914 ((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-14 -1915 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|)))) (-14 -1916 ((-82) |#1| (-584 |#2|)))) (-257) (-1156 |#1|)) (T -395))
-((-1916 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-257)) (-5 *2 (-82)) (-5 *1 (-395 *3 *5)))) (-1915 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))) (-1914 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1156 *4)) (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))) (-1913 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-257)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3)))) (-2039 (*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3)))))
-((-3735 (((-347 |#5|) |#5|) 24 T ELT)))
-(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3735 ((-347 |#5|) |#5|))) (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))) (-718) (-496) (-496) (-862 |#4| |#2| |#1|)) (T -396))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091)))))) (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-347 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4)))))
-((-2703 ((|#3|) 43 T ELT)) (-2711 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 34 T ELT)))
-(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2711 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-14 -2703 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -397))
-((-2703 (*1 *2) (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2711 (*1 *2 *2 *2) (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6)))))
-((-3735 (((-347 (-1086 |#1|)) (-1086 |#1|)) 43 T ELT)))
-(((-398 |#1|) (-10 -7 (-14 -3735 ((-347 (-1086 |#1|)) (-1086 |#1|)))) (-257)) (T -398))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-257)) (-5 *2 (-347 (-1086 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1086 *4)))))
-((-3732 (((-48) |#2| (-1091) (-248 |#2|) (-1147 (-695))) 44 T ELT) (((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-695))) 43 T ELT) (((-48) |#2| (-1091) (-248 |#2|)) 36 T ELT) (((-48) (-1 |#2| (-485)) (-248 |#2|)) 29 T ELT)) (-3821 (((-48) |#2| (-1091) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485))) 88 T ELT) (((-48) (-1 |#2| (-349 (-485))) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485))) 87 T ELT) (((-48) |#2| (-1091) (-248 |#2|) (-1147 (-485))) 86 T ELT) (((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-485))) 85 T ELT) (((-48) |#2| (-1091) (-248 |#2|)) 80 T ELT) (((-48) (-1 |#2| (-485)) (-248 |#2|)) 79 T ELT)) (-3785 (((-48) |#2| (-1091) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485))) 74 T ELT) (((-48) (-1 |#2| (-349 (-485))) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485))) 72 T ELT)) (-3782 (((-48) |#2| (-1091) (-248 |#2|) (-1147 (-485))) 51 T ELT) (((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-485))) 50 T ELT)))
-(((-399 |#1| |#2|) (-10 -7 (-14 -3732 ((-48) (-1 |#2| (-485)) (-248 |#2|))) (-14 -3732 ((-48) |#2| (-1091) (-248 |#2|))) (-14 -3732 ((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-695)))) (-14 -3732 ((-48) |#2| (-1091) (-248 |#2|) (-1147 (-695)))) (-14 -3782 ((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-485)))) (-14 -3782 ((-48) |#2| (-1091) (-248 |#2|) (-1147 (-485)))) (-14 -3785 ((-48) (-1 |#2| (-349 (-485))) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485)))) (-14 -3785 ((-48) |#2| (-1091) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485)))) (-14 -3821 ((-48) (-1 |#2| (-485)) (-248 |#2|))) (-14 -3821 ((-48) |#2| (-1091) (-248 |#2|))) (-14 -3821 ((-48) (-1 |#2| (-485)) (-248 |#2|) (-1147 (-485)))) (-14 -3821 ((-48) |#2| (-1091) (-248 |#2|) (-1147 (-485)))) (-14 -3821 ((-48) (-1 |#2| (-349 (-485))) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485)))) (-14 -3821 ((-48) |#2| (-1091) (-248 |#2|) (-1147 (-349 (-485))) (-349 (-485))))) (-12 (-496) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -399))
-((-3821 (*1 *2 *3 *4 *5 *6 *7) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-349 (-485)))) (-5 *7 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *8))) (-4 *8 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *8 *3)))) (-3821 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-1 *8 (-349 (-485)))) (-5 *4 (-248 *8)) (-5 *5 (-1147 (-349 (-485)))) (-5 *6 (-349 (-485))) (-4 *8 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *7 *8)))) (-3821 (*1 *2 *3 *4 *5 *6) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *7 *3)))) (-3821 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *6 *7)))) (-3821 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *6 *3)))) (-3821 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 (-485))) (-5 *4 (-248 *6)) (-4 *6 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *5 *6)))) (-3785 (*1 *2 *3 *4 *5 *6 *7) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-349 (-485)))) (-5 *7 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *8))) (-4 *8 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *8 *3)))) (-3785 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-1 *8 (-349 (-485)))) (-5 *4 (-248 *8)) (-5 *5 (-1147 (-349 (-485)))) (-5 *6 (-349 (-485))) (-4 *8 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *7 *8)))) (-3782 (*1 *2 *3 *4 *5 *6) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *7 *3)))) (-3782 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *6 *7)))) (-3732 (*1 *2 *3 *4 *5 *6) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-695))) (-4 *3 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *7 *3)))) (-3732 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-695))) (-4 *7 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *6 *7)))) (-3732 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *6 *3)))) (-3732 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 (-485))) (-5 *4 (-248 *6)) (-4 *6 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48)) (-5 *1 (-399 *5 *6)))))
-((-2039 ((|#2| |#2| |#1|) 15 T ELT)) (-1918 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1917 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT)))
-(((-400 |#1| |#2|) (-10 -7 (-14 -1917 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-14 -1918 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-14 -2039 (|#2| |#2| |#1|))) (-257) (-1156 |#1|)) (T -400))
-((-2039 (*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) (-1918 (*1 *2 *3 *2 *4 *5) (-11 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-257)) (-5 *1 (-400 *4 *3)))) (-1917 (*1 *2 *3 *4 *5 *6) (-11 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1156 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-584 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 28 T ELT)) (-3710 (($ |#3|) 25 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 32 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1919 (($ |#2| |#4| $) 33 T ELT)) (-2896 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2897 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1921 ((|#3| $) 19 T ELT)) (-1922 ((|#4| $) 17 T ELT)) (-3177 ((|#2| $) 29 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1920 (($ |#2| |#3| |#4|) 26 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-12 (-655 |#6|) (-655 |#2|) (-10 -8 (-14 -3177 (|#2| $)) (-14 -2897 ((-651 |#3| |#4| |#5|) $)) (-14 -1922 (|#4| $)) (-14 -1921 (|#3| $)) (-14 -3962 ($ $)) (-14 -2896 ($ |#2| (-651 |#3| |#4| |#5|))) (-14 -3710 ($ |#3|)) (-14 -1920 ($ |#2| |#3| |#4|)) (-14 -1919 ($ |#2| |#4| $)) (-14 * ($ |#6| $)))) (-584 (-1091)) (-145) (-757) (-195 (-3961 |#1|) (-695)) (-1 (-82) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|)) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -401))
-((* (*1 *1 *2 *1) (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *6 (-195 (-3961 *3) (-695))) (-13 *7 (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3177 (*1 *2 *1) (-11 (-13 *3 (-584 (-1091))) (-4 *5 (-195 (-3961 *3) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-4 *2 (-145)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2897 (*1 *2 *1) (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *6 (-195 (-3961 *3) (-695))) (-13 *7 (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1922 (*1 *2 *1) (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-13 *6 (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *2)) (-2 (|:| -2402 *5) (|:| -2403 *2)))) (-4 *2 (-195 (-3961 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1921 (*1 *2 *1) (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *5 (-195 (-3961 *3) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3962 (*1 *1 *1) (-11 (-13 *2 (-584 (-1091))) (-4 *3 (-145)) (-4 *5 (-195 (-3961 *2) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2896 (*1 *1 *2 *3) (-11 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-195 (-3961 *4) (-695))) (-13 *7 (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-13 *4 (-584 (-1091))) (-4 *2 (-145)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3710 (*1 *1 *2) (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *5 (-195 (-3961 *3) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1920 (*1 *1 *2 *3 *4) (-11 (-13 *5 (-584 (-1091))) (-4 *2 (-145)) (-4 *4 (-195 (-3961 *5) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *3) (|:| -2403 *4)) (-2 (|:| -2402 *3) (|:| -2403 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1919 (*1 *1 *2 *3 *1) (-11 (-13 *4 (-584 (-1091))) (-4 *2 (-145)) (-4 *3 (-195 (-3961 *4) (-695))) (-13 *6 (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *3)) (-2 (|:| -2402 *5) (|:| -2403 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4))))))
-((-1923 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
-(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -1923 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-12 (-951 (-349 (-485))) (-311) (-10 -8 (-14 -3950 ($ |#4|)) (-14 -3001 (|#4| $)) (-14 -3000 (|#4| $))))) (T -402))
-((-1923 (*1 *2 *2 *3 *4) (|partial| -11 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-12 (-951 (-349 (-485))) (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3084 (((-584 |#3|) $) 40 T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1="failed") (-584 |#4|)) 48 T ELT)) (-3159 (($ (-584 |#4|)) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-3409 (($ |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT) (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3183 ((|#3| $) 46 T ELT)) (-2611 (((-584 |#4|) $) 14 T ELT)) (-3248 (((-82) |#4| $) 25 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2917 (((-584 |#3|) $) NIL T ELT)) (-2916 (((-82) |#3| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 38 T ELT)) (-3568 (($) 17 T ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT) (($ (-584 |#4|)) 50 T ELT)) (-3533 (($ (-584 |#4|)) 13 T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-773) $) 37 T ELT) (((-584 |#4|) $) 49 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3059 (((-82) $ $) 29 T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-403 |#1| |#2| |#3| |#4|) (-12 (-890 |#1| |#2| |#3| |#4|) (-1036 |#4|) (-10 -8 (-14 -3975 ($ (-584 |#4|))))) (-962) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -403))
-((-3975 (*1 *1 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6)))))
-((-2663 (($) 11 T CONST)) (-2669 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
-(((-404 |#1| |#2| |#3|) (-10 -7 (-14 -2669 (|#1|) -3956) (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 -2663 (|#1|) -3956)) (-405 |#2| |#3|) (-145) (-20)) (T -404))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3160 (((-3 |#1| "failed") $) 30 T ELT)) (-3159 ((|#1| $) 31 T ELT)) (-3948 (($ $ $) 27 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3952 ((|#2| $) 23 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 28 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-405 |#1| |#2|) (-110) (-145) (-20)) (T -405))
-((-2669 (*1 *1) (-11 (-4 *1 (-405 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (-3948 (*1 *1 *1 *1) (-11 (-4 *1 (-405 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))))
-(-12 (-410 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-14 -2669 ($) -3956) (-14 -3948 ($ $ $))))
-(((-69) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-410 |#1| |#2|) . T) ((-12) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-1924 (((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831)) 26 T ELT)) (-1925 (((-1180 (-1180 (-485))) (-831)) 21 T ELT)))
-(((-406) (-10 -7 (-14 -1924 ((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831))) (-14 -1925 ((-1180 (-1180 (-485))) (-831))))) (T -406))
-((-1925 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))) (-1924 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
-((-2773 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2777 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2775 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1927 (((-82) (-82)) 14 T ELT) (((-82)) 12 T ELT)) (-1926 (((-82) (-82)) 13 T ELT) (((-82)) 11 T ELT)) (-1928 (((-82) (-82)) 26 T ELT) (((-82)) 17 T ELT)))
-(((-407) (-10 -7 (-14 -1926 ((-82))) (-14 -1927 ((-82))) (-14 -1926 ((-82) (-82))) (-14 -1927 ((-82) (-82))) (-14 -1928 ((-82))) (-14 -2775 ((-485))) (-14 -2777 ((-485))) (-14 -2773 ((-485))) (-14 -1928 ((-82) (-82))) (-14 -2775 ((-485) (-485))) (-14 -2777 ((-485) (-485))) (-14 -2773 ((-485) (-485))))) (T -407))
-((-2773 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-2777 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-1928 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))) (-2773 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-2777 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407)))) (-1928 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))) (-1927 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))) (-1926 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))) (-1927 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))) (-1926 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3855 (((-584 (-329)) $) 34 T ELT) (((-584 (-329)) $ (-584 (-329))) 145 T ELT)) (-1933 (((-584 (-1002 (-329))) $) 16 T ELT) (((-584 (-1002 (-329))) $ (-584 (-1002 (-329)))) 142 T ELT)) (-1930 (((-584 (-584 (-855 (-178)))) (-584 (-584 (-855 (-178)))) (-584 (-784))) 58 T ELT)) (-1934 (((-584 (-584 (-855 (-178)))) $) 137 T ELT)) (-3709 (((-1186) $ (-855 (-178)) (-784)) 162 T ELT)) (-1935 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-178))))) 148 T ELT) (($ (-584 (-584 (-855 (-178)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-178)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-220))) 149 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3864 (((-485) $) 110 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1936 (($) 146 T ELT)) (-1929 (((-584 (-178)) (-584 (-584 (-855 (-178))))) 89 T ELT)) (-1932 (((-1186) $ (-584 (-855 (-178))) (-784) (-784) (-831)) 154 T ELT) (((-1186) $ (-855 (-178))) 156 T ELT) (((-1186) $ (-855 (-178)) (-784) (-784) (-831)) 155 T ELT)) (-3950 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-178))))) 163 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1931 (((-1186) $ (-855 (-178))) 161 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-408) (-12 (-1014) (-10 -8 (-14 -1936 ($)) (-14 -1935 ($ $)) (-14 -1935 ($ (-584 (-584 (-855 (-178)))))) (-14 -1935 ($ (-584 (-584 (-855 (-178)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-14 -1935 ($ (-584 (-584 (-855 (-178)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-220)))) (-14 -1934 ((-584 (-584 (-855 (-178)))) $)) (-14 -3864 ((-485) $)) (-14 -1933 ((-584 (-1002 (-329))) $)) (-14 -1933 ((-584 (-1002 (-329))) $ (-584 (-1002 (-329))))) (-14 -3855 ((-584 (-329)) $)) (-14 -3855 ((-584 (-329)) $ (-584 (-329)))) (-14 -1932 ((-1186) $ (-584 (-855 (-178))) (-784) (-784) (-831))) (-14 -1932 ((-1186) $ (-855 (-178)))) (-14 -1932 ((-1186) $ (-855 (-178)) (-784) (-784) (-831))) (-14 -1931 ((-1186) $ (-855 (-178)))) (-14 -3709 ((-1186) $ (-855 (-178)) (-784))) (-14 -3950 ($ (-584 (-584 (-855 (-178)))))) (-14 -3950 ((-773) $)) (-14 -1930 ((-584 (-584 (-855 (-178)))) (-584 (-584 (-855 (-178)))) (-584 (-784)))) (-14 -1929 ((-584 (-178)) (-584 (-584 (-855 (-178))))))))) (T -408))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-408)))) (-1936 (*1 *1) (-5 *1 (-408))) (-1935 (*1 *1 *1) (-5 *1 (-408))) (-1935 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408)))) (-1935 (*1 *1 *2 *3 *3 *4) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-408)))) (-1935 (*1 *1 *2 *3 *3 *4 *5) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-220))) (-5 *1 (-408)))) (-1934 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408)))) (-3864 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-408)))) (-1933 (*1 *2 *1) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-408)))) (-1933 (*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-408)))) (-3855 (*1 *2 *1) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-408)))) (-3855 (*1 *2 *1 *2) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-408)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1932 (*1 *2 *1 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1932 (*1 *2 *1 *3 *4 *4 *5) (-11 (-5 *3 (-855 (-178))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3709 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-855 (-178))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408)))) (-1930 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784))) (-5 *1 (-408)))) (-1929 (*1 *2 *3) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-584 (-178))) (-5 *1 (-408)))))
-((-3840 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
-(((-409 |#1| |#2| |#3|) (-10 -7 (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|))) (-410 |#2| |#3|) (-145) (-20)) (T -409))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3952 ((|#2| $) 23 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 22 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-410 |#1| |#2|) (-110) (-145) (-20)) (T -410))
-((-3952 (*1 *2 *1) (-11 (-4 *1 (-410 *3 *2)) (-4 *3 (-145)) (-4 *2 (-20)))) (-2663 (*1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (* (*1 *1 *1 *2) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (-3840 (*1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (-3842 (*1 *1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))) (-3840 (*1 *1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20)))))
-(-12 (-1014) (-10 -8 (-14 -3952 (|t#2| $)) (-14 -2663 ($) -3956) (-14 * ($ |t#1| $)) (-14 * ($ $ |t#1|)) (-14 -3840 ($ $)) (-14 -3842 ($ $ $)) (-14 -3840 ($ $ $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-1938 (((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1937 (((-584 (-584 (-205 |#1| |#2|))) (-584 (-205 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1939 (((-2 (|:| |dpolys| (-584 (-205 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-205 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT)))
-(((-411 |#1| |#2| |#3|) (-10 -7 (-14 -1937 ((-584 (-584 (-205 |#1| |#2|))) (-584 (-205 |#1| |#2|)) (-584 (-774 |#1|)))) (-14 -1938 ((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|)))) (-14 -1939 ((-2 (|:| |dpolys| (-584 (-205 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-205 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1091)) (-392) (-392)) (T -411))
-((-1939 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-774 *5))) (-13 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-584 (-205 *5 *6))) (|:| |coords| (-584 (-485))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-205 *5 *6))) (-4 *7 (-392)))) (-1938 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1937 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-774 *5))) (-13 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 (-205 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-205 *5 *6))) (-4 *7 (-392)))))
-((-3470 (((-3 $ "failed") $) 11 T ELT)) (-3012 (($ $ $) 22 T ELT)) (-2438 (($ $ $) 23 T ELT)) (-3953 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 21 T ELT)))
-(((-412 |#1|) (-10 -7 (-14 -2438 (|#1| |#1| |#1|)) (-14 -3012 (|#1| |#1| |#1|)) (-14 ** (|#1| |#1| (-485))) (-14 -3953 (|#1| |#1| |#1|)) (-14 -3470 ((-3 |#1| "failed") |#1|)) (-14 ** (|#1| |#1| (-695))) (-14 ** (|#1| |#1| (-831)))) (-413)) (T -412))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-82) $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-413) (-110)) (T -413))
-((-2487 (*1 *1 *1) (-4 *1 (-413))) (-3953 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-413)) (-5 *2 (-485)))) (-3012 (*1 *1 *1 *1) (-4 *1 (-413))) (-2438 (*1 *1 *1 *1) (-4 *1 (-413))))
-(-12 (-664) (-10 -8 (-14 -2487 ($ $)) (-14 -3953 ($ $ $)) (-14 ** ($ $ (-485))) (-6 -3994) (-14 -3012 ($ $ $)) (-14 -2438 ($ $ $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 18 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) NIL T ELT) (($ $ (-349 (-485)) (-349 (-485))) NIL T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) NIL T ELT) (((-349 (-485)) $ (-349 (-485))) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-349 (-485))) NIL T ELT) (($ $ (-995) (-349 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) 29 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 35 (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 30 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 28 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 16 T ELT)) (-3952 (((-349 (-485)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-1177 |#2|)) NIL T ELT) (($ (-1161 |#1| |#2| |#3|)) 9 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 21 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-414 |#1| |#2| |#3|) (-12 (-1163 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-14 -3950 ($ (-1177 |#2|))) (-14 -3950 ($ (-1161 |#1| |#2| |#3|))) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -414))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-962)) (-13 *5 *3))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 18 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) NIL T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-415 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|) |#2|) (T -415))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3685 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3084 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3159 (($ (-584 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-3409 (($ |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT) (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3698 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-584 |#4|) $) 18 T ELT)) (-3248 (((-82) |#4| $) 26 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-584 |#3|) $) NIL T ELT)) (-2916 (((-82) |#3| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3700 (((-584 |#4|) $) NIL T ELT)) (-3694 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-82) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3681 (((-695) $) NIL (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3683 (((-584 |#3|) $) NIL T ELT)) (-3937 (((-82) |#3| $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-416 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -416))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3630 (($) 17 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3975 (((-329) $) 21 T ELT) (((-178) $) 24 T ELT) (((-349 (-1086 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3950 (((-773) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (((-178) $) 23 T ELT) (((-329) $) 20 T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 37 T CONST)) (-2669 (($) 8 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-417) (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))) (-934) (-553 (-178)) (-553 (-329)) (-554 (-349 (-1086 (-485)))) (-554 (-474)) (-10 -8 (-14 -3630 ($))))) (T -417))
-((-3630 (*1 *1) (-5 *1 (-417))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 (((-1050) $) 12 T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-418) (-12 (-996) (-10 -8 (-14 -3532 ((-1050) $)) (-14 -3531 ((-1050) $))))) (T -418))
-((-3532 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-418)))) (-3531 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-418)))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 16 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) 13 T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) 11 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) 15 T ELT)))
-(((-419 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1074)) (T -419))
-NIL
-((-1940 (((-485) (-485) (-485)) 19 T ELT)) (-1941 (((-82) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3460 (((-1180 (-584 (-485))) (-695) (-695)) 42 T ELT)))
-(((-420) (-10 -7 (-14 -1940 ((-485) (-485) (-485))) (-14 -1941 ((-82) (-485) (-485) (-485) (-485))) (-14 -3460 ((-1180 (-584 (-485))) (-695) (-695))))) (T -420))
-((-3460 (*1 *2 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) (-1941 (*1 *2 *3 *3 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-82)) (-5 *1 (-420)))) (-1940 (*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-420)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3086 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-1942 (($ $ (-584 (-485))) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-422 (-3961 |#1|) (-695)) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-422 (-3961 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2823 (((-422 (-3961 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-422 (-3961 |#1|) (-695)) (-422 (-3961 |#1|) (-695))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3760 (($ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-3761 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3952 (((-422 (-3961 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-422 (-3961 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-421 |#1| |#2|) (-12 (-862 |#2| (-422 (-3961 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-14 -1942 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -421))
-((-1942 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-13 *3 (-584 (-1091))) (-4 *4 (-962)))))
-((-2571 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-3191 (((-82) $) NIL (|has| |#2| (-20)) ELT)) (-3710 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-101)) ELT)) (-3139 (((-695)) NIL (|has| |#2| (-319)) ELT)) (-3791 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3159 (((-485) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-69)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2997 (($) NIL (|has| |#2| (-319)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ (-485)) 11 T ELT)) (-3189 (((-82) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#2| (-20)) ELT)) (-2412 (((-82) $) NIL (|has| |#2| (-962)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2611 (((-584 |#2|) $) NIL T ELT)) (-3248 (((-82) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#2| (-319)) ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3245 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#2| (-319)) ELT)) (-3246 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3804 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-82) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3915 (((-104)) NIL (|has| |#2| (-311)) ELT)) (-3761 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1732 (((-695) |#2| $) NIL (|has| |#2| (-69)) ELT) (((-695) (-1 (-82) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3129 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#2| (-962)) ELT)) (-2663 (($) NIL (|has| |#2| (-20)) CONST)) (-2669 (($) NIL (|has| |#2| (-962)) CONST)) (-2672 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2688 (((-82) $ $) 17 (|has| |#2| (-757)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-18)) ELT) (($ $) NIL (|has| |#2| (-18)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-22)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-18)) ELT) (($ (-695) $) NIL (|has| |#2| (-20)) ELT) (($ (-831) $) NIL (|has| |#2| (-22)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-422 |#1| |#2|) (-195 |#1| |#2|) (-695) (-718)) (T -422))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1943 (((-584 (-786)) $) 16 T ELT)) (-3545 (((-447) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1944 (($ (-447) (-584 (-786))) 12 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 23 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-423) (-12 (-996) (-10 -8 (-14 -1944 ($ (-447) (-584 (-786)))) (-14 -3545 ((-447) $)) (-14 -1943 ((-584 (-786)) $))))) (T -423))
-((-1944 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))) (-3545 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-423)))) (-1943 (*1 *2 *1) (-11 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2859 (($ $ $) 48 T ELT)) (-3521 (($ $ $) 47 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2860 ((|#1| $) 40 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 41 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-1945 (($ (-584 |#1|)) 19 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 34 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 45 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 29 T ELT)))
-(((-424 |#1|) (-12 (-882 |#1|) (-10 -8 (-14 -1945 ($ (-584 |#1|))))) (-757)) (T -424))
-((-1945 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ $) 71 T ELT)) (-1638 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1970 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 45 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3438 (((-2 (|:| -2338 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3950 (((-773) $) 110 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-3059 (((-82) $ $) 121 T ELT)) (-3840 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 77 T ELT)))
-(((-425 |#1| |#2| |#3| |#4|) (-285 |#1| |#2| |#3| |#4|) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -425))
-NIL
-((-1949 (((-485) (-584 (-485))) 53 T ELT)) (-1946 ((|#1| (-584 |#1|)) 94 T ELT)) (-1948 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1947 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3147 ((|#1| (-584 |#1|)) 96 T ELT)) (-2820 (((-584 (-485)) (-584 |#1|)) 56 T ELT)))
-(((-426 |#1|) (-10 -7 (-14 -3147 (|#1| (-584 |#1|))) (-14 -1946 (|#1| (-584 |#1|))) (-14 -1947 ((-584 |#1|) (-584 |#1|))) (-14 -1948 ((-584 |#1|) (-584 |#1|))) (-14 -2820 ((-584 (-485)) (-584 |#1|))) (-14 -1949 ((-485) (-584 (-485))))) (-1156 (-485))) (T -426))
-((-1949 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) (-4 *4 (-1156 *2)))) (-2820 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) (-1948 (*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1947 (*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1946 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) (-3147 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3159 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-485) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-485) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-485) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-485) (-1067)) CONST)) (-1950 (($ (-349 (-485))) 9 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-485) (-257)) ELT) (((-349 (-485)) $) NIL T ELT)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-248 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-248 (-485)))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-485)) NIL (|has| (-485) (-240 (-485) (-485))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-485) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-485) (-934)) ELT) (((-178) $) NIL (|has| (-485) (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-485) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-485) (-822))) (|has| (-485) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-427) (-12 (-905 (-485)) (-553 (-349 (-485))) (-553 (-918 16)) (-10 -8 (-14 -3131 ((-349 (-485)) $)) (-14 -1950 ($ (-349 (-485))))))) (T -427))
-((-3131 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-427)))) (-1950 (*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-427)))))
-((-3771 (($ $ (-584 (-248 |#2|))) 13 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)))
-(((-428 |#1| |#2|) (-10 -7 (-14 -3771 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-14 -3771 (|#1| |#1| |#2| |#2|)) (-14 -3771 (|#1| |#1| (-248 |#2|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#2|))))) (-429 |#2|) (-1130)) (T -428))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3727 (($) 6 T CONST)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-429 |#1|) (-110) (-1130)) (T -429))
-NIL
-(-12 (-31) (-380 |t#1|) (-10 -7 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-69)) (-6 (-69)) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-3950 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
-(((-430 |#1|) (-110) (-1130)) (T -430))
-NIL
-(-12 (-553 |t#1|) (-556 |t#1|))
-(((-556 |#1|) . T) ((-553 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1951 (($ (-1074)) 8 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 15 T ELT) (((-1074) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 11 T ELT)))
-(((-431) (-12 (-1014) (-553 (-1074)) (-10 -8 (-14 -1951 ($ (-1074)))))) (T -431))
-((-1951 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-431)))))
-((-3495 (($ $) 15 T ELT)) (-3493 (($ $) 24 T ELT)) (-3497 (($ $) 12 T ELT)) (-3498 (($ $) 10 T ELT)) (-3496 (($ $) 17 T ELT)) (-3494 (($ $) 22 T ELT)))
-(((-432 |#1|) (-10 -7 (-14 -3494 (|#1| |#1|)) (-14 -3496 (|#1| |#1|)) (-14 -3498 (|#1| |#1|)) (-14 -3497 (|#1| |#1|)) (-14 -3493 (|#1| |#1|)) (-14 -3495 (|#1| |#1|))) (-433)) (T -432))
-NIL
-((-3495 (($ $) 11 T ELT)) (-3493 (($ $) 10 T ELT)) (-3497 (($ $) 9 T ELT)) (-3498 (($ $) 8 T ELT)) (-3496 (($ $) 7 T ELT)) (-3494 (($ $) 6 T ELT)))
-(((-433) (-110)) (T -433))
-((-3495 (*1 *1 *1) (-4 *1 (-433))) (-3493 (*1 *1 *1) (-4 *1 (-433))) (-3497 (*1 *1 *1) (-4 *1 (-433))) (-3498 (*1 *1 *1) (-4 *1 (-433))) (-3496 (*1 *1 *1) (-4 *1 (-433))) (-3494 (*1 *1 *1) (-4 *1 (-433))))
-(-12 (-10 -8 (-14 -3494 ($ $)) (-14 -3496 ($ $)) (-14 -3498 ($ $)) (-14 -3497 ($ $)) (-14 -3493 ($ $)) (-14 -3495 ($ $))))
-((-3735 (((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)) 54 T ELT)))
-(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)))) (-311) (-1156 |#1|) (-12 (-311) (-117) (-662 |#1| |#2|)) (-1156 |#3|)) (T -434))
-((-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-4 *7 (-12 (-311) (-117) (-662 *5 *6))) (-5 *2 (-347 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3191 (((-82) $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1952 (((-82) $ $) 72 T ELT)) (-1601 (((-584 (-551 $)) $) 49 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3186 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3160 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3159 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-349 (-485)) $) 54 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-349 (-485)))) (|:| |vec| (-1180 (-349 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-349 (-485))) (-631 $)) NIL T ELT)) (-3845 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2576 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1600 (((-584 (-83)) $) NIL T ELT)) (-3598 (((-83) (-83)) NIL T ELT)) (-2412 (((-82) $) 42 T ELT)) (-2676 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-3001 (((-1040 (-485) (-551 $)) $) 37 T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-3135 (((-1086 $) (-1086 $) (-551 $)) 86 T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3846 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-349 (-485)))) (|:| |vec| (-1180 (-349 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-349 (-485))) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2237 (($ (-83) $) NIL T ELT) (($ (-83) (-584 $)) NIL T ELT)) (-2636 (((-82) $ (-83)) NIL T ELT) (((-82) $ (-1091)) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-2606 (((-695) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-82) $ $) NIL T ELT) (((-82) $ (-1091)) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2677 (((-82) $) NIL (|has| $ (-951 (-485))) ELT)) (-3771 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-83)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-83) (-1 $ (-584 $))) NIL T ELT) (($ $ (-83) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ (-83) $) NIL T ELT) (($ (-83) $ $) NIL T ELT) (($ (-83) $ $ $) NIL T ELT) (($ (-83) $ $ $ $) NIL T ELT) (($ (-83) (-584 $)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3761 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-3000 (((-1040 (-485) (-551 $)) $) 20 T ELT)) (-3188 (($ $) NIL (|has| $ (-962)) ELT)) (-3975 (((-329) $) 100 T ELT) (((-178) $) 108 T ELT) (((-141 (-329)) $) 116 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) 21 T ELT)) (-3129 (((-695)) NIL T CONST)) (-2593 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2256 (((-82) (-83)) 92 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 22 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3059 (((-82) $ $) 24 T ELT)) (-3953 (($ $ $) 44 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-435) (-12 (-253) (-24) (-951 (-485)) (-951 (-349 (-485))) (-581 (-485)) (-934) (-581 (-349 (-485))) (-117) (-554 (-141 (-329))) (-189) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-14 -3001 ((-1040 (-485) (-551 $)) $)) (-14 -3000 ((-1040 (-485) (-551 $)) $)) (-14 -3845 ($ $)) (-14 -1952 ((-82) $ $)) (-14 -3135 ((-1086 $) (-1086 $) (-551 $))) (-14 -3135 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-14 -3135 ($ $ (-551 $))) (-14 -3135 ($ $ (-584 (-551 $))))))) (T -435))
-((-3001 (*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3000 (*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3845 (*1 *1 *1) (-5 *1 (-435))) (-1952 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-435)))) (-3135 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) (-3135 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) (-3135 (*1 *1 *1 *2) (-11 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) (-3135 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 19 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 14 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 13 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-2202 (((-485) $) 9 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 16 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-436 |#1| |#2|) (-16 |#1|) (-1130) (-485)) (T -436))
-NIL
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) 44 T ELT)) (-1258 (($ $ (-485) |#2|) NIL T ELT)) (-1257 (($ $ (-485) |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3114 ((|#2| $ (-485)) 53 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 43 T ELT)) (-3115 ((|#1| $ (-485) (-485)) 38 T ELT)) (-3117 (((-695) $) 28 T ELT)) (-3617 (($ (-695) (-695) |#1|) 24 T ELT)) (-3116 (((-695) $) 30 T ELT)) (-3121 (((-485) $) 26 T ELT)) (-3119 (((-485) $) 27 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) 29 T ELT)) (-3118 (((-485) $) 31 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3245 (((-1074) $) 48 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 61 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 33 T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) (-485)) 41 T ELT) ((|#1| $ (-485) (-485) |#1|) 72 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3403 (($ $) 59 T ELT)) (-3113 ((|#3| $ (-485)) 55 T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-437 |#1| |#2| |#3|) (-54 |#1| |#2| |#3|) (-1130) (-323 |#1|) (-323 |#1|)) (T -437))
-NIL
-((-1954 (((-584 (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1953 (((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2079 (((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT)))
-(((-438 |#1| |#2| |#3|) (-10 -7 (-14 -1953 ((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695))) (-14 -1954 ((-584 (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-14 -2079 ((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-298) (-1156 |#1|) (-1156 |#2|)) (T -438))
-((-2079 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2014 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-298)) (-5 *2 (-2 (|:| -2014 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1954 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -2014 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2014 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1156 *6)))) (-1953 (*1 *2 *3 *4 *4 *4) (-11 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1156 *3)) (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5)))))
-((-1960 (((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1955 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1957 (((-695) (-695) (-695)) 34 T ELT)) (-1959 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1958 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1956 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-485)) 28 T ELT)) (-3332 ((|#1| (-631 |#1|)) 18 T ELT)))
-(((-439 |#1| |#2| |#3|) (-10 -7 (-14 -3332 (|#1| (-631 |#1|))) (-14 -1955 (|#1| (-631 |#1|) |#1| (-695))) (-14 -1956 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-485))) (-14 -1957 ((-695) (-695) (-695))) (-14 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-14 -1959 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -1960 ((-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2014 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))) (-1156 |#1|) (-352 |#1| |#2|)) (T -439))
-((-1960 (*1 *2 *2 *2) (-11 (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1959 (*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1958 (*1 *2 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1958 (*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1957 (*1 *2 *2 *2) (-11 (-5 *2 (-695)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1956 (*1 *2 *3 *3 *2 *4) (-11 (-5 *3 (-631 *2)) (-5 *4 (-485)) (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-1955 (*1 *2 *3 *2 *4) (-11 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-3332 (*1 *2 *3) (-11 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-352 *2 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 53 T ELT)) (-3324 (($ $ $) 51 T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-82))) ELT)) (-1737 (((-82) $) NIL (|has| (-82) (-757)) ELT) (((-82) (-1 (-82) (-82) (-82)) $) NIL T ELT)) (-1735 (($ $) NIL (-11 (|has| $ (-1036 (-82))) (|has| (-82) (-757))) ELT) (($ (-1 (-82) (-82) (-82)) $) NIL (|has| $ (-1036 (-82))) ELT)) (-2912 (($ $) NIL (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $) NIL T ELT)) (-3791 (((-82) $ (-1147 (-485)) (-82)) NIL (|has| $ (-1036 (-82))) ELT) (((-82) $ (-485) (-82)) 52 (|has| $ (-1036 (-82))) ELT)) (-3713 (($ (-1 (-82) (-82)) $) NIL (|has| $ (-317 (-82))) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 (-82))) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-3409 (($ (-1 (-82) (-82)) $) NIL (|has| $ (-317 (-82))) ELT) (($ (-82) $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-3845 (((-82) (-1 (-82) (-82) (-82)) $) NIL T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82)) NIL T ELT) (((-82) (-1 (-82) (-82) (-82)) $ (-82) (-82)) NIL (|has| (-82) (-69)) ELT)) (-1577 (((-82) $ (-485) (-82)) NIL (|has| $ (-1036 (-82))) ELT)) (-3115 (((-82) $ (-485)) NIL T ELT)) (-3422 (((-485) (-82) $ (-485)) NIL (|has| (-82) (-69)) ELT) (((-485) (-82) $) NIL (|has| (-82) (-69)) ELT) (((-485) (-1 (-82) (-82)) $) NIL T ELT)) (-2564 (($ $ $) 49 T ELT)) (-2563 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3617 (($ (-695) (-82)) 27 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2202 (((-485) $) 8 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL T ELT)) (-3521 (($ $ $) NIL (|has| (-82) (-757)) ELT) (($ (-1 (-82) (-82) (-82)) $ $) NIL T ELT)) (-2611 (((-584 (-82)) $) NIL T ELT)) (-3248 (((-82) (-82) $) NIL (|has| (-82) (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL T ELT)) (-3329 (($ (-1 (-82) (-82)) $) NIL T ELT)) (-3846 (($ (-1 (-82) (-82) (-82)) $ $) 47 T ELT) (($ (-1 (-82) (-82)) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ (-82) $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-82) $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-82) "failed") (-1 (-82) (-82)) $) NIL T ELT)) (-2201 (($ $ (-82)) NIL (|has| $ (-1036 (-82))) ELT)) (-1733 (((-82) (-1 (-82) (-82)) $) NIL T ELT)) (-3771 (($ $ (-584 (-82)) (-584 (-82))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-82) (-82)) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-248 (-82))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT) (($ $ (-584 (-248 (-82)))) NIL (-11 (|has| (-82) (-259 (-82))) (|has| (-82) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) (-82) $) NIL (-11 (|has| $ (-317 (-82))) (|has| (-82) (-69))) ELT)) (-2207 (((-584 (-82)) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 29 T ELT)) (-3803 (($ $ (-1147 (-485))) NIL T ELT) (((-82) $ (-485)) 22 T ELT) (((-82) $ (-485) (-82)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1732 (((-695) (-1 (-82) (-82)) $) NIL T ELT) (((-695) (-82) $) NIL (|has| (-82) (-69)) ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 (-82))) ELT)) (-3403 (($ $) 30 T ELT)) (-3975 (((-474) $) NIL (|has| (-82) (-554 (-474))) ELT)) (-3533 (($ (-584 (-82))) NIL T ELT)) (-3805 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-82) $) NIL T ELT) (($ $ (-82)) NIL T ELT)) (-3950 (((-773) $) 26 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-82)) $) NIL T ELT)) (-2565 (($ $ $) 48 T ELT)) (-2313 (($ $ $) 55 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 31 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 43 T ELT)) (-2314 (($ $ $) 54 T ELT)) (-3961 (((-695) $) 13 T ELT)))
-(((-440 |#1|) (-93) (-485)) (T -440))
-NIL
-((-1962 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|)) 35 T ELT)) (-1961 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22 T ELT)) (-1963 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|))) 46 T ELT)) (-1964 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -1961 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-14 -1961 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-14 -1962 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|))) (-14 -1963 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|)))) (-14 -1964 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1156 |#1|) (-1156 |#2|) (-962)) (T -441))
-((-1964 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))) (-1963 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 (-3 *5 #1="failed") *8)) (-5 *4 (-631 (-1086 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 (-3 *5 #1#) *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) (-1961 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))) (-1961 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1965 (((-1186) $) 25 T ELT)) (-3803 (((-1074) $ (-1091)) 30 T ELT)) (-3620 (((-1186) $) 20 T ELT)) (-3950 (((-773) $) 27 T ELT) (($ (-1074)) 26 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 12 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 10 T ELT)))
-(((-442) (-12 (-757) (-556 (-1074)) (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $)) (-14 -1965 ((-1186) $))))) (T -442))
-((-3803 (*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) (-3620 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-442)))) (-1965 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-442)))))
-((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3742 ((|#1| |#4|) 10 T ELT)) (-3743 ((|#3| |#4|) 17 T ELT)))
-(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3742 (|#1| |#4|)) (-14 -3743 (|#3| |#4|)) (-14 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-905 |#1|) (-323 |#1|) (-323 |#2|)) (T -443))
-((-3744 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-323 *4)) (-4 *3 (-323 *5)))) (-3743 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-323 *4)) (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-323 *5)))) (-3742 (*1 *2 *3) (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-323 *2)) (-4 *3 (-323 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1975 (((-82) $ (-584 |#3|)) 127 T ELT) (((-82) $) 128 T ELT)) (-3191 (((-82) $) 178 T ELT)) (-1967 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1966 (((-1081 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1091))) ELT)) (-1974 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2412 (((-82) $) 177 T ELT)) (-1971 (($ $) 132 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3241 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1976 (((-82) |#4| $) 130 T ELT)) (-1977 (((-82) $ $) 82 T ELT)) (-1970 (($ (-584 |#4|)) 106 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1969 (($ (-584 |#4|)) 175 T ELT)) (-1968 (((-82) $) 176 T ELT)) (-2253 (($ $) 85 T ELT)) (-2698 (((-584 |#4|) $) 73 T ELT)) (-1973 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1978 (((-82) |#4| $) 89 T ELT)) (-3915 (((-485) $ (-584 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3950 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1972 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3059 (((-82) $ $) 84 T ELT)) (-3842 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
-(((-444 |#1| |#2| |#3| |#4|) (-12 (-1014) (-10 -7 (-14 * ($ $ $)) (-14 ** ($ $ (-695))) (-14 -3842 ($ $ $)) (-14 -2412 ((-82) $)) (-14 -3191 ((-82) $)) (-14 -1978 ((-82) |#4| $)) (-14 -1977 ((-82) $ $)) (-14 -1976 ((-82) |#4| $)) (-14 -1975 ((-82) $ (-584 |#3|))) (-14 -1975 ((-82) $)) (-14 -3241 ($ $ $)) (-14 -3241 ($ (-584 $))) (-14 -1974 ($ $ $)) (-14 -1974 ($ $ |#4|)) (-14 -2253 ($ $)) (-14 -1973 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-14 -1972 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-14 -3915 ((-485) $ (-584 |#3|))) (-14 -3915 ((-485) $)) (-14 -1971 ($ $)) (-14 -1970 ($ (-584 |#4|))) (-14 -1969 ($ (-584 |#4|))) (-14 -1968 ((-82) $)) (-14 -2698 ((-584 |#4|) $)) (-14 -3950 ($ (-584 |#4|))) (-14 -1967 ($ $ |#4|)) (-14 -1967 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1091))) (-14 -1966 ((-1081 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -444))
-((* (*1 *1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3842 (*1 *1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2412 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3191 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1978 (*1 *2 *3 *1) (-11 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1977 (*1 *2 *1 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-11 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1975 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-82)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1975 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3241 (*1 *1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3241 (*1 *1 *2) (-11 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1974 (*1 *1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1974 (*1 *1 *1 *2) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2253 (*1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1973 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-444 *4 *5 *6 *7)))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1972 (*1 *1 *2) (-11 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-444 *3 *4 *5 *6)))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3915 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3915 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1971 (*1 *1 *1) (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1970 (*1 *1 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1969 (*1 *1 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1968 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2698 (*1 *2 *1) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1967 (*1 *1 *1 *2) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1967 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1966 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-248 (-858 *4))))) (-5 *1 (-444 *4 *5 *6 *7)))))
-((-1979 (((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) 178 T ELT)) (-1980 (((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) 179 T ELT)) (-1981 (((-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) 129 T ELT)) (-3726 (((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) NIL T ELT)) (-1982 (((-584 (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) 181 T ELT)) (-1983 (((-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-584 (-774 |#1|))) 197 T ELT)))
-(((-445 |#1| |#2|) (-10 -7 (-14 -1979 ((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))))) (-14 -1980 ((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))))) (-14 -3726 ((-82) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))))) (-14 -1981 ((-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))))) (-14 -1982 ((-584 (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485))))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))))) (-14 -1983 ((-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-444 (-349 (-485)) (-196 |#2| (-695)) (-774 |#1|) (-205 |#1| (-349 (-485)))) (-584 (-774 |#1|))))) (-584 (-1091)) (-695)) (T -445))
-((-1983 (*1 *2 *2 *3) (-11 (-5 *2 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))) (-5 *3 (-584 (-774 *4))) (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *1 (-445 *4 *5)))) (-1982 (*1 *2 *3) (-11 (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-584 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485)))))) (-5 *1 (-445 *4 *5)) (-5 *3 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))))) (-1981 (*1 *2 *2) (-11 (-5 *2 (-444 (-349 (-485)) (-196 *4 (-695)) (-774 *3) (-205 *3 (-349 (-485))))) (-13 *3 (-584 (-1091))) (-13 *4 (-695)) (-5 *1 (-445 *3 *4)))) (-3726 (*1 *2 *3) (-11 (-5 *3 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))) (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5)))) (-1980 (*1 *2 *3) (-11 (-5 *3 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))) (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5)))) (-1979 (*1 *2 *3) (-11 (-5 *3 (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))) (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5)))))
-((-3803 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-446 |#1|) (-110) (-69)) (T -446))
-NIL
-(-12 (-77 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3059 (|f| |x| |x|) |x|))))))
-(((-77 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1984 (($) 6 T ELT)) (-3950 (((-773) $) 10 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-447) (-12 (-1014) (-10 -8 (-14 -1984 ($))))) (T -447))
-((-1984 (*1 *1) (-5 *1 (-447))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) 15 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 25 T ELT)))
-(((-448 |#1| |#2|) (-12 (-18) (-450 |#1| |#2|)) (-18) (-760)) (T -448))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 16 T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) 13 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) 39 T ELT)) (-1215 (((-82) $ $) 44 T ELT)) (-2896 (($ |#1| |#2|) 36 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) 41 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) 11 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT)))
-(((-449 |#1| |#2|) (-12 (-20) (-450 |#1| |#2|)) (-20) (-760)) (T -449))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) 17 T ELT)) (-3962 (($ $) 18 T ELT)) (-2896 (($ |#1| |#2|) 21 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-1985 ((|#2| $) 19 T ELT)) (-3177 ((|#1| $) 20 T ELT)) (-3245 (((-1074) $) 16 (-11 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3246 (((-1034) $) 15 (-11 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) 22 T ELT)) (-3950 (((-773) $) 14 (-11 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-450 |#1| |#2|) (-110) (-69) (-760)) (T -450))
-((-2896 (*1 *1 *2 *3) (-11 (-4 *1 (-450 *2 *3)) (-4 *2 (-69)) (-4 *3 (-760)))) (-3177 (*1 *2 *1) (-11 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-69)))) (-1985 (*1 *2 *1) (-11 (-4 *1 (-450 *3 *2)) (-4 *3 (-69)) (-4 *2 (-760)))) (-3962 (*1 *1 *1) (-11 (-4 *1 (-450 *2 *3)) (-4 *2 (-69)) (-4 *3 (-760)))) (-3777 (*1 *2 *1) (-11 (-4 *1 (-450 *3 *4)) (-4 *3 (-69)) (-4 *4 (-760)) (-5 *2 (-584 (-454 *3 *4))))))
-(-12 (-69) (-380 |t#1|) (-558 (-584 (-454 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1014)) (IF (|has| |t#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-14 -2896 ($ |t#1| |t#2|)) (-14 -3177 (|t#1| $)) (-14 -1985 (|t#2| $)) (-14 -3962 ($ $)) (-14 -3777 ((-584 (-454 |t#1| |t#2|)) $))))
-(((-69) . T) ((-553 (-773)) -11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-558 (-584 (-454 |#1| |#2|))) . T) ((-380 |#1|) . T) ((-12) . T) ((-1014) -11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) 33 T ELT)) (-3962 (($ $) 28 T ELT)) (-2896 (($ |#1| |#2|) 24 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-1985 ((|#2| $) 32 T ELT)) (-3177 ((|#1| $) 31 T ELT)) (-3245 (((-1074) $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3246 (((-1034) $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) 34 T ELT)) (-1986 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-82) |#1| |#1|)) 44 T ELT)) (-3950 (((-773) $) 18 (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 22 T ELT)))
-(((-451 |#1| |#2|) (-12 (-450 |#1| |#2|) (-10 -8 (-14 -1986 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-82) |#1| |#1|))))) (-69) (-760)) (T -451))
-((-1986 (*1 *1 *1 *1 *2 *3) (-11 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-69)) (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 21 T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-452 |#1| |#2|) (-12 (-717) (-450 |#1| |#2|)) (-717) (-760)) (T -452))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-2486 (($ $ $) 24 T ELT)) (-1313 (((-3 $ "failed") $ $) 20 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-453 |#1| |#2|) (-12 (-718) (-450 |#1| |#2|)) (-718) (-757)) (T -453))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1987 (($ |#2| |#1|) 9 T ELT)) (-2402 ((|#2| $) 11 T ELT)) (-3950 (((-783 |#2| |#1|) $) 14 T ELT)) (-3680 ((|#1| $) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-454 |#1| |#2|) (-12 (-69) (-553 (-783 |#2| |#1|)) (-10 -8 (-14 -1987 ($ |#2| |#1|)) (-14 -2402 (|#2| $)) (-14 -3680 (|#1| $)))) (-69) (-760)) (T -454))
-((-1987 (*1 *1 *2 *3) (-11 (-5 *1 (-454 *3 *2)) (-4 *3 (-69)) (-4 *2 (-760)))) (-2402 (*1 *2 *1) (-11 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-69)))) (-3680 (*1 *2 *1) (-11 (-4 *2 (-69)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760)))))
-((-3771 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
-(((-455 |#1| |#2| |#3|) (-10 -7 (-14 -3771 (|#1| |#1| |#2| |#3|)) (-14 -3771 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-456 |#2| |#3|) (-1014) (-1130)) (T -455))
-NIL
-((-3771 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
-(((-456 |#1| |#2|) (-110) (-1014) (-1130)) (T -456))
-((-3771 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1130)))) (-3771 (*1 *1 *1 *2 *3) (-11 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130)))))
-(-12 (-10 -8 (-14 -3771 ($ $ |t#1| |t#2|)) (-14 -3771 ($ $ (-584 |t#1|) (-584 |t#2|)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 17 T ELT)) (-3777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 19 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) 24 T ELT)) (-1623 ((|#2| $ (-485)) 22 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3680 ((|#2| |#1| $) 51 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 11 T CONST)) (-3059 (((-82) $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
-(((-457 |#1| |#2| |#3|) (-273 |#1| |#2|) (-1014) (-101) |#2|) (T -457))
-NIL
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1988 (((-82) (-82)) 32 T ELT)) (-3791 ((|#1| $ (-485) |#1|) 42 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 79 T ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) 83 (|has| |#1| (-69)) ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-69)) ELT) (($ (-1 (-82) |#1|) $) 66 T ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-1989 (($ $ (-485)) 19 T ELT)) (-1990 (((-695) $) 13 T ELT)) (-3617 (($ (-695) |#1|) 31 T ELT)) (-2202 (((-485) $) 29 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) 57 T ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 28 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3612 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1991 (($ (-584 |#1|)) 43 T ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 62 T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 21 T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) 63 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 53 T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3794 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 22 T ELT)))
-(((-458 |#1| |#2|) (-12 (-16 |#1|) (-236 |#1|) (-10 -8 (-14 -1991 ($ (-584 |#1|))) (-14 -1990 ((-695) $)) (-14 -1989 ($ $ (-485))) (-14 -1988 ((-82) (-82))))) (-1130) (-485)) (T -458))
-((-1991 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-13 *4 (-485)))) (-1990 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 (-485)))) (-1989 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 *2))) (-1988 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 (-485)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1993 (((-1050) $) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1992 (((-1050) $) 14 T ELT)) (-3926 (((-1050) $) 10 T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-459) (-12 (-996) (-10 -8 (-14 -3926 ((-1050) $)) (-14 -1993 ((-1050) $)) (-14 -1992 ((-1050) $))))) (T -459))
-((-3926 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1993 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1992 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3159 (((-518 |#1|) $) NIL T ELT)) (-1797 (($ (-1180 (-518 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1681 (((-82) $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1769 (($ $ (-695)) NIL (OR (|has| (-518 |#1|) (-115)) (|has| (-518 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-115)) (|has| (-518 |#1|) (-319))) ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-831) $) NIL (|has| (-518 |#1|) (-319)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-518 |#1|) (-115)) (|has| (-518 |#1|) (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2013 (((-82) $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3135 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 (-518 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2012 (((-831) $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1628 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1627 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-319)) ELT) (((-3 (-1086 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1629 (($ $ (-1086 (-518 |#1|))) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-518 |#1|) (-319)) CONST)) (-2402 (($ (-831)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-695) $) NIL (|has| (-518 |#1|) (-319)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-115)) (|has| (-518 |#1|) (-319))) ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $ (-695)) NIL (|has| (-518 |#1|) (-319)) ELT) (($ $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3952 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3188 (((-1086 (-518 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-1630 (($) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3227 (((-1180 (-518 |#1|)) $) NIL T ELT) (((-631 (-518 |#1|)) (-1180 $)) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2705 (($ $) NIL (|has| (-518 |#1|) (-319)) ELT) (((-633 $) $) NIL (OR (|has| (-518 |#1|) (-115)) (|has| (-518 |#1|) (-319))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $) NIL (|has| (-518 |#1|) (-319)) ELT) (($ $ (-695)) NIL (|has| (-518 |#1|) (-319)) ELT)) (-2672 (($ $ (-695)) NIL (|has| (-518 |#1|) (-319)) ELT) (($ $) NIL (|has| (-518 |#1|) (-319)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT)))
-(((-460 |#1| |#2|) (-279 (-518 |#1|)) (-831) (-831)) (T -460))
-NIL
-((-3112 ((|#4| |#4|) 38 T ELT)) (-3111 (((-695) |#4|) 45 T ELT)) (-3110 (((-695) |#4|) 46 T ELT)) (-3109 (((-584 |#3|) |#4|) 57 (|has| |#3| (-1036 |#1|)) ELT)) (-3593 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1994 ((|#4| |#4|) 61 T ELT)) (-3331 ((|#1| |#4|) 60 T ELT)))
-(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3112 (|#4| |#4|)) (-14 -3111 ((-695) |#4|)) (-14 -3110 ((-695) |#4|)) (IF (|has| |#3| (-1036 |#1|)) (-14 -3109 ((-584 |#3|) |#4|)) |%noBranch|) (-14 -3331 (|#1| |#4|)) (-14 -1994 (|#4| |#4|)) (-14 -3593 ((-3 |#4| "failed") |#4|))) (-311) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|)) (T -461))
-((-3593 (*1 *2 *2) (|partial| -11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1994 (*1 *2 *2) (-11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3331 (*1 *2 *3) (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-311)) (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3109 (*1 *2 *3) (-11 (-4 *6 (-1036 *4)) (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-11 (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3111 (*1 *2 *3) (-11 (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3112 (*1 *2 *2) (-11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-3112 ((|#8| |#4|) 20 T ELT)) (-3109 (((-584 |#3|) |#4|) 29 (|has| |#7| (-1036 |#5|)) ELT)) (-3593 (((-3 |#8| "failed") |#4|) 23 T ELT)))
-(((-462 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-14 -3112 (|#8| |#4|)) (-14 -3593 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1036 |#5|)) (-14 -3109 ((-584 |#3|) |#4|)) |%noBranch|)) (-496) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-323 |#5|) (-323 |#5|) (-628 |#5| |#6| |#7|)) (T -462))
-((-3109 (*1 *2 *3) (-11 (-4 *9 (-1036 *7)) (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-905 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-584 *6)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3593 (*1 *2 *3) (|partial| -11 (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))) (-3112 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1995 (((-584 (-1131)) $) 14 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (($ (-584 (-1131))) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-463) (-12 (-996) (-10 -8 (-14 -3950 ($ (-584 (-1131)))) (-14 -1995 ((-584 (-1131)) $))))) (T -463))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) (-1995 (*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1996 (((-1050) $) 15 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3453 (((-447) $) 12 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 22 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-464) (-12 (-996) (-10 -8 (-14 -3453 ((-447) $)) (-14 -1996 ((-1050) $))))) (T -464))
-((-3453 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-464)))) (-1996 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-464)))))
-((-2002 (((-633 (-1139)) $) 15 T ELT)) (-1998 (((-633 (-1137)) $) 38 T ELT)) (-2000 (((-633 (-1136)) $) 29 T ELT)) (-2003 (((-633 (-489)) $) 12 T ELT)) (-1999 (((-633 (-487)) $) 42 T ELT)) (-2001 (((-633 (-486)) $) 33 T ELT)) (-1997 (((-695) $ (-99)) 54 T ELT)))
-(((-465 |#1|) (-10 -7 (-14 -1997 ((-695) |#1| (-99))) (-14 -1998 ((-633 (-1137)) |#1|)) (-14 -1999 ((-633 (-487)) |#1|)) (-14 -2000 ((-633 (-1136)) |#1|)) (-14 -2001 ((-633 (-486)) |#1|)) (-14 -2002 ((-633 (-1139)) |#1|)) (-14 -2003 ((-633 (-489)) |#1|))) (-466)) (T -465))
-NIL
-((-2002 (((-633 (-1139)) $) 12 T ELT)) (-1998 (((-633 (-1137)) $) 8 T ELT)) (-2000 (((-633 (-1136)) $) 10 T ELT)) (-2003 (((-633 (-489)) $) 13 T ELT)) (-1999 (((-633 (-487)) $) 9 T ELT)) (-2001 (((-633 (-486)) $) 11 T ELT)) (-1997 (((-695) $ (-99)) 7 T ELT)) (-2004 (((-633 (-98)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-466) (-110)) (T -466))
-((-2004 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-98))))) (-2003 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-489))))) (-2002 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))) (-2001 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-486))))) (-2000 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))) (-1999 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-487))))) (-1998 (*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))) (-1997 (*1 *2 *1 *3) (-11 (-4 *1 (-466)) (-5 *3 (-99)) (-5 *2 (-695)))))
-(-12 (-146) (-10 -8 (-14 -2004 ((-633 (-98)) $)) (-14 -2003 ((-633 (-489)) $)) (-14 -2002 ((-633 (-1139)) $)) (-14 -2001 ((-633 (-486)) $)) (-14 -2000 ((-633 (-1136)) $)) (-14 -1999 ((-633 (-487)) $)) (-14 -1998 ((-633 (-1137)) $)) (-14 -1997 ((-695) $ (-99)))))
-(((-146) . T))
-((-2007 (((-1086 |#1|) (-695)) 114 T ELT)) (-3333 (((-1180 |#1|) (-1180 |#1|) (-831)) 107 T ELT)) (-2005 (((-1186) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) |#1|) 122 T ELT)) (-2009 (((-1180 |#1|) (-1180 |#1|) (-695)) 53 T ELT)) (-2997 (((-1180 |#1|) (-831)) 109 T ELT)) (-2011 (((-1180 |#1|) (-1180 |#1|) (-485)) 30 T ELT)) (-2006 (((-1086 |#1|) (-1180 |#1|)) 115 T ELT)) (-2015 (((-1180 |#1|) (-831)) 136 T ELT)) (-2013 (((-82) (-1180 |#1|)) 119 T ELT)) (-3135 (((-1180 |#1|) (-1180 |#1|) (-831)) 99 T ELT)) (-2016 (((-1086 |#1|) (-1180 |#1|)) 130 T ELT)) (-2012 (((-831) (-1180 |#1|)) 95 T ELT)) (-2487 (((-1180 |#1|) (-1180 |#1|)) 38 T ELT)) (-2402 (((-1180 |#1|) (-831) (-831)) 139 T ELT)) (-2010 (((-1180 |#1|) (-1180 |#1|) (-1034) (-1034)) 29 T ELT)) (-2008 (((-1180 |#1|) (-1180 |#1|) (-695) (-1034)) 54 T ELT)) (-2014 (((-1180 (-1180 |#1|)) (-831)) 135 T ELT)) (-3953 (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 120 T ELT)) (** (((-1180 |#1|) (-1180 |#1|) (-485)) 67 T ELT)) (* (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 31 T ELT)))
-(((-467 |#1|) (-10 -7 (-14 -2005 ((-1186) (-1180 (-584 (-2 (|:| -3405 |#1|) (|:| -2402 (-1034))))) |#1|)) (-14 -2997 ((-1180 |#1|) (-831))) (-14 -2402 ((-1180 |#1|) (-831) (-831))) (-14 -2006 ((-1086 |#1|) (-1180 |#1|))) (-14 -2007 ((-1086 |#1|) (-695))) (-14 -2008 ((-1180 |#1|) (-1180 |#1|) (-695) (-1034))) (-14 -2009 ((-1180 |#1|) (-1180 |#1|) (-695))) (-14 -2010 ((-1180 |#1|) (-1180 |#1|) (-1034) (-1034))) (-14 -2011 ((-1180 |#1|) (-1180 |#1|) (-485))) (-14 ** ((-1180 |#1|) (-1180 |#1|) (-485))) (-14 * ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-14 -3953 ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-14 -3135 ((-1180 |#1|) (-1180 |#1|) (-831))) (-14 -3333 ((-1180 |#1|) (-1180 |#1|) (-831))) (-14 -2487 ((-1180 |#1|) (-1180 |#1|))) (-14 -2012 ((-831) (-1180 |#1|))) (-14 -2013 ((-82) (-1180 |#1|))) (-14 -2014 ((-1180 (-1180 |#1|)) (-831))) (-14 -2015 ((-1180 |#1|) (-831))) (-14 -2016 ((-1086 |#1|) (-1180 |#1|)))) (-298)) (T -467))
-((-2016 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2015 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))) (-2014 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-298)))) (-2013 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-467 *4)))) (-2012 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-467 *4)))) (-2487 (*1 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3)))) (-3333 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-3135 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-3953 (*1 *2 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3 *4) (-11 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-298)) (-5 *1 (-467 *5)))) (-2007 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))) (-2006 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2402 (*1 *2 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))) (-2997 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))) (-2005 (*1 *2 *3 *4) (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))) (-4 *4 (-298)) (-5 *2 (-1186)) (-5 *1 (-467 *4)))))
-((-2002 (((-633 (-1139)) $) NIL T ELT)) (-1998 (((-633 (-1137)) $) NIL T ELT)) (-2000 (((-633 (-1136)) $) NIL T ELT)) (-2003 (((-633 (-489)) $) NIL T ELT)) (-1999 (((-633 (-487)) $) NIL T ELT)) (-2001 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-695) $ (-99)) NIL T ELT)) (-2004 (((-633 (-98)) $) 26 T ELT)) (-2017 (((-1034) $ (-1034)) 31 T ELT)) (-3422 (((-1034) $) 30 T ELT)) (-2561 (((-82) $) 20 T ELT)) (-2019 (($ (-337)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-2018 (((-82) $) 27 T ELT)) (-3950 (((-773) $) 34 T ELT)) (-1701 (($ $) 28 T ELT)))
-(((-468) (-12 (-466) (-553 (-773)) (-10 -8 (-14 -2019 ($ (-337))) (-14 -2019 ($ (-1074))) (-14 -2018 ((-82) $)) (-14 -2561 ((-82) $)) (-14 -3422 ((-1034) $)) (-14 -2017 ((-1034) $ (-1034)))))) (T -468))
-((-2019 (*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-468)))) (-2019 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-468)))) (-2018 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-468)))) (-2561 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-468)))) (-3422 (*1 *2 *1) (-11 (-5 *2 (-1034)) (-5 *1 (-468)))) (-2017 (*1 *2 *1 *2) (-11 (-5 *2 (-1034)) (-5 *1 (-468)))))
-((-2021 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2020 (((-1 |#1| |#1|)) 10 T ELT)))
-(((-469 |#1|) (-10 -7 (-14 -2020 ((-1 |#1| |#1|))) (-14 -2021 ((-1 |#1| |#1|) |#1|))) (-12 (-664) (-22))) (T -469))
-((-2021 (*1 *2 *3) (-11 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-12 (-664) (-22))))) (-2020 (*1 *2) (-11 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-12 (-664) (-22))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 (-695) |#1|)) $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3189 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ (-695) |#1|) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3846 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1985 ((|#1| $) NIL T ELT)) (-3177 (((-695) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (($ (-584 (-454 (-695) |#1|))) NIL T ELT)) (-3950 (((-773) $) 28 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-470 |#1|) (-12 (-718) (-450 (-695) |#1|)) (-757)) (T -470))
-NIL
-((-2023 (((-584 |#2|) (-1086 |#1|) |#3|) 98 T ELT)) (-2024 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-347 (-1086 |#1|)) (-1086 |#1|))) 114 T ELT)) (-2022 (((-1086 |#1|) (-631 |#1|)) 110 T ELT)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-14 -2022 ((-1086 |#1|) (-631 |#1|))) (-14 -2023 ((-584 |#2|) (-1086 |#1|) |#3|)) (-14 -2024 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-347 (-1086 |#1|)) (-1086 |#1|))))) (-311) (-311) (-12 (-311) (-756))) (T -471))
-((-2024 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *6)) (-5 *5 (-1 (-347 (-1086 *6)) (-1086 *6))) (-4 *6 (-311)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-12 (-311) (-756))))) (-2023 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756))))) (-2022 (*1 *2 *3) (-11 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1086 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-12 (-311) (-756))))))
-((-2558 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2559 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2557 (((-695) $ (-99)) 39 T ELT)) (-2560 (((-633 (-98)) $ (-98)) 40 T ELT)) (-2002 (((-633 (-1139)) $) NIL T ELT)) (-1998 (((-633 (-1137)) $) NIL T ELT)) (-2000 (((-633 (-1136)) $) NIL T ELT)) (-2003 (((-633 (-489)) $) NIL T ELT)) (-1999 (((-633 (-487)) $) NIL T ELT)) (-2001 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-695) $ (-99)) 35 T ELT)) (-2004 (((-633 (-98)) $) 37 T ELT)) (-2442 (((-82) $) 27 T ELT)) (-2443 (((-633 $) (-516) (-866)) 18 T ELT) (((-633 $) (-431) (-866)) 24 T ELT)) (-3950 (((-773) $) 48 T ELT)) (-1701 (($ $) 42 T ELT)))
-(((-472) (-12 (-692 (-516)) (-553 (-773)) (-10 -8 (-14 -2443 ((-633 $) (-431) (-866)))))) (T -472))
-((-2443 (*1 *2 *3 *4) (-11 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472)))))
-((-2530 (((-751 (-485))) 12 T ELT)) (-2529 (((-751 (-485))) 14 T ELT)) (-2517 (((-744 (-485))) 9 T ELT)))
-(((-473) (-10 -7 (-14 -2517 ((-744 (-485)))) (-14 -2530 ((-751 (-485)))) (-14 -2529 ((-751 (-485)))))) (T -473))
-((-2529 (*1 *2) (-11 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2530 (*1 *2) (-11 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2517 (*1 *2) (-11 (-5 *2 (-744 (-485))) (-5 *1 (-473)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2028 (((-1074) $) 55 T ELT)) (-3263 (((-82) $) 51 T ELT)) (-3259 (((-1091) $) 52 T ELT)) (-3264 (((-82) $) 49 T ELT)) (-3538 (((-1074) $) 50 T ELT)) (-2027 (($ (-1074)) 56 T ELT)) (-3266 (((-82) $) NIL T ELT)) (-3268 (((-82) $) NIL T ELT)) (-3265 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2030 (($ $ (-584 (-1091))) 21 T ELT)) (-2033 (((-48) $) 23 T ELT)) (-3262 (((-82) $) NIL T ELT)) (-3258 (((-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2385 (($ $ (-584 (-1091)) (-1091)) 73 T ELT)) (-3261 (((-82) $) NIL T ELT)) (-3257 (((-178) $) NIL T ELT)) (-2029 (($ $) 44 T ELT)) (-3256 (((-773) $) NIL T ELT)) (-3269 (((-82) $ $) NIL T ELT)) (-3803 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3260 (((-584 $) $) 30 T ELT)) (-2026 (((-1091) (-584 $)) 57 T ELT)) (-3975 (($ (-1074)) NIL T ELT) (($ (-1091)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-178)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1016) $) 12 T ELT) (($ (-1016)) 13 T ELT)) (-2025 (((-1091) (-1091) (-584 $)) 60 T ELT)) (-3950 (((-773) $) 54 T ELT)) (-3254 (($ $) 59 T ELT)) (-3255 (($ $) 58 T ELT)) (-2031 (($ $ (-584 $)) 66 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3267 (((-82) $) 29 T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 11 T CONST)) (-3059 (((-82) $ $) 74 T ELT)) (-3953 (($ $ $) 82 T ELT)) (-3842 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3961 (((-485) $) NIL T ELT)))
-(((-474) (-12 (-1017 (-1074) (-1091) (-485) (-178) (-773)) (-554 (-1016)) (-10 -8 (-14 -2033 ((-48) $)) (-14 -3975 ($ (-1016))) (-14 -2031 ($ $ (-584 $))) (-14 -2385 ($ $ (-584 (-1091)) (-1091))) (-14 -2030 ($ $ (-584 (-1091)))) (-14 -3842 ($ $ $)) (-14 * ($ $ $)) (-14 -3953 ($ $ $)) (-14 ** ($ $ (-695))) (-14 ** ($ $ (-485))) (-14 -2663 ($) -3956) (-14 -2669 ($) -3956) (-14 -2029 ($ $)) (-14 -2028 ((-1074) $)) (-14 -2027 ($ (-1074))) (-14 -2026 ((-1091) (-584 $))) (-14 -2025 ((-1091) (-1091) (-584 $)))))) (T -474))
-((-2033 (*1 *2 *1) (-11 (-5 *2 (-48)) (-5 *1 (-474)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-1016)) (-5 *1 (-474)))) (-2031 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-474))) (-5 *1 (-474)))) (-2385 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))) (-3842 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3953 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-474)))) (-2663 (*1 *1) (-5 *1 (-474))) (-2669 (*1 *1) (-5 *1 (-474))) (-2029 (*1 *1 *1) (-5 *1 (-474))) (-2028 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2027 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2026 (*1 *2 *3) (-11 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))) (-2025 (*1 *2 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
-((-2032 (((-474) (-1091)) 15 T ELT)) (-2033 ((|#1| (-474)) 20 T ELT)))
-(((-475 |#1|) (-10 -7 (-14 -2032 ((-474) (-1091))) (-14 -2033 (|#1| (-474)))) (-1130)) (T -475))
-((-2033 (*1 *2 *3) (-11 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))) (-2032 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130)))))
-((-3456 ((|#2| |#2|) 17 T ELT)) (-3454 ((|#2| |#2|) 13 T ELT)) (-3457 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3455 ((|#2| |#2|) 15 T ELT)))
-(((-476 |#1| |#2|) (-10 -7 (-14 -3454 (|#2| |#2|)) (-14 -3455 (|#2| |#2|)) (-14 -3456 (|#2| |#2|)) (-14 -3457 (|#2| |#2| (-485) (-485)))) (-12 (-496) (-117)) (-1173 |#1|)) (T -476))
-((-3457 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-485)) (-4 *4 (-12 (-496) (-117))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1173 *4)))) (-3456 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3455 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))))
-((-2036 (((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1091))) 32 T ELT)) (-2034 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1086 |#1|) |#3|) 53 T ELT)) (-2035 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|) 106 T ELT)))
-(((-477 |#1| |#2| |#3|) (-10 -7 (-14 -2034 ((-584 |#2|) (-1086 |#1|) |#3|)) (-14 -2034 ((-584 |#2|) (-858 |#1|) |#3|)) (-14 -2035 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|)) (-14 -2036 ((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1091))))) (-392) (-311) (-12 (-311) (-756))) (T -477))
-((-2036 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-311)) (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-12 (-311) (-756))))) (-2035 (*1 *2 *3 *3 *4 *5) (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-311)) (-4 *5 (-12 (-311) (-756))))) (-2034 (*1 *2 *3 *4) (-11 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756))))) (-2034 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756))))))
-((-2039 ((|#2| |#2| |#1|) 17 T ELT)) (-2037 ((|#2| (-584 |#2|)) 30 T ELT)) (-2038 ((|#2| (-584 |#2|)) 51 T ELT)))
-(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2037 (|#2| (-584 |#2|))) (-14 -2038 (|#2| (-584 |#2|))) (-14 -2039 (|#2| |#2| |#1|))) (-257) (-1156 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -478))
-((-2039 (*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-13 *4 *3) (-13 *5 (-1 *3 *3 (-695))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))) (-2038 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-257)) (-13 *5 *4) (-13 *6 (-1 *4 *4 (-695))))) (-2037 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-257)) (-13 *5 *4) (-13 *6 (-1 *4 *4 (-695))))))
-((-3735 (((-347 (-1086 |#4|)) (-1086 |#4|) (-1 (-347 (-1086 |#3|)) (-1086 |#3|))) 90 T ELT) (((-347 |#4|) |#4| (-1 (-347 (-1086 |#3|)) (-1086 |#3|))) 213 T ELT)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4| (-1 (-347 (-1086 |#3|)) (-1086 |#3|)))) (-14 -3735 ((-347 (-1086 |#4|)) (-1086 |#4|) (-1 (-347 (-1086 |#3|)) (-1086 |#3|))))) (-757) (-718) (-12 (-257) (-117)) (-862 |#3| |#2| |#1|)) (T -479))
-((-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-347 (-1086 *7)) (-1086 *7))) (-4 *7 (-12 (-257) (-117))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-347 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-347 (-1086 *7)) (-1086 *7))) (-4 *7 (-12 (-257) (-117))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-347 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5)))))
-((-3456 ((|#4| |#4|) 74 T ELT)) (-3454 ((|#4| |#4|) 70 T ELT)) (-3457 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3455 ((|#4| |#4|) 72 T ELT)))
-(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3454 (|#4| |#4|)) (-14 -3455 (|#4| |#4|)) (-14 -3456 (|#4| |#4|)) (-14 -3457 (|#4| |#4| (-485) (-485)))) (-12 (-311) (-319) (-554 (-485))) (-1156 |#1|) (-662 |#1| |#2|) (-1173 |#3|)) (T -480))
-((-3457 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-485)) (-4 *4 (-12 (-311) (-319) (-554 *3))) (-4 *5 (-1156 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) (-3456 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3455 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3454 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))))
-((-3456 ((|#2| |#2|) 27 T ELT)) (-3454 ((|#2| |#2|) 23 T ELT)) (-3457 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3455 ((|#2| |#2|) 25 T ELT)))
-(((-481 |#1| |#2|) (-10 -7 (-14 -3454 (|#2| |#2|)) (-14 -3455 (|#2| |#2|)) (-14 -3456 (|#2| |#2|)) (-14 -3457 (|#2| |#2| (-485) (-485)))) (-12 (-311) (-319) (-554 (-485))) (-1173 |#1|)) (T -481))
-((-3457 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-485)) (-4 *4 (-12 (-311) (-319) (-554 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) (-3456 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3455 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))))
-((-2040 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT)))
-(((-482 |#1| |#2|) (-10 -7 (-14 -2040 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-14 -2040 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-14 -2040 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-962) (-1156 |#1|)) (T -482))
-((-2040 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2040 (*1 *2 *3 *4 *2 *5) (|partial| -11 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2040 (*1 *2 *3 *2 *4) (|partial| -11 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2049 (($ $ $) 87 T ELT)) (-3974 (((-347 $) $) 50 T ELT)) (-3160 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3159 (((-485) $) 40 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 80 T ELT)) (-3026 (((-82) $) 24 T ELT)) (-3025 (((-349 (-485)) $) 78 T ELT)) (-3726 (((-82) $) 53 T ELT)) (-2042 (($ $ $ $) 94 T ELT)) (-1369 (($ $ $) 60 T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 75 T ELT)) (-3448 (((-633 $) $) 70 T ELT)) (-2046 (($ $) 22 T ELT)) (-2041 (($ $ $) 92 T ELT)) (-3449 (($) 63 T CONST)) (-1367 (($ $) 56 T ELT)) (-3735 (((-347 $) $) 48 T ELT)) (-2677 (((-82) $) 15 T ELT)) (-1608 (((-695) $) 30 T ELT)) (-3761 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3403 (($ $) 16 T ELT)) (-3975 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-801 (-485)) $) 43 T ELT) (((-329) $) 33 T ELT) (((-178) $) 36 T ELT)) (-3129 (((-695)) 9 T CONST)) (-2051 (((-82) $ $) 19 T ELT)) (-3104 (($ $ $) 58 T ELT)))
-(((-483 |#1|) (-10 -7 (-14 -2041 (|#1| |#1| |#1|)) (-14 -2042 (|#1| |#1| |#1| |#1|)) (-14 -2046 (|#1| |#1|)) (-14 -3403 (|#1| |#1|)) (-14 -3027 ((-3 (-349 (-485)) #1="failed") |#1|)) (-14 -3025 ((-349 (-485)) |#1|)) (-14 -3026 ((-82) |#1|)) (-14 -2049 (|#1| |#1| |#1|)) (-14 -2051 ((-82) |#1| |#1|)) (-14 -2677 ((-82) |#1|)) (-14 -3449 (|#1|) -3956) (-14 -3448 ((-633 |#1|) |#1|)) (-14 -3975 ((-178) |#1|)) (-14 -3975 ((-329) |#1|)) (-14 -1369 (|#1| |#1| |#1|)) (-14 -1367 (|#1| |#1|)) (-14 -3104 (|#1| |#1| |#1|)) (-14 -2799 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3975 ((-485) |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -1608 ((-695) |#1|)) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3974 ((-347 |#1|) |#1|)) (-14 -3726 ((-82) |#1|)) (-14 -3129 ((-695)) -3956)) (-484)) (T -483))
-((-3129 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-2049 (($ $ $) 102 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2044 (($ $ $ $) 91 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-347 $) $) 67 T ELT)) (-1609 (((-82) $ $) 145 T ELT)) (-3626 (((-485) $) 134 T ELT)) (-2444 (($ $ $) 105 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) "failed") $) 126 T ELT)) (-3159 (((-485) $) 127 T ELT)) (-2567 (($ $ $) 149 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 124 T ELT) (((-631 (-485)) (-631 $)) 123 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3027 (((-3 (-349 (-485)) "failed") $) 99 T ELT)) (-3026 (((-82) $) 101 T ELT)) (-3025 (((-349 (-485)) $) 100 T ELT)) (-2997 (($) 98 T ELT) (($ $) 97 T ELT)) (-2566 (($ $ $) 148 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 143 T ELT)) (-3726 (((-82) $) 68 T ELT)) (-2042 (($ $ $ $) 89 T ELT)) (-2050 (($ $ $) 103 T ELT)) (-3189 (((-82) $) 136 T ELT)) (-1369 (($ $ $) 114 T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 117 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2676 (((-82) $) 109 T ELT)) (-3448 (((-633 $) $) 111 T ELT)) (-3190 (((-82) $) 135 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 152 T ELT)) (-2043 (($ $ $ $) 90 T ELT)) (-2534 (($ $ $) 142 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-2046 (($ $) 93 T ELT)) (-3836 (($ $) 106 T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 122 T ELT) (((-631 (-485)) (-1180 $)) 121 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2041 (($ $ $) 88 T ELT)) (-3449 (($) 110 T CONST)) (-2048 (($ $) 95 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1367 (($ $) 115 T ELT)) (-3735 (((-347 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 150 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 144 T ELT)) (-2677 (((-82) $) 108 T ELT)) (-1608 (((-695) $) 146 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 147 T ELT)) (-3761 (($ $) 132 T ELT) (($ $ (-695)) 130 T ELT)) (-2047 (($ $) 94 T ELT)) (-3403 (($ $) 96 T ELT)) (-3975 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-801 (-485)) $) 118 T ELT) (((-329) $) 113 T ELT) (((-178) $) 112 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3129 (((-695)) 40 T CONST)) (-2051 (((-82) $ $) 104 T ELT)) (-3104 (($ $ $) 116 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2697 (($) 107 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2045 (($ $ $ $) 92 T ELT)) (-3386 (($ $) 133 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $) 131 T ELT) (($ $ (-695)) 129 T ELT)) (-2569 (((-82) $ $) 140 T ELT)) (-2570 (((-82) $ $) 138 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 139 T ELT)) (-2688 (((-82) $ $) 137 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT)))
-(((-484) (-110)) (T -484))
-((-2676 (*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82)))) (-2677 (*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82)))) (-2697 (*1 *1) (-4 *1 (-484))) (-3836 (*1 *1 *1) (-4 *1 (-484))) (-2444 (*1 *1 *1 *1) (-4 *1 (-484))) (-2051 (*1 *2 *1 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82)))) (-2050 (*1 *1 *1 *1) (-4 *1 (-484))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-3026 (*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82)))) (-3025 (*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-349 (-485))))) (-3027 (*1 *2 *1) (|partial| -11 (-4 *1 (-484)) (-5 *2 (-349 (-485))))) (-2997 (*1 *1) (-4 *1 (-484))) (-2997 (*1 *1 *1) (-4 *1 (-484))) (-3403 (*1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1) (-4 *1 (-484))))
-(-12 (-1135) (-257) (-741) (-189) (-554 (-485)) (-951 (-485)) (-581 (-485)) (-554 (-474)) (-554 (-801 (-485))) (-797 (-485)) (-113) (-934) (-117) (-1067) (-10 -8 (-14 -2676 ((-82) $)) (-14 -2677 ((-82) $)) (-6 -3996) (-14 -2697 ($)) (-14 -3836 ($ $)) (-14 -2444 ($ $ $)) (-14 -2051 ((-82) $ $)) (-14 -2050 ($ $ $)) (-14 -2049 ($ $ $)) (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $)) (-14 -2997 ($)) (-14 -2997 ($ $)) (-14 -3403 ($ $)) (-14 -2048 ($ $)) (-14 -2047 ($ $)) (-14 -2046 ($ $)) (-14 -2045 ($ $ $ $)) (-14 -2044 ($ $ $ $)) (-14 -2043 ($ $ $ $)) (-14 -2042 ($ $ $ $)) (-14 -2041 ($ $ $)) (-6 -3995)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-113) . T) ((-145) . T) ((-554 (-178)) . T) ((-554 (-329)) . T) ((-554 (-474)) . T) ((-554 (-485)) . T) ((-554 (-801 (-485))) . T) ((-185 $) . T) ((-189) . T) ((-188) . T) ((-245) . T) ((-257) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-485)) . T) ((-833) . T) ((-934) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 8 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 77 T ELT)) (-2065 (($ $) 78 T ELT)) (-2063 (((-82) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 31 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL T ELT)) (-2444 (($ $ $) 71 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL T ELT)) (-2567 (($ $ $) 45 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 53 T ELT) (((-631 (-485)) (-631 $)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 74 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3026 (((-82) $) NIL T ELT)) (-3025 (((-349 (-485)) $) NIL T ELT)) (-2997 (($) 55 T ELT) (($ $) 56 T ELT)) (-2566 (($ $ $) 70 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 46 T ELT)) (-3189 (((-82) $) 22 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-82) $ $) 110 T ELT)) (-2412 (((-82) $) 9 T ELT)) (-2676 (((-82) $) 64 T ELT)) (-3448 (((-633 $) $) NIL T ELT)) (-3190 (((-82) $) 21 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2043 (($ $ $ $) 32 T ELT)) (-2534 (($ $ $) 67 T ELT)) (-2860 (($ $ $) 66 T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) 29 T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) 44 T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) 15 T ELT)) (-3246 (((-1034) $) 19 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 109 T ELT)) (-3147 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3735 (((-347 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2677 (((-82) $) 65 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 69 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2047 (($ $) 17 T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-801 (-485)) $) NIL T ELT) (((-329) $) 35 T ELT) (((-178) $) 38 T ELT)) (-3950 (((-773) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3129 (((-695)) NIL T CONST)) (-2051 (((-82) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (($) 12 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) 112 T ELT)) (-2045 (($ $ $ $) 30 T ELT)) (-3386 (($ $) 54 T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 11 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2569 (((-82) $ $) 59 T ELT)) (-2570 (((-82) $ $) 57 T ELT)) (-3059 (((-82) $ $) 7 T ELT)) (-2687 (((-82) $ $) 58 T ELT)) (-2688 (((-82) $ $) 20 T ELT)) (-3840 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT)))
-(((-485) (-12 (-484) (-10 -7 (-6 -3984) (-6 -3989) (-6 -3985)))) (T -485))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-486) (-12 (-753) (-10 -8 (-14 -3727 ($) -3956)))) (T -486))
-((-3727 (*1 *1) (-5 *1 (-486))))
-((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-487) (-12 (-753) (-10 -8 (-14 -3727 ($) -3956)))) (T -487))
-((-3727 (*1 *1) (-5 *1 (-487))))
-((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-488) (-12 (-753) (-10 -8 (-14 -3727 ($) -3956)))) (T -488))
-((-3727 (*1 *1) (-5 *1 (-488))))
-((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-489) (-12 (-753) (-10 -8 (-14 -3727 ($) -3956)))) (T -489))
-((-3727 (*1 *1) (-5 *1 (-489))))
-((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) NIL T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-490 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|)) (T -490))
-NIL
-((-2052 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 50 T ELT)))
-(((-491 |#1| |#2|) (-10 -7 (-14 -2052 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-496) (-12 (-24) (-363 |#1|))) (T -491))
-((-2052 (*1 *2 *3 *4 *4 *5) (-11 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-12 (-24) (-363 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3)))))
-((-2054 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2055 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
-(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-14 -2054 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-14 -2055 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-12 (-496) (-951 (-485))) (-12 (-24) (-363 |#1|)) (-1156 |#2|) (-1156 (-349 |#3|)) (-290 |#2| |#3| |#4|)) (T -492))
-((-2055 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-24) (-363 *4))) (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *7 (-1156 (-349 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-290 *5 *6 *7)))) (-2054 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-12 (-24) (-363 *5))) (-4 *5 (-12 (-496) (-951 (-485)))) (-4 *8 (-1156 (-349 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))) (-2053 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-12 (-24) (-363 *5))) (-4 *5 (-12 (-496) (-951 (-485)))) (-4 *8 (-1156 (-349 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
-((-2058 (((-82) (-485) (-485)) 12 T ELT)) (-2056 (((-485) (-485)) 7 T ELT)) (-2057 (((-485) (-485) (-485)) 10 T ELT)))
-(((-493) (-10 -7 (-14 -2056 ((-485) (-485))) (-14 -2057 ((-485) (-485) (-485))) (-14 -2058 ((-82) (-485) (-485))))) (T -493))
-((-2058 (*1 *2 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-82)) (-5 *1 (-493)))) (-2057 (*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-493)))) (-2056 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-493)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2607 ((|#1| $) 77 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-3495 (($ $) 107 T ELT)) (-3642 (($ $) 90 T ELT)) (-2486 ((|#1| $) 78 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 89 T ELT)) (-3493 (($ $) 106 T ELT)) (-3641 (($ $) 91 T ELT)) (-3497 (($ $) 105 T ELT)) (-3640 (($ $) 92 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) "failed") $) 85 T ELT)) (-3159 (((-485) $) 86 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2061 (($ |#1| |#1|) 82 T ELT)) (-3189 (((-82) $) 76 T ELT)) (-3630 (($) 117 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 88 T ELT)) (-3190 (((-82) $) 75 T ELT)) (-2534 (($ $ $) 118 T ELT)) (-2860 (($ $ $) 119 T ELT)) (-3946 (($ $) 114 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2062 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-349 (-485))) 80 T ELT)) (-2060 ((|#1| $) 79 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (($ $) 115 T ELT)) (-3498 (($ $) 104 T ELT)) (-3639 (($ $) 93 T ELT)) (-3496 (($ $) 103 T ELT)) (-3638 (($ $) 94 T ELT)) (-3494 (($ $) 102 T ELT)) (-3637 (($ $) 95 T ELT)) (-2059 (((-82) $ |#1|) 74 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 113 T ELT)) (-3489 (($ $) 101 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3499 (($ $) 112 T ELT)) (-3487 (($ $) 100 T ELT)) (-3503 (($ $) 111 T ELT)) (-3491 (($ $) 99 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 110 T ELT)) (-3492 (($ $) 98 T ELT)) (-3502 (($ $) 109 T ELT)) (-3490 (($ $) 97 T ELT)) (-3500 (($ $) 108 T ELT)) (-3488 (($ $) 96 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 120 T ELT)) (-2570 (((-82) $ $) 122 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 121 T ELT)) (-2688 (((-82) $ $) 123 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-349 (-485))) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-494 |#1|) (-110) (-12 (-346) (-1116))) (T -494))
-((-2062 (*1 *1 *2 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-2061 (*1 *1 *2 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-2062 (*1 *1 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-2062 (*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))))) (-2060 (*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-2486 (*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-2607 (*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))) (-3189 (*1 *2 *1) (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82)))) (-3190 (*1 *2 *1) (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82)))) (-2059 (*1 *2 *1 *3) (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82)))))
-(-12 (-392) (-757) (-1116) (-916) (-951 (-485)) (-10 -8 (-6 -3773) (-14 -2062 ($ |t#1| |t#1|)) (-14 -2061 ($ |t#1| |t#1|)) (-14 -2062 ($ |t#1|)) (-14 -2062 ($ (-349 (-485)))) (-14 -2060 (|t#1| $)) (-14 -2486 (|t#1| $)) (-14 -2607 (|t#1| $)) (-14 -3189 ((-82) $)) (-14 -3190 ((-82) $)) (-14 -2059 ((-82) $ |t#1|))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-32) . T) ((-63) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-238) . T) ((-245) . T) ((-392) . T) ((-433) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) . T) ((-1119) . T) ((-1130) . T))
-((-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 9 T ELT)) (-2065 (($ $) 11 T ELT)) (-2063 (((-82) $) 20 T ELT)) (-3470 (((-3 $ "failed") $) 16 T ELT)) (-2064 (((-82) $ $) 22 T ELT)))
-(((-495 |#1|) (-10 -7 (-14 -2063 ((-82) |#1|)) (-14 -2064 ((-82) |#1| |#1|)) (-14 -2065 (|#1| |#1|)) (-14 -2066 ((-2 (|:| -1777 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-14 -3470 ((-3 |#1| "failed") |#1|))) (-496)) (T -495))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-496) (-110)) (T -496))
-((-3469 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2066 (*1 *2 *1) (-11 (-5 *2 (-2 (|:| -1777 *1) (|:| -3984 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2065 (*1 *1 *1) (-4 *1 (-496))) (-2064 (*1 *2 *1 *1) (-11 (-4 *1 (-496)) (-5 *2 (-82)))) (-2063 (*1 *2 *1) (-11 (-4 *1 (-496)) (-5 *2 (-82)))))
-(-12 (-145) (-35 $) (-245) (-10 -8 (-14 -3469 ((-3 $ "failed") $ $)) (-14 -2066 ((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $)) (-14 -2065 ($ $)) (-14 -2064 ((-82) $ $)) (-14 -2063 ((-82) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2068 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1091) (-584 |#2|)) 38 T ELT)) (-2070 (((-520 |#2|) |#2| (-1091)) 63 T ELT)) (-2069 (((-3 |#2| #1#) |#2| (-1091)) 156 T ELT)) (-2071 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2067 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) |#2|) 41 T ELT)))
-(((-497 |#1| |#2|) (-10 -7 (-14 -2067 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1091) |#2|)) (-14 -2068 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1091) (-584 |#2|))) (-14 -2069 ((-3 |#2| #1#) |#2| (-1091))) (-14 -2070 ((-520 |#2|) |#2| (-1091))) (-14 -2071 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))))) (-12 (-392) (-117) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -497))
-((-2071 (*1 *2 *3 *4 *5 *6) (|partial| -11 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *7))) (-4 *7 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2070 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-2069 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-2068 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2067 (*1 *2 *3 *4 *3) (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
-((-3974 (((-347 |#1|) |#1|) 17 T ELT)) (-3735 (((-347 |#1|) |#1|) 32 T ELT)) (-2073 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2072 (((-347 |#1|) |#1|) 59 T ELT)))
-(((-498 |#1|) (-10 -7 (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3974 ((-347 |#1|) |#1|)) (-14 -2072 ((-347 |#1|) |#1|)) (-14 -2073 ((-3 |#1| "failed") |#1|))) (-484)) (T -498))
-((-2073 (*1 *2 *2) (|partial| -11 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2072 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3974 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
-((-3086 (((-1086 (-349 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|)) 35 T ELT)) (-2076 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|)) 115 T ELT)) (-2074 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 55 T ELT)) (-2075 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-349 (-1086 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|)) 114 T ELT)) (-2077 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-349 (-1086 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|)) 116 T ELT)) (-2078 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3087 ((|#2| (-1086 (-349 (-1086 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3082 (((-1086 (-349 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|)) 34 T ELT)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-14 -2074 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-14 -2074 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|)))) (-14 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|))) (-14 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-349 (-1086 |#2|)))) (-14 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|))) (-14 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|)))) (-14 -2077 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|))) (-14 -2077 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-349 (-1086 |#2|)))) (-14 -3086 ((-1086 (-349 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|))) (-14 -3087 (|#2| (-1086 (-349 (-1086 |#2|))) (-551 |#2|) |#2|)) (-14 -3082 ((-1086 (-349 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-14 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-14 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-349 (-1086 |#2|))))) |%noBranch|)) (-12 (-392) (-951 (-485)) (-117) (-581 (-485))) (-12 (-363 |#1|) (-24) (-1116)) (-1014)) (T -499))
-((-2078 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-11 (-5 *5 (-551 *4)) (-5 *6 (-349 (-1086 *4))) (-4 *4 (-12 (-363 *7) (-24) (-1116))) (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2078 (*1 *2 *3 *4 *5 *5 *4 *6) (-11 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-12 (-363 *7) (-24) (-1116))) (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-3082 (*1 *2 *3 *4) (-11 (-5 *4 (-551 *6)) (-4 *6 (-12 (-363 *5) (-24) (-1116))) (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-1086 (-349 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1014)))) (-3087 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1086 (-349 (-1086 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-12 (-363 *5) (-24) (-1116))) (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) (-3086 (*1 *2 *3 *4 *4 *5) (-11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-1086 (-349 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1014)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -11 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-5 *5 (-349 (-1086 *2))) (-4 *2 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -11 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-5 *5 (-1086 *2)) (-4 *2 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2076 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-349 (-1086 *3))) (-4 *3 (-12 (-363 *7) (-24) (-1116))) (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2076 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-12 (-363 *7) (-24) (-1116))) (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-349 (-1086 *3))) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *4 *3 *5) (-11 (-5 *4 (-551 *3)) (-5 *5 (-349 (-1086 *3))) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *5) (-11 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
-((-2088 (((-485) (-485) (-695)) 87 T ELT)) (-2087 (((-485) (-485)) 85 T ELT)) (-2086 (((-485) (-485)) 82 T ELT)) (-2085 (((-485) (-485)) 89 T ELT)) (-2808 (((-485) (-485) (-485)) 67 T ELT)) (-2084 (((-485) (-485) (-485)) 64 T ELT)) (-2083 (((-349 (-485)) (-485)) 29 T ELT)) (-2082 (((-485) (-485)) 34 T ELT)) (-2081 (((-485) (-485)) 76 T ELT)) (-2805 (((-485) (-485)) 47 T ELT)) (-2080 (((-584 (-485)) (-485)) 81 T ELT)) (-2079 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2801 (((-349 (-485)) (-485)) 56 T ELT)))
-(((-500) (-10 -7 (-14 -2801 ((-349 (-485)) (-485))) (-14 -2079 ((-485) (-485) (-485) (-485) (-485))) (-14 -2080 ((-584 (-485)) (-485))) (-14 -2805 ((-485) (-485))) (-14 -2081 ((-485) (-485))) (-14 -2082 ((-485) (-485))) (-14 -2083 ((-349 (-485)) (-485))) (-14 -2084 ((-485) (-485) (-485))) (-14 -2808 ((-485) (-485) (-485))) (-14 -2085 ((-485) (-485))) (-14 -2086 ((-485) (-485))) (-14 -2087 ((-485) (-485))) (-14 -2088 ((-485) (-485) (-695))))) (T -500))
-((-2088 (*1 *2 *2 *3) (-11 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))) (-2087 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2808 (*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2082 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2081 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2805 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2079 (*1 *2 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))) (-2801 (*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-((-2089 (((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2089 ((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -501))
-((-2089 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-4 *7 (-1156 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7)))))
-((-2089 (((-2 (|:| |answer| (-349 |#2|)) (|:| -2137 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
-(((-502 |#1| |#2|) (-10 -7 (-14 -2089 ((-2 (|:| |answer| (-349 |#2|)) (|:| -2137 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)))) (-311) (-1156 |#1|)) (T -502))
-((-2089 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| (-349 *6)) (|:| -2137 (-349 *6)) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-349 *6)))))
-((-2092 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2090 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2091 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2093 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091))) 200 T ELT)) (-2094 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091)) 209 (|has| |#3| (-601 |#2|)) ELT)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-14 -2090 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-14 -2091 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-14 -2092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-14 -2093 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)))) (IF (|has| |#3| (-601 |#2|)) (-14 -2094 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091))) |%noBranch|)) (-12 (-392) (-951 (-485)) (-117) (-581 (-485))) (-12 (-363 |#1|) (-24) (-1116)) (-1014)) (T -503))
-((-2094 (*1 *2 *3 *4 *5 *5 *6) (-11 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-12 (-363 *7) (-24) (-1116))) (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2093 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -11 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-4 *2 (-12 (-363 *5) (-24) (-1116))) (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))) (-2092 (*1 *2 *3 *4 *4 *5) (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-12 (-363 *6) (-24) (-1116))) (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))) (-2091 (*1 *2 *3 *4 *4 *3) (|partial| -11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *5) (-24) (-1116))) (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))) (-2090 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *5) (-24) (-1116))) (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
-((-2095 (((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64 T ELT)) (-2097 (((-3 |#2| #1="failed") |#2| (-1091) (-751 |#2|) (-751 |#2|)) 174 (-11 (|has| |#2| (-1054)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 145 (-11 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)) (-2096 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 156 (-11 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)))
-(((-504 |#1| |#2|) (-10 -7 (-14 -2095 ((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-14 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1091))) (-14 -2097 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-14 -2097 ((-3 |#2| #1#) |#2| (-1091) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-12 (-951 (-485)) (-392) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -504))
-((-2097 (*1 *2 *2 *3 *4 *4) (|partial| -11 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) (-4 *2 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485)))) (-5 *1 (-504 *5 *2)))) (-2097 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-2096 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-2095 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
-((-2100 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1="failed") (-349 |#2|) (-584 (-349 |#2|))) 41 T ELT)) (-3815 (((-520 (-349 |#2|)) (-349 |#2|)) 28 T ELT)) (-2098 (((-3 (-349 |#2|) #1#) (-349 |#2|)) 17 T ELT)) (-2099 (((-3 (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|)) 48 T ELT)))
-(((-505 |#1| |#2|) (-10 -7 (-14 -3815 ((-520 (-349 |#2|)) (-349 |#2|))) (-14 -2098 ((-3 (-349 |#2|) #1="failed") (-349 |#2|))) (-14 -2099 ((-3 (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|))) (-14 -2100 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-584 (-349 |#2|))))) (-12 (-311) (-117) (-951 (-485))) (-1156 |#1|)) (T -505))
-((-2100 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-584 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2099 (*1 *2 *3 *3) (|partial| -11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2138 (-349 *5)) (|:| |coeff| (-349 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-349 *5)))) (-2098 (*1 *2 *2) (|partial| -11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-12 (-311) (-117) (-951 (-485)))) (-5 *1 (-505 *3 *4)))) (-3815 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-520 (-349 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-349 *5)))))
-((-2101 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3262 (((-82) |#1|) 13 T ELT)) (-3258 (((-485) |#1|) 9 T ELT)))
-(((-506 |#1|) (-10 -7 (-14 -3258 ((-485) |#1|)) (-14 -3262 ((-82) |#1|)) (-14 -2101 ((-3 (-485) "failed") |#1|))) (-951 (-485))) (T -506))
-((-2101 (*1 *2 *3) (|partial| -11 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) (-3262 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) (-3258 (*1 *2 *3) (-11 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
-((-2104 (((-3 (-2 (|:| |mainpart| (-349 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 (-858 |#1|))) (|:| |logand| (-349 (-858 |#1|))))))) #1="failed") (-349 (-858 |#1|)) (-1091) (-584 (-349 (-858 |#1|)))) 48 T ELT)) (-2102 (((-520 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-1091)) 28 T ELT)) (-2103 (((-3 (-349 (-858 |#1|)) #1#) (-349 (-858 |#1|)) (-1091)) 23 T ELT)) (-2105 (((-3 (-2 (|:| -2138 (-349 (-858 |#1|))) (|:| |coeff| (-349 (-858 |#1|)))) #1#) (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|))) 35 T ELT)))
-(((-507 |#1|) (-10 -7 (-14 -2102 ((-520 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-1091))) (-14 -2103 ((-3 (-349 (-858 |#1|)) #1="failed") (-349 (-858 |#1|)) (-1091))) (-14 -2104 ((-3 (-2 (|:| |mainpart| (-349 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 (-858 |#1|))) (|:| |logand| (-349 (-858 |#1|))))))) #1#) (-349 (-858 |#1|)) (-1091) (-584 (-349 (-858 |#1|))))) (-14 -2105 ((-3 (-2 (|:| -2138 (-349 (-858 |#1|))) (|:| |coeff| (-349 (-858 |#1|)))) #1#) (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|))))) (-12 (-496) (-951 (-485)) (-117))) (T -507))
-((-2105 (*1 *2 *3 *4 *3) (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-117))) (-5 *2 (-2 (|:| -2138 (-349 (-858 *5))) (|:| |coeff| (-349 (-858 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-349 (-858 *5))))) (-2104 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 (-349 (-858 *6)))) (-5 *3 (-349 (-858 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-117))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2103 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-349 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-117))) (-5 *1 (-507 *4)))) (-2102 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-117))) (-5 *2 (-520 (-349 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-349 (-858 *5))))))
-((-2571 (((-82) $ $) 77 T ELT)) (-3191 (((-82) $) 49 T ELT)) (-2607 ((|#1| $) 39 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) 81 T ELT)) (-3495 (($ $) 142 T ELT)) (-3642 (($ $) 120 T ELT)) (-2486 ((|#1| $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL T ELT)) (-3493 (($ $) 144 T ELT)) (-3641 (($ $) 116 T ELT)) (-3497 (($ $) 146 T ELT)) (-3640 (($ $) 124 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) 95 T ELT)) (-3159 (((-485) $) 97 T ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-2061 (($ |#1| |#1|) 35 T ELT)) (-3189 (((-82) $) 44 T ELT)) (-3630 (($) 106 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 56 T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-3190 (((-82) $) 46 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3946 (($ $) 108 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2062 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-349 (-485))) 94 T ELT)) (-2060 ((|#1| $) 36 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 82 T ELT)) (-3947 (($ $) 110 T ELT)) (-3498 (($ $) 150 T ELT)) (-3639 (($ $) 122 T ELT)) (-3496 (($ $) 152 T ELT)) (-3638 (($ $) 126 T ELT)) (-3494 (($ $) 148 T ELT)) (-3637 (($ $) 118 T ELT)) (-2059 (((-82) $ |#1|) 42 T ELT)) (-3950 (((-773) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3129 (((-695)) 104 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 164 T ELT)) (-3489 (($ $) 132 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3499 (($ $) 162 T ELT)) (-3487 (($ $) 128 T ELT)) (-3503 (($ $) 160 T ELT)) (-3491 (($ $) 140 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 158 T ELT)) (-3492 (($ $) 138 T ELT)) (-3502 (($ $) 156 T ELT)) (-3490 (($ $) 134 T ELT)) (-3500 (($ $) 154 T ELT)) (-3488 (($ $) 130 T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 10 T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 50 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 48 T ELT)) (-3840 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3842 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-349 (-485))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT)))
-(((-508 |#1|) (-494 |#1|) (-12 (-346) (-1116))) (T -508))
-NIL
-((-2707 (((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485))) 27 T ELT)))
-(((-509) (-10 -7 (-14 -2707 ((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485)))))) (T -509))
-((-2707 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) (-5 *1 (-509)))))
-((-2106 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091)) 19 T ELT)) (-2109 (((-584 (-551 |#2|)) (-584 |#2|) (-1091)) 23 T ELT)) (-3237 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2110 ((|#2| |#2| (-1091)) 59 (|has| |#1| (-496)) ELT)) (-2111 ((|#2| |#2| (-1091)) 87 (-11 (|has| |#2| (-238)) (|has| |#1| (-392))) ELT)) (-2108 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091)) 25 T ELT)) (-2107 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2112 (((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 115 (-11 (|has| |#2| (-238)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1091))) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-392)) (|has| |#1| (-797 (-485)))) ELT)))
-(((-510 |#1| |#2|) (-10 -7 (-14 -2106 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091))) (-14 -2107 ((-551 |#2|) (-584 (-551 |#2|)))) (-14 -2108 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091))) (-14 -3237 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-14 -2109 ((-584 (-551 |#2|)) (-584 |#2|) (-1091))) (IF (|has| |#1| (-496)) (-14 -2110 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-238)) (PROGN (-14 -2111 (|#2| |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1091))) (-14 -2112 ((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1014) (-363 |#1|)) (T -510))
-((-2112 (*1 *2 *3 *4 *5 *6) (-11 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-238)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-363 *7)) (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2111 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-238)) (-4 *2 (-363 *4)))) (-2110 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-363 *4)))) (-2109 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-363 *5)) (-4 *5 (-1014)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))) (-3237 (*1 *2 *2 *2) (-11 (-5 *2 (-584 (-551 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1014)) (-5 *1 (-510 *3 *4)))) (-2108 (*1 *2 *2 *3 *4) (-11 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) (-4 *6 (-363 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))) (-2107 (*1 *2 *3) (-11 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-363 *4)))) (-2106 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-363 *4)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
-((-2115 (((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-349 |#2|))) 174 T ELT)) (-2121 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-584 (-349 |#2|))) 171 T ELT)) (-2122 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2120 (((-3 (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|)) 202 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|)) 205 T ELT)) (-2124 (((-2 (|:| |ir| (-520 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2125 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2119 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|) (-584 (-349 |#2|))) 178 T ELT)) (-2123 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|)) 166 T ELT)) (-2114 (((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|)) 189 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|) (-349 |#2|)) 210 T ELT)))
-(((-511 |#1| |#2|) (-10 -7 (-14 -2113 ((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-14 -2114 ((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|))) (-14 -2115 ((-2 (|:| |answer| (-520 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-485) |#1| |#1|))) (-14 -2116 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|))) (-14 -2117 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|) (-349 |#2|))) (-14 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-349 |#2|)))) (-14 -2119 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|) (-584 (-349 |#2|)))) (-14 -2120 ((-3 (-2 (|:| -2138 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|))) (-14 -2121 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-584 (-349 |#2|)))) (-14 -2122 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-14 -2123 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3140 |#1|) (|:| |sol?| (-82))) (-485) |#1|))) (-14 -2124 ((-2 (|:| |ir| (-520 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|))) (-14 -2125 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-311) (-1156 |#1|)) (T -511))
-((-2125 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2124 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |ir| (-520 (-349 *6))) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-349 *6)))) (-2123 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-82))) (-485) *4)) (-4 *4 (-311)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))) (-2122 (*1 *2 *2 *3 *4) (|partial| -11 (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-311)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-349 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-349 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2120 (*1 *2 *3 *4 *3) (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -2138 (-349 *6)) (|:| |coeff| (-349 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-349 *6)))) (-2119 (*1 *2 *3 *4 *5 *6) (|partial| -11 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-82))) (-485) *7)) (-5 *6 (-584 (-349 *8))) (-4 *7 (-311)) (-4 *8 (-1156 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -11 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-349 *8))) (-4 *7 (-311)) (-4 *8 (-1156 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *3) (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-82))) (-485) *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-349 *7)) (|:| |coeff| (-349 *7))) #1#)) (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))) (-2116 (*1 *2 *3 *4 *5 *3) (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-349 *7)) (|:| |coeff| (-349 *7))) #1#)) (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))) (-2115 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) #1#) (-485) *6 *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))) (-2114 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-82))) (-485) *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))) (-2113 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
-((-2126 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10 T ELT)))
-(((-512 |#1| |#2|) (-10 -7 (-14 -2126 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-872) (-1054) (-26 |#1|))) (T -512))
-((-2126 (*1 *2 *2 *3 *3) (|partial| -11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-12 (-1116) (-872) (-1054) (-26 *4))))))
-((-2558 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2559 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2557 (((-695) $ (-99)) 28 T ELT)) (-2560 (((-633 (-98)) $ (-98)) 25 T ELT)) (-2002 (((-633 (-1139)) $) 12 T ELT)) (-1998 (((-633 (-1137)) $) 8 T ELT)) (-2000 (((-633 (-1136)) $) 10 T ELT)) (-2003 (((-633 (-489)) $) 13 T ELT)) (-1999 (((-633 (-487)) $) 9 T ELT)) (-2001 (((-633 (-486)) $) 11 T ELT)) (-1997 (((-695) $ (-99)) 7 T ELT)) (-2004 (((-633 (-98)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-513) (-110)) (T -513))
-NIL
-(-12 (-466) (-771))
-(((-146) . T) ((-466) . T) ((-771) . T))
-((-2558 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2559 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2557 (((-695) $ (-99)) NIL T ELT)) (-2560 (((-633 (-98)) $ (-98)) NIL T ELT)) (-2002 (((-633 (-1139)) $) NIL T ELT)) (-1998 (((-633 (-1137)) $) NIL T ELT)) (-2000 (((-633 (-1136)) $) NIL T ELT)) (-2003 (((-633 (-489)) $) NIL T ELT)) (-1999 (((-633 (-487)) $) NIL T ELT)) (-2001 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-695) $ (-99)) NIL T ELT)) (-2004 (((-633 (-98)) $) NIL T ELT)) (-2561 (((-82) $) NIL T ELT)) (-2127 (($ (-337)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)))
-(((-514) (-12 (-513) (-553 (-773)) (-10 -8 (-14 -2127 ($ (-337))) (-14 -2127 ($ (-1074))) (-14 -2561 ((-82) $))))) (T -514))
-((-2127 (*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-514)))) (-2127 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-514)))) (-2561 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-514)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3463 (($) 7 T CONST)) (-3245 (((-1074) $) NIL T ELT)) (-2130 (($) 6 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 15 T ELT)) (-2128 (($) 9 T CONST)) (-2129 (($) 8 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 11 T ELT)))
-(((-515) (-12 (-1014) (-10 -8 (-14 -2130 ($) -3956) (-14 -3463 ($) -3956) (-14 -2129 ($) -3956) (-14 -2128 ($) -3956)))) (T -515))
-((-2130 (*1 *1) (-5 *1 (-515))) (-3463 (*1 *1) (-5 *1 (-515))) (-2129 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2131 (((-633 $) (-431)) 23 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2133 (($ (-1074)) 16 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 33 T ELT)) (-2132 (((-165 4 (-98)) $) 24 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 26 T ELT)))
-(((-516) (-12 (-1014) (-10 -8 (-14 -2133 ($ (-1074))) (-14 -2132 ((-165 4 (-98)) $)) (-14 -2131 ((-633 $) (-431)))))) (T -516))
-((-2133 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-516)))) (-2132 (*1 *2 *1) (-11 (-5 *2 (-165 4 (-98))) (-5 *1 (-516)))) (-2131 (*1 *2 *3) (-11 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-485)) 73 T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1086 (-485)) (-485)) 79 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2615 (($ $) 43 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3775 (((-695) $) 16 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2617 (((-485)) 37 T ELT)) (-2616 (((-485) $) 41 T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-485)) 24 T ELT)) (-3469 (((-3 $ #1#) $ $) 70 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) 17 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 T ELT)) (-2618 (((-1070 (-485)) $) 19 T ELT)) (-2894 (($ $) 26 T ELT)) (-3950 (((-773) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3129 (((-695)) 15 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-485) $ (-485)) 46 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 44 T CONST)) (-2669 (($) 21 T CONST)) (-3059 (((-82) $ $) 51 T ELT)) (-3840 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3842 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT)))
-(((-517 |#1| |#2|) (-780 |#1|) (-485) (-82)) (T -517))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 30 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (($ $ (-831)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) 95 T ELT)) (-3159 (($ $) 94 T ELT)) (-1797 (($ (-1180 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) 61 T ELT)) (-1681 (((-82) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) 49 (|has| $ (-319)) ELT)) (-2013 (((-82) $) NIL (|has| $ (-319)) ELT)) (-3135 (($ $ (-831)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3448 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 $) $ (-831)) NIL (|has| $ (-319)) ELT) (((-1086 $) $) 104 T ELT)) (-2012 (((-831) $) 67 T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1086 $) $) NIL (|has| $ (-319)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-831)) 60 T ELT)) (-3935 (((-82) $) 87 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) 28 (|has| $ (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 54 T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3952 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3188 (((-1086 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-319)) ELT)) (-3227 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) 91 T ELT)) (-3975 (((-485) $) 42 T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT)) (-2705 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3129 (((-695)) 51 T CONST)) (-1266 (((-82) $ $) 107 T ELT)) (-2014 (((-1180 $) (-831)) 97 T ELT) (((-1180 $)) 96 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) 31 T CONST)) (-2669 (($) 27 T CONST)) (-3932 (($ $ (-695)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-518 |#1|) (-12 (-298) (-279 $) (-554 (-485))) (-831)) (T -518))
-NIL
-((-2134 (((-1186) (-1074)) 10 T ELT)))
-(((-519) (-10 -7 (-14 -2134 ((-1186) (-1074))))) (T -519))
-((-2134 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 77 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2138 ((|#1| $) 30 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2136 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2139 (($ |#1| (-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2137 (((-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 31 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2835 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1091)) 49 (|has| |#1| (-951 (-1091))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2135 (((-82) $) 35 T ELT)) (-3761 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1091)) 90 (|has| |#1| (-810 (-1091))) ELT)) (-3950 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-349 (-485)) $) 41 T ELT) (($ $ (-349 (-485))) NIL T ELT)))
-(((-520 |#1|) (-12 (-655 (-349 (-485))) (-951 |#1|) (-10 -8 (-14 -2139 ($ |#1| (-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-14 -2138 (|#1| $)) (-14 -2137 ((-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-14 -2136 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-14 -2135 ((-82) $)) (-14 -2835 ($ |#1| |#1|)) (-14 -3761 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1091))) (-14 -3761 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-951 (-1091))) (-14 -2835 ($ |#1| (-1091))) |%noBranch|))) (-311)) (T -520))
-((-2139 (*1 *1 *2 *3 *4) (-11 (-5 *3 (-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) (-5 *1 (-520 *2)))) (-2138 (*1 *2 *1) (-11 (-5 *1 (-520 *2)) (-4 *2 (-311)))) (-2137 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-311)))) (-2136 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-311)))) (-2135 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-520 *3)) (-4 *3 (-311)))) (-2835 (*1 *1 *2 *2) (-11 (-5 *1 (-520 *2)) (-4 *2 (-311)))) (-3761 (*1 *2 *1 *3) (-11 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-311)))) (-3761 (*1 *2 *1 *3) (-11 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) (-2835 (*1 *1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311)))))
-((-3846 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT)))
-(((-521 |#1| |#2|) (-10 -7 (-14 -3846 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-14 -3846 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#))) (-14 -3846 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-14 -3846 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-311) (-311)) (T -521))
-((-3846 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) #1="failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3846 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 #1#)) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-521 *5 *2)))) (-3846 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) #1#)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))))
-((-3421 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3966 (((-584 |#2|) (-520 |#2|)) 44 T ELT)) (-2150 ((|#2| (-520 |#2|)) 50 T ELT)))
-(((-522 |#1| |#2|) (-10 -7 (-14 -3421 ((-520 |#2|) (-520 |#2|))) (-14 -3966 ((-584 |#2|) (-520 |#2|))) (-14 -2150 (|#2| (-520 |#2|)))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-26 |#1|) (-1116))) (T -522))
-((-2150 (*1 *2 *3) (-11 (-5 *3 (-520 *2)) (-4 *2 (-12 (-26 *4) (-1116))) (-5 *1 (-522 *4 *2)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))))) (-3966 (*1 *2 *3) (-11 (-5 *3 (-520 *5)) (-4 *5 (-12 (-26 *4) (-1116))) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) (-5 *1 (-522 *4 *5)))) (-3421 (*1 *2 *2) (-11 (-5 *2 (-520 *4)) (-4 *4 (-12 (-26 *3) (-1116))) (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2142 (($ (-447) (-533)) 14 T ELT)) (-2140 (($ (-447) (-533) $) 16 T ELT)) (-2141 (($ (-447) (-533)) 15 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-1096)) 7 T ELT) (((-1096) $) 6 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-523) (-12 (-1014) (-430 (-1096)) (-10 -8 (-14 -2142 ($ (-447) (-533))) (-14 -2141 ($ (-447) (-533))) (-14 -2140 ($ (-447) (-533) $))))) (T -523))
-((-2142 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2141 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-((-2146 (((-82) |#1|) 16 T ELT)) (-2147 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2144 (((-2 (|:| -2697 |#1|) (|:| -2403 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2143 (((-82) |#1| (-695)) 19 T ELT)) (-2148 ((|#1| |#1|) 41 T ELT)) (-2145 ((|#1| |#1| (-695)) 44 T ELT)))
-(((-524 |#1|) (-10 -7 (-14 -2143 ((-82) |#1| (-695))) (-14 -2144 ((-3 |#1| #1="failed") |#1| (-695))) (-14 -2144 ((-2 (|:| -2697 |#1|) (|:| -2403 (-695))) |#1|)) (-14 -2145 (|#1| |#1| (-695))) (-14 -2146 ((-82) |#1|)) (-14 -2147 ((-3 |#1| #1#) |#1|)) (-14 -2148 (|#1| |#1|))) (-484)) (T -524))
-((-2148 (*1 *2 *2) (-11 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2147 (*1 *2 *2) (|partial| -11 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2145 (*1 *2 *2 *3) (-11 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2144 (*1 *2 *3) (-11 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-695)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-5 *2 (-82)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-((-2149 (((-1086 |#1|) (-831)) 44 T ELT)))
-(((-525 |#1|) (-10 -7 (-14 -2149 ((-1086 |#1|) (-831)))) (-298)) (T -525))
-((-2149 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-298)))))
-((-3421 (((-520 (-349 (-858 |#1|))) (-520 (-349 (-858 |#1|)))) 27 T ELT)) (-3815 (((-3 (-264 |#1|) (-584 (-264 |#1|))) (-349 (-858 |#1|)) (-1091)) 33 (|has| |#1| (-117)) ELT)) (-3966 (((-584 (-264 |#1|)) (-520 (-349 (-858 |#1|)))) 19 T ELT)) (-2151 (((-264 |#1|) (-349 (-858 |#1|)) (-1091)) 31 (|has| |#1| (-117)) ELT)) (-2150 (((-264 |#1|) (-520 (-349 (-858 |#1|)))) 21 T ELT)))
-(((-526 |#1|) (-10 -7 (-14 -3421 ((-520 (-349 (-858 |#1|))) (-520 (-349 (-858 |#1|))))) (-14 -3966 ((-584 (-264 |#1|)) (-520 (-349 (-858 |#1|))))) (-14 -2150 ((-264 |#1|) (-520 (-349 (-858 |#1|))))) (IF (|has| |#1| (-117)) (PROGN (-14 -3815 ((-3 (-264 |#1|) (-584 (-264 |#1|))) (-349 (-858 |#1|)) (-1091))) (-14 -2151 ((-264 |#1|) (-349 (-858 |#1|)) (-1091)))) |%noBranch|)) (-12 (-392) (-951 (-485)) (-581 (-485)))) (T -526))
-((-2151 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-117)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-264 *5)) (-5 *1 (-526 *5)))) (-3815 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-117)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-526 *5)))) (-2150 (*1 *2 *3) (-11 (-5 *3 (-520 (-349 (-858 *4)))) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-264 *4)) (-5 *1 (-526 *4)))) (-3966 (*1 *2 *3) (-11 (-5 *3 (-520 (-349 (-858 *4)))) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-264 *4))) (-5 *1 (-526 *4)))) (-3421 (*1 *2 *2) (-11 (-5 *2 (-520 (-349 (-858 *3)))) (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3)))))
-((-2153 (((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-831))) 81 T ELT) (((-631 (-485)) (-584 (-831)) (-814 (-485))) 74 T ELT)) (-2152 (((-695) (-584 (-831))) 71 T ELT)))
-(((-527) (-10 -7 (-14 -2152 ((-695) (-584 (-831)))) (-14 -2153 ((-631 (-485)) (-584 (-831)) (-814 (-485)))) (-14 -2153 ((-584 (-631 (-485))) (-584 (-831)))) (-14 -2153 ((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485))))))) (T -527))
-((-2153 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2153 (*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2153 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
-((-3216 (((-584 |#5|) |#5| (-82)) 97 T ELT)) (-2154 (((-82) |#5| (-584 |#5|)) 34 T ELT)))
-(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3216 ((-584 |#5|) |#5| (-82))) (-14 -2154 ((-82) |#5| (-584 |#5|)))) (-12 (-257) (-117)) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -528))
-((-2154 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3216 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 (((-1050) $) 12 T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-529) (-12 (-996) (-10 -8 (-14 -3532 ((-1050) $)) (-14 -3531 ((-1050) $))))) (T -529))
-((-3532 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-529)))) (-3531 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-529)))))
-((-3535 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|)) 32 T ELT)))
-(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|))) (-14 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|)) (T -530))
-((-3535 (*1 *2 *3 *4) (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3535 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 71 T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2185 (($ $) 109 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2183 (((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-349 (-485))) 232 T ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2895 (((-82) $) NIL T ELT)) (-3775 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3780 (($ $ (-831)) 83 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3941 (((-82) $) 26 T ELT)) (-2896 (($ |#1| (-485)) 22 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2189 (($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3815 (($ $) 120 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2186 (((-3 $ #1#) $ $ (-82)) 108 T ELT)) (-2184 (($ $ $) 116 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2187 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2188 (((-940 (-751 (-485))) $) 14 T ELT)) (-3772 (($ $ (-485)) 47 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT)) (-3803 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT)) (-3761 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT)) (-3952 (((-485) $) NIL T ELT)) (-2894 (($ $) 48 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-145)) ELT)) (-3680 ((|#1| $ (-485)) 61 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 39 T CONST)) (-3776 ((|#1| $) NIL T ELT)) (-2164 (($ $) 192 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2176 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2166 (($ $) 189 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2178 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2162 (($ $) 194 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2174 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2181 (($ $ (-349 (-485))) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2182 (($ $ |#1|) 128 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2179 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2180 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2161 (($ $) 195 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2173 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2163 (($ $) 193 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2175 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2165 (($ $) 190 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2177 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2158 (($ $) 200 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2170 (($ $) 180 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2160 (($ $) 197 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2172 (($ $) 176 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2156 (($ $) 204 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2168 (($ $) 184 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2155 (($ $) 206 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2167 (($ $) 186 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2157 (($ $) 202 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2169 (($ $) 182 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2159 (($ $) 199 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2171 (($ $) 178 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3773 ((|#1| $ (-485)) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 40 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT)) (-3059 (((-82) $ $) 73 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3842 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-531 |#1|) (-12 (-1159 |#1| (-485)) (-10 -8 (-14 -2189 ($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-14 -2188 ((-940 (-751 (-485))) $)) (-14 -2187 ((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-14 -3821 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-14 -3941 ((-82) $)) (-14 -3818 ($ (-1 |#1| (-485)) $)) (-14 -2186 ((-3 $ "failed") $ $ (-82))) (-14 -2185 ($ $)) (-14 -2184 ($ $ $)) (-14 -2183 ((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-349 (-485)))) (IF (|has| |#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $)) (-14 -2182 ($ $ |#1|)) (-14 -2181 ($ $ (-349 (-485)))) (-14 -2180 ($ $)) (-14 -2179 ($ $)) (-14 -2178 ($ $)) (-14 -2177 ($ $)) (-14 -2176 ($ $)) (-14 -2175 ($ $)) (-14 -2174 ($ $)) (-14 -2173 ($ $)) (-14 -2172 ($ $)) (-14 -2171 ($ $)) (-14 -2170 ($ $)) (-14 -2169 ($ $)) (-14 -2168 ($ $)) (-14 -2167 ($ $)) (-14 -2166 ($ $)) (-14 -2165 ($ $)) (-14 -2164 ($ $)) (-14 -2163 ($ $)) (-14 -2162 ($ $)) (-14 -2161 ($ $)) (-14 -2160 ($ $)) (-14 -2159 ($ $)) (-14 -2158 ($ $)) (-14 -2157 ($ $)) (-14 -2156 ($ $)) (-14 -2155 ($ $))) |%noBranch|))) (-962)) (T -531))
-((-3941 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2189 (*1 *1 *2 *3) (-11 (-5 *2 (-940 (-751 (-485)))) (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-531 *4)))) (-2188 (*1 *2 *1) (-11 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2187 (*1 *2 *1) (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3821 (*1 *1 *2) (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-3818 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2186 (*1 *1 *1 *1 *2) (|partial| -11 (-5 *2 (-82)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2185 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2184 (*1 *1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2183 (*1 *2 *3 *4 *5 *6 *7) (-11 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-349 (-485))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))) (-3815 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2182 (*1 *1 *1 *2) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-35 *2)) (-4 *3 (-962)))) (-2180 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2179 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 62 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3821 (($ (-1070 |#1|)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 44 T ELT)) (-2895 (((-82) $) 56 T ELT)) (-3775 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-1070 |#1|) $) 25 T ELT)) (-3129 (((-695)) 55 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2669 (($) 14 T CONST)) (-3059 (((-82) $ $) 24 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3842 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT)))
-(((-532 |#1|) (-12 (-962) (-79 |#1| |#1|) (-10 -8 (-14 -3820 ((-1070 |#1|) $)) (-14 -3821 ($ (-1070 |#1|))) (-14 -2895 ((-82) $)) (-14 -3775 ((-695) $)) (-14 -3775 ((-695) $ (-695))) (-14 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-962)) (T -532))
-((-3820 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3821 (*1 *1 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) (-2895 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3775 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3775 (*1 *2 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2192 (($) 8 T CONST)) (-2193 (($) 7 T CONST)) (-2190 (($ $ (-584 $)) 16 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2194 (($) 6 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-1096)) 15 T ELT) (((-1096) $) 10 T ELT)) (-2191 (($) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-533) (-12 (-1014) (-430 (-1096)) (-10 -8 (-14 -2194 ($) -3956) (-14 -2193 ($) -3956) (-14 -2192 ($) -3956) (-14 -2191 ($) -3956) (-14 -2190 ($ $ (-584 $)))))) (T -533))
-((-2194 (*1 *1) (-5 *1 (-533))) (-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
-((-3846 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT)))
-(((-534 |#1| |#2|) (-12 (-1130) (-10 -7 (-14 -3846 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1130) (-1130)) (T -534))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))))
-((-3846 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)) 20 T ELT) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT)))
-(((-535 |#1| |#2| |#3|) (-10 -7 (-14 -3846 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-14 -3846 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|))) (-14 -3846 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -535))
-((-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8)))))
-((-2199 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))) 57 T ELT)) (-2198 (((-141 |#2|) |#3|) 122 T ELT)) (-2195 ((|#3| (-141 |#2|)) 46 T ELT)) (-2196 ((|#2| |#3|) 21 T ELT)) (-2197 ((|#3| |#2|) 35 T ELT)))
-(((-536 |#1| |#2| |#3|) (-10 -7 (-14 -2195 (|#3| (-141 |#2|))) (-14 -2196 (|#2| |#3|)) (-14 -2197 (|#3| |#2|)) (-14 -2198 ((-141 |#2|) |#3|)) (-14 -2199 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))))) (-496) (-12 (-363 |#1|) (-916) (-1116)) (-12 (-363 (-141 |#1|)) (-916) (-1116))) (T -536))
-((-2199 (*1 *2 *2 *3 *4) (-11 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) (-4 *2 (-12 (-363 (-141 *5)) (-916) (-1116))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-12 (-363 *5) (-916) (-1116))))) (-2198 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-141 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-12 (-363 *4) (-916) (-1116))) (-4 *3 (-12 (-363 (-141 *4)) (-916) (-1116))))) (-2197 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *2 (-12 (-363 (-141 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-12 (-363 *4) (-916) (-1116))))) (-2196 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *2 (-12 (-363 *4) (-916) (-1116))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-12 (-363 (-141 *4)) (-916) (-1116))))) (-2195 (*1 *2 *3) (-11 (-5 *3 (-141 *5)) (-4 *5 (-12 (-363 *4) (-916) (-1116))) (-4 *4 (-496)) (-4 *2 (-12 (-363 (-141 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2)))))
-((-3713 (($ (-1 (-82) |#1|) $) 19 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3460 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3459 (($ (-1 (-82) |#1|) $) 15 T ELT)) (-3458 (($ (-1 (-82) |#1|) $) 17 T ELT)) (-3533 (((-1070 |#1|) $) 20 T ELT)) (-3950 (((-773) $) 25 T ELT)))
-(((-537 |#1|) (-12 (-380 |#1|) (-553 (-773)) (-10 -8 (-14 -3459 ($ (-1 (-82) |#1|) $)) (-14 -3458 ($ (-1 (-82) |#1|) $)) (-14 -3713 ($ (-1 (-82) |#1|) $)) (-14 -3460 ($ (-1 |#1| |#1|) |#1|)) (-14 -3533 ((-1070 |#1|) $)))) (-1130)) (T -537))
-((-3459 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3458 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3713 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3460 (*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3533 (*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130)))))
-((-2200 (((-1186) $ |#2| |#2|) 34 T ELT)) (-2202 ((|#2| $) 23 T ELT)) (-2203 ((|#2| $) 21 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3804 ((|#3| $) 26 T ELT)) (-2201 (($ $ |#3|) 32 T ELT)) (-2204 (((-82) |#3| $) 17 T ELT)) (-2207 (((-584 |#3|) $) 15 T ELT)) (-3803 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-14 -2200 ((-1186) |#1| |#2| |#2|)) (-14 -2201 (|#1| |#1| |#3|)) (-14 -3804 (|#3| |#1|)) (-14 -2202 (|#2| |#1|)) (-14 -2203 (|#2| |#1|)) (-14 -2204 ((-82) |#3| |#1|)) (-14 -2207 ((-584 |#3|) |#1|)) (-14 -3803 (|#3| |#1| |#2|)) (-14 -3803 (|#3| |#1| |#2| |#3|)) (-14 -3846 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-69) (-1130)) (T -538))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#2| (-69)) ELT)) (-2200 (((-1186) $ |#1| |#1|) 35 (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 47 (|has| $ (-1036 |#2|)) ELT)) (-3727 (($) 6 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 48 (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 46 T ELT)) (-2202 ((|#1| $) 38 (|has| |#1| (-757)) ELT)) (-2203 ((|#1| $) 39 (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#2| (-1014)) ELT)) (-2205 (((-584 |#1|) $) 41 T ELT)) (-2206 (((-82) |#1| $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#2| (-1014)) ELT)) (-3804 ((|#2| $) 37 (|has| |#1| (-757)) ELT)) (-2201 (($ $ |#2|) 36 (|has| $ (-1036 |#2|)) ELT)) (-3771 (($ $ (-584 (-248 |#2|))) 25 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 24 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 23 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 22 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#2| $) 40 (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#2| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#2| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#2| (-69)) ELT)))
-(((-539 |#1| |#2|) (-110) (-69) (-1130)) (T -539))
-((-2207 (*1 *2 *1) (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))) (-2206 (*1 *2 *3 *1) (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-2205 (*1 *2 *1) (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))) (-2204 (*1 *2 *3 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-69)) (-4 *1 (-539 *4 *3)) (-4 *4 (-69)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-2203 (*1 *2 *1) (-11 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-69)) (-4 *2 (-757)))) (-2202 (*1 *2 *1) (-11 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-69)) (-4 *2 (-757)))) (-3804 (*1 *2 *1) (-11 (-4 *1 (-539 *3 *2)) (-4 *3 (-69)) (-4 *3 (-757)) (-4 *2 (-1130)))) (-2201 (*1 *1 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-539 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))) (-2200 (*1 *2 *1 *3 *3) (-11 (-4 *1 (-1036 *4)) (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-1186)))))
-(-12 (-429 |t#2|) (-242 |t#1| |t#2|) (-10 -8 (-14 -2207 ((-584 |t#2|) $)) (-14 -2206 ((-82) |t#1| $)) (-14 -2205 ((-584 |t#1|) $)) (IF (|has| |t#2| (-69)) (IF (|has| $ (-317 |t#2|)) (-14 -2204 ((-82) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-14 -2203 (|t#1| $)) (-14 -2202 (|t#1| $)) (-14 -3804 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1036 |t#2|)) (PROGN (-14 -2201 ($ $ |t#2|)) (-14 -2200 ((-1186) $ |t#1| |t#1|))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#2| (-1014)) (|has| |#2| (-69))) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-380 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-1014) |has| |#2| (-1014)) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 15 T ELT) (($ (-584 (-1131))) 14 T ELT)) (-2208 (((-584 (-1131)) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-540) (-12 (-996) (-553 (-1131)) (-10 -8 (-14 -3950 ($ (-584 (-1131)))) (-14 -2208 ((-584 (-1131)) $))))) (T -540))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) (-2208 (*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-311))) ELT)) (-2409 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1718 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1797 (($ (-1180 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-3111 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1711 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 (((-631 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1792 (((-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1909 (((-1086 (-858 |#1|))) NIL (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-311))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1719 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1710 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1717 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3803 ((|#1| $ (-485)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3227 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3975 (($ (-1180 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1897 (((-584 (-858 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3950 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2548 (($ (-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-541 |#1| |#2|) (-12 (-684 |#1|) (-553 |#2|) (-10 -8 (-14 -3950 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-145) (-684 |#1|)) (T -541))
-((-3950 (*1 *1 *2) (-11 (-4 *3 (-145)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-98)) 6 T ELT) (((-98) $) 7 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-542) (-12 (-1014) (-430 (-98)))) (T -542))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2210 (($) 10 T CONST)) (-2232 (($) 8 T CONST)) (-2209 (($) 11 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-543) (-12 (-1014) (-605) (-10 -8 (-14 -2232 ($) -3956) (-14 -2228 ($) -3956) (-14 -2210 ($) -3956) (-14 -2209 ($) -3956) (-14 -2225 ($) -3956)))) (T -543))
-((-2232 (*1 *1) (-5 *1 (-543))) (-2228 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2225 (*1 *1) (-5 *1 (-543))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2221 (($) 11 T CONST)) (-2215 (($) 17 T CONST)) (-2211 (($) 21 T CONST)) (-2213 (($) 19 T CONST)) (-2218 (($) 14 T CONST)) (-2212 (($) 20 T CONST)) (-2220 (($) 12 T CONST)) (-2219 (($) 13 T CONST)) (-2214 (($) 18 T CONST)) (-2217 (($) 15 T CONST)) (-2216 (($) 16 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (((-98) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-544) (-12 (-1014) (-553 (-98)) (-10 -8 (-14 -2221 ($) -3956) (-14 -2220 ($) -3956) (-14 -2219 ($) -3956) (-14 -2218 ($) -3956) (-14 -2217 ($) -3956) (-14 -2216 ($) -3956) (-14 -2215 ($) -3956) (-14 -2214 ($) -3956) (-14 -2213 ($) -3956) (-14 -2212 ($) -3956) (-14 -2211 ($) -3956)))) (T -544))
-((-2221 (*1 *1) (-5 *1 (-544))) (-2220 (*1 *1) (-5 *1 (-544))) (-2219 (*1 *1) (-5 *1 (-544))) (-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2223 (($) 13 T CONST)) (-2222 (($) 14 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2228 (($) 12 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-545) (-12 (-1014) (-605) (-10 -8 (-14 -2232 ($) -3956) (-14 -2231 ($) -3956) (-14 -2230 ($) -3956) (-14 -2229 ($) -3956) (-14 -2228 ($) -3956) (-14 -2223 ($) -3956) (-14 -2222 ($) -3956)))) (T -545))
-((-2232 (*1 *1) (-5 *1 (-545))) (-2231 (*1 *1) (-5 *1 (-545))) (-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2227 (($) 13 T CONST)) (-2224 (($) 16 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2226 (($) 14 T CONST)) (-2228 (($) 12 T CONST)) (-2225 (($) 15 T CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-546) (-12 (-1014) (-605) (-10 -8 (-14 -2232 ($) -3956) (-14 -2231 ($) -3956) (-14 -2230 ($) -3956) (-14 -2229 ($) -3956) (-14 -2228 ($) -3956) (-14 -2227 ($) -3956) (-14 -2226 ($) -3956) (-14 -2225 ($) -3956) (-14 -2224 ($) -3956)))) (T -546))
-((-2232 (*1 *1) (-5 *1 (-546))) (-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-98)) NIL T ELT) (((-98) $) 14 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-547) (-12 (-1014) (-430 (-542)) (-430 (-98)))) (T -547))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) 40 T ELT)) (-3602 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ (-1074) |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1074) $) 53 T ELT)) (-3727 (($) NIL T CONST)) (-1702 (($ $ (-1074)) 25 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69))) ELT)) (-3408 (((-3 |#1| #1#) (-1074) $) 54 T ELT) (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3409 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69))) ELT)) (-3845 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT)) (-1699 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-1074)) NIL T ELT)) (-2273 (($ $) 55 T ELT)) (-1703 (($ (-337)) 23 T ELT) (($ (-337) (-1074)) 22 T ELT)) (-3545 (((-337) $) 41 T ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2234 (((-584 (-1074)) $) 46 T ELT)) (-2235 (((-82) (-1074) $) NIL T ELT)) (-1700 (((-1074) $) 42 T ELT)) (-1275 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-584 (-1074)) $) NIL T ELT)) (-2206 (((-82) (-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1276 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 44 T ELT)) (-3803 ((|#1| $ (-1074) |#1|) NIL T ELT) ((|#1| $ (-1074)) 49 T ELT)) (-1467 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1732 (((-695) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-695) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3950 (((-773) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1277 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-82) $ $) 20 T ELT)) (-3961 (((-695) $) 48 T ELT)))
-(((-548 |#1|) (-12 (-313 (-337) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) (-1108 (-1074) |#1|) (-10 -8 (-14 -2273 ($ $)))) (-1014)) (T -548))
-((-2273 (*1 *1 *1) (-11 (-5 *1 (-548 *2)) (-4 *2 (-1014)))))
-((-2234 (((-584 |#2|) $) 19 T ELT)) (-2235 (((-82) |#2| $) 12 T ELT)) (-3803 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-14 -2234 ((-584 |#2|) |#1|)) (-14 -2235 ((-82) |#2| |#1|)) (-14 -3803 (|#3| |#1| |#2| |#3|)) (-14 -3803 (|#3| |#1| |#2|))) (-550 |#2| |#3|) (-1014) (-1014)) (T -549))
-NIL
-((-2571 (((-82) $ $) 18 (OR (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-2200 (((-1186) $ |#1| |#1|) 82 (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| "failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 51 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-757)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT)) (-3245 (((-1074) $) 21 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2234 (((-584 |#1|) $) 61 T ELT)) (-2235 (((-82) |#1| $) 62 T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-584 |#1|) $) 76 T ELT)) (-2206 (((-82) |#1| $) 75 T ELT)) (-3246 (((-1034) $) 20 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-757)) ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 68 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 67 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 66 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) 65 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#2| $) 77 (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) 74 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3950 (((-773) $) 16 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-82) $ $) 19 (OR (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-3059 (((-82) $ $) 17 (OR (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)))
-(((-550 |#1| |#2|) (-110) (-1014) (-1014)) (T -550))
-((-2235 (*1 *2 *3 *1) (-11 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-82)))) (-2234 (*1 *2 *1) (-11 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-3408 (*1 *2 *3 *1) (|partial| -11 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2233 (*1 *2 *3 *1) (|partial| -11 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(-12 (-182 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-539 |t#1| |t#2|) (-1036 |t#2|) (-10 -8 (-14 -2235 ((-82) |t#1| $)) (-14 -2234 ((-584 |t#1|) $)) (-14 -3408 ((-3 |t#2| "failed") |t#1| $)) (-14 -2233 ((-3 |t#2| "failed") |t#1| $))))
-(((-31) . T) ((-73 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-69) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-1014)) (|has| |#2| (-69))) ((-553 (-773)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-121 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-182 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-380 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-380 |#2|) . T) ((-429 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-1014) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2236 (((-3 (-1091) "failed") $) 46 T ELT)) (-1314 (((-1186) $ (-695)) 22 T ELT)) (-3422 (((-695) $) 20 T ELT)) (-3598 (((-83) $) 9 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2237 (($ (-83) (-584 |#1|) (-695)) 32 T ELT) (($ (-1091)) 33 T ELT)) (-2636 (((-82) $ (-83)) 15 T ELT) (((-82) $ (-1091)) 13 T ELT)) (-2606 (((-695) $) 17 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (((-801 (-485)) $) 99 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) 106 (|has| |#1| (-554 (-801 (-329)))) ELT) (((-474) $) 92 (|has| |#1| (-554 (-474))) ELT)) (-3950 (((-773) $) 74 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2238 (((-584 |#1|) $) 19 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 51 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 53 T ELT)))
-(((-551 |#1|) (-12 (-102) (-757) (-795 |#1|) (-10 -8 (-14 -3598 ((-83) $)) (-14 -2238 ((-584 |#1|) $)) (-14 -2606 ((-695) $)) (-14 -2237 ($ (-83) (-584 |#1|) (-695))) (-14 -2237 ($ (-1091))) (-14 -2236 ((-3 (-1091) "failed") $)) (-14 -2636 ((-82) $ (-83))) (-14 -2636 ((-82) $ (-1091))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-1014)) (T -551))
-((-3598 (*1 *2 *1) (-11 (-5 *2 (-83)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2238 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2606 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2237 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-83)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) (-5 *1 (-551 *5)))) (-2237 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2236 (*1 *2 *1) (|partial| -11 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2636 (*1 *2 *1 *3) (-11 (-5 *3 (-83)) (-5 *2 (-82)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) (-2636 (*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-82)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))))
-((-2239 (((-551 |#2|) |#1|) 17 T ELT)) (-2240 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT)))
-(((-552 |#1| |#2|) (-10 -7 (-14 -2239 ((-551 |#2|) |#1|)) (-14 -2240 ((-3 |#1| "failed") (-551 |#2|)))) (-1014) (-1014)) (T -552))
-((-2240 (*1 *2 *3) (|partial| -11 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-552 *2 *4)))) (-2239 (*1 *2 *3) (-11 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-((-3950 ((|#1| $) 6 T ELT)))
-(((-553 |#1|) (-110) (-1130)) (T -553))
-((-3950 (*1 *2 *1) (-11 (-4 *1 (-553 *2)) (-4 *2 (-1130)))))
-(-12 (-10 -8 (-14 -3950 (|t#1| $))))
-((-3975 ((|#1| $) 6 T ELT)))
-(((-554 |#1|) (-110) (-1130)) (T -554))
-((-3975 (*1 *2 *1) (-11 (-4 *1 (-554 *2)) (-4 *2 (-1130)))))
-(-12 (-10 -8 (-14 -3975 (|t#1| $))))
-((-2241 (((-3 (-1086 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)) 15 T ELT) (((-3 (-1086 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 16 T ELT)))
-(((-555 |#1| |#2|) (-10 -7 (-14 -2241 ((-3 (-1086 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|))) (-14 -2241 ((-3 (-1086 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)))) (-12 (-117) (-24) (-951 (-485)) (-951 (-349 (-485)))) (-1156 |#1|)) (T -555))
-((-2241 (*1 *2 *3 *3 *3 *4) (|partial| -11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-117) (-24) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-1086 (-349 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-349 *6)))) (-2241 (*1 *2 *3 *3 *3) (|partial| -11 (-4 *4 (-12 (-117) (-24) (-951 (-485)) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-349 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-349 *5)))))
-((-3950 (($ |#1|) 6 T ELT)))
-(((-556 |#1|) (-110) (-1130)) (T -556))
-((-3950 (*1 *1 *2) (-11 (-4 *1 (-556 *2)) (-4 *2 (-1130)))))
-(-12 (-10 -8 (-14 -3950 ($ |t#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-2242 (($) 11 T CONST)) (-2858 (($) 13 T CONST)) (-3139 (((-695)) 36 T ELT)) (-2997 (($) NIL T ELT)) (-2564 (($ $ $) 25 T ELT)) (-2563 (($ $) 23 T ELT)) (-2012 (((-831) $) 43 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 42 T ELT)) (-2856 (($ $ $) 26 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2857 (($) 9 T CONST)) (-2855 (($ $ $) 27 T ELT)) (-3950 (((-773) $) 34 T ELT)) (-3569 (((-82) $ (|[\|\|]| -2857)) 20 T ELT) (((-82) $ (|[\|\|]| -2242)) 22 T ELT) (((-82) $ (|[\|\|]| -2858)) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2565 (($ $ $) 24 T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3059 (((-82) $ $) 16 T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-557) (-12 (-881) (-319) (-10 -8 (-14 -2242 ($) -3956) (-14 -3569 ((-82) $ (|[\|\|]| -2857))) (-14 -3569 ((-82) $ (|[\|\|]| -2242))) (-14 -3569 ((-82) $ (|[\|\|]| -2858)))))) (T -557))
-((-2242 (*1 *1) (-5 *1 (-557))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-82)) (-5 *1 (-557)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-82)) (-5 *1 (-557)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-82)) (-5 *1 (-557)))))
-((-3975 (($ |#1|) 6 T ELT)))
-(((-558 |#1|) (-110) (-1130)) (T -558))
-((-3975 (*1 *1 *2) (-11 (-4 *1 (-558 *2)) (-4 *2 (-1130)))))
-(-12 (-10 -8 (-14 -3975 ($ |t#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3001 ((|#1| $) 13 T ELT)) (-3190 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3000 ((|#3| $) 15 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3129 (((-695)) 20 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3953 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-559 |#1| |#2| |#3|) (-12 (-35 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-14 -3953 ($ $ |#3|)) (-14 -3953 ($ |#1| |#3|)) (-14 -3001 (|#1| $)) (-14 -3000 (|#3| $)))) (-35 |#2|) (-145) (|SubsetCategory| (-664) |#2|)) (T -559))
-((-3953 (*1 *1 *1 *2) (-11 (-4 *4 (-145)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-35 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3953 (*1 *1 *2 *3) (-11 (-4 *4 (-145)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-35 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3001 (*1 *2 *1) (-11 (-4 *3 (-145)) (-4 *2 (-35 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-3000 (*1 *2 *1) (-11 (-4 *4 (-145)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-35 *4)))))
-((-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-560 |#1| |#2|) (-10 -7 (-14 -3950 (|#1| |#2|)) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT)))
-(((-561 |#1|) (-110) (-962)) (T -561))
-((-3950 (*1 *1 *2) (-11 (-4 *1 (-561 *2)) (-4 *2 (-962)))))
-(-12 (-962) (-591 |t#1|) (-10 -8 (-14 -3950 ($ |t#1|))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2243 ((|#2| |#2| (-1091) (-1091)) 16 T ELT)))
-(((-562 |#1| |#2|) (-10 -7 (-14 -2243 (|#2| |#2| (-1091) (-1091)))) (-12 (-257) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-872) (-26 |#1|))) (T -562))
-((-2243 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-12 (-1116) (-872) (-26 *4))))))
-((-2571 (((-82) $ $) 64 T ELT)) (-3191 (((-82) $) 58 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-2244 ((|#1| $) 55 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (((-2 (|:| -1767 $) (|:| -1766 (-349 |#2|))) (-349 |#2|)) 111 (|has| |#1| (-311)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) 27 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3775 (((-485) $) 22 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) 40 T ELT)) (-2896 (($ |#1| (-485)) 24 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 101 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ #1#) $ $) 93 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1608 (((-695) $) 115 (|has| |#1| (-311)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 114 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3952 (((-485) $) 38 T ELT)) (-3975 (((-349 |#2|) $) 47 T ELT)) (-3950 (((-773) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3680 ((|#1| $ (-485)) 72 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 32 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 9 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 21 T ELT)) (-3840 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT)))
-(((-563 |#1| |#2|) (-12 (-183 |#2|) (-496) (-554 (-349 |#2|)) (-354 |#1|) (-951 |#2|) (-10 -8 (-14 -3941 ((-82) $)) (-14 -3952 ((-485) $)) (-14 -3775 ((-485) $)) (-14 -3962 ($ $)) (-14 -3177 (|#1| $)) (-14 -2244 (|#1| $)) (-14 -3680 (|#1| $ (-485))) (-14 -2896 ($ |#1| (-485))) (IF (|has| |#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-257)) (-14 -3754 ((-2 (|:| -1767 $) (|:| -1766 (-349 |#2|))) (-349 |#2|)))) |%noBranch|))) (-496) (-1156 |#1|)) (T -563))
-((-3941 (*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-82)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3952 (*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3775 (*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3962 (*1 *1 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3177 (*1 *2 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-2244 (*1 *2 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-2896 (*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-3754 (*1 *2 *3) (-11 (-4 *4 (-311)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -1767 (-563 *4 *5)) (|:| -1766 (-349 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-349 *5)))))
-((-3685 (((-584 |#6|) (-584 |#4|) (-82)) 54 T ELT)) (-2245 ((|#6| |#6|) 48 T ELT)))
-(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -2245 (|#6| |#6|)) (-14 -3685 ((-584 |#6|) (-584 |#4|) (-82)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -564))
-((-3685 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2245 (*1 *2 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6)))))
-((-2246 (((-82) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2247 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-584 (-2 (|:| |irr| |#4|) (|:| -2397 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT)))
-(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2246 ((-82) |#3| (-695) (-584 |#3|))) (-14 -2247 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1784 (-584 (-2 (|:| |irr| |#4|) (|:| -2397 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-257) (-862 |#3| |#2| |#1|)) (T -565))
-((-2247 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -11 (-5 *5 (-2 (|:| |contp| *3) (|:| -1784 (-584 (-2 (|:| |irr| *10) (|:| -2397 (-485))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1086 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))) (-2246 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-82)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 (((-1050) $) 12 T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-566) (-12 (-996) (-10 -8 (-14 -3532 ((-1050) $)) (-14 -3531 ((-1050) $))))) (T -566))
-((-3532 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-566)))) (-3531 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-566)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3938 (((-584 |#1|) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3940 (($ $) 77 T ELT)) (-3946 (((-607 |#1| |#2|) $) 60 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 81 T ELT)) (-2248 (((-584 (-248 |#2|)) $ $) 42 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3947 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) 66 T ELT) (((-1196 |#1| |#2|) $) NIL T ELT) (((-1201 |#1| |#2|) $) 74 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 61 T CONST)) (-2249 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2250 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2668 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3059 (((-82) $ $) 62 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
-(((-567 |#1| |#2| |#3|) (-12 (-413) (-10 -8 (-14 -3947 ($ (-607 |#1| |#2|))) (-14 -3946 ((-607 |#1| |#2|) $)) (-14 -2668 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-14 -3950 ((-1196 |#1| |#2|) $)) (-14 -3950 ((-1201 |#1| |#2|) $)) (-14 -3940 ($ $)) (-14 -3938 ((-584 |#1|) $)) (-14 -2250 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-14 -2249 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-14 -2248 ((-584 (-248 |#2|)) $ $)))) (-757) (-12 (-145) (-655 (-349 (-485)))) (-831)) (T -567))
-((-3947 (*1 *1 *2) (-11 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-5 *1 (-567 *3 *4 *5)) (-13 *5 (-831)))) (-3946 (*1 *2 *1) (-11 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-2668 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-3940 (*1 *1 *1) (-11 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-12 (-145) (-655 (-349 (-485))))) (-13 *4 (-831)))) (-3938 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-2250 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-12 (-145) (-655 (-349 (-485))))) (-13 *6 (-831)))) (-2249 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))) (-2248 (*1 *2 *1 *1) (-11 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))))
-((-3685 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-82)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-82)) 77 T ELT)) (-2251 (((-82) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2255 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-82)) 102 T ELT)) (-2254 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-82)) 76 T ELT)) (-2253 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2252 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT)))
-(((-568 |#1| |#2|) (-10 -7 (-14 -2251 ((-82) (-584 (-704 |#1| (-774 |#2|))))) (-14 -2252 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-14 -2253 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-14 -2254 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-82))) (-14 -2255 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-82))) (-14 -3685 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-82))) (-14 -3685 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-82)))) (-392) (-584 (-1091))) (T -568))
-((-3685 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392)) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3685 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392)) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2255 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392)) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2254 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392)) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2253 (*1 *2 *2) (-11 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-13 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2252 (*1 *2 *2) (|partial| -11 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-13 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2251 (*1 *2 *3) (-11 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) (-13 *5 (-584 (-1091))) (-5 *2 (-82)) (-5 *1 (-568 *4 *5)))))
-((-3598 (((-83) (-83)) 88 T ELT)) (-2259 ((|#2| |#2|) 28 T ELT)) (-2835 ((|#2| |#2| (-1005 |#2|)) 84 T ELT) ((|#2| |#2| (-1091)) 50 T ELT)) (-2257 ((|#2| |#2|) 27 T ELT)) (-2258 ((|#2| |#2|) 29 T ELT)) (-2256 (((-82) (-83)) 33 T ELT)) (-2261 ((|#2| |#2|) 24 T ELT)) (-2262 ((|#2| |#2|) 26 T ELT)) (-2260 ((|#2| |#2|) 25 T ELT)))
-(((-569 |#1| |#2|) (-10 -7 (-14 -2256 ((-82) (-83))) (-14 -3598 ((-83) (-83))) (-14 -2262 (|#2| |#2|)) (-14 -2261 (|#2| |#2|)) (-14 -2260 (|#2| |#2|)) (-14 -2259 (|#2| |#2|)) (-14 -2257 (|#2| |#2|)) (-14 -2258 (|#2| |#2|)) (-14 -2835 (|#2| |#2| (-1091))) (-14 -2835 (|#2| |#2| (-1005 |#2|)))) (-496) (-12 (-363 |#1|) (-916) (-1116))) (T -569))
-((-2835 (*1 *2 *2 *3) (-11 (-5 *3 (-1005 *2)) (-4 *2 (-12 (-363 *4) (-916) (-1116))) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)))) (-2835 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) (-4 *2 (-12 (-363 *4) (-916) (-1116))))) (-2258 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-2257 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-2259 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-2260 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-2261 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-2262 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-12 (-363 *3) (-916) (-1116))))) (-3598 (*1 *2 *2) (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) (-4 *4 (-12 (-363 *3) (-916) (-1116))))) (-2256 (*1 *2 *3) (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-569 *4 *5)) (-4 *5 (-12 (-363 *4) (-916) (-1116))))))
-((-3495 (($ $) 38 T ELT)) (-3642 (($ $) 21 T ELT)) (-3493 (($ $) 37 T ELT)) (-3641 (($ $) 22 T ELT)) (-3497 (($ $) 36 T ELT)) (-3640 (($ $) 23 T ELT)) (-3630 (($) 48 T ELT)) (-3946 (($ $) 45 T ELT)) (-2259 (($ $) 17 T ELT)) (-2835 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)) (-3947 (($ $) 46 T ELT)) (-2257 (($ $) 15 T ELT)) (-2258 (($ $) 16 T ELT)) (-3498 (($ $) 35 T ELT)) (-3639 (($ $) 24 T ELT)) (-3496 (($ $) 34 T ELT)) (-3638 (($ $) 25 T ELT)) (-3494 (($ $) 33 T ELT)) (-3637 (($ $) 26 T ELT)) (-3501 (($ $) 44 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 43 T ELT)) (-3487 (($ $) 31 T ELT)) (-3503 (($ $) 42 T ELT)) (-3491 (($ $) 30 T ELT)) (-3504 (($ $) 41 T ELT)) (-3492 (($ $) 29 T ELT)) (-3502 (($ $) 40 T ELT)) (-3490 (($ $) 28 T ELT)) (-3500 (($ $) 39 T ELT)) (-3488 (($ $) 27 T ELT)) (-2261 (($ $) 19 T ELT)) (-2262 (($ $) 20 T ELT)) (-2260 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
-(((-570) (-110)) (T -570))
-((-2262 (*1 *1 *1) (-4 *1 (-570))) (-2261 (*1 *1 *1) (-4 *1 (-570))) (-2260 (*1 *1 *1) (-4 *1 (-570))) (-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))))
-(-12 (-872) (-1116) (-10 -8 (-14 -2262 ($ $)) (-14 -2261 ($ $)) (-14 -2260 ($ $)) (-14 -2259 ($ $)) (-14 -2258 ($ $)) (-14 -2257 ($ $))))
-(((-32) . T) ((-63) . T) ((-238) . T) ((-433) . T) ((-872) . T) ((-1116) . T) ((-1119) . T))
-((-2272 (((-421 |#1| |#2|) (-205 |#1| |#2|)) 65 T ELT)) (-2265 (((-584 (-205 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 90 T ELT)) (-2266 (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2263 (((-2 (|:| |gblist| (-584 (-205 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|))) 136 T ELT)) (-2270 (((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 105 T ELT)) (-2264 (((-2 (|:| |glbase| (-584 (-205 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-205 |#1| |#2|))) 147 T ELT)) (-2268 (((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|))) 70 T ELT)) (-2267 (((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 47 T ELT)) (-2271 (((-205 |#1| |#2|) (-205 |#1| |#2|) (-584 (-205 |#1| |#2|))) 61 T ELT)) (-2269 (((-205 |#1| |#2|) (-584 |#2|) (-205 |#1| |#2|) (-584 (-205 |#1| |#2|))) 113 T ELT)))
-(((-571 |#1| |#2|) (-10 -7 (-14 -2263 ((-2 (|:| |gblist| (-584 (-205 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|)))) (-14 -2264 ((-2 (|:| |glbase| (-584 (-205 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-205 |#1| |#2|)))) (-14 -2265 ((-584 (-205 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-14 -2266 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-14 -2266 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-14 -2267 ((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-14 -2268 ((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|)))) (-14 -2269 ((-205 |#1| |#2|) (-584 |#2|) (-205 |#1| |#2|) (-584 (-205 |#1| |#2|)))) (-14 -2270 ((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-14 -2271 ((-205 |#1| |#2|) (-205 |#1| |#2|) (-584 (-205 |#1| |#2|)))) (-14 -2272 ((-421 |#1| |#2|) (-205 |#1| |#2|)))) (-584 (-1091)) (-392)) (T -571))
-((-2272 (*1 *2 *3) (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2271 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2270 (*1 *2 *3 *2 *2) (-11 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2269 (*1 *2 *3 *2 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-205 *5 *6))) (-4 *6 (-392)) (-5 *2 (-205 *5 *6)) (-13 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))) (-2268 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-13 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))) (-2267 (*1 *2 *2) (-11 (-5 *2 (-584 (-421 *3 *4))) (-13 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-571 *3 *4)))) (-2266 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-13 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2266 (*1 *2 *3 *3 *4) (-11 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-13 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2265 (*1 *2 *3) (-11 (-5 *3 (-584 (-421 *4 *5))) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-584 (-205 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2264 (*1 *2 *3) (-11 (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-584 (-205 *4 *5))) (|:| |glval| (-584 (-485))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-205 *4 *5))))) (-2263 (*1 *2 *3) (-11 (-5 *3 (-584 (-421 *4 *5))) (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-584 (-205 *4 *5))) (|:| |gvlist| (-584 (-485))))) (-5 *1 (-571 *4 *5)))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-48) (-69)) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 (-48))) ELT)) (-3791 (((-48) $ (-1074) (-48)) NIL (|has| $ (-1036 (-48))) ELT) (((-48) $ (-1091) (-48)) 16 T ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) ELT)) (-2233 (((-3 (-48) #1="failed") (-1074) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) ELT) (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) ELT) (((-3 (-48) #1#) (-1074) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) ELT)) (-3845 (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69)) ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) NIL T ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-1577 (((-48) $ (-1074) (-48)) NIL (|has| $ (-1036 (-48))) ELT)) (-3115 (((-48) $ (-1074)) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69)) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT) (($ (-1 (-48) (-48)) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT) (($ (-1 (-48) (-48)) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT) (($ (-1 (-48) (-48) (-48)) $ $) NIL T ELT)) (-2274 (($ (-337)) 8 T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-48) (-1014)) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT)) (-2234 (((-584 (-1074)) $) NIL T ELT)) (-2235 (((-82) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL T ELT)) (-2205 (((-584 (-1074)) $) NIL T ELT)) (-2206 (((-82) (-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-48) (-1014)) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT)) (-3804 (((-48) $) NIL (|has| (-1074) (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) #1#) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-2201 (($ $ (-48)) NIL (|has| $ (-1036 (-48))) ELT)) (-1276 (((-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-584 (-48)) (-584 (-48))) NIL (-11 (|has| (-48) (-259 (-48))) (|has| (-48) (-1014))) ELT) (($ $ (-48) (-48)) NIL (-11 (|has| (-48) (-259 (-48))) (|has| (-48) (-1014))) ELT) (($ $ (-248 (-48))) NIL (-11 (|has| (-48) (-259 (-48))) (|has| (-48) (-1014))) ELT) (($ $ (-584 (-248 (-48)))) NIL (-11 (|has| (-48) (-259 (-48))) (|has| (-48) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) (-48) $) NIL (-11 (|has| $ (-317 (-48))) (|has| (-48) (-69))) ELT)) (-2207 (((-584 (-48)) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 (((-48) $ (-1074)) NIL T ELT) (((-48) $ (-1074) (-48)) NIL T ELT) (((-48) $ (-1091)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-553 (-773))) (|has| (-48) (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-48) (-69)) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| (-48)))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-48) (-69)) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| (-48))) (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-572) (-12 (-1108 (-1074) (-48)) (-240 (-1091) (-48)) (-10 -8 (-14 -2274 ($ (-337))) (-14 -2273 ($ $)) (-14 -3791 ((-48) $ (-1091) (-48)))))) (T -572))
-((-2274 (*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-572)))) (-2273 (*1 *1 *1) (-5 *1 (-572))) (-3791 (*1 *2 *1 *3 *2) (-11 (-5 *2 (-48)) (-5 *3 (-1091)) (-5 *1 (-572)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-311))) ELT)) (-2409 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1718 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1797 (($ (-1180 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3470 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-3111 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-1711 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 (((-631 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1792 (((-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1909 (((-1086 (-858 |#1|))) NIL (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-311))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-1796 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1719 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1710 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1717 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3803 ((|#1| $ (-485)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3227 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3975 (($ (-1180 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1897 (((-584 (-858 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3950 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-11 (|has| |#2| (-315 |#1|)) (|has| |#1| (-496))) (-11 (|has| |#2| (-360 |#1|)) (|has| |#1| (-496)))) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2548 (($ (-631 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-82)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-573 |#1| |#2|) (-12 (-684 |#1|) (-553 |#2|) (-10 -8 (-14 -3950 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-145) (-684 |#1|)) (T -573))
-((-3950 (*1 *1 *2) (-11 (-4 *3 (-145)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))))
-((-3953 (($ $ |#2|) 10 T ELT)))
-(((-574 |#1| |#2|) (-10 -7 (-14 -3953 (|#1| |#1| |#2|))) (-575 |#2|) (-145)) (T -574))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3533 (($ $ $) 40 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 39 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-575 |#1|) (-110) (-145)) (T -575))
-((-3533 (*1 *1 *1 *1) (-11 (-4 *1 (-575 *2)) (-4 *2 (-145)))) (-3953 (*1 *1 *1 *2) (-11 (-4 *1 (-575 *2)) (-4 *2 (-145)) (-4 *2 (-311)))))
-(-12 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-14 -3533 ($ $ $)) (IF (|has| |t#1| (-311)) (-14 -3953 ($ $ |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2276 (((-3 (-751 |#2|) #1="failed") |#2| (-248 |#2|) (-1074)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|))) 130 T ELT)) (-2275 (((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|))) 135 T ELT)))
-(((-576 |#1| |#2|) (-10 -7 (-14 -2276 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|)))) (-14 -2275 ((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|)))) (-14 -2276 ((-3 (-751 |#2|) #1#) |#2| (-248 |#2|) (-1074)))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -576))
-((-2276 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-248 *3)) (-5 *5 (-1074)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2275 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-248 (-744 *3))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))) (-2276 (*1 *2 *3 *4) (-11 (-5 *4 (-248 (-751 *3))) (-4 *3 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #1#)) (-5 *1 (-576 *5 *3)))))
-((-2276 (((-3 (-751 (-349 (-858 |#1|))) #1="failed") (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|))) (-1074)) 86 T ELT) (((-3 (-751 (-349 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#))) #1#) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-349 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#))) #1#) (-349 (-858 |#1|)) (-248 (-751 (-858 |#1|)))) 35 T ELT)) (-2275 (((-744 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|)))) 23 T ELT) (((-744 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-248 (-744 (-858 |#1|)))) 43 T ELT)))
-(((-577 |#1|) (-10 -7 (-14 -2276 ((-3 (-751 (-349 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#))) #1#) (-349 (-858 |#1|)) (-248 (-751 (-858 |#1|))))) (-14 -2276 ((-3 (-751 (-349 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-349 (-858 |#1|))) #1#))) #1#) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|))))) (-14 -2275 ((-744 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-248 (-744 (-858 |#1|))))) (-14 -2275 ((-744 (-349 (-858 |#1|))) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|))))) (-14 -2276 ((-3 (-751 (-349 (-858 |#1|))) #1#) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|))) (-1074)))) (-392)) (T -577))
-((-2276 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-248 (-349 (-858 *6)))) (-5 *5 (-1074)) (-5 *3 (-349 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2275 (*1 *2 *3 *4) (-11 (-5 *4 (-248 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2275 (*1 *2 *3 *4) (-11 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-744 (-349 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-349 (-858 *5))))) (-2276 (*1 *2 *3 *4) (-11 (-5 *4 (-248 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #1#)) (-5 *1 (-577 *5)))) (-2276 (*1 *2 *3 *4) (-11 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-751 (-349 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-349 (-858 *5))) #1#))) #1#)) (-5 *1 (-577 *5)) (-5 *3 (-349 (-858 *5))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 11 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2854 (($ (-167 |#1|)) 12 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-578 |#1|) (-12 (-753) (-556 (-774 |#1|)) (-10 -8 (-14 -2854 ($ (-167 |#1|))))) (-584 (-1091))) (T -578))
-((-2854 (*1 *1 *2) (-11 (-5 *2 (-167 *3)) (-13 *3 (-584 (-1091))) (-5 *1 (-578 *3)))))
-((-2279 (((-3 (-1180 (-349 |#1|)) #1="failed") (-1180 |#2|) |#2|) 64 (-2563 (|has| |#1| (-311))) ELT) (((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|) 49 (|has| |#1| (-311)) ELT)) (-2277 (((-82) (-1180 |#2|)) 33 T ELT)) (-2278 (((-3 (-1180 |#1|) #1#) (-1180 |#2|)) 40 T ELT)))
-(((-579 |#1| |#2|) (-10 -7 (-14 -2277 ((-82) (-1180 |#2|))) (-14 -2278 ((-3 (-1180 |#1|) #1="failed") (-1180 |#2|))) (IF (|has| |#1| (-311)) (-14 -2279 ((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|)) (-14 -2279 ((-3 (-1180 (-349 |#1|)) #1#) (-1180 |#2|) |#2|)))) (-496) (-12 (-962) (-581 |#1|))) (T -579))
-((-2279 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 *5))) (-2563 (-4 *5 (-311))) (-4 *5 (-496)) (-5 *2 (-1180 (-349 *5))) (-5 *1 (-579 *5 *4)))) (-2279 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 *5))) (-4 *5 (-311)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) (-2278 (*1 *2 *3) (|partial| -11 (-5 *3 (-1180 *5)) (-4 *5 (-12 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))) (-2277 (*1 *2 *3) (-11 (-5 *3 (-1180 *5)) (-4 *5 (-12 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-579 *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3777 (((-584 (-454 |#1| (-578 |#2|))) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2896 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (($ (-584 |#1|)) 25 T ELT)) (-1985 (((-578 |#2|) $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3915 (((-104)) 16 T ELT)) (-3227 (((-1180 |#1|) $) 44 T ELT)) (-3975 (($ (-584 (-454 |#1| (-578 |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 20 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-580 |#1| |#2|) (-12 (-1188 |#1|) (-556 (-578 |#2|)) (-450 |#1| (-578 |#2|)) (-10 -8 (-14 -2280 ($ (-584 |#1|))) (-14 -3227 ((-1180 |#1|) $)))) (-311) (-584 (-1091))) (T -580))
-((-2280 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4)) (-13 *4 (-584 (-1091))))) (-3227 (*1 *2 *1) (-11 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311)) (-13 *4 (-584 (-1091))))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2281 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2282 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-581 |#1|) (-110) (-962)) (T -581))
-((-2282 (*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2282 (*1 *2 *3 *1) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) (-2281 (*1 *2 *3) (-11 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2281 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5)))))))
-(-12 (-591 |t#1|) (-10 -8 (-14 -2282 ((-631 |t#1|) (-1180 $))) (-14 -2282 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-1180 $) $)) (-14 -2281 ((-631 |t#1|) (-631 $))) (-14 -2281 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-631 $) (-1180 $)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1215 (((-82) $ $) NIL T ELT)) (-2283 (($ (-584 |#1|)) 23 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3915 (((-104)) 13 T ELT)) (-3227 (((-1180 |#1|) $) 42 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-582 |#1| |#2|) (-12 (-1188 |#1|) (-240 (-580 |#1| |#2|) |#1|) (-10 -8 (-14 -2283 ($ (-584 |#1|))) (-14 -3227 ((-1180 |#1|) $)))) (-311) (-584 (-1091))) (T -582))
-((-2283 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4)) (-13 *4 (-584 (-1091))))) (-3227 (*1 *2 *1) (-11 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311)) (-13 *4 (-584 (-1091))))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-583 |#1|) (-110) (-1026)) (T -583))
-NIL
-(-12 (-589 |t#1|) (-964 |t#1|))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) 68 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) $) NIL (|has| |#1| (-757)) ELT) (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT)) (-1735 (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-82) |#1| |#1|) $) 65 (|has| $ (-1036 |#1|)) ELT)) (-2912 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $) NIL T ELT)) (-3445 (((-82) $ (-695)) NIL T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 26 (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-2286 (($ $ $) 74 (|has| |#1| (-1014)) ELT)) (-2285 (($ $ $) 75 (|has| |#1| (-1014)) ELT)) (-2284 (($ $ $) 79 (|has| |#1| (-1014)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) 31 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 32 T ELT)) (-3802 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2370 (($ $) 63 (|has| |#1| (-69)) ELT)) (-1354 (($ $) 73 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) NIL (|has| |#1| (-69)) ELT) (($ (-1 (-82) |#1|) $) NIL T ELT)) (-3409 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT) (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3446 (((-82) $) NIL T ELT)) (-3422 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) (-1 (-82) |#1|) $) NIL T ELT)) (-2288 (((-82) $) 9 T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2289 (($) 7 T CONST)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-3722 (((-82) $ (-695)) NIL T ELT)) (-2202 (((-485) $) 34 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) 66 T ELT)) (-3521 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT)) (-2611 (((-584 |#1|) $) 30 T ELT)) (-3248 (((-82) |#1| $) 61 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3537 (($ |#1|) NIL T ELT)) (-3719 (((-82) $ (-695)) NIL T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) 59 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3612 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3447 (((-82) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 15 T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) 20 T ELT)) (-3568 (($) 19 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3793 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) NIL T ELT)) (-3797 (($ $) 40 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 36 T ELT)) (-3975 (((-474) $) 87 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 29 T ELT)) (-3464 (($ |#1| $) 10 T ELT)) (-3794 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3805 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3950 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2287 (($ $ $) 11 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 55 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 13 T ELT)))
-(((-584 |#1|) (-12 (-609 |#1|) (-10 -8 (-14 -2289 ($) -3956) (-14 -2288 ((-82) $)) (-14 -3464 ($ |#1| $)) (-14 -2287 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-14 -2286 ($ $ $)) (-14 -2285 ($ $ $)) (-14 -2284 ($ $ $))) |%noBranch|))) (-1130)) (T -584))
-((-2289 (*1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2288 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))) (-3464 (*1 *1 *2 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2287 (*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2286 (*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2285 (*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2284 (*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-((-3844 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3846 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT)))
-(((-585 |#1| |#2|) (-10 -7 (-14 -3844 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-14 -3845 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-14 -3846 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1130) (-1130)) (T -585))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-585 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))))
-((-3425 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT)))
-(((-586 |#1| |#2|) (-10 -7 (-14 -3425 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-14 -3425 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-14 -3425 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-14 -3425 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-14 -3425 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-14 -3425 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1130)) (T -586))
-((-3425 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3425 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) (-3425 (*1 *2 *3 *4 *5 *2) (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3425 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3425 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3425 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))))
-((-3846 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT)))
-(((-587 |#1| |#2| |#3|) (-10 -7 (-14 -3846 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1130) (-1130) (-1130)) (T -587))
-((-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 11 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-588 |#1|) (-12 (-996) (-553 |#1|)) (-1014)) (T -588))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
-(((-589 |#1|) (-110) (-1026)) (T -589))
-((* (*1 *1 *2 *1) (-11 (-4 *1 (-589 *2)) (-4 *2 (-1026)))))
-(-12 (-1014) (-10 -8 (-14 * ($ |t#1| $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2290 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) 61 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 47 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) 58 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 60 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2611 (((-584 |#1|) $) 9 T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 49 T ELT)) (-3612 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 52 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 23 T ELT)) (-3568 (($) 29 T ELT)) (-2291 (((-82) $) 56 T ELT)) (-2369 (((-584 (-2 (|:| |entry| |#1|) (|:| -1732 (-695)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1732 (((-695) |#1| $) 65 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3950 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 71 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 17 T ELT)))
-(((-590 |#1|) (-12 (-635 |#1|) (-317 |#1|) (-10 -8 (-14 -2291 ((-82) $)) (-14 -2290 ($ |#1| |#1| $)))) (-1014)) (T -590))
-((-2291 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))) (-2290 (*1 *1 *2 *2 *1) (-11 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-591 |#1|) (-110) (-971)) (T -591))
-NIL
-(-12 (-18) (-589 |t#1|))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695) $) 17 T ELT)) (-2297 (($ $ |#1|) 68 T ELT)) (-2299 (($ $) 39 T ELT)) (-2300 (($ $) 37 T ELT)) (-3160 (((-3 |#1| "failed") $) 60 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2295 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3536 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485)) 55 T ELT)) (-2301 ((|#1| $ (-485)) 35 T ELT)) (-2302 ((|#2| $ (-485)) 34 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2293 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2298 (($) 13 T ELT)) (-2304 (($ |#1| |#2|) 24 T ELT)) (-2303 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|)))) 25 T ELT)) (-2305 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $) 14 T ELT)) (-2296 (($ |#1| $) 69 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2294 (((-82) $ $) 74 T ELT)) (-3950 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 27 T ELT)))
-(((-592 |#1| |#2| |#3|) (-12 (-1014) (-951 |#1|) (-10 -8 (-14 -3536 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485))) (-14 -2305 ((-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))) $)) (-14 -2304 ($ |#1| |#2|)) (-14 -2303 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3947 |#2|))))) (-14 -2302 (|#2| $ (-485))) (-14 -2301 (|#1| $ (-485))) (-14 -2300 ($ $)) (-14 -2299 ($ $)) (-14 -3139 ((-695) $)) (-14 -2298 ($)) (-14 -2297 ($ $ |#1|)) (-14 -2296 ($ |#1| $)) (-14 -2295 ($ |#1| |#2| $)) (-14 -2295 ($ $ $)) (-14 -2294 ((-82) $ $)) (-14 -2293 ($ (-1 |#2| |#2|) $)) (-14 -2292 ($ (-1 |#1| |#1|) $)))) (-1014) (-20) |#2|) (T -592))
-((-3536 (*1 *2 *1 *3 *3 *4) (-11 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-20)) (-13 *7 *6))) (-2305 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20)) (-13 *5 *4))) (-2304 (*1 *1 *2 *3) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2303 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-4 *3 (-1014)) (-4 *4 (-20)) (-13 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2302 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *2 (-20)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-13 *5 *2))) (-2301 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-20)) (-13 *5 *4))) (-2300 (*1 *1 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2299 (*1 *1 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-3139 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20)) (-13 *5 *4))) (-2298 (*1 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2297 (*1 *1 *1 *2) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2296 (*1 *1 *2 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2295 (*1 *1 *2 *3 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2295 (*1 *1 *1 *1) (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))) (-2294 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20)) (-13 *5 *4))) (-2293 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-20)) (-13 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)))) (-2292 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-20)) (-13 *5 *4))))
-((-2203 (((-485) $) 30 T ELT)) (-2306 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) 12 T ELT)) (-2206 (((-82) (-485) $) 17 T ELT)) (-3805 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)))
-(((-593 |#1| |#2|) (-10 -7 (-14 -2306 (|#1| |#1| |#1| (-485))) (-14 -2306 (|#1| |#2| |#1| (-485))) (-14 -3805 (|#1| (-584 |#1|))) (-14 -3805 (|#1| |#1| |#1|)) (-14 -3805 (|#1| |#2| |#1|)) (-14 -3805 (|#1| |#1| |#2|)) (-14 -2203 ((-485) |#1|)) (-14 -2205 ((-584 (-485)) |#1|)) (-14 -2206 ((-82) (-485) |#1|))) (-594 |#2|) (-1130)) (T -593))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-594 |#1|) (-110) (-1130)) (T -594))
-((-3617 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3805 (*1 *1 *1 *2) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3805 (*1 *1 *2 *1) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3805 (*1 *1 *1 *1) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3805 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3846 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2307 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2307 (*1 *1 *1 *2) (-11 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-2306 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3791 (*1 *2 *1 *3 *2) (-11 (-5 *3 (-1147 (-485))) (-4 *1 (-1036 *2)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))))
-(-12 (-539 (-485) |t#1|) (-121 |t#1|) (-240 (-1147 (-485)) $) (-10 -8 (-14 -3617 ($ (-695) |t#1|)) (-14 -3805 ($ $ |t#1|)) (-14 -3805 ($ |t#1| $)) (-14 -3805 ($ $ $)) (-14 -3805 ($ (-584 $))) (-14 -3846 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-14 -2307 ($ $ (-485))) (-14 -2307 ($ $ (-1147 (-485)))) (-14 -2306 ($ |t#1| $ (-485))) (-14 -2306 ($ $ $ (-485))) (IF (|has| $ (-1036 |t#1|)) (-14 -3791 (|t#1| $ (-1147 (-485)) |t#1|)) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 15 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| |#1| (-715)) ELT)) (-3727 (($) NIL T CONST)) (-3189 (((-82) $) NIL (|has| |#1| (-715)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-3001 ((|#1| $) 23 T ELT)) (-3190 (((-82) $) NIL (|has| |#1| (-715)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3245 (((-1074) $) 48 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3000 ((|#3| $) 24 T ELT)) (-3950 (((-773) $) 43 T ELT)) (-1266 (((-82) $ $) 22 T ELT)) (-3386 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-715)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-715)) ELT)) (-3059 (((-82) $ $) 20 T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-715)) ELT)) (-2688 (((-82) $ $) 26 (|has| |#1| (-715)) ELT)) (-3953 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3840 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-595 |#1| |#2| |#3|) (-12 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-14 -3953 ($ $ |#3|)) (-14 -3953 ($ |#1| |#3|)) (-14 -3001 (|#1| $)) (-14 -3000 (|#3| $)))) (-655 |#2|) (-145) (|SubsetCategory| (-664) |#2|)) (T -595))
-((-3953 (*1 *1 *1 *2) (-11 (-4 *4 (-145)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3953 (*1 *1 *2 *3) (-11 (-4 *4 (-145)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3001 (*1 *2 *1) (-11 (-4 *3 (-145)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-3000 (*1 *2 *1) (-11 (-4 *4 (-145)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))))
-((-3576 (((-3 |#2| #1="failed") |#3| |#2| (-1091) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) #1#) |#3| |#2| (-1091)) 44 T ELT)))
-(((-596 |#1| |#2| |#3|) (-10 -7 (-14 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) #1="failed") |#3| |#2| (-1091))) (-14 -3576 ((-3 |#2| #1#) |#3| |#2| (-1091) |#2| (-584 |#2|)))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)) (-12 (-26 |#1|) (-1116) (-872)) (-601 |#2|)) (T -596))
-((-3576 (*1 *2 *3 *2 *4 *2 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 *2)) (-4 *2 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *5 (-1091)) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-4 *4 (-12 (-26 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2310 (($ $ $) 28 (|has| |#1| (-311)) ELT)) (-2311 (($ $ (-695)) 31 (|has| |#1| (-311)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3803 ((|#1| $ |#1|) 24 T ELT)) (-2312 (($ $ $) 33 (|has| |#1| (-311)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 8 T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2311 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-598 |#1|) (-601 |#1|) (-189)) (T -598))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2311 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-599 |#1| |#2|) (-12 (-601 |#1|) (-240 |#2| |#2|)) (-189) (-12 (-591 |#1|) (-10 -8 (-14 -3761 ($ $))))) (T -599))
-NIL
-((-2308 (($ $) 29 T ELT)) (-2523 (($ $) 27 T ELT)) (-2672 (($) 13 T ELT)))
-(((-600 |#1| |#2|) (-10 -7 (-14 -2308 (|#1| |#1|)) (-14 -2523 (|#1| |#1|)) (-14 -2672 (|#1|))) (-601 |#2|) (-962)) (T -600))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2308 (($ $) 96 (|has| |#1| (-311)) ELT)) (-2310 (($ $ $) 98 (|has| |#1| (-311)) ELT)) (-2311 (($ $ (-695)) 97 (|has| |#1| (-311)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #2#) $) 85 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3159 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 84 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2896 (($ |#1| (-695)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) 64 (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3803 ((|#1| $ |#1|) 101 T ELT)) (-2312 (($ $ $) 95 (|has| |#1| (-311)) ELT)) (-3952 (((-695) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 86 (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-584 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-695)) 76 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2523 (($ $) 99 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($) 100 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-601 |#1|) (-110) (-962)) (T -601))
-((-2672 (*1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2523 (*1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2310 (*1 *1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2311 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311)))) (-2308 (*1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2312 (*1 *1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(-12 (-762 |t#1|) (-240 |t#1| |t#1|) (-10 -8 (-14 -2672 ($)) (-14 -2523 ($ $)) (IF (|has| |t#1| (-311)) (PROGN (-14 -2310 ($ $ $)) (-14 -2311 ($ $ (-695))) (-14 -2308 ($ $)) (-14 -2312 ($ $ $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) |has| |#1| (-145)) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-240 |#1| |#1|) . T) ((-354 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-664) . T) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-762 |#1|) . T))
-((-2309 (((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|))) 86 (|has| |#1| (-24)) ELT)) (-3735 (((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|))) 85 (|has| |#1| (-24)) ELT) (((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT)))
-(((-602 |#1| |#2|) (-10 -7 (-14 -3735 ((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-24)) (PROGN (-14 -3735 ((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|)))) (-14 -2309 ((-584 (-598 (-349 |#2|))) (-598 (-349 |#2|))))) |%noBranch|)) (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))) (-1156 |#1|)) (T -602))
-((-2309 (*1 *2 *3) (-11 (-4 *4 (-24)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-349 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-349 *5))))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-24)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-349 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-349 *5))))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-349 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-349 *6))))))
-((-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2311 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2312 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
-(((-603 |#1| |#2|) (-10 -7 (-14 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-14 -2311 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-14 -2312 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -603))
-((-2312 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2311 (*1 *2 *2 *3 *4) (-11 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2310 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))))
-((-2313 (($ $ $) 9 T ELT)))
-(((-604 |#1|) (-10 -7 (-14 -2313 (|#1| |#1| |#1|))) (-605)) (T -604))
-NIL
-((-2315 (($ $) 8 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT)))
-(((-605) (-110)) (T -605))
-((-2315 (*1 *1 *1) (-4 *1 (-605))) (-2314 (*1 *1 *1 *1) (-4 *1 (-605))) (-2313 (*1 *1 *1 *1) (-4 *1 (-605))))
-(-12 (-1130) (-10 -8 (-14 -2315 ($ $)) (-14 -2314 ($ $ $)) (-14 -2313 ($ $ $))))
-(((-12) . T) ((-1130) . T))
-((-2316 (((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)) 33 T ELT)))
-(((-606 |#1|) (-10 -7 (-14 -2316 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)))) (-822)) (T -606))
-((-2316 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3938 (((-584 |#1|) $) 85 T ELT)) (-3951 (($ $ (-695)) 95 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 50 T ELT)) (-3160 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3159 (((-615 |#1|) $) NIL T ELT)) (-3962 (($ $) 94 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3940 (($ $) 90 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 49 T ELT)) (-1754 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-615 |#1|) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3771 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3952 (((-695) $) 92 T ELT)) (-3533 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1196 |#1| |#2|) $) 60 T ELT) (((-1205 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3958 ((|#2| (-1205 |#1| |#2|) $) 45 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2668 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3949 (((-3 $ #1#) (-1196 |#1| |#2|)) 62 T ELT)) (-1738 (($ (-615 |#1|)) 14 T ELT)) (-3059 (((-82) $ $) 46 T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT)))
-(((-607 |#1| |#2|) (-12 (-325 |#1| |#2|) (-334 |#2| (-615 |#1|)) (-10 -8 (-14 -3949 ((-3 $ "failed") (-1196 |#1| |#2|))) (-14 -3533 ($ (-615 |#1|) (-615 |#1|))) (-14 -3533 ($ (-615 |#1|) $)) (-14 -3533 ($ $ (-615 |#1|))))) (-757) (-145)) (T -607))
-((-3949 (*1 *1 *2) (|partial| -11 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *1 (-607 *3 *4)))) (-3533 (*1 *1 *2 *2) (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145)))) (-3533 (*1 *1 *2 *1) (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145)))) (-3533 (*1 *1 *1 *2) (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145)))))
-((-1737 (((-82) $) NIL T ELT) (((-82) (-1 (-82) |#2| |#2|) $) 59 T ELT)) (-1735 (($ $) NIL T ELT) (($ (-1 (-82) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-82) |#2|) $) 29 T ELT)) (-2299 (($ $) 65 T ELT)) (-2370 (($ $) 74 T ELT)) (-3408 (($ |#2| $) NIL T ELT) (($ (-1 (-82) |#2|) $) 43 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3422 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-82) |#2|) $) 54 T ELT)) (-3617 (($ (-695) |#2|) 63 T ELT)) (-2859 (($ $ $) NIL T ELT) (($ (-1 (-82) |#2| |#2|) $ $) 31 T ELT)) (-3521 (($ $ $) NIL T ELT) (($ (-1 (-82) |#2| |#2|) $ $) 24 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3537 (($ |#2|) 15 T ELT)) (-3612 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-82) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1147 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1736 (($ $ $ (-485)) 70 T ELT)) (-3403 (($ $) 68 T ELT)) (-2688 (((-82) $ $) 76 T ELT)))
-(((-608 |#1| |#2|) (-10 -7 (-14 -3537 (|#1| |#2|)) (-14 -1572 (|#1| |#1| (-485))) (-14 -1572 (|#1| |#1| (-1147 (-485)))) (-14 -3408 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3612 (|#1| |#2| |#1| (-485))) (-14 -3612 (|#1| |#1| |#1| (-485))) (-14 -2859 (|#1| (-1 (-82) |#2| |#2|) |#1| |#1|)) (-14 -1571 (|#1| (-1 (-82) |#2|) |#1|)) (-14 -3408 (|#1| |#2| |#1|)) (-14 -2370 (|#1| |#1|)) (-14 -2859 (|#1| |#1| |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-14 -1731 ((-3 |#2| "failed") (-1 (-82) |#2|) |#1|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-14 -3845 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-14 -3521 (|#1| (-1 (-82) |#2| |#2|) |#1| |#1|)) (-14 -1737 ((-82) (-1 (-82) |#2| |#2|) |#1|)) (-14 -3422 ((-485) (-1 (-82) |#2|) |#1|)) (-14 -3422 ((-485) |#2| |#1|)) (-14 -3422 ((-485) |#2| |#1| (-485))) (-14 -3521 (|#1| |#1| |#1|)) (-14 -1737 ((-82) |#1|)) (-14 -1736 (|#1| |#1| |#1| (-485))) (-14 -2299 (|#1| |#1|)) (-14 -1735 (|#1| (-1 (-82) |#2| |#2|) |#1|)) (-14 -1735 (|#1| |#1|)) (-14 -2688 ((-82) |#1| |#1|)) (-14 -3617 (|#1| (-695) |#2|)) (-14 -3846 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3403 (|#1| |#1|))) (-609 |#2|) (-1130)) (T -608))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 99 (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) $) 155 (|has| |#1| (-757)) ELT) (((-82) (-1 (-82) |#1| |#1|) $) 149 T ELT)) (-1735 (($ $) 159 (-11 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT) (($ (-1 (-82) |#1| |#1|) $) 158 (|has| $ (-1036 |#1|)) ELT)) (-2912 (($ $) 154 (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $) 148 T ELT)) (-3445 (((-82) $ (-695)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 131 T ELT)) (-3713 (($ (-1 (-82) |#1|) $) 103 (|has| $ (-317 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 157 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 147 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-2370 (($ $) 133 (|has| |#1| (-69)) ELT)) (-1354 (($ $) 101 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 132 (|has| |#1| (-69)) ELT) (($ (-1 (-82) |#1|) $) 127 T ELT)) (-3409 (($ (-1 (-82) |#1|) $) 104 (|has| $ (-317 |#1|)) ELT) (($ |#1| $) 102 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 140 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-69)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 89 T ELT)) (-3446 (((-82) $) 85 T ELT)) (-3422 (((-485) |#1| $ (-485)) 152 (|has| |#1| (-69)) ELT) (((-485) |#1| $) 151 (|has| |#1| (-69)) ELT) (((-485) (-1 (-82) |#1|) $) 150 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 107 T ELT)) (-3722 (((-82) $ (-695)) 83 T ELT)) (-2202 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 165 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 134 (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) 130 T ELT)) (-3521 (($ $ $) 153 (|has| |#1| (-757)) ELT) (($ (-1 (-82) |#1| |#1|) $ $) 146 T ELT)) (-2611 (((-584 |#1|) $) 141 T ELT)) (-3248 (((-82) |#1| $) 136 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 164 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3537 (($ |#1|) 123 T ELT)) (-3719 (((-82) $ (-695)) 84 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-3612 (($ $ $ (-485)) 129 T ELT) (($ |#1| $ (-485)) 128 T ELT)) (-2306 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2205 (((-584 (-485)) $) 94 T ELT)) (-2206 (((-82) (-485) $) 93 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 138 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1036 |#1|)) ELT)) (-3447 (((-82) $) 86 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 143 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 95 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 92 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-1572 (($ $ (-1147 (-485))) 126 T ELT) (($ $ (-485)) 125 T ELT)) (-2307 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) 142 T ELT) (((-695) |#1| $) 137 (|has| |#1| (-69)) ELT)) (-1736 (($ $ $ (-485)) 156 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 144 T ELT)) (-2569 (((-82) $ $) 163 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 161 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) 162 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 160 (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 145 T ELT)))
-(((-609 |#1|) (-110) (-1130)) (T -609))
-((-3537 (*1 *1 *2) (-11 (-4 *1 (-609 *2)) (-4 *2 (-1130)))))
-(-12 (-1065 |t#1|) (-323 |t#1|) (-236 |t#1|) (-10 -8 (-14 -3537 ($ |t#1|))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-236 |#1|) . T) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T))
-((-3576 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3111 (((-695) |#4| |#3|) 18 T ELT)) (-3343 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2317 (((-82) |#4| |#3|) 14 T ELT)))
-(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3576 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-584 |#3|))) |#4| |#3|)) (-14 -3576 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-584 |#3|)))) |#4| (-584 |#3|))) (-14 -3343 ((-3 |#3| #1#) |#4| |#3|)) (-14 -2317 ((-82) |#4| |#3|)) (-14 -3111 ((-695) |#4| |#3|))) (-311) (-12 (-323 |#1|) (-1036 |#1|)) (-12 (-323 |#1|) (-1036 |#1|)) (-628 |#1| |#2| |#3|)) (T -610))
-((-3111 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5))) (-4 *4 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2317 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5))) (-4 *4 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-82)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3343 (*1 *2 *3 *2) (|partial| -11 (-4 *4 (-311)) (-4 *5 (-12 (-323 *4) (-1036 *4))) (-4 *2 (-12 (-323 *4) (-1036 *4))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3576 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5))) (-4 *7 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2014 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3576 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5))) (-4 *4 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
-((-3576 (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 14 T ELT)) (-3111 (((-695) (-631 |#1|) (-1180 |#1|)) 30 T ELT)) (-3343 (((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|)) 24 T ELT)) (-2317 (((-82) (-631 |#1|) (-1180 |#1|)) 27 T ELT)))
-(((-611 |#1|) (-10 -7 (-14 -3576 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|))) (-14 -3576 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|))) (-14 -3576 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|)))) (-14 -3576 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|)))) (-14 -3343 ((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|))) (-14 -2317 ((-82) (-631 |#1|) (-1180 |#1|))) (-14 -3111 ((-695) (-631 |#1|) (-1180 |#1|)))) (-311)) (T -611))
-((-3111 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2317 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-5 *2 (-82)) (-5 *1 (-611 *5)))) (-3343 (*1 *2 *3 *2) (|partial| -11 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *1 (-611 *4)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1="failed")) (|:| -2014 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))))
-((-2318 (((-2 (|:| |particular| (-3 (-1180 (-349 |#4|)) "failed")) (|:| -2014 (-584 (-1180 (-349 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT)))
-(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2318 ((-2 (|:| |particular| (-3 (-1180 (-349 |#4|)) "failed")) (|:| -2014 (-584 (-1180 (-349 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-496) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612))
-((-2318 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 (-349 *8)) "failed")) (|:| -2014 (-584 (-1180 (-349 *8)))))) (-5 *1 (-612 *5 *6 *7 *8)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1777 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3226 (((-1180 (-631 |#2|))) NIL T ELT) (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT)) (-3125 (((-82) $) NIL T ELT)) (-1730 (((-1180 $)) 41 T ELT)) (-3336 (($ |#2|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3114 (((-196 |#1| |#2|) $ (-485)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1793 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1791 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1905 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2409 (($ $ (-831)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1795 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1724 (((-1086 |#2|) $) NIL T ELT)) (-1718 (((-82)) NIL T ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1797 (($ (-1180 |#2|)) NIL T ELT) (($ (-1180 |#2|) (-1180 $)) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-69)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-695) $) NIL (|has| |#2| (-496)) ELT) (((-831)) 42 T ELT)) (-3115 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1715 (((-82)) NIL T ELT)) (-2436 (($ $ (-831)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3110 (((-695) $) NIL (|has| |#2| (-496)) ELT)) (-3109 (((-584 (-196 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3117 (((-695) $) NIL T ELT)) (-1711 (((-82)) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3330 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3121 (((-485) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-2611 (((-584 |#2|) $) NIL T ELT)) (-3248 (((-82) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-3126 (($ (-584 (-584 |#2|))) NIL T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1709 (((-82)) NIL T ELT)) (-1713 (((-82)) NIL T ELT)) (-1912 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1794 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1792 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1909 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1796 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1725 (((-1086 |#2|) $) NIL T ELT)) (-1719 (((-82)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1710 (((-82)) NIL T ELT)) (-1712 (((-82)) NIL T ELT)) (-1714 (((-82)) NIL T ELT)) (-3593 (((-3 $ #1#) $) NIL (|has| |#2| (-311)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1717 (((-82)) NIL T ELT)) (-1731 (((-3 |#2| #1#) (-1 (-82) |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-584 |#2|)) NIL T ELT)) (-3124 (((-82) $) NIL T ELT)) (-3334 (((-196 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1732 (((-695) (-1 (-82) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3227 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $ (-1180 $)) 30 T ELT)) (-3975 (($ (-1180 |#2|)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT)) (-1897 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-1723 (((-82)) NIL T ELT)) (-3113 (((-196 |#1| |#2|) $ (-485)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 40 T ELT)) (-1708 (((-584 (-1180 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2439 (($ $ $ $) NIL T ELT)) (-1721 (((-82)) NIL T ELT)) (-2548 (($ (-631 |#2|) $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3122 (((-82) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1722 (((-82)) NIL T ELT)) (-1720 (((-82)) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-1716 (((-82)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) NIL T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-613 |#1| |#2|) (-12 (-1038 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-553 (-631 |#2|)) (-360 |#2|)) (-831) (-145)) (T -613))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3251 (((-584 (-1050)) $) 12 T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-614) (-12 (-996) (-10 -8 (-14 -3251 ((-584 (-1050)) $))))) (T -614))
-((-3251 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-614)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3938 (((-584 |#1|) $) NIL T ELT)) (-3140 (($ $) 62 T ELT)) (-2667 (((-82) $) NIL T ELT)) (-3160 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2321 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2323 (((-82) (-740 |#1|)) 18 T ELT)) (-2322 (($ (-740 |#1|)) 29 T ELT)) (-2514 (((-82) $ $) 36 T ELT)) (-3836 (((-831) $) 43 T ELT)) (-3141 (($ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3735 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3950 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2320 (((-55 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2319 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 63 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 46 T ELT)))
-(((-615 |#1|) (-12 (-757) (-951 |#1|) (-10 -8 (-14 -2667 ((-82) $)) (-14 -3141 ($ $)) (-14 -3140 ($ $)) (-14 -3836 ((-831) $)) (-14 -2514 ((-82) $ $)) (-14 -3950 ((-740 |#1|) $)) (-14 -3950 ((-619 |#1|) $)) (-14 -3735 ((-584 $) (-740 |#1|))) (-14 -2323 ((-82) (-740 |#1|))) (-14 -2322 ($ (-740 |#1|))) (-14 -2321 ((-3 $ "failed") (-740 |#1|))) (-14 -3938 ((-584 |#1|) $)) (-14 -2320 ((-55 (-584 $)) (-584 |#1|) (-831))) (-14 -2319 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615))
-((-2667 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3141 (*1 *1 *1) (-11 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3140 (*1 *1 *1) (-11 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3836 (*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2514 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3735 (*1 *2 *3) (-11 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2323 (*1 *2 *3) (-11 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-82)) (-5 *1 (-615 *4)))) (-2322 (*1 *1 *2) (-11 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2321 (*1 *1 *2) (|partial| -11 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3938 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2320 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-55 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2319 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5)))))
-((-3405 ((|#2| $) 96 T ELT)) (-3800 (($ $) 117 T ELT)) (-3445 (((-82) $ (-695)) 35 T ELT)) (-3802 (($ $) 105 T ELT) (($ $ (-695)) 108 T ELT)) (-3446 (((-82) $) 118 T ELT)) (-3034 (((-584 $) $) 92 T ELT)) (-3030 (((-82) $ $) 88 T ELT)) (-3722 (((-82) $ (-695)) 33 T ELT)) (-2202 (((-485) $) 62 T ELT)) (-2203 (((-485) $) 61 T ELT)) (-3719 (((-82) $ (-695)) 31 T ELT)) (-3530 (((-82) $) 94 T ELT)) (-3801 ((|#2| $) 109 T ELT) (($ $ (-695)) 113 T ELT)) (-2306 (($ $ $ (-485)) 79 T ELT) (($ |#2| $ (-485)) 78 T ELT)) (-2205 (((-584 (-485)) $) 60 T ELT)) (-2206 (((-82) (-485) $) 55 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-695)) 104 T ELT)) (-3772 (($ $ (-485)) 121 T ELT)) (-3447 (((-82) $) 120 T ELT)) (-2207 (((-584 |#2|) $) 42 T ELT)) (-3803 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1147 (-485))) 75 T ELT) ((|#2| $ (-485)) 53 T ELT) ((|#2| $ (-485) |#2|) 54 T ELT)) (-3032 (((-485) $ $) 87 T ELT)) (-2307 (($ $ (-1147 (-485))) 74 T ELT) (($ $ (-485)) 68 T ELT)) (-3636 (((-82) $) 83 T ELT)) (-3795 (($ $) 101 T ELT)) (-3796 (((-695) $) 100 T ELT)) (-3797 (($ $) 99 T ELT)) (-3533 (($ (-584 |#2|)) 49 T ELT)) (-2894 (($ $) 122 T ELT)) (-3525 (((-584 $) $) 86 T ELT)) (-3031 (((-82) $ $) 85 T ELT)) (-3059 (((-82) $ $) 20 T ELT)))
-(((-616 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -2894 (|#1| |#1|)) (-14 -3772 (|#1| |#1| (-485))) (-14 -3445 ((-82) |#1| (-695))) (-14 -3722 ((-82) |#1| (-695))) (-14 -3719 ((-82) |#1| (-695))) (-14 -3446 ((-82) |#1|)) (-14 -3447 ((-82) |#1|)) (-14 -3803 (|#2| |#1| (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485))) (-14 -2207 ((-584 |#2|) |#1|)) (-14 -2206 ((-82) (-485) |#1|)) (-14 -2205 ((-584 (-485)) |#1|)) (-14 -2203 ((-485) |#1|)) (-14 -2202 ((-485) |#1|)) (-14 -3533 (|#1| (-584 |#2|))) (-14 -3803 (|#1| |#1| (-1147 (-485)))) (-14 -2307 (|#1| |#1| (-485))) (-14 -2307 (|#1| |#1| (-1147 (-485)))) (-14 -2306 (|#1| |#2| |#1| (-485))) (-14 -2306 (|#1| |#1| |#1| (-485))) (-14 -3795 (|#1| |#1|)) (-14 -3796 ((-695) |#1|)) (-14 -3797 (|#1| |#1|)) (-14 -3800 (|#1| |#1|)) (-14 -3801 (|#1| |#1| (-695))) (-14 -3803 (|#2| |#1| "last")) (-14 -3801 (|#2| |#1|)) (-14 -3802 (|#1| |#1| (-695))) (-14 -3803 (|#1| |#1| "rest")) (-14 -3802 (|#1| |#1|)) (-14 -3804 (|#1| |#1| (-695))) (-14 -3803 (|#2| |#1| "first")) (-14 -3804 (|#2| |#1|)) (-14 -3030 ((-82) |#1| |#1|)) (-14 -3031 ((-82) |#1| |#1|)) (-14 -3032 ((-485) |#1| |#1|)) (-14 -3636 ((-82) |#1|)) (-14 -3803 (|#2| |#1| "value")) (-14 -3405 (|#2| |#1|)) (-14 -3530 ((-82) |#1|)) (-14 -3034 ((-584 |#1|) |#1|)) (-14 -3525 ((-584 |#1|) |#1|))) (-617 |#2|) (-1130)) (T -616))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 99 (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3445 (((-82) $ (-695)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 103 T ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-2325 (($ $) 123 T ELT)) (-3802 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-1354 (($ $) 101 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 102 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 104 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 89 T ELT)) (-3446 (((-82) $) 85 T ELT)) (-2324 (((-695) $) 122 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 107 T ELT)) (-3722 (((-82) $ (-695)) 83 T ELT)) (-2202 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2203 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3719 (((-82) $ (-695)) 84 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-2327 (($ $) 125 T ELT)) (-2328 (((-82) $) 126 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-2306 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2205 (((-584 (-485)) $) 94 T ELT)) (-2206 (((-82) (-485) $) 93 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-2326 ((|#1| $) 124 T ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1036 |#1|)) ELT)) (-3772 (($ $ (-485)) 121 T ELT)) (-3447 (((-82) $) 86 T ELT)) (-2329 (((-82) $) 127 T ELT)) (-2330 (((-82) $) 128 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 95 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 92 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-2307 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-2894 (($ $) 120 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-617 |#1|) (-110) (-1130)) (T -617))
-((-3409 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-3713 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2330 (*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-2329 (*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-2328 (*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-2327 (*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2326 (*1 *2 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2325 (*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2324 (*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3772 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2894 (*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(-12 (-1065 |t#1|) (-10 -8 (-14 -3409 ($ (-1 (-82) |t#1|) $)) (-14 -3713 ($ (-1 (-82) |t#1|) $)) (-14 -2330 ((-82) $)) (-14 -2329 ((-82) $)) (-14 -2328 ((-82) $)) (-14 -2327 ($ $)) (-14 -2326 (|t#1| $)) (-14 -2325 ($ $)) (-14 -2324 ((-695) $)) (-14 -3772 ($ $ (-485))) (-14 -2894 ($ $))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3181 (((-423) $) 15 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 17 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-618) (-12 (-996) (-10 -8 (-14 -3181 ((-423) $)) (-14 -3236 ((-1050) $))))) (T -618))
-((-3181 (*1 *2 *1) (-11 (-5 *2 (-423)) (-5 *1 (-618)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-618)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3938 (((-584 |#1|) $) 15 T ELT)) (-3140 (($ $) 19 T ELT)) (-2667 (((-82) $) 20 T ELT)) (-3160 (((-3 |#1| "failed") $) 23 T ELT)) (-3159 ((|#1| $) 21 T ELT)) (-3802 (($ $) 37 T ELT)) (-3940 (($ $) 25 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2514 (((-82) $ $) 46 T ELT)) (-3836 (((-831) $) 40 T ELT)) (-3141 (($ $) 18 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 ((|#1| $) 36 T ELT)) (-3950 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 13 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
-(((-619 |#1|) (-12 (-757) (-951 |#1|) (-10 -8 (-14 * ($ $ $)) (-14 -3950 ((-740 |#1|) $)) (-14 -3804 (|#1| $)) (-14 -3141 ($ $)) (-14 -3836 ((-831) $)) (-14 -2514 ((-82) $ $)) (-14 -3940 ($ $)) (-14 -3802 ($ $)) (-14 -2667 ((-82) $)) (-14 -3140 ($ $)) (-14 -3938 ((-584 |#1|) $)))) (-757)) (T -619))
-((* (*1 *1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3804 (*1 *2 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3141 (*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3836 (*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2514 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3940 (*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3802 (*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2667 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3140 (*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3938 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))))
-((-2339 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2331 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT)))
-(((-620 |#1|) (-10 -7 (-14 -2331 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-14 -2339 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1014)) (T -620))
-((-2339 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))) (-2331 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
-((-2333 ((|#2| |#1| |#2|) 9 T ELT)) (-2332 ((|#1| |#1| |#2|) 8 T ELT)))
-(((-621 |#1| |#2|) (-10 -7 (-14 -2332 (|#1| |#1| |#2|)) (-14 -2333 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -621))
-((-2333 (*1 *2 *3 *2) (-11 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2332 (*1 *2 *2 *3) (-11 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-((-2334 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
-(((-622 |#1| |#2| |#3|) (-10 -7 (-14 -2334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -622))
-((-2334 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3321 (((-1131) $) 22 T ELT)) (-3320 (((-584 (-1131)) $) 20 T ELT)) (-2335 (($ (-584 (-1131)) (-1131)) 15 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 30 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 23 T ELT) (($ (-1029)) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-623) (-12 (-996) (-553 (-1131)) (-10 -8 (-14 -3950 ($ (-1029))) (-14 -2335 ($ (-584 (-1131)) (-1131))) (-14 -3320 ((-584 (-1131)) $)) (-14 -3321 ((-1131) $))))) (T -623))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1029)) (-5 *1 (-623)))) (-2335 (*1 *1 *2 *3) (-11 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))) (-3320 (*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) (-3321 (*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-623)))))
-((-2339 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2336 (((-1 |#1|) |#1|) 8 T ELT)) (-2338 ((|#1| |#1|) 19 T ELT)) (-2337 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3950 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT)))
-(((-624 |#1|) (-10 -7 (-14 -2336 ((-1 |#1|) |#1|)) (-14 -3950 ((-1 |#1|) |#1|)) (-14 -2337 (|#1| (-1 |#1| |#1|))) (-14 -2337 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485))) (-14 -2338 (|#1| |#1|)) (-14 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-14 -2339 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1014)) (T -624))
-((-2339 (*1 *2 *2) (-11 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) (-2338 (*1 *2 *2) (-11 (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-2337 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1014)))) (-2337 (*1 *2 *3) (-11 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-3950 (*1 *2 *3) (-11 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) (-2336 (*1 *2 *3) (-11 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
-((-2342 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2341 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3956 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2340 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
-(((-625 |#1| |#2|) (-10 -7 (-14 -2340 ((-1 |#2| |#1|) |#2|)) (-14 -2341 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-14 -3956 ((-1 |#2| |#1|) (-1 |#2|))) (-14 -2342 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -625))
-((-2342 (*1 *2 *3) (-11 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3956 (*1 *2 *3) (-11 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1014)))) (-2341 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2340 (*1 *2 *3) (-11 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014)))))
-((-2347 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2343 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2344 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2346 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
-(((-626 |#1| |#2| |#3|) (-10 -7 (-14 -2343 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-14 -2344 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-14 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-14 -2346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-14 -2347 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-14 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -626))
-((* (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2347 (*1 *2 *3) (-11 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2346 (*1 *2 *3) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))) (-2345 (*1 *2 *3) (-11 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))) (-2344 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2343 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
-((-3841 (($ (-695) (-695)) 42 T ELT)) (-2352 (($ $ $) 73 T ELT)) (-3417 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3123 (((-82) $) 36 T ELT)) (-2351 (($ $ (-485) (-485)) 84 T ELT)) (-2350 (($ $ (-485) (-485)) 85 T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2354 (($ $) 71 T ELT)) (-3125 (((-82) $) 15 T ELT)) (-2348 (($ $ (-485) (-485) $) 91 T ELT)) (-3791 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-3336 (($ (-695) |#2|) 55 T ELT)) (-3126 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3597 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2353 (($ $ $) 72 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3803 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) 88 T ELT)) (-3335 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3124 (((-82) $) 28 T ELT)) (-3950 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3122 (((-82) $) 38 T ELT)) (-3953 (($ $ |#2|) 124 T ELT)) (-3840 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3842 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
-(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3950 ((-773) |#1|)) (-14 ** (|#1| |#1| (-485))) (-14 -3953 (|#1| |#1| |#2|)) (-14 -3469 ((-3 |#1| "failed") |#1| |#2|)) (-14 ** (|#1| |#1| (-695))) (-14 * (|#3| |#3| |#1|)) (-14 * (|#4| |#1| |#4|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3842 (|#1| |#1| |#1|)) (-14 -2348 (|#1| |#1| (-485) (-485) |#1|)) (-14 -2349 (|#1| |#1| (-485) (-485) (-485) (-485))) (-14 -2350 (|#1| |#1| (-485) (-485))) (-14 -2351 (|#1| |#1| (-485) (-485))) (-14 -3791 (|#1| |#1| (-584 (-485)) (-584 (-485)) |#1|)) (-14 -3803 (|#1| |#1| (-584 (-485)) (-584 (-485)))) (-14 -3597 ((-584 (-584 |#2|)) |#1|)) (-14 -2352 (|#1| |#1| |#1|)) (-14 -2353 (|#1| |#1| |#1|)) (-14 -2354 (|#1| |#1|)) (-14 -3417 (|#1| |#1|)) (-14 -3417 (|#1| |#3|)) (-14 -3950 (|#1| |#4|)) (-14 -3335 (|#1| (-584 |#1|))) (-14 -3335 (|#1| (-584 |#2|))) (-14 -3336 (|#1| (-695) |#2|)) (-14 -3126 (|#1| (-695) (-695) (-1 |#2| (-485) (-485)))) (-14 -3126 (|#1| (-584 (-584 |#2|)))) (-14 -3841 (|#1| (-695) (-695))) (-14 -3122 ((-82) |#1|)) (-14 -3123 ((-82) |#1|)) (-14 -3124 ((-82) |#1|)) (-14 -3125 ((-82) |#1|)) (-14 -3791 (|#2| |#1| (-485) (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485) (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485) (-485)))) (-628 |#2| |#3| |#4|) (-962) (-323 |#2|) (-323 |#2|)) (T -627))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3841 (($ (-695) (-695)) 108 T ELT)) (-2352 (($ $ $) 97 T ELT)) (-3417 (($ |#2|) 101 T ELT) (($ $) 100 T ELT)) (-3123 (((-82) $) 110 T ELT)) (-2351 (($ $ (-485) (-485)) 93 T ELT)) (-2350 (($ $ (-485) (-485)) 92 T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) 91 T ELT)) (-2354 (($ $) 99 T ELT)) (-3125 (((-82) $) 112 T ELT)) (-2348 (($ $ (-485) (-485) $) 90 T ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) 52 T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 94 T ELT)) (-1258 (($ $ (-485) |#2|) 50 T ELT)) (-1257 (($ $ (-485) |#3|) 49 T ELT)) (-3336 (($ (-695) |#1|) 105 T ELT)) (-3727 (($) 6 T CONST)) (-3112 (($ $) 77 (|has| |#1| (-257)) ELT)) (-3114 ((|#2| $ (-485)) 54 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-69)) ELT)) (-3111 (((-695) $) 76 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-3115 ((|#1| $ (-485) (-485)) 56 T ELT)) (-3110 (((-695) $) 75 (|has| |#1| (-496)) ELT)) (-3109 (((-584 |#3|) $) 74 (|has| |#1| (-496)) ELT)) (-3117 (((-695) $) 59 T ELT)) (-3617 (($ (-695) (-695) |#1|) 65 T ELT)) (-3116 (((-695) $) 58 T ELT)) (-3330 ((|#1| $) 72 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3121 (((-485) $) 63 T ELT)) (-3119 (((-485) $) 61 T ELT)) (-2611 (((-584 |#1|) $) 40 T ELT)) (-3248 (((-82) |#1| $) 35 (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) 62 T ELT)) (-3118 (((-485) $) 60 T ELT)) (-3126 (($ (-584 (-584 |#1|))) 107 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) 106 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 48 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (-3597 (((-584 (-584 |#1|)) $) 96 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3593 (((-3 $ "failed") $) 71 (|has| |#1| (-311)) ELT)) (-2353 (($ $ $) 98 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 37 T ELT)) (-2201 (($ $ |#1|) 64 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 79 (|has| |#1| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 42 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) (-485)) 57 T ELT) ((|#1| $ (-485) (-485) |#1|) 55 T ELT) (($ $ (-584 (-485)) (-584 (-485))) 95 T ELT)) (-3335 (($ (-584 |#1|)) 104 T ELT) (($ (-584 $)) 103 T ELT)) (-3124 (((-82) $) 111 T ELT)) (-3331 ((|#1| $) 73 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) 41 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-69)) ELT)) (-3403 (($ $) 9 T ELT)) (-3113 ((|#3| $ (-485)) 53 T ELT)) (-3950 (($ |#3|) 102 T ELT) (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 43 T ELT)) (-3122 (((-82) $) 109 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3953 (($ $ |#1|) 78 (|has| |#1| (-311)) ELT)) (-3840 (($ $ $) 88 T ELT) (($ $) 87 T ELT)) (-3842 (($ $ $) 89 T ELT)) (** (($ $ (-695)) 80 T ELT) (($ $ (-485)) 70 (|has| |#1| (-311)) ELT)) (* (($ $ $) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ (-485) $) 83 T ELT) ((|#3| $ |#3|) 82 T ELT) ((|#2| |#2| $) 81 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-628 |#1| |#2| |#3|) (-110) (-962) (-323 |t#1|) (-323 |t#1|)) (T -628))
-((-3125 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-82)))) (-3124 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-82)))) (-3123 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-82)))) (-3122 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-82)))) (-3841 (*1 *1 *2 *2) (-11 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3126 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3126 (*1 *1 *2 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-3336 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3335 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3335 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3950 (*1 *1 *2) (-11 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (-3417 (*1 *1 *2) (-11 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (-3417 (*1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2354 (*1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2353 (*1 *1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2352 (*1 *1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3597 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-584 (-584 *3))))) (-3803 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3791 (*1 *1 *1 *2 *2 *1) (-11 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2351 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2350 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2349 (*1 *1 *1 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2348 (*1 *1 *1 *2 *2 *1) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3842 (*1 *1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3840 (*1 *1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3840 (*1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *2) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (* (*1 *2 *1 *2) (-11 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (* (*1 *2 *2 *1) (-11 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3469 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-496)))) (-3953 (*1 *1 *1 *2) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-311)))) (-3112 (*1 *1 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-257)))) (-3111 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3110 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) (-3331 (*1 *2 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-962)))) (-3330 (*1 *2 *1) (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-962)))) (-3593 (*1 *1 *1) (|partial| -11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-311)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-311)))))
-(-12 (-54 |t#1| |t#2| |t#3|) (-10 -8 (-14 -3125 ((-82) $)) (-14 -3124 ((-82) $)) (-14 -3123 ((-82) $)) (-14 -3122 ((-82) $)) (-14 -3841 ($ (-695) (-695))) (-14 -3126 ($ (-584 (-584 |t#1|)))) (-14 -3126 ($ (-695) (-695) (-1 |t#1| (-485) (-485)))) (-14 -3336 ($ (-695) |t#1|)) (-14 -3335 ($ (-584 |t#1|))) (-14 -3335 ($ (-584 $))) (-14 -3950 ($ |t#3|)) (-14 -3417 ($ |t#2|)) (-14 -3417 ($ $)) (-14 -2354 ($ $)) (-14 -2353 ($ $ $)) (-14 -2352 ($ $ $)) (-14 -3597 ((-584 (-584 |t#1|)) $)) (-14 -3803 ($ $ (-584 (-485)) (-584 (-485)))) (-14 -3791 ($ $ (-584 (-485)) (-584 (-485)) $)) (-14 -2351 ($ $ (-485) (-485))) (-14 -2350 ($ $ (-485) (-485))) (-14 -2349 ($ $ (-485) (-485) (-485) (-485))) (-14 -2348 ($ $ (-485) (-485) $)) (-14 -3842 ($ $ $)) (-14 -3840 ($ $ $)) (-14 -3840 ($ $)) (-14 * ($ $ $)) (-14 * ($ |t#1| $)) (-14 * ($ $ |t#1|)) (-14 * ($ (-485) $)) (-14 * (|t#3| $ |t#3|)) (-14 * (|t#2| |t#2| $)) (-14 ** ($ $ (-695))) (IF (|has| |t#1| (-496)) (-14 -3469 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-14 -3953 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-257)) (-14 -3112 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-14 -3111 ((-695) $)) (-14 -3110 ((-695) $)) (-14 -3109 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3997 "*"))) (PROGN (-14 -3331 (|t#1| $)) (-14 -3330 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-14 -3593 ((-3 $ "failed") $)) (-14 ** ($ $ (-485)))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-54 |#1| |#2| |#3|) . T) ((-1130) . T))
-((-3845 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3846 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
-(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-14 -3846 (|#8| (-1 |#5| |#1|) |#4|)) (-14 -3846 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-14 -3845 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|) (-962) (-323 |#5|) (-323 |#5|) (-628 |#5| |#6| |#7|)) (T -629))
-((-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3846 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))))
-((-3112 ((|#4| |#4|) 90 (|has| |#1| (-257)) ELT)) (-3111 (((-695) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3110 (((-695) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3109 (((-584 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 124 (|has| |#1| (-257)) ELT)) (-3330 ((|#1| |#4|) 52 T ELT)) (-2359 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3593 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-311)) ELT)) (-2358 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2355 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2357 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3331 ((|#1| |#4|) 96 T ELT)) (-2523 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT)))
-(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3331 (|#1| |#4|)) (-14 -3330 (|#1| |#4|)) (-14 -2355 (|#4| |#4| (-485) (-485))) (-14 -2356 (|#4| |#4| |#1| (-485) (-485))) (-14 -2357 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-14 -3111 ((-695) |#4|)) (-14 -3110 ((-695) |#4|)) (-14 -3109 ((-584 |#3|) |#4|)) (-14 -2358 (|#4| |#4|)) (-14 -2359 ((-3 |#4| #1="failed") |#4|)) (-14 -2523 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-257)) (PROGN (-14 -3112 (|#4| |#4|)) (-14 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-311)) (-14 -3593 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-145) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|)) (T -630))
-((-3593 (*1 *2 *2) (|partial| -11 (-4 *3 (-311)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2382 (*1 *2 *3 *3) (-11 (-4 *3 (-257)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3112 (*1 *2 *2) (-11 (-4 *3 (-257)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2523 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2359 (*1 *2 *2) (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2358 (*1 *2 *2) (-11 (-4 *3 (-496)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3109 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3111 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2357 (*1 *2 *2 *3 *4 *4) (-11 (-5 *4 (-485)) (-4 *3 (-145)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-11 (-5 *4 (-485)) (-4 *3 (-145)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *3) (-11 (-5 *3 (-485)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3330 (*1 *2 *3) (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-145)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3331 (*1 *2 *3) (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-145)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3841 (($ (-695) (-695)) 63 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3417 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-82) $) NIL T ELT)) (-2351 (($ $ (-485) (-485)) 21 T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3125 (((-82) $) NIL T ELT)) (-2348 (($ $ (-485) (-485) $) NIL T ELT)) (-3791 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3336 (($ (-695) |#1|) 37 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#1| (-257)) ELT)) (-3114 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT)) (-3111 (((-695) $) 48 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3115 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3110 (((-695) $) 50 (|has| |#1| (-496)) ELT)) (-3109 (((-584 (-1180 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3117 (((-695) $) 31 T ELT)) (-3617 (($ (-695) (-695) |#1|) 27 T ELT)) (-3116 (((-695) $) 32 T ELT)) (-3330 ((|#1| $) 44 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3121 (((-485) $) 9 T ELT)) (-3119 (((-485) $) 10 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3120 (((-485) $) 13 T ELT)) (-3118 (((-485) $) 64 T ELT)) (-3126 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3597 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3593 (((-3 $ #2="failed") $) 57 (|has| |#1| (-311)) ELT)) (-2353 (($ $ $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| #2#) (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3469 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3335 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1180 |#1|)) 69 T ELT)) (-3124 (((-82) $) NIL T ELT)) (-3331 ((|#1| $) 42 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) 79 (|has| |#1| (-554 (-474))) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3950 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3122 (((-82) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-311)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) NIL T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-631 |#1|) (-12 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-14 -3335 ($ (-1180 |#1|))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-311)) (-14 -3593 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631))
-((-3593 (*1 *1 *1) (|partial| -11 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962)))) (-3335 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))))
-((-2365 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2364 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2366 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT)))
-(((-632 |#1|) (-10 -7 (-14 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -2362 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -2362 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -2363 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-14 -2364 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-14 -2365 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -2366 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-14 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632))
-((** (*1 *2 *2 *3) (-11 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2366 (*1 *2 *2 *2 *2 *2 *3) (-11 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2365 (*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2364 (*1 *2 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2363 (*1 *2 *2 *3 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-((-3160 (((-3 |#1| "failed") $) 18 T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-2367 (($) 7 T CONST)) (-2368 (($ |#1|) 8 T ELT)) (-3950 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3569 (((-82) $ (|[\|\|]| |#1|)) 14 T ELT) (((-82) $ (|[\|\|]| -2367)) 11 T ELT)) (-3575 ((|#1| $) 15 T ELT)))
-(((-633 |#1|) (-12 (-1176) (-951 |#1|) (-553 (-773)) (-10 -8 (-14 -2368 ($ |#1|)) (-14 -3569 ((-82) $ (|[\|\|]| |#1|))) (-14 -3569 ((-82) $ (|[\|\|]| -2367))) (-14 -3575 (|#1| $)) (-14 -2367 ($) -3956))) (-553 (-773))) (T -633))
-((-2368 (*1 *1 *2) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-82)) (-5 *1 (-633 *4)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-82)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3575 (*1 *2 *1) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2367 (*1 *1) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
-((-3744 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3742 ((|#1| (-631 |#2|)) 9 T ELT)) (-3743 (((-631 |#1|) (-631 |#2|)) 18 T ELT)))
-(((-634 |#1| |#2|) (-10 -7 (-14 -3742 (|#1| (-631 |#2|))) (-14 -3743 ((-631 |#1|) (-631 |#2|))) (-14 -3744 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-496) (-905 |#1|)) (T -634))
-((-3744 (*1 *2 *3) (-11 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3743 (*1 *2 *3) (-11 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3742 (*1 *2 *3) (-11 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-634 *2 *4)))))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-695)) 56 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-584 (-2 (|:| |entry| |#1|) (|:| -1732 (-695)))) $) 54 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-635 |#1|) (-110) (-1014)) (T -635))
-((-3612 (*1 *1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2370 (*1 *1 *1) (-11 (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2369 (*1 *2 *1) (-11 (-4 *1 (-635 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1732 (-695))))))))
-(-12 (-192 |t#1|) (-10 -8 (-14 -3612 ($ |t#1| $ (-695))) (-14 -2370 ($ $)) (-14 -2369 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1732 (-695)))) $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-192 |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2373 (((-584 |#1|) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))) (-485)) 66 T ELT)) (-2371 ((|#1| |#1| (-485)) 63 T ELT)) (-3147 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3735 (((-584 |#1|) |#1| (-485)) 49 T ELT)) (-2374 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2372 (((-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))) |#1| (-485)) 62 T ELT)))
-(((-636 |#1|) (-10 -7 (-14 -3147 (|#1| |#1| |#1| (-485))) (-14 -2371 (|#1| |#1| (-485))) (-14 -3735 ((-584 |#1|) |#1| (-485))) (-14 -2372 ((-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))) |#1| (-485))) (-14 -2373 ((-584 |#1|) (-584 (-2 (|:| -3735 |#1|) (|:| -3952 (-485)))) (-485))) (-14 -2374 (|#1| |#1| (-485) |#1| (-485)))) (-1156 (-485))) (T -636))
-((-2374 (*1 *2 *2 *3 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-2373 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-2 (|:| -3735 *5) (|:| -3952 (-485))))) (-5 *4 (-485)) (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2372 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3735 *3) (|:| -3952 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-3735 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-2371 (*1 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-3147 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
-((-2378 (((-1 (-855 (-178)) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178) (-178))) 17 T ELT)) (-2375 (((-1048 (-178)) (-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-584 (-220))) 53 T ELT) (((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-584 (-220))) 55 T ELT) (((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-3 (-1 (-178) (-178) (-178) (-178)) #1="undefined") (-1002 (-178)) (-1002 (-178)) (-584 (-220))) 57 T ELT)) (-2377 (((-1048 (-178)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-584 (-220))) NIL T ELT)) (-2376 (((-1048 (-178)) (-1 (-178) (-178) (-178)) (-3 (-1 (-178) (-178) (-178) (-178)) #1#) (-1002 (-178)) (-1002 (-178)) (-584 (-220))) 58 T ELT)))
-(((-637) (-10 -7 (-14 -2375 ((-1048 (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-3 (-1 (-178) (-178) (-178) (-178)) #1="undefined") (-1002 (-178)) (-1002 (-178)) (-584 (-220)))) (-14 -2375 ((-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-584 (-220)))) (-14 -2375 ((-1048 (-178)) (-1048 (-178)) (-1 (-855 (-178)) (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-584 (-220)))) (-14 -2376 ((-1048 (-178)) (-1 (-178) (-178) (-178)) (-3 (-1 (-178) (-178) (-178) (-178)) #1#) (-1002 (-178)) (-1002 (-178)) (-584 (-220)))) (-14 -2377 ((-1048 (-178)) (-264 (-485)) (-264 (-485)) (-264 (-485)) (-1 (-178) (-178)) (-1002 (-178)) (-584 (-220)))) (-14 -2378 ((-1 (-855 (-178)) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178)) (-1 (-178) (-178) (-178) (-178)))))) (T -637))
-((-2378 (*1 *2 *3 *3 *3 *4) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1 (-178) (-178) (-178) (-178))) (-5 *2 (-1 (-855 (-178)) (-178) (-178))) (-5 *1 (-637)))) (-2377 (*1 *2 *3 *3 *3 *4 *5 *6) (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178))) (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-3 (-1 (-178) (-178) (-178) (-178)) #1="undefined")) (-5 *5 (-1002 (-178))) (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637)))) (-2375 (*1 *2 *2 *3 *4 *4 *5) (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-178))) (-5 *5 (-584 (-220))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *4 *4 *5) (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-178))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-3 (-1 (-178) (-178) (-178) (-178)) #1#)) (-5 *5 (-1002 (-178))) (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637)))))
-((-3735 (((-347 (-1086 |#4|)) (-1086 |#4|)) 87 T ELT) (((-347 |#4|) |#4|) 270 T ELT)))
-(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4|)) (-14 -3735 ((-347 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-298) (-862 |#3| |#2| |#1|)) (T -638))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-347 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2381 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3112 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2380 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2379 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 84 T ELT)))
-(((-639 |#1|) (-10 -7 (-14 -2379 ((-631 |#1|) (-631 |#1|))) (-14 -3112 ((-631 |#1|) (-631 |#1|) |#1|)) (-14 -2380 ((-631 |#1|) (-631 |#1|) |#1|)) (-14 -2381 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-14 -2382 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|))) (-257)) (T -639))
-((-2382 (*1 *2 *3 *3) (-11 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-639 *3)) (-4 *3 (-257)))) (-2381 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2380 (*1 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-3112 (*1 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2379 (*1 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
-((-2388 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19 T ELT)) (-2383 (((-1 |#4| |#2| |#3|) (-1091)) 12 T ELT)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2383 ((-1 |#4| |#2| |#3|) (-1091))) (-14 -2388 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-554 (-474)) (-1130) (-1130) (-1130)) (T -640))
-((-2388 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) (-2383 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))))
-((-2384 (((-1 (-178) (-178) (-178)) |#1| (-1091) (-1091)) 43 T ELT) (((-1 (-178) (-178)) |#1| (-1091)) 48 T ELT)))
-(((-641 |#1|) (-10 -7 (-14 -2384 ((-1 (-178) (-178)) |#1| (-1091))) (-14 -2384 ((-1 (-178) (-178) (-178)) |#1| (-1091) (-1091)))) (-554 (-474))) (T -641))
-((-2384 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-1091)) (-5 *2 (-1 (-178) (-178) (-178))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-5 *2 (-1 (-178) (-178))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))))
-((-2385 (((-1091) |#1| (-1091) (-584 (-1091))) 10 T ELT) (((-1091) |#1| (-1091) (-1091) (-1091)) 13 T ELT) (((-1091) |#1| (-1091) (-1091)) 12 T ELT) (((-1091) |#1| (-1091)) 11 T ELT)))
-(((-642 |#1|) (-10 -7 (-14 -2385 ((-1091) |#1| (-1091))) (-14 -2385 ((-1091) |#1| (-1091) (-1091))) (-14 -2385 ((-1091) |#1| (-1091) (-1091) (-1091))) (-14 -2385 ((-1091) |#1| (-1091) (-584 (-1091))))) (-554 (-474))) (T -642))
-((-2385 (*1 *2 *3 *2 *4) (-11 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2385 (*1 *2 *3 *2 *2 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2385 (*1 *2 *3 *2 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2385 (*1 *2 *3 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))))
-((-2386 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
-(((-643 |#1| |#2|) (-10 -7 (-14 -2386 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1130) (-1130)) (T -643))
-((-2386 (*1 *2 *3 *4) (-11 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))))
-((-2387 (((-1 |#3| |#2|) (-1091)) 11 T ELT)) (-2388 (((-1 |#3| |#2|) |#1| (-1091)) 21 T ELT)))
-(((-644 |#1| |#2| |#3|) (-10 -7 (-14 -2387 ((-1 |#3| |#2|) (-1091))) (-14 -2388 ((-1 |#3| |#2|) |#1| (-1091)))) (-554 (-474)) (-1130) (-1130)) (T -644))
-((-2388 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2387 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
-((-2391 (((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|) 92 T ELT)) (-2390 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2389 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|) 48 T ELT)))
-(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2389 ((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|)) (-14 -2390 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-14 -2391 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -645))
-((-2391 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -11 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2390 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -11 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-2389 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -11 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-257)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 56 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2896 (($ |#1| (-695)) 54 T ELT)) (-2823 (((-695) $) 58 T ELT)) (-3177 ((|#1| $) 57 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3952 (((-695) $) 59 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-145)) ELT)) (-3680 ((|#1| $ (-695)) 55 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT)))
-(((-646 |#1|) (-110) (-962)) (T -646))
-((-3952 (*1 *2 *1) (-11 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2823 (*1 *2 *1) (-11 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3177 (*1 *2 *1) (-11 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3962 (*1 *1 *1) (-11 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2896 (*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))))
-(-12 (-962) (-79 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-35 |t#1|)) |%noBranch|) (-14 -3952 ((-695) $)) (-14 -2823 ((-695) $)) (-14 -3177 (|t#1| $)) (-14 -3962 ($ $)) (-14 -3680 (|t#1| $ (-695))) (-14 -2896 ($ |t#1| (-695)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) |has| |#1| (-145)) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3846 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
-(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -3846 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1156 |#1|) (-1156 (-349 |#2|)) (-496) (-1156 |#4|) (-1156 (-349 |#5|))) (T -647))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) (-4 *2 (-1156 (-349 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1156 (-349 *6))) (-4 *8 (-1156 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2392 (((-1074) (-773)) 36 T ELT)) (-3620 (((-1186) (-1074)) 29 T ELT)) (-2394 (((-1074) (-773)) 26 T ELT)) (-2393 (((-1074) (-773)) 27 T ELT)) (-3950 (((-773) $) NIL T ELT) (((-1074) (-773)) 25 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-648) (-12 (-1014) (-10 -7 (-14 -3950 ((-1074) (-773))) (-14 -2394 ((-1074) (-773))) (-14 -2393 ((-1074) (-773))) (-14 -2392 ((-1074) (-773))) (-14 -3620 ((-1186) (-1074)))))) (T -648))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2394 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2393 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2392 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-3620 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3845 (($ |#1| |#2|) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2617 ((|#2| $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-649 |#1| |#2| |#3| |#4| |#5|) (-12 (-311) (-10 -8 (-14 -2617 (|#2| $)) (-14 -3950 (|#1| $)) (-14 -3845 ($ |#1| |#2|)) (-14 -2404 ((-3 $ #1="failed") $ $)))) (-145) (-20) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649))
-((-2617 (*1 *2 *1) (-11 (-4 *2 (-20)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-1 *3 *3 *2)) (-13 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-13 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3950 (*1 *2 *1) (-11 (-4 *2 (-145)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-11 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -11 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 37 T ELT)) (-3770 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3768 (($ (-1086 |#1|)) NIL T ELT)) (-3086 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3139 (((-695)) 55 (|has| |#1| (-319)) ELT)) (-3764 (($ $ (-695)) NIL T ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-2401 ((|#2| |#2|) 51 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3759 (($ $ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $ $) NIL (|has| |#1| (-145)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) 72 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3845 (($ |#2|) 49 T ELT)) (-3470 (((-3 $ #1#) $) 98 T ELT)) (-2997 (($) 59 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-2397 (((-870 $)) 89 T ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-995) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3087 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3780 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) 86 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2617 ((|#2|) 52 T ELT)) (-2823 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1086 |#1|) $) NIL T ELT)) (-3085 (((-3 (-995) #1#) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-3082 ((|#2| $) 48 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 35 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-995)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1067)) CONST)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2395 (($ $) 88 (|has| |#1| (-298)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-496)) ELT)) (-3767 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 99 (|has| |#1| (-311)) ELT)) (-3760 (($ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3952 (((-695) $) 39 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-995) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-2396 (((-870 $)) 43 T ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-773) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-995)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) 71 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 26 T CONST)) (-2400 (((-1180 |#1|) $) 84 T ELT)) (-2399 (($ (-1180 |#1|)) 58 T ELT)) (-2669 (($) 9 T CONST)) (-2672 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2398 (((-1180 |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 77 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-650 |#1| |#2|) (-12 (-1156 |#1|) (-556 |#2|) (-10 -8 (-14 -2401 (|#2| |#2|)) (-14 -2617 (|#2|)) (-14 -3845 ($ |#2|)) (-14 -3082 (|#2| $)) (-14 -2400 ((-1180 |#1|) $)) (-14 -2399 ($ (-1180 |#1|))) (-14 -2398 ((-1180 |#1|) $)) (-14 -2397 ((-870 $))) (-14 -2396 ((-870 $))) (IF (|has| |#1| (-298)) (-14 -2395 ($ $)) |%noBranch|) (IF (|has| |#1| (-319)) (-6 (-319)) |%noBranch|))) (-962) (-1156 |#1|)) (T -650))
-((-2401 (*1 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-2617 (*1 *2) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3845 (*1 *1 *2) (-11 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-3082 (*1 *2 *1) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2400 (*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2399 (*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2398 (*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2397 (*1 *2) (-11 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2396 (*1 *2) (-11 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2395 (*1 *1 *1) (-11 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 ((|#1| $) 13 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2403 ((|#2| $) 12 T ELT)) (-3533 (($ |#1| |#2|) 16 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) 15 T ELT) (((-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) $) 14 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 11 T ELT)))
-(((-651 |#1| |#2| |#3|) (-12 (-757) (-430 (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) (-10 -8 (-14 -2403 (|#2| $)) (-14 -2402 (|#1| $)) (-14 -3533 ($ |#1| |#2|)))) (-757) (-1014) (-1 (-82) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)))) (T -651))
-((-2403 (*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-13 *4 (-1 (-82) (-2 (|:| -2402 *3) (|:| -2403 *2)) (-2 (|:| -2402 *3) (|:| -2403 *2)))))) (-2402 (*1 *2 *1) (-11 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-13 *4 (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3)))))) (-3533 (*1 *1 *2 *3) (-11 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-13 *4 (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3)))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 66 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-83) #1#) $) 107 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-83) $) 39 T ELT)) (-3470 (((-3 $ #1#) $) 102 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2519 ((|#2| (-83) |#2|) 93 T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2518 (($ |#1| (-309 (-83))) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2521 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3803 ((|#2| $ |#2|) 33 T ELT)) (-2522 ((|#1| |#1|) 112 (|has| |#1| (-145)) ELT)) (-3950 (((-773) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-83)) 23 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 37 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2523 (($ $) 111 (|has| |#1| (-145)) ELT) (($ $ $) 115 (|has| |#1| (-145)) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 9 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-83) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-145)) ELT) (($ $ |#1|) 109 (|has| |#1| (-145)) ELT)))
-(((-652 |#1| |#2|) (-12 (-962) (-951 |#1|) (-951 (-83)) (-240 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |#1| (-145)) (PROGN (-6 (-35 |#1|)) (-14 -2523 ($ $)) (-14 -2523 ($ $ $)) (-14 -2522 (|#1| |#1|))) |%noBranch|) (-14 -2521 ($ $ (-1 |#2| |#2|))) (-14 -2520 ($ $ (-1 |#2| |#2|))) (-14 ** ($ (-83) (-485))) (-14 ** ($ $ (-485))) (-14 -2519 (|#2| (-83) |#2|)) (-14 -2518 ($ |#1| (-309 (-83)))))) (-962) (-591 |#1|)) (T -652))
-((-2523 (*1 *1 *1) (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2523 (*1 *1 *1 *1) (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2522 (*1 *2 *2) (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2521 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2520 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2519 (*1 *2 *3 *2) (-11 (-5 *3 (-83)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2518 (*1 *1 *2 *3) (-11 (-5 *3 (-309 (-83))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 33 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#1| |#2|) 25 T ELT)) (-3470 (((-3 $ #1#) $) 51 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 35 T ELT)) (-2617 ((|#2| $) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 52 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) 50 T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3129 (((-695)) 28 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 16 T CONST)) (-2669 (($) 30 T CONST)) (-3059 (((-82) $ $) 41 T ELT)) (-3840 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3842 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT)))
-(((-653 |#1| |#2| |#3| |#4| |#5|) (-12 (-962) (-10 -8 (-14 -2617 (|#2| $)) (-14 -3950 (|#1| $)) (-14 -3845 ($ |#1| |#2|)) (-14 -2404 ((-3 $ #1="failed") $ $)) (-14 -3470 ((-3 $ #1#) $)) (-14 -2487 ($ $)))) (-145) (-20) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653))
-((-3470 (*1 *1 *1) (|partial| -11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2617 (*1 *2 *1) (-11 (-4 *2 (-20)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-1 *3 *3 *2)) (-13 *5 (-1 (-3 *2 #1#) *2 *2)) (-13 *6 (-1 (-3 *3 #1#) *3 *3 *2)))) (-3950 (*1 *2 *1) (-11 (-4 *2 (-145)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-3845 (*1 *1 *2 *3) (-11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))) (-2487 (*1 *1 *1) (-11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20)) (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 #1#) *3 *3)) (-13 *6 (-1 (-3 *2 #1#) *2 *2 *3)))))
-((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
-(((-654 |#1| |#2|) (-10 -7 (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|))) (-655 |#2|) (-145)) (T -654))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-655 |#1|) (-110) (-145)) (T -655))
-NIL
-(-12 (-79 |t#1| |t#1|) (-583 |t#1|))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2444 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3851 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2405 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 16 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3771 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-3950 (((-773) $) 39 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 9 T CONST)) (-3059 (((-82) $ $) 48 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
-(((-656 |#1|) (-12 (-413) (-10 -8 (-14 -2405 ($ |#1| |#1| |#1| |#1|)) (-14 -2444 ($ |#1|)) (-14 -3851 ($ |#1|)) (-14 -3470 ($)) (-14 -2444 ($ $ |#1|)) (-14 -3851 ($ $ |#1|)) (-14 -3470 ($ $)) (-14 -3771 (|#1| $ |#1|)) (-14 -3771 ((-744 |#1|) $ (-744 |#1|))))) (-311)) (T -656))
-((-2405 (*1 *1 *2 *2 *2 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2444 (*1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3851 (*1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3470 (*1 *1) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2444 (*1 *1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3851 (*1 *1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3470 (*1 *1 *1) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3771 (*1 *2 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3771 (*1 *2 *1 *2) (-11 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3)))))
-((-2409 (($ $ (-831)) 19 T ELT)) (-2408 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT)))
-(((-657 |#1|) (-10 -7 (-14 ** (|#1| |#1| (-831))) (-14 -2408 (|#1| |#1| (-831))) (-14 -2409 (|#1| |#1| (-831)))) (-658)) (T -657))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-2409 (($ $ (-831)) 19 T ELT)) (-2408 (($ $ (-831)) 18 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-658) (-110)) (T -658))
-((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2409 (*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831)))) (-2408 (*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831)))))
-(-12 (-1014) (-10 -8 (-14 * ($ $ $)) (-14 -2409 ($ $ (-831))) (-14 -2408 ($ $ (-831))) (-14 ** ($ $ (-831)))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2409 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2412 (((-82) $) 10 T ELT)) (-2408 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT)))
-(((-659 |#1|) (-10 -7 (-14 ** (|#1| |#1| (-695))) (-14 -2408 (|#1| |#1| (-695))) (-14 -2409 (|#1| |#1| (-695))) (-14 -2412 ((-82) |#1|)) (-14 ** (|#1| |#1| (-831))) (-14 -2408 (|#1| |#1| (-831))) (-14 -2409 (|#1| |#1| (-831)))) (-660)) (T -659))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-2406 (((-3 $ "failed") $) 22 T ELT)) (-2409 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3470 (((-3 $ "failed") $) 24 T ELT)) (-2412 (((-82) $) 28 T ELT)) (-2407 (((-3 $ "failed") $) 23 T ELT)) (-2408 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 29 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-660) (-110)) (T -660))
-((-2669 (*1 *1) (-4 *1 (-660))) (-2412 (*1 *2 *1) (-11 (-4 *1 (-660)) (-5 *2 (-82)))) (-2409 (*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695)))) (-2408 (*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2407 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-660))))
-(-12 (-658) (-10 -8 (-14 -2669 ($) -3956) (-14 -2412 ((-82) $)) (-14 -2409 ($ $ (-695))) (-14 -2408 ($ $ (-695))) (-14 ** ($ $ (-695))) (-14 -3470 ((-3 $ "failed") $)) (-14 -2407 ((-3 $ "failed") $)) (-14 -2406 ((-3 $ "failed") $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-658) . T) ((-1014) . T) ((-1130) . T))
-((-3139 (((-695)) 39 T ELT)) (-3160 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3845 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) 49 T ELT)) (-3470 (((-3 $ #1#) $) 69 T ELT)) (-2997 (($) 43 T ELT)) (-3135 ((|#2| $) 21 T ELT)) (-2411 (($) 18 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-631 |#2|) (-1180 $) (-1 |#2| |#2|)) 64 T ELT)) (-3975 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2452 ((|#3| $) 36 T ELT)) (-2014 (((-1180 $)) 33 T ELT)))
-(((-661 |#1| |#2| |#3|) (-10 -7 (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -2997 (|#1|)) (-14 -3139 ((-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -2410 ((-631 |#2|) (-1180 |#1|) (-1 |#2| |#2|))) (-14 -3845 ((-3 |#1| #1="failed") (-349 |#3|))) (-14 -3975 (|#1| |#3|)) (-14 -3845 (|#1| |#3|)) (-14 -2411 (|#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3975 (|#3| |#1|)) (-14 -3975 (|#1| (-1180 |#2|))) (-14 -3975 ((-1180 |#2|) |#1|)) (-14 -2014 ((-1180 |#1|))) (-14 -2452 (|#3| |#1|)) (-14 -3135 (|#2| |#1|)) (-14 -3470 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-145) (-1156 |#2|)) (T -661))
-((-3139 (*1 *2) (-11 (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| |#1| (-311)) ELT)) (-2065 (($ $) 115 (|has| |#1| (-311)) ELT)) (-2063 (((-82) $) 117 (|has| |#1| (-311)) ELT)) (-1787 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3333 ((|#1| $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-298)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 134 (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) 135 (|has| |#1| (-311)) ELT)) (-1609 (((-82) $ $) 125 (|has| |#1| (-311)) ELT)) (-3139 (((-695)) 108 (|has| |#1| (-319)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 192 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3159 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 191 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-298)) ELT)) (-2567 (($ $ $) 129 (|has| |#1| (-311)) ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3845 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-349 |#2|)) 175 (|has| |#1| (-311)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-831)) 69 T ELT)) (-2997 (($) 111 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) 128 (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 123 (|has| |#1| (-311)) ELT)) (-2836 (($) 169 (|has| |#1| (-298)) ELT)) (-1681 (((-82) $) 170 (|has| |#1| (-298)) ELT)) (-1769 (($ $ (-695)) 161 (|has| |#1| (-298)) ELT) (($ $) 160 (|has| |#1| (-298)) ELT)) (-3726 (((-82) $) 136 (|has| |#1| (-311)) ELT)) (-3775 (((-831) $) 172 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-298)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3135 ((|#1| $) 66 T ELT)) (-3448 (((-633 $) $) 162 (|has| |#1| (-298)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-311)) ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-311)) ELT)) (-2012 (((-831) $) 110 (|has| |#1| (-319)) ELT)) (-3082 ((|#2| $) 176 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1896 (($ (-584 $)) 121 (|has| |#1| (-311)) ELT) (($ $ $) 120 (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 137 (|has| |#1| (-311)) ELT)) (-3449 (($) 163 (|has| |#1| (-298)) CONST)) (-2402 (($ (-831)) 109 (|has| |#1| (-319)) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) 119 (|has| |#1| (-311)) ELT) (($ $ $) 118 (|has| |#1| (-311)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) 166 (|has| |#1| (-298)) ELT)) (-3735 (((-347 $) $) 133 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ "failed") $ $) 113 (|has| |#1| (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-311)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-311)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 127 (|has| |#1| (-311)) ELT)) (-3760 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1770 (((-695) $) 171 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-298)) ELT)) (-3761 (($ $ (-695)) 156 (OR (-2565 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 154 (OR (-2565 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1091) (-695)) 149 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1091))) 148 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1091)) 146 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 (|has| |#1| (-311)) ELT)) (-2410 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-311)) ELT)) (-3188 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-298)) ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3975 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| |#1| (-298)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-311)) ELT) (($ (-349 (-485))) 107 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (($ $) 164 (|has| |#1| (-298)) ELT) (((-633 $) $) 58 (|has| |#1| (-115)) ELT)) (-2452 ((|#2| $) 60 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-2064 (((-82) $ $) 116 (|has| |#1| (-311)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-695)) 157 (OR (-2565 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 155 (OR (-2565 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1091) (-695)) 152 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1091))) 151 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1091)) 147 (-2565 (|has| |#1| (-812 (-1091))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-311)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 141 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-485)) $) 140 (|has| |#1| (-311)) ELT) (($ $ (-349 (-485))) 139 (|has| |#1| (-311)) ELT)))
-(((-662 |#1| |#2|) (-110) (-145) (-1156 |t#1|)) (T -662))
-((-2411 (*1 *1) (-11 (-4 *2 (-145)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))) (-3188 (*1 *2) (-11 (-4 *1 (-662 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3)))) (-3845 (*1 *1 *2) (-11 (-4 *3 (-145)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3975 (*1 *1 *2) (-11 (-4 *3 (-145)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3082 (*1 *2 *1) (-11 (-4 *1 (-662 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3)))) (-3845 (*1 *1 *2) (|partial| -11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-311)) (-4 *3 (-145)) (-4 *1 (-662 *3 *4)))) (-2410 (*1 *2 *3 *4) (-11 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-4 *1 (-662 *5 *6)) (-4 *5 (-145)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5)))))
-(-12 (-352 |t#1| |t#2|) (-145) (-554 |t#2|) (-354 |t#1|) (-328 |t#1|) (-10 -8 (-14 -2411 ($)) (-14 -3188 (|t#2|)) (-14 -3845 ($ |t#2|)) (-14 -3975 ($ |t#2|)) (-14 -3082 (|t#2| $)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-311)) (-6 (-183 |t#1|)) (-14 -3845 ((-3 $ "failed") (-349 |t#2|))) (-14 -2410 ((-631 |t#1|) (-1180 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-35 |#1|) . T) ((-35 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-79 |#1| |#1|) . T) ((-79 $ $) . T) ((-101) . T) ((-115) OR (|has| |#1| (-298)) (|has| |#1| (-115))) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) . T) ((-554 |#2|) . T) ((-185 $) OR (|has| |#1| (-298)) (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (-11 (|has| |#1| (-189)) (|has| |#1| (-311)))) ((-183 |#1|) |has| |#1| (-311)) ((-189) OR (|has| |#1| (-298)) (-11 (|has| |#1| (-189)) (|has| |#1| (-311)))) ((-188) OR (|has| |#1| (-298)) (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (-11 (|has| |#1| (-189)) (|has| |#1| (-311)))) ((-224 |#1|) |has| |#1| (-311)) ((-200) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-245) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-344) |has| |#1| (-298)) ((-319) OR (|has| |#1| (-298)) (|has| |#1| (-319))) ((-298) |has| |#1| (-298)) ((-321 |#1| |#2|) . T) ((-352 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-392) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-496) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))))) ((-810 (-1091)) -11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091)))) ((-812 (-1091)) OR (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#1| (-810 (-1091))))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-349 (-485))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-298)) ((-1130) . T) ((-1135) OR (|has| |#1| (-298)) (|has| |#1| (-311))))
-((-3727 (($) 11 T CONST)) (-3470 (((-3 $ "failed") $) 14 T ELT)) (-2412 (((-82) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT)))
-(((-663 |#1|) (-10 -7 (-14 -3470 ((-3 |#1| "failed") |#1|)) (-14 ** (|#1| |#1| (-695))) (-14 -2412 ((-82) |#1|)) (-14 -3727 (|#1|) -3956) (-14 ** (|#1| |#1| (-831)))) (-664)) (T -663))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-82) $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-664) (-110)) (T -664))
-((-2669 (*1 *1) (-4 *1 (-664))) (-3727 (*1 *1) (-4 *1 (-664))) (-2412 (*1 *2 *1) (-11 (-4 *1 (-664)) (-5 *2 (-82)))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-664)) (-5 *2 (-695)))) (-3470 (*1 *1 *1) (|partial| -4 *1 (-664))))
-(-12 (-1026) (-10 -8 (-14 -2669 ($) -3956) (-14 -3727 ($) -3956) (-14 -2412 ((-82) $)) (-14 ** ($ $ (-695))) (-14 -3470 ((-3 $ "failed") $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2414 ((|#1| $) 16 T ELT)) (-2413 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3950 (((-773) $) NIL T ELT) (((-1023 |#1|) $) 17 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-665 |#1|) (-12 (-666 |#1|) (-1014) (-553 (-1023 |#1|)) (-10 -8 (-14 -2413 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-69)) (T -665))
-((-2413 (*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-665 *3)))))
-((-2414 ((|#1| $) 8 T ELT)) (-3803 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-666 |#1|) (-110) (-69)) (T -666))
-((-2414 (*1 *2 *1) (-11 (-4 *1 (-666 *2)) (-4 *2 (-69)))))
-(-12 (-1024 |t#1|) (-10 -8 (-14 -2414 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3059 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3059 (|f| (-2414 |f|) |x|) |x|))))))))
-(((-77 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1024 |#1|) . T) ((-1130) . T))
-((-2415 (((-2 (|:| -3092 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3421 (((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2416 ((|#2| (-349 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3438 (((-2 (|:| |poly| |#2|) (|:| -3092 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
-(((-667 |#1| |#2|) (-10 -7 (-14 -3421 ((-2 (|:| -3092 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-14 -2415 ((-2 (|:| -3092 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|))) (-14 -2416 (|#2| (-349 |#2|) (-1 |#2| |#2|))) (-14 -3438 ((-2 (|:| |poly| |#2|) (|:| -3092 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)))) (-311) (-1156 |#1|)) (T -667))
-((-3438 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-349 *6)) (|:| |special| (-349 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-349 *6)))) (-2416 (*1 *2 *3 *4) (-11 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-311)))) (-2415 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3092 (-347 *3)) (|:| |special| (-347 *3)))) (-5 *1 (-667 *5 *3)))) (-3421 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))))
-((-2417 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3846 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
-(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-14 -3846 (|#7| (-1 |#5| |#4|) |#6|)) (-14 -2417 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668))
-((-2417 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
-((-3846 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
-(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-14 -3846 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))))
-((-3735 (((-347 |#4|) |#4|) 42 T ELT)))
-(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4|))) (-718) (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))) (-257) (-862 (-858 |#3|) |#1| |#2|)) (T -670))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091)))))) (-4 *6 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3086 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-470 (-774 |#1|)) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2823 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-470 (-774 |#1|)) (-470 (-774 |#1|))) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3085 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3760 (($ $ (-774 |#1|)) NIL (|has| |#2| (-145)) ELT)) (-3761 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3952 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-349 (-485))) NIL (OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-671 |#1| |#2|) (-862 |#2| (-470 (-774 |#1|)) (-774 |#1|)) (-584 (-1091)) (-962)) (T -671))
-NIL
-((-2418 (((-2 (|:| -2486 (-858 |#3|)) (|:| -2060 (-858 |#3|))) |#4|) 14 T ELT)) (-2989 ((|#4| |#4| |#2|) 33 T ELT)) (-2421 ((|#4| (-349 (-858 |#3|)) |#2|) 62 T ELT)) (-2420 ((|#4| (-1086 (-858 |#3|)) |#2|) 74 T ELT)) (-2419 ((|#4| (-1086 |#4|) |#2|) 49 T ELT)) (-2988 ((|#4| |#4| |#2|) 52 T ELT)) (-3735 (((-347 |#4|) |#4|) 40 T ELT)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2418 ((-2 (|:| -2486 (-858 |#3|)) (|:| -2060 (-858 |#3|))) |#4|)) (-14 -2988 (|#4| |#4| |#2|)) (-14 -2419 (|#4| (-1086 |#4|) |#2|)) (-14 -2989 (|#4| |#4| |#2|)) (-14 -2420 (|#4| (-1086 (-858 |#3|)) |#2|)) (-14 -2421 (|#4| (-349 (-858 |#3|)) |#2|)) (-14 -3735 ((-347 |#4|) |#4|))) (-718) (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)))) (-496) (-862 (-349 (-858 |#3|)) |#1| |#2|)) (T -672))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-349 (-858 *6)) *4 *5)))) (-2421 (*1 *2 *3 *4) (-11 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-349 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))))) (-2420 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) (-4 *2 (-862 (-349 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))))) (-2989 (*1 *2 *2 *3) (-11 (-4 *4 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-349 (-858 *5)) *4 *3)))) (-2419 (*1 *2 *3 *4) (-11 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-349 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *6 (-496)))) (-2988 (*1 *2 *2 *3) (-11 (-4 *4 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-349 (-858 *5)) *4 *3)))) (-2418 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2486 (-858 *6)) (|:| -2060 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-349 (-858 *6)) *4 *5)))))
-((-3735 (((-347 |#4|) |#4|) 54 T ELT)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4|))) (-718) (-757) (-12 (-257) (-117)) (-862 (-349 |#3|) |#1| |#2|)) (T -673))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-12 (-257) (-117))) (-5 *2 (-347 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-349 *6) *4 *5)))))
-((-3846 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT)))
-(((-674 |#1| |#2| |#3|) (-10 -7 (-14 -3846 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 36 T ELT)) (-3777 (((-584 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))) $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695)) 22 (-11 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3159 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3470 (((-3 $ #1#) $) 83 T ELT)) (-2997 (($) 48 (-11 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) 70 T ELT)) (-2824 (((-584 $) $) 52 T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| |#2|) 17 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2012 (((-831) $) 43 (-11 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-2897 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3177 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 35 (-11 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|)))) 11 T ELT)) (-3820 (((-584 |#1|) $) 54 T ELT)) (-3680 ((|#1| $ |#2|) 114 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 44 T CONST)) (-3059 (((-82) $ $) 104 T ELT)) (-3840 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-145)) ELT) (($ $ |#1|) NIL (|has| |#1| (-145)) ELT)))
-(((-675 |#1| |#2|) (-12 (-962) (-951 |#2|) (-951 |#1|) (-380 |#1|) (-10 -8 (-14 -2896 ($ |#1| |#2|)) (-14 -3680 (|#1| $ |#2|)) (-14 -3950 ($ (-584 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))))) (-14 -3777 ((-584 (-2 (|:| -3958 |#1|) (|:| -3942 |#2|))) $)) (-14 -3941 ((-82) $)) (-14 -3820 ((-584 |#1|) $)) (-14 -2824 ((-584 $) $)) (-14 -2422 ((-695) $)) (IF (|has| |#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-35 |#1|)) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-14 -2897 (|#2| $)) (-14 -3177 (|#1| $)) (-14 -3962 ($ $))) |%noBranch|))) (-962) (-664)) (T -675))
-((-2896 (*1 *1 *2 *3) (-11 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3680 (*1 *2 *1 *3) (-11 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3777 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3941 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3820 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2824 (*1 *2 *1) (-11 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2422 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2897 (*1 *2 *1) (-11 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3177 (*1 *2 *1) (-11 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3962 (*1 *1 *1) (-11 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2423 (((-584 |#1|) $) 38 T ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3239 (($ $ $) 99 T ELT)) (-3238 (((-82) $ $) 107 T ELT)) (-3242 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) 86 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2370 (($ $) 88 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) 71 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 80 (|has| $ (-317 |#1|)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-82) |#1|) $ (-485)) 81 T ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-82) |#1|) $ (-485)) 84 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3244 (((-82) $ $) 106 T ELT)) (-2424 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2611 (((-584 |#1|) $) 32 T ELT)) (-3248 (((-82) |#1| $) 66 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3241 (($ $ $) 97 T ELT)) (-1275 ((|#1| $) 63 T ELT)) (-3612 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 62 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 57 T ELT)) (-3568 (($) 14 T ELT)) (-2369 (((-584 (-2 (|:| |entry| |#1|) (|:| -1732 (-695)))) $) 56 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1732 (((-695) |#1| $) 69 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 82 T ELT)) (-3975 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 22 T ELT)) (-3950 (((-773) $) 50 T ELT)) (-3243 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 103 T ELT)) (-3961 (((-695) $) 68 T ELT)))
-(((-676 |#1|) (-12 (-677 |#1|) (-317 |#1|) (-1036 |#1|) (-10 -8 (-14 -2424 ($)) (-14 -2424 ($ |#1|)) (-14 -2424 ($ (-584 |#1|))) (-14 -2423 ((-584 |#1|) $)) (-14 -3409 ($ |#1| $ (-485))) (-14 -3409 ($ (-1 (-82) |#1|) $ (-485))) (-14 -3408 ($ |#1| $ (-485))) (-14 -3408 ($ (-1 (-82) |#1|) $ (-485))))) (-1014)) (T -676))
-((-2424 (*1 *1) (-11 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2424 (*1 *1 *2) (-11 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2424 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) (-2423 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) (-3409 (*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3409 (*1 *1 *2 *1 *3) (-11 (-5 *2 (-1 (-82) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) (-3408 (*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3408 (*1 *1 *2 *1 *3) (-11 (-5 *2 (-1 (-82) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))))
-((-2571 (((-82) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-82) $ $) 68 T ELT)) (-3242 (($ (-584 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3244 (((-82) $ $) 59 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-695)) 56 T ELT)) (-3246 (((-1034) $) 20 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-584 (-2 (|:| |entry| |#1|) (|:| -1732 (-695)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-3950 (((-773) $) 16 T ELT)) (-3243 (($ (-584 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1266 (((-82) $ $) 19 T ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3059 (((-82) $ $) 17 T ELT)))
-(((-677 |#1|) (-110) (-1014)) (T -677))
-NIL
-(-12 (-635 |t#1|) (-1012 |t#1|))
-(((-31) . T) ((-73 |#1|) . T) ((-69) . T) ((-553 (-773)) . T) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-192 |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-635 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-2425 (((-1186) (-1074)) 8 T ELT)))
-(((-678) (-10 -7 (-14 -2425 ((-1186) (-1074))))) (T -678))
-((-2425 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678)))))
-((-2426 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT)))
-(((-679 |#1|) (-10 -7 (-14 -2426 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679))
-((-2426 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 |#2|) $) 160 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 153 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 152 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 150 (|has| |#1| (-496)) ELT)) (-3495 (($ $) 109 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 92 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 91 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) 108 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 93 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3497 (($ $) 107 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 94 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 144 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3817 (((-858 |#1|) $ (-695)) 122 T ELT) (((-858 |#1|) $ (-695) (-695)) 121 T ELT)) (-2895 (((-82) $) 161 T ELT)) (-3630 (($) 119 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $ |#2|) 124 T ELT) (((-695) $ |#2| (-695)) 123 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 90 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3941 (((-82) $) 142 T ELT)) (-2896 (($ $ (-584 |#2|) (-584 (-470 |#2|))) 159 T ELT) (($ $ |#2| (-470 |#2|)) 158 T ELT) (($ |#1| (-470 |#2|)) 143 T ELT) (($ $ |#2| (-695)) 126 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 125 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3946 (($ $) 116 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) 140 T ELT)) (-3177 ((|#1| $) 139 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3815 (($ $ |#2|) 120 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3772 (($ $ (-695)) 127 T ELT)) (-3469 (((-3 $ "failed") $ $) 154 (|has| |#1| (-496)) ELT)) (-3947 (($ $) 117 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (($ $ |#2| $) 135 T ELT) (($ $ (-584 |#2|) (-584 $)) 134 T ELT) (($ $ (-584 (-248 $))) 133 T ELT) (($ $ (-248 $)) 132 T ELT) (($ $ $ $) 131 T ELT) (($ $ (-584 $) (-584 $)) 130 T ELT)) (-3761 (($ $ (-584 |#2|) (-584 (-695))) 52 T ELT) (($ $ |#2| (-695)) 51 T ELT) (($ $ (-584 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3952 (((-470 |#2|) $) 141 T ELT)) (-3498 (($ $) 106 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 95 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 105 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 96 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 104 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 97 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 162 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 157 (|has| |#1| (-145)) ELT) (($ $) 155 (|has| |#1| (-496)) ELT) (($ (-349 (-485))) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3680 ((|#1| $ (-470 |#2|)) 145 T ELT) (($ $ |#2| (-695)) 129 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 128 T ELT)) (-2705 (((-633 $) $) 156 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 115 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 103 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 151 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 114 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 113 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 101 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 112 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 100 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 111 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 99 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 110 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 |#2|) (-584 (-695))) 55 T ELT) (($ $ |#2| (-695)) 54 T ELT) (($ $ (-584 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 146 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 118 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 89 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 149 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 137 T ELT) (($ $ |#1|) 136 T ELT)))
-(((-680 |#1| |#2|) (-110) (-962) (-757)) (T -680))
-((-3680 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3680 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3772 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3775 (*1 *2 *1 *3) (-11 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3775 (*1 *2 *1 *3 *2) (-11 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3817 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3817 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3815 (*1 *1 *1 *2) (-11 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-35 (-349 (-485)))))))
-(-12 (-810 |t#2|) (-887 |t#1| (-470 |t#2|) |t#2|) (-456 |t#2| $) (-259 $) (-10 -8 (-14 -3680 ($ $ |t#2| (-695))) (-14 -3680 ($ $ (-584 |t#2|) (-584 (-695)))) (-14 -3772 ($ $ (-695))) (-14 -2896 ($ $ |t#2| (-695))) (-14 -2896 ($ $ (-584 |t#2|) (-584 (-695)))) (-14 -3775 ((-695) $ |t#2|)) (-14 -3775 ((-695) $ |t#2| (-695))) (-14 -3817 ((-858 |t#1|) $ (-695))) (-14 -3817 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $ |t#2|)) (-6 (-916)) (-6 (-1116))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-470 |#2|)) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-245) |has| |#1| (-496)) ((-259 $) . T) ((-380 |#1|) . T) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-456 |#2| $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-470 |#2|) |#2|) . T) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T))
-((-3735 (((-347 (-1086 |#4|)) (-1086 |#4|)) 30 T ELT) (((-347 |#4|) |#4|) 26 T ELT)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 |#4|) |#4|)) (-14 -3735 ((-347 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-12 (-257) (-117)) (-862 |#3| |#2| |#1|)) (T -681))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-12 (-257) (-117))) (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2429 (((-347 |#4|) |#4| |#2|) 142 T ELT)) (-2427 (((-347 |#4|) |#4|) NIL T ELT)) (-3974 (((-347 (-1086 |#4|)) (-1086 |#4|)) 129 T ELT) (((-347 |#4|) |#4|) 52 T ELT)) (-2431 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3735 (-1086 |#4|)) (|:| -2403 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2435 (((-1086 |#3|) (-1086 |#3|) (-485)) 169 T ELT)) (-2434 (((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3082 (((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2432 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2430 (((-2 (|:| -2006 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485)) 72 T ELT)) (-2428 (((-485) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485))))) 165 T ELT)) (-2433 ((|#4| (-485) (-347 |#4|)) 73 T ELT)) (-3360 (((-82) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485)))) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485))))) NIL T ELT)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3974 ((-347 |#4|) |#4|)) (-14 -3974 ((-347 (-1086 |#4|)) (-1086 |#4|))) (-14 -2427 ((-347 |#4|) |#4|)) (-14 -2428 ((-485) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485)))))) (-14 -2429 ((-347 |#4|) |#4| |#2|)) (-14 -2430 ((-2 (|:| -2006 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485))) (-14 -2431 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3735 (-1086 |#4|)) (|:| -2403 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-14 -2432 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-14 -2433 (|#4| (-485) (-347 |#4|))) (-14 -3360 ((-82) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485)))) (-584 (-2 (|:| -3735 (-1086 |#3|)) (|:| -2403 (-485)))))) (-14 -3082 ((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-14 -2434 ((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695))) (-14 -2435 ((-1086 |#3|) (-1086 |#3|) (-485)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -682))
-((-2435 (*1 *2 *2 *3) (-11 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2434 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3082 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -11 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3360 (*1 *2 *3 *3) (-11 (-5 *3 (-584 (-2 (|:| -3735 (-1086 *6)) (|:| -2403 (-485))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2433 (*1 *2 *3 *4) (-11 (-5 *3 (-485)) (-5 *4 (-347 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257)))) (-2432 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3735 (-1086 *8)) (|:| -2403 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2431 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3735 (-1086 *9)) (|:| -2403 (-485))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2430 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2006 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2429 (*1 *2 *3 *4) (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2428 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3735 (-1086 *6)) (|:| -2403 (-485))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2427 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3974 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3974 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
-((-2436 (($ $ (-831)) 17 T ELT)))
-(((-683 |#1| |#2|) (-10 -7 (-14 -2436 (|#1| |#1| (-831)))) (-684 |#2|) (-145)) (T -683))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-831)) 37 T ELT)) (-2436 (($ $ (-831)) 44 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2408 (($ $ (-831)) 38 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-684 |#1|) (-110) (-145)) (T -684))
-((-2436 (*1 *1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-145)))))
-(-12 (-686) (-655 |t#1|) (-10 -8 (-14 -2436 ($ $ (-831)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2438 (($ $ $) 10 T ELT)) (-2439 (($ $ $ $) 9 T ELT)) (-2437 (($ $ $) 12 T ELT)))
-(((-685 |#1|) (-10 -7 (-14 -2437 (|#1| |#1| |#1|)) (-14 -2438 (|#1| |#1| |#1|)) (-14 -2439 (|#1| |#1| |#1| |#1|))) (-686)) (T -685))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2409 (($ $ (-831)) 37 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2408 (($ $ (-831)) 38 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-686) (-110)) (T -686))
-((-2439 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2438 (*1 *1 *1 *1) (-4 *1 (-686))) (-2437 (*1 *1 *1 *1) (-4 *1 (-686))))
-(-12 (-18) (-658) (-10 -8 (-14 -2439 ($ $ $ $)) (-14 -2438 ($ $ $)) (-14 -2437 ($ $ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-658) . T) ((-1014) . T) ((-1130) . T))
-((-3950 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
-(((-687 |#1|) (-10 -7 (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-688)) (T -687))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2406 (((-3 $ #1="failed") $) 49 T ELT)) (-2409 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3470 (((-3 $ #1#) $) 47 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 43 T ELT)) (-2407 (((-3 $ #1#) $) 48 T ELT)) (-2408 (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2438 (($ $ $) 34 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3129 (((-695)) 41 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2439 (($ $ $ $) 35 T ELT)) (-2437 (($ $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 42 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 46 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-688) (-110)) (T -688))
-((-3129 (*1 *2) (-11 (-4 *1 (-688)) (-5 *2 (-695)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-688)))))
-(-12 (-686) (-660) (-10 -8 (-14 -3129 ((-695)) -3956) (-14 -3950 ($ (-485)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1014) . T) ((-1130) . T))
-((-2441 (((-584 (-2 (|:| |outval| (-141 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-141 |#1|)))))) (-631 (-141 (-349 (-485)))) |#1|) 33 T ELT)) (-2440 (((-584 (-141 |#1|)) (-631 (-141 (-349 (-485)))) |#1|) 23 T ELT)) (-2452 (((-858 (-141 (-349 (-485)))) (-631 (-141 (-349 (-485)))) (-1091)) 20 T ELT) (((-858 (-141 (-349 (-485)))) (-631 (-141 (-349 (-485))))) 19 T ELT)))
-(((-689 |#1|) (-10 -7 (-14 -2452 ((-858 (-141 (-349 (-485)))) (-631 (-141 (-349 (-485)))))) (-14 -2452 ((-858 (-141 (-349 (-485)))) (-631 (-141 (-349 (-485)))) (-1091))) (-14 -2440 ((-584 (-141 |#1|)) (-631 (-141 (-349 (-485)))) |#1|)) (-14 -2441 ((-584 (-2 (|:| |outval| (-141 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-141 |#1|)))))) (-631 (-141 (-349 (-485)))) |#1|))) (-12 (-311) (-756))) (T -689))
-((-2441 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *2 (-584 (-2 (|:| |outval| (-141 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-141 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756))))) (-2440 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *2 (-584 (-141 *4))) (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756))))) (-2452 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *4 (-1091)) (-5 *2 (-858 (-141 (-349 (-485))))) (-5 *1 (-689 *5)) (-4 *5 (-12 (-311) (-756))))) (-2452 (*1 *2 *3) (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *2 (-858 (-141 (-349 (-485))))) (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756))))))
-((-2619 (((-147 (-485)) |#1|) 27 T ELT)))
-(((-690 |#1|) (-10 -7 (-14 -2619 ((-147 (-485)) |#1|))) (-346)) (T -690))
-((-2619 (*1 *2 *3) (-11 (-5 *2 (-147 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-346)))))
-((-2545 ((|#1| |#1| |#1|) 28 T ELT)) (-2546 ((|#1| |#1| |#1|) 27 T ELT)) (-2535 ((|#1| |#1| |#1|) 38 T ELT)) (-2543 ((|#1| |#1| |#1|) 33 T ELT)) (-2544 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2551 (((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|) 26 T ELT)))
-(((-691 |#1| |#2|) (-10 -7 (-14 -2551 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -2546 (|#1| |#1| |#1|)) (-14 -2545 (|#1| |#1| |#1|)) (-14 -2544 ((-3 |#1| "failed") |#1| |#1|)) (-14 -2543 (|#1| |#1| |#1|)) (-14 -2535 (|#1| |#1| |#1|))) (-646 |#2|) (-311)) (T -691))
-((-2535 (*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2543 (*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2544 (*1 *2 *2 *2) (|partial| -11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2545 (*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2546 (*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2551 (*1 *2 *3 *3) (-11 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))))
-((-2558 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2559 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2557 (((-695) $ (-99)) 28 T ELT)) (-2560 (((-633 (-98)) $ (-98)) 25 T ELT)) (-2002 (((-633 (-1139)) $) 12 T ELT)) (-1998 (((-633 (-1137)) $) 8 T ELT)) (-2000 (((-633 (-1136)) $) 10 T ELT)) (-2003 (((-633 (-489)) $) 13 T ELT)) (-1999 (((-633 (-487)) $) 9 T ELT)) (-2001 (((-633 (-486)) $) 11 T ELT)) (-1997 (((-695) $ (-99)) 7 T ELT)) (-2004 (((-633 (-98)) $) 14 T ELT)) (-2442 (((-82) $) 32 T ELT)) (-2443 (((-633 $) |#1| (-866)) 33 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-692 |#1|) (-110) (-1014)) (T -692))
-((-2443 (*1 *2 *3 *4) (-11 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2442 (*1 *2 *1) (-11 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(-12 (-513) (-10 -8 (-14 -2443 ((-633 $) |t#1| (-866))) (-14 -2442 ((-82) $))))
-(((-146) . T) ((-466) . T) ((-513) . T) ((-771) . T))
-((-3923 (((-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)) 72 T ELT)) (-3922 (((-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) 70 T ELT)) (-3760 (((-485)) 86 T ELT)))
-(((-693 |#1| |#2|) (-10 -7 (-14 -3760 ((-485))) (-14 -3922 ((-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))))) (-14 -3923 ((-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)))) (-1156 (-485)) (-352 (-485) |#1|)) (T -693))
-((-3923 (*1 *2 *3) (-11 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3922 (*1 *2) (-11 (-4 *3 (-1156 (-485))) (-5 *2 (-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-352 (-485) *3)))) (-3760 (*1 *2) (-11 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-352 *2 *3)))))
-((-2511 (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 18 T ELT)) (-3576 (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 20 T ELT)))
-(((-694 |#1|) (-10 -7 (-14 -2511 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-14 -2511 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|)))) (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-858 |#1|))))) (-496)) (T -694))
-((-3576 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2511 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2511 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-694 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2486 (($ $ $) 10 T ELT)) (-1313 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2444 (($ $ (-485)) 11 T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3189 (((-82) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 6 T CONST)) (-2669 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-695) (-12 (-718) (-664) (-10 -8 (-14 -2566 ($ $ $)) (-14 -2567 ($ $ $)) (-14 -3147 ($ $ $)) (-14 -2882 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -3469 ((-3 $ "failed") $ $)) (-14 -2444 ($ $ (-485))) (-14 -2997 ($ $)) (-6 (-3997 "*"))))) (T -695))
-((-2566 (*1 *1 *1 *1) (-5 *1 (-695))) (-2567 (*1 *1 *1 *1) (-5 *1 (-695))) (-3147 (*1 *1 *1 *1) (-5 *1 (-695))) (-2882 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -1974 (-695)) (|:| -2905 (-695)))) (-5 *1 (-695)))) (-3469 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2444 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-695)))) (-2997 (*1 *1 *1) (-5 *1 (-695))))
-((-485) (|%not| (|%ilt| |#1| 0)))
-((-3576 (((-3 |#2| "failed") |#2| |#2| (-83) (-1091)) 37 T ELT)))
-(((-696 |#1| |#2|) (-10 -7 (-14 -3576 ((-3 |#2| "failed") |#2| |#2| (-83) (-1091)))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)) (-12 (-26 |#1|) (-1116) (-872))) (T -696))
-((-3576 (*1 *2 *2 *2 *3 *4) (|partial| -11 (-5 *3 (-83)) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-696 *5 *2)) (-4 *2 (-12 (-26 *5) (-1116) (-872))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 7 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 9 T ELT)))
-(((-697) (-1014)) (T -697))
-NIL
-((-3950 (((-697) |#1|) 8 T ELT)))
-(((-698 |#1|) (-10 -7 (-14 -3950 ((-697) |#1|))) (-1130)) (T -698))
-((-3950 (*1 *2 *3) (-11 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130)))))
-((-3135 ((|#2| |#4|) 35 T ELT)))
-(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3135 (|#2| |#4|))) (-392) (-1156 |#1|) (-662 |#1| |#2|) (-1156 |#3|)) (T -699))
-((-3135 (*1 *2 *3) (-11 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5)))))
-((-3470 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2447 (((-1186) (-1074) (-1074) |#4| |#5|) 33 T ELT)) (-2445 ((|#4| |#4| |#5|) 74 T ELT)) (-2446 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2448 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT)))
-(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3470 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-14 -2445 (|#4| |#4| |#5|)) (-14 -2446 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-14 -2447 ((-1186) (-1074) (-1074) |#4| |#5|)) (-14 -2448 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -700))
-((-2448 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2447 (*1 *2 *3 *3 *4 *5) (-11 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-984 *6 *7 *8 *4)))) (-2446 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2445 (*1 *2 *2 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))) (-3470 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-((-3160 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 53 T ELT)) (-2449 (((-584 |#4|) |#4|) 22 T ELT)) (-3932 ((|#4| |#4|) 17 T ELT)))
-(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2449 ((-584 |#4|) |#4|)) (-14 -3160 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-14 -3932 (|#4| |#4|))) (-298) (-279 |#1|) (-1156 |#2|) (-1156 |#3|) (-831)) (T -701))
-((-3932 (*1 *2 *2) (-11 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-13 *6 (-831)))) (-3160 (*1 *2 *3) (|partial| -11 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-13 *7 (-831)))) (-2449 (*1 *2 *3) (-11 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-13 *7 (-831)))))
-((-2450 (((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2451 (((-584 (-695)) |#1|) 20 T ELT)))
-(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2450 ((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|))) (-14 -2451 ((-584 (-695)) |#1|))) (-1156 |#4|) (-718) (-757) (-257) (-862 |#4| |#2| |#3|)) (T -702))
-((-2451 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2450 (*1 *2 *3 *4 *5) (-11 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1086 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10)))))
-((-2454 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-349 (-485))) |#1|) 31 T ELT)) (-2453 (((-584 |#1|) (-631 (-349 (-485))) |#1|) 21 T ELT)) (-2452 (((-858 (-349 (-485))) (-631 (-349 (-485))) (-1091)) 18 T ELT) (((-858 (-349 (-485))) (-631 (-349 (-485)))) 17 T ELT)))
-(((-703 |#1|) (-10 -7 (-14 -2452 ((-858 (-349 (-485))) (-631 (-349 (-485))))) (-14 -2452 ((-858 (-349 (-485))) (-631 (-349 (-485))) (-1091))) (-14 -2453 ((-584 |#1|) (-631 (-349 (-485))) |#1|)) (-14 -2454 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-349 (-485))) |#1|))) (-12 (-311) (-756))) (T -703))
-((-2454 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-12 (-311) (-756))))) (-2453 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-12 (-311) (-756))))) (-2452 (*1 *2 *3 *4) (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *4 (-1091)) (-5 *2 (-858 (-349 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-12 (-311) (-756))))) (-2452 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *2 (-858 (-349 (-485)))) (-5 *1 (-703 *4)) (-4 *4 (-12 (-311) (-756))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 36 T ELT)) (-3084 (((-584 |#2|) $) NIL T ELT)) (-3086 (((-1086 $) $ |#2|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3800 (($ $) 30 T ELT)) (-3169 (((-82) $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3151 (((-584 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-349 (-485)))) NIL (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (((-3 $ #1#) (-858 (-485))) NIL (OR (-11 (|has| |#1| (-35 (-485))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485)))))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-11 (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-35 (-485))))) (-11 (|has| |#1| (-35 (-485))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-484)))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-905 (-485)))))) ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 21 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-349 (-485)))) NIL (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-11 (|has| |#1| (-35 (-485))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485)))))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (OR (-11 (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-35 (-485))))) (-11 (|has| |#1| (-35 (-485))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-484)))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-905 (-485)))))) ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-145)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3697 (((-82) $ $) NIL T ELT) (((-82) $ (-584 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3175 (((-82) $) NIL T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 81 T ELT)) (-3146 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3158 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3168 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3167 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| |#1| (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 57 T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3698 (((-82) $ $) NIL T ELT) (((-82) $ (-584 $)) NIL T ELT)) (-3148 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3183 ((|#2| $) 22 T ELT)) (-3087 (($ (-1086 |#1|) |#2|) NIL T ELT) (($ (-1086 $) |#2|) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3162 (($ $ $) 63 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3176 (((-82) $) NIL T ELT)) (-2823 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3182 (((-695) $) 23 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 |#2| #1#) $) NIL T ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) NIL T ELT)) (-3174 (($ $) 39 T ELT)) (-3145 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3172 (((-584 $) $) 43 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3173 (($ $) 41 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-695))) $ $) 96 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $) 78 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $) NIL T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3193 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3179 (((-584 $) $) 32 T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3694 (((-82) $ $) NIL T ELT) (((-82) $ (-584 $)) NIL T ELT)) (-3689 (($ $ $) NIL T ELT)) (-3449 (($ $) 24 T ELT)) (-3702 (((-82) $ $) NIL T ELT)) (-3695 (((-82) $ $) NIL T ELT) (((-82) $ (-584 $)) NIL T ELT)) (-3690 (($ $ $) NIL T ELT)) (-3181 (($ $) 26 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1802 (((-82) $) 56 T ELT)) (-1801 ((|#1| $) 58 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3156 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3952 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3180 (($ $) NIL T ELT)) (-3178 (($ $) 35 T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT) (($ (-858 (-349 (-485)))) NIL (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-11 (|has| |#1| (-35 (-485))) (|has| |#2| (-554 (-1091))) (-2563 (|has| |#1| (-35 (-349 (-485)))))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1074) $) NIL (-11 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT)) (-2820 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1040 |#1| |#2|) $) 18 T ELT) (($ (-1040 |#1| |#2|)) 19 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-3170 (((-3 (-82) #1#) $ $) NIL T ELT)) (-2669 (($) 37 T CONST)) (-3149 (($ $ $ $ (-695)) 105 (|has| |#1| (-496)) ELT)) (-3150 (($ $ $ (-695)) 104 (|has| |#1| (-496)) ELT)) (-2672 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3842 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-704 |#1| |#2|) (-12 (-978 |#1| (-470 |#2|) |#2|) (-553 (-1040 |#1| |#2|)) (-951 (-1040 |#1| |#2|))) (-962) (-757)) (T -704))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 12 T ELT)) (-3770 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3768 (($ (-1086 |#1|)) NIL T ELT)) (-3086 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2458 (((-584 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3758 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-695)) NIL T ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT) (((-3 (-1086 |#1|) #1#) $) 10 T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-3759 (($ $ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $ $) 58 (|has| |#1| (-145)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-995) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3087 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3780 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3162 (($ $ $) 27 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1086 |#1|) $) NIL T ELT)) (-3085 (((-3 (-995) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-695))) $ $) 37 T ELT)) (-2460 (($ $ $) 41 T ELT)) (-2459 (($ $ $) 47 T ELT)) (-3163 (((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $) 46 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3193 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-995)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2456 (((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1802 (((-82) $) 13 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3741 (($ $ (-695) |#1| $) 26 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2457 (((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-496)) ELT)) (-3767 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3760 (($ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3952 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-995) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-995)) NIL T ELT) (((-1086 |#1|) $) 7 T ELT) (($ (-1086 |#1|)) 8 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 32 T CONST)) (-2672 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-705 |#1|) (-12 (-1156 |#1|) (-553 (-1086 |#1|)) (-951 (-1086 |#1|)) (-10 -8 (-14 -3741 ($ $ (-695) |#1| $)) (-14 -3162 ($ $ $)) (-14 -3161 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3484 (-695))) $ $)) (-14 -2460 ($ $ $)) (-14 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -2459 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-14 -2458 ((-584 $) $ $)) (-14 -3193 ($ $ $)) (-14 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-14 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-14 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-14 -2457 ((-2 (|:| -3759 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-14 -2456 ((-2 (|:| -3759 |#1|) (|:| |coef1| $)) $ $)) (-14 -2455 ((-2 (|:| -3759 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705))
-((-3741 (*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3162 (*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3161 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3484 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2460 (*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3163 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3958 *3) (|:| |gap| (-695)) (|:| -1974 (-705 *3)) (|:| -2905 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2459 (*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2458 (*1 *2 *1 *1) (-11 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3193 (*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) (-3154 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3147 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3153 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3147 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3152 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3147 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2457 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2456 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2455 (*1 *2 *1 *1) (-11 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
-((-3846 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT)))
-(((-706 |#1| |#2|) (-10 -7 (-14 -3846 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))))
-((-2462 ((|#1| (-695) |#1|) 33 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2804 ((|#1| (-695) |#1|) 23 T ELT)) (-2461 ((|#1| (-695) |#1|) 35 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-707 |#1|) (-10 -7 (-14 -2804 (|#1| (-695) |#1|)) (IF (|has| |#1| (-35 (-349 (-485)))) (PROGN (-14 -2461 (|#1| (-695) |#1|)) (-14 -2462 (|#1| (-695) |#1|))) |%noBranch|)) (-145)) (T -707))
-((-2462 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-145)))) (-2461 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-145)))) (-2804 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-145)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3685 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-82)) 120 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) 107 T ELT) (((-82) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 99 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3200 (((-82) |#4| $) 145 T ELT)) (-3198 (((-82) |#4| $) 142 T ELT)) (-3201 (((-82) |#4| $) 146 T ELT) (((-82) $) 143 T ELT)) (-3698 (((-82) |#4| $) 110 T ELT) (((-82) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-584 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) 141 T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-82) |#4| $) 139 T ELT)) (-3241 (((-584 $) |#4| $) 134 T ELT) (((-584 $) (-584 |#4|) $) 133 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 132 T ELT) (((-584 $) |#4| (-584 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-584 |#4|) $) 125 T ELT)) (-3700 (((-584 |#4|) $) 113 T ELT)) (-3694 (((-82) |#4| $) 105 T ELT) (((-82) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-82) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) 106 T ELT) (((-82) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 124 T ELT) (((-584 $) |#4| (-584 $)) 123 T ELT) (((-584 $) (-584 |#4|) $) 122 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 121 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-695) $) 112 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-3681 (((-695) $) 82 (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) 114 T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) 104 T ELT)) (-3192 (((-584 $) |#4| $) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT) (((-584 $) (-584 |#4|) $) 128 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 127 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3683 (((-584 |#3|) $) 87 T ELT)) (-3199 (((-82) |#4| $) 144 T ELT)) (-3937 (((-82) |#3| $) 86 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-708 |#1| |#2| |#3| |#4|) (-110) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -708))
-NIL
-(-12 (-984 |t#1| |t#2| |t#3| |t#4|))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-2465 (((-3 (-329) #1="failed") (-264 |#1|) (-831)) 60 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-329) #1#) (-264 |#1|)) 52 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-329) #1#) (-349 (-858 |#1|)) (-831)) 39 (|has| |#1| (-496)) ELT) (((-3 (-329) #1#) (-349 (-858 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-329) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-329) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2463 (((-329) (-264 |#1|) (-831)) 92 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-329) (-264 |#1|)) 87 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-329) (-349 (-858 |#1|)) (-831)) 84 (|has| |#1| (-496)) ELT) (((-329) (-349 (-858 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-329) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-329) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-329) |#1| (-831)) 73 T ELT) (((-329) |#1|) 22 T ELT)) (-2466 (((-3 (-141 (-329)) #1#) (-264 (-141 |#1|)) (-831)) 68 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-141 (-329)) #1#) (-264 (-141 |#1|))) 58 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-141 (-329)) #1#) (-264 |#1|) (-831)) 61 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-141 (-329)) #1#) (-264 |#1|)) 59 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-141 (-329)) #1#) (-349 (-858 (-141 |#1|))) (-831)) 44 (|has| |#1| (-496)) ELT) (((-3 (-141 (-329)) #1#) (-349 (-858 (-141 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-141 (-329)) #1#) (-349 (-858 |#1|)) (-831)) 38 (|has| |#1| (-496)) ELT) (((-3 (-141 (-329)) #1#) (-349 (-858 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-141 (-329)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-141 (-329)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-141 (-329)) #1#) (-858 (-141 |#1|)) (-831)) 18 (|has| |#1| (-145)) ELT) (((-3 (-141 (-329)) #1#) (-858 (-141 |#1|))) 15 (|has| |#1| (-145)) ELT)) (-2464 (((-141 (-329)) (-264 (-141 |#1|)) (-831)) 95 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-141 (-329)) (-264 (-141 |#1|))) 94 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-141 (-329)) (-264 |#1|) (-831)) 93 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-141 (-329)) (-264 |#1|)) 91 (-11 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-141 (-329)) (-349 (-858 (-141 |#1|))) (-831)) 86 (|has| |#1| (-496)) ELT) (((-141 (-329)) (-349 (-858 (-141 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-141 (-329)) (-349 (-858 |#1|)) (-831)) 83 (|has| |#1| (-496)) ELT) (((-141 (-329)) (-349 (-858 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-141 (-329)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-141 (-329)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-141 (-329)) (-858 (-141 |#1|)) (-831)) 75 (|has| |#1| (-145)) ELT) (((-141 (-329)) (-858 (-141 |#1|))) 74 (|has| |#1| (-145)) ELT) (((-141 (-329)) (-141 |#1|) (-831)) 17 (|has| |#1| (-145)) ELT) (((-141 (-329)) (-141 |#1|)) 13 (|has| |#1| (-145)) ELT) (((-141 (-329)) |#1| (-831)) 27 T ELT) (((-141 (-329)) |#1|) 25 T ELT)))
-(((-709 |#1|) (-10 -7 (-14 -2463 ((-329) |#1|)) (-14 -2463 ((-329) |#1| (-831))) (-14 -2464 ((-141 (-329)) |#1|)) (-14 -2464 ((-141 (-329)) |#1| (-831))) (IF (|has| |#1| (-145)) (PROGN (-14 -2464 ((-141 (-329)) (-141 |#1|))) (-14 -2464 ((-141 (-329)) (-141 |#1|) (-831))) (-14 -2464 ((-141 (-329)) (-858 (-141 |#1|)))) (-14 -2464 ((-141 (-329)) (-858 (-141 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-14 -2463 ((-329) (-858 |#1|))) (-14 -2463 ((-329) (-858 |#1|) (-831))) (-14 -2464 ((-141 (-329)) (-858 |#1|))) (-14 -2464 ((-141 (-329)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-14 -2463 ((-329) (-349 (-858 |#1|)))) (-14 -2463 ((-329) (-349 (-858 |#1|)) (-831))) (-14 -2464 ((-141 (-329)) (-349 (-858 |#1|)))) (-14 -2464 ((-141 (-329)) (-349 (-858 |#1|)) (-831))) (-14 -2464 ((-141 (-329)) (-349 (-858 (-141 |#1|))))) (-14 -2464 ((-141 (-329)) (-349 (-858 (-141 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-14 -2463 ((-329) (-264 |#1|))) (-14 -2463 ((-329) (-264 |#1|) (-831))) (-14 -2464 ((-141 (-329)) (-264 |#1|))) (-14 -2464 ((-141 (-329)) (-264 |#1|) (-831))) (-14 -2464 ((-141 (-329)) (-264 (-141 |#1|)))) (-14 -2464 ((-141 (-329)) (-264 (-141 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-145)) (PROGN (-14 -2466 ((-3 (-141 (-329)) #1="failed") (-858 (-141 |#1|)))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-858 (-141 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-14 -2465 ((-3 (-329) #1#) (-858 |#1|))) (-14 -2465 ((-3 (-329) #1#) (-858 |#1|) (-831))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-858 |#1|))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-14 -2465 ((-3 (-329) #1#) (-349 (-858 |#1|)))) (-14 -2465 ((-3 (-329) #1#) (-349 (-858 |#1|)) (-831))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-349 (-858 |#1|)))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-349 (-858 |#1|)) (-831))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-349 (-858 (-141 |#1|))))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-349 (-858 (-141 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-14 -2465 ((-3 (-329) #1#) (-264 |#1|))) (-14 -2465 ((-3 (-329) #1#) (-264 |#1|) (-831))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-264 |#1|))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-264 |#1|) (-831))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-264 (-141 |#1|)))) (-14 -2466 ((-3 (-141 (-329)) #1#) (-264 (-141 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-329))) (T -709))
-((-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-264 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-264 (-141 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-349 (-858 (-141 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-349 (-858 (-141 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2466 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-858 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-145)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2466 (*1 *2 *3) (|partial| -11 (-5 *3 (-858 (-141 *4))) (-4 *4 (-145)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-264 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-264 (-141 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 (-141 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 (-141 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-858 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-145)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-858 (-141 *4))) (-4 *4 (-145)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *3 (-141 *5)) (-5 *4 (-831)) (-4 *5 (-145)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (-11 (-5 *3 (-141 *4)) (-4 *4 (-145)) (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-5 *2 (-141 (-329))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-329))))) (-2464 (*1 *2 *3) (-11 (-5 *2 (-141 (-329))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-329))))) (-2463 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-5 *2 (-329)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2463 (*1 *2 *3) (-11 (-5 *2 (-329)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))))
-((-2470 (((-831) (-1074)) 90 T ELT)) (-2472 (((-3 (-329) "failed") (-1074)) 36 T ELT)) (-2471 (((-329) (-1074)) 34 T ELT)) (-2468 (((-831) (-1074)) 64 T ELT)) (-2469 (((-1074) (-831)) 74 T ELT)) (-2467 (((-1074) (-831)) 63 T ELT)))
-(((-710) (-10 -7 (-14 -2467 ((-1074) (-831))) (-14 -2468 ((-831) (-1074))) (-14 -2469 ((-1074) (-831))) (-14 -2470 ((-831) (-1074))) (-14 -2471 ((-329) (-1074))) (-14 -2472 ((-3 (-329) "failed") (-1074))))) (T -710))
-((-2472 (*1 *2 *3) (|partial| -11 (-5 *3 (-1074)) (-5 *2 (-329)) (-5 *1 (-710)))) (-2471 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-329)) (-5 *1 (-710)))) (-2470 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2469 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))) (-2468 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
-((-2475 (((-1186) (-1180 (-329)) (-485) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))) (-329) (-1180 (-329)) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329))) 54 T ELT) (((-1186) (-1180 (-329)) (-485) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))) (-329) (-1180 (-329)) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329))) 51 T ELT)) (-2476 (((-1186) (-1180 (-329)) (-485) (-329) (-329) (-485) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329))) 61 T ELT)) (-2474 (((-1186) (-1180 (-329)) (-485) (-329) (-329) (-329) (-329) (-485) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329))) 49 T ELT)) (-2473 (((-1186) (-1180 (-329)) (-485) (-329) (-329) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329))) 63 T ELT) (((-1186) (-1180 (-329)) (-485) (-329) (-329) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329))) 62 T ELT)))
-(((-711) (-10 -7 (-14 -2473 ((-1186) (-1180 (-329)) (-485) (-329) (-329) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)))) (-14 -2473 ((-1186) (-1180 (-329)) (-485) (-329) (-329) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)))) (-14 -2474 ((-1186) (-1180 (-329)) (-485) (-329) (-329) (-329) (-329) (-485) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)))) (-14 -2475 ((-1186) (-1180 (-329)) (-485) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))) (-329) (-1180 (-329)) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)))) (-14 -2475 ((-1186) (-1180 (-329)) (-485) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))) (-329) (-1180 (-329)) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)) (-1180 (-329)))) (-14 -2476 ((-1186) (-1180 (-329)) (-485) (-329) (-329) (-485) (-1 (-1186) (-1180 (-329)) (-1180 (-329)) (-329)))))) (T -711))
-((-2476 (*1 *2 *3 *4 *5 *5 *4 *6) (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-11 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2475 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-11 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2474 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *5 *6) (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))))
-((-2485 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 65 T ELT)) (-2482 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 40 T ELT)) (-2484 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 64 T ELT)) (-2481 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 38 T ELT)) (-2483 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 63 T ELT)) (-2480 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485)) 24 T ELT)) (-2479 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485)) 41 T ELT)) (-2478 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485)) 39 T ELT)) (-2477 (((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485)) 37 T ELT)))
-(((-712) (-10 -7 (-14 -2477 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485))) (-14 -2478 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485))) (-14 -2479 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485) (-485))) (-14 -2480 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))) (-14 -2481 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))) (-14 -2482 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))) (-14 -2483 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))) (-14 -2484 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))) (-14 -2485 ((-2 (|:| -3405 (-329)) (|:| -1597 (-329)) (|:| |totalpts| (-485)) (|:| |success| (-82))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-485) (-485))))) (T -712))
-((-2485 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-82)))) (-5 *1 (-712)) (-5 *5 (-485)))))
-((-3708 (((-1126 |#1|) |#1| (-178) (-485)) 69 T ELT)))
-(((-713 |#1|) (-10 -7 (-14 -3708 ((-1126 |#1|) |#1| (-178) (-485)))) (-888)) (T -713))
-((-3708 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-178)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888)))))
-((-3626 (((-485) $) 17 T ELT)) (-3190 (((-82) $) 10 T ELT)) (-3386 (($ $) 19 T ELT)))
-(((-714 |#1|) (-10 -7 (-14 -3386 (|#1| |#1|)) (-14 -3626 ((-485) |#1|)) (-14 -3190 ((-82) |#1|))) (-715)) (T -714))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-485) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-3190 (((-82) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT)))
-(((-715) (-110)) (T -715))
-((-3190 (*1 *2 *1) (-11 (-4 *1 (-715)) (-5 *2 (-82)))) (-3626 (*1 *2 *1) (-11 (-4 *1 (-715)) (-5 *2 (-485)))) (-3386 (*1 *1 *1) (-4 *1 (-715))))
-(-12 (-722) (-18) (-10 -8 (-14 -3190 ((-82) $)) (-14 -3626 ((-485) $)) (-14 -3386 ($ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-3189 (((-82) $) 10 T ELT)))
-(((-716 |#1|) (-10 -7 (-14 -3189 ((-82) |#1|))) (-717)) (T -716))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
-(((-717) (-110)) (T -717))
-((-3189 (*1 *2 *1) (-11 (-4 *1 (-717)) (-5 *2 (-82)))))
-(-12 (-719) (-20) (-10 -8 (-14 -3189 ((-82) $))))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-2486 (($ $ $) 36 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
-(((-718) (-110)) (T -718))
-((-2486 (*1 *1 *1 *1) (-4 *1 (-718))))
-(-12 (-722) (-10 -8 (-14 -2486 ($ $ $))))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT)))
-(((-719) (-110)) (T -719))
-NIL
-(-12 (-757) (-22))
-(((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-3191 (((-82) $) 42 T ELT)) (-3160 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 78 T ELT)) (-3026 (((-82) $) 72 T ELT)) (-3025 (((-349 (-485)) $) 76 T ELT)) (-3135 ((|#2| $) 26 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2487 (($ $) 58 T ELT)) (-3975 (((-474) $) 67 T ELT)) (-3012 (($ $) 21 T ELT)) (-3950 (((-773) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-349 (-485))) NIL T ELT)) (-3129 (((-695)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-82) $ $) 30 T ELT)) (-2688 (((-82) $ $) 69 T ELT)) (-3840 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
-(((-720 |#1| |#2|) (-10 -7 (-14 -2688 ((-82) |#1| |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -2487 (|#1| |#1|)) (-14 -3027 ((-3 (-349 (-485)) #1="failed") |#1|)) (-14 -3025 ((-349 (-485)) |#1|)) (-14 -3026 ((-82) |#1|)) (-14 -3386 (|#2| |#1|)) (-14 -3135 (|#2| |#1|)) (-14 -3012 (|#1| |#1|)) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 -3129 ((-695)) -3956) (-14 -3950 (|#1| (-485))) (-14 * (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 -3191 ((-82) |#1|)) (-14 * (|#1| (-831) |#1|)) (-14 -3842 (|#1| |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-721 |#2|) (-145)) (T -720))
-((-3129 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3139 (((-695)) 67 (|has| |#1| (-319)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 106 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3159 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 105 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 93 T ELT)) (-3027 (((-3 (-349 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 82 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2997 (($) 70 (|has| |#1| (-319)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3135 ((|#1| $) 85 T ELT)) (-2534 (($ $ $) 71 (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) 72 (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2012 (((-831) $) 69 (|has| |#1| (-319)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 79 (|has| |#1| (-311)) ELT)) (-2402 (($ (-831)) 68 (|has| |#1| (-319)) ELT)) (-2489 ((|#1| $) 90 T ELT)) (-2490 ((|#1| $) 91 T ELT)) (-2491 ((|#1| $) 92 T ELT)) (-3009 ((|#1| $) 86 T ELT)) (-3010 ((|#1| $) 87 T ELT)) (-3011 ((|#1| $) 88 T ELT)) (-2488 ((|#1| $) 89 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) 101 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 98 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 97 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 96 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3803 (($ $ |#1|) 102 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3975 (((-474) $) 77 (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-485))) 107 (|has| |#1| (-951 (-349 (-485)))) ELT)) (-2705 (((-633 $) $) 78 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 ((|#1| $) 83 (|has| |#1| (-974)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 73 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 75 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 74 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 76 (|has| |#1| (-757)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-721 |#1|) (-110) (-145)) (T -721))
-((-3012 (*1 *1 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3646 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-2491 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-2490 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-2489 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-2488 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3011 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3010 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3009 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3135 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-2492 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))) (-3386 (*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)) (-4 *2 (-974)))) (-3026 (*1 *2 *1) (-11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82)))) (-3025 (*1 *2 *1) (-11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))) (-3027 (*1 *2 *1) (|partial| -11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))) (-2487 (*1 *1 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)) (-4 *2 (-311)))))
-(-12 (-35 |t#1|) (-354 |t#1|) (-287 |t#1|) (-10 -8 (-14 -3012 ($ $)) (-14 -3646 (|t#1| $)) (-14 -2491 (|t#1| $)) (-14 -2490 (|t#1| $)) (-14 -2489 (|t#1| $)) (-14 -2488 (|t#1| $)) (-14 -3011 (|t#1| $)) (-14 -3010 (|t#1| $)) (-14 -3009 (|t#1| $)) (-14 -3135 (|t#1| $)) (-14 -2492 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-974)) (-14 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-311)) (-14 -2487 ($ $)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-319) |has| |#1| (-319)) ((-287 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3727 (($) 30 T CONST)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 29 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3842 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
-(((-722) (-110)) (T -722))
-NIL
-(-12 (-717) (-101))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3159 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-349 (-485)) $) NIL (OR (|has| (-910 |#1|) (-951 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 16 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2492 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-2489 ((|#1| $) 22 T ELT)) (-2490 ((|#1| $) 20 T ELT)) (-2491 ((|#1| $) 18 T ELT)) (-3009 ((|#1| $) 26 T ELT)) (-3010 ((|#1| $) 25 T ELT)) (-3011 ((|#1| $) 24 T ELT)) (-2488 ((|#1| $) 23 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-349 (-485))) NIL (OR (|has| (-910 |#1|) (-951 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 12 T CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-723 |#1|) (-12 (-721 |#1|) (-354 (-910 |#1|)) (-10 -8 (-14 -2492 ($ (-910 |#1|) (-910 |#1|))))) (-145)) (T -723))
-((-2492 (*1 *1 *2 *2) (-11 (-5 *2 (-910 *3)) (-4 *3 (-145)) (-5 *1 (-723 *3)))))
-((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
-(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-145) (-721 |#4|) (-145)) (T -724))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))))
-((-2493 (((-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#3| |#2| (-1091)) 19 T ELT)))
-(((-725 |#1| |#2| |#3|) (-10 -7 (-14 -2493 ((-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#3| |#2| (-1091)))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)) (-12 (-26 |#1|) (-1116) (-872)) (-601 |#2|)) (T -725))
-((-2493 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-1091)) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-4 *4 (-12 (-26 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
-((-3576 (((-3 |#2| #1="failed") |#2| (-83) (-248 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-248 |#2|) (-83) (-248 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#2| #1#) |#2| (-83) (-1091)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-83) (-1091)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-83)) (-1091)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-83)) (-1091)) 26 T ELT) (((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1#) (-631 |#2|) (-1180 |#2|) (-1091)) 35 T ELT)))
-(((-726 |#1| |#2|) (-10 -7 (-14 -3576 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1="failed") (-631 |#2|) (-1180 |#2|) (-1091))) (-14 -3576 ((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091))) (-14 -3576 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-83)) (-1091))) (-14 -3576 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-83)) (-1091))) (-14 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-83) (-1091))) (-14 -3576 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-584 |#2|))) |#2| #1#) |#2| (-83) (-1091))) (-14 -3576 ((-3 |#2| #1#) (-248 |#2|) (-83) (-248 |#2|) (-584 |#2|))) (-14 -3576 ((-3 |#2| #1#) |#2| (-83) (-248 |#2|) (-584 |#2|)))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)) (-12 (-26 |#1|) (-1116) (-872))) (T -726))
-((-3576 (*1 *2 *2 *3 *4 *5) (|partial| -11 (-5 *3 (-83)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2)) (-4 *2 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-726 *6 *2)))) (-3576 (*1 *2 *3 *4 *3 *5) (|partial| -11 (-5 *3 (-248 *2)) (-5 *4 (-83)) (-5 *5 (-584 *2)) (-4 *2 (-12 (-26 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))))) (-3576 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-83)) (-5 *5 (-1091)) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-12 (-26 *6) (-1116) (-872))))) (-3576 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-248 *7)) (-5 *4 (-83)) (-5 *5 (-1091)) (-4 *7 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *3 (-584 *7)) (-5 *4 (-584 (-83))) (-5 *5 (-1091)) (-4 *7 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-83))) (-5 *5 (-1091)) (-4 *7 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3576 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-631 *6)) (-5 *4 (-1091)) (-4 *6 (-12 (-26 *5) (-1116) (-872))) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *3 (-631 *7)) (-5 *5 (-1091)) (-4 *7 (-12 (-26 *6) (-1116) (-872))) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7)))))
-((-3473 ((|#2| |#2| (-1091)) 17 T ELT)) (-2494 ((|#2| |#2| (-1091)) 56 T ELT)) (-2495 (((-1 |#2| |#2|) (-1091)) 11 T ELT)))
-(((-727 |#1| |#2|) (-10 -7 (-14 -3473 (|#2| |#2| (-1091))) (-14 -2494 (|#2| |#2| (-1091))) (-14 -2495 ((-1 |#2| |#2|) (-1091)))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)) (-12 (-26 |#1|) (-1116) (-872))) (T -727))
-((-2495 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-12 (-26 *4) (-1116) (-872))))) (-2494 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-727 *4 *2)) (-4 *2 (-12 (-26 *4) (-1116) (-872))))) (-3473 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-727 *4 *2)) (-4 *2 (-12 (-26 *4) (-1116) (-872))))))
-((-2496 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2496 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-584 |#4|))) (-598 |#4|) |#4|))) (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|)) (T -728))
-((-2496 (*1 *2 *3 *4) (-11 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4)))))
-((-3744 (((-2 (|:| -3269 |#3|) (|:| |rh| (-584 (-349 |#2|)))) |#4| (-584 (-349 |#2|))) 53 T ELT)) (-2498 (((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|) 21 T ELT)) (-2499 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2497 ((|#2| |#3| (-584 (-349 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-349 |#2|)) 105 T ELT)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2497 ((-3 |#2| "failed") |#3| (-349 |#2|))) (-14 -2497 (|#2| |#3| (-584 (-349 |#2|)))) (-14 -2498 ((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3|)) (-14 -2498 ((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#3| |#2|)) (-14 -2499 (|#2| |#3| |#1|)) (-14 -2498 ((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4|)) (-14 -2498 ((-584 (-2 (|:| -3776 |#2|) (|:| -3229 |#2|))) |#4| |#2|)) (-14 -2499 (|#2| |#4| |#1|)) (-14 -3744 ((-2 (|:| -3269 |#3|) (|:| |rh| (-584 (-349 |#2|)))) |#4| (-584 (-349 |#2|))))) (-12 (-311) (-117) (-951 (-349 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-349 |#2|))) (T -729))
-((-3744 (*1 *2 *3 *4) (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-584 (-349 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-349 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-349 *6))))) (-2499 (*1 *2 *3 *4) (-11 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-349 *2))))) (-2498 (*1 *2 *3 *4) (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-349 *4))))) (-2498 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-349 *5))))) (-2499 (*1 *2 *3 *4) (-11 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-349 *2))))) (-2498 (*1 *2 *3 *4) (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-349 *4))))) (-2498 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-349 *5))))) (-2497 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-349 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-349 *2))))) (-2497 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-349 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))))
-((-2507 (((-584 (-2 (|:| |frac| (-349 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-347 |#2|) |#2|)) 156 T ELT)) (-2508 (((-584 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2501 (((-584 (-2 (|:| |deg| (-695)) (|:| -3269 |#2|))) |#3|) 123 T ELT)) (-2500 ((|#2| |#3|) 42 T ELT)) (-2502 (((-584 (-2 (|:| -3956 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2503 ((|#3| |#3| (-349 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2500 (|#2| |#3|)) (-14 -2501 ((-584 (-2 (|:| |deg| (-695)) (|:| -3269 |#2|))) |#3|)) (-14 -2502 ((-584 (-2 (|:| -3956 |#1|) (|:| -3269 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-14 -2508 ((-584 (-2 (|:| |poly| |#2|) (|:| -3269 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-14 -2507 ((-584 (-2 (|:| |frac| (-349 |#2|)) (|:| -3269 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-347 |#2|) |#2|))) (-14 -2503 (|#3| |#3| |#2|)) (-14 -2503 (|#3| |#3| (-349 |#2|)))) (-12 (-311) (-117) (-951 (-349 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-349 |#2|))) (T -730))
-((-2503 (*1 *2 *2 *3) (-11 (-5 *3 (-349 *5)) (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2503 (*1 *2 *2 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-1156 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-349 *3))))) (-2507 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-347 *7) *7)) (-4 *7 (-1156 *6)) (-4 *6 (-12 (-311) (-117) (-951 (-349 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-349 *7)) (|:| -3269 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-349 *7))))) (-2508 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3269 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-349 *6))))) (-2502 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3956 *5) (|:| -3269 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-349 *6))))) (-2501 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3269 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-349 *5))))) (-2500 (*1 *2 *3) (-11 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-349 *2))))))
-((-2504 (((-2 (|:| -2014 (-584 (-349 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-349 |#2|)) (-584 (-349 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2014 (-584 (-349 |#2|)))) (-599 |#2| (-349 |#2|)) (-349 |#2|)) 145 T ELT) (((-2 (|:| -2014 (-584 (-349 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-349 |#2|)) (-584 (-349 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2014 (-584 (-349 |#2|)))) (-598 (-349 |#2|)) (-349 |#2|)) 138 T ELT)) (-2505 ((|#2| (-599 |#2| (-349 |#2|))) 86 T ELT) ((|#2| (-598 (-349 |#2|))) 89 T ELT)))
-(((-731 |#1| |#2|) (-10 -7 (-14 -2504 ((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2014 (-584 (-349 |#2|)))) (-598 (-349 |#2|)) (-349 |#2|))) (-14 -2504 ((-2 (|:| -2014 (-584 (-349 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-349 |#2|)) (-584 (-349 |#2|)))) (-14 -2504 ((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2014 (-584 (-349 |#2|)))) (-599 |#2| (-349 |#2|)) (-349 |#2|))) (-14 -2504 ((-2 (|:| -2014 (-584 (-349 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-349 |#2|)) (-584 (-349 |#2|)))) (-14 -2505 (|#2| (-598 (-349 |#2|)))) (-14 -2505 (|#2| (-599 |#2| (-349 |#2|))))) (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))) (-1156 |#1|)) (T -731))
-((-2505 (*1 *2 *3) (-11 (-5 *3 (-599 *2 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))))) (-2505 (*1 *2 *3) (-11 (-5 *3 (-598 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))))) (-2504 (*1 *2 *3 *4) (-11 (-5 *3 (-599 *6 (-349 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-2 (|:| -2014 (-584 (-349 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-349 *6))))) (-2504 (*1 *2 *3 *4) (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2504 (*1 *2 *3 *4) (-11 (-5 *3 (-598 (-349 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-2 (|:| -2014 (-584 (-349 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-349 *6))))) (-2504 (*1 *2 *3 *4) (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-584 *4)))) (-5 *1 (-731 *5 *6)))))
-((-2506 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|) 49 T ELT)))
-(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2506 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|))) (-311) (-601 |#1|) (-1156 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732))
-((-2506 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
-((-2507 (((-584 (-2 (|:| |frac| (-349 |#2|)) (|:| -3269 (-599 |#2| (-349 |#2|))))) (-599 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 47 T ELT)) (-2509 (((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 163 (|has| |#1| (-24)) ELT) (((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|))) 164 (|has| |#1| (-24)) ELT) (((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 165 (|has| |#1| (-24)) ELT) (((-584 (-349 |#2|)) (-598 (-349 |#2|))) 166 (|has| |#1| (-24)) ELT) (((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 38 T ELT) (((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 36 T ELT) (((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2508 (((-584 (-2 (|:| |poly| |#2|) (|:| -3269 (-599 |#2| (-349 |#2|))))) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT)))
-(((-733 |#1| |#2|) (-10 -7 (-14 -2509 ((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|))) (-14 -2509 ((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-14 -2509 ((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|))) (-14 -2509 ((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-14 -2507 ((-584 (-2 (|:| |frac| (-349 |#2|)) (|:| -3269 (-599 |#2| (-349 |#2|))))) (-599 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-14 -2508 ((-584 (-2 (|:| |poly| |#2|) (|:| -3269 (-599 |#2| (-349 |#2|))))) (-599 |#2| (-349 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-24)) (PROGN (-14 -2509 ((-584 (-349 |#2|)) (-598 (-349 |#2|)))) (-14 -2509 ((-584 (-349 |#2|)) (-598 (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-14 -2509 ((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)))) (-14 -2509 ((-584 (-349 |#2|)) (-599 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)))) |%noBranch|)) (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))) (-1156 |#1|)) (T -733))
-((-2509 (*1 *2 *3 *4) (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-24)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6)))) (-2509 (*1 *2 *3) (-11 (-5 *3 (-599 *5 (-349 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-24)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-584 (-349 *5))) (-5 *1 (-733 *4 *5)))) (-2509 (*1 *2 *3 *4) (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-24)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6)))) (-2509 (*1 *2 *3) (-11 (-5 *3 (-598 (-349 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-24)) (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-584 (-349 *5))) (-5 *1 (-733 *4 *5)))) (-2508 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3269 (-599 *6 (-349 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-349 *6))))) (-2507 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-349 *6)) (|:| -3269 (-599 *6 (-349 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-349 *6))))) (-2509 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-599 *7 (-349 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-349 *7))) (-5 *1 (-733 *6 *7)))) (-2509 (*1 *2 *3 *4) (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6)))) (-2509 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-598 (-349 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-349 *7))) (-5 *1 (-733 *6 *7)))) (-2509 (*1 *2 *3 *4) (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6)))))
-((-2510 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|)) 15 T ELT)) (-2511 (((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3576 (((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2014 (-631 |#1|))) #1#) (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
-(((-734 |#1| |#2|) (-10 -7 (-14 -2510 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3269 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|))) (-14 -2510 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|))) (-14 -3576 ((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2014 (-631 |#1|))) #1="failed") (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-584 |#1|))) #1#) |#2| |#1|))) (-14 -2511 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-584 |#1|))) |#2| |#1|)))) (-311) (-601 |#1|)) (T -734))
-((-2511 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 #1="failed")) (|:| -2014 (-584 *6))) *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *6) #1#)) (|:| -2014 (-584 (-1180 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-584 *6))) #1#) *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2014 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) (-2510 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))) (-2510 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3269 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *6 (-601 *5)))))
-((-2512 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2513 (((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3343 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
-(((-735 |#1| |#2|) (-10 -7 (-14 -2512 ((-631 |#1|) (-584 |#1|))) (-14 -2512 ((-631 |#1|) (-584 |#1|) (-695))) (-14 -2513 ((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-14 -3343 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -735))
-((-3343 (*1 *2 *3 *2 *4 *5) (|partial| -11 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2513 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1180 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2512 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2512 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4)))))
-((-2571 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-3191 (((-82) $) NIL (|has| |#2| (-20)) ELT)) (-3710 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#2|)) ELT)) (-2486 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-101)) ELT)) (-3139 (((-695)) NIL (|has| |#2| (-319)) ELT)) (-3791 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3159 (((-485) $) NIL (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-69)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2997 (($) NIL (|has| |#2| (-319)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ (-485)) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#2| (-20)) ELT)) (-2412 (((-82) $) NIL (|has| |#2| (-962)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2611 (((-584 |#2|) $) NIL T ELT)) (-3248 (((-82) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#2| (-319)) ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3245 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#2| (-319)) ELT)) (-3246 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3804 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#2| #1#) (-1 (-82) |#2|) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3839 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3915 (((-104)) NIL (|has| |#2| (-311)) ELT)) (-3761 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1732 (((-695) |#2| $) NIL (|has| |#2| (-69)) ELT) (((-695) (-1 (-82) |#2|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-11 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#2| (-951 (-349 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3129 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#2| (-962)) ELT)) (-2663 (($) NIL (|has| |#2| (-20)) CONST)) (-2669 (($) NIL (|has| |#2| (-962)) CONST)) (-2672 (($ $ (-695)) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $) NIL (-11 (|has| |#2| (-188)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#2| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2688 (((-82) $ $) 11 (|has| |#2| (-757)) ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-18)) ELT) (($ $) NIL (|has| |#2| (-18)) ELT)) (-3842 (($ $ $) NIL (|has| |#2| (-22)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-18)) ELT) (($ (-695) $) NIL (|has| |#2| (-20)) ELT) (($ (-831) $) NIL (|has| |#2| (-22)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-736 |#1| |#2| |#3|) (-195 |#1| |#2|) (-695) (-718) (-1 (-82) (-1180 |#2|) (-1180 |#2|))) (T -736))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3084 (((-584 (-739 (-1091))) $) NIL T ELT)) (-3086 (((-1086 $) $ (-739 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-739 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-739 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3759 (($ $ $ (-739 (-1091))) NIL (|has| |#1| (-145)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-739 (-1091))) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-739 (-1091)) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-739 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#1|) (-739 (-1091))) NIL T ELT) (($ (-1086 $) (-739 (-1091))) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-739 (-1091))) NIL T ELT)) (-2823 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-739 (-1091))) (-470 (-739 (-1091)))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-189)) ELT)) (-3085 (((-3 (-739 (-1091)) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 (((-739 (-1091)) $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1488 (((-82) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-739 (-1091))) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1091)) $) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-189)) ELT)) (-3760 (($ $ (-739 (-1091))) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3952 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-739 (-1091)) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-739 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-739 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-737 |#1|) (-12 (-212 |#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -737))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-311)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-311)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-311)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#2| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-311)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#2| (-311)) ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-311)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 20 (|has| |#2| (-311)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3761 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-349 (-485))) NIL (|has| |#2| (-311)) ELT) (($ $) NIL (|has| |#2| (-311)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-311)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) 15 (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-311)) ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-311)) ELT)))
-(((-738 |#1| |#2| |#3|) (-12 (-79 $ $) (-189) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-311)) (-6 (-311)) |%noBranch|))) (-1014) (-810 |#1|) |#1|) (T -738))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-695) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3761 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2672 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-739 |#1|) (-227 |#1|) (-757)) (T -739))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3938 (((-584 |#1|) $) 39 T ELT)) (-3139 (((-695) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3943 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3160 (((-3 |#1| #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3802 (($ $) 43 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1755 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-695) $ (-485)) NIL T ELT)) (-3940 (($ $) 55 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2293 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3944 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2514 (((-82) $ $) 52 T ELT)) (-3836 (((-695) $) 35 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1756 (($ $ $) NIL T ELT)) (-1757 (($ $ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 ((|#1| $) 42 T ELT)) (-1784 (((-584 (-2 (|:| |gen| |#1|) (|:| -3947 (-695)))) $) NIL T ELT)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2568 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 7 T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-740 |#1|) (-12 (-335 |#1|) (-755) (-10 -8 (-14 -3804 (|#1| $)) (-14 -3802 ($ $)) (-14 -3940 ($ $)) (-14 -2514 ((-82) $ $)) (-14 -3944 ((-3 $ #1="failed") $ |#1|)) (-14 -3943 ((-3 $ #1#) $ |#1|)) (-14 -2568 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-14 -3836 ((-695) $)) (-14 -3938 ((-584 |#1|) $)))) (-757)) (T -740))
-((-3804 (*1 *2 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3802 (*1 *1 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3940 (*1 *1 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2514 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3944 (*1 *1 *1 *2) (|partial| -11 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3943 (*1 *1 *1 *2) (|partial| -11 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2568 (*1 *2 *1 *1) (|partial| -11 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3836 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3938 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3626 (((-485) $) 69 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3189 (((-82) $) 67 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3190 (((-82) $) 68 T ELT)) (-2534 (($ $ $) 61 T ELT)) (-2860 (($ $ $) 62 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 (($ $) 70 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 63 T ELT)) (-2570 (((-82) $ $) 65 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 64 T ELT)) (-2688 (((-82) $ $) 66 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-741) (-110)) (T -741))
-NIL
-(-12 (-496) (-756))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2515 ((|#1| $) 10 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2516 (($ |#1|) 9 T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-695)) NIL T ELT)) (-2823 (((-695) $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3761 (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-3950 (((-773) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-145)) ELT)) (-3680 ((|#2| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-742 |#1| |#2|) (-12 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-189)) (-6 (-189)) |%noBranch|) (-14 -2516 ($ |#1|)) (-14 -2515 (|#1| $)))) (-646 |#2|) (-962)) (T -742))
-((-2516 (*1 *1 *2) (-11 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2515 (*1 *2 *1) (-11 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
-((-2571 (((-82) $ $) 18 T ELT)) (-3237 (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (($ $ $) 69 T ELT)) (-3239 (($ $ $) 67 T ELT)) (-3238 (((-82) $ $) 68 T ELT)) (-3242 (($ (-584 |#1|)) 63 T ELT) (($) 62 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) 42 (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 49 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2370 (($ $) 55 T ELT)) (-1354 (($ $) 51 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3408 (($ |#1| $) 44 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) 43 (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) 50 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 48 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $) 80 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 75 (|has| |#1| (-69)) ELT)) (-3244 (((-82) $ $) 59 T ELT)) (-2534 ((|#1| $) 74 T ELT)) (-2859 (($ $ $) 88 T ELT)) (-3521 (($ $ $) 87 T ELT)) (-2611 (((-584 |#1|) $) 81 T ELT)) (-3248 (((-82) |#1| $) 76 (|has| |#1| (-69)) ELT)) (-2860 ((|#1| $) 86 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 T ELT)) (-3241 (($ $ $) 64 T ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT) (($ |#1| $ (-695)) 56 T ELT)) (-3246 (((-1034) $) 20 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 78 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 83 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-2369 (((-584 (-2 (|:| |entry| |#1|) (|:| -1732 (-695)))) $) 54 T ELT)) (-3240 (($ $ |#1|) 66 T ELT) (($ $ $) 65 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 |#1|)) 45 T ELT)) (-1732 (((-695) (-1 (-82) |#1|) $) 82 T ELT) (((-695) |#1| $) 77 (|has| |#1| (-69)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 47 T ELT)) (-3950 (((-773) $) 16 T ELT)) (-3243 (($ (-584 |#1|)) 61 T ELT) (($) 60 T ELT)) (-1266 (((-82) $ $) 19 T ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 84 T ELT)) (-3059 (((-82) $ $) 17 T ELT)) (-3961 (((-695) $) 85 T ELT)))
-(((-743 |#1|) (-110) (-757)) (T -743))
-((-2534 (*1 *2 *1) (-11 (-4 *1 (-743 *2)) (-4 *2 (-757)))))
-(-12 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-14 -2534 (|t#1| $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) . T) ((-553 (-773)) . T) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-192 |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL (|has| |#1| (-18)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-18)) ELT)) (-3626 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3727 (($) NIL (|has| |#1| (-18)) CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 46 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3189 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#1| (-18)) ELT)) (-2412 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-3190 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2517 (($) 13 T ELT)) (-2527 (((-82) $) 12 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2528 (((-82) $) 11 T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3129 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1266 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2663 (($) 23 (|has| |#1| (-18)) CONST)) (-2669 (($) 33 (|has| |#1| (-756)) CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3059 (((-82) $ $) 21 T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2688 (((-82) $ $) 45 (|has| |#1| (-756)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-18)) ELT) (($ $) 29 (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) 31 (|has| |#1| (-18)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-485) $) 27 (|has| |#1| (-18)) ELT) (($ (-695) $) NIL (|has| |#1| (-18)) ELT) (($ (-831) $) NIL (|has| |#1| (-18)) ELT)))
-(((-744 |#1|) (-12 (-1014) (-354 |#1|) (-10 -8 (-14 -2517 ($)) (-14 -2528 ((-82) $)) (-14 -2527 ((-82) $)) (IF (|has| |#1| (-18)) (-6 (-18)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -744))
-((-2517 (*1 *1) (-11 (-5 *1 (-744 *2)) (-4 *2 (-1014)))) (-2528 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-2527 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3027 (*1 *2 *1) (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
-((-3846 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT)))
-(((-745 |#1| |#2|) (-10 -7 (-14 -3846 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-14 -3846 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1014) (-1014)) (T -745))
-((-3846 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-83) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2519 ((|#1| (-83) |#1|) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2518 (($ |#1| (-309 (-83))) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2521 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3803 ((|#1| $ |#1|) NIL T ELT)) (-2522 ((|#1| |#1|) NIL (|has| |#1| (-145)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-83)) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2523 (($ $) NIL (|has| |#1| (-145)) ELT) (($ $ $) NIL (|has| |#1| (-145)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-83) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-145)) ELT) (($ $ |#1|) NIL (|has| |#1| (-145)) ELT)))
-(((-746 |#1|) (-12 (-962) (-951 |#1|) (-951 (-83)) (-240 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |#1| (-145)) (PROGN (-6 (-35 |#1|)) (-14 -2523 ($ $)) (-14 -2523 ($ $ $)) (-14 -2522 (|#1| |#1|))) |%noBranch|) (-14 -2521 ($ $ (-1 |#1| |#1|))) (-14 -2520 ($ $ (-1 |#1| |#1|))) (-14 ** ($ (-83) (-485))) (-14 ** ($ $ (-485))) (-14 -2519 (|#1| (-83) |#1|)) (-14 -2518 ($ |#1| (-309 (-83)))))) (-962)) (T -746))
-((-2523 (*1 *1 *1) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962)))) (-2523 (*1 *1 *1 *1) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962)))) (-2522 (*1 *2 *2) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962)))) (-2521 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2520 (*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2519 (*1 *2 *3 *2) (-11 (-5 *3 (-83)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2518 (*1 *1 *2 *3) (-11 (-5 *3 (-309 (-83))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
-((-2636 (((-82) $ |#2|) 14 T ELT)) (-3950 (((-773) $) 11 T ELT)))
-(((-747 |#1| |#2|) (-10 -7 (-14 -2636 ((-82) |#1| |#2|)) (-14 -3950 ((-773) |#1|))) (-748 |#2|) (-1014)) (T -747))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3545 ((|#1| $) 19 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2636 (((-82) $ |#1|) 17 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2524 (((-52) $) 18 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-748 |#1|) (-110) (-1014)) (T -748))
-((-3545 (*1 *2 *1) (-11 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) (-2524 (*1 *2 *1) (-11 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-52)))) (-2636 (*1 *2 *1 *3) (-11 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(-12 (-1014) (-10 -8 (-14 -3545 (|t#1| $)) (-14 -2524 ((-52) $)) (-14 -2636 ((-82) $ |t#1|))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2525 (((-166 (-442)) (-1074)) 9 T ELT)))
-(((-749) (-10 -7 (-14 -2525 ((-166 (-442)) (-1074))))) (T -749))
-((-2525 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-166 (-442))) (-5 *1 (-749)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3322 (((-1029) $) 10 T ELT)) (-3545 (((-447) $) 9 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2636 (((-82) $ (-447)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3533 (($ (-447) (-1029)) 8 T ELT)) (-3950 (((-773) $) 25 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2524 (((-52) $) 20 T ELT)) (-3059 (((-82) $ $) 12 T ELT)))
-(((-750) (-12 (-748 (-447)) (-10 -8 (-14 -3322 ((-1029) $)) (-14 -3533 ($ (-447) (-1029)))))) (T -750))
-((-3322 (*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-750)))) (-3533 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL (|has| |#1| (-18)) ELT)) (-2526 (((-1034) $) 31 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-18)) ELT)) (-3626 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3727 (($) NIL (|has| |#1| (-18)) CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3470 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 60 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3189 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-2530 (($) 14 T ELT)) (-1215 (((-82) $ $) NIL (|has| |#1| (-18)) ELT)) (-2412 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-3190 (((-82) $) NIL (|has| |#1| (-756)) ELT)) (-2529 (($) 16 T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2527 (((-82) $) 12 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2528 (((-82) $) 11 T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3129 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3386 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2663 (($) 37 (|has| |#1| (-18)) CONST)) (-2669 (($) 47 (|has| |#1| (-756)) CONST)) (-2569 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-3059 (((-82) $ $) 35 T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-756)) ELT)) (-2688 (((-82) $ $) 59 (|has| |#1| (-756)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-18)) ELT) (($ $) 43 (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) 45 (|has| |#1| (-18)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-485) $) 41 (|has| |#1| (-18)) ELT) (($ (-695) $) NIL (|has| |#1| (-18)) ELT) (($ (-831) $) NIL (|has| |#1| (-18)) ELT)))
-(((-751 |#1|) (-12 (-1014) (-354 |#1|) (-10 -8 (-14 -2530 ($)) (-14 -2529 ($)) (-14 -2528 ((-82) $)) (-14 -2527 ((-82) $)) (-14 -2526 ((-1034) $)) (IF (|has| |#1| (-18)) (-6 (-18)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -751))
-((-2530 (*1 *1) (-11 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2529 (*1 *1) (-11 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2528 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2527 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2526 (*1 *2 *1) (-11 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3027 (*1 *2 *1) (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
-((-3846 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT)))
-(((-752 |#1| |#2|) (-10 -7 (-14 -3846 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-14 -3846 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1014) (-1014)) (T -752))
-((-3846 (*1 *2 *3 *4 *2 *2) (-11 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3139 (((-695)) 27 T ELT)) (-2997 (($) 30 T ELT)) (-2534 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2860 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2012 (((-831) $) 29 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2402 (($ (-831)) 28 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)))
-(((-753) (-110)) (T -753))
-((-2534 (*1 *1) (-4 *1 (-753))) (-2860 (*1 *1) (-4 *1 (-753))))
-(-12 (-757) (-319) (-10 -8 (-14 -2534 ($) -3956) (-14 -2860 ($) -3956)))
-(((-69) . T) ((-553 (-773)) . T) ((-319) . T) ((-12) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2532 (((-82) (-1180 |#2|) (-1180 |#2|)) 19 T ELT)) (-2533 (((-82) (-1180 |#2|) (-1180 |#2|)) 20 T ELT)) (-2531 (((-82) (-1180 |#2|) (-1180 |#2|)) 16 T ELT)))
-(((-754 |#1| |#2|) (-10 -7 (-14 -2531 ((-82) (-1180 |#2|) (-1180 |#2|))) (-14 -2532 ((-82) (-1180 |#2|) (-1180 |#2|))) (-14 -2533 ((-82) (-1180 |#2|) (-1180 |#2|)))) (-695) (-717)) (T -754))
-((-2533 (*1 *2 *3 *3) (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5)) (-13 *4 (-695)))) (-2532 (*1 *2 *3 *3) (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5)) (-13 *4 (-695)))) (-2531 (*1 *2 *3 *3) (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5)) (-13 *4 (-695)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3727 (($) 29 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-2412 (((-82) $) 30 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 28 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-755) (-110)) (T -755))
-NIL
-(-12 (-767) (-664))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3626 (((-485) $) 38 T ELT)) (-3727 (($) 30 T CONST)) (-3470 (((-3 $ "failed") $) 55 T ELT)) (-3189 (((-82) $) 28 T ELT)) (-1215 (((-82) $ $) 33 T ELT)) (-2412 (((-82) $) 53 T ELT)) (-3190 (((-82) $) 39 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3129 (((-695)) 57 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 51 T ELT)) (-3386 (($ $) 37 T ELT)) (-2663 (($) 29 T CONST)) (-2669 (($) 52 T CONST)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (-3840 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3842 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 54 T ELT) (($ $ (-831)) 49 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT)))
-(((-756) (-110)) (T -756))
-NIL
-(-12 (-715) (-117) (-664))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-117) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)))
-(((-757) (-110)) (T -757))
-NIL
-(-12 (-1014) (-760))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3950 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 12 T ELT)))
-(((-758 |#1| |#2|) (-12 (-760) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1130) (-1 (-82) |#1| |#1|)) (T -758))
-NIL
-((-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 15 T ELT)) (-1266 (((-82) $ $) 17 T ELT)) (-2569 (((-82) $ $) 12 T ELT)) (-2570 (((-82) $ $) 9 T ELT)) (-3059 (((-82) $ $) 14 T ELT)) (-2687 (((-82) $ $) 11 T ELT)))
-(((-759 |#1|) (-10 -7 (-14 -2534 (|#1| |#1| |#1|)) (-14 -2860 (|#1| |#1| |#1|)) (-14 -2569 ((-82) |#1| |#1|)) (-14 -2687 ((-82) |#1| |#1|)) (-14 -2570 ((-82) |#1| |#1|)) (-14 -1266 ((-82) |#1| |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-760)) (T -759))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-2534 (($ $ $) 10 T ELT)) (-2860 (($ $ $) 11 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2569 (((-82) $ $) 12 T ELT)) (-2570 (((-82) $ $) 14 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 13 T ELT)) (-2688 (((-82) $ $) 15 T ELT)))
-(((-760) (-110)) (T -760))
-((-2688 (*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82)))) (-2570 (*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82)))) (-2687 (*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82)))) (-2569 (*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82)))) (-2860 (*1 *1 *1 *1) (-4 *1 (-760))) (-2534 (*1 *1 *1 *1) (-4 *1 (-760))))
-(-12 (-69) (-10 -8 (-14 -2688 ((-82) $ $)) (-14 -2570 ((-82) $ $)) (-14 -2687 ((-82) $ $)) (-14 -2569 ((-82) $ $)) (-14 -2860 ($ $ $)) (-14 -2534 ($ $ $))))
-(((-69) . T) ((-12) . T) ((-1130) . T))
-((-2539 (($ $ $) 49 T ELT)) (-2540 (($ $ $) 48 T ELT)) (-2541 (($ $ $) 46 T ELT)) (-2537 (($ $ $) 55 T ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 50 T ELT)) (-2538 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3160 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3506 (($ $) 39 T ELT)) (-2545 (($ $ $) 43 T ELT)) (-2546 (($ $ $) 42 T ELT)) (-2535 (($ $ $) 51 T ELT)) (-2543 (($ $ $) 57 T ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 45 T ELT)) (-2544 (((-3 $ #1#) $ $) 52 T ELT)) (-3469 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2820 ((|#2| $) 36 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3820 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
-(((-761 |#1| |#2|) (-10 -7 (-14 -2535 (|#1| |#1| |#1|)) (-14 -2536 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-14 -2537 (|#1| |#1| |#1|)) (-14 -2538 ((-3 |#1| #1="failed") |#1| |#1|)) (-14 -2539 (|#1| |#1| |#1|)) (-14 -2540 (|#1| |#1| |#1|)) (-14 -2541 (|#1| |#1| |#1|)) (-14 -2542 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-14 -2543 (|#1| |#1| |#1|)) (-14 -2544 ((-3 |#1| #1#) |#1| |#1|)) (-14 -2545 (|#1| |#1| |#1|)) (-14 -2546 (|#1| |#1| |#1|)) (-14 -3506 (|#1| |#1|)) (-14 -2820 (|#2| |#1|)) (-14 -3469 ((-3 |#1| #1#) |#1| |#2|)) (-14 -3820 ((-584 |#2|) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 -3950 (|#1| (-485))) (-14 * (|#1| |#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|)) (-14 -3950 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-2539 (($ $ $) 58 (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ "failed") $ $) 57 (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 85 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3159 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 84 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3962 (($ $) 77 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2896 (($ |#1| (-695)) 75 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) 79 T ELT)) (-2545 (($ $ $) 65 (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) 66 (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ "failed") $ $) 64 (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 67 (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) 78 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3952 (((-695) $) 80 T ELT)) (-2820 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 86 (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3820 (((-584 |#1|) $) 74 T ELT)) (-3680 ((|#1| $ (-695)) 76 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2548 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-762 |#1|) (-110) (-962)) (T -762))
-((-3952 (*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2823 (*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3177 (*1 *2 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3962 (*1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2896 (*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3820 (*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2548 (*1 *2 *1 *2 *2) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3469 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-2549 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-762 *3)))) (-2550 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-762 *3)))) (-2820 (*1 *2 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3506 (*1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-2551 (*1 *2 *1 *1) (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-762 *3)))) (-2546 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2545 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2544 (*1 *1 *1 *1) (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2543 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2542 (*1 *2 *1 *1) (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-762 *3)))) (-2541 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2552 (*1 *2 *1 *1) (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-762 *3)))) (-2540 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2539 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2538 (*1 *1 *1 *1) (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2537 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2536 (*1 *2 *1 *1) (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-762 *3)))) (-2535 (*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(-12 (-962) (-79 |t#1| |t#1|) (-354 |t#1|) (-10 -8 (-14 -3952 ((-695) $)) (-14 -2823 ((-695) $)) (-14 -3177 (|t#1| $)) (-14 -3962 ($ $)) (-14 -3680 (|t#1| $ (-695))) (-14 -2896 ($ |t#1| (-695))) (-14 -3820 ((-584 |t#1|) $)) (-14 -2548 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-145)) (-6 (-35 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-14 -3469 ((-3 $ "failed") $ |t#1|)) (-14 -2549 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -2550 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-14 -2820 (|t#1| $)) (-14 -3506 ($ $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-14 -2551 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -2546 ($ $ $)) (-14 -2545 ($ $ $)) (-14 -2544 ((-3 $ "failed") $ $)) (-14 -2543 ($ $ $)) (-14 -2542 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-14 -2541 ($ $ $)) (-14 -2552 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -2540 ($ $ $)) (-14 -2539 ($ $ $)) (-14 -2538 ((-3 $ "failed") $ $)) (-14 -2537 ($ $ $)) (-14 -2536 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-14 -2535 ($ $ $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) |has| |#1| (-145)) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-354 |#1|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-664) . T) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2547 ((|#2| |#2| |#2| (-66 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2552 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)) 46 (|has| |#1| (-311)) ELT)) (-2550 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2551 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)) 45 (|has| |#1| (-311)) ELT)) (-2548 ((|#1| |#2| |#1| |#1| (-66 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
-(((-763 |#1| |#2|) (-10 -7 (-14 -2547 (|#2| |#2| |#2| (-66 |#1|) (-1 |#1| |#1|))) (-14 -2548 (|#1| |#2| |#1| |#1| (-66 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-14 -2549 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|))) (-14 -2550 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-14 -2551 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|))) (-14 -2552 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2| (-66 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763))
-((-2552 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-66 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2551 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-66 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2550 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-66 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2549 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-66 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2548 (*1 *2 *3 *2 *2 *4 *5) (-11 (-5 *4 (-66 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2547 (*1 *2 *2 *2 *3 *4) (-11 (-5 *3 (-66 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 34 (|has| |#1| (-311)) ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3536 (((-773) $ (-773)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) NIL T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2823 (((-695) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 32 (|has| |#1| (-311)) ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2548 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 23 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-764 |#1| |#2| |#3|) (-12 (-762 |#1|) (-10 -8 (-14 -3536 ((-773) $ (-773))))) (-962) (-66 |#1|) (-1 |#1| |#1|)) (T -764))
-((-3536 (*1 *2 *1 *2) (-11 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-66 *3)) (-13 *5 (-1 *3 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2539 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2536 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2538 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2552 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-695)) 17 T ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2823 (((-695) $) NIL T ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2546 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2544 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3952 (((-695) $) NIL T ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1177 |#1|)) 19 T ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-695)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2548 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 13 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-765 |#1| |#2| |#3| |#4|) (-12 (-762 |#2|) (-556 (-1177 |#1|))) (-1091) (-962) (-66 |#2|) (-1 |#2| |#2|)) (T -765))
-NIL
-((-2555 ((|#1| (-695) |#1|) 45 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2554 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2553 ((|#1| (-695) |#1|) 40 T ELT)) (-2803 ((|#1| (-695) |#1|) 38 T ELT)) (-2802 ((|#1| (-695) |#1|) 37 T ELT)))
-(((-766 |#1|) (-10 -7 (-14 -2802 (|#1| (-695) |#1|)) (-14 -2803 (|#1| (-695) |#1|)) (-14 -2553 (|#1| (-695) |#1|)) (-14 -2554 (|#1| (-695) |#1|)) (-14 -2554 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -2555 (|#1| (-695) |#1|)) |%noBranch|)) (-145)) (T -766))
-((-2555 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-145)))) (-2554 (*1 *2 *3 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))) (-2554 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))) (-2553 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))) (-2803 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))) (-2802 (*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-2534 (($ $ $) 23 T ELT)) (-2860 (($ $ $) 22 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2569 (((-82) $ $) 21 T ELT)) (-2570 (((-82) $ $) 19 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 20 T ELT)) (-2688 (((-82) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-767) (-110)) (T -767))
-NIL
-(-12 (-757) (-1026))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3405 (((-485) $) 14 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 10 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 12 T ELT)))
-(((-768) (-12 (-757) (-10 -8 (-14 -3950 ($ (-485))) (-14 -3405 ((-485) $))))) (T -768))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-768)))) (-3405 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-768)))))
-((-2556 (((-1186) (-584 (-48))) 23 T ELT)) (-3463 (((-1186) (-1074) (-773)) 13 T ELT) (((-1186) (-773)) 8 T ELT) (((-1186) (-1074)) 10 T ELT)))
-(((-769) (-10 -7 (-14 -3463 ((-1186) (-1074))) (-14 -3463 ((-1186) (-773))) (-14 -3463 ((-1186) (-1074) (-773))) (-14 -2556 ((-1186) (-584 (-48)))))) (T -769))
-((-2556 (*1 *2 *3) (-11 (-5 *3 (-584 (-48))) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3463 (*1 *2 *3 *4) (-11 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3463 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3463 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769)))))
-((-2558 (((-633 (-1139)) $ (-1139)) 15 T ELT)) (-2559 (((-633 (-489)) $ (-489)) 12 T ELT)) (-2557 (((-695) $ (-99)) 30 T ELT)))
-(((-770 |#1|) (-10 -7 (-14 -2557 ((-695) |#1| (-99))) (-14 -2558 ((-633 (-1139)) |#1| (-1139))) (-14 -2559 ((-633 (-489)) |#1| (-489)))) (-771)) (T -770))
-NIL
-((-2558 (((-633 (-1139)) $ (-1139)) 8 T ELT)) (-2559 (((-633 (-489)) $ (-489)) 9 T ELT)) (-2557 (((-695) $ (-99)) 7 T ELT)) (-2560 (((-633 (-98)) $ (-98)) 10 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-771) (-110)) (T -771))
-((-2560 (*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-98))) (-5 *3 (-98)))) (-2559 (*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))) (-2558 (*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))) (-2557 (*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *3 (-99)) (-5 *2 (-695)))))
-(-12 (-146) (-10 -8 (-14 -2560 ((-633 (-98)) $ (-98))) (-14 -2559 ((-633 (-489)) $ (-489))) (-14 -2558 ((-633 (-1139)) $ (-1139))) (-14 -2557 ((-695) $ (-99)))))
-(((-146) . T))
-((-2558 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2559 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2557 (((-695) $ (-99)) NIL T ELT)) (-2560 (((-633 (-98)) $ (-98)) 22 T ELT)) (-2562 (($ (-337)) 12 T ELT) (($ (-1074)) 14 T ELT)) (-2561 (((-82) $) 19 T ELT)) (-3950 (((-773) $) 26 T ELT)) (-1701 (($ $) 23 T ELT)))
-(((-772) (-12 (-771) (-553 (-773)) (-10 -8 (-14 -2562 ($ (-337))) (-14 -2562 ($ (-1074))) (-14 -2561 ((-82) $))))) (T -772))
-((-2562 (*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-772)))) (-2562 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-772)))) (-2561 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-772)))))
-((-2571 (((-82) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2592 (($ $ $) 125 T ELT)) (-2607 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2602 (($ (-485)) 53 T ELT)) (-2599 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2583 (($ $ (-584 $)) 82 T ELT)) (-2604 (((-485) $) 34 T ELT)) (-2586 (($ $ $) 73 T ELT)) (-3535 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2605 (((-485) $) 33 T ELT)) (-2587 (($ $ $) 72 T ELT)) (-3538 (($ $) 114 T ELT)) (-2590 (($ $ $) 129 T ELT)) (-2573 (($ (-584 $)) 61 T ELT)) (-3543 (($ $ (-584 $)) 79 T ELT)) (-2601 (($ (-485) (-485)) 55 T ELT)) (-2614 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3140 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2567 (($ $ $) 97 T ELT)) (-2588 (($ $ $) 132 T ELT)) (-2582 (($ $) 115 T ELT)) (-2566 (($ $ $) 98 T ELT)) (-2578 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2840 (((-1186) $) 10 T ELT)) (-2581 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2584 (($ $ $) 75 T ELT)) (-2585 (($ $ $) 74 T ELT)) (-2598 (($ $ (-584 $)) 110 T ELT)) (-2596 (($ $ $) 113 T ELT)) (-2575 (($ (-584 $)) 59 T ELT)) (-2576 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2579 (($ $ $) 123 T ELT)) (-2580 (($ $) 116 T ELT)) (-2591 (($ $ $) 128 T ELT)) (-3536 (($ (-485)) 21 T ELT) (($ (-1091)) 23 T ELT) (($ (-1074)) 30 T ELT) (($ (-178)) 25 T ELT)) (-2564 (($ $ $) 101 T ELT)) (-2563 (($ $) 102 T ELT)) (-2609 (((-1186) (-1074)) 15 T ELT)) (-2610 (($ (-1074)) 14 T ELT)) (-3126 (($ (-584 (-584 $))) 58 T ELT)) (-3141 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2594 (($ $ $) 131 T ELT)) (-3473 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2595 (((-82) $) 108 T ELT)) (-2597 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2603 (($ (-485)) 39 T ELT)) (-2606 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2600 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3469 (($ $ $) 99 T ELT)) (-3568 (($) 13 T ELT)) (-3803 (($ $ (-584 $)) 109 T ELT)) (-2608 (((-1074) (-1074)) 8 T ELT)) (-3839 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2568 (($ $ $) 96 T ELT)) (-3761 (($ $ (-695)) 139 T ELT)) (-2574 (($ (-584 $)) 60 T ELT)) (-3950 (((-773) $) 19 T ELT)) (-3776 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2577 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3243 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2593 (($ $) 124 T ELT)) (-2572 (($ (-584 $)) 65 T ELT)) (-3104 (($ $ $) 105 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2589 (($ $ $) 130 T ELT)) (-2565 (($ $ $) 100 T ELT)) (-3740 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2569 (($ $ $) 89 T ELT)) (-2570 (($ $ $) 87 T ELT)) (-3059 (((-82) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2687 (($ $ $) 88 T ELT)) (-2688 (($ $ $) 86 T ELT)) (-3953 (($ $ $) 94 T ELT)) (-3840 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3842 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
-(((-773) (-12 (-1014) (-10 -8 (-14 -2840 ((-1186) $)) (-14 -2610 ($ (-1074))) (-14 -2609 ((-1186) (-1074))) (-14 -3536 ($ (-485))) (-14 -3536 ($ (-1091))) (-14 -3536 ($ (-1074))) (-14 -3536 ($ (-178))) (-14 -3568 ($)) (-14 -2608 ((-1074) (-1074))) (-14 -2607 ((-485) $)) (-14 -2606 ((-485) $)) (-14 -2607 ((-485))) (-14 -2606 ((-485))) (-14 -2605 ((-485) $)) (-14 -2604 ((-485) $)) (-14 -2603 ($ (-485))) (-14 -2602 ($ (-485))) (-14 -2601 ($ (-485) (-485))) (-14 -3141 ($ $ (-485))) (-14 -3140 ($ $ (-485))) (-14 -3776 ($ $ (-485))) (-14 -3141 ($ $)) (-14 -3140 ($ $)) (-14 -3776 ($ $)) (-14 -2600 ($ $ $)) (-14 -2599 ($ $ $)) (-14 -2600 ($ (-584 $))) (-14 -2599 ($ (-584 $))) (-14 -2598 ($ $ (-584 $))) (-14 -2597 ($ $ (-584 $))) (-14 -2597 ($ $ $ $)) (-14 -2596 ($ $ $)) (-14 -2595 ((-82) $)) (-14 -3803 ($ $ (-584 $))) (-14 -3538 ($ $)) (-14 -2594 ($ $ $)) (-14 -2593 ($ $)) (-14 -3126 ($ (-584 (-584 $)))) (-14 -2592 ($ $ $)) (-14 -2614 ($ $)) (-14 -2614 ($ $ $)) (-14 -2591 ($ $ $)) (-14 -2590 ($ $ $)) (-14 -2589 ($ $ $)) (-14 -2588 ($ $ $)) (-14 -3761 ($ $ (-695))) (-14 -3104 ($ $ $)) (-14 -2587 ($ $ $)) (-14 -2586 ($ $ $)) (-14 -2585 ($ $ $)) (-14 -2584 ($ $ $)) (-14 -3543 ($ $ (-584 $))) (-14 -2583 ($ $ (-584 $))) (-14 -2582 ($ $)) (-14 -3839 ($ $)) (-14 -3839 ($ $ (-695))) (-14 -2581 ($ $)) (-14 -2581 ($ $ (-695))) (-14 -2580 ($ $)) (-14 -2579 ($ $ $)) (-14 -3535 ($ $)) (-14 -3535 ($ $ $)) (-14 -3535 ($ $ $ $)) (-14 -2578 ($ $)) (-14 -2578 ($ $ $)) (-14 -2578 ($ $ $ $)) (-14 -3473 ($ $)) (-14 -3473 ($ $ $)) (-14 -3473 ($ $ $ $)) (-14 -3243 ($ $)) (-14 -3243 ($ (-584 $))) (-14 -2577 ($ $)) (-14 -2577 ($ (-584 $))) (-14 -2576 ($ $)) (-14 -2576 ($ (-584 $))) (-14 -2575 ($ (-584 $))) (-14 -2574 ($ (-584 $))) (-14 -2573 ($ (-584 $))) (-14 -2572 ($ (-584 $))) (-14 -3059 ($ $ $)) (-14 -2571 ($ $ $)) (-14 -2688 ($ $ $)) (-14 -2570 ($ $ $)) (-14 -2687 ($ $ $)) (-14 -2569 ($ $ $)) (-14 -3842 ($ $ $)) (-14 -3840 ($ $ $)) (-14 -3840 ($ $)) (-14 * ($ $ $)) (-14 -3953 ($ $ $)) (-14 ** ($ $ $)) (-14 -2568 ($ $ $)) (-14 -2567 ($ $ $)) (-14 -2566 ($ $ $)) (-14 -3469 ($ $ $)) (-14 -2565 ($ $ $)) (-14 -2564 ($ $ $)) (-14 -2563 ($ $)) (-14 -3740 ($ $ $)) (-14 -3740 ($ $))))) (T -773))
-((-2840 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-773)))) (-2610 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2609 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))) (-3536 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-3536 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-773)))) (-3536 (*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773)))) (-3536 (*1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-773)))) (-3568 (*1 *1) (-5 *1 (-773))) (-2608 (*1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2607 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2606 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2607 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2606 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2603 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2602 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-2601 (*1 *1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-3141 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-3140 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-3776 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))) (-3141 (*1 *1 *1) (-5 *1 (-773))) (-3140 (*1 *1 *1) (-5 *1 (-773))) (-3776 (*1 *1 *1) (-5 *1 (-773))) (-2600 (*1 *1 *1 *1) (-5 *1 (-773))) (-2599 (*1 *1 *1 *1) (-5 *1 (-773))) (-2600 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2599 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2598 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2596 (*1 *1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-773)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3538 (*1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *1 *1 *1) (-5 *1 (-773))) (-2593 (*1 *1 *1) (-5 *1 (-773))) (-3126 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2592 (*1 *1 *1 *1) (-5 *1 (-773))) (-2614 (*1 *1 *1) (-5 *1 (-773))) (-2614 (*1 *1 *1 *1) (-5 *1 (-773))) (-2591 (*1 *1 *1 *1) (-5 *1 (-773))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-3761 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773)))) (-3104 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-3543 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2583 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2582 (*1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773)))) (-2581 (*1 *1 *1) (-5 *1 (-773))) (-2581 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773)))) (-2580 (*1 *1 *1) (-5 *1 (-773))) (-2579 (*1 *1 *1 *1) (-5 *1 (-773))) (-3535 (*1 *1 *1) (-5 *1 (-773))) (-3535 (*1 *1 *1 *1) (-5 *1 (-773))) (-3535 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2578 (*1 *1 *1) (-5 *1 (-773))) (-2578 (*1 *1 *1 *1) (-5 *1 (-773))) (-2578 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3473 (*1 *1 *1) (-5 *1 (-773))) (-3473 (*1 *1 *1 *1) (-5 *1 (-773))) (-3473 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3243 (*1 *1 *1) (-5 *1 (-773))) (-3243 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2577 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2575 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2574 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3059 (*1 *1 *1 *1) (-5 *1 (-773))) (-2571 (*1 *1 *1 *1) (-5 *1 (-773))) (-2688 (*1 *1 *1 *1) (-5 *1 (-773))) (-2570 (*1 *1 *1 *1) (-5 *1 (-773))) (-2687 (*1 *1 *1 *1) (-5 *1 (-773))) (-2569 (*1 *1 *1 *1) (-5 *1 (-773))) (-3842 (*1 *1 *1 *1) (-5 *1 (-773))) (-3840 (*1 *1 *1 *1) (-5 *1 (-773))) (-3840 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3953 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2568 (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-3469 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1) (-5 *1 (-773))) (-3740 (*1 *1 *1 *1) (-5 *1 (-773))) (-3740 (*1 *1 *1) (-5 *1 (-773))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3834 (((-3 $ "failed") (-1091)) 36 T ELT)) (-3139 (((-695)) 32 T ELT)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) 29 T ELT)) (-3245 (((-1074) $) 43 T ELT)) (-2402 (($ (-831)) 28 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (((-1091) $) 13 T ELT) (((-474) $) 19 T ELT) (((-801 (-329)) $) 26 T ELT) (((-801 (-485)) $) 22 T ELT)) (-3950 (((-773) $) 16 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 40 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 38 T ELT)))
-(((-774 |#1|) (-12 (-753) (-554 (-1091)) (-554 (-474)) (-554 (-801 (-329))) (-554 (-801 (-485))) (-10 -8 (-14 -3834 ((-3 $ "failed") (-1091))))) (-584 (-1091))) (T -774))
-((-3834 (*1 *1 *2) (|partial| -11 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-13 *3 (-584 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3545 (((-447) $) 12 T ELT)) (-2611 (((-584 (-381)) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 17 T ELT)))
-(((-775) (-12 (-1014) (-10 -8 (-14 -3545 ((-447) $)) (-14 -2611 ((-584 (-381)) $))))) (T -775))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-775)))) (-2611 (*1 *2 *1) (-11 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3927 (((-1186) (-695)) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-145)) ELT) (($ $ |#1|) NIL (|has| |#1| (-145)) ELT)))
-(((-776 |#1| |#2| |#3| |#4|) (-12 (-962) (-430 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-35 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-14 -3953 ((-3 $ "failed") $ $)) |%noBranch|) (-14 -3927 ((-1186) (-695))))) (-962) (-584 (-1091)) (-584 (-695)) (-695)) (T -776))
-((-3953 (*1 *1 *1 *1) (|partial| -11 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962)) (-13 *3 (-584 (-1091))) (-13 *4 (-584 (-695))) (-13 *5 (-695)))) (-3927 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 *3)) (-13 *7 *3))))
-((-2612 (((-3 (-147 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2613 (((-3 (-349 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT)))
-(((-777 |#1| |#2| |#3|) (-10 -7 (-14 -2613 ((-3 (-349 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-14 -2612 ((-3 (-147 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-311) (-1173 |#1|) (-1156 |#1|)) (T -777))
-((-2612 (*1 *2 *3 *3 *4 *4) (|partial| -11 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-147 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -11 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-349 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))))
-((-2613 (((-3 (-349 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-349 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) 28 T ELT)))
-(((-778 |#1| |#2| |#3|) (-10 -7 (-14 -2613 ((-3 (-349 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (-14 -2613 ((-3 (-349 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|)))) (-311) (-1091) |#1|) (T -778))
-((-2613 (*1 *2 *3 *3 *4) (|partial| -11 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-311)) (-13 *6 (-1091)) (-13 *7 *5) (-5 *2 (-349 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2613 (*1 *2 *3 *3 *4 *4) (|partial| -11 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-311)) (-13 *6 (-1091)) (-13 *7 *5) (-5 *2 (-349 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $ (-485)) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2614 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2615 (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3775 (((-695) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2617 (((-485)) NIL T ELT)) (-2616 (((-485) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3772 (($ $ (-485)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2618 (((-1070 (-485)) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-485) $ (-485)) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-779 |#1|) (-780 |#1|) (-485)) (T -779))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $ (-485)) 78 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-2614 (($ (-1086 (-485)) (-485)) 77 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2615 (($ $) 80 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3775 (((-695) $) 85 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2617 (((-485)) 82 T ELT)) (-2616 (((-485) $) 81 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3772 (($ $ (-485)) 84 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-2618 (((-1070 (-485)) $) 86 T ELT)) (-2894 (($ $) 83 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3773 (((-485) $ (-485)) 79 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-780 |#1|) (-110) (-485)) (T -780))
-((-2618 (*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3772 (*1 *1 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2894 (*1 *1 *1) (-4 *1 (-780 *2))) (-2617 (*1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2616 (*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2615 (*1 *1 *1) (-4 *1 (-780 *2))) (-3773 (*1 *2 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-3040 (*1 *1 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2614 (*1 *1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
-(-12 (-257) (-117) (-10 -8 (-14 -2618 ((-1070 (-485)) $)) (-14 -3775 ((-695) $)) (-14 -3772 ($ $ (-485))) (-14 -2894 ($ $)) (-14 -2617 ((-485))) (-14 -2616 ((-485) $)) (-14 -2615 ($ $)) (-14 -3773 ((-485) $ (-485))) (-14 -3040 ($ $ (-485))) (-14 -2614 ($ (-1086 (-485)) (-485)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-257) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3159 (((-779 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-779 |#1|) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-779 |#1|) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-779 |#1|) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| (-779 |#1|) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3846 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-779 |#1|) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-3133 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-248 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-248 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT) (($ $ (-1091) (-779 |#1|)) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-240 (-779 |#1|) (-779 |#1|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-779 |#1|) $) NIL T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-779 |#1|) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-178) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2619 (((-147 (-349 (-485))) $) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-779 |#1|) (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-349 (-485)) $ (-485)) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-188)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3953 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT)))
-(((-781 |#1|) (-12 (-905 (-779 |#1|)) (-10 -8 (-14 -3773 ((-349 (-485)) $ (-485))) (-14 -2619 ((-147 (-349 (-485))) $)) (-14 -3733 ($ $)) (-14 -3733 ($ (-485) $)))) (-485)) (T -781))
-((-3773 (*1 *2 *1 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-781 *4)) (-13 *4 *3) (-5 *3 (-485)))) (-2619 (*1 *2 *1) (-11 (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-781 *3)) (-13 *3 (-485)))) (-3733 (*1 *1 *1) (-11 (-5 *1 (-781 *2)) (-13 *2 (-485)))) (-3733 (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-13 *3 *2))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| |#2| (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1091) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3733 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 64 T ELT)) (-2997 (($) NIL (|has| |#2| (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) NIL (|has| |#2| (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#2| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| |#2| (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 ((|#2| $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| |#2| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 60 T ELT)) (-3449 (($) NIL (|has| |#2| (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3133 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-248 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-248 |#2|))) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT) (($ $ (-1091) |#2|) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-240 |#2| |#2|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| |#2| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| |#2| (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| |#2| (-554 (-474))) ELT) (((-329) $) NIL (|has| |#2| (-934)) ELT) (((-178) $) NIL (|has| |#2| (-934)) ELT)) (-2619 (((-147 (-349 (-485))) $) 78 T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3950 (((-773) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1091)) NIL (|has| |#2| (-951 (-1091))) ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3134 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-349 (-485)) $ (-485)) 71 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-3059 (((-82) $ $) 46 T ELT)) (-2687 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#2| (-757)) ELT)) (-3953 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-782 |#1| |#2|) (-12 (-905 |#2|) (-10 -8 (-14 -3773 ((-349 (-485)) $ (-485))) (-14 -2619 ((-147 (-349 (-485))) $)) (-14 -3733 ($ $)) (-14 -3733 ($ (-485) $)))) (-485) (-780 |#1|)) (T -782))
-((-3773 (*1 *2 *1 *3) (-11 (-13 *4 *3) (-5 *2 (-349 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) (-4 *5 (-780 *4)))) (-2619 (*1 *2 *1) (-11 (-13 *3 (-485)) (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3733 (*1 *1 *1) (-11 (-13 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3733 (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-13 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))))
-((-2571 (((-82) $ $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3799 ((|#2| $) 12 T ELT)) (-2620 (($ |#1| |#2|) 9 T ELT)) (-3245 (((-1074) $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3246 (((-1034) $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#1| $) 11 T ELT)) (-3533 (($ |#1| |#2|) 10 T ELT)) (-3950 (((-773) $) 18 (OR (-11 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) ELT)) (-1266 (((-82) $ $) NIL (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3059 (((-82) $ $) 23 (-11 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)))
-(((-783 |#1| |#2|) (-12 (-1130) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-14 -2620 ($ |#1| |#2|)) (-14 -3533 ($ |#1| |#2|)) (-14 -3804 (|#1| $)) (-14 -3799 (|#2| $)))) (-1130) (-1130)) (T -783))
-((-2620 (*1 *1 *2 *3) (-11 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3533 (*1 *1 *2 *3) (-11 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3804 (*1 *2 *1) (-11 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) (-3799 (*1 *2 *1) (-11 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2960 (((-485) $) 16 T ELT)) (-2622 (($ (-127)) 13 T ELT)) (-2621 (($ (-127)) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2959 (((-127) $) 15 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2624 (($ (-127)) 11 T ELT)) (-2625 (($ (-127)) 10 T ELT)) (-3950 (((-773) $) 24 T ELT) (($ (-127)) 17 T ELT)) (-2623 (($ (-127)) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-784) (-12 (-1014) (-556 (-127)) (-10 -8 (-14 -2625 ($ (-127))) (-14 -2624 ($ (-127))) (-14 -2623 ($ (-127))) (-14 -2622 ($ (-127))) (-14 -2621 ($ (-127))) (-14 -2959 ((-127) $)) (-14 -2960 ((-485) $))))) (T -784))
-((-2625 (*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2624 (*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2623 (*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2622 (*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2621 (*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2959 (*1 *2 *1) (-11 (-5 *2 (-127)) (-5 *1 (-784)))) (-2960 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-784)))))
-((-3950 (((-264 (-485)) (-349 (-858 (-45)))) 23 T ELT) (((-264 (-485)) (-858 (-45))) 18 T ELT)))
-(((-785) (-10 -7 (-14 -3950 ((-264 (-485)) (-858 (-45)))) (-14 -3950 ((-264 (-485)) (-349 (-858 (-45))))))) (T -785))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 (-45)))) (-5 *2 (-264 (-485))) (-5 *1 (-785)))) (-3950 (*1 *2 *3) (-11 (-5 *3 (-858 (-45))) (-5 *2 (-264 (-485))) (-5 *1 (-785)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3569 (((-82) $ (|[\|\|]| (-447))) 9 T ELT) (((-82) $ (|[\|\|]| (-1074))) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3575 (((-447) $) 10 T ELT) (((-1074) $) 14 T ELT)) (-3059 (((-82) $ $) 15 T ELT)))
-(((-786) (-12 (-996) (-1176) (-10 -8 (-14 -3569 ((-82) $ (|[\|\|]| (-447)))) (-14 -3575 ((-447) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1074)))) (-14 -3575 ((-1074) $))))) (T -786))
-((-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82)) (-5 *1 (-786)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-786)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82)) (-5 *1 (-786)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-786)))))
-((-3846 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT)))
-(((-787 |#1| |#2|) (-10 -7 (-14 -3846 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1130) (-1130)) (T -787))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
-((-3374 (($ |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-695)) 15 T ELT)))
-(((-788 |#1|) (-10 -8 (-14 -3374 ($ |#1| |#1|)) (-14 -2628 (|#1| $ (-695)))) (-1130)) (T -788))
-((-2628 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) (-3374 (*1 *1 *2 *2) (-11 (-5 *1 (-788 *2)) (-4 *2 (-1130)))))
-((-3846 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT)))
-(((-789 |#1| |#2|) (-10 -7 (-14 -3846 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1130) (-1130)) (T -789))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
-((-3374 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-695)) 15 T ELT)))
-(((-790 |#1|) (-10 -8 (-14 -3374 ($ |#1| |#1| |#1|)) (-14 -2628 (|#1| $ (-695)))) (-1130)) (T -790))
-((-2628 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) (-3374 (*1 *1 *2 *2 *2) (-11 (-5 *1 (-790 *2)) (-4 *2 (-1130)))))
-((-2626 (((-584 (-1096)) (-1074)) 9 T ELT)))
-(((-791) (-10 -7 (-14 -2626 ((-584 (-1096)) (-1074))))) (T -791))
-((-2626 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791)))))
-((-3846 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT)))
-(((-792 |#1| |#2|) (-10 -7 (-14 -3846 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1130) (-1130)) (T -792))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))))
-((-2627 (($ |#1| |#1| |#1|) 8 T ELT)) (-2628 ((|#1| $ (-695)) 15 T ELT)))
-(((-793 |#1|) (-10 -8 (-14 -2627 ($ |#1| |#1| |#1|)) (-14 -2628 (|#1| $ (-695)))) (-1130)) (T -793))
-((-2628 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))) (-2627 (*1 *1 *2 *2 *2) (-11 (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-((-2631 (((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485)))) 41 T ELT)) (-2630 (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 31 T ELT)) (-2632 (((-1070 (-584 (-485))) (-584 (-485))) 53 T ELT) (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 50 T ELT)) (-2633 (((-1070 (-584 (-485))) (-485)) 55 T ELT)) (-2629 (((-1070 (-584 (-831))) (-1070 (-584 (-831)))) 22 T ELT)) (-3012 (((-584 (-831)) (-584 (-831))) 18 T ELT)))
-(((-794) (-10 -7 (-14 -3012 ((-584 (-831)) (-584 (-831)))) (-14 -2629 ((-1070 (-584 (-831))) (-1070 (-584 (-831))))) (-14 -2630 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-14 -2631 ((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485))))) (-14 -2632 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-14 -2632 ((-1070 (-584 (-485))) (-584 (-485)))) (-14 -2633 ((-1070 (-584 (-485))) (-485))))) (T -794))
-((-2633 (*1 *2 *3) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))) (-2632 (*1 *2 *3) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2632 (*1 *2 *3 *3) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2631 (*1 *2 *3 *2) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))) (-2630 (*1 *2 *3 *3) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2629 (*1 *2 *2) (-11 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))) (-3012 (*1 *2 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-794)))))
-((-3975 (((-801 (-329)) $) 9 (|has| |#1| (-554 (-801 (-329)))) ELT) (((-801 (-485)) $) 8 (|has| |#1| (-554 (-801 (-485)))) ELT)))
-(((-795 |#1|) (-110) (-1130)) (T -795))
-NIL
-(-12 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-329)))) (-6 (-554 (-801 (-329)))) |%noBranch|)))
-(((-554 (-801 (-329))) |has| |#1| (-554 (-801 (-329)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3617 (($) 14 T ELT)) (-2635 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2634 (((-799 |#1| |#3|) $) 16 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2643 (((-82) $) 22 T ELT)) (-2642 (($) 19 T ELT)) (-3950 (((-773) $) 31 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2853 (((-799 |#1| |#2|) $) 15 T ELT)) (-3059 (((-82) $ $) 26 T ELT)))
-(((-796 |#1| |#2| |#3|) (-12 (-1014) (-10 -8 (-14 -2643 ((-82) $)) (-14 -2642 ($)) (-14 -3617 ($)) (-14 -2635 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-14 -2853 ((-799 |#1| |#2|) $)) (-14 -2634 ((-799 |#1| |#3|) $)))) (-1014) (-1014) (-609 |#2|)) (T -796))
-((-2643 (*1 *2 *1) (-11 (-4 *4 (-1014)) (-5 *2 (-82)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2642 (*1 *1) (-11 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-3617 (*1 *1) (-11 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-2635 (*1 *1 *2 *3) (-11 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2853 (*1 *2 *1) (-11 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2634 (*1 *2 *1) (-11 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-2799 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-797 |#1|) (-110) (-1014)) (T -797))
-((-2799 (*1 *2 *1 *3 *2) (-11 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1014)))))
-(-12 (-1014) (-10 -8 (-14 -2799 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $)))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2636 (((-82) (-584 |#2|) |#3|) 23 T ELT) (((-82) |#2| |#3|) 18 T ELT)) (-2637 (((-799 |#1| |#2|) |#2| |#3|) 45 (-11 (-2563 (|has| |#2| (-951 (-1091)))) (-2563 (|has| |#2| (-962)))) ELT) (((-584 (-248 (-858 |#2|))) |#2| |#3|) 44 (-11 (|has| |#2| (-962)) (-2563 (|has| |#2| (-951 (-1091))))) ELT) (((-584 (-248 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1091))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT)))
-(((-798 |#1| |#2| |#3|) (-10 -7 (-14 -2636 ((-82) |#2| |#3|)) (-14 -2636 ((-82) (-584 |#2|) |#3|)) (-14 -2637 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1091))) (-14 -2637 ((-584 (-248 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-14 -2637 ((-584 (-248 (-858 |#2|))) |#2| |#3|)) (-14 -2637 ((-799 |#1| |#2|) |#2| |#3|))))) (-1014) (-797 |#1|) (-554 (-801 |#1|))) (T -798))
-((-2637 (*1 *2 *3 *4) (-11 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2563 (-4 *3 (-951 (-1091)))) (-2563 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2637 (*1 *2 *3 *4) (-11 (-4 *5 (-1014)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2563 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2637 (*1 *2 *3 *4) (-11 (-4 *5 (-1014)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2637 (*1 *2 *3 *4) (-11 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-11 (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3237 (($ $ $) 40 T ELT)) (-2664 (((-3 (-82) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3617 (($) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2639 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2641 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2643 (((-82) $) 15 T ELT)) (-2642 (($) 13 T ELT)) (-3260 (((-584 (-2 (|:| -3864 (-1091)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3533 (($ (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| |#2|)))) 23 T ELT)) (-3950 (((-773) $) 45 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2638 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2640 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3059 (((-82) $ $) 42 T ELT)))
-(((-799 |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -2643 ((-82) $)) (-14 -2642 ($)) (-14 -3617 ($)) (-14 -3237 ($ $ $)) (-14 -2641 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-14 -2640 ($ (-801 |#1|) |#2| $)) (-14 -2639 ($ (-801 |#1|) |#2| $)) (-14 -2638 ($ (-801 |#1|) |#2| $ |#2|)) (-14 -3260 ((-584 (-2 (|:| -3864 (-1091)) (|:| |entry| |#2|))) $)) (-14 -3533 ($ (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| |#2|))))) (-14 -2664 ((-3 (-82) #1#) $ (-801 |#1|))))) (-1014) (-1014)) (T -799))
-((-2643 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2642 (*1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3617 (*1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3237 (*1 *1 *1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2641 (*1 *2 *3 *1) (|partial| -11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-799 *4 *2)))) (-2640 (*1 *1 *2 *3 *1) (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2639 (*1 *1 *2 *3 *1) (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2638 (*1 *1 *2 *3 *1 *3) (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-3260 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3533 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) (-2664 (*1 *2 *1 *3) (|partial| -11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-82)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1014)))))
-((-3846 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT)))
-(((-800 |#1| |#2| |#3|) (-10 -7 (-14 -3846 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -800))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2651 (($ $ (-584 (-48))) 74 T ELT)) (-3084 (((-584 $) $) 139 T ELT)) (-2648 (((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-48))) $) 30 T ELT)) (-3263 (((-82) $) 35 T ELT)) (-2649 (($ $ (-584 (-1091)) (-48)) 31 T ELT)) (-2652 (($ $ (-584 (-48))) 73 T ELT)) (-3160 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1091) #1#) $) 167 T ELT)) (-3159 ((|#1| $) 68 T ELT) (((-1091) $) NIL T ELT)) (-2646 (($ $) 126 T ELT)) (-2658 (((-82) $) 55 T ELT)) (-2653 (((-584 (-48)) $) 50 T ELT)) (-2650 (($ (-1091) (-82) (-82) (-82)) 75 T ELT)) (-2644 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2655 (((-82) $) 58 T ELT)) (-2656 (((-82) $) 57 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2661 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2828 (((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $) 97 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2662 (((-3 (-584 $) #1#) $ (-83)) 124 T ELT) (((-3 (-2 (|:| -2516 (-83)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2660 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-695))) #1#) $) 45 T ELT)) (-2659 (((-82) $) 34 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2647 (((-82) $) 28 T ELT)) (-2654 (((-82) $) 52 T ELT)) (-2645 (((-584 (-48)) $) 130 T ELT)) (-2657 (((-82) $) 56 T ELT)) (-3803 (($ (-83) (-584 $)) 104 T ELT)) (-3325 (((-695) $) 33 T ELT)) (-3403 (($ $) 72 T ELT)) (-3975 (($ (-584 $)) 69 T ELT)) (-3957 (((-82) $) 32 T ELT)) (-3950 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1091)) 76 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2665 (($ $ (-48)) 129 T ELT)) (-2663 (($) 103 T CONST)) (-2669 (($) 83 T CONST)) (-3059 (((-82) $ $) 93 T ELT)) (-3953 (($ $ $) 117 T ELT)) (-3842 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
-(((-801 |#1|) (-12 (-1014) (-951 |#1|) (-951 (-1091)) (-10 -8 (-14 -2663 ($) -3956) (-14 -2669 ($) -3956) (-14 -2825 ((-3 (-584 $) #1="failed") $)) (-14 -2826 ((-3 (-584 $) #1#) $)) (-14 -2662 ((-3 (-584 $) #1#) $ (-83))) (-14 -2662 ((-3 (-2 (|:| -2516 (-83)) (|:| |arg| (-584 $))) #1#) $)) (-14 -2827 ((-3 (-2 (|:| |val| $) (|:| -2403 (-695))) #1#) $)) (-14 -2661 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-14 -2660 ((-3 (-584 $) #1#) $)) (-14 -2828 ((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $)) (-14 -3803 ($ (-83) (-584 $))) (-14 -3842 ($ $ $)) (-14 * ($ $ $)) (-14 ** ($ $ (-695))) (-14 ** ($ $ $)) (-14 -3953 ($ $ $)) (-14 -3325 ((-695) $)) (-14 -3975 ($ (-584 $))) (-14 -3403 ($ $)) (-14 -2659 ((-82) $)) (-14 -2658 ((-82) $)) (-14 -3263 ((-82) $)) (-14 -3957 ((-82) $)) (-14 -2657 ((-82) $)) (-14 -2656 ((-82) $)) (-14 -2655 ((-82) $)) (-14 -2654 ((-82) $)) (-14 -2653 ((-584 (-48)) $)) (-14 -2652 ($ $ (-584 (-48)))) (-14 -2651 ($ $ (-584 (-48)))) (-14 -2650 ($ (-1091) (-82) (-82) (-82))) (-14 -2649 ($ $ (-584 (-1091)) (-48))) (-14 -2648 ((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-48))) $)) (-14 -2647 ((-82) $)) (-14 -2646 ($ $)) (-14 -2665 ($ $ (-48))) (-14 -2645 ((-584 (-48)) $)) (-14 -3084 ((-584 $) $)) (-14 -2644 ((-3 (-584 $) #1#) (-584 $))))) (-1014)) (T -801))
-((-2663 (*1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2669 (*1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2825 (*1 *2 *1) (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2826 (*1 *2 *1) (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2662 (*1 *2 *1 *3) (|partial| -11 (-5 *3 (-83)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2662 (*1 *2 *1) (|partial| -11 (-5 *2 (-2 (|:| -2516 (-83)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2827 (*1 *2 *1) (|partial| -11 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2403 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2661 (*1 *2 *1) (|partial| -11 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2660 (*1 *2 *1) (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2828 (*1 *2 *1) (|partial| -11 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2403 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3803 (*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-3842 (*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3953 (*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3325 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3403 (*1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2659 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2658 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3263 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3957 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2657 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2655 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2654 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2653 (*1 *2 *1) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2652 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2651 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2650 (*1 *1 *2 *3 *3 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-82)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2649 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-48)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2648 (*1 *2 *1) (-11 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-48)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2647 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2646 (*1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2665 (*1 *1 *1 *2) (-11 (-5 *2 (-48)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2645 (*1 *2 *1) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3084 (*1 *2 *1) (-11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2644 (*1 *2 *2) (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-((-3212 (((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-82) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-82) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-82) |#2|)) 35 T ELT)) (-2664 (((-82) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-82) |#2| (-801 |#1|)) 36 T ELT)) (-3534 (((-1 (-82) |#2|) (-801 |#1|)) 16 T ELT)) (-2666 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2665 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT)))
-(((-802 |#1| |#2|) (-10 -7 (-14 -3212 ((-801 |#1|) (-801 |#1|) (-1 (-82) |#2|))) (-14 -3212 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-82) |#2|)))) (-14 -3212 ((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-82) (-584 |#2|)))) (-14 -3534 ((-1 (-82) |#2|) (-801 |#1|))) (-14 -2664 ((-82) |#2| (-801 |#1|))) (-14 -2664 ((-82) (-584 |#2|) (-801 |#1|))) (-14 -2665 ((-801 |#1|) (-801 |#1|) |#2|)) (-14 -2666 ((-584 |#2|) (-801 |#1|)))) (-1014) (-1130)) (T -802))
-((-2666 (*1 *2 *3) (-11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-2665 (*1 *2 *2 *3) (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))) (-2664 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-82)) (-5 *1 (-802 *5 *6)))) (-2664 (*1 *2 *3 *4) (-11 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1130)))) (-3534 (*1 *2 *3) (-11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-82) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-3212 (*1 *2 *2 *3 *4) (-11 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-82) (-584 *6))) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) (-3212 (*1 *2 *2 *3) (-11 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-82) *5))) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) (-3212 (*1 *2 *2 *3) (-11 (-5 *2 (-801 *4)) (-5 *3 (-1 (-82) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))))
-((-3846 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT)))
-(((-803 |#1| |#2|) (-10 -7 (-14 -3846 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1014) (-1014)) (T -803))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3938 (((-584 |#1|) $) 20 T ELT)) (-2667 (((-82) $) 49 T ELT)) (-3160 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3159 (((-615 |#1|) $) 53 T ELT)) (-3802 (($ $) 24 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3836 (((-695) $) 60 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-615 |#1|) $) 22 T ELT)) (-3950 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 11 T CONST)) (-2668 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 14 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 66 T ELT)))
-(((-804 |#1|) (-12 (-757) (-951 (-615 |#1|)) (-10 -8 (-14 -2669 ($) -3956) (-14 -3950 ((-740 |#1|) $)) (-14 -3950 ($ |#1|)) (-14 -3804 ((-615 |#1|) $)) (-14 -3836 ((-695) $)) (-14 -2668 ((-584 (-615 |#1|)) $)) (-14 -3802 ($ $)) (-14 -2667 ((-82) $)) (-14 -3938 ((-584 |#1|) $)))) (-757)) (T -804))
-((-2669 (*1 *1) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3950 (*1 *1 *2) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3804 (*1 *2 *1) (-11 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3836 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2668 (*1 *2 *1) (-11 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3802 (*1 *1 *1) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2667 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3938 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
-((-3477 ((|#1| |#1| |#1|) 19 T ELT)))
-(((-805 |#1| |#2|) (-10 -7 (-14 -3477 (|#1| |#1| |#1|))) (-1156 |#2|) (-962)) (T -805))
-((-3477 (*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3)))))
-((-2672 ((|#2| $ |#3|) 10 T ELT)))
-(((-806 |#1| |#2| |#3|) (-10 -7 (-14 -2672 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1130) (-1130)) (T -806))
-NIL
-((-3761 ((|#1| $ |#2|) 7 T ELT)) (-2672 ((|#1| $ |#2|) 6 T ELT)))
-(((-807 |#1| |#2|) (-110) (-1130) (-1130)) (T -807))
-((-3761 (*1 *2 *1 *3) (-11 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2672 (*1 *2 *1 *3) (-11 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))))
-(-12 (-1130) (-10 -8 (-14 -3761 (|t#1| $ |t#2|)) (-14 -2672 (|t#1| $ |t#2|))))
-(((-12) . T) ((-1130) . T))
-((-2671 ((|#1| |#1| (-695)) 26 T ELT)) (-2670 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3438 (((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT)))
-(((-808 |#1| |#2|) (-10 -7 (-14 -3438 ((-584 |#1|) |#1|)) (-14 -3438 ((-3 (-2 (|:| -3141 |#1|) (|:| -3140 |#1|)) #1="failed") |#1| (-695) (-695))) (-14 -2670 ((-3 |#1| #1#) |#1| |#1|)) (-14 -2671 (|#1| |#1| (-695)))) (-1156 |#2|) (-311)) (T -808))
-((-2671 (*1 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))) (-2670 (*1 *2 *2 *2) (|partial| -11 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))) (-3438 (*1 *2 *3 *4 *4) (|partial| -11 (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1156 *5)))) (-3438 (*1 *2 *3) (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-584 |#2|) (-584 (-695))) 45 T ELT) (($ $ |#2| (-695)) 44 T ELT) (($ $ (-584 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2672 (($ $ (-584 |#2|) (-584 (-695))) 48 T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-809 |#1| |#2|) (-110) (-962) (-69)) (T -809))
-NIL
-(-12 (-79 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-145)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3761 (($ $ (-584 |#1|) (-584 (-695))) 52 T ELT) (($ $ |#1| (-695)) 51 T ELT) (($ $ (-584 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 |#1|) (-584 (-695))) 55 T ELT) (($ $ |#1| (-695)) 54 T ELT) (($ $ (-584 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-810 |#1|) (-110) (-69)) (T -810))
-NIL
-(-12 (-962) (-812 |t#1|))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3761 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2672 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT)))
-(((-811 |#1| |#2|) (-10 -7 (-14 -2672 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-14 -2672 (|#1| |#1| |#2| (-695))) (-14 -2672 (|#1| |#1| (-584 |#2|))) (-14 -3761 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-14 -3761 (|#1| |#1| |#2| (-695))) (-14 -3761 (|#1| |#1| (-584 |#2|))) (-14 -2672 (|#1| |#1| |#2|)) (-14 -3761 (|#1| |#1| |#2|))) (-812 |#2|) (-69)) (T -811))
-NIL
-((-3761 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2672 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT)))
-(((-812 |#1|) (-110) (-69)) (T -812))
-((-3761 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-69)))) (-3761 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-69)))) (-3761 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-69)))) (-2672 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-69)))) (-2672 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-69)))) (-2672 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-69)))))
-(-12 (-807 $ |t#1|) (-10 -8 (-14 -3761 ($ $ (-584 |t#1|))) (-14 -3761 ($ $ |t#1| (-695))) (-14 -3761 ($ $ (-584 |t#1|) (-584 (-695)))) (-14 -2672 ($ $ (-584 |t#1|))) (-14 -2672 ($ $ |t#1| (-695))) (-14 -2672 ($ $ (-584 |t#1|) (-584 (-695))))))
-(((-12) . T) ((-807 $ |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 26 T ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3140 (($ $) 25 T ELT)) (-2673 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3141 (($ $) 23 T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) 20 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1117 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 21 (|has| |#1| (-69)) ELT)))
-(((-813 |#1|) (-12 (-89 |#1|) (-553 (-1117 |#1|)) (-10 -8 (-14 -2673 ($ |#1|)) (-14 -2673 ($ $ $)))) (-1014)) (T -813))
-((-2673 (*1 *1 *2) (-11 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) (-2673 (*1 *1 *1 *1) (-11 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2689 (((-1010 |#1|) $) 61 T ELT)) (-2912 (((-584 $) (-584 $)) 104 T ELT)) (-3626 (((-485) $) 84 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-3775 (((-695) $) 81 T ELT)) (-2693 (((-1010 |#1|) $ |#1|) 71 T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2676 (((-82) $) 89 T ELT)) (-2678 (((-695) $) 85 T ELT)) (-2534 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-757))) ELT)) (-2860 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-757))) ELT)) (-2682 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 131 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2675 (((-1010 |#1|) $) 136 (|has| |#1| (-319)) ELT)) (-2677 (((-82) $) 82 T ELT)) (-3803 ((|#1| $ |#1|) 69 T ELT)) (-3952 (((-695) $) 63 T ELT)) (-2684 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2679 (((-885) $) 75 T ELT)) (-2685 (($ (-584 |#1|)) 32 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2438 (($ $ $) NIL T ELT)) (-2681 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2680 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2674 (($ (-584 |#1|)) 133 T ELT)) (-3950 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-82) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-757))) ELT)) (-2570 (((-82) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-757))) ELT)) (-3059 (((-82) $ $) 67 T ELT)) (-2687 (((-82) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-757))) ELT)) (-2688 (((-82) $ $) 91 T ELT)) (-3953 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
-(((-814 |#1|) (-12 (-816 |#1|) (-10 -8 (-14 -2682 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-14 -2681 ($ (-584 (-584 |#1|)))) (-14 -3950 ($ (-584 (-584 |#1|)))) (-14 -3950 ($ (-584 |#1|))) (-14 -2680 ($ (-584 (-584 |#1|)))) (-14 -3952 ((-695) $)) (-14 -2679 ((-885) $)) (-14 -3775 ((-695) $)) (-14 -2678 ((-695) $)) (-14 -3626 ((-485) $)) (-14 -2677 ((-82) $)) (-14 -2676 ((-82) $)) (-14 -2912 ((-584 $) (-584 $))) (IF (|has| |#1| (-319)) (-14 -2675 ((-1010 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-14 -2674 ($ (-584 |#1|))) (IF (|has| |#1| (-319)) (-14 -2674 ($ (-584 |#1|))) |%noBranch|)))) (-1014)) (T -814))
-((-2682 (*1 *2 *1) (-11 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2681 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-2680 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3952 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2679 (*1 *2 *1) (-11 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3775 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2678 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3626 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2677 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2676 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2912 (*1 *2 *2) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2675 (*1 *2 *1) (-11 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-319)) (-4 *3 (-1014)))) (-2674 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-((-2683 ((|#2| (-1057 |#1| |#2|)) 48 T ELT)))
-(((-815 |#1| |#2|) (-10 -7 (-14 -2683 (|#2| (-1057 |#1| |#2|)))) (-831) (-12 (-962) (-10 -7 (-6 (-3997 "*"))))) (T -815))
-((-2683 (*1 *2 *3) (-11 (-5 *3 (-1057 *4 *2)) (-13 *4 (-831)) (-4 *2 (-12 (-962) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-815 *4 *2)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-2689 (((-1010 |#1|) $) 42 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 20 T ELT)) (-2693 (((-1010 |#1|) $ |#1|) 41 T ELT)) (-2412 (((-82) $) 22 T ELT)) (-2534 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-319))) ELT)) (-2860 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-319))) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 30 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3803 ((|#1| $ |#1|) 45 T ELT)) (-2684 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2685 (($ (-584 |#1|)) 44 T ELT)) (-3012 (($ $ $) 27 T ELT)) (-2438 (($ $ $) 26 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2669 (($) 24 T CONST)) (-2569 (((-82) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-319))) ELT)) (-2570 (((-82) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-319))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-319))) ELT)) (-2688 (((-82) $ $) 40 T ELT)) (-3953 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-816 |#1|) (-110) (-1014)) (T -816))
-((-2685 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2684 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2689 (*1 *2 *1) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2693 (*1 *2 *1 *3) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2688 (*1 *2 *1 *1) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(-12 (-413) (-240 |t#1| |t#1|) (-10 -8 (-14 -2685 ($ (-584 |t#1|))) (-14 -2684 ($ (-584 (-584 |t#1|)))) (-14 -2689 ((-1010 |t#1|) $)) (-14 -2693 ((-1010 |t#1|) $ |t#1|)) (-14 -2688 ((-82) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-757)) |%noBranch|)))
-(((-69) . T) ((-553 (-773)) . T) ((-240 |#1| |#1|) . T) ((-413) . T) ((-12) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-319))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-319))) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2695 (((-584 (-584 (-695))) $) 163 T ELT)) (-2691 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2690 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2689 (((-1010 |#1|) $) 155 T ELT)) (-2696 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2997 (((-814 |#1|) $ (-485)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2694 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3775 (((-695) $) 159 T ELT)) (-2692 (((-1010 (-1010 |#1|)) $) 189 T ELT)) (-2693 (((-1010 |#1|) $ |#1|) 180 T ELT) (((-1010 (-1010 |#1|)) $ (-1010 |#1|)) 201 T ELT) (((-1010 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3248 (((-82) (-814 |#1|) $) 140 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2686 (((-1186) $) 145 T ELT) (((-1186) $ (-485) (-485)) 205 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2698 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3803 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3952 (((-695) $) 160 T ELT)) (-3950 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (((-584 |#1|) $) 162 T ELT)) (-3059 (((-82) $ $) 198 T ELT)) (-2687 (((-82) $ $) 195 T ELT)) (-2688 (((-82) $ $) 194 T ELT)))
-(((-817 |#1|) (-12 (-1014) (-10 -8 (-14 -3950 ((-584 (-814 |#1|)) $)) (-14 -2698 ((-584 (-814 |#1|)) $)) (-14 -3803 ((-814 |#1|) $ (-695))) (-14 -2997 ((-814 |#1|) $ (-485))) (-14 -2997 ((-814 |#1|) $)) (-14 -3775 ((-695) $)) (-14 -3952 ((-695) $)) (-14 -2697 ((-584 |#1|) $)) (-14 -2696 ((-584 (-814 |#1|)) $)) (-14 -2695 ((-584 (-584 (-695))) $)) (-14 -3950 ($ (-584 (-814 |#1|)))) (-14 -2694 ($ (-584 (-814 |#1|)))) (-14 -2693 ((-1010 |#1|) $ |#1|)) (-14 -2692 ((-1010 (-1010 |#1|)) $)) (-14 -2693 ((-1010 (-1010 |#1|)) $ (-1010 |#1|))) (-14 -2693 ((-1010 (-584 |#1|)) $ (-584 |#1|))) (-14 -3248 ((-82) (-814 |#1|) $)) (-14 -2691 ((-584 (-695)) (-814 |#1|) $)) (-14 -2690 ((-584 (-695)) (-814 |#1|) $)) (-14 -2689 ((-1010 |#1|) $)) (-14 -2688 ((-82) $ $)) (-14 -2687 ((-82) $ $)) (-14 -2686 ((-1186) $)) (-14 -2686 ((-1186) $ (-485) (-485))))) (-1014)) (T -817))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2698 (*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2997 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2997 (*1 *2 *1) (-11 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3775 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3952 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2697 (*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2696 (*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2695 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2694 (*1 *1 *2) (-11 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2693 (*1 *2 *1 *3) (-11 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2692 (*1 *2 *1) (-11 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2693 (*1 *2 *1 *3) (-11 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1010 *4)))) (-2693 (*1 *2 *1 *3) (-11 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3248 (*1 *2 *3 *1) (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-82)) (-5 *1 (-817 *4)))) (-2691 (*1 *2 *3 *1) (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2690 (*1 *2 *3 *1) (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2689 (*1 *2 *1) (-11 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2688 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2687 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-3936 (((-82) $) NIL T ELT)) (-3933 (((-695)) NIL T ELT)) (-3333 (($ $ (-831)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 $ #1#) $) NIL T ELT)) (-3159 (($ $) NIL T ELT)) (-1797 (($ (-1180 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-2836 (($) NIL T ELT)) (-1681 (((-82) $) NIL T ELT)) (-1769 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3775 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2015 (($) NIL (|has| $ (-319)) ELT)) (-2013 (((-82) $) NIL (|has| $ (-319)) ELT)) (-3135 (($ $ (-831)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3448 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2016 (((-1086 $) $ (-831)) NIL (|has| $ (-319)) ELT) (((-1086 $) $) NIL T ELT)) (-2012 (((-831) $) NIL T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1086 $) $) NIL (|has| $ (-319)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-319)) ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-831)) NIL T ELT)) (-3935 (((-82) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) NIL (|has| $ (-319)) ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-3934 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-1770 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3915 (((-104)) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3952 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3188 (((-1086 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-319)) ELT)) (-3227 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) NIL T ELT)) (-3975 (((-485) $) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT)) (-2705 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $) (-831)) NIL T ELT) (((-1180 $)) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3937 (((-82) $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3932 (($ $ (-695)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-818 |#1|) (-12 (-298) (-279 $) (-554 (-485))) (-831)) (T -818))
-NIL
-((-2700 (((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|)) 164 T ELT)) (-2703 ((|#1|) 101 T ELT)) (-2702 (((-347 (-1086 |#4|)) (-1086 |#4|)) 173 T ELT)) (-2704 (((-347 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)) 83 T ELT)) (-2701 (((-347 (-1086 |#4|)) (-1086 |#4|)) 183 T ELT)) (-2699 (((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|) 117 T ELT)))
-(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2700 ((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|))) (-14 -2701 ((-347 (-1086 |#4|)) (-1086 |#4|))) (-14 -2702 ((-347 (-1086 |#4|)) (-1086 |#4|))) (-14 -2703 (|#1|)) (-14 -2699 ((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-14 -2704 ((-347 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819))
-((-2704 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-347 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2699 (*1 *2 *2 *3 *4) (|partial| -11 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2703 (*1 *2) (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2702 (*1 *2 *3) (-11 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2701 (*1 *2 *3) (-11 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2700 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7)))))
-((-2700 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 39 T ELT)) (-2703 ((|#1|) 71 T ELT)) (-2702 (((-347 (-1086 |#2|)) (-1086 |#2|)) 125 T ELT)) (-2704 (((-347 (-1086 |#2|)) (-1086 |#2|)) 109 T ELT)) (-2701 (((-347 (-1086 |#2|)) (-1086 |#2|)) 136 T ELT)))
-(((-820 |#1| |#2|) (-10 -7 (-14 -2700 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|))) (-14 -2701 ((-347 (-1086 |#2|)) (-1086 |#2|))) (-14 -2702 ((-347 (-1086 |#2|)) (-1086 |#2|))) (-14 -2703 (|#1|)) (-14 -2704 ((-347 (-1086 |#2|)) (-1086 |#2|)))) (-822) (-1156 |#1|)) (T -820))
-((-2704 (*1 *2 *3) (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2703 (*1 *2) (-11 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))) (-2702 (*1 *2 *3) (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2701 (*1 *2 *3) (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2700 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
-((-2707 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 46 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 18 T ELT)) (-2705 (((-633 $) $) 40 T ELT)))
-(((-821 |#1|) (-10 -7 (-14 -2705 ((-633 |#1|) |#1|)) (-14 -2707 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-14 -2711 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-822)) (T -821))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 75 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-347 $) $) 67 T ELT)) (-2707 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 72 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-82) $) 68 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 73 T ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 74 T ELT)) (-3735 (((-347 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2706 (((-3 (-1180 $) "failed") (-631 $)) 71 (|has| $ (-115)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2705 (((-633 $) $) 70 (|has| $ (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-822) (-110)) (T -822))
-((-2711 (*1 *2 *2 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-822)))) (-2710 (*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2709 (*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2708 (*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2707 (*1 *2 *2 *3) (|partial| -11 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))) (-2706 (*1 *2 *3) (|partial| -11 (-5 *3 (-631 *1)) (-4 *1 (-115)) (-4 *1 (-822)) (-5 *2 (-1180 *1)))) (-2705 (*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-115)) (-4 *1 (-822)))))
-(-12 (-1135) (-10 -8 (-14 -2710 ((-347 (-1086 $)) (-1086 $))) (-14 -2709 ((-347 (-1086 $)) (-1086 $))) (-14 -2708 ((-347 (-1086 $)) (-1086 $))) (-14 -2711 ((-1086 $) (-1086 $) (-1086 $))) (-14 -2707 ((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $))) (IF (|has| $ (-115)) (PROGN (-14 -2706 ((-3 (-1180 $) "failed") (-631 $))) (-14 -2705 ((-633 $) $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2713 (((-3 (-2 (|:| -3775 (-695)) (|:| -2385 |#5|)) #1="failed") (-282 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2712 (((-82) (-282 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3775 (((-3 (-695) #1#) (-282 |#2| |#3| |#4| |#5|)) 15 T ELT)))
-(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3775 ((-3 (-695) #1="failed") (-282 |#2| |#3| |#4| |#5|))) (-14 -2712 ((-82) (-282 |#2| |#3| |#4| |#5|))) (-14 -2713 ((-3 (-2 (|:| -3775 (-695)) (|:| -2385 |#5|)) #1#) (-282 |#2| |#3| |#4| |#5|)))) (-12 (-496) (-951 (-485))) (-363 |#1|) (-1156 |#2|) (-1156 (-349 |#3|)) (-290 |#2| |#3| |#4|)) (T -823))
-((-2713 (*1 *2 *3) (|partial| -11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-2 (|:| -3775 (-695)) (|:| -2385 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2712 (*1 *2 *3) (-11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-82)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3775 (*1 *2 *3) (|partial| -11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8)))))
-((-2713 (((-3 (-2 (|:| -3775 (-695)) (|:| -2385 |#3|)) #1="failed") (-282 (-349 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2712 (((-82) (-282 (-349 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3775 (((-3 (-695) #1#) (-282 (-349 (-485)) |#1| |#2| |#3|)) 14 T ELT)))
-(((-824 |#1| |#2| |#3|) (-10 -7 (-14 -3775 ((-3 (-695) #1="failed") (-282 (-349 (-485)) |#1| |#2| |#3|))) (-14 -2712 ((-82) (-282 (-349 (-485)) |#1| |#2| |#3|))) (-14 -2713 ((-3 (-2 (|:| -3775 (-695)) (|:| -2385 |#3|)) #1#) (-282 (-349 (-485)) |#1| |#2| |#3|)))) (-1156 (-349 (-485))) (-1156 (-349 |#1|)) (-290 (-349 (-485)) |#1| |#2|)) (T -824))
-((-2713 (*1 *2 *3) (|partial| -11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 (-349 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3775 (-695)) (|:| -2385 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2712 (*1 *2 *3) (-11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 (-349 (-485)) *4 *5)) (-5 *2 (-82)) (-5 *1 (-824 *4 *5 *6)))) (-3775 (*1 *2 *3) (|partial| -11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 (-349 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))))
-((-2718 ((|#2| |#2|) 26 T ELT)) (-2716 (((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2714 (((-831) (-485)) 38 T ELT)) (-2717 (((-485) |#2|) 45 T ELT)) (-2715 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT)))
-(((-825 |#1| |#2|) (-10 -7 (-14 -2714 ((-831) (-485))) (-14 -2715 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-14 -2715 ((-485) |#2|)) (-14 -2716 ((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-14 -2717 ((-485) |#2|)) (-14 -2718 (|#2| |#2|))) (-1156 (-349 (-485))) (-1156 (-349 |#1|))) (T -825))
-((-2718 (*1 *2 *2) (-11 (-4 *3 (-1156 (-349 (-485)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1156 (-349 *3))))) (-2717 (*1 *2 *3) (-11 (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-349 *4))))) (-2716 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-349 *4))))) (-2715 (*1 *2 *3) (-11 (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-349 *4))))) (-2715 (*1 *2 *3) (-11 (-4 *3 (-1156 (-349 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1156 (-349 *3))))) (-2714 (*1 *2 *3) (-11 (-5 *3 (-485)) (-4 *4 (-1156 (-349 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-349 *4))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 ((|#1| $) 99 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2567 (($ $ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 93 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2726 (($ |#1| (-347 |#1|)) 91 T ELT)) (-2720 (((-1086 |#1|) |#1| |#1|) 52 T ELT)) (-2719 (($ $) 60 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2721 (((-485) $) 96 T ELT)) (-2722 (($ $ (-485)) 98 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2723 ((|#1| $) 95 T ELT)) (-2724 (((-347 |#1|) $) 94 T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) 92 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2725 (($ $) 49 T ELT)) (-3950 (((-773) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-349 |#1|) $) 77 T ELT) (($ (-349 (-347 |#1|))) 85 T ELT)) (-3129 (((-695)) 70 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-82) $ $) 86 T ELT)) (-3953 (($ $ $) NIL T ELT)) (-3840 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-826 |#1|) (-12 (-311) (-35 |#1|) (-10 -8 (-14 -3950 ((-349 |#1|) $)) (-14 -3950 ($ (-349 (-347 |#1|)))) (-14 -2725 ($ $)) (-14 -2724 ((-347 |#1|) $)) (-14 -2723 (|#1| $)) (-14 -2722 ($ $ (-485))) (-14 -2721 ((-485) $)) (-14 -2720 ((-1086 |#1|) |#1| |#1|)) (-14 -2719 ($ $)) (-14 -2726 ($ |#1| (-347 |#1|))) (-14 -3132 (|#1| $)))) (-257)) (T -826))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-349 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-349 (-347 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3)))) (-2725 (*1 *1 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2724 (*1 *2 *1) (-11 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2723 (*1 *2 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2722 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2721 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2720 (*1 *2 *3 *3) (-11 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2719 (*1 *1 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2726 (*1 *1 *2 *3) (-11 (-5 *3 (-347 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2)))) (-3132 (*1 *2 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
-((-2726 (((-48) (-858 |#1|) (-347 (-858 |#1|)) (-1091)) 17 T ELT) (((-48) (-349 (-858 |#1|)) (-1091)) 18 T ELT)))
-(((-827 |#1|) (-10 -7 (-14 -2726 ((-48) (-349 (-858 |#1|)) (-1091))) (-14 -2726 ((-48) (-858 |#1|) (-347 (-858 |#1|)) (-1091)))) (-12 (-257) (-117))) (T -827))
-((-2726 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-347 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) (-4 *6 (-12 (-257) (-117))) (-5 *2 (-48)) (-5 *1 (-827 *6)))) (-2726 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-48)) (-5 *1 (-827 *5)))))
-((-2727 ((|#4| (-584 |#4|)) 148 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3147 (((-1086 |#4|) (-584 (-1086 |#4|))) 141 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
-(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3147 (|#4| |#4| |#4|)) (-14 -3147 (|#4| (-584 |#4|))) (-14 -3147 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-14 -3147 ((-1086 |#4|) (-584 (-1086 |#4|)))) (-14 -2727 (|#4| |#4| |#4|)) (-14 -2727 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-14 -2727 (|#4| (-584 |#4|)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -828))
-((-2727 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-2727 (*1 *2 *2 *2) (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2727 (*1 *2 *2 *2) (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3147 (*1 *2 *3) (-11 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3147 (*1 *2 *2 *2) (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3147 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-3147 (*1 *2 *2 *2) (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))))
-((-2740 (((-817 (-485)) (-885)) 38 T ELT) (((-817 (-485)) (-584 (-485))) 34 T ELT)) (-2728 (((-817 (-485)) (-584 (-485))) 66 T ELT) (((-817 (-485)) (-831)) 67 T ELT)) (-2739 (((-817 (-485))) 39 T ELT)) (-2737 (((-817 (-485))) 53 T ELT) (((-817 (-485)) (-584 (-485))) 52 T ELT)) (-2736 (((-817 (-485))) 51 T ELT) (((-817 (-485)) (-584 (-485))) 50 T ELT)) (-2735 (((-817 (-485))) 49 T ELT) (((-817 (-485)) (-584 (-485))) 48 T ELT)) (-2734 (((-817 (-485))) 47 T ELT) (((-817 (-485)) (-584 (-485))) 46 T ELT)) (-2733 (((-817 (-485))) 45 T ELT) (((-817 (-485)) (-584 (-485))) 44 T ELT)) (-2738 (((-817 (-485))) 55 T ELT) (((-817 (-485)) (-584 (-485))) 54 T ELT)) (-2732 (((-817 (-485)) (-584 (-485))) 71 T ELT) (((-817 (-485)) (-831)) 73 T ELT)) (-2731 (((-817 (-485)) (-584 (-485))) 68 T ELT) (((-817 (-485)) (-831)) 69 T ELT)) (-2729 (((-817 (-485)) (-584 (-485))) 64 T ELT) (((-817 (-485)) (-831)) 65 T ELT)) (-2730 (((-817 (-485)) (-584 (-831))) 57 T ELT)))
-(((-829) (-10 -7 (-14 -2728 ((-817 (-485)) (-831))) (-14 -2728 ((-817 (-485)) (-584 (-485)))) (-14 -2729 ((-817 (-485)) (-831))) (-14 -2729 ((-817 (-485)) (-584 (-485)))) (-14 -2730 ((-817 (-485)) (-584 (-831)))) (-14 -2731 ((-817 (-485)) (-831))) (-14 -2731 ((-817 (-485)) (-584 (-485)))) (-14 -2732 ((-817 (-485)) (-831))) (-14 -2732 ((-817 (-485)) (-584 (-485)))) (-14 -2733 ((-817 (-485)) (-584 (-485)))) (-14 -2733 ((-817 (-485)))) (-14 -2734 ((-817 (-485)) (-584 (-485)))) (-14 -2734 ((-817 (-485)))) (-14 -2735 ((-817 (-485)) (-584 (-485)))) (-14 -2735 ((-817 (-485)))) (-14 -2736 ((-817 (-485)) (-584 (-485)))) (-14 -2736 ((-817 (-485)))) (-14 -2737 ((-817 (-485)) (-584 (-485)))) (-14 -2737 ((-817 (-485)))) (-14 -2738 ((-817 (-485)) (-584 (-485)))) (-14 -2738 ((-817 (-485)))) (-14 -2739 ((-817 (-485)))) (-14 -2740 ((-817 (-485)) (-584 (-485)))) (-14 -2740 ((-817 (-485)) (-885))))) (T -829))
-((-2740 (*1 *2 *3) (-11 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2740 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2739 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-((-2742 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 14 T ELT)) (-2741 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 13 T ELT)))
-(((-830 |#1|) (-10 -7 (-14 -2741 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)))) (-14 -2742 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))))) (-392)) (T -830))
-((-2742 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))) (-2741 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3147 (($ $ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-831) (-12 (-719) (-664) (-10 -8 (-14 -3147 ($ $ $)) (-6 (-3997 "*"))))) (T -831))
-((-3147 (*1 *1 *1 *1) (-5 *1 (-831))))
-((-695) (|%ilt| 0 |#1|))
-((-3950 (((-264 |#1|) (-417)) 16 T ELT)))
-(((-832 |#1|) (-10 -7 (-14 -3950 ((-264 |#1|) (-417)))) (-496)) (T -832))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-417)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-833) (-110)) (T -833))
-((-2744 (*1 *2 *3) (-11 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3958 (-584 *1)) (|:| -2411 *1))) (-5 *3 (-584 *1)))) (-2743 (*1 *2 *3 *1) (-11 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
-(-12 (-392) (-10 -8 (-14 -2744 ((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $))) (-14 -2743 ((-633 (-584 $)) (-584 $) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3108 (((-1086 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT)))
-(((-834 |#1| |#2|) (-10 -7 (-14 -3108 ((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-14 -3108 ((-1086 |#2|) (-584 |#2|) (-584 |#2|)))) (-1091) (-311)) (T -834))
-((-3108 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) (-13 *4 (-1091)))) (-3108 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-13 *4 (-1091)) (-4 *5 (-311)) (-5 *1 (-834 *4 *5)))))
-((-2745 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT)))
-(((-835 |#1| |#2|) (-10 -7 (-14 -2745 (|#2| (-584 |#1|) (-584 |#1|)))) (-311) (-1156 |#1|)) (T -835))
-((-2745 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1156 *4)) (-5 *1 (-835 *4 *2)))))
-((-2747 (((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-1074)) 175 T ELT)) (-2766 ((|#4| |#4|) 194 T ELT)) (-2751 (((-584 (-349 (-858 |#1|))) (-584 (-1091))) 146 T ELT)) (-2765 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-349 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485)) 88 T ELT)) (-2755 (((-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2764 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2748 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-1074)) 187 T ELT)) (-2746 (((-485) (-631 |#4|) (-831) (-1074)) 167 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074)) 166 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074)) 165 T ELT) (((-485) (-631 |#4|) (-1074)) 154 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-1074)) 153 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-1074)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2752 ((|#4| (-858 |#1|)) 80 T ELT)) (-2762 (((-82) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2761 (((-584 (-584 (-485))) (-485) (-485)) 161 T ELT)) (-2760 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2759 (((-695) (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2758 (((-695) (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2767 (((-82) (-584 (-858 |#1|))) 19 T ELT) (((-82) (-584 |#4|)) 15 T ELT)) (-2753 (((-2 (|:| |sysok| (-82)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2757 (((-584 |#4|) |#4|) 57 T ELT)) (-2750 (((-584 (-349 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-349 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-349 (-858 |#1|)) |#4|) 139 T ELT)) (-2749 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-349 (-858 |#1|))) (-695) (-1074) (-485)) 112 T ELT)) (-2754 (((-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2763 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695)) 121 T ELT)) (-2756 (((-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-349 (-858 |#1|)))) (|:| |vec| (-584 (-349 (-858 |#1|)))) (|:| -3111 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) 56 T ELT)))
-(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)))) (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|))) (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831))) (-14 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-14 -2746 ((-485) (-631 |#4|) (-584 |#4|) (-1074))) (-14 -2746 ((-485) (-631 |#4|) (-584 (-1091)) (-1074))) (-14 -2746 ((-485) (-631 |#4|) (-1074))) (-14 -2746 ((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074))) (-14 -2746 ((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074))) (-14 -2746 ((-485) (-631 |#4|) (-831) (-1074))) (-14 -2747 ((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-1074))) (-14 -2748 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|))))))))) (-1074))) (-14 -2749 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-349 (-858 |#1|))) (-695) (-1074) (-485))) (-14 -2750 ((-349 (-858 |#1|)) |#4|)) (-14 -2750 ((-631 (-349 (-858 |#1|))) (-631 |#4|))) (-14 -2750 ((-584 (-349 (-858 |#1|))) (-584 |#4|))) (-14 -2751 ((-584 (-349 (-858 |#1|))) (-584 (-1091)))) (-14 -2752 (|#4| (-858 |#1|))) (-14 -2753 ((-2 (|:| |sysok| (-82)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-14 -2754 ((-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-14 -2755 ((-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-584 |#4|))) (-14 -2756 ((-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-349 (-858 |#1|)))) (|:| |vec| (-584 (-349 (-858 |#1|)))) (|:| -3111 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-14 -2757 ((-584 |#4|) |#4|)) (-14 -2758 ((-695) (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-14 -2759 ((-695) (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-14 -2760 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-14 -2761 ((-584 (-584 (-485))) (-485) (-485))) (-14 -2762 ((-82) (-584 |#4|) (-584 (-584 |#4|)))) (-14 -2763 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695))) (-14 -2764 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-14 -2765 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 |#1|)))) (|:| -2014 (-584 (-1180 (-349 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-349 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485))) (-14 -2766 (|#4| |#4|)) (-14 -2767 ((-82) (-584 |#4|))) (-14 -2767 ((-82) (-584 (-858 |#1|))))) (-12 (-257) (-117)) (-12 (-757) (-554 (-1091))) (-718) (-862 |#1| |#3| |#2|)) (T -836))
-((-2767 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-82)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2767 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-82)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2766 (*1 *2 *2) (-11 (-4 *3 (-12 (-257) (-117))) (-4 *4 (-12 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2765 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-11 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-349 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-12 (-257) (-117))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-12 (-757) (-554 (-1091)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *9)))) (|:| -2014 (-584 (-1180 (-349 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2764 (*1 *2 *2 *3) (-11 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2762 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-82)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))) (-2760 (*1 *2 *2) (-11 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-12 (-257) (-117))) (-4 *4 (-12 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2759 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2758 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2756 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |mat| (-631 (-349 (-858 *4)))) (|:| |vec| (-584 (-349 (-858 *4)))) (|:| -3111 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1180 (-349 (-858 *4)))) (|:| -2014 (-584 (-1180 (-349 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2755 (*1 *2 *2 *3) (-11 (-5 *2 (-2 (|:| |partsol| (-1180 (-349 (-858 *4)))) (|:| -2014 (-584 (-1180 (-349 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-12 (-257) (-117))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2754 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3111 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2753 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-82)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2752 (*1 *2 *3) (-11 (-5 *3 (-858 *4)) (-4 *4 (-12 (-257) (-117))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)))) (-2751 (*1 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2750 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-11 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-631 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-349 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2749 (*1 *2 *3 *4 *5 *6 *7) (-11 (-5 *3 (-631 *11)) (-5 *4 (-584 (-349 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1074)) (-4 *8 (-12 (-257) (-117))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-12 (-757) (-554 (-1091)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *8)))) (|:| -2014 (-584 (-1180 (-349 (-858 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2748 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *4)))) (|:| -2014 (-584 (-1180 (-349 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2747 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *5)))) (|:| -2014 (-584 (-1180 (-349 (-858 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-12 (-257) (-117))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-12 (-257) (-117))) (-4 *8 (-12 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4 *5 *6) (-11 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-12 (-257) (-117))) (-4 *8 (-12 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2746 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *5)))) (|:| -2014 (-584 (-1180 (-349 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *6)))) (|:| -2014 (-584 (-1180 (-349 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2746 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *6)))) (|:| -2014 (-584 (-1180 (-349 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2746 (*1 *2 *3) (-11 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *4)))) (|:| -2014 (-584 (-1180 (-349 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2746 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *5)))) (|:| -2014 (-584 (-1180 (-349 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2746 (*1 *2 *3 *4) (-11 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-349 (-858 *5)))) (|:| -2014 (-584 (-1180 (-349 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
-((-3878 (($ $ (-1002 (-178))) 125 T ELT) (($ $ (-1002 (-178)) (-1002 (-178))) 126 T ELT)) (-2899 (((-1002 (-178)) $) 73 T ELT)) (-2900 (((-1002 (-178)) $) 72 T ELT)) (-2791 (((-1002 (-178)) $) 74 T ELT)) (-2772 (((-485) (-485)) 66 T ELT)) (-2776 (((-485) (-485)) 61 T ELT)) (-2774 (((-485) (-485)) 64 T ELT)) (-2770 (((-82) (-82)) 68 T ELT)) (-2773 (((-485)) 65 T ELT)) (-3137 (($ $ (-1002 (-178))) 129 T ELT) (($ $) 130 T ELT)) (-2793 (($ (-1 (-855 (-178)) (-178)) (-1002 (-178))) 148 T ELT) (($ (-1 (-855 (-178)) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178))) 149 T ELT)) (-2779 (($ (-1 (-178) (-178)) (-1002 (-178))) 156 T ELT) (($ (-1 (-178) (-178))) 160 T ELT)) (-2792 (($ (-1 (-178) (-178)) (-1002 (-178))) 144 T ELT) (($ (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178))) 145 T ELT) (($ (-584 (-1 (-178) (-178))) (-1002 (-178))) 153 T ELT) (($ (-584 (-1 (-178) (-178))) (-1002 (-178)) (-1002 (-178))) 154 T ELT) (($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178))) 146 T ELT) (($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178))) 147 T ELT) (($ $ (-1002 (-178))) 131 T ELT)) (-2778 (((-82) $) 69 T ELT)) (-2769 (((-485)) 70 T ELT)) (-2777 (((-485)) 59 T ELT)) (-2775 (((-485)) 62 T ELT)) (-2901 (((-584 (-584 (-855 (-178)))) $) 35 T ELT)) (-2768 (((-82) (-82)) 71 T ELT)) (-3950 (((-773) $) 174 T ELT)) (-2771 (((-82)) 67 T ELT)))
-(((-837) (-12 (-867) (-10 -8 (-14 -2792 ($ (-1 (-178) (-178)) (-1002 (-178)))) (-14 -2792 ($ (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -2792 ($ (-584 (-1 (-178) (-178))) (-1002 (-178)))) (-14 -2792 ($ (-584 (-1 (-178) (-178))) (-1002 (-178)) (-1002 (-178)))) (-14 -2792 ($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)))) (-14 -2792 ($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -2793 ($ (-1 (-855 (-178)) (-178)) (-1002 (-178)))) (-14 -2793 ($ (-1 (-855 (-178)) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -2779 ($ (-1 (-178) (-178)) (-1002 (-178)))) (-14 -2779 ($ (-1 (-178) (-178)))) (-14 -2792 ($ $ (-1002 (-178)))) (-14 -2778 ((-82) $)) (-14 -3878 ($ $ (-1002 (-178)))) (-14 -3878 ($ $ (-1002 (-178)) (-1002 (-178)))) (-14 -3137 ($ $ (-1002 (-178)))) (-14 -3137 ($ $)) (-14 -2791 ((-1002 (-178)) $)) (-14 -2777 ((-485))) (-14 -2776 ((-485) (-485))) (-14 -2775 ((-485))) (-14 -2774 ((-485) (-485))) (-14 -2773 ((-485))) (-14 -2772 ((-485) (-485))) (-14 -2771 ((-82))) (-14 -2770 ((-82) (-82))) (-14 -2769 ((-485))) (-14 -2768 ((-82) (-82)))))) (T -837))
-((-2792 (*1 *1 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3) (-11 (-5 *2 (-584 (-1 (-178) (-178)))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3 *3) (-11 (-5 *2 (-584 (-1 (-178) (-178)))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *2 *3 *3 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2793 (*1 *1 *2 *3) (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2793 (*1 *1 *2 *3 *3 *3) (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2779 (*1 *1 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837)))) (-2779 (*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-837)))) (-2792 (*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837)))) (-2778 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-837)))) (-3878 (*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837)))) (-3878 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837)))) (-3137 (*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837)))) (-3137 (*1 *1 *1) (-5 *1 (-837))) (-2791 (*1 *2 *1) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837)))) (-2777 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2776 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2775 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2774 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2773 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2772 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2771 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))) (-2770 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))) (-2769 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))) (-2768 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))))
-((-2779 (((-837) |#1| (-1091)) 17 T ELT) (((-837) |#1| (-1091) (-1002 (-178))) 21 T ELT)) (-2792 (((-837) |#1| |#1| (-1091) (-1002 (-178))) 19 T ELT) (((-837) |#1| (-1091) (-1002 (-178))) 15 T ELT)))
-(((-838 |#1|) (-10 -7 (-14 -2792 ((-837) |#1| (-1091) (-1002 (-178)))) (-14 -2792 ((-837) |#1| |#1| (-1091) (-1002 (-178)))) (-14 -2779 ((-837) |#1| (-1091) (-1002 (-178)))) (-14 -2779 ((-837) |#1| (-1091)))) (-554 (-474))) (T -838))
-((-2779 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2779 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2792 (*1 *2 *3 *3 *4 *5) (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2792 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
-((-3878 (($ $ (-1002 (-178)) (-1002 (-178)) (-1002 (-178))) 123 T ELT)) (-2898 (((-1002 (-178)) $) 64 T ELT)) (-2899 (((-1002 (-178)) $) 63 T ELT)) (-2900 (((-1002 (-178)) $) 62 T ELT)) (-2790 (((-584 (-584 (-178))) $) 69 T ELT)) (-2791 (((-1002 (-178)) $) 65 T ELT)) (-2784 (((-485) (-485)) 57 T ELT)) (-2788 (((-485) (-485)) 52 T ELT)) (-2786 (((-485) (-485)) 55 T ELT)) (-2782 (((-82) (-82)) 59 T ELT)) (-2785 (((-485)) 56 T ELT)) (-3137 (($ $ (-1002 (-178))) 126 T ELT) (($ $) 127 T ELT)) (-2793 (($ (-1 (-855 (-178)) (-178)) (-1002 (-178))) 133 T ELT) (($ (-1 (-855 (-178)) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178))) 134 T ELT)) (-2792 (($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178))) 140 T ELT) (($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178))) 141 T ELT) (($ $ (-1002 (-178))) 129 T ELT)) (-2781 (((-485)) 60 T ELT)) (-2789 (((-485)) 50 T ELT)) (-2787 (((-485)) 53 T ELT)) (-2901 (((-584 (-584 (-855 (-178)))) $) 157 T ELT)) (-2780 (((-82) (-82)) 61 T ELT)) (-3950 (((-773) $) 155 T ELT)) (-2783 (((-82)) 58 T ELT)))
-(((-839) (-12 (-888) (-10 -8 (-14 -2793 ($ (-1 (-855 (-178)) (-178)) (-1002 (-178)))) (-14 -2793 ($ (-1 (-855 (-178)) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -2792 ($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)))) (-14 -2792 ($ (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1 (-178) (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -2792 ($ $ (-1002 (-178)))) (-14 -3878 ($ $ (-1002 (-178)) (-1002 (-178)) (-1002 (-178)))) (-14 -3137 ($ $ (-1002 (-178)))) (-14 -3137 ($ $)) (-14 -2791 ((-1002 (-178)) $)) (-14 -2790 ((-584 (-584 (-178))) $)) (-14 -2789 ((-485))) (-14 -2788 ((-485) (-485))) (-14 -2787 ((-485))) (-14 -2786 ((-485) (-485))) (-14 -2785 ((-485))) (-14 -2784 ((-485) (-485))) (-14 -2783 ((-82))) (-14 -2782 ((-82) (-82))) (-14 -2781 ((-485))) (-14 -2780 ((-82) (-82)))))) (T -839))
-((-2793 (*1 *1 *2 *3) (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839)))) (-2793 (*1 *1 *2 *3 *3 *3 *3) (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839)))) (-2792 (*1 *1 *2 *2 *2 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839)))) (-2792 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839)))) (-2792 (*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839)))) (-3878 (*1 *1 *1 *2 *2 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839)))) (-3137 (*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839)))) (-3137 (*1 *1 *1) (-5 *1 (-839))) (-2791 (*1 *2 *1) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839)))) (-2790 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-178)))) (-5 *1 (-839)))) (-2789 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2788 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2787 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2786 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2785 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2784 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2783 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))) (-2782 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))) (-2781 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))) (-2780 (*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))))
-((-2794 (((-584 (-1002 (-178))) (-584 (-584 (-855 (-178))))) 34 T ELT)))
-(((-840) (-10 -7 (-14 -2794 ((-584 (-1002 (-178))) (-584 (-584 (-855 (-178)))))))) (T -840))
-((-2794 (*1 *2 *3) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-584 (-1002 (-178)))) (-5 *1 (-840)))))
-((-2796 (((-264 (-485)) (-1091)) 16 T ELT)) (-2797 (((-264 (-485)) (-1091)) 14 T ELT)) (-3956 (((-264 (-485)) (-1091)) 12 T ELT)) (-2795 (((-264 (-485)) (-1091) (-447)) 19 T ELT)))
-(((-841) (-10 -7 (-14 -2795 ((-264 (-485)) (-1091) (-447))) (-14 -3956 ((-264 (-485)) (-1091))) (-14 -2796 ((-264 (-485)) (-1091))) (-14 -2797 ((-264 (-485)) (-1091))))) (T -841))
-((-2797 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841)))) (-2796 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841)))) (-3956 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841)))) (-2795 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-264 (-485))) (-5 *1 (-841)))))
-((-2796 ((|#2| |#2|) 28 T ELT)) (-2797 ((|#2| |#2|) 29 T ELT)) (-3956 ((|#2| |#2|) 27 T ELT)) (-2795 ((|#2| |#2| (-447)) 26 T ELT)))
-(((-842 |#1| |#2|) (-10 -7 (-14 -2795 (|#2| |#2| (-447))) (-14 -3956 (|#2| |#2|)) (-14 -2796 (|#2| |#2|)) (-14 -2797 (|#2| |#2|))) (-1014) (-363 |#1|)) (T -842))
-((-2797 (*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3)))) (-2796 (*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3)))) (-3956 (*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3)))) (-2795 (*1 *2 *2 *3) (-11 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-363 *4)))))
-((-2799 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2798 (((-1 (-82) |#2|) (-1 (-82) |#3|)) 13 T ELT)))
-(((-843 |#1| |#2| |#3|) (-10 -7 (-14 -2798 ((-1 (-82) |#2|) (-1 (-82) |#3|))) (-14 -2799 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-797 |#1|) (-12 (-1014) (-951 |#2|))) (T -843))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-12 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2798 (*1 *2 *3) (-11 (-5 *3 (-1 (-82) *6)) (-4 *6 (-12 (-1014) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-82) *5)) (-5 *1 (-843 *4 *5 *6)))))
-((-2799 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT)))
-(((-844 |#1| |#2| |#3|) (-10 -7 (-14 -2799 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-12 (-496) (-797 |#1|)) (-12 (-363 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-12 (-363 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-12 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))))
-((-2799 (((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)) 13 T ELT)))
-(((-845 |#1|) (-10 -7 (-14 -2799 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)))) (-484)) (T -845))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) (-5 *1 (-845 *3)))))
-((-2799 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT)))
-(((-846 |#1| |#2|) (-10 -7 (-14 -2799 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1014) (-12 (-1014) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) (-4 *6 (-12 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6)))))
-((-2799 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT)))
-(((-847 |#1| |#2| |#3|) (-10 -7 (-14 -2799 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1014) (-797 |#1|) (-609 |#2|)) (T -847))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))))
-((-2799 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT)))
-(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2799 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-14 -2799 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1014) (-718) (-757) (-12 (-962) (-797 |#1|)) (-12 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-12 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-12 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2799 (*1 *2 *3 *4 *2 *5) (-11 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) (-4 *3 (-12 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-12 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))))
-((-3212 (((-264 (-485)) (-1091) (-584 (-1 (-82) |#1|))) 18 T ELT) (((-264 (-485)) (-1091) (-1 (-82) |#1|)) 15 T ELT)))
-(((-849 |#1|) (-10 -7 (-14 -3212 ((-264 (-485)) (-1091) (-1 (-82) |#1|))) (-14 -3212 ((-264 (-485)) (-1091) (-584 (-1 (-82) |#1|))))) (-1130)) (T -849))
-((-3212 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-82) *5))) (-4 *5 (-1130)) (-5 *2 (-264 (-485))) (-5 *1 (-849 *5)))) (-3212 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-5 *4 (-1 (-82) *5)) (-4 *5 (-1130)) (-5 *2 (-264 (-485))) (-5 *1 (-849 *5)))))
-((-3212 ((|#2| |#2| (-584 (-1 (-82) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-82) |#3|)) 13 T ELT)))
-(((-850 |#1| |#2| |#3|) (-10 -7 (-14 -3212 (|#2| |#2| (-1 (-82) |#3|))) (-14 -3212 (|#2| |#2| (-584 (-1 (-82) |#3|))))) (-1014) (-363 |#1|) (-1130)) (T -850))
-((-3212 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-1 (-82) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-363 *4)))) (-3212 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-82) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-363 *4)))))
-((-2799 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)))
-(((-851 |#1| |#2| |#3|) (-10 -7 (-14 -2799 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-12 (-496) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) (-4 *6 (-12 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3)))))
-((-2799 (((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))) 18 T ELT)))
-(((-852 |#1|) (-10 -7 (-14 -2799 ((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))))) (-1014)) (T -852))
-((-2799 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *1 (-852 *5)))))
-((-2800 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2799 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-14 -2799 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-14 -2800 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1014) (-962) (-12 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853))
-((-2800 (*1 *2 *3 *4 *2 *5) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-12 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2799 (*1 *2 *3 *4 *5 *2 *6) (-11 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-12 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
-((-2808 (((-1086 (-349 (-485))) (-485)) 80 T ELT)) (-2807 (((-1086 (-485)) (-485)) 83 T ELT)) (-3337 (((-1086 (-485)) (-485)) 77 T ELT)) (-2806 (((-485) (-1086 (-485))) 73 T ELT)) (-2805 (((-1086 (-349 (-485))) (-485)) 66 T ELT)) (-2804 (((-1086 (-485)) (-485)) 49 T ELT)) (-2803 (((-1086 (-485)) (-485)) 85 T ELT)) (-2802 (((-1086 (-485)) (-485)) 84 T ELT)) (-2801 (((-1086 (-349 (-485))) (-485)) 68 T ELT)))
-(((-854) (-10 -7 (-14 -2801 ((-1086 (-349 (-485))) (-485))) (-14 -2802 ((-1086 (-485)) (-485))) (-14 -2803 ((-1086 (-485)) (-485))) (-14 -2804 ((-1086 (-485)) (-485))) (-14 -2805 ((-1086 (-349 (-485))) (-485))) (-14 -2806 ((-485) (-1086 (-485)))) (-14 -3337 ((-1086 (-485)) (-485))) (-14 -2807 ((-1086 (-485)) (-485))) (-14 -2808 ((-1086 (-349 (-485))) (-485))))) (T -854))
-((-2808 (*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2807 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-3337 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2806 (*1 *2 *3) (-11 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))) (-2805 (*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2804 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3841 (($ (-695)) NIL (|has| |#1| (-20)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-3709 (($ (-584 |#1|)) 9 T ELT)) (-3838 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3836 ((|#1| $) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3772 (($ $ (-584 |#1|)) 25 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3915 (((-831) $) 13 T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 (($ $ $) 23 T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3533 (($ (-584 |#1|)) NIL T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-18)) ELT) (($ $ $) NIL (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-22)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-18)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3961 (((-695) $) 11 T ELT)))
-(((-855 |#1|) (-894 |#1|) (-962)) (T -855))
-NIL
-((-2811 (((-421 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2814 (((-205 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2812 (((-858 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2810 (((-205 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2813 (((-858 |#2|) (-205 |#1| |#2|)) 32 T ELT)) (-2809 (((-421 |#1| |#2|) (-205 |#1| |#2|)) 48 T ELT)))
-(((-856 |#1| |#2|) (-10 -7 (-14 -2809 ((-421 |#1| |#2|) (-205 |#1| |#2|))) (-14 -2810 ((-205 |#1| |#2|) (-421 |#1| |#2|))) (-14 -2811 ((-421 |#1| |#2|) (-858 |#2|))) (-14 -2812 ((-858 |#2|) (-421 |#1| |#2|))) (-14 -2813 ((-858 |#2|) (-205 |#1| |#2|))) (-14 -2814 ((-205 |#1| |#2|) (-858 |#2|)))) (-584 (-1091)) (-962)) (T -856))
-((-2814 (*1 *2 *3) (-11 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-205 *4 *5)) (-5 *1 (-856 *4 *5)) (-13 *4 (-584 (-1091))))) (-2813 (*1 *2 *3) (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2812 (*1 *2 *3) (-11 (-5 *3 (-421 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2811 (*1 *2 *3) (-11 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)) (-13 *4 (-584 (-1091))))) (-2810 (*1 *2 *3) (-11 (-5 *3 (-421 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-205 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2809 (*1 *2 *3) (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
-((-2815 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2818 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2816 (((-584 |#2|) |#2|) 11 T ELT)) (-2819 (((-695) (-584 |#1|) (-485) (-485)) 45 (|has| |#1| (-756)) ELT)) (-2817 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT)))
-(((-857 |#1| |#2|) (-10 -7 (-14 -2815 ((-584 |#2|) |#2| |#2|)) (-14 -2816 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-14 -2817 (|#1| |#2|)) (-14 -2818 ((-695) (-584 |#1|))) (-14 -2819 ((-695) (-584 |#1|) (-485) (-485)))) |%noBranch|)) (-311) (-1156 |#1|)) (T -857))
-((-2819 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))) (-2818 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))) (-2817 (*1 *2 *3) (-11 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))) (-2816 (*1 *2 *3) (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))) (-2815 (*1 *2 *3 *3) (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-1091)) $) 16 T ELT)) (-3086 (((-1086 $) $ (-1091)) 21 T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1091))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1091) $) NIL T ELT)) (-3759 (($ $ $ (-1091)) NIL (|has| |#1| (-145)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1091)) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-1091) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-1091) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#1|) (-1091)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1091)) NIL T ELT)) (-2823 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1091)) (-470 (-1091))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3085 (((-3 (-1091) #1#) $) 19 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1091)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3815 (($ $ (-1091)) 29 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1091) |#1|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL T ELT) (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT)) (-3760 (($ $ (-1091)) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3952 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-1091) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-1091) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-1091) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1091)) 27 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-858 |#1|) (-12 (-862 |#1| (-470 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1091))) |%noBranch|))) (-962)) (T -858))
-((-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)))))
-((-3846 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT)))
-(((-859 |#1| |#2|) (-10 -7 (-14 -3846 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))))
-((-3086 (((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)) 18 T ELT)))
-(((-860 |#1| |#2|) (-10 -7 (-14 -3086 ((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)))) (-1091) (-962)) (T -860))
-((-3086 (*1 *2 *3 *4) (-11 (-5 *4 (-1177 *5)) (-13 *5 (-1091)) (-4 *6 (-962)) (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))))
-((-2822 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3778 (($ $) 214 T ELT)) (-3974 (((-347 $) $) 206 T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 141 T ELT)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3759 (($ $ $ |#4|) 95 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3506 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2821 (((-584 $) $) 77 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 240 T ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 233 T ELT)) (-2824 (((-584 $) $) 34 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 203 T ELT)) (-2826 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-695))) #1#) $) 57 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 134 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 147 T ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 145 T ELT)) (-3735 (((-347 $) $) 165 T ELT)) (-3771 (($ $ (-584 (-248 $))) 24 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3760 (($ $ |#4|) 97 T ELT)) (-3975 (((-801 (-329)) $) 254 T ELT) (((-801 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 185 T ELT)) (-3680 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2705 (((-633 $) $) 195 T ELT)) (-1266 (((-82) $ $) 227 T ELT)))
-(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2711 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-14 -3974 ((-347 |#1|) |#1|)) (-14 -3778 (|#1| |#1|)) (-14 -2705 ((-633 |#1|) |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -2799 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-14 -2799 ((-799 (-329) |#1|) |#1| (-801 (-329)) (-799 (-329) |#1|))) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -2709 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2708 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2707 ((-3 (-584 (-1086 |#1|)) #1="failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-14 -2706 ((-3 (-1180 |#1|) #1#) (-631 |#1|))) (-14 -3506 (|#1| |#1| |#4|)) (-14 -2820 (|#1| |#1| |#4|)) (-14 -3760 (|#1| |#1| |#4|)) (-14 -3759 (|#1| |#1| |#1| |#4|)) (-14 -2821 ((-584 |#1|) |#1|)) (-14 -2822 ((-695) |#1| (-584 |#4|))) (-14 -2822 ((-695) |#1|)) (-14 -2827 ((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-695))) #1#) |#1|)) (-14 -2826 ((-3 (-584 |#1|) #1#) |#1|)) (-14 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-14 -2896 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-14 -2896 (|#1| |#1| |#4| (-695))) (-14 -3766 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-14 -2824 ((-584 |#1|) |#1|)) (-14 -3680 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-14 -3680 (|#1| |#1| |#4| (-695))) (-14 -2281 ((-631 |#2|) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -3160 ((-3 |#4| #1#) |#1|)) (-14 -3159 (|#4| |#1|)) (-14 -3771 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#4| |#1|)) (-14 -3771 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-14 -3771 (|#1| |#1| |#4| |#2|)) (-14 -3771 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#1| |#1|)) (-14 -3771 (|#1| |#1| (-248 |#1|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -2896 (|#1| |#2| |#3|)) (-14 -3680 (|#2| |#1| |#3|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -2820 (|#2| |#1|)) (-14 -3506 (|#1| |#1|)) (-14 -1266 ((-82) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 |#3|) $) 124 T ELT)) (-3086 (((-1086 $) $ |#3|) 139 T ELT) (((-1086 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 101 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 104 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 126 T ELT) (((-695) $ (-584 |#3|)) 125 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) 111 (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-349 (-485)) #2#) $) 179 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #2#) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 154 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-349 (-485)) $) 180 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) 178 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 155 T ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-145)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 148 T ELT) (((-631 |#1|) (-631 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3506 (($ $) 194 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) 123 T ELT)) (-3726 (((-82) $) 110 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#2| $) 190 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 98 (-11 (|has| |#3| (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 97 (-11 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2422 (((-695) $) 187 T ELT)) (-3087 (($ (-1086 |#1|) |#3|) 131 T ELT) (($ (-1086 $) |#3|) 130 T ELT)) (-2824 (((-584 $) $) 140 T ELT)) (-3941 (((-82) $) 170 T ELT)) (-2896 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-695)) 133 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-2823 ((|#2| $) 188 T ELT) (((-695) $ |#3|) 136 T ELT) (((-584 (-695)) $ (-584 |#3|)) 135 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3085 (((-3 |#3| "failed") $) 137 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 152 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 146 T ELT) (((-631 |#1|) (-1180 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1896 (($ (-584 $)) 108 (|has| |#1| (-392)) ELT) (($ $ $) 107 (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2826 (((-3 (-584 $) "failed") $) 128 T ELT)) (-2825 (((-3 (-584 $) "failed") $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-695))) "failed") $) 127 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 109 (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) 106 (|has| |#1| (-392)) ELT) (($ $ $) 105 (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 113 (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) 163 T ELT) (($ $ (-248 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-584 |#3|) (-584 $)) 156 T ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3952 ((|#2| $) 169 T ELT) (((-695) $ |#3|) 144 T ELT) (((-584 (-695)) $ (-584 |#3|)) 143 T ELT)) (-3975 (((-801 (-329)) $) 96 (-11 (|has| |#3| (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) 95 (-11 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 94 (-11 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 120 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 118 (-2565 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ $) 99 (|has| |#1| (-496)) ELT) (($ (-349 (-485))) 92 (OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ELT)) (-3820 (((-584 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-695)) 142 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 141 T ELT)) (-2705 (((-633 $) $) 93 (OR (-2565 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 191 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 103 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 176 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 175 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT)))
-(((-862 |#1| |#2| |#3|) (-110) (-962) (-718) (-757)) (T -862))
-((-3506 (*1 *1 *1) (-11 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3952 (*1 *2 *1 *3) (-11 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3952 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3680 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3680 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2824 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3086 (*1 *2 *1 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3086 (*1 *2 *1) (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *3)))) (-3085 (*1 *2 *1) (|partial| -11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2823 (*1 *2 *1 *3) (-11 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2823 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3766 (*1 *2 *1 *1 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3087 (*1 *1 *2 *3) (-11 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3087 (*1 *1 *2 *3) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2825 (*1 *2 *1) (|partial| -11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2827 (*1 *2 *1) (|partial| -11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-695)))))) (-2822 (*1 *2 *1) (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2822 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3084 (*1 *2 *1) (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2821 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3759 (*1 *1 *1 *1 *2) (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-145)))) (-3760 (*1 *1 *1 *2) (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-145)))) (-2820 (*1 *1 *1 *2) (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3506 (*1 *1 *1 *2) (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3778 (*1 *1 *1) (-11 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3974 (*1 *2 *1) (-11 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-347 *1)) (-4 *1 (-862 *3 *4 *5)))))
-(-12 (-810 |t#3|) (-276 |t#1| |t#2|) (-259 $) (-456 |t#3| |t#1|) (-456 |t#3| $) (-951 |t#3|) (-328 |t#1|) (-10 -8 (-14 -3952 ((-695) $ |t#3|)) (-14 -3952 ((-584 (-695)) $ (-584 |t#3|))) (-14 -3680 ($ $ |t#3| (-695))) (-14 -3680 ($ $ (-584 |t#3|) (-584 (-695)))) (-14 -2824 ((-584 $) $)) (-14 -3086 ((-1086 $) $ |t#3|)) (-14 -3086 ((-1086 |t#1|) $)) (-14 -3085 ((-3 |t#3| "failed") $)) (-14 -2823 ((-695) $ |t#3|)) (-14 -2823 ((-584 (-695)) $ (-584 |t#3|))) (-14 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-14 -2896 ($ $ |t#3| (-695))) (-14 -2896 ($ $ (-584 |t#3|) (-584 (-695)))) (-14 -3087 ($ (-1086 |t#1|) |t#3|)) (-14 -3087 ($ (-1086 $) |t#3|)) (-14 -2825 ((-3 (-584 $) "failed") $)) (-14 -2826 ((-3 (-584 $) "failed") $)) (-14 -2827 ((-3 (-2 (|:| |var| |t#3|) (|:| -2403 (-695))) "failed") $)) (-14 -2822 ((-695) $)) (-14 -2822 ((-695) $ (-584 |t#3|))) (-14 -3084 ((-584 |t#3|) $)) (-14 -2821 ((-584 $) $)) (IF (|has| |t#1| (-554 (-474))) (IF (|has| |t#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-485)))) (IF (|has| |t#3| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-329)))) (IF (|has| |t#3| (-554 (-801 (-329)))) (-6 (-554 (-801 (-329)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-485))) (IF (|has| |t#3| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-329))) (IF (|has| |t#3| (-797 (-329))) (-6 (-797 (-329))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-145)) (PROGN (-14 -3759 ($ $ $ |t#3|)) (-14 -3760 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-14 -2820 ($ $ |t#3|)) (-14 -3506 ($ $)) (-14 -3506 ($ $ |t#3|)) (-14 -3974 ((-347 $) $)) (-14 -3778 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#2|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-554 (-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#3| (-554 (-801 (-329))))) ((-554 (-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#3| (-797 (-329)))) ((-797 (-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-822) |has| |#1| (-822)) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-3084 (((-584 |#2|) |#5|) 40 T ELT)) (-3086 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23 T ELT) (((-349 (-1086 |#5|)) |#5| |#2|) 16 T ELT)) (-3087 ((|#5| (-349 (-1086 |#5|)) |#2|) 30 T ELT)) (-3085 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2826 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2828 (((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-485))) #1#) |#5|) 53 T ELT)) (-2825 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-485))) #1#) |#5|) 56 T ELT)))
-(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3084 ((-584 |#2|) |#5|)) (-14 -3085 ((-3 |#2| #1="failed") |#5|)) (-14 -3086 ((-349 (-1086 |#5|)) |#5| |#2|)) (-14 -3087 (|#5| (-349 (-1086 |#5|)) |#2|)) (-14 -3086 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-14 -2825 ((-3 (-584 |#5|) #1#) |#5|)) (-14 -2826 ((-3 (-584 |#5|) #1#) |#5|)) (-14 -2827 ((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-485))) #1#) |#5|)) (-14 -2828 ((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-485))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-12 (-311) (-10 -8 (-14 -3950 ($ |#4|)) (-14 -3001 (|#4| $)) (-14 -3000 (|#4| $))))) (T -863))
-((-2828 (*1 *2 *3) (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))) (-2827 (*1 *2 *3) (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))) (-3086 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3087 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3086 (*1 *2 *3 *4) (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-349 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))) (-3085 (*1 *2 *3) (|partial| -11 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *6)) (-14 -3001 (*6 $)) (-14 -3000 (*6 $))))))) (-3084 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
-((-3846 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3846 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -3842 ($ $ $)) (-14 * ($ $ $)) (-14 ** ($ $ (-695)))))) (T -864))
-((-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-12 (-1014) (-10 -8 (-14 -3842 ($ $ $)) (-14 * ($ $ $)) (-14 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))))
-((-2829 (((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2830 (((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) (-349 (-485)) (-695)) 43 T ELT)) (-2832 (((-2 (|:| -2403 (-695)) (|:| -3958 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2831 (((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-392)) ELT)))
-(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2829 ((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-14 -2830 ((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) (-349 (-485)) (-695))) (IF (|has| |#3| (-392)) (-14 -2831 ((-2 (|:| -2403 (-695)) (|:| -3958 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-14 -2832 ((-2 (|:| -2403 (-695)) (|:| -3958 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-12 (-311) (-10 -8 (-14 -3950 ($ |#4|)) (-14 -3001 (|#4| $)) (-14 -3000 (|#4| $))))) (T -865))
-((-2832 (*1 *2 *3 *4) (-11 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-12 (-311) (-10 -8 (-14 -3950 ($ *3)) (-14 -3001 (*3 $)) (-14 -3000 (*3 $))))))) (-2831 (*1 *2 *3 *4) (-11 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-12 (-311) (-10 -8 (-14 -3950 ($ *8)) (-14 -3001 (*8 $)) (-14 -3000 (*8 $))))))) (-2830 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-12 (-311) (-10 -8 (-14 -3950 ($ *8)) (-14 -3001 (*8 $)) (-14 -3000 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-11 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-12 (-311) (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2833 (($ (-1034)) 8 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 15 T ELT) (((-1034) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 11 T ELT)))
-(((-866) (-12 (-1014) (-553 (-1034)) (-10 -8 (-14 -2833 ($ (-1034)))))) (T -866))
-((-2833 (*1 *1 *2) (-11 (-5 *2 (-1034)) (-5 *1 (-866)))))
-((-2899 (((-1002 (-178)) $) 8 T ELT)) (-2900 (((-1002 (-178)) $) 9 T ELT)) (-2901 (((-584 (-584 (-855 (-178)))) $) 10 T ELT)) (-3950 (((-773) $) 6 T ELT)))
-(((-867) (-110)) (T -867))
-((-2901 (*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-178))))))) (-2900 (*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-1002 (-178))))) (-2899 (*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-1002 (-178))))))
-(-12 (-553 (-773)) (-10 -8 (-14 -2901 ((-584 (-584 (-855 (-178)))) $)) (-14 -2900 ((-1002 (-178)) $)) (-14 -2899 ((-1002 (-178)) $))))
-(((-553 (-773)) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) 32 T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) 18 T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| |#2|) NIL T ELT)) (-2823 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) 29 T ELT)) (-3177 ((|#1| $) 27 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) 52 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ |#2| |#1| $) 90 (-11 (|has| |#2| (-101)) (|has| |#1| (-496))) ELT)) (-3469 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3952 ((|#2| $) 23 T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) 38 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 15 T CONST)) (-1624 (($ $ $ (-695)) 76 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) 86 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 28 T CONST)) (-2669 (($) 12 T CONST)) (-3059 (((-82) $ $) 85 T ELT)) (-3953 (($ $ |#1|) 93 (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-868 |#1| |#2|) (-12 (-276 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-101)) (-14 -3741 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-717)) (T -868))
-((-3741 (*1 *1 *1 *2 *3 *1) (-11 (-5 *1 (-868 *3 *2)) (-4 *2 (-101)) (-4 *3 (-496)) (-4 *3 (-962)) (-4 *2 (-717)))))
-((-2834 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT)))
-(((-869 |#1| |#2|) (-10 -7 (-14 -2834 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-496) (-601 |#1|)) (T -869))
-((-2834 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 18 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 17 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 15 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 14 T ELT)) (-2202 (((-485) $) 10 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 23 T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 22 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 19 (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) 11 T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 16 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 20 T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 13 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3961 (((-695) $) 8 T ELT)))
-(((-870 |#1|) (-16 |#1|) (-1130)) (T -870))
-NIL
-((-3844 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3846 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT)))
-(((-871 |#1| |#2|) (-10 -7 (-14 -3844 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-14 -3845 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-14 -3846 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1130) (-1130)) (T -871))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-871 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))))
-((-2835 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)))
-(((-872) (-110)) (T -872))
-((-2835 (*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-872)))) (-2835 (*1 *1 *1 *2) (-11 (-4 *1 (-872)) (-5 *2 (-1091)))))
-(-12 (-10 -8 (-14 -2835 ($ $ (-1091))) (-14 -2835 ($ $ (-1005 $)))))
-((-2836 (((-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)) 26 T ELT) (((-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091)) 49 T ELT)))
-(((-873 |#1|) (-10 -7 (-14 -2836 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091))) (-14 -2836 ((-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)))) (-14 -2836 ((-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)))) (-12 (-311) (-117))) (T -873))
-((-2836 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) (-4 *6 (-12 (-311) (-117))) (-5 *2 (-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-873 *6)))) (-2836 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-12 (-311) (-117))) (-5 *2 (-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))) (-2836 (*1 *2 *3 *4 *3 *4) (-11 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-12 (-311) (-117))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))))
-((-2839 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3726 (((-82) |#1|) 44 T ELT)) (-2838 ((|#1| |#1|) 80 T ELT)) (-2837 ((|#1| |#1|) 79 T ELT)))
-(((-874 |#1|) (-10 -7 (-14 -3726 ((-82) |#1|)) (-14 -2837 (|#1| |#1|)) (-14 -2838 (|#1| |#1|)) (-14 -2839 ((-584 |#1|) |#1| |#1|))) (-484)) (T -874))
-((-2839 (*1 *2 *3 *3) (-11 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) (-2838 (*1 *2 *2) (-11 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-2837 (*1 *2 *2) (-11 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-3726 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
-((-2840 (((-1186) (-773)) 9 T ELT)))
-(((-875) (-10 -7 (-14 -2840 ((-1186) (-773))))) (T -875))
-((-2840 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2486 (($ $ $) 65 (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1313 (((-3 $ #1="failed") $ $) 52 (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3139 (((-695)) 36 (-11 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-2841 ((|#2| $) 22 T ELT)) (-2842 ((|#1| $) 21 T ELT)) (-3727 (($) NIL (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3470 (((-3 $ #1#) $) NIL (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2997 (($) NIL (-11 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3189 (((-82) $) NIL (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1215 (((-82) $ $) NIL (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2412 (((-82) $) NIL (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2534 (($ $ $) NIL (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2860 (($ $ $) NIL (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2843 (($ |#1| |#2|) 20 T ELT)) (-2012 (((-831) $) NIL (-11 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 39 (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2402 (($ (-831)) NIL (-11 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3012 (($ $ $) NIL (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2438 (($ $ $) NIL (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3950 (((-773) $) 14 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 42 (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2669 (($) 25 (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2569 (((-82) $ $) NIL (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2570 (((-82) $ $) NIL (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3059 (((-82) $ $) 19 T ELT)) (-2687 (((-82) $ $) NIL (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2688 (((-82) $ $) 69 (OR (-11 (|has| |#1| (-718)) (|has| |#2| (-718))) (-11 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3953 (($ $ $) NIL (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3840 (($ $ $) 58 (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) ELT) (($ $) 55 (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) ELT)) (-3842 (($ $ $) 45 (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-485)) NIL (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-695)) 32 (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-485) $) 62 (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) ELT) (($ (-695) $) 48 (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-11 (|has| |#1| (-18)) (|has| |#2| (-18))) (-11 (|has| |#1| (-20)) (|has| |#2| (-20))) (-11 (|has| |#1| (-101)) (|has| |#2| (-101))) (-11 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-11 (|has| |#1| (-413)) (|has| |#2| (-413))) (-11 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)))
-(((-876 |#1| |#2|) (-12 (-1014) (-10 -8 (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-20)) (IF (|has| |#2| (-20)) (-6 (-20)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-101)) (IF (|has| |#2| (-101)) (-6 (-101)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-18)) (IF (|has| |#2| (-18)) (-6 (-18)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-14 -2843 ($ |#1| |#2|)) (-14 -2842 (|#1| $)) (-14 -2841 (|#2| $)))) (-1014) (-1014)) (T -876))
-((-2843 (*1 *1 *2 *3) (-11 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2842 (*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))) (-2841 (*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
-((-3405 (((-1016) $) 13 T ELT)) (-2844 (($ (-447) (-1016)) 15 T ELT)) (-3545 (((-447) $) 11 T ELT)) (-3950 (((-773) $) 25 T ELT)))
-(((-877) (-12 (-553 (-773)) (-10 -8 (-14 -3545 ((-447) $)) (-14 -3405 ((-1016) $)) (-14 -2844 ($ (-447) (-1016)))))) (T -877))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-877)))) (-3405 (*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-877)))) (-2844 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 29 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) NIL T ELT)) (-2563 (($ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2849 (((-633 (-783 $ $)) $) 62 T ELT)) (-2851 (((-633 $) $) 52 T ELT)) (-2848 (((-633 (-783 $ $)) $) 63 T ELT)) (-2847 (((-633 (-783 $ $)) $) 64 T ELT)) (-2852 (((-633 |#1|) $) 43 T ELT)) (-2850 (((-633 (-783 $ $)) $) 61 T ELT)) (-2856 (($ $ $) 38 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 39 T ELT)) (-2845 (($ $ $) 36 T ELT)) (-2846 (($ $ $) 34 T ELT)) (-3950 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2313 (($ $ $) 37 T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) 35 T ELT)))
-(((-878 |#1|) (-12 (-881) (-556 |#1|) (-10 -8 (-14 -2852 ((-633 |#1|) $)) (-14 -2851 ((-633 $) $)) (-14 -2850 ((-633 (-783 $ $)) $)) (-14 -2849 ((-633 (-783 $ $)) $)) (-14 -2848 ((-633 (-783 $ $)) $)) (-14 -2847 ((-633 (-783 $ $)) $)) (-14 -2846 ($ $ $)) (-14 -2845 ($ $ $)))) (-1014)) (T -878))
-((-2852 (*1 *2 *1) (-11 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2851 (*1 *2 *1) (-11 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2850 (*1 *2 *1) (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2849 (*1 *2 *1) (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2848 (*1 *2 *1) (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2847 (*1 *2 *1) (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2846 (*1 *1 *1 *1) (-11 (-5 *1 (-878 *2)) (-4 *2 (-1014)))) (-2845 (*1 *1 *1 *1) (-11 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-((-3652 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2854 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2853 (((-1010 |#1|) (-878 |#1|)) 41 T ELT)))
-(((-879 |#1|) (-12 (-1130) (-10 -7 (-14 -2854 ((-878 |#1|) (-878 |#1|))) (-14 -2853 ((-1010 |#1|) (-878 |#1|))) (-14 -3652 ((-878 |#1|) (-878 |#1|))))) (-1014)) (T -879))
-((-2854 (*1 *2 *2) (-11 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) (-2853 (*1 *2 *3) (-11 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))) (-3652 (*1 *2 *2) (-11 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
-((-3846 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT)))
-(((-880 |#1| |#2|) (-12 (-1130) (-10 -7 (-14 -3846 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1014) (-1014)) (T -880))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))))
-((-2571 (((-82) $ $) 19 T ELT)) (-2315 (($ $) 8 T ELT)) (-2858 (($) 17 T CONST)) (-2564 (($ $ $) 9 T ELT)) (-2563 (($ $) 11 T ELT)) (-3245 (((-1074) $) 23 T ELT)) (-2856 (($ $ $) 15 T ELT)) (-3246 (((-1034) $) 22 T ELT)) (-2857 (($) 16 T CONST)) (-2855 (($ $ $) 14 T ELT)) (-3950 (((-773) $) 21 T ELT)) (-1266 (((-82) $ $) 20 T ELT)) (-2565 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-3059 (((-82) $ $) 18 T ELT)) (-2314 (($ $ $) 7 T ELT)))
-(((-881) (-110)) (T -881))
-((-2858 (*1 *1) (-4 *1 (-881))) (-2857 (*1 *1) (-4 *1 (-881))) (-2856 (*1 *1 *1 *1) (-4 *1 (-881))) (-2855 (*1 *1 *1 *1) (-4 *1 (-881))))
-(-12 (-81) (-1014) (-10 -8 (-14 -2858 ($) -3956) (-14 -2857 ($) -3956) (-14 -2856 ($ $ $)) (-14 -2855 ($ $ $))))
-(((-69) . T) ((-81) . T) ((-553 (-773)) . T) ((-12) . T) ((-605) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 49 T ELT)) (-2859 (($ $ $) 41 T ELT)) (-3521 (($ $ $) 42 T ELT)) (-2611 (((-584 |#1|) $) 48 T ELT)) (-3248 (((-82) |#1| $) 53 (|has| |#1| (-69)) ELT)) (-2860 ((|#1| $) 43 T ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 51 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 46 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-1732 (((-695) |#1| $) 52 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 47 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 45 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-882 |#1|) (-110) (-757)) (T -882))
-((-2860 (*1 *2 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3521 (*1 *1 *1 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2859 (*1 *1 *1 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(-12 (-73 |t#1|) (-317 |t#1|) (-10 -8 (-14 -2860 (|t#1| $)) (-14 -3521 ($ $ $)) (-14 -2859 ($ $ $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 105 T ELT)) (-3758 ((|#2| |#2| |#2|) 103 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 107 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|) 109 T ELT)) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2888 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 56 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 80 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 82 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2876 (((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 121 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2878 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2886 ((|#1| |#2| |#2|) 50 T ELT)) (-2880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2879 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2887 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 54 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|) 79 T ELT)) (-3759 ((|#1| |#2| |#2|) 76 T ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 41 T ELT)) (-2885 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3193 ((|#2| |#2| |#2|) 93 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2864 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3147 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3469 (((-1180 |#2|) (-1180 |#2|) |#1|) 22 T ELT)) (-2882 (((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|) 46 T ELT)) (-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|) 119 T ELT)) (-3760 ((|#1| |#2|) 116 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2867 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2877 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2884 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2883 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1180 |#2|) |#1| (-1180 |#2|)) 17 T ELT)))
-(((-883 |#1| |#2|) (-10 -7 (-14 -3759 (|#1| |#2| |#2|)) (-14 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-14 -2862 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-14 -2863 ((-2 (|:| |coef1| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-14 -2864 (|#2| |#2| |#2| (-695))) (-14 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-14 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-14 -2867 (|#2| |#2| |#2| (-695))) (-14 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-14 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-14 -3193 (|#2| |#2| |#2|)) (-14 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-14 -2871 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-14 -3758 (|#2| |#2| |#2|)) (-14 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-14 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-14 -2874 ((-2 (|:| |coef1| |#2|) (|:| -3147 |#2|)) |#2| |#2|)) (-14 -3760 (|#1| |#2|)) (-14 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-14 -2876 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2|)) (-14 -2877 ((-584 |#2|) |#2| |#2|)) (-14 -2878 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-14 -2879 (|#1| |#2| |#2|)) (-14 -2880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-14 -2881 ((-2 (|:| |coef2| |#2|) (|:| -2879 |#1|)) |#2| |#2|)) (-14 -3147 (|#2| |#2| |#2|))) |%noBranch|) (-14 * ((-1180 |#2|) |#1| (-1180 |#2|))) (-14 -3469 ((-1180 |#2|) (-1180 |#2|) |#1|)) (-14 -3755 ((-2 (|:| -3958 |#1|) (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-14 -2882 ((-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) |#2| |#2|)) (-14 -2883 (|#1| |#1| |#1| (-695))) (-14 -2884 (|#2| |#2| |#1| |#1| (-695))) (-14 -2885 (|#2| |#2| |#2| |#2| |#1|)) (-14 -2886 (|#1| |#2| |#2|)) (-14 -2887 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|)) (-14 -2888 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2| |#2|))) (-496) (-1156 |#1|)) (T -883))
-((-2888 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2887 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2886 (*1 *2 *3 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2885 (*1 *2 *2 *2 *2 *3) (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2884 (*1 *2 *2 *3 *3 *4) (-11 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2883 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))) (-2882 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3755 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3958 *4) (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3469 (*1 *2 *2 *3) (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (-3147 (*1 *2 *2 *2) (-11 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2881 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2880 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2879 (*1 *2 *3 *3) (-11 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2878 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2877 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2876 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2875 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3760 (*1 *2 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2874 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2873 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2872 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3758 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2871 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2870 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3193 (*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2869 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2868 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2867 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2866 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2865 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2864 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2863 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2862 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2861 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3759 (*1 *2 *3 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3321 (((-1131) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 11 T ELT)) (-3950 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-884) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $)) (-14 -3321 ((-1131) $))))) (T -884))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-884)))) (-3321 (*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-884)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 54 T ELT)) (-3727 (($) NIL T CONST)) (-2890 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3189 (((-82) $) NIL T ELT)) (-2889 (((-831) $) 91 T ELT)) (-2892 (((-584 (-831)) $) 17 T ELT)) (-2891 (((-1070 $) (-695)) 39 T ELT)) (-2893 (($ (-584 (-831))) 16 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3012 (($ $) 67 T ELT)) (-3950 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) 10 T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 44 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 42 T ELT)) (-3842 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3961 (((-695) $) 22 T ELT)))
-(((-885) (-12 (-722) (-553 (-584 (-831))) (-10 -8 (-14 -2893 ($ (-584 (-831)))) (-14 -2892 ((-584 (-831)) $)) (-14 -3961 ((-695) $)) (-14 -2891 ((-1070 $) (-695))) (-14 -2890 ((-584 (-783 (-831) (-831))) $)) (-14 -2889 ((-831) $)) (-14 -3012 ($ $))))) (T -885))
-((-2893 (*1 *1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2892 (*1 *2 *1) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3961 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-885)))) (-2891 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))) (-2890 (*1 *2 *1) (-11 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2889 (*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-885)))) (-3012 (*1 *1 *1) (-5 *1 (-885))))
-((-3953 (($ $ |#2|) 31 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-349 (-485)) $) 27 T ELT) (($ $ (-349 (-485))) 29 T ELT)))
-(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-14 * (|#1| |#1| (-349 (-485)))) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 -3953 (|#1| |#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 |#3|) $) 96 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-82) $) 95 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT) (($ $ |#3| |#2|) 98 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-887 |#1| |#2| |#3|) (-110) (-962) (-717) (-757)) (T -887))
-((-3177 (*1 *2 *1) (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2897 (*1 *1 *1) (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2896 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3084 (*1 *2 *1) (-11 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2895 (*1 *2 *1) (-11 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-82)))) (-2894 (*1 *1 *1) (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(-12 (-44 |t#1| |t#2|) (-10 -8 (-14 -2896 ($ $ |t#3| |t#2|)) (-14 -2896 ($ $ (-584 |t#3|) (-584 |t#2|))) (-14 -2897 ($ $)) (-14 -3177 (|t#1| $)) (-14 -3952 (|t#2| $)) (-14 -3084 ((-584 |t#3|) $)) (-14 -2895 ((-82) $)) (-14 -2894 ($ $))))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#2|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-245) |has| |#1| (-496)) ((-380 |#1|) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2898 (((-1002 (-178)) $) 8 T ELT)) (-2899 (((-1002 (-178)) $) 9 T ELT)) (-2900 (((-1002 (-178)) $) 10 T ELT)) (-2901 (((-584 (-584 (-855 (-178)))) $) 11 T ELT)) (-3950 (((-773) $) 6 T ELT)))
-(((-888) (-110)) (T -888))
-((-2901 (*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-178))))))) (-2900 (*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))) (-2899 (*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))) (-2898 (*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))))
-(-12 (-553 (-773)) (-10 -8 (-14 -2901 ((-584 (-584 (-855 (-178)))) $)) (-14 -2900 ((-1002 (-178)) $)) (-14 -2899 ((-1002 (-178)) $)) (-14 -2898 ((-1002 (-178)) $))))
-(((-553 (-773)) . T))
-((-3084 (((-584 |#4|) $) 23 T ELT)) (-2911 (((-82) $) 55 T ELT)) (-2902 (((-82) $) 54 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2907 (((-82) $) 56 T ELT)) (-2909 (((-82) $ $) 62 T ELT)) (-2908 (((-82) $ $) 65 T ELT)) (-2910 (((-82) $) 60 T ELT)) (-2903 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2904 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2905 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2917 (((-584 |#4|) $) 27 T ELT)) (-2916 (((-82) |#4| $) 34 T ELT)) (-2906 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2913 (($ $ |#4|) 39 T ELT)) (-2915 (($ $ |#4|) 38 T ELT)) (-2914 (($ $ |#4|) 40 T ELT)) (-3059 (((-82) $ $) 46 T ELT)))
-(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -2902 ((-82) |#1|)) (-14 -2903 ((-584 |#5|) (-584 |#5|) |#1|)) (-14 -2904 ((-584 |#5|) (-584 |#5|) |#1|)) (-14 -2905 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-14 -2906 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-14 -2907 ((-82) |#1|)) (-14 -2908 ((-82) |#1| |#1|)) (-14 -2909 ((-82) |#1| |#1|)) (-14 -2910 ((-82) |#1|)) (-14 -2911 ((-82) |#1|)) (-14 -2912 ((-2 (|:| |under| |#1|) (|:| -3133 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-14 -2913 (|#1| |#1| |#4|)) (-14 -2914 (|#1| |#1| |#4|)) (-14 -2915 (|#1| |#1| |#4|)) (-14 -2916 ((-82) |#4| |#1|)) (-14 -2917 ((-584 |#4|) |#1|)) (-14 -3084 ((-584 |#4|) |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -889))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-890 |#1| |#2| |#3| |#4|) (-110) (-962) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -890))
-((-3160 (*1 *1 *2) (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3159 (*1 *1 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3183 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) (-3084 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2917 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2916 (*1 *2 *3 *1) (-11 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-82)))) (-2915 (*1 *1 *1 *2) (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2914 (*1 *1 *1 *2) (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2912 (*1 *2 *1 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2911 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-2910 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))) (-2909 (*1 *2 *1 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))) (-2908 (*1 *2 *1 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))) (-2907 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))) (-2906 (*1 *2 *3 *1) (-11 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2905 (*1 *2 *3 *1) (-11 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2904 (*1 *2 *2 *1) (-11 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2903 (*1 *2 *2 *1) (-11 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2902 (*1 *2 *1) (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
-(-12 (-1014) (-121 |t#4|) (-317 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-14 -3160 ((-3 $ "failed") (-584 |t#4|))) (-14 -3159 ($ (-584 |t#4|))) (-14 -3183 (|t#3| $)) (-14 -3084 ((-584 |t#3|) $)) (-14 -2917 ((-584 |t#3|) $)) (-14 -2916 ((-82) |t#3| $)) (-14 -2915 ($ $ |t#3|)) (-14 -2914 ($ $ |t#3|)) (-14 -2913 ($ $ |t#3|)) (-14 -2912 ((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |t#3|)) (-14 -2911 ((-82) $)) (IF (|has| |t#1| (-496)) (PROGN (-14 -2910 ((-82) $)) (-14 -2909 ((-82) $ $)) (-14 -2908 ((-82) $ $)) (-14 -2907 ((-82) $)) (-14 -2906 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-14 -2905 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-14 -2904 ((-584 |t#4|) (-584 |t#4|) $)) (-14 -2903 ((-584 |t#4|) (-584 |t#4|) $)) (-14 -2902 ((-82) $))) |%noBranch|)))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2919 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2942 (((-584 |#4|) (-584 |#4|) (-82)) 123 (|has| |#1| (-392)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2929 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2928 (((-82) |#4|) 43 T ELT)) (-2941 (((-584 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-82) |#4|) (-584 |#4|)) 24 T ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-82) |#4|)) (-584 |#4|)) 30 T ELT)) (-2926 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-82) |#4|)) (-584 |#4|)) 31 T ELT)) (-2937 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3326 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2939 (((-584 |#4|) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2940 (((-584 |#4|) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2918 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2934 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-82)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2935 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2945 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2944 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2920 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2948 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-11 (|has| |#1| (-117)) (|has| |#1| (-257))) ELT)) (-2927 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2923 (((-82) (-584 |#4|)) 79 T ELT)) (-2922 (((-82) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2931 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2930 (((-82) |#4|) 36 T ELT)) (-2947 (((-584 |#4|) (-584 |#4|)) 116 (-11 (|has| |#1| (-117)) (|has| |#1| (-257))) ELT)) (-2946 (((-584 |#4|) (-584 |#4|)) 115 (-11 (|has| |#1| (-117)) (|has| |#1| (-257))) ELT)) (-2936 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2921 (((-82) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2933 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2932 (((-82) |#4|) 45 T ELT)))
-(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2920 ((-584 |#4|) (-584 |#4|))) (-14 -2920 ((-584 |#4|) |#4| |#4|)) (-14 -2918 ((-584 |#4|) (-584 |#4|))) (-14 -2919 ((-584 |#4|) |#4| |#4|)) (-14 -2920 ((-584 |#4|) (-584 |#4|) |#4|)) (-14 -2920 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-14 -2920 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-14 -2921 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -2922 ((-82) (-584 |#4|) (-584 (-584 |#4|)))) (-14 -2923 ((-82) (-584 |#4|))) (-14 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-82) |#4|) (-584 |#4|))) (-14 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-82) |#4|)) (-584 |#4|))) (-14 -2926 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-82) |#4|)) (-584 |#4|))) (-14 -2927 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-14 -2928 ((-82) |#4|)) (-14 -2929 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-14 -2930 ((-82) |#4|)) (-14 -2931 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-14 -2932 ((-82) |#4|)) (-14 -2933 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-14 -2934 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-14 -2934 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-82))) (-14 -2935 (|#4| |#4| (-584 |#4|))) (-14 -2936 ((-584 |#4|) (-584 |#4|))) (-14 -2937 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3326 (-584 |#4|))) "failed") (-584 |#4|))) (-14 -2938 ((-584 |#4|) (-584 |#4|))) (-14 -2939 ((-584 |#4|) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-14 -2940 ((-584 |#4|) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-14 -2941 ((-584 |#4|) |#4|)) (-14 -2942 ((-584 |#4|) (-584 |#4|))) (-14 -2942 ((-584 |#4|) (-584 |#4|) (-82))) (-14 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-14 -2944 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-14 -2945 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-117)) (PROGN (-14 -2946 ((-584 |#4|) (-584 |#4|))) (-14 -2947 ((-584 |#4|) (-584 |#4|))) (-14 -2948 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -891))
-((-2948 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2947 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2945 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-82)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2942 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *3) (-11 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2940 (*1 *2 *2 *3 *4) (-11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2939 (*1 *2 *2 *3 *4 *5) (-11 (-5 *2 (-584 *9)) (-5 *3 (-1 (-82) *9)) (-5 *4 (-1 (-82) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2938 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2937 (*1 *2 *3) (|partial| -11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3326 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2936 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2935 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2934 (*1 *2 *2 *2 *3) (-11 (-5 *2 (-584 *7)) (-5 *3 (-82)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2934 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2933 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2932 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2931 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2930 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2929 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2928 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2927 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2926 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-1 (-82) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2925 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-1 (-82) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2924 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-82) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2923 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2922 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2921 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2920 (*1 *2 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2920 (*1 *2 *2 *3) (-11 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2919 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2918 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2920 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2920 (*1 *2 *2) (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
-((-2949 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-66 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2951 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 45 T ELT)) (-2950 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-66 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
-(((-892 |#1|) (-10 -7 (-14 -2949 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-66 |#1|) (-1 |#1| |#1|))) (-14 -2950 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-66 |#1|) (-1 |#1| |#1|))) (-14 -2951 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)))) (-311)) (T -892))
-((-2951 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))) (-2950 (*1 *2 *2 *2 *3 *4) (-11 (-5 *2 (-631 *5)) (-5 *3 (-66 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-892 *5)))) (-2949 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-66 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
-((-3974 (((-347 |#4|) |#4|) 61 T ELT)))
-(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3974 ((-347 |#4|) |#4|))) (-757) (-718) (-392) (-862 |#3| |#2| |#1|)) (T -893))
-((-3974 (*1 *2 *3) (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-347 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3841 (($ (-695)) 123 (|has| |#1| (-20)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) 96 T ELT) (((-82) $) 90 (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-11 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-69)) ELT)) (-3709 (($ (-584 |#1|)) 129 T ELT)) (-3838 (((-631 |#1|) $ $) 116 (|has| |#1| (-962)) ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 104 T ELT)) (-3248 (((-82) |#1| $) 109 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-11 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3836 ((|#1| $) 114 (-11 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-3772 (($ $ (-584 |#1|)) 127 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 102 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-962)) ELT)) (-3915 (((-831) $) 128 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3837 (($ $ $) 115 T ELT)) (-1732 (((-695) |#1| $) 108 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 130 T ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 101 T ELT)) (-2569 (((-82) $ $) 82 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 84 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) 83 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 85 (|has| |#1| (-757)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-18)) ELT) (($ $ $) 121 (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-22)) ELT)) (* (($ (-485) $) 120 (|has| |#1| (-18)) ELT) (($ |#1| $) 119 (|has| |#1| (-664)) ELT) (($ $ |#1|) 118 (|has| |#1| (-664)) ELT)) (-3961 (((-695) $) 100 T ELT)))
-(((-894 |#1|) (-110) (-962)) (T -894))
-((-3709 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3915 (*1 *2 *1) (-11 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3837 (*1 *1 *1 *1) (-11 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3772 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))))
-(-12 (-1179 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-14 -3709 ($ (-584 |t#1|))) (-14 -3915 ((-831) $)) (-14 -3837 ($ $ $)) (-14 -3772 ($ $ (-584 |t#1|)))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-16 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T) ((-1179 |#1|) . T))
-((-3846 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT)))
-(((-895 |#1| |#2|) (-10 -7 (-14 -3846 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))))
-((-2954 ((|#1| (-855 |#1|)) 14 T ELT)) (-2953 ((|#1| (-855 |#1|)) 13 T ELT)) (-2952 ((|#1| (-855 |#1|)) 12 T ELT)) (-2956 ((|#1| (-855 |#1|)) 16 T ELT)) (-2960 ((|#1| (-855 |#1|)) 24 T ELT)) (-2955 ((|#1| (-855 |#1|)) 15 T ELT)) (-2957 ((|#1| (-855 |#1|)) 17 T ELT)) (-2959 ((|#1| (-855 |#1|)) 23 T ELT)) (-2958 ((|#1| (-855 |#1|)) 22 T ELT)))
-(((-896 |#1|) (-10 -7 (-14 -2952 (|#1| (-855 |#1|))) (-14 -2953 (|#1| (-855 |#1|))) (-14 -2954 (|#1| (-855 |#1|))) (-14 -2955 (|#1| (-855 |#1|))) (-14 -2956 (|#1| (-855 |#1|))) (-14 -2957 (|#1| (-855 |#1|))) (-14 -2958 (|#1| (-855 |#1|))) (-14 -2959 (|#1| (-855 |#1|))) (-14 -2960 (|#1| (-855 |#1|)))) (-962)) (T -896))
-((-2960 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2959 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2958 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2957 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2956 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-((-2978 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2961 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2987 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 11 T ELT)))
-(((-897 |#1|) (-110) (-1116)) (T -897))
-((-2987 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2986 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2985 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2984 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2983 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2982 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2981 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2980 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2979 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2978 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2977 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2976 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2975 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2974 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2973 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2972 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2971 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2970 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2968 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2967 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2966 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2965 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2964 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2963 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2962 (*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2961 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(-12 (-10 -7 (-14 -2961 ((-3 |t#1| "failed") |t#1| (-695))) (-14 -2962 ((-3 |t#1| "failed") |t#1|)) (-14 -2963 ((-3 |t#1| "failed") |t#1|)) (-14 -2964 ((-3 |t#1| "failed") |t#1|)) (-14 -2965 ((-3 |t#1| "failed") |t#1|)) (-14 -2966 ((-3 |t#1| "failed") |t#1|)) (-14 -2967 ((-3 |t#1| "failed") |t#1|)) (-14 -2968 ((-3 |t#1| "failed") |t#1|)) (-14 -2969 ((-3 |t#1| "failed") |t#1|)) (-14 -2970 ((-3 |t#1| "failed") |t#1|)) (-14 -2971 ((-3 |t#1| "failed") |t#1|)) (-14 -2972 ((-3 |t#1| "failed") |t#1|)) (-14 -2973 ((-3 |t#1| "failed") |t#1|)) (-14 -2974 ((-3 |t#1| "failed") |t#1|)) (-14 -2975 ((-3 |t#1| "failed") |t#1|)) (-14 -2976 ((-3 |t#1| "failed") |t#1|)) (-14 -2977 ((-3 |t#1| "failed") |t#1|)) (-14 -2978 ((-3 |t#1| "failed") |t#1|)) (-14 -2979 ((-3 |t#1| "failed") |t#1|)) (-14 -2980 ((-3 |t#1| "failed") |t#1|)) (-14 -2981 ((-3 |t#1| "failed") |t#1|)) (-14 -2982 ((-3 |t#1| "failed") |t#1|)) (-14 -2983 ((-3 |t#1| "failed") |t#1|)) (-14 -2984 ((-3 |t#1| "failed") |t#1|)) (-14 -2985 ((-3 |t#1| "failed") |t#1|)) (-14 -2986 ((-3 |t#1| "failed") |t#1|)) (-14 -2987 ((-3 |t#1| "failed") |t#1|))))
-((-2989 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2988 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3846 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -2988 (|#4| |#4| |#3|)) (-14 -2988 (|#4| |#4| (-584 |#3|))) (-14 -2989 (|#4| |#4| |#3|)) (-14 -2989 (|#4| |#4| (-584 |#3|))) (-14 -3846 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898))
-((-3846 (*1 *2 *3 *2) (-11 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1="failed") (-1091)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2989 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2989 (*1 *2 *2 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2988 (*1 *2 *2 *3) (-11 (-5 *3 (-584 *6)) (-4 *6 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))))
-((-2990 ((|#2| |#3|) 35 T ELT)) (-3923 (((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3922 (((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT)))
-(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3922 ((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-14 -3923 ((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-14 -2990 (|#2| |#3|))) (-298) (-1156 |#1|) (-1156 |#2|) (-662 |#2| |#3|)) (T -899))
-((-2990 (*1 *2 *3) (-11 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-298)) (-4 *5 (-662 *2 *3)))) (-3923 (*1 *2 *3) (-11 (-4 *4 (-298)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3922 (*1 *2) (-11 (-4 *3 (-298)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2014 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3404 (((-3 (-82) #1="failed") $) 71 T ELT)) (-3652 (($ $) 36 (-11 (|has| |#1| (-117)) (|has| |#1| (-257))) ELT)) (-2994 (($ $ (-3 (-82) #1#)) 72 T ELT)) (-2995 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2991 (($ $) 69 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3406 (((-82) $) 70 T ELT)) (-3568 (($) 30 T ELT)) (-2992 ((|#4| $) 74 T ELT)) (-2993 (((-584 |#4|) $) 73 T ELT)) (-3950 (((-773) $) 68 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-900 |#1| |#2| |#3| |#4|) (-12 (-1014) (-553 (-773)) (-10 -8 (-14 -3568 ($)) (-14 -2995 ($ (-584 |#4|) |#4|)) (-14 -3404 ((-3 (-82) #1="failed") $)) (-14 -2994 ($ $ (-3 (-82) #1#))) (-14 -3406 ((-82) $)) (-14 -2993 ((-584 |#4|) $)) (-14 -2992 (|#4| $)) (-14 -2991 ($ $)) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-117)) (-14 -3652 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900))
-((-3568 (*1 *1) (-11 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2995 (*1 *1 *2 *3) (-11 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3404 (*1 *2 *1) (|partial| -11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-82)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2994 (*1 *1 *1 *2) (-11 (-5 *2 (-3 (-82) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3406 (*1 *2 *1) (-11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-82)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2993 (*1 *2 *1) (-11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2992 (*1 *2 *1) (-11 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2991 (*1 *1 *1) (-11 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3652 (*1 *1 *1) (-11 (-4 *2 (-117)) (-4 *2 (-257)) (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))))
-((-2996 (((-900 (-349 (-485)) (-774 |#1|) (-196 |#2| (-695)) (-205 |#1| (-349 (-485)))) (-900 (-349 (-485)) (-774 |#1|) (-196 |#2| (-695)) (-205 |#1| (-349 (-485))))) 82 T ELT)))
-(((-901 |#1| |#2|) (-10 -7 (-14 -2996 ((-900 (-349 (-485)) (-774 |#1|) (-196 |#2| (-695)) (-205 |#1| (-349 (-485)))) (-900 (-349 (-485)) (-774 |#1|) (-196 |#2| (-695)) (-205 |#1| (-349 (-485))))))) (-584 (-1091)) (-695)) (T -901))
-((-2996 (*1 *2 *2) (-11 (-5 *2 (-900 (-349 (-485)) (-774 *3) (-196 *4 (-695)) (-205 *3 (-349 (-485))))) (-13 *3 (-584 (-1091))) (-13 *4 (-695)) (-5 *1 (-901 *3 *4)))))
-((-3272 (((-82) |#5| |#5|) 44 T ELT)) (-3275 (((-82) |#5| |#5|) 59 T ELT)) (-3280 (((-82) |#5| (-584 |#5|)) 81 T ELT) (((-82) |#5| |#5|) 68 T ELT)) (-3276 (((-82) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3282 (((-82) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3271 (((-1186)) 32 T ELT)) (-3270 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3281 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3283 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3284 (((-584 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-82) (-82)) 122 T ELT)) (-3274 (((-82) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-82) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-82) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3278 (((-82) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3702 (((-82) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-82) (-82) (-82) (-82) (-82)) 117 T ELT)) (-3273 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
-(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3270 ((-1186) (-1074) (-1074) (-1074))) (-14 -3271 ((-1186))) (-14 -3272 ((-82) |#5| |#5|)) (-14 -3273 ((-584 |#5|) (-584 |#5|))) (-14 -3274 ((-82) |#5| |#5|)) (-14 -3275 ((-82) |#5| |#5|)) (-14 -3276 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3277 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3278 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3702 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3279 ((-3 (-82) #1="failed") |#5| |#5|)) (-14 -3280 ((-82) |#5| |#5|)) (-14 -3280 ((-82) |#5| (-584 |#5|))) (-14 -3281 ((-584 |#5|) (-584 |#5|))) (-14 -3282 ((-82) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-14 -3283 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-14 -3284 ((-584 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-82) (-82))) (-14 -3285 ((-3 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-82) (-82) (-82) (-82) (-82)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -902))
-((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-11 (-5 *4 (-584 *10)) (-5 *5 (-82)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3283 (*1 *2 *2) (-11 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-3834 (((-1091) $) 15 T ELT)) (-3405 (((-1074) $) 16 T ELT)) (-3229 (($ (-1091) (-1074)) 14 T ELT)) (-3950 (((-773) $) 13 T ELT)))
-(((-903) (-12 (-553 (-773)) (-10 -8 (-14 -3229 ($ (-1091) (-1074))) (-14 -3834 ((-1091) $)) (-14 -3405 ((-1074) $))))) (T -903))
-((-3229 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) (-3834 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-903)))) (-3405 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-903)))))
-((-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 72 T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-1091) $) 67 T ELT) (((-349 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2997 (($) 105 T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 82 T ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 91 T ELT)) (-2999 (($ $) 10 T ELT)) (-3448 (((-633 $) $) 27 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3449 (($) 16 T CONST)) (-3131 (($ $) 61 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2998 (($ $) 12 T ELT)) (-3975 (((-801 (-485)) $) 77 T ELT) (((-801 (-329)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-329) $) 51 T ELT) (((-178) $) 55 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1091)) 64 T ELT)) (-3129 (((-695)) 38 T CONST)) (-2688 (((-82) $ $) 57 T ELT)))
-(((-904 |#1| |#2|) (-10 -7 (-14 -2688 ((-82) |#1| |#1|)) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3449 (|#1|) -3956) (-14 -3448 ((-633 |#1|) |#1|)) (-14 -3160 ((-3 (-485) #1="failed") |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3975 ((-178) |#1|)) (-14 -3975 ((-329) |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3950 (|#1| (-1091))) (-14 -3160 ((-3 (-1091) #1#) |#1|)) (-14 -3159 ((-1091) |#1|)) (-14 -2997 (|#1|)) (-14 -3131 (|#1| |#1|)) (-14 -2998 (|#1| |#1|)) (-14 -2999 (|#1| |#1|)) (-14 -2799 ((-799 (-329) |#1|) |#1| (-801 (-329)) (-799 (-329) |#1|))) (-14 -2799 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -2281 ((-631 |#2|) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 (|#1| |#1|)) (-14 -3129 ((-695)) -3956) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-905 |#2|) (-496)) (T -904))
-((-3129 (*1 *2) (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3132 ((|#1| $) 173 (|has| |#1| (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 164 (|has| |#1| (-822)) ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 167 (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3626 (((-485) $) 154 (|has| |#1| (-741)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1091) #2#) $) 162 (|has| |#1| (-951 (-1091))) ELT) (((-3 (-349 (-485)) #2#) $) 145 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-951 (-485))) ELT)) (-3159 ((|#1| $) 204 T ELT) (((-1091) $) 163 (|has| |#1| (-951 (-1091))) ELT) (((-349 (-485)) $) 146 (|has| |#1| (-951 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-951 (-485))) ELT)) (-2567 (($ $ $) 71 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 186 T ELT) (((-631 |#1|) (-631 $)) 185 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2997 (($) 171 (|has| |#1| (-484)) ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-3189 (((-82) $) 156 (|has| |#1| (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 180 (|has| |#1| (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 179 (|has| |#1| (-797 (-329))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2999 (($ $) 175 T ELT)) (-3001 ((|#1| $) 177 T ELT)) (-3448 (((-633 $) $) 142 (|has| |#1| (-1067)) ELT)) (-3190 (((-82) $) 155 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 68 T ELT)) (-2534 (($ $ $) 147 (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) 148 (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 190 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 189 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 184 T ELT) (((-631 |#1|) (-1180 $)) 183 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3449 (($) 141 (|has| |#1| (-1067)) CONST)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3131 (($ $) 172 (|has| |#1| (-257)) ELT)) (-3133 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 166 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 165 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) 201 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 199 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 198 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 197 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 196 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 74 T ELT)) (-3803 (($ $ |#1|) 202 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 193 T ELT) (($ $) 140 (|has| |#1| (-188)) ELT) (($ $ (-695)) 138 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 136 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 134 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 133 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 132 (|has| |#1| (-812 (-1091))) ELT)) (-2998 (($ $) 174 T ELT)) (-3000 ((|#1| $) 176 T ELT)) (-3975 (((-801 (-485)) $) 182 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) 181 (|has| |#1| (-554 (-801 (-329)))) ELT) (((-474) $) 159 (|has| |#1| (-554 (-474))) ELT) (((-329) $) 158 (|has| |#1| (-934)) ELT) (((-178) $) 157 (|has| |#1| (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 168 (-2565 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1091)) 161 (|has| |#1| (-951 (-1091))) ELT)) (-2705 (((-633 $) $) 160 (OR (|has| |#1| (-115)) (-2565 (|has| $ (-115)) (|has| |#1| (-822)))) ELT)) (-3129 (((-695)) 40 T CONST)) (-3134 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 (($ $) 153 (|has| |#1| (-741)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 139 (|has| |#1| (-188)) ELT) (($ $ (-695)) 137 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 135 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 131 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 130 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 129 (|has| |#1| (-812 (-1091))) ELT)) (-2569 (((-82) $ $) 149 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 151 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 150 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 152 (|has| |#1| (-757)) ELT)) (-3953 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT)))
-(((-905 |#1|) (-110) (-496)) (T -905))
-((-3953 (*1 *1 *2 *2) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3001 (*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3000 (*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2999 (*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2998 (*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3132 (*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-257)))) (-3131 (*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-257)))) (-2997 (*1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3134 (*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3133 (*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))))
-(-12 (-311) (-35 |t#1|) (-951 |t#1|) (-287 |t#1|) (-183 |t#1|) (-328 |t#1|) (-795 |t#1|) (-342 |t#1|) (-10 -8 (-14 -3953 ($ |t#1| |t#1|)) (-14 -3001 (|t#1| $)) (-14 -3000 (|t#1| $)) (-14 -2999 ($ $)) (-14 -2998 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-951 (-485))) (PROGN (-6 (-951 (-485))) (-6 (-951 (-349 (-485))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-951 (-1091))) (-6 (-951 (-1091))) |%noBranch|) (IF (|has| |t#1| (-257)) (PROGN (-14 -3132 (|t#1| $)) (-14 -3131 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-14 -2997 ($)) (-14 -3134 (|t#1| $)) (-14 -3133 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 |#1|) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 |#1| |#1|) . T) ((-79 $ $) . T) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) OR (|has| |#1| (-741)) (|has| |#1| (-117))) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 (-1091)) |has| |#1| (-951 (-1091))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-554 (-178)) |has| |#1| (-934)) ((-554 (-329)) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-329))) |has| |#1| (-554 (-801 (-329)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-185 $) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-183 |#1|) . T) ((-189) |has| |#1| (-189)) ((-188) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-224 |#1|) . T) ((-200) . T) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-245) . T) ((-257) . T) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) . T) ((-287 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-380 |#1|) . T) ((-392) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-329)) |has| |#1| (-797 (-329))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-349 (-485))) |has| |#1| (-951 (-485))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-1091)) |has| |#1| (-951 (-1091))) ((-951 |#1|) . T) ((-964 (-349 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) . T))
-((-3846 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
-(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-905 |#1|) (-905 |#2|)) (T -906))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3002 (($ (-1057 |#1| |#2|)) 11 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-3126 (((-1057 |#1| |#2|) $) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#2| $ (-196 |#1| |#2|)) 16 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT)))
-(((-907 |#1| |#2|) (-12 (-18) (-240 (-196 |#1| |#2|) |#2|) (-10 -8 (-14 -3002 ($ (-1057 |#1| |#2|))) (-14 -3126 ((-1057 |#1| |#2|) $)))) (-831) (-311)) (T -907))
-((-3002 (*1 *1 *2) (-11 (-5 *2 (-1057 *3 *4)) (-13 *3 (-831)) (-4 *4 (-311)) (-5 *1 (-907 *3 *4)))) (-3126 (*1 *2 *1) (-11 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-13 *3 (-831)) (-4 *4 (-311)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 10 T ELT)) (-3950 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-908) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $))))) (T -908))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-908)))))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3727 (($) 6 T CONST)) (-3005 (($ $) 44 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 52 T ELT)) (-2611 (((-584 |#1|) $) 51 T ELT)) (-3248 (((-82) |#1| $) 56 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3836 (((-695) $) 43 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3004 ((|#1| $) 42 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 54 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 49 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3007 ((|#1| |#1| $) 46 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3006 ((|#1| $) 45 T ELT)) (-1732 (((-695) |#1| $) 55 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 50 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-3003 ((|#1| $) 41 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 48 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 47 T ELT)))
-(((-909 |#1|) (-110) (-1130)) (T -909))
-((-3007 (*1 *2 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3006 (*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3005 (*1 *1 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3836 (*1 *2 *1) (-11 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3004 (*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3003 (*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(-12 (-73 |t#1|) (-317 |t#1|) (-10 -8 (-14 -3007 (|t#1| |t#1| $)) (-14 -3006 (|t#1| $)) (-14 -3005 ($ $)) (-14 -3836 ((-695) $)) (-14 -3004 (|t#1| $)) (-14 -3003 (|t#1| $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3646 ((|#1| $) 12 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3009 ((|#1| $) 15 T ELT)) (-3010 ((|#1| $) 14 T ELT)) (-3011 ((|#1| $) 13 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2663 (($) 8 T CONST)) (-2669 (($) 10 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-311)) ELT)))
-(((-910 |#1|) (-912 |#1|) (-145)) (T -910))
-NIL
-((-3191 (((-82) $) 43 T ELT)) (-3160 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) 78 T ELT)) (-3026 (((-82) $) 72 T ELT)) (-3025 (((-349 (-485)) $) 76 T ELT)) (-2412 (((-82) $) 42 T ELT)) (-3135 ((|#2| $) 22 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2487 (($ $) 58 T ELT)) (-3761 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3975 (((-474) $) 67 T ELT)) (-3012 (($ $) 17 T ELT)) (-3950 (((-773) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-349 (-485))) NIL T ELT)) (-3129 (((-695)) 10 T CONST)) (-3386 ((|#2| $) 71 T ELT)) (-3059 (((-82) $ $) 26 T ELT)) (-2688 (((-82) $ $) 69 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT)))
-(((-911 |#1| |#2|) (-10 -7 (-14 -3950 (|#1| (-349 (-485)))) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -2688 ((-82) |#1| |#1|)) (-14 * (|#1| (-349 (-485)) |#1|)) (-14 * (|#1| |#1| (-349 (-485)))) (-14 -2487 (|#1| |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3027 ((-3 (-349 (-485)) #1="failed") |#1|)) (-14 -3025 ((-349 (-485)) |#1|)) (-14 -3026 ((-82) |#1|)) (-14 -3386 (|#2| |#1|)) (-14 -3135 (|#2| |#1|)) (-14 -3012 (|#1| |#1|)) (-14 -3846 (|#1| (-1 |#2| |#2|) |#1|)) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 -3129 ((-695)) -3956) (-14 -3950 (|#1| (-485))) (-14 -2412 ((-82) |#1|)) (-14 * (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 * (|#1| (-695) |#1|)) (-14 -3191 ((-82) |#1|)) (-14 * (|#1| (-831) |#1|)) (-14 -3842 (|#1| |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-912 |#2|) (-145)) (T -911))
-((-3129 (*1 *2) (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 141 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3159 (((-485) $) 142 (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) 140 (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 123 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 122 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#1|) (-631 $)) 120 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3646 ((|#1| $) 111 T ELT)) (-3027 (((-3 (-349 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3026 (((-82) $) 109 (|has| |#1| (-484)) ELT)) (-3025 (((-349 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3008 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3135 ((|#1| $) 113 T ELT)) (-2534 (($ $ $) 95 (|has| |#1| (-757)) ELT)) (-2860 (($ $ $) 96 (|has| |#1| (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 125 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 124 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 119 T ELT) (((-631 |#1|) (-1180 $)) 118 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 104 (|has| |#1| (-311)) ELT)) (-3009 ((|#1| $) 114 T ELT)) (-3010 ((|#1| $) 115 T ELT)) (-3011 ((|#1| $) 116 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) 132 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 130 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 129 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 128 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 127 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3803 (($ $ |#1|) 133 (|has| |#1| (-240 |#1| |#1|)) ELT)) (-3761 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 136 T ELT) (($ $) 94 (|has| |#1| (-188)) ELT) (($ $ (-695)) 92 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 90 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 88 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 87 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 86 (|has| |#1| (-812 (-1091))) ELT)) (-3975 (((-474) $) 105 (|has| |#1| (-554 (-474))) ELT)) (-3012 (($ $) 117 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-485))) 82 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (((-633 $) $) 106 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 ((|#1| $) 110 (|has| |#1| (-974)) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 93 (|has| |#1| (-188)) ELT) (($ $ (-695)) 91 (|has| |#1| (-188)) ELT) (($ $ (-1091)) 89 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 85 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 84 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 83 (|has| |#1| (-812 (-1091))) ELT)) (-2569 (((-82) $ $) 97 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 99 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 98 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 100 (|has| |#1| (-757)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-349 (-485))) 102 (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) 101 (|has| |#1| (-311)) ELT)))
-(((-912 |#1|) (-110) (-145)) (T -912))
-((-3012 (*1 *1 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3011 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3010 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3009 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3135 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3008 (*1 *1 *2 *2 *2 *2) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3646 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))) (-3386 (*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)) (-4 *2 (-974)))) (-3026 (*1 *2 *1) (-11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82)))) (-3025 (*1 *2 *1) (-11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))) (-3027 (*1 *2 *1) (|partial| -11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485))))))
-(-12 (-35 |t#1|) (-354 |t#1|) (-183 |t#1|) (-287 |t#1|) (-328 |t#1|) (-10 -8 (-14 -3012 ($ $)) (-14 -3011 (|t#1| $)) (-14 -3010 (|t#1| $)) (-14 -3009 (|t#1| $)) (-14 -3135 (|t#1| $)) (-14 -3008 ($ |t#1| |t#1| |t#1| |t#1|)) (-14 -3646 (|t#1| $)) (IF (|has| |t#1| (-245)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-200)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-115)) |%noBranch|) (IF (|has| |t#1| (-974)) (-14 -3386 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-14 -3026 ((-82) $)) (-14 -3025 ((-349 (-485)) $)) (-14 -3027 ((-3 (-349 (-485)) "failed") $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-311)) ((-35 |#1|) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-311)) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-311))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-185 $) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-183 |#1|) . T) ((-189) |has| |#1| (-189)) ((-188) OR (|has| |#1| (-188)) (|has| |#1| (-189))) ((-224 |#1|) . T) ((-200) |has| |#1| (-311)) ((-240 |#1| $) |has| |#1| (-240 |#1| |#1|)) ((-245) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-287 |#1|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-311)) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-311)) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-311)) ((-583 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) |has| |#1| (-311)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-349 (-485))) |has| |#1| (-311)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-969 (-349 (-485))) |has| |#1| (-311)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3846 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-145) (-912 |#4|) (-145)) (T -913))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3727 (($) NIL T CONST)) (-3005 (($ $) 24 T ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3013 (($ (-584 |#1|)) 34 T ELT)) (-2611 (((-584 |#1|) $) NIL T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3836 (((-695) $) 27 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 29 T ELT)) (-3612 (($ |#1| $) 18 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3004 ((|#1| $) 28 T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 23 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3007 ((|#1| |#1| $) 17 T ELT)) (-3406 (((-82) $) 19 T ELT)) (-3568 (($) NIL T ELT)) (-3006 ((|#1| $) 22 T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3003 ((|#1| $) 31 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-914 |#1|) (-12 (-909 |#1|) (-10 -8 (-14 -3013 ($ (-584 |#1|))))) (-1014)) (T -914))
-((-3013 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
-((-3040 (($ $) 12 T ELT)) (-3014 (($ $ (-485)) 13 T ELT)))
-(((-915 |#1|) (-10 -7 (-14 -3040 (|#1| |#1|)) (-14 -3014 (|#1| |#1| (-485)))) (-916)) (T -915))
-NIL
-((-3040 (($ $) 6 T ELT)) (-3014 (($ $ (-485)) 7 T ELT)) (** (($ $ (-349 (-485))) 8 T ELT)))
-(((-916) (-110)) (T -916))
-((** (*1 *1 *1 *2) (-11 (-4 *1 (-916)) (-5 *2 (-349 (-485))))) (-3014 (*1 *1 *1 *2) (-11 (-4 *1 (-916)) (-5 *2 (-485)))) (-3040 (*1 *1 *1) (-4 *1 (-916))))
-(-12 (-10 -8 (-14 -3040 ($ $)) (-14 -3014 ($ $ (-485))) (-14 ** ($ $ (-349 (-485))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2065 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2063 (((-82) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1787 (((-631 (-349 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-349 |#2|))) NIL T ELT)) (-3333 (((-349 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1609 (((-82) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3139 (((-695)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1662 (((-82)) NIL T ELT)) (-1661 (((-82) |#1|) 162 T ELT) (((-82) |#2|) 166 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| (-349 |#2|) (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| (-349 |#2|) (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| (-349 |#2|) (-951 (-349 (-485)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1797 (($ (-1180 (-349 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-349 |#2|))) 79 T ELT) (($ (-1180 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-298)) ELT)) (-2567 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1786 (((-631 (-349 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3845 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1665 (((-82) |#1| |#1|) NIL T ELT)) (-3111 (((-831)) NIL T ELT)) (-2997 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-82)) NIL T ELT)) (-1659 (((-82) |#1|) 61 T ELT) (((-82) |#2|) 164 T ELT)) (-2566 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3506 (($ $) NIL T ELT)) (-2836 (($) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1681 (((-82) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1769 (($ $ (-695)) NIL (|has| (-349 |#2|) (-298)) ELT) (($ $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3726 (((-82) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3775 (((-831) $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3380 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) NIL T ELT)) (-3135 (((-349 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-311)) ELT)) (-3448 (((-633 $) $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2016 ((|#3| $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2012 (((-831) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3082 ((|#3| $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-349 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-349 |#2|))) (|:| |vec| (-1180 (-349 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-349 |#2|)) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1649 (((-631 (-349 |#2|))) 57 T ELT)) (-1651 (((-631 (-349 |#2|))) 56 T ELT)) (-2487 (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 80 T ELT)) (-1650 (((-631 (-349 |#2|))) 55 T ELT)) (-1652 (((-631 (-349 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1180 $)) 51 T ELT)) (-3922 (((-1180 $)) 50 T ELT)) (-1657 (((-82) $) NIL T ELT)) (-1656 (((-82) $) NIL T ELT) (((-82) $ |#1|) NIL T ELT) (((-82) $ |#2|) NIL T ELT)) (-3449 (($) NIL (|has| (-349 |#2|) (-298)) CONST)) (-2402 (($ (-831)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3735 (((-347 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-1608 (((-695) $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3760 (((-349 |#2|) (-1180 $)) NIL T ELT) (((-349 |#2|)) 47 T ELT)) (-1770 (((-695) $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3761 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-2410 (((-631 (-349 |#2|)) (-1180 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3188 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-349 |#2|) (-298)) ELT)) (-3227 (((-1180 (-349 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-349 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-349 |#2|)) $) 81 T ELT) (((-631 (-349 |#2|)) (-1180 $)) NIL T ELT)) (-3975 (((-1180 (-349 |#2|)) $) NIL T ELT) (($ (-1180 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-349 |#2|) (-298)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-2705 (($ $) NIL (|has| (-349 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-349 |#2|) (-115)) ELT)) (-2452 ((|#3| $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1664 (((-82)) 65 T ELT)) (-1663 (((-82) |#1|) 167 T ELT) (((-82) |#2|) 168 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-82)) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-695)) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-810 (-1091)))) (-11 (|has| (-349 |#2|) (-311)) (|has| (-349 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT) (($ $) NIL (OR (-11 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-311))) (-11 (|has| (-349 |#2|) (-188)) (|has| (-349 |#2|) (-311))) (|has| (-349 |#2|) (-298))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ $) NIL (|has| (-349 |#2|) (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-349 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| (-349 |#2|) (-311)) ELT) (($ $ (-349 (-485))) NIL (|has| (-349 |#2|) (-311)) ELT)))
-(((-917 |#1| |#2| |#3| |#4| |#5|) (-290 |#1| |#2| |#3|) (-1135) (-1156 |#1|) (-1156 (-349 |#2|)) (-349 |#2|) (-695)) (T -917))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3020 (((-584 (-485)) $) 73 T ELT)) (-3016 (($ (-584 (-485))) 81 T ELT)) (-3132 (((-485) $) 48 (|has| (-485) (-257)) ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-349 (-485)) #1#) $) 57 (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-951 (-485))) ELT)) (-3159 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2997 (($) NIL (|has| (-485) (-484)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3018 (((-584 (-485)) $) 79 T ELT)) (-3189 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (|has| (-485) (-797 (-329))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL T ELT)) (-3001 (((-485) $) 45 T ELT)) (-3448 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3190 (((-82) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL T ELT)) (-3449 (($) NIL (|has| (-485) (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3131 (($ $) NIL (|has| (-485) (-257)) ELT) (((-349 (-485)) $) 50 T ELT)) (-3019 (((-1070 (-485)) $) 78 T ELT)) (-3015 (($ (-584 (-485)) (-584 (-485))) 82 T ELT)) (-3133 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3771 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-248 (-485))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-248 (-485)))) NIL (|has| (-485) (-259 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3803 (($ $ (-485)) NIL (|has| (-485) (-240 (-485) (-485))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) 15 (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) 47 T ELT)) (-3017 (((-584 (-485)) $) 80 T ELT)) (-3975 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-329)) $) NIL (|has| (-485) (-554 (-801 (-329)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-329) $) NIL (|has| (-485) (-934)) ELT) (((-178) $) NIL (|has| (-485) (-934)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-485) (-822))) ELT)) (-3950 (((-773) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-349 (-485)) $) 25 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-485) (-822))) (|has| (-485) (-115))) ELT)) (-3129 (((-695)) 13 T CONST)) (-3134 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3386 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-188)) ELT) (($ $ (-695)) NIL (|has| (-485) (-188)) ELT)) (-2569 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-3059 (((-82) $ $) 21 T ELT)) (-2687 (((-82) $ $) NIL (|has| (-485) (-757)) ELT)) (-2688 (((-82) $ $) 40 (|has| (-485) (-757)) ELT)) (-3953 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT)))
-(((-918 |#1|) (-12 (-905 (-485)) (-553 (-349 (-485))) (-10 -8 (-14 -3131 ((-349 (-485)) $)) (-14 -3020 ((-584 (-485)) $)) (-14 -3019 ((-1070 (-485)) $)) (-14 -3018 ((-584 (-485)) $)) (-14 -3017 ((-584 (-485)) $)) (-14 -3016 ($ (-584 (-485)))) (-14 -3015 ($ (-584 (-485)) (-584 (-485)))))) (-485)) (T -918))
-((-3131 (*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3020 (*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3019 (*1 *2 *1) (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3018 (*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3017 (*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3016 (*1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))) (-3015 (*1 *1 *2 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-((-3021 (((-48) (-349 (-485)) (-485)) 9 T ELT)))
-(((-919) (-10 -7 (-14 -3021 ((-48) (-349 (-485)) (-485))))) (T -919))
-((-3021 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-485))) (-5 *4 (-485)) (-5 *2 (-48)) (-5 *1 (-919)))))
-((-3139 (((-485)) 21 T ELT)) (-3024 (((-485)) 26 T ELT)) (-3023 (((-1186) (-485)) 24 T ELT)) (-3022 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT)))
-(((-920) (-10 -7 (-14 -3022 ((-485))) (-14 -3139 ((-485))) (-14 -3022 ((-485) (-485))) (-14 -3023 ((-1186) (-485))) (-14 -3024 ((-485))))) (T -920))
-((-3024 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))) (-3023 (*1 *2 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))) (-3022 (*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))) (-3139 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))) (-3022 (*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))))
-((-3736 (((-347 |#1|) |#1|) 43 T ELT)) (-3735 (((-347 |#1|) |#1|) 41 T ELT)))
-(((-921 |#1|) (-10 -7 (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3736 ((-347 |#1|) |#1|))) (-1156 (-349 (-485)))) (T -921))
-((-3736 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-349 (-485)))))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-349 (-485)))))))
-((-3027 (((-3 (-349 (-485)) "failed") |#1|) 15 T ELT)) (-3026 (((-82) |#1|) 14 T ELT)) (-3025 (((-349 (-485)) |#1|) 10 T ELT)))
-(((-922 |#1|) (-10 -7 (-14 -3025 ((-349 (-485)) |#1|)) (-14 -3026 ((-82) |#1|)) (-14 -3027 ((-3 (-349 (-485)) "failed") |#1|))) (-951 (-349 (-485)))) (T -922))
-((-3027 (*1 *2 *3) (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3026 (*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-349 (-485)))))) (-3025 (*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
-((-3791 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3803 ((|#2| $ #1#) 10 T ELT)) (-3031 (((-82) $ $) 18 T ELT)))
-(((-923 |#1| |#2|) (-10 -7 (-14 -3791 (|#2| |#1| #1="value" |#2|)) (-14 -3031 ((-82) |#1| |#1|)) (-14 -3803 (|#2| |#1| #1#))) (-924 |#2|) (-1130)) (T -923))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ "value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ "value") 42 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-924 |#1|) (-110) (-1130)) (T -924))
-((-3525 (*1 *2 *1) (-11 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3034 (*1 *2 *1) (-11 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3530 (*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-3405 (*1 *2 *1) (-11 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3636 (*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-3033 (*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3032 (*1 *2 *1 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3031 (*1 *2 *1 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82)))) (-3030 (*1 *2 *1 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82)))) (-3029 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))) (-3791 (*1 *2 *1 *3 *2) (-11 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3028 (*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))))
-(-12 (-429 |t#1|) (-10 -8 (-14 -3525 ((-584 $) $)) (-14 -3034 ((-584 $) $)) (-14 -3530 ((-82) $)) (-14 -3405 (|t#1| $)) (-14 -3803 (|t#1| $ "value")) (-14 -3636 ((-82) $)) (-14 -3033 ((-584 |t#1|) $)) (-14 -3032 ((-485) $ $)) (IF (|has| |t#1| (-69)) (PROGN (-14 -3031 ((-82) $ $)) (-14 -3030 ((-82) $ $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-14 -3029 ($ $ (-584 $))) (-14 -3791 (|t#1| $ "value" |t#1|)) (-14 -3028 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-3040 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-349 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3186 (((-3 $ #1="failed") (-1086 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1086 $) (-831)) 32 T ELT)) (-3014 (($ $ (-485)) 58 T ELT)) (-3129 (((-695)) 18 T CONST)) (-3187 (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 (-349 (-485)))) 63 T ELT) (((-584 $) (-1086 (-485))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-349 (-485)))) 76 T ELT) (((-584 $) (-858 (-485))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-349 (-485))) 53 T ELT)))
-(((-925 |#1|) (-10 -7 (-14 -3040 (|#1| (-485))) (-14 -3040 (|#1| (-349 (-485)))) (-14 -3040 (|#1| |#1| (-831))) (-14 -3187 ((-584 |#1|) (-858 (-485)))) (-14 -3187 ((-584 |#1|) (-858 (-349 (-485))))) (-14 -3187 ((-584 |#1|) (-858 |#1|))) (-14 -3187 ((-584 |#1|) (-1086 (-485)))) (-14 -3187 ((-584 |#1|) (-1086 (-349 (-485))))) (-14 -3187 ((-584 |#1|) (-1086 |#1|))) (-14 -3186 ((-3 |#1| #1="failed") (-1086 |#1|) (-831))) (-14 -3186 ((-3 |#1| #1#) (-1086 |#1|) (-831) (-773))) (-14 ** (|#1| |#1| (-349 (-485)))) (-14 -3014 (|#1| |#1| (-485))) (-14 -3040 (|#1| |#1|)) (-14 ** (|#1| |#1| (-485))) (-14 -3129 ((-695)) -3956) (-14 ** (|#1| |#1| (-695))) (-14 ** (|#1| |#1| (-831)))) (-926)) (T -925))
-((-3129 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 111 T ELT)) (-2065 (($ $) 112 T ELT)) (-2063 (((-82) $) 114 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 131 T ELT)) (-3974 (((-347 $) $) 132 T ELT)) (-3040 (($ $) 95 T ELT) (($ $ (-831)) 81 T ELT) (($ (-349 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1609 (((-82) $ $) 122 T ELT)) (-3626 (((-485) $) 148 T ELT)) (-3727 (($) 23 T CONST)) (-3186 (((-3 $ "failed") (-1086 $) (-831) (-773)) 89 T ELT) (((-3 $ "failed") (-1086 $) (-831)) 88 T ELT)) (-3160 (((-3 (-485) #1="failed") $) 108 (|has| (-349 (-485)) (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 106 (|has| (-349 (-485)) (-951 (-349 (-485)))) ELT) (((-3 (-349 (-485)) #1#) $) 103 T ELT)) (-3159 (((-485) $) 107 (|has| (-349 (-485)) (-951 (-485))) ELT) (((-349 (-485)) $) 105 (|has| (-349 (-485)) (-951 (-349 (-485)))) ELT) (((-349 (-485)) $) 104 T ELT)) (-3036 (($ $ (-773)) 78 T ELT)) (-3035 (($ $ (-773)) 77 T ELT)) (-2567 (($ $ $) 126 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 125 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 120 T ELT)) (-3726 (((-82) $) 133 T ELT)) (-3189 (((-82) $) 146 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 94 T ELT)) (-3190 (((-82) $) 147 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 129 T ELT)) (-2534 (($ $ $) 140 T ELT)) (-2860 (($ $ $) 141 T ELT)) (-3037 (((-3 (-1086 $) "failed") $) 90 T ELT)) (-3039 (((-3 (-773) "failed") $) 92 T ELT)) (-3038 (((-3 (-1086 $) "failed") $) 91 T ELT)) (-1896 (($ (-584 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 134 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 119 T ELT)) (-3147 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3735 (((-347 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 127 T ELT)) (-3469 (((-3 $ "failed") $ $) 110 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 121 T ELT)) (-1608 (((-695) $) 123 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 124 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-349 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-349 (-485))) 98 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 113 T ELT)) (-3773 (((-349 (-485)) $ $) 76 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3187 (((-584 $) (-1086 $)) 87 T ELT) (((-584 $) (-1086 (-349 (-485)))) 86 T ELT) (((-584 $) (-1086 (-485))) 85 T ELT) (((-584 $) (-858 $)) 84 T ELT) (((-584 $) (-858 (-349 (-485)))) 83 T ELT) (((-584 $) (-858 (-485))) 82 T ELT)) (-3386 (($ $) 149 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 142 T ELT)) (-2570 (((-82) $ $) 144 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 143 T ELT)) (-2688 (((-82) $ $) 145 T ELT)) (-3953 (($ $ $) 139 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-349 (-485))) 93 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-485)) $) 137 T ELT) (($ $ (-349 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-349 (-485)) $) 97 T ELT) (($ $ (-349 (-485))) 96 T ELT)))
-(((-926) (-110)) (T -926))
-((-3040 (*1 *1 *1) (-4 *1 (-926))) (-3039 (*1 *2 *1) (|partial| -11 (-4 *1 (-926)) (-5 *2 (-773)))) (-3038 (*1 *2 *1) (|partial| -11 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3037 (*1 *2 *1) (|partial| -11 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3186 (*1 *1 *2 *3 *4) (|partial| -11 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3186 (*1 *1 *2 *3) (|partial| -11 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-1086 (-349 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-858 (-349 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3187 (*1 *2 *3) (-11 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3040 (*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-831)))) (-3040 (*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-4 *1 (-926)))) (-3040 (*1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-926)))) (-3036 (*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-773)))) (-3035 (*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-773)))) (-3773 (*1 *2 *1 *1) (-11 (-4 *1 (-926)) (-5 *2 (-349 (-485))))))
-(-12 (-117) (-756) (-145) (-311) (-354 (-349 (-485))) (-35 (-485)) (-35 (-349 (-485))) (-916) (-10 -8 (-14 -3039 ((-3 (-773) "failed") $)) (-14 -3038 ((-3 (-1086 $) "failed") $)) (-14 -3037 ((-3 (-1086 $) "failed") $)) (-14 -3186 ((-3 $ "failed") (-1086 $) (-831) (-773))) (-14 -3186 ((-3 $ "failed") (-1086 $) (-831))) (-14 -3187 ((-584 $) (-1086 $))) (-14 -3187 ((-584 $) (-1086 (-349 (-485))))) (-14 -3187 ((-584 $) (-1086 (-485)))) (-14 -3187 ((-584 $) (-858 $))) (-14 -3187 ((-584 $) (-858 (-349 (-485))))) (-14 -3187 ((-584 $) (-858 (-485)))) (-14 -3040 ($ $ (-831))) (-14 -3040 ($ $)) (-14 -3040 ($ (-349 (-485)))) (-14 -3040 ($ (-485))) (-14 -3036 ($ $ (-773))) (-14 -3035 ($ $ (-773))) (-14 -3773 ((-349 (-485)) $ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 (-485)) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 (-485) (-485)) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-354 (-349 (-485))) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 (-485)) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-349 (-485))) . T) ((-951 (-485)) |has| (-349 (-485)) (-951 (-485))) ((-964 (-349 (-485))) . T) ((-964 (-485)) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 (-485)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-3041 (((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-82))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
-(((-927 |#1| |#2|) (-10 -7 (-14 -3041 ((-2 (|:| |ans| |#2|) (|:| -3140 |#2|) (|:| |sol?| (-82))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-12 (-392) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-24) (-363 |#1|))) (T -927))
-((-3041 (*1 *2 *3 *4 *4 *5 *6 *7) (-11 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-12 (-1116) (-24) (-363 *8))) (-4 *8 (-12 (-392) (-117) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-82)))) (-5 *1 (-927 *8 *4)))))
-((-3042 (((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
-(((-928 |#1| |#2|) (-10 -7 (-14 -3042 ((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-12 (-392) (-117) (-951 (-485)) (-581 (-485))) (-12 (-1116) (-24) (-363 |#1|))) (T -928))
-((-3042 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -11 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) #1="failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1#) *4 *4)) (-4 *4 (-12 (-1116) (-24) (-363 *8))) (-4 *8 (-12 (-392) (-117) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
-((-3045 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-82)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3096 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3044 (((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-82))) (-349 |#2|) (-349 |#2|)) 76 T ELT)))
-(((-929 |#1| |#2|) (-10 -7 (-14 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3096 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-14 -3044 ((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-82))) (-349 |#2|) (-349 |#2|))) (-14 -3045 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-82)))) (|:| -3269 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-12 (-311) (-117) (-951 (-485))) (-1156 |#1|)) (T -929))
-((-3045 (*1 *2 *3 *3 *3 *4 *5) (-11 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) (-4 *6 (-12 (-311) (-117) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-82)))) (|:| -3269 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3044 (*1 *2 *3 *3) (-11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-82)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-349 *5)))) (-3043 (*1 *2 *3 *3 *4) (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3096 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6)))))
-((-3046 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3096 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3047 (((-3 (-584 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 34 T ELT)))
-(((-930 |#1| |#2|) (-10 -7 (-14 -3046 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3096 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-14 -3047 ((-3 (-584 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)))) (-12 (-311) (-117) (-951 (-485))) (-1156 |#1|)) (T -930))
-((-3047 (*1 *2 *3 *3 *3) (|partial| -11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-349 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-349 *5)))) (-3046 (*1 *2 *3 *3 *3 *4) (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-12 (-311) (-117) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6)) (|:| |c2| (-349 *6)) (|:| -3096 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-349 *6)))))
-((-3048 (((-1 |#1|) (-584 (-2 (|:| -3405 |#1|) (|:| -1523 (-485))))) 34 T ELT)) (-3103 (((-1 |#1|) (-1010 |#1|)) 42 T ELT)) (-3049 (((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)) 31 T ELT)))
-(((-931 |#1|) (-10 -7 (-14 -3103 ((-1 |#1|) (-1010 |#1|))) (-14 -3048 ((-1 |#1|) (-584 (-2 (|:| -3405 |#1|) (|:| -1523 (-485)))))) (-14 -3049 ((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)))) (-1014)) (T -931))
-((-3049 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3048 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3405 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3103 (*1 *2 *3) (-11 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
-((-3775 (((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
-(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3775 ((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-311) (-1156 |#1|) (-1156 (-349 |#2|)) (-290 |#1| |#2| |#3|) (-12 (-319) (-311))) (T -932))
-((-3775 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-349 *7))) (-4 *8 (-290 *6 *7 *4)) (-4 *9 (-12 (-319) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3598 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-933) (-12 (-996) (-10 -8 (-14 -3598 ((-1050) $)) (-14 -3236 ((-1050) $))))) (T -933))
-((-3598 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-933)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-933)))))
-((-3975 (((-178) $) 6 T ELT) (((-329) $) 9 T ELT)))
-(((-934) (-110)) (T -934))
-NIL
-(-12 (-554 (-178)) (-554 (-329)))
-(((-554 (-178)) . T) ((-554 (-329)) . T))
-((-3137 (((-3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) "failed") |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) 32 T ELT) (((-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485))) 29 T ELT)) (-3052 (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485))) 34 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-349 (-485))) 30 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) 33 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1|) 28 T ELT)) (-3051 (((-584 (-349 (-485))) (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) 20 T ELT)) (-3050 (((-349 (-485)) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) 17 T ELT)))
-(((-935 |#1|) (-10 -7 (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1|)) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-349 (-485)))) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485)))) (-14 -3137 ((-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485)))) (-14 -3137 ((-3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) "failed") |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-14 -3050 ((-349 (-485)) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-14 -3051 ((-584 (-349 (-485))) (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))))) (-1156 (-485))) (T -935))
-((-3051 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *2 (-584 (-349 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3050 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) (-5 *2 (-349 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3137 (*1 *2 *3 *2 *2) (|partial| -11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3137 (*1 *2 *3 *2 *4) (-11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) (-5 *4 (-349 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3052 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-349 (-485))))) (-3052 (*1 *2 *3 *4) (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))) (-3052 (*1 *2 *3) (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))))
-((-3137 (((-3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) "failed") |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) 35 T ELT) (((-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485))) 32 T ELT)) (-3052 (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485))) 30 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-349 (-485))) 26 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) 28 T ELT) (((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1|) 24 T ELT)))
-(((-936 |#1|) (-10 -7 (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1|)) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-349 (-485)))) (-14 -3052 ((-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485)))) (-14 -3137 ((-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-349 (-485)))) (-14 -3137 ((-3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) "failed") |#1| (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))) (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))) (-1156 (-349 (-485)))) (T -936))
-((-3137 (*1 *2 *3 *2 *2) (|partial| -11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485)))))) (-3137 (*1 *2 *3 *2 *4) (-11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))) (-5 *4 (-349 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3052 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *5) (|:| -3140 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))) (-3052 (*1 *2 *3 *4) (-11 (-5 *4 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *4) (|:| -3140 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3052 (*1 *2 *3 *4) (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485)))) (-5 *4 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))) (-3052 (*1 *2 *3) (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485)))))))
-((-3576 (((-584 (-329)) (-858 (-485)) (-329)) 28 T ELT) (((-584 (-329)) (-858 (-349 (-485))) (-329)) 27 T ELT)) (-3972 (((-584 (-584 (-329))) (-584 (-858 (-485))) (-584 (-1091)) (-329)) 37 T ELT)))
-(((-937) (-10 -7 (-14 -3576 ((-584 (-329)) (-858 (-349 (-485))) (-329))) (-14 -3576 ((-584 (-329)) (-858 (-485)) (-329))) (-14 -3972 ((-584 (-584 (-329))) (-584 (-858 (-485))) (-584 (-1091)) (-329))))) (T -937))
-((-3972 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-329)))) (-5 *1 (-937)) (-5 *5 (-329)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-329))) (-5 *1 (-937)) (-5 *4 (-329)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-858 (-349 (-485)))) (-5 *2 (-584 (-329))) (-5 *1 (-937)) (-5 *4 (-329)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 75 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-3040 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) 70 T ELT)) (-3727 (($) NIL T CONST)) (-3186 (((-3 $ #1#) (-1086 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1086 $) (-831)) 55 T ELT)) (-3160 (((-3 (-349 (-485)) #1#) $) NIL (|has| (-349 (-485)) (-951 (-349 (-485)))) ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-349 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3159 (((-349 (-485)) $) 17 (|has| (-349 (-485)) (-951 (-349 (-485)))) ELT) (((-349 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-349 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3036 (($ $ (-773)) 47 T ELT)) (-3035 (($ $ (-773)) 48 T ELT)) (-2567 (($ $ $) NIL T ELT)) (-3185 (((-349 (-485)) $ $) 21 T ELT)) (-3470 (((-3 $ #1#) $) 88 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-3189 (((-82) $) 66 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL T ELT)) (-3190 (((-82) $) 69 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3037 (((-3 (-1086 $) #1#) $) 83 T ELT)) (-3039 (((-3 (-773) #1#) $) 82 T ELT)) (-3038 (((-3 (-1086 $) #1#) $) 80 T ELT)) (-3053 (((-3 (-975 $ (-1086 $)) #1#) $) 78 T ELT)) (-1896 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 89 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3950 (((-773) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-349 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3773 (((-349 (-485)) $ $) 27 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3187 (((-584 $) (-1086 $)) 61 T ELT) (((-584 $) (-1086 (-349 (-485)))) NIL T ELT) (((-584 $) (-1086 (-485))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-349 (-485)))) NIL T ELT) (((-584 $) (-858 (-485))) NIL T ELT)) (-3054 (($ (-975 $ (-1086 $)) (-773)) 46 T ELT)) (-3386 (($ $) 22 T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 39 T CONST)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 76 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 24 T ELT)) (-3953 (($ $ $) 37 T ELT)) (-3840 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3842 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-349 (-485)) $) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-938 |#1|) (-12 (-926) (-354 |#1|) (-35 |#1|) (-10 -8 (-14 -3054 ($ (-975 $ (-1086 $)) (-773))) (-14 -3053 ((-3 (-975 $ (-1086 $)) "failed") $)) (-14 -3185 ((-349 (-485)) $ $)))) (-12 (-756) (-311) (-934))) (T -938))
-((-3054 (*1 *1 *2 *3) (-11 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-12 (-756) (-311) (-934))))) (-3053 (*1 *2 *1) (|partial| -11 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-12 (-756) (-311) (-934))))) (-3185 (*1 *2 *1 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-938 *3)) (-4 *3 (-12 (-756) (-311) (-934))))))
-((-3055 (((-2 (|:| -3269 |#2|) (|:| -2516 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
-(((-939 |#1| |#2|) (-10 -7 (-14 -3055 (|#2| |#2| |#1|)) (-14 -3055 ((-2 (|:| -3269 |#2|) (|:| -2516 (-584 |#1|))) |#2| (-584 |#1|)))) (-311) (-601 |#1|)) (T -939))
-((-3055 (*1 *2 *3 *4) (-11 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3055 (*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3056 ((|#1| $ |#1|) 12 T ELT)) (-3058 (($ |#1|) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3057 ((|#1| $) 11 T ELT)) (-3950 (((-773) $) 17 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 9 T ELT)))
-(((-940 |#1|) (-12 (-1014) (-10 -8 (-14 -3058 ($ |#1|)) (-14 -3057 (|#1| $)) (-14 -3056 (|#1| $ |#1|)) (-14 -3059 ((-82) $ $)))) (-1130)) (T -940))
-((-3059 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))) (-3058 (*1 *1 *2) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3057 (*1 *2 *1) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3056 (*1 *2 *1 *2) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3685 (((-584 $) (-584 |#4|)) 113 T ELT) (((-584 $) (-584 |#4|) (-82)) 114 T ELT) (((-584 $) (-584 |#4|) (-82) (-82)) 112 T ELT) (((-584 $) (-584 |#4|) (-82) (-82) (-82) (-82)) 115 T ELT)) (-3084 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 107 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3159 (($ (-584 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 65 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-3409 (($ |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT) (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3200 (((-82) |#4| $) NIL T ELT)) (-3198 (((-82) |#4| $) NIL T ELT)) (-3201 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-82) (-82)) 128 T ELT)) (-3698 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-584 |#4|) $) 18 T ELT)) (-3248 (((-82) |#4| $) 26 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-584 |#3|) $) NIL T ELT)) (-2916 (((-82) |#3| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 105 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-584 $) |#4| $) 88 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) NIL T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 98 T ELT) (((-82) |#4| $) 60 T ELT)) (-3241 (((-584 $) |#4| $) 110 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 111 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3442 (((-584 $) (-584 |#4|) (-82) (-82) (-82)) 123 T ELT)) (-3443 (($ |#4| $) 77 T ELT) (($ (-584 |#4|) $) 78 T ELT) (((-584 $) |#4| $ (-82) (-82) (-82) (-82) (-82)) 74 T ELT)) (-3700 (((-584 |#4|) $) NIL T ELT)) (-3694 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-82) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 90 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 84 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3681 (((-695) $) NIL (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) NIL T ELT)) (-3192 (((-584 $) |#4| $) 87 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3683 (((-584 |#3|) $) NIL T ELT)) (-3199 (((-82) |#4| $) NIL T ELT)) (-3937 (((-82) |#3| $) 61 T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-941 |#1| |#2| |#3| |#4|) (-12 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-14 -3443 ((-584 $) |#4| $ (-82) (-82) (-82) (-82) (-82))) (-14 -3685 ((-584 $) (-584 |#4|) (-82) (-82))) (-14 -3685 ((-584 $) (-584 |#4|) (-82) (-82) (-82) (-82))) (-14 -3442 ((-584 $) (-584 |#4|) (-82) (-82) (-82))) (-14 -3441 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-82) (-82))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -941))
-((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-((-3060 (((-584 (-2 (|:| |radval| (-264 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-264 (-485))))))) (-631 (-349 (-858 (-485))))) 67 T ELT)) (-3061 (((-584 (-631 (-264 (-485)))) (-264 (-485)) (-631 (-349 (-858 (-485))))) 52 T ELT)) (-3062 (((-584 (-264 (-485))) (-631 (-349 (-858 (-485))))) 45 T ELT)) (-3066 (((-584 (-631 (-264 (-485)))) (-631 (-349 (-858 (-485))))) 85 T ELT)) (-3064 (((-631 (-264 (-485))) (-631 (-264 (-485)))) 38 T ELT)) (-3065 (((-584 (-631 (-264 (-485)))) (-584 (-631 (-264 (-485))))) 74 T ELT)) (-3063 (((-3 (-631 (-264 (-485))) "failed") (-631 (-349 (-858 (-485))))) 82 T ELT)))
-(((-942) (-10 -7 (-14 -3060 ((-584 (-2 (|:| |radval| (-264 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-264 (-485))))))) (-631 (-349 (-858 (-485)))))) (-14 -3061 ((-584 (-631 (-264 (-485)))) (-264 (-485)) (-631 (-349 (-858 (-485)))))) (-14 -3062 ((-584 (-264 (-485))) (-631 (-349 (-858 (-485)))))) (-14 -3063 ((-3 (-631 (-264 (-485))) "failed") (-631 (-349 (-858 (-485)))))) (-14 -3064 ((-631 (-264 (-485))) (-631 (-264 (-485))))) (-14 -3065 ((-584 (-631 (-264 (-485)))) (-584 (-631 (-264 (-485)))))) (-14 -3066 ((-584 (-631 (-264 (-485)))) (-631 (-349 (-858 (-485)))))))) (T -942))
-((-3066 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-631 (-264 (-485))))) (-5 *1 (-942)))) (-3065 (*1 *2 *2) (-11 (-5 *2 (-584 (-631 (-264 (-485))))) (-5 *1 (-942)))) (-3064 (*1 *2 *2) (-11 (-5 *2 (-631 (-264 (-485)))) (-5 *1 (-942)))) (-3063 (*1 *2 *3) (|partial| -11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-631 (-264 (-485)))) (-5 *1 (-942)))) (-3062 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-264 (-485)))) (-5 *1 (-942)))) (-3061 (*1 *2 *3 *4) (-11 (-5 *4 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-631 (-264 (-485))))) (-5 *1 (-942)) (-5 *3 (-264 (-485))))) (-3060 (*1 *2 *3) (-11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-2 (|:| |radval| (-264 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-264 (-485)))))))) (-5 *1 (-942)))))
-((-3070 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3069 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3071 (((-584 (-631 (-485))) (-584 (-584 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-814 (-485))) (-485)) 79 T ELT) (((-631 (-485)) (-584 (-485))) 76 T ELT) (((-631 (-485)) (-814 (-485)) (-485)) 74 T ELT)) (-3068 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3067 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3997 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3997 #1#))) ELT)))
-(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3997 #1="*"))) (-14 -3067 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3997 #1#))) (-14 -3067 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-14 -3068 ((-631 (-858 |#1|)) (-695))) (-14 -3069 ((-631 |#1|) (-631 |#1|) (-831))) (-14 -3069 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-14 -3070 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-14 -3070 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-14 -3070 ((-631 |#1|) (-631 |#1|))) (-14 -3070 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-14 -3071 ((-631 (-485)) (-814 (-485)) (-485))) (-14 -3071 ((-631 (-485)) (-584 (-485)))) (-14 -3071 ((-584 (-631 (-485))) (-584 (-814 (-485))) (-485))) (-14 -3071 ((-584 (-631 (-485))) (-584 (-584 (-485)))))) (-962)) (T -943))
-((-3071 (*1 *2 *3) (-11 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3071 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3071 (*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3071 (*1 *2 *3 *4) (-11 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3070 (*1 *2 *2) (-11 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3070 (*1 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3070 (*1 *2 *2 *2) (-11 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3070 (*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3069 (*1 *2 *2 *3) (-11 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3068 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3067 (*1 *2 *2 *3) (-11 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3997 #1="*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3067 (*1 *2 *2 *3) (-11 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3997 #1#))) (-4 *4 (-962)) (-5 *1 (-943 *4)))))
-((-3075 (((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)) 69 (|has| |#1| (-257)) ELT)) (-3421 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))) 107 (|has| |#1| (-311)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|)) 104 (|has| |#1| (-311)) ELT)) (-3079 (((-1180 |#1|) (-584 (-1180 |#1|)) (-485)) 113 (-11 (|has| |#1| (-311)) (|has| |#1| (-319))) ELT)) (-3078 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-11 (|has| |#1| (-311)) (|has| |#1| (-319))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-82)) 118 (-11 (|has| |#1| (-311)) (|has| |#1| (-319))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-11 (|has| |#1| (-311)) (|has| |#1| (-319))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-82) (-485) (-485)) 116 (-11 (|has| |#1| (-311)) (|has| |#1| (-319))) ELT)) (-3077 (((-82) (-584 (-631 |#1|))) 101 (|has| |#1| (-311)) ELT) (((-82) (-584 (-631 |#1|)) (-485)) 100 (|has| |#1| (-311)) ELT)) (-3074 (((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|)) 66 (|has| |#1| (-257)) ELT)) (-3073 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3072 (((-631 |#1|) (-1180 (-1180 |#1|))) 39 T ELT)) (-3076 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485)) 93 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-82) (-485)) 91 (|has| |#1| (-311)) ELT)))
-(((-944 |#1|) (-10 -7 (-14 -3072 ((-631 |#1|) (-1180 (-1180 |#1|)))) (-14 -3073 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-257)) (PROGN (-14 -3074 ((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|))) (-14 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-14 -3076 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-82) (-485))) (-14 -3076 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-14 -3076 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485))) (-14 -3077 ((-82) (-584 (-631 |#1|)) (-485))) (-14 -3077 ((-82) (-584 (-631 |#1|)))) (-14 -3421 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|))) (-14 -3421 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-311)) (PROGN (-14 -3078 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-82) (-485) (-485))) (-14 -3078 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-14 -3078 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-82))) (-14 -3078 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-14 -3079 ((-1180 |#1|) (-584 (-1180 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-962)) (T -944))
-((-3079 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962)))) (-3078 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3078 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3078 (*1 *2 *3) (-11 (-4 *4 (-311)) (-4 *4 (-319)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3078 (*1 *2 *3 *4 *5 *5) (-11 (-5 *4 (-82)) (-5 *5 (-485)) (-4 *6 (-311)) (-4 *6 (-319)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3421 (*1 *2 *3 *4) (-11 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3421 (*1 *2 *3 *4) (-11 (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3077 (*1 *2 *3) (-11 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-82)) (-5 *1 (-944 *4)))) (-3077 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-82)) (-5 *1 (-944 *5)))) (-3076 (*1 *2 *3 *3 *4) (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962)))) (-3076 (*1 *2 *3 *3) (-11 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-311)) (-4 *4 (-962)))) (-3076 (*1 *2 *3 *3 *4 *5) (-11 (-5 *3 (-584 (-631 *6))) (-5 *4 (-82)) (-5 *5 (-485)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962)))) (-3075 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3074 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))) (-3073 (*1 *2 *3 *2) (-11 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3072 (*1 *2 *3) (-11 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)))))
-((-3080 ((|#1| (-831) |#1|) 18 T ELT)))
-(((-945 |#1|) (-10 -7 (-14 -3080 (|#1| (-831) |#1|))) (-12 (-1014) (-10 -8 (-14 -3842 ($ $ $))))) (T -945))
-((-3080 (*1 *2 *3 *2) (-11 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-12 (-1014) (-10 -8 (-14 -3842 ($ $ $))))))))
-((-3081 ((|#1| |#1| (-831)) 18 T ELT)))
-(((-946 |#1|) (-10 -7 (-14 -3081 (|#1| |#1| (-831)))) (-12 (-1014) (-10 -8 (-14 * ($ $ $))))) (T -946))
-((-3081 (*1 *2 *2 *3) (-11 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-12 (-1014) (-10 -8 (-14 * ($ $ $))))))))
-((-3950 ((|#1| (-261)) 11 T ELT) (((-1186) |#1|) 9 T ELT)))
-(((-947 |#1|) (-10 -7 (-14 -3950 ((-1186) |#1|)) (-14 -3950 (|#1| (-261)))) (-1130)) (T -947))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) (-3950 (*1 *2 *3) (-11 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3845 (($ |#4|) 24 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3082 ((|#4| $) 26 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3129 (((-695)) 42 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 22 T CONST)) (-3059 (((-82) $ $) 39 T ELT)) (-3840 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-948 |#1| |#2| |#3| |#4| |#5|) (-12 (-145) (-35 |#1|) (-10 -8 (-14 -3845 ($ |#4|)) (-14 -3950 ($ |#4|)) (-14 -3082 (|#4| $)))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948))
-((-3845 (*1 *1 *2) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-13 *6 (-584 *2)))) (-3950 (*1 *1 *2) (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-13 *6 (-584 *2)))) (-3082 (*1 *2 *1) (-11 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-13 *6 (-584 *2)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 11 T ELT)) (-3950 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-949) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $))))) (T -949))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-949)))))
-((-3159 ((|#2| $) 10 T ELT)))
-(((-950 |#1| |#2|) (-10 -7 (-14 -3159 (|#2| |#1|))) (-951 |#2|) (-1130)) (T -950))
-NIL
-((-3160 (((-3 |#1| "failed") $) 9 T ELT)) (-3159 ((|#1| $) 8 T ELT)) (-3950 (($ |#1|) 6 T ELT)))
-(((-951 |#1|) (-110) (-1130)) (T -951))
-((-3160 (*1 *2 *1) (|partial| -11 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) (-3159 (*1 *2 *1) (-11 (-4 *1 (-951 *2)) (-4 *2 (-1130)))))
-(-12 (-556 |t#1|) (-10 -8 (-14 -3160 ((-3 |t#1| "failed") $)) (-14 -3159 (|t#1| $))))
-(((-556 |#1|) . T))
-((-3083 (((-584 (-584 (-248 (-349 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))) 38 T ELT)))
-(((-952 |#1| |#2|) (-10 -7 (-14 -3083 ((-584 (-584 (-248 (-349 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))))) (-496) (-12 (-496) (-951 |#1|))) (T -952))
-((-3083 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-12 (-496) (-951 *5))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
-((-3084 (((-584 (-1091)) (-349 (-858 |#1|))) 17 T ELT)) (-3086 (((-349 (-1086 (-349 (-858 |#1|)))) (-349 (-858 |#1|)) (-1091)) 24 T ELT)) (-3087 (((-349 (-858 |#1|)) (-349 (-1086 (-349 (-858 |#1|)))) (-1091)) 26 T ELT)) (-3085 (((-3 (-1091) "failed") (-349 (-858 |#1|))) 20 T ELT)) (-3771 (((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-584 (-248 (-349 (-858 |#1|))))) 32 T ELT) (((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|)))) 33 T ELT) (((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-584 (-1091)) (-584 (-349 (-858 |#1|)))) 28 T ELT) (((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|))) 29 T ELT)) (-3950 (((-349 (-858 |#1|)) |#1|) 11 T ELT)))
-(((-953 |#1|) (-10 -7 (-14 -3084 ((-584 (-1091)) (-349 (-858 |#1|)))) (-14 -3085 ((-3 (-1091) "failed") (-349 (-858 |#1|)))) (-14 -3086 ((-349 (-1086 (-349 (-858 |#1|)))) (-349 (-858 |#1|)) (-1091))) (-14 -3087 ((-349 (-858 |#1|)) (-349 (-1086 (-349 (-858 |#1|)))) (-1091))) (-14 -3771 ((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|)))) (-14 -3771 ((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-584 (-1091)) (-584 (-349 (-858 |#1|))))) (-14 -3771 ((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-248 (-349 (-858 |#1|))))) (-14 -3771 ((-349 (-858 |#1|)) (-349 (-858 |#1|)) (-584 (-248 (-349 (-858 |#1|)))))) (-14 -3950 ((-349 (-858 |#1|)) |#1|))) (-496)) (T -953))
-((-3950 (*1 *2 *3) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) (-3771 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-248 (-349 (-858 *4))))) (-5 *2 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3771 (*1 *2 *2 *3) (-11 (-5 *3 (-248 (-349 (-858 *4)))) (-5 *2 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3771 (*1 *2 *2 *3 *4) (-11 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-349 (-858 *5)))) (-5 *2 (-349 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) (-3771 (*1 *2 *2 *3 *2) (-11 (-5 *2 (-349 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3087 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-1086 (-349 (-858 *5))))) (-5 *4 (-1091)) (-5 *2 (-349 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))) (-3086 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-349 (-1086 (-349 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-349 (-858 *5))))) (-3085 (*1 *2 *3) (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) (-5 *1 (-953 *4)))) (-3084 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) (-5 *1 (-953 *4)))))
-((-3088 (((-329)) 17 T ELT)) (-3103 (((-1 (-329)) (-329) (-329)) 22 T ELT)) (-3096 (((-1 (-329)) (-695)) 48 T ELT)) (-3089 (((-329)) 37 T ELT)) (-3092 (((-1 (-329)) (-329) (-329)) 38 T ELT)) (-3090 (((-329)) 29 T ELT)) (-3093 (((-1 (-329)) (-329)) 30 T ELT)) (-3091 (((-329) (-695)) 43 T ELT)) (-3094 (((-1 (-329)) (-695)) 44 T ELT)) (-3095 (((-1 (-329)) (-695) (-695)) 47 T ELT)) (-3387 (((-1 (-329)) (-695) (-695)) 45 T ELT)))
-(((-954) (-10 -7 (-14 -3088 ((-329))) (-14 -3089 ((-329))) (-14 -3090 ((-329))) (-14 -3091 ((-329) (-695))) (-14 -3103 ((-1 (-329)) (-329) (-329))) (-14 -3092 ((-1 (-329)) (-329) (-329))) (-14 -3093 ((-1 (-329)) (-329))) (-14 -3094 ((-1 (-329)) (-695))) (-14 -3387 ((-1 (-329)) (-695) (-695))) (-14 -3095 ((-1 (-329)) (-695) (-695))) (-14 -3096 ((-1 (-329)) (-695))))) (T -954))
-((-3096 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))) (-3095 (*1 *2 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))) (-3387 (*1 *2 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))) (-3094 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))) (-3093 (*1 *2 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329)))) (-3092 (*1 *2 *3 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329)))) (-3103 (*1 *2 *3 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329)))) (-3091 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-329)) (-5 *1 (-954)))) (-3090 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))) (-3089 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))) (-3088 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))))
-((-3735 (((-347 |#1|) |#1|) 33 T ELT)))
-(((-955 |#1|) (-10 -7 (-14 -3735 ((-347 |#1|) |#1|))) (-1156 (-349 (-858 (-485))))) (T -955))
-((-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1156 (-349 (-858 (-485))))))))
-((-3097 (((-349 (-347 (-858 |#1|))) (-349 (-858 |#1|))) 14 T ELT)))
-(((-956 |#1|) (-10 -7 (-14 -3097 ((-349 (-347 (-858 |#1|))) (-349 (-858 |#1|))))) (-257)) (T -956))
-((-3097 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-349 (-347 (-858 *4)))) (-5 *1 (-956 *4)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3950 (((-773) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
-(((-957 |#1|) (-110) (-20)) (T -957))
-((-3101 (*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))) (-3100 (*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))) (-3099 (*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))) (-3098 (*1 *2) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))))
-(-12 (-20) (-10 -8 (-14 -3101 (|t#1| $)) (-14 -3100 (|t#1| $)) (-14 -3099 (|t#1| $)) (-14 -3098 (|t#1|) -3956)))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3102 (($) 31 T CONST)) (-3727 (($) 23 T CONST)) (-3101 ((|#1| $) 29 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3100 ((|#1| $) 28 T ELT)) (-3098 ((|#1|) 26 T CONST)) (-3950 (((-773) $) 13 T ELT)) (-3099 ((|#1| $) 27 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
-(((-958 |#1|) (-110) (-20)) (T -958))
-((-3102 (*1 *1) (-11 (-4 *1 (-958 *2)) (-4 *2 (-20)))))
-(-12 (-957 |t#1|) (-10 -8 (-14 -3102 ($) -3956)))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-957 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3685 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-82)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-82) (-82)) NIL T ELT)) (-3084 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) $) NIL T ELT)) (-3691 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3778 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3713 (($ (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-317 (-704 |#1| (-774 |#2|)))) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-82) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2903 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2904 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3159 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3802 (((-3 $ #1#) $) NIL T ELT)) (-3688 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-69))) ELT)) (-3409 (($ (-704 |#1| (-774 |#2|)) $) NIL (-11 (|has| $ (-317 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-69))) ELT) (($ (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-317 (-704 |#1| (-774 |#2|)))) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3697 (((-82) (-704 |#1| (-774 |#2|)) $ (-1 (-82) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3686 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3845 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (|has| (-704 |#1| (-774 |#2|)) (-69)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-82) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1703 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3200 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3198 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3201 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) $) NIL T ELT)) (-3698 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) $) NIL T ELT)) (-3183 (((-774 |#2|) $) NIL T ELT)) (-2611 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3248 (((-82) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-69)) ELT)) (-3329 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3846 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2917 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2916 (((-82) (-774 |#2|) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3194 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3193 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3801 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3195 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3197 (((-3 (-82) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3241 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3443 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3700 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3694 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) $) NIL T ELT)) (-3689 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3702 (((-82) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-82) $) NIL T ELT)) (-3690 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1731 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3772 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-11 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-11 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-248 (-704 |#1| (-774 |#2|)))) NIL (-11 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-704 |#1| (-774 |#2|))))) NIL (-11 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3952 (((-695) $) NIL T ELT)) (-1732 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2913 (($ $ (-774 |#2|)) NIL T ELT)) (-2915 (($ $ (-774 |#2|)) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ (-774 |#2|)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3681 (((-695) $) NIL (|has| (-774 |#2|) (-319)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-82) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-82) (-704 |#1| (-774 |#2|))) (-1 (-82) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3693 (((-82) $ (-1 (-82) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3192 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3683 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3199 (((-82) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3937 (((-82) (-774 |#2|) $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-959 |#1| |#2|) (-12 (-984 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-14 -3685 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-82) (-82))))) (-392) (-584 (-1091))) (T -959))
-((-3685 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392)) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))))
-((-3103 (((-1 (-485)) (-1002 (-485))) 32 T ELT)) (-3107 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3105 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3106 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT)))
-(((-960) (-10 -7 (-14 -3103 ((-1 (-485)) (-1002 (-485)))) (-14 -3104 ((-1 (-485)) (-485) |RationalNumber|)) (-14 -3105 ((-1 (-485)) |RationalNumber|)) (-14 -3106 ((-1 (-485)) |RationalNumber|)) (-14 -3107 ((-485) (-485) (-485) (-485) (-485))))) (T -960))
-((-3107 (*1 *2 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-960)))) (-3106 (*1 *2 *3) (-11 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3105 (*1 *2 *3) (-11 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3104 (*1 *2 *3 *4) (-11 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) (-5 *3 (-485)))) (-3103 (*1 *2 *3) (-11 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-((-3950 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
-(((-961 |#1|) (-10 -7 (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-962)) (T -961))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-962) (-110)) (T -962))
-((-3129 (*1 *2) (-11 (-4 *1 (-962)) (-5 *2 (-695)))))
-(-12 (-971) (-1062) (-591 $) (-556 (-485)) (-10 -7 (-14 -3129 ((-695)) -3956) (-6 -3994)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3108 (((-349 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT)))
-(((-963 |#1| |#2|) (-10 -7 (-14 -3108 ((-349 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1091) (-311)) (T -963))
-((-3108 (*1 *2 *3 *3 *4 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-349 (-858 *6))) (-5 *1 (-963 *5 *6)) (-13 *5 (-1091)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
-(((-964 |#1|) (-110) (-1026)) (T -964))
-((* (*1 *1 *1 *2) (-11 (-4 *1 (-964 *2)) (-4 *2 (-1026)))))
-(-12 (-1014) (-10 -8 (-14 * ($ $ |t#1|))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3123 (((-82) $) 38 T ELT)) (-3125 (((-82) $) 17 T ELT)) (-3117 (((-695) $) 13 T ELT)) (-3116 (((-695) $) 14 T ELT)) (-3124 (((-82) $) 30 T ELT)) (-3122 (((-82) $) 40 T ELT)))
-(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -3116 ((-695) |#1|)) (-14 -3117 ((-695) |#1|)) (-14 -3122 ((-82) |#1|)) (-14 -3123 ((-82) |#1|)) (-14 -3124 ((-82) |#1|)) (-14 -3125 ((-82) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-195 |#3| |#4|) (-195 |#2| |#4|)) (T -965))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3123 (((-82) $) 63 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-82) $) 65 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 46 (|has| |#3| (-257)) ELT)) (-3114 ((|#4| $ (-485)) 51 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 86 (|has| |#3| (-69)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3111 (((-695) $) 45 (|has| |#3| (-496)) ELT)) (-3115 ((|#3| $ (-485) (-485)) 53 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-3110 (((-695) $) 44 (|has| |#3| (-496)) ELT)) (-3109 (((-584 |#5|) $) 43 (|has| |#3| (-496)) ELT)) (-3117 (((-695) $) 57 T ELT)) (-3116 (((-695) $) 56 T ELT)) (-3121 (((-485) $) 61 T ELT)) (-3119 (((-485) $) 59 T ELT)) (-2611 (((-584 |#3|) $) 80 T ELT)) (-3248 (((-82) |#3| $) 85 (|has| |#3| (-69)) ELT)) (-3120 (((-485) $) 60 T ELT)) (-3118 (((-485) $) 58 T ELT)) (-3126 (($ (-584 (-584 |#3|))) 66 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 49 T ELT)) (-3597 (((-584 (-584 |#3|)) $) 55 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1731 (((-3 |#3| "failed") (-1 (-82) |#3|) $) 83 T ELT)) (-3469 (((-3 $ "failed") $ |#3|) 48 (|has| |#3| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#3|) $) 78 T ELT)) (-3771 (($ $ (-584 |#3|) (-584 |#3|)) 75 (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) 74 (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-248 |#3|)) 73 (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-248 |#3|))) 72 (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-82) $ $) 67 T ELT)) (-3406 (((-82) $) 70 T ELT)) (-3568 (($) 69 T ELT)) (-3803 ((|#3| $ (-485) (-485)) 54 T ELT) ((|#3| $ (-485) (-485) |#3|) 52 T ELT)) (-3124 (((-82) $) 64 T ELT)) (-1732 (((-695) |#3| $) 84 (|has| |#3| (-69)) ELT) (((-695) (-1 (-82) |#3|) $) 79 T ELT)) (-3403 (($ $) 68 T ELT)) (-3113 ((|#5| $ (-485)) 50 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-1734 (((-82) (-1 (-82) |#3|) $) 77 T ELT)) (-3122 (((-82) $) 62 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#3|) 47 (|has| |#3| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3961 (((-695) $) 76 T ELT)))
-(((-966 |#1| |#2| |#3| |#4| |#5|) (-110) (-695) (-695) (-962) (-195 |t#2| |t#3|) (-195 |t#1| |t#3|)) (T -966))
-((-3126 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3125 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))) (-3124 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))) (-3123 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))) (-3122 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))) (-3121 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))) (-3120 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-695)))) (-3116 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-695)))) (-3597 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3803 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-962)))) (-3115 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)) (-4 *2 (-962)))) (-3803 (*1 *2 *1 *3 *3 *2) (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2)))) (-3114 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6)))) (-3113 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6)))) (-3846 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))) (-3469 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-496)))) (-3953 (*1 *1 *1 *2) (-11 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-311)))) (-3112 (*1 *1 *1) (-11 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *2 *4)) (-4 *4 (-257)))) (-3111 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3110 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
-(-12 (-79 |t#3| |t#3|) (-317 |t#3|) (-10 -8 (IF (|has| |t#3| (-145)) (-6 (-655 |t#3|)) |%noBranch|) (-14 -3126 ($ (-584 (-584 |t#3|)))) (-14 -3125 ((-82) $)) (-14 -3124 ((-82) $)) (-14 -3123 ((-82) $)) (-14 -3122 ((-82) $)) (-14 -3121 ((-485) $)) (-14 -3120 ((-485) $)) (-14 -3119 ((-485) $)) (-14 -3118 ((-485) $)) (-14 -3117 ((-695) $)) (-14 -3116 ((-695) $)) (-14 -3597 ((-584 (-584 |t#3|)) $)) (-14 -3803 (|t#3| $ (-485) (-485))) (-14 -3115 (|t#3| $ (-485) (-485))) (-14 -3803 (|t#3| $ (-485) (-485) |t#3|)) (-14 -3114 (|t#4| $ (-485))) (-14 -3113 (|t#5| $ (-485))) (-14 -3846 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-14 -3469 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-14 -3953 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-257)) (-14 -3112 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-14 -3111 ((-695) $)) (-14 -3110 ((-695) $)) (-14 -3109 ((-584 |t#5|) $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-31) . T) ((-69) . T) ((-79 |#3| |#3|) . T) ((-101) . T) ((-553 (-773)) . T) ((-259 |#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ((-317 |#3|) . T) ((-380 |#3|) . T) ((-429 |#3|) . T) ((-456 |#3| |#3|) -11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ((-12) . T) ((-589 (-485)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-145)) ((-655 |#3|) |has| |#3| (-145)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3123 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3125 (((-82) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 46 (|has| |#3| (-257)) ELT)) (-3114 (((-196 |#2| |#3|) $ (-485)) 35 T ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-69)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3127 (($ (-631 |#3|)) 44 T ELT)) (-3111 (((-695) $) 48 (|has| |#3| (-496)) ELT)) (-3115 ((|#3| $ (-485) (-485)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-3110 (((-695) $) 50 (|has| |#3| (-496)) ELT)) (-3109 (((-584 (-196 |#1| |#3|)) $) 54 (|has| |#3| (-496)) ELT)) (-3117 (((-695) $) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3121 (((-485) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-2611 (((-584 |#3|) $) NIL T ELT)) (-3248 (((-82) |#3| $) NIL (|has| |#3| (-69)) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-3126 (($ (-584 (-584 |#3|))) 30 T ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3597 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 |#3| #1#) (-1 (-82) |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3771 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-248 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-248 |#3|))) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3915 (((-104)) 58 (|has| |#3| (-311)) ELT)) (-3124 (((-82) $) NIL T ELT)) (-1732 (((-695) |#3| $) NIL (|has| |#3| (-69)) ELT) (((-695) (-1 (-82) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) 65 (|has| |#3| (-554 (-474))) ELT)) (-3113 (((-196 |#1| |#3|) $ (-485)) 39 T ELT)) (-3950 (((-773) $) 18 T ELT) (((-631 |#3|) $) 41 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3122 (((-82) $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-967 |#1| |#2| |#3|) (-12 (-966 |#1| |#2| |#3| (-196 |#2| |#3|) (-196 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-311)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (-14 -3127 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967))
-((-3127 (*1 *1 *2) (-11 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-13 *3 (-695)) (-13 *4 (-695)))))
-((-3845 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3846 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
-(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-14 -3846 (|#10| (-1 |#7| |#3|) |#6|)) (-14 -3845 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-195 |#2| |#3|) (-195 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-195 |#2| |#7|) (-195 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968))
-((-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-13 *5 (-695)) (-13 *6 (-695)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-13 *5 (-695)) (-13 *6 (-695)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10)) (-4 *12 (-195 *5 *10)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
-(((-969 |#1|) (-110) (-971)) (T -969))
-NIL
-(-12 (-18) (-964 |t#1|))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3128 (((-82) $ $) 10 T ELT)))
-(((-970 |#1|) (-10 -7 (-14 -3128 ((-82) |#1| |#1|))) (-971)) (T -970))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-971) (-110)) (T -971))
-((-3128 (*1 *2 *1 *1) (-11 (-4 *1 (-971)) (-5 *2 (-82)))))
-(-12 (-18) (-1026) (-10 -8 (-14 -3128 ((-82) $ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3834 (((-1091) $) 11 T ELT)) (-3739 ((|#1| $) 12 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3229 (($ (-1091) |#1|) 10 T ELT)) (-3950 (((-773) $) 22 (|has| |#1| (-1014)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-1014)) ELT)))
-(((-972 |#1| |#2|) (-12 (-1130) (-10 -8 (-14 -3229 ($ (-1091) |#1|)) (-14 -3834 ((-1091) $)) (-14 -3739 (|#1| $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1007 |#2|) (-1130)) (T -972))
-((-3229 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3834 (*1 *2 *1) (-11 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3739 (*1 *2 *1) (-11 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130)))))
-((-3774 (($ $) 17 T ELT)) (-3130 (($ $) 25 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 54 T ELT)) (-3135 (($ $) 27 T ELT)) (-3131 (($ $) 12 T ELT)) (-3133 (($ $) 40 T ELT)) (-3975 (((-329) $) NIL T ELT) (((-178) $) NIL T ELT) (((-801 (-329)) $) 36 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) 31 T ELT)) (-3129 (((-695)) 9 T CONST)) (-3134 (($ $) 44 T ELT)))
-(((-973 |#1|) (-10 -7 (-14 -3130 (|#1| |#1|)) (-14 -3774 (|#1| |#1|)) (-14 -3131 (|#1| |#1|)) (-14 -3133 (|#1| |#1|)) (-14 -3134 (|#1| |#1|)) (-14 -3135 (|#1| |#1|)) (-14 -2799 ((-799 (-329) |#1|) |#1| (-801 (-329)) (-799 (-329) |#1|))) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 (|#1| (-485))) (-14 -3975 ((-178) |#1|)) (-14 -3975 ((-329) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 (|#1| |#1|)) (-14 -3129 ((-695)) -3956) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-974)) (T -973))
-((-3129 (*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3132 (((-485) $) 108 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-3774 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-3040 (($ $) 116 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3626 (((-485) $) 133 T ELT)) (-3727 (($) 23 T CONST)) (-3130 (($ $) 105 T ELT)) (-3160 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-349 (-485)) #1#) $) 118 T ELT)) (-3159 (((-485) $) 122 T ELT) (((-349 (-485)) $) 119 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-3726 (((-82) $) 89 T ELT)) (-3189 (((-82) $) 131 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 112 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 115 T ELT)) (-3135 (($ $) 111 T ELT)) (-3190 (((-82) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2534 (($ $ $) 125 T ELT)) (-2860 (($ $ $) 126 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3131 (($ $) 107 T ELT)) (-3133 (($ $) 109 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-3975 (((-329) $) 124 T ELT) (((-178) $) 123 T ELT) (((-801 (-329)) $) 113 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-349 (-485))) 117 T ELT)) (-3129 (((-695)) 40 T CONST)) (-3134 (($ $) 110 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3386 (($ $) 134 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2569 (((-82) $ $) 127 T ELT)) (-2570 (((-82) $ $) 129 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 128 T ELT)) (-2688 (((-82) $ $) 130 T ELT)) (-3953 (($ $ $) 83 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-349 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT)))
-(((-974) (-110)) (T -974))
-((-3135 (*1 *1 *1) (-4 *1 (-974))) (-3134 (*1 *1 *1) (-4 *1 (-974))) (-3133 (*1 *1 *1) (-4 *1 (-974))) (-3132 (*1 *2 *1) (-11 (-4 *1 (-974)) (-5 *2 (-485)))) (-3131 (*1 *1 *1) (-4 *1 (-974))) (-3774 (*1 *1 *1) (-4 *1 (-974))) (-3130 (*1 *1 *1) (-4 *1 (-974))))
-(-12 (-311) (-756) (-934) (-951 (-485)) (-951 (-349 (-485))) (-916) (-554 (-801 (-329))) (-797 (-329)) (-117) (-10 -8 (-14 -3135 ($ $)) (-14 -3134 ($ $)) (-14 -3133 ($ $)) (-14 -3132 ((-485) $)) (-14 -3131 ($ $)) (-14 -3774 ($ $)) (-14 -3130 ($ $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 $ $) . T) ((-101) . T) ((-117) . T) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-554 (-178)) . T) ((-554 (-329)) . T) ((-554 (-801 (-329))) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-329)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-349 (-485))) . T) ((-951 (-485)) . T) ((-964 (-349 (-485))) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) |#2| $) 26 T ELT)) (-3139 ((|#1| $) 10 T ELT)) (-3626 (((-485) |#2| $) 119 T ELT)) (-3186 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3140 ((|#1| $) 31 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3137 (($ $) 28 T ELT)) (-3470 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3189 (((-82) |#2| $) NIL T ELT)) (-3190 (((-82) |#2| $) NIL T ELT)) (-3136 (((-82) |#2| $) 27 T ELT)) (-3138 ((|#1| $) 120 T ELT)) (-3141 ((|#1| $) 30 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3188 ((|#2| $) 104 T ELT)) (-3950 (((-773) $) 95 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3773 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3187 (((-584 $) |#2|) 78 T ELT)) (-3059 (((-82) $ $) 99 T ELT)))
-(((-975 |#1| |#2|) (-12 (-981 |#1| |#2|) (-10 -8 (-14 -3141 (|#1| $)) (-14 -3140 (|#1| $)) (-14 -3139 (|#1| $)) (-14 -3138 (|#1| $)) (-14 -3137 ($ $)) (-14 -3136 ((-82) |#2| $)) (-14 -3185 (|#1| |#2| $ |#1|)))) (-12 (-756) (-311)) (-1156 |#1|)) (T -975))
-((-3185 (*1 *2 *3 *1 *2) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3141 (*1 *2 *1) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3140 (*1 *2 *1) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3139 (*1 *2 *1) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3138 (*1 *2 *1) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3137 (*1 *1 *1) (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3136 (*1 *2 *3 *1) (-11 (-4 *4 (-12 (-756) (-311))) (-5 *2 (-82)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3626 (((-485) $) NIL T ELT)) (-2444 (($ $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3142 (($ (-1091)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3160 (((-3 (-485) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3026 (((-82) $) NIL T ELT)) (-3025 (((-349 (-485)) $) NIL T ELT)) (-2997 (($) NIL T ELT) (($ $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) NIL T ELT)) (-3189 (((-82) $) NIL T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2676 (((-82) $) NIL T ELT)) (-3448 (((-633 $) $) NIL T ELT)) (-3190 (((-82) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2048 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2677 (((-82) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2047 (($ $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-178) $) NIL T ELT) (($ (-1091)) 9 T ELT)) (-3950 (((-773) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3129 (((-695)) NIL T CONST)) (-2051 (((-82) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (($) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-3386 (($ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-3840 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT)))
-(((-976) (-12 (-484) (-558 (-1091)) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-14 -3142 ($ (-1091))) (-14 -3142 ($ (-485)))))) (T -976))
-((-3142 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-976)))) (-3142 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-976)))))
-((-3800 (($ $) 46 T ELT)) (-3169 (((-82) $ $) 82 T ELT)) (-3160 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-349 (-485)))) 247 T ELT) (((-3 $ #1#) (-858 (-485))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-349 (-485)))) 235 T ELT) (($ (-858 (-485))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3962 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3697 (((-82) $ $) 131 T ELT) (((-82) $ (-584 $)) 135 T ELT)) (-3175 (((-82) $) 60 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 125 T ELT)) (-3146 (($ $) 160 T ELT)) (-3157 (($ $) 156 T ELT)) (-3158 (($ $) 155 T ELT)) (-3168 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3167 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3698 (((-82) $ $) 143 T ELT) (((-82) $ (-584 $)) 144 T ELT)) (-3183 ((|#4| $) 32 T ELT)) (-3162 (($ $ $) 128 T ELT)) (-3176 (((-82) $) 59 T ELT)) (-3182 (((-695) $) 35 T ELT)) (-3143 (($ $) 174 T ELT)) (-3144 (($ $) 171 T ELT)) (-3171 (((-584 $) $) 72 T ELT)) (-3174 (($ $) 62 T ELT)) (-3145 (($ $) 167 T ELT)) (-3172 (((-584 $) $) 69 T ELT)) (-3173 (($ $) 64 T ELT)) (-3177 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-695))) $ $) 130 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $) 126 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $ |#4|) 127 T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $) 121 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $ |#4|) 123 T ELT)) (-3166 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3165 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3179 (((-584 $) $) 54 T ELT)) (-3694 (((-82) $ $) 140 T ELT) (((-82) $ (-584 $)) 141 T ELT)) (-3689 (($ $ $) 116 T ELT)) (-3449 (($ $) 37 T ELT)) (-3702 (((-82) $ $) 80 T ELT)) (-3695 (((-82) $ $) 136 T ELT) (((-82) $ (-584 $)) 138 T ELT)) (-3690 (($ $ $) 112 T ELT)) (-3181 (($ $) 41 T ELT)) (-3147 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3155 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3156 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3180 (($ $) 49 T ELT)) (-3178 (($ $) 55 T ELT)) (-3975 (((-801 (-329)) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-858 (-349 (-485)))) 237 T ELT) (($ (-858 (-485))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1074) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3950 (((-773) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3170 (((-3 (-82) #1#) $ $) 79 T ELT)))
-(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3950 (|#1| |#1|)) (-14 -3147 (|#1| |#1| |#1|)) (-14 -3147 (|#1| (-584 |#1|))) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 ((-858 |#2|) |#1|)) (-14 -3975 ((-858 |#2|) |#1|)) (-14 -3975 ((-1074) |#1|)) (-14 -3143 (|#1| |#1|)) (-14 -3144 (|#1| |#1|)) (-14 -3145 (|#1| |#1|)) (-14 -3146 (|#1| |#1|)) (-14 -3147 (|#2| |#2| |#1|)) (-14 -3155 (|#1| |#1| |#1|)) (-14 -3156 (|#1| |#1| |#1|)) (-14 -3155 (|#1| |#1| |#2|)) (-14 -3156 (|#1| |#1| |#2|)) (-14 -3157 (|#1| |#1|)) (-14 -3158 (|#1| |#1|)) (-14 -3975 (|#1| (-858 |#2|))) (-14 -3159 (|#1| (-858 |#2|))) (-14 -3160 ((-3 |#1| #1="failed") (-858 |#2|))) (-14 -3975 (|#1| (-858 (-485)))) (-14 -3159 (|#1| (-858 (-485)))) (-14 -3160 ((-3 |#1| #1#) (-858 (-485)))) (-14 -3975 (|#1| (-858 (-349 (-485))))) (-14 -3159 (|#1| (-858 (-349 (-485))))) (-14 -3160 ((-3 |#1| #1#) (-858 (-349 (-485))))) (-14 -3689 (|#1| |#1| |#1|)) (-14 -3690 (|#1| |#1| |#1|)) (-14 -3161 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3484 (-695))) |#1| |#1|)) (-14 -3162 (|#1| |#1| |#1|)) (-14 -3755 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-14 -3163 ((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -3164 ((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -2905 |#1|)) |#1| |#1| |#4|)) (-14 -3164 ((-2 (|:| -3958 |#1|) (|:| |gap| (-695)) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -3165 (|#1| |#1| |#1| |#4|)) (-14 -3166 (|#1| |#1| |#1| |#4|)) (-14 -3165 (|#1| |#1| |#1|)) (-14 -3166 (|#1| |#1| |#1|)) (-14 -3167 (|#1| |#1| |#1| |#4|)) (-14 -3168 (|#1| |#1| |#1| |#4|)) (-14 -3167 (|#1| |#1| |#1|)) (-14 -3168 (|#1| |#1| |#1|)) (-14 -3698 ((-82) |#1| (-584 |#1|))) (-14 -3698 ((-82) |#1| |#1|)) (-14 -3694 ((-82) |#1| (-584 |#1|))) (-14 -3694 ((-82) |#1| |#1|)) (-14 -3695 ((-82) |#1| (-584 |#1|))) (-14 -3695 ((-82) |#1| |#1|)) (-14 -3697 ((-82) |#1| (-584 |#1|))) (-14 -3697 ((-82) |#1| |#1|)) (-14 -3169 ((-82) |#1| |#1|)) (-14 -3702 ((-82) |#1| |#1|)) (-14 -3170 ((-3 (-82) #1#) |#1| |#1|)) (-14 -3171 ((-584 |#1|) |#1|)) (-14 -3172 ((-584 |#1|) |#1|)) (-14 -3173 (|#1| |#1|)) (-14 -3174 (|#1| |#1|)) (-14 -3175 ((-82) |#1|)) (-14 -3176 ((-82) |#1|)) (-14 -3962 (|#1| |#1| |#4|)) (-14 -3177 (|#1| |#1| |#4|)) (-14 -3178 (|#1| |#1|)) (-14 -3179 ((-584 |#1|) |#1|)) (-14 -3180 (|#1| |#1|)) (-14 -3800 (|#1| |#1|)) (-14 -3181 (|#1| |#1|)) (-14 -3449 (|#1| |#1|)) (-14 -3182 ((-695) |#1|)) (-14 -3183 (|#4| |#1|)) (-14 -3975 ((-474) |#1|)) (-14 -3975 ((-801 (-485)) |#1|)) (-14 -3975 ((-801 (-329)) |#1|)) (-14 -3950 (|#1| |#4|)) (-14 -3160 ((-3 |#4| #1#) |#1|)) (-14 -3159 (|#4| |#1|)) (-14 -3177 (|#2| |#1|)) (-14 -3962 (|#1| |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-978 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -977))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 |#3|) $) 124 T ELT)) (-3086 (((-1086 $) $ |#3|) 139 T ELT) (((-1086 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 101 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 104 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 126 T ELT) (((-695) $ (-584 |#3|)) 125 T ELT)) (-3800 (($ $) 294 T ELT)) (-3169 (((-82) $ $) 280 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3151 (((-584 $) $ $) 234 (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) 111 (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-349 (-485)) #2#) $) 179 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #2#) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 154 T ELT) (((-3 $ "failed") (-858 (-349 (-485)))) 254 (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (((-3 $ "failed") (-858 (-485))) 251 (OR (-11 (-2563 (|has| |#1| (-35 (-349 (-485))))) (|has| |#1| (-35 (-485))) (|has| |#3| (-554 (-1091)))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (((-3 $ "failed") (-858 |#1|)) 248 (OR (-11 (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-35 (-485)))) (|has| |#3| (-554 (-1091)))) (-11 (-2563 (|has| |#1| (-484))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (|has| |#1| (-35 (-485))) (|has| |#3| (-554 (-1091)))) (-11 (-2563 (|has| |#1| (-905 (-485)))) (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3159 ((|#1| $) 181 T ELT) (((-349 (-485)) $) 180 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) 178 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 155 T ELT) (($ (-858 (-349 (-485)))) 253 (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 250 (OR (-11 (-2563 (|has| |#1| (-35 (-349 (-485))))) (|has| |#1| (-35 (-485))) (|has| |#3| (-554 (-1091)))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 247 (OR (-11 (-2563 (|has| |#1| (-35 (-349 (-485))))) (-2563 (|has| |#1| (-35 (-485)))) (|has| |#3| (-554 (-1091)))) (-11 (-2563 (|has| |#1| (-484))) (-2563 (|has| |#1| (-35 (-349 (-485))))) (|has| |#1| (-35 (-485))) (|has| |#3| (-554 (-1091)))) (-11 (-2563 (|has| |#1| (-905 (-485)))) (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3759 (($ $ $ |#3|) 122 (|has| |#1| (-145)) ELT) (($ $ $) 235 (|has| |#1| (-496)) ELT)) (-3962 (($ $) 172 T ELT) (($ $ |#3|) 289 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 148 T ELT) (((-631 |#1|) (-631 $)) 147 T ELT)) (-3697 (((-82) $ $) 279 T ELT) (((-82) $ (-584 $)) 278 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3175 (((-82) $) 287 T ELT)) (-3755 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 259 T ELT)) (-3146 (($ $) 228 (|has| |#1| (-392)) ELT)) (-3506 (($ $) 194 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) 123 T ELT)) (-3726 (((-82) $) 110 (|has| |#1| (-822)) ELT)) (-3157 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3158 (($ $) 245 (|has| |#1| (-496)) ELT)) (-3168 (($ $ $) 271 T ELT) (($ $ $ |#3|) 269 T ELT)) (-3167 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-1625 (($ $ |#1| |#2| $) 190 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 98 (-11 (|has| |#3| (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 97 (-11 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2422 (((-695) $) 187 T ELT)) (-3698 (((-82) $ $) 273 T ELT) (((-82) $ (-584 $)) 272 T ELT)) (-3148 (($ $ $ $ $) 230 (|has| |#1| (-496)) ELT)) (-3183 ((|#3| $) 298 T ELT)) (-3087 (($ (-1086 |#1|) |#3|) 131 T ELT) (($ (-1086 $) |#3|) 130 T ELT)) (-2824 (((-584 $) $) 140 T ELT)) (-3941 (((-82) $) 170 T ELT)) (-2896 (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (-695)) 133 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 132 T ELT)) (-3162 (($ $ $) 258 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 134 T ELT)) (-3176 (((-82) $) 288 T ELT)) (-2823 ((|#2| $) 188 T ELT) (((-695) $ |#3|) 136 T ELT) (((-584 (-695)) $ (-584 |#3|)) 135 T ELT)) (-3182 (((-695) $) 297 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3085 (((-3 |#3| #3="failed") $) 137 T ELT)) (-3143 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3144 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) 283 T ELT)) (-3174 (($ $) 286 T ELT)) (-3145 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3172 (((-584 $) $) 284 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 152 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 146 T ELT) (((-631 |#1|) (-1180 $)) 145 T ELT)) (-3173 (($ $) 285 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT) (($ $ |#3|) 290 T ELT)) (-1896 (($ (-584 $)) 108 (|has| |#1| (-392)) ELT) (($ $ $) 107 (|has| |#1| (-392)) ELT)) (-3161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-695))) $ $) 257 T ELT)) (-3163 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $) 261 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $ |#3|) 260 T ELT)) (-3164 (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $) 263 T ELT) (((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $ |#3|) 262 T ELT)) (-3166 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3165 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3193 (($ $ $) 233 (|has| |#1| (-496)) ELT)) (-3179 (((-584 $) $) 292 T ELT)) (-2826 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-695))) #3#) $) 127 T ELT)) (-3694 (((-82) $ $) 275 T ELT) (((-82) $ (-584 $)) 274 T ELT)) (-3689 (($ $ $) 255 T ELT)) (-3449 (($ $) 296 T ELT)) (-3702 (((-82) $ $) 281 T ELT)) (-3695 (((-82) $ $) 277 T ELT) (((-82) $ (-584 $)) 276 T ELT)) (-3690 (($ $ $) 256 T ELT)) (-3181 (($ $) 295 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3152 (((-2 (|:| -3147 $) (|:| |coef2| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-3153 (((-2 (|:| -3147 $) (|:| |coef1| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-1802 (((-82) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 109 (|has| |#1| (-392)) ELT)) (-3147 ((|#1| |#1| $) 229 (|has| |#1| (-392)) ELT) (($ (-584 $)) 106 (|has| |#1| (-392)) ELT) (($ $ $) 105 (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 113 (|has| |#1| (-822)) ELT)) (-3154 (((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 238 (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3156 (($ $ |#1|) 243 (|has| |#1| (-496)) ELT) (($ $ $) 241 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) 163 T ELT) (($ $ (-248 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (-584 |#3|) (-584 $)) 156 T ELT)) (-3760 (($ $ |#3|) 121 (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3952 ((|#2| $) 169 T ELT) (((-695) $ |#3|) 144 T ELT) (((-584 (-695)) $ (-584 |#3|)) 143 T ELT)) (-3180 (($ $) 293 T ELT)) (-3178 (($ $) 291 T ELT)) (-3975 (((-801 (-329)) $) 96 (-11 (|has| |#3| (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) 95 (-11 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 94 (-11 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT) (($ (-858 (-349 (-485)))) 252 (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 249 (OR (-11 (-2563 (|has| |#1| (-35 (-349 (-485))))) (|has| |#1| (-35 (-485))) (|has| |#3| (-554 (-1091)))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 246 (|has| |#3| (-554 (-1091))) ELT) (((-1074) $) 224 (-11 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ELT) (((-858 |#1|) $) 223 (|has| |#3| (-554 (-1091))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 120 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 118 (-2565 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (((-858 |#1|) $) 222 (|has| |#3| (-554 (-1091))) ELT) (($ (-349 (-485))) 92 (OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ELT) (($ $) 99 (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (-695)) 142 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 141 T ELT)) (-2705 (((-633 $) $) 93 (OR (-2565 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 191 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 103 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-3170 (((-3 (-82) "failed") $ $) 282 T ELT)) (-2669 (($) 45 T CONST)) (-3149 (($ $ $ $ (-695)) 231 (|has| |#1| (-496)) ELT)) (-3150 (($ $ $ (-695)) 232 (|has| |#1| (-496)) ELT)) (-2672 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 176 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 175 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT)))
-(((-978 |#1| |#2| |#3|) (-110) (-962) (-718) (-757)) (T -978))
-((-3183 (*1 *2 *1) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3182 (*1 *2 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3449 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3181 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3800 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3180 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3179 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3178 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3177 (*1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3962 (*1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3176 (*1 *2 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3175 (*1 *2 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3174 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3173 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3172 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3171 (*1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3170 (*1 *2 *1 *1) (|partial| -11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3702 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3169 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3697 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3697 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)))) (-3695 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3695 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)))) (-3694 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3694 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)))) (-3698 (*1 *2 *1 *1) (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82)))) (-3698 (*1 *2 *1 *3) (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)))) (-3168 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3167 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3168 (*1 *1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3167 (*1 *1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3166 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3165 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3165 (*1 *1 *1 *1 *2) (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3164 (*1 *2 *1 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -2905 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3164 (*1 *2 *1 *1 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -2905 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3163 (*1 *2 *1 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3755 (*1 *2 *1 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3162 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3161 (*1 *2 *1 *1) (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-695)))) (-4 *1 (-978 *3 *4 *5)))) (-3690 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3689 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3160 (*1 *1 *2) (|partial| -11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3159 (*1 *1 *2) (-11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3160 (*1 *1 *2) (|partial| OR (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3159 (*1 *1 *2) (OR (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3975 (*1 *1 *2) (OR (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3160 (*1 *1 *2) (|partial| OR (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-2563 (-4 *3 (-35 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-484))) (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-905 (-485)))) (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3159 (*1 *1 *2) (OR (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-2563 (-4 *3 (-35 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-484))) (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-11 (-5 *2 (-858 *3)) (-11 (-2563 (-4 *3 (-905 (-485)))) (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3158 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3157 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3156 (*1 *1 *1 *2) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *2) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3156 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3758 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3153 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3759 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3151 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3193 (*1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3150 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3149 (*1 *1 *1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3148 (*1 *1 *1 *1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3147 (*1 *2 *2 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3146 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3145 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))))
-(-12 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-14 -3183 (|t#3| $)) (-14 -3182 ((-695) $)) (-14 -3449 ($ $)) (-14 -3181 ($ $)) (-14 -3800 ($ $)) (-14 -3180 ($ $)) (-14 -3179 ((-584 $) $)) (-14 -3178 ($ $)) (-14 -3177 ($ $ |t#3|)) (-14 -3962 ($ $ |t#3|)) (-14 -3176 ((-82) $)) (-14 -3175 ((-82) $)) (-14 -3174 ($ $)) (-14 -3173 ($ $)) (-14 -3172 ((-584 $) $)) (-14 -3171 ((-584 $) $)) (-14 -3170 ((-3 (-82) "failed") $ $)) (-14 -3702 ((-82) $ $)) (-14 -3169 ((-82) $ $)) (-14 -3697 ((-82) $ $)) (-14 -3697 ((-82) $ (-584 $))) (-14 -3695 ((-82) $ $)) (-14 -3695 ((-82) $ (-584 $))) (-14 -3694 ((-82) $ $)) (-14 -3694 ((-82) $ (-584 $))) (-14 -3698 ((-82) $ $)) (-14 -3698 ((-82) $ (-584 $))) (-14 -3168 ($ $ $)) (-14 -3167 ($ $ $)) (-14 -3168 ($ $ $ |t#3|)) (-14 -3167 ($ $ $ |t#3|)) (-14 -3166 ($ $ $)) (-14 -3165 ($ $ $)) (-14 -3166 ($ $ $ |t#3|)) (-14 -3165 ($ $ $ |t#3|)) (-14 -3164 ((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $)) (-14 -3164 ((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -2905 $)) $ $ |t#3|)) (-14 -3163 ((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -3163 ((-2 (|:| -3958 $) (|:| |gap| (-695)) (|:| -1974 $) (|:| -2905 $)) $ $ |t#3|)) (-14 -3755 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -3162 ($ $ $)) (-14 -3161 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3484 (-695))) $ $)) (-14 -3690 ($ $ $)) (-14 -3689 ($ $ $)) (IF (|has| |t#3| (-554 (-1091))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-35 (-349 (-485)))) (PROGN (-14 -3160 ((-3 $ "failed") (-858 (-349 (-485))))) (-14 -3159 ($ (-858 (-349 (-485))))) (-14 -3975 ($ (-858 (-349 (-485))))) (-14 -3160 ((-3 $ "failed") (-858 (-485)))) (-14 -3159 ($ (-858 (-485)))) (-14 -3975 ($ (-858 (-485)))) (IF (|has| |t#1| (-905 (-485))) |%noBranch| (PROGN (-14 -3160 ((-3 $ "failed") (-858 |t#1|))) (-14 -3159 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-35 (-485))) (IF (|has| |t#1| (-35 (-349 (-485)))) |%noBranch| (PROGN (-14 -3160 ((-3 $ "failed") (-858 (-485)))) (-14 -3159 ($ (-858 (-485)))) (-14 -3975 ($ (-858 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-14 -3160 ((-3 $ "failed") (-858 |t#1|))) (-14 -3159 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-35 (-485))) |%noBranch| (IF (|has| |t#1| (-35 (-349 (-485)))) |%noBranch| (PROGN (-14 -3160 ((-3 $ "failed") (-858 |t#1|))) (-14 -3159 ($ (-858 |t#1|)))))) (-14 -3975 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-485))) (-6 (-554 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-14 -3158 ($ $)) (-14 -3157 ($ $)) (-14 -3156 ($ $ |t#1|)) (-14 -3155 ($ $ |t#1|)) (-14 -3156 ($ $ $)) (-14 -3155 ($ $ $)) (-14 -3758 ($ $ $)) (-14 -3154 ((-2 (|:| -3147 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-14 -3153 ((-2 (|:| -3147 $) (|:| |coef1| $)) $ $)) (-14 -3152 ((-2 (|:| -3147 $) (|:| |coef2| $)) $ $)) (-14 -3759 ($ $ $)) (-14 -3151 ((-584 $) $ $)) (-14 -3193 ($ $ $)) (-14 -3150 ($ $ $ (-695))) (-14 -3149 ($ $ $ $ (-695))) (-14 -3148 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-14 -3147 (|t#1| |t#1| $)) (-14 -3146 ($ $)) (-14 -3145 ($ $)) (-14 -3144 ($ $)) (-14 -3143 ($ $))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#2|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-145) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-554 (-474)) -11 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#3| (-554 (-801 (-329))))) ((-554 (-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-554 (-1074)) -11 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-329)) -11 (|has| |#1| (-797 (-329))) (|has| |#3| (-797 (-329)))) ((-797 (-485)) -11 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3184 (((-584 (-1050)) $) 18 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-1050) $) 20 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-979) (-12 (-996) (-10 -8 (-14 -3184 ((-584 (-1050)) $)) (-14 -3236 ((-1050) $))))) (T -979))
-((-3184 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))) (-3236 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-979)))))
-((-3191 (((-82) |#3| $) 15 T ELT)) (-3186 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3470 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3189 (((-82) |#3| $) 19 T ELT)) (-3190 (((-82) |#3| $) 17 T ELT)))
-(((-980 |#1| |#2| |#3|) (-10 -7 (-14 -3186 ((-3 |#1| #1="failed") |#3| (-831))) (-14 -3470 ((-3 |#3| #1#) |#3| |#1|)) (-14 -3189 ((-82) |#3| |#1|)) (-14 -3190 ((-82) |#3| |#1|)) (-14 -3191 ((-82) |#3| |#1|))) (-981 |#2| |#3|) (-12 (-756) (-311)) (-1156 |#2|)) (T -980))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) |#2| $) 25 T ELT)) (-3626 (((-485) |#2| $) 26 T ELT)) (-3186 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3185 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3470 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3189 (((-82) |#2| $) 23 T ELT)) (-3190 (((-82) |#2| $) 24 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3188 ((|#2| $) 21 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3773 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3187 (((-584 $) |#2|) 20 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-981 |#1| |#2|) (-110) (-12 (-756) (-311)) (-1156 |t#1|)) (T -981))
-((-3626 (*1 *2 *3 *1) (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-485)))) (-3191 (*1 *2 *3 *1) (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-82)))) (-3190 (*1 *2 *3 *1) (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-82)))) (-3189 (*1 *2 *3 *1) (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-82)))) (-3470 (*1 *2 *2 *1) (|partial| -11 (-4 *1 (-981 *3 *2)) (-4 *3 (-12 (-756) (-311))) (-4 *2 (-1156 *3)))) (-3188 (*1 *2 *1) (-11 (-4 *1 (-981 *3 *2)) (-4 *3 (-12 (-756) (-311))) (-4 *2 (-1156 *3)))) (-3187 (*1 *2 *3) (-11 (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) (-4 *1 (-981 *4 *3)))) (-3186 (*1 *1 *2 *3) (|partial| -11 (-5 *3 (-831)) (-4 *4 (-12 (-756) (-311))) (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))) (-3773 (*1 *2 *3 *1 *2) (-11 (-4 *1 (-981 *2 *3)) (-4 *2 (-12 (-756) (-311))) (-4 *3 (-1156 *2)))) (-3185 (*1 *2 *3 *1 *2) (-11 (-4 *1 (-981 *2 *3)) (-4 *2 (-12 (-756) (-311))) (-4 *3 (-1156 *2)))))
-(-12 (-1014) (-10 -8 (-14 -3626 ((-485) |t#2| $)) (-14 -3191 ((-82) |t#2| $)) (-14 -3190 ((-82) |t#2| $)) (-14 -3189 ((-82) |t#2| $)) (-14 -3470 ((-3 |t#2| "failed") |t#2| $)) (-14 -3188 (|t#2| $)) (-14 -3187 ((-584 $) |t#2|)) (-14 -3186 ((-3 $ "failed") |t#2| (-831))) (-14 -3773 (|t#1| |t#2| $ |t#1|)) (-14 -3185 (|t#1| |t#2| $ |t#1|))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3439 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 114 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3440 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 99 T ELT)) (-3434 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-82)) 67 T ELT)) (-3438 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82) (-82) (-82) (-82)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82)) 87 T ELT)) (-3975 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-82)) 62 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
-(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-14 -3434 ((-695) (-584 |#4|) (-584 |#5|))) (-14 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-82))) (-14 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-14 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-82))) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-14 -3438 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82))) (-14 -3438 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82) (-82) (-82) (-82))) (-14 -3439 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-14 -3975 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-14 -3440 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -982))
-((-3440 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-982 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-11 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-982 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-11 (-5 *5 (-695)) (-5 *6 (-82)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))))
-((-3200 (((-82) |#5| $) 26 T ELT)) (-3198 (((-82) |#5| $) 29 T ELT)) (-3201 (((-82) |#5| $) 18 T ELT) (((-82) $) 52 T ELT)) (-3241 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3772 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3192 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3199 (((-82) |#5| $) 32 T ELT)))
-(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3772 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-14 -3772 ((-584 |#1|) (-584 |#5|) |#1|)) (-14 -3772 ((-584 |#1|) |#5| (-584 |#1|))) (-14 -3772 ((-584 |#1|) |#5| |#1|)) (-14 -3192 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-14 -3192 ((-584 |#1|) (-584 |#5|) |#1|)) (-14 -3192 ((-584 |#1|) |#5| (-584 |#1|))) (-14 -3192 ((-584 |#1|) |#5| |#1|)) (-14 -3241 ((-584 |#1|) |#5| (-584 |#1|))) (-14 -3241 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-14 -3241 ((-584 |#1|) (-584 |#5|) |#1|)) (-14 -3241 ((-584 |#1|) |#5| |#1|)) (-14 -3198 ((-82) |#5| |#1|)) (-14 -3201 ((-82) |#1|)) (-14 -3199 ((-82) |#5| |#1|)) (-14 -3200 ((-82) |#5| |#1|)) (-14 -3201 ((-82) |#5| |#1|)) (-14 -3772 (|#1| |#1| |#5|))) (-984 |#2| |#3| |#4| |#5|) (-392) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -983))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3685 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-82)) 120 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) 107 T ELT) (((-82) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 99 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3200 (((-82) |#4| $) 145 T ELT)) (-3198 (((-82) |#4| $) 142 T ELT)) (-3201 (((-82) |#4| $) 146 T ELT) (((-82) $) 143 T ELT)) (-3698 (((-82) |#4| $) 110 T ELT) (((-82) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-584 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) 141 T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-82) |#4| $) 139 T ELT)) (-3241 (((-584 $) |#4| $) 134 T ELT) (((-584 $) (-584 |#4|) $) 133 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 132 T ELT) (((-584 $) |#4| (-584 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-584 |#4|) $) 125 T ELT)) (-3700 (((-584 |#4|) $) 113 T ELT)) (-3694 (((-82) |#4| $) 105 T ELT) (((-82) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-82) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) 106 T ELT) (((-82) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 124 T ELT) (((-584 $) |#4| (-584 $)) 123 T ELT) (((-584 $) (-584 |#4|) $) 122 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 121 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-695) $) 112 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-3681 (((-695) $) 82 (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) 114 T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) 104 T ELT)) (-3192 (((-584 $) |#4| $) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT) (((-584 $) (-584 |#4|) $) 128 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 127 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3683 (((-584 |#3|) $) 87 T ELT)) (-3199 (((-82) |#4| $) 144 T ELT)) (-3937 (((-82) |#3| $) 86 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-984 |#1| |#2| |#3| |#4|) (-110) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -984))
-((-3201 (*1 *2 *3 *1) (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3200 (*1 *2 *3 *1) (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3199 (*1 *2 *3 *1) (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3201 (*1 *2 *1) (-11 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3198 (*1 *2 *3 *1) (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3197 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-82) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3196 (*1 *2 *3 *1) (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3195 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3778 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3241 (*1 *2 *3 *1) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3241 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3241 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3192 (*1 *2 *3 *1) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3192 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3443 (*1 *1 *2 *1) (-11 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3443 (*1 *1 *2 *1) (-11 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) (-3772 (*1 *2 *3 *1) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3772 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3772 (*1 *2 *3 *1) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3772 (*1 *2 *3 *2) (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3685 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8)))))
-(-12 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-14 -3201 ((-82) |t#4| $)) (-14 -3200 ((-82) |t#4| $)) (-14 -3199 ((-82) |t#4| $)) (-14 -3201 ((-82) $)) (-14 -3198 ((-82) |t#4| $)) (-14 -3197 ((-3 (-82) (-584 $)) |t#4| $)) (-14 -3196 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |t#4| $)) (-14 -3196 ((-82) |t#4| $)) (-14 -3195 ((-584 $) |t#4| $)) (-14 -3194 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-14 -3193 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-14 -3778 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-14 -3241 ((-584 $) |t#4| $)) (-14 -3241 ((-584 $) (-584 |t#4|) $)) (-14 -3241 ((-584 $) (-584 |t#4|) (-584 $))) (-14 -3241 ((-584 $) |t#4| (-584 $))) (-14 -3192 ((-584 $) |t#4| $)) (-14 -3192 ((-584 $) |t#4| (-584 $))) (-14 -3192 ((-584 $) (-584 |t#4|) $)) (-14 -3192 ((-584 $) (-584 |t#4|) (-584 $))) (-14 -3443 ($ |t#4| $)) (-14 -3443 ($ (-584 |t#4|) $)) (-14 -3772 ((-584 $) |t#4| $)) (-14 -3772 ((-584 $) |t#4| (-584 $))) (-14 -3772 ((-584 $) (-584 |t#4|) $)) (-14 -3772 ((-584 $) (-584 |t#4|) (-584 $))) (-14 -3685 ((-584 $) (-584 |t#4|) (-82)))))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3208 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3205 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3207 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3206 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-82) |#4| |#5|) 55 T ELT)) (-3289 (((-1186)) 36 T ELT)) (-3287 (((-1186)) 25 T ELT)) (-3288 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3286 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)) (-3202 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-82)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-82) (-82)) 52 T ELT)) (-3204 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
-(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3286 ((-1186) (-1074) (-1074) (-1074))) (-14 -3287 ((-1186))) (-14 -3288 ((-1186) (-1074) (-1074) (-1074))) (-14 -3289 ((-1186))) (-14 -3202 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-82) (-82))) (-14 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-82))) (-14 -3204 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3205 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3206 ((-82) |#4| |#5|)) (-14 -3206 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|)) (-14 -3207 ((-584 |#5|) |#4| |#5|)) (-14 -3208 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -985))
-((-3208 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3207 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-82)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-985 *6 *7 *4 *8 *9)))) (-3203 (*1 *2 *3 *3 *4 *5 *5) (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3202 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3289 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3287 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3321 (((-1131) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3209 (((-1050) $) 11 T ELT)) (-3950 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-986) (-12 (-996) (-10 -8 (-14 -3209 ((-1050) $)) (-14 -3321 ((-1131) $))))) (T -986))
-((-3209 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-986)))) (-3321 (*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-986)))))
-((-3269 (((-82) $ $) 7 T ELT)))
-(((-987) (-12 (-1130) (-10 -8 (-14 -3269 ((-82) $ $))))) (T -987))
-((-3269 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-987)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3212 (($ $ (-584 (-1091)) (-1 (-82) (-584 |#3|))) 34 T ELT)) (-3213 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1091))) 21 T ELT)) (-3531 ((|#3| $) 13 T ELT)) (-3160 (((-3 (-248 |#3|) "failed") $) 60 T ELT)) (-3159 (((-248 |#3|) $) NIL T ELT)) (-3210 (((-584 (-1091)) $) 16 T ELT)) (-3211 (((-801 |#1|) $) 11 T ELT)) (-3532 ((|#3| $) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3950 (((-773) $) 89 T ELT) (($ (-248 |#3|)) 22 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 38 T ELT)))
-(((-988 |#1| |#2| |#3|) (-12 (-1014) (-240 |#3| |#3|) (-951 (-248 |#3|)) (-10 -8 (-14 -3213 ($ |#3| |#3|)) (-14 -3213 ($ |#3| |#3| (-584 (-1091)))) (-14 -3212 ($ $ (-584 (-1091)) (-1 (-82) (-584 |#3|)))) (-14 -3211 ((-801 |#1|) $)) (-14 -3532 (|#3| $)) (-14 -3531 (|#3| $)) (-14 -3803 (|#3| $ |#3| (-831))) (-14 -3210 ((-584 (-1091)) $)))) (-1014) (-12 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-12 (-363 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -988))
-((-3213 (*1 *1 *2 *2) (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))) (-3213 (*1 *1 *2 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))))) (-3212 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-82) (-584 *6))) (-4 *6 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))) (-3211 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-12 (-363 *4) (-797 *3) (-554 *2))))) (-3532 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))))) (-3531 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-11 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))))) (-3210 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3545 (((-1091) $) 8 T ELT)) (-3245 (((-1074) $) 17 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 11 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 14 T ELT)))
-(((-989 |#1|) (-12 (-1014) (-10 -8 (-14 -3545 ((-1091) $)))) (-1091)) (T -989))
-((-3545 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-13 *3 *2))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3215 (($ (-584 (-988 |#1| |#2| |#3|))) 15 T ELT)) (-3214 (((-584 (-988 |#1| |#2| |#3|)) $) 22 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3950 (((-773) $) 18 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 21 T ELT)))
-(((-990 |#1| |#2| |#3|) (-12 (-1014) (-240 |#3| |#3|) (-10 -8 (-14 -3215 ($ (-584 (-988 |#1| |#2| |#3|)))) (-14 -3214 ((-584 (-988 |#1| |#2| |#3|)) $)) (-14 -3803 (|#3| $ |#3| (-831))))) (-1014) (-12 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-12 (-363 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -990))
-((-3215 (*1 *1 *2) (-11 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))) (-3214 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))) (-3803 (*1 *2 *1 *2 *3) (-11 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))))))
-((-3216 (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82)) 88 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82)) 90 T ELT)))
-(((-991 |#1| |#2|) (-10 -7 (-14 -3216 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82))) (-14 -3216 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-14 -3216 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82)))) (-12 (-257) (-117)) (-584 (-1091))) (T -991))
-((-3216 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))))) (-3216 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-117))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4)))))) (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-13 *5 (-584 (-1091))))) (-3216 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 132 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-311)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-1787 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3333 ((|#1| $) 121 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-298)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3139 (((-695)) 43 (|has| |#1| (-319)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1797 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1786 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3845 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-349 |#2|)) NIL (|has| |#1| (-311)) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3111 (((-831)) 80 T ELT)) (-2997 (($) 47 (|has| |#1| (-319)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-2836 (($) NIL (|has| |#1| (-298)) ELT)) (-1681 (((-82) $) NIL (|has| |#1| (-298)) ELT)) (-1769 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-3775 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3135 ((|#1| $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2016 ((|#2| $) 87 (|has| |#1| (-311)) ELT)) (-2012 (((-831) $) 140 (|has| |#1| (-319)) ELT)) (-3082 ((|#2| $) 59 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3449 (($) NIL (|has| |#1| (-298)) CONST)) (-2402 (($ (-831)) 131 (|has| |#1| (-319)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2411 (($) 123 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1677 (((-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-298)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3760 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1770 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3761 (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-2410 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3188 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-298)) ELT)) (-3227 (((-1180 |#1|) $ (-1180 $)) 92 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 72 T ELT) (((-631 |#1|) (-1180 $)) 88 T ELT)) (-3975 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-298)) ELT)) (-3950 (((-773) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-311)) ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-2705 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-2452 ((|#2| $) 85 T ELT)) (-3129 (((-695)) 79 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-2014 (((-1180 $)) 84 T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-188)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#1| (-311)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-3059 (((-82) $ $) 64 T ELT)) (-3953 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-311)) ELT)))
-(((-992 |#1| |#2| |#3|) (-662 |#1| |#2|) (-145) (-1156 |#1|) |#2|) (T -992))
-NIL
-((-3735 (((-347 |#3|) |#3|) 18 T ELT)))
-(((-993 |#1| |#2| |#3|) (-10 -7 (-14 -3735 ((-347 |#3|) |#3|))) (-1156 (-349 (-485))) (-12 (-311) (-117) (-662 (-349 (-485)) |#1|)) (-1156 |#2|)) (T -993))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-12 (-311) (-117) (-662 (-349 (-485)) *4))) (-5 *2 (-347 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-3735 (((-347 |#3|) |#3|) 19 T ELT)))
-(((-994 |#1| |#2| |#3|) (-10 -7 (-14 -3735 ((-347 |#3|) |#3|))) (-1156 (-349 (-858 (-485)))) (-12 (-311) (-117) (-662 (-349 (-858 (-485))) |#1|)) (-1156 |#2|)) (T -994))
-((-3735 (*1 *2 *3) (-11 (-4 *4 (-1156 (-349 (-858 (-485))))) (-4 *5 (-12 (-311) (-117) (-662 (-349 (-858 (-485))) *4))) (-5 *2 (-347 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2534 (($ $ $) 16 T ELT)) (-2860 (($ $ $) 17 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3217 (($) 6 T ELT)) (-3975 (((-1091) $) 20 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 15 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 9 T ELT)))
-(((-995) (-12 (-757) (-554 (-1091)) (-10 -8 (-14 -3217 ($))))) (T -995))
-((-3217 (*1 *1) (-5 *1 (-995))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-996) (-110)) (T -996))
-NIL
-(-12 (-61))
-(((-61) . T) ((-69) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3220 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-82) |#1|)) 33 T ELT)) (-3218 (((-1186)) 21 T ELT)) (-3219 (((-584 |#1|)) 13 T ELT)))
-(((-997 |#1|) (-10 -7 (-14 -3218 ((-1186))) (-14 -3219 ((-584 |#1|))) (-14 -3220 (|#1| |#1| (-1 (-82) |#1|))) (-14 -3220 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-102)) (T -997))
-((-3220 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-102)) (-5 *1 (-997 *2)))) (-3220 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-82) *2)) (-4 *2 (-102)) (-5 *1 (-997 *2)))) (-3219 (*1 *2) (-11 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-102)))) (-3218 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-102)))))
-((-3223 (($ (-75) $) 20 T ELT)) (-3224 (((-633 (-75)) (-447) $) 19 T ELT)) (-3568 (($) 7 T ELT)) (-3222 (($) 21 T ELT)) (-3221 (($) 22 T ELT)) (-3225 (((-584 (-148)) $) 10 T ELT)) (-3950 (((-773) $) 25 T ELT)))
-(((-998) (-12 (-553 (-773)) (-10 -8 (-14 -3568 ($)) (-14 -3225 ((-584 (-148)) $)) (-14 -3224 ((-633 (-75)) (-447) $)) (-14 -3223 ($ (-75) $)) (-14 -3222 ($)) (-14 -3221 ($))))) (T -998))
-((-3568 (*1 *1) (-5 *1 (-998))) (-3225 (*1 *2 *1) (-11 (-5 *2 (-584 (-148))) (-5 *1 (-998)))) (-3224 (*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-75))) (-5 *1 (-998)))) (-3223 (*1 *1 *2 *1) (-11 (-5 *2 (-75)) (-5 *1 (-998)))) (-3222 (*1 *1) (-5 *1 (-998))) (-3221 (*1 *1) (-5 *1 (-998))))
-((-3226 (((-1180 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|))) 75 T ELT) (((-1180 (-631 (-349 (-858 |#1|)))) (-584 (-1091)) (-631 (-349 (-858 |#1|)))) 92 T ELT)) (-3227 (((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT)))
-(((-999 |#1|) (-10 -7 (-14 -3226 ((-1180 (-631 (-349 (-858 |#1|)))) (-584 (-1091)) (-631 (-349 (-858 |#1|))))) (-14 -3226 ((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|)))) (-14 -3226 ((-1180 (-631 |#1|)) (-584 (-631 |#1|)))) (-14 -3227 ((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-311)) (T -999))
-((-3227 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))) (-3226 (*1 *2 *3) (-11 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-999 *4)))) (-3226 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-1091))) (-4 *5 (-311)) (-5 *2 (-1180 (-631 (-858 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) (-3226 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-1091))) (-4 *5 (-311)) (-5 *2 (-1180 (-631 (-349 (-858 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-349 (-858 *5)))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3084 (((-584 (-1001 (-1091))) $) NIL T ELT)) (-3086 (((-1086 $) $ (-1001 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1001 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1001 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3759 (($ $ $ (-1001 (-1091))) NIL (|has| |#1| (-145)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1001 (-1091))) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-1001 (-1091)) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-1001 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3087 (($ (-1086 |#1|) (-1001 (-1091))) NIL T ELT) (($ (-1086 $) (-1001 (-1091))) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-1001 (-1091))) NIL T ELT)) (-2823 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1001 (-1091))) (-470 (-1001 (-1091)))) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-189)) ELT)) (-3085 (((-3 (-1001 (-1091)) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1487 (((-1001 (-1091)) $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1488 (((-82) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-1001 (-1091))) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1001 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-1001 (-1091)) $) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-189)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-189)) ELT)) (-3760 (($ $ (-1001 (-1091))) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3952 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-1001 (-1091)) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-1001 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-1001 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1001 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-695)) NIL (|has| |#1| (-188)) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1000 |#1|) (-12 (-212 |#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -1000))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3834 ((|#1| $) 10 T ELT)) (-3160 (((-3 |#1| "failed") $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT)) (-3775 (((-695) $) 11 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3761 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2672 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 16 T ELT)))
-(((-1001 |#1|) (-227 |#1|) (-757)) (T -1001))
-NIL
-((-2571 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 16 T ELT)) (-3846 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3234 ((|#1| $) 11 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3230 (((-485) $) 15 T ELT)) (-3231 ((|#1| $) 14 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3966 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3975 (($ |#1|) 29 T ELT)) (-3950 (((-773) $) 28 (|has| |#1| (-1014)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3740 (($ |#1| |#1|) 10 T ELT)) (-3235 (($ $ (-485)) 17 T ELT)) (-3059 (((-82) $ $) 22 (|has| |#1| (-1014)) ELT)))
-(((-1002 |#1|) (-12 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-584 |#1|))) |%noBranch|))) (-1130)) (T -1002))
-NIL
-((-3846 (((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 14 T ELT)))
-(((-1003 |#1| |#2|) (-10 -7 (-14 -3846 ((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) (IF (|has| |#1| (-756)) (-14 -3846 ((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1003))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3228 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1004) (-12 (-996) (-10 -8 (-14 -3228 ((-584 (-1050)) $))))) (T -1004))
-((-3228 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-1004)))))
-((-2571 (((-82) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3834 (((-1091) $) NIL T ELT)) (-3739 (((-1002 |#1|) $) NIL T ELT)) (-3245 (((-1074) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3229 (($ (-1091) (-1002 |#1|)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-1266 (((-82) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3059 (((-82) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)))
-(((-1005 |#1|) (-12 (-1130) (-10 -8 (-14 -3229 ($ (-1091) (-1002 |#1|))) (-14 -3834 ((-1091) $)) (-14 -3739 ((-1002 |#1|) $)) (IF (|has| (-1002 |#1|) (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1005))
-((-3229 (*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))) (-3834 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) (-3739 (*1 *2 *1) (-11 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))))
-((-3846 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19 T ELT)))
-(((-1006 |#1| |#2|) (-10 -7 (-14 -3846 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1130) (-1130)) (T -1006))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))))
-((-3739 (($ |#1| |#1|) 8 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-485) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-485)) 14 T ELT)))
-(((-1007 |#1|) (-110) (-1130)) (T -1007))
-((-3740 (*1 *1 *2 *2) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3235 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))) (-3234 (*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3233 (*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3232 (*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3231 (*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3230 (*1 *2 *1) (-11 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3739 (*1 *1 *2 *2) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(-12 (-558 |t#1|) (-10 -8 (-14 -3740 ($ |t#1| |t#1|)) (-14 -3235 ($ $ (-485))) (-14 -3234 (|t#1| $)) (-14 -3233 (|t#1| $)) (-14 -3232 (|t#1| $)) (-14 -3231 (|t#1| $)) (-14 -3230 ((-485) $)) (-14 -3739 ($ |t#1| |t#1|))))
-(((-558 |#1|) . T))
-((-3739 (($ |#1| |#1|) 8 T ELT)) (-3846 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3234 ((|#1| $) 13 T ELT)) (-3230 (((-485) $) 9 T ELT)) (-3231 ((|#1| $) 10 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3966 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3975 (($ |#1|) 6 T ELT)) (-3740 (($ |#1| |#1|) 15 T ELT)) (-3235 (($ $ (-485)) 14 T ELT)))
-(((-1008 |#1| |#2|) (-110) (-756) (-1065 |t#1|)) (T -1008))
-((-3966 (*1 *2 *3) (-11 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))) (-3966 (*1 *2 *1) (-11 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) (-3846 (*1 *2 *3 *1) (-11 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))))
-(-12 (-1007 |t#1|) (-10 -8 (-14 -3966 (|t#2| (-584 $))) (-14 -3966 (|t#2| $)) (-14 -3846 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-558 |#1|) . T) ((-1007 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3801 (((-1050) $) 14 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3236 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1009) (-12 (-996) (-10 -8 (-14 -3236 ((-584 (-1050)) $)) (-14 -3801 ((-1050) $))))) (T -1009))
-((-3236 (*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))) (-3801 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1009)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-1807 (($) NIL (|has| |#1| (-319)) ELT)) (-3237 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3239 (($ $ $) 81 T ELT)) (-3238 (((-82) $ $) 83 T ELT)) (-3139 (((-695)) NIL (|has| |#1| (-319)) ELT)) (-3242 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3408 (($ |#1| $) 75 (|has| $ (-317 |#1|)) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2997 (($) NIL (|has| |#1| (-319)) ELT)) (-3244 (((-82) $ $) NIL T ELT)) (-2534 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 20 T ELT)) (-3248 (((-82) |#1| $) 74 (|has| |#1| (-69)) ELT)) (-2860 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2012 (((-831) $) NIL (|has| |#1| (-319)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3241 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 26 T ELT)) (-3612 (($ |#1| $) 70 T ELT)) (-2402 (($ (-831)) NIL (|has| |#1| (-319)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 32 T ELT)) (-1276 ((|#1| $) 28 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 22 T ELT)) (-3568 (($) 12 T ELT)) (-3240 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 17 T ELT)) (-3975 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 63 T ELT)) (-1808 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3950 (((-773) $) NIL T ELT)) (-1809 (((-695) $) NIL T ELT)) (-3243 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 53 T ELT)) (-3961 (((-695) $) 11 T ELT)))
-(((-1010 |#1|) (-368 |#1|) (-1014)) (T -1010))
-NIL
-((-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3239 (($ $ $) 10 T ELT)) (-3240 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
-(((-1011 |#1| |#2|) (-10 -7 (-14 -3237 (|#1| |#2| |#1|)) (-14 -3237 (|#1| |#1| |#2|)) (-14 -3237 (|#1| |#1| |#1|)) (-14 -3239 (|#1| |#1| |#1|)) (-14 -3240 (|#1| |#1| |#2|)) (-14 -3240 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3237 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT) (($ |#1| $) 21 T ELT)) (-3239 (($ $ $) 25 T ELT)) (-3238 (((-82) $ $) 24 T ELT)) (-3242 (($) 30 T ELT) (($ (-584 |#1|)) 29 T ELT)) (-3713 (($ (-1 (-82) |#1|) $) 46 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 38 T CONST)) (-1354 (($ $) 48 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 47 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 45 (|has| $ (-317 |#1|)) ELT)) (-3244 (((-82) $ $) 33 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3241 (($ $ $) 28 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-584 |#1|) (-584 |#1|)) 43 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 42 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 41 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-248 |#1|))) 40 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 34 T ELT)) (-3406 (((-82) $) 37 T ELT)) (-3568 (($) 36 T ELT)) (-3240 (($ $ $) 27 T ELT) (($ $ |#1|) 26 T ELT)) (-3403 (($ $) 35 T ELT)) (-3975 (((-474) $) 49 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 44 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-3243 (($) 32 T ELT) (($ (-584 |#1|)) 31 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-1012 |#1|) (-110) (-1014)) (T -1012))
-((-3244 (*1 *2 *1 *1) (-11 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))) (-3243 (*1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3243 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3242 (*1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3242 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3241 (*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3240 (*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3240 (*1 *1 *1 *2) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3239 (*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *2 *1 *1) (-11 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))) (-3237 (*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *1 *1 *2) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *1 *2 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(-12 (-1014) (-121 |t#1|) (-10 -8 (-6 -3987) (-14 -3244 ((-82) $ $)) (-14 -3243 ($)) (-14 -3243 ($ (-584 |t#1|))) (-14 -3242 ($)) (-14 -3242 ($ (-584 |t#1|))) (-14 -3241 ($ $ $)) (-14 -3240 ($ $ $)) (-14 -3240 ($ $ |t#1|)) (-14 -3239 ($ $ $)) (-14 -3238 ((-82) $ $)) (-14 -3237 ($ $ $)) (-14 -3237 ($ $ |t#1|)) (-14 -3237 ($ |t#1| $))))
-(((-31) . T) ((-69) . T) ((-553 (-773)) . T) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-3245 (((-1074) $) 10 T ELT)) (-3246 (((-1034) $) 8 T ELT)))
-(((-1013 |#1|) (-10 -7 (-14 -3245 ((-1074) |#1|)) (-14 -3246 ((-1034) |#1|))) (-1014)) (T -1013))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-1014) (-110)) (T -1014))
-((-3246 (*1 *2 *1) (-11 (-4 *1 (-1014)) (-5 *2 (-1034)))) (-3245 (*1 *2 *1) (-11 (-4 *1 (-1014)) (-5 *2 (-1074)))))
-(-12 (-69) (-553 (-773)) (-10 -8 (-14 -3246 ((-1034) $)) (-14 -3245 ((-1074) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) 36 T ELT)) (-3250 (($ (-584 (-831))) 70 T ELT)) (-3252 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2997 (($) 40 T ELT)) (-3248 (((-82) (-831) $) 42 T ELT)) (-2012 (((-831) $) 64 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 39 T ELT)) (-3253 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3249 (((-1180 $)) 47 T ELT)) (-3251 (((-584 (-831)) $) 27 T ELT)) (-3247 (((-695) $ (-831) (-831)) 78 T ELT)) (-3950 (((-773) $) 32 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 24 T ELT)))
-(((-1015 |#1| |#2|) (-12 (-319) (-10 -8 (-14 -3253 ((-3 $ #1="failed") $ (-831))) (-14 -3252 ((-3 $ #1#) $ (-831) (-831))) (-14 -3251 ((-584 (-831)) $)) (-14 -3250 ($ (-584 (-831)))) (-14 -3249 ((-1180 $))) (-14 -3248 ((-82) (-831) $)) (-14 -3247 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1015))
-((-3253 (*1 *1 *1 *2) (|partial| -11 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-13 *3 *2) (-13 *4 *2))) (-3252 (*1 *1 *1 *2 *2) (|partial| -11 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-13 *3 *2) (-13 *4 *2))) (-3251 (*1 *2 *1) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))) (-3250 (*1 *1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))) (-3249 (*1 *2) (-11 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831)))) (-3248 (*1 *2 *3 *1) (-11 (-5 *3 (-831)) (-5 *2 (-82)) (-5 *1 (-1015 *4 *5)) (-13 *4 *3) (-13 *5 *3))) (-3247 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-13 *4 *3) (-13 *5 *3))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3263 (((-82) $) NIL T ELT)) (-3259 (((-1091) $) NIL T ELT)) (-3264 (((-82) $) NIL T ELT)) (-3538 (((-1074) $) NIL T ELT)) (-3266 (((-82) $) NIL T ELT)) (-3268 (((-82) $) NIL T ELT)) (-3265 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3262 (((-82) $) NIL T ELT)) (-3258 (((-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3261 (((-82) $) NIL T ELT)) (-3257 (((-178) $) NIL T ELT)) (-3256 (((-773) $) NIL T ELT)) (-3269 (((-82) $ $) NIL T ELT)) (-3803 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3260 (((-584 $) $) NIL T ELT)) (-3975 (($ (-1074)) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-178)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-3255 (($ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3267 (((-82) $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-485) $) NIL T ELT)))
-(((-1016) (-1017 (-1074) (-1091) (-485) (-178) (-773))) (T -1016))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3263 (((-82) $) 36 T ELT)) (-3259 ((|#2| $) 31 T ELT)) (-3264 (((-82) $) 37 T ELT)) (-3538 ((|#1| $) 32 T ELT)) (-3266 (((-82) $) 39 T ELT)) (-3268 (((-82) $) 41 T ELT)) (-3265 (((-82) $) 38 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3262 (((-82) $) 35 T ELT)) (-3258 ((|#3| $) 30 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3261 (((-82) $) 34 T ELT)) (-3257 ((|#4| $) 29 T ELT)) (-3256 ((|#5| $) 28 T ELT)) (-3269 (((-82) $ $) 42 T ELT)) (-3803 (($ $ (-485)) 44 T ELT) (($ $ (-584 (-485))) 43 T ELT)) (-3260 (((-584 $) $) 33 T ELT)) (-3975 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 27 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3267 (((-82) $) 40 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-485) $) 25 T ELT)))
-(((-1017 |#1| |#2| |#3| |#4| |#5|) (-110) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017))
-((-3269 (*1 *2 *1 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3268 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3267 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3266 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3265 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3264 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3263 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3262 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3261 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))) (-3260 (*1 *2 *1) (-11 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-3538 (*1 *2 *1) (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3259 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3258 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3257 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3256 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3255 (*1 *1 *1) (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3254 (*1 *1 *1) (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3961 (*1 *2 *1) (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485)))))
-(-12 (-1014) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-240 (-485) $) (-240 (-584 (-485)) $) (-10 -8 (-14 -3269 ((-82) $ $)) (-14 -3268 ((-82) $)) (-14 -3267 ((-82) $)) (-14 -3266 ((-82) $)) (-14 -3265 ((-82) $)) (-14 -3264 ((-82) $)) (-14 -3263 ((-82) $)) (-14 -3262 ((-82) $)) (-14 -3261 ((-82) $)) (-14 -3260 ((-584 $) $)) (-14 -3538 (|t#1| $)) (-14 -3259 (|t#2| $)) (-14 -3258 (|t#3| $)) (-14 -3257 (|t#4| $)) (-14 -3256 (|t#5| $)) (-14 -3255 ($ $)) (-14 -3254 ($ $)) (-14 -3961 ((-485) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-240 (-485) $) . T) ((-240 (-584 (-485)) $) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3263 (((-82) $) 45 T ELT)) (-3259 ((|#2| $) 48 T ELT)) (-3264 (((-82) $) 20 T ELT)) (-3538 ((|#1| $) 21 T ELT)) (-3266 (((-82) $) 42 T ELT)) (-3268 (((-82) $) 14 T ELT)) (-3265 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3262 (((-82) $) 46 T ELT)) (-3258 ((|#3| $) 50 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3261 (((-82) $) 47 T ELT)) (-3257 ((|#4| $) 49 T ELT)) (-3256 ((|#5| $) 51 T ELT)) (-3269 (((-82) $ $) 41 T ELT)) (-3803 (($ $ (-485)) 62 T ELT) (($ $ (-584 (-485))) 64 T ELT)) (-3260 (((-584 $) $) 27 T ELT)) (-3975 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3950 (((-773) $) 28 T ELT)) (-3254 (($ $) 26 T ELT)) (-3255 (($ $) 58 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3267 (((-82) $) 23 T ELT)) (-3059 (((-82) $ $) 40 T ELT)) (-3961 (((-485) $) 60 T ELT)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1018))
-NIL
-((-3272 (((-82) |#5| |#5|) 44 T ELT)) (-3275 (((-82) |#5| |#5|) 59 T ELT)) (-3280 (((-82) |#5| (-584 |#5|)) 82 T ELT) (((-82) |#5| |#5|) 68 T ELT)) (-3276 (((-82) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3282 (((-82) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3271 (((-1186)) 32 T ELT)) (-3270 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3281 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3283 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3284 (((-584 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-82) (-82)) 123 T ELT)) (-3274 (((-82) |#5| |#5|) 53 T ELT)) (-3279 (((-3 (-82) #1="failed") |#5| |#5|) 78 T ELT)) (-3277 (((-82) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3278 (((-82) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3702 (((-82) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3285 (((-3 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-82) (-82) (-82) (-82) (-82)) 118 T ELT)) (-3273 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3270 ((-1186) (-1074) (-1074) (-1074))) (-14 -3271 ((-1186))) (-14 -3272 ((-82) |#5| |#5|)) (-14 -3273 ((-584 |#5|) (-584 |#5|))) (-14 -3274 ((-82) |#5| |#5|)) (-14 -3275 ((-82) |#5| |#5|)) (-14 -3276 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3277 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3278 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3702 ((-82) (-584 |#4|) (-584 |#4|))) (-14 -3279 ((-3 (-82) #1="failed") |#5| |#5|)) (-14 -3280 ((-82) |#5| |#5|)) (-14 -3280 ((-82) |#5| (-584 |#5|))) (-14 -3281 ((-584 |#5|) (-584 |#5|))) (-14 -3282 ((-82) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-14 -3283 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-14 -3284 ((-584 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-82) (-82))) (-14 -3285 ((-3 (-2 (|:| -3269 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-82) (-82) (-82) (-82) (-82)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1019))
-((-3285 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3284 (*1 *2 *3 *4 *5 *5) (-11 (-5 *4 (-584 *10)) (-5 *5 (-82)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3283 (*1 *2 *2) (-11 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3282 (*1 *2 *3 *3) (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3281 (*1 *2 *2) (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3280 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (|partial| -11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3702 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *2) (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3270 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-3300 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3290 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3293 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3295 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3297 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3299 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3294 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3296 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3298 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-82) |#4| |#5|) 55 T ELT)) (-3291 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-82)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-82) (-82)) 52 T ELT)) (-3292 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3289 (((-1186)) 36 T ELT)) (-3287 (((-1186)) 25 T ELT)) (-3288 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3286 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3286 ((-1186) (-1074) (-1074) (-1074))) (-14 -3287 ((-1186))) (-14 -3288 ((-1186) (-1074) (-1074) (-1074))) (-14 -3289 ((-1186))) (-14 -3290 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-82) (-82))) (-14 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-82))) (-14 -3292 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3293 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-14 -3298 ((-82) |#4| |#5|)) (-14 -3294 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|)) (-14 -3295 ((-584 |#5|) |#4| |#5|)) (-14 -3296 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|)) (-14 -3297 ((-584 |#5|) |#4| |#5|)) (-14 -3298 ((-584 (-2 (|:| |val| (-82)) (|:| -1601 |#5|))) |#4| |#5|)) (-14 -3299 ((-584 |#5|) |#4| |#5|)) (-14 -3300 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1020))
-((-3300 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-82)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-3291 (*1 *2 *3 *3 *4 *5 *5) (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3290 (*1 *2 *3 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3289 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3287 (*1 *2) (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3685 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-82)) 120 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) 107 T ELT) (((-82) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 99 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3200 (((-82) |#4| $) 145 T ELT)) (-3198 (((-82) |#4| $) 142 T ELT)) (-3201 (((-82) |#4| $) 146 T ELT) (((-82) $) 143 T ELT)) (-3698 (((-82) |#4| $) 110 T ELT) (((-82) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-584 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) 141 T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-82) |#4| $) 139 T ELT)) (-3241 (((-584 $) |#4| $) 134 T ELT) (((-584 $) (-584 |#4|) $) 133 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 132 T ELT) (((-584 $) |#4| (-584 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-584 |#4|) $) 125 T ELT)) (-3700 (((-584 |#4|) $) 113 T ELT)) (-3694 (((-82) |#4| $) 105 T ELT) (((-82) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-82) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) 106 T ELT) (((-82) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 124 T ELT) (((-584 $) |#4| (-584 $)) 123 T ELT) (((-584 $) (-584 |#4|) $) 122 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 121 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-695) $) 112 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-3681 (((-695) $) 82 (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) 114 T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) 104 T ELT)) (-3192 (((-584 $) |#4| $) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT) (((-584 $) (-584 |#4|) $) 128 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 127 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3683 (((-584 |#3|) $) 87 T ELT)) (-3199 (((-82) |#4| $) 144 T ELT)) (-3937 (((-82) |#3| $) 86 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-1021 |#1| |#2| |#3| |#4|) (-110) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1021))
-NIL
-(-12 (-984 |t#1| |t#2| |t#3| |t#4|))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3311 (((-584 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3310 (((-584 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3309 (((-584 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3308 (((-485) (-485) (-485)) 22 T ELT)) (-3307 (((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485)) 78 T ELT) (((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485)) 73 T ELT)) (-3306 (((-584 (-485)) (-584 (-831)) (-584 (-485)) (-82)) 56 T ELT)) (-3305 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 77 T ELT)) (-3304 (((-631 (-485)) (-584 (-831)) (-584 (-485))) 61 T ELT)) (-3303 (((-584 (-631 (-485))) (-584 (-831))) 66 T ELT)) (-3302 (((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 81 T ELT)) (-3301 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485))) 91 T ELT)))
-(((-1022) (-10 -7 (-14 -3301 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485)))) (-14 -3302 ((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-14 -3303 ((-584 (-631 (-485))) (-584 (-831)))) (-14 -3304 ((-631 (-485)) (-584 (-831)) (-584 (-485)))) (-14 -3305 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-14 -3306 ((-584 (-485)) (-584 (-831)) (-584 (-485)) (-82))) (-14 -3307 ((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485))) (-14 -3307 ((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485))) (-14 -3308 ((-485) (-485) (-485))) (-14 -3309 ((-584 (-485)) (-485) (-485) (-485))) (-14 -3310 ((-584 (-485)) (-485) (-485) (-485))) (-14 -3311 ((-584 (-485)) (-485) (-485) (-485))))) (T -1022))
-((-3311 (*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3310 (*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3309 (*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3308 (*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-1022)))) (-3307 (*1 *2 *3 *2 *4) (-11 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) (-5 *1 (-1022)))) (-3307 (*1 *2 *2 *2 *3) (-11 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) (-3306 (*1 *2 *3 *2 *4) (-11 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-82)) (-5 *1 (-1022)))) (-3305 (*1 *2 *3 *3 *2) (-11 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))) (-3304 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))) (-3303 (*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))) (-3302 (*1 *2 *2 *2 *3) (-11 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))) (-3301 (*1 *2 *3 *3 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3312 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1023 |#1|) (-12 (-1024 |#1|) (-1014) (-10 -8 (-14 -3312 ($ (-1 |#1| |#1| |#1|))))) (-69)) (T -1023))
-((-3312 (*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-1023 *3)))))
-((-3803 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-1024 |#1|) (-110) (-69)) (T -1024))
-NIL
-(-12 (-77 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3059 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
-(((-77 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((** (($ $ (-831)) 10 T ELT)))
-(((-1025 |#1|) (-10 -7 (-14 ** (|#1| |#1| (-831)))) (-1026)) (T -1025))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-1026) (-110)) (T -1026))
-((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-1026)) (-5 *2 (-831)))))
-(-12 (-1014) (-10 -8 (-14 * ($ $ $)) (-14 ** ($ $ (-831)))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#3| (-69)) ELT)) (-3191 (((-82) $) NIL (|has| |#3| (-20)) ELT)) (-3710 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#3|)) ELT)) (-2486 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-101)) ELT)) (-3139 (((-695)) NIL (|has| |#3| (-319)) ELT)) (-3791 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT)) (-3159 (((-485) $) NIL (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT) ((|#3| $) NIL (|has| |#3| (-1014)) ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3845 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-69)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2997 (($) NIL (|has| |#3| (-319)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-3115 ((|#3| $ (-485)) 12 T ELT)) (-3189 (((-82) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-82) $ $) NIL (|has| |#3| (-20)) ELT)) (-2412 (((-82) $) NIL (|has| |#3| (-962)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2611 (((-584 |#3|) $) NIL T ELT)) (-3248 (((-82) |#3| $) NIL (|has| |#3| (-69)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3846 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-831) $) NIL (|has| |#3| (-319)) ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT)) (-3245 (((-1074) $) NIL (|has| |#3| (-1014)) ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-2402 (($ (-831)) NIL (|has| |#3| (-319)) ELT)) (-3246 (((-1034) $) NIL (|has| |#3| (-1014)) ELT)) (-3804 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#3| #1#) (-1 (-82) |#3|) $) NIL T ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-1036 |#3|)) ELT)) (-1733 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#3|))) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-248 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-11 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#3| $) NIL (-11 (|has| $ (-317 |#3|)) (|has| |#3| (-69))) ELT)) (-2207 (((-584 |#3|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3839 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3915 (((-104)) NIL (|has| |#3| (-311)) ELT)) (-3761 (($ $ (-695)) NIL (-11 (|has| |#3| (-188)) (|has| |#3| (-962))) ELT) (($ $) NIL (-11 (|has| |#3| (-188)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1732 (((-695) |#3| $) NIL (|has| |#3| (-69)) ELT) (((-695) (-1 (-82) |#3|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3950 (((-1180 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-11 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-349 (-485))) NIL (-11 (|has| |#3| (-951 (-349 (-485)))) (|has| |#3| (-1014))) ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3129 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-82) $ $) NIL (|has| |#3| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#3|) $) NIL T ELT)) (-3128 (((-82) $ $) NIL (|has| |#3| (-962)) ELT)) (-2663 (($) NIL (|has| |#3| (-20)) CONST)) (-2669 (($) NIL (|has| |#3| (-962)) CONST)) (-2672 (($ $ (-695)) NIL (-11 (|has| |#3| (-188)) (|has| |#3| (-962))) ELT) (($ $) NIL (-11 (|has| |#3| (-188)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-11 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2569 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#3| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#3| (-757)) ELT)) (-2688 (((-82) $ $) 24 (|has| |#3| (-757)) ELT)) (-3953 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-18)) ELT) (($ $) NIL (|has| |#3| (-18)) ELT)) (-3842 (($ $ $) NIL (|has| |#3| (-22)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-485) $) NIL (|has| |#3| (-18)) ELT) (($ (-695) $) NIL (|has| |#3| (-20)) ELT) (($ (-831) $) NIL (|has| |#3| (-22)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1027 |#1| |#2| |#3|) (-195 |#1| |#3|) (-695) (-695) (-718)) (T -1027))
-NIL
-((-3313 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 50 T ELT)) (-3319 (((-485) (-1149 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3317 (((-485) (-1149 |#2| |#1|)) 79 T ELT)) (-3314 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 58 T ELT)) (-3318 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3315 (((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 61 T ELT)) (-3316 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 78 T ELT)))
-(((-1028 |#1| |#2|) (-10 -7 (-14 -3313 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-14 -3314 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-14 -3315 ((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-14 -3316 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-14 -3317 ((-485) (-1149 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-14 -3318 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-14 -3319 ((-485) (-1149 |#2| |#1|)))) |%noBranch|)) (-741) (-1091)) (T -1028))
-((-3319 (*1 *2 *3) (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3318 (*1 *2 *3 *3) (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3317 (*1 *2 *3) (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3316 (*1 *2 *3 *3) (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3315 (*1 *2 *3 *3) (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 *4)) (-5 *1 (-1028 *4 *5)))) (-3314 (*1 *2 *3 *3) (-11 (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))) (-3313 (*1 *2 *3 *3) (-11 (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3321 (((-1096) $) 12 T ELT)) (-3320 (((-584 (-1096)) $) 14 T ELT)) (-3322 (($ (-584 (-1096)) (-1096)) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 29 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 17 T ELT)))
-(((-1029) (-12 (-1014) (-10 -8 (-14 -3322 ($ (-584 (-1096)) (-1096))) (-14 -3321 ((-1096) $)) (-14 -3320 ((-584 (-1096)) $))))) (T -1029))
-((-3322 (*1 *1 *2 *3) (-11 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) (-3321 (*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-1029)))) (-3320 (*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1029)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3323 (($ (-447) (-1029)) 14 T ELT)) (-3322 (((-1029) $) 20 T ELT)) (-3545 (((-447) $) 17 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1030) (-12 (-996) (-10 -8 (-14 -3323 ($ (-447) (-1029))) (-14 -3545 ((-447) $)) (-14 -3322 ((-1029) $))))) (T -1030))
-((-3323 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))) (-3545 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1030)))) (-3322 (*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-1030)))))
-((-3626 (((-3 (-485) #1="failed") |#2| (-1091) |#2| (-1074)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1091) (-751 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT)))
-(((-1031 |#1| |#2|) (-10 -7 (-14 -3626 ((-3 (-485) #1="failed") |#2|)) (-14 -3626 ((-3 (-485) #1#) |#2| (-1091) (-751 |#2|))) (-14 -3626 ((-3 (-485) #1#) |#2| (-1091) |#2| (-1074)))) (-12 (-496) (-951 (-485)) (-581 (-485)) (-392)) (-12 (-24) (-1116) (-363 |#1|))) (T -1031))
-((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))))) (-3626 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-751 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6))) (-4 *6 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)))) (-3626 (*1 *2 *3) (|partial| -11 (-4 *4 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))))
-((-3626 (((-3 (-485) #1="failed") (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|)) (-1074)) 38 T ELT) (((-3 (-485) #1#) (-349 (-858 |#1|)) (-1091) (-751 (-349 (-858 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-349 (-858 |#1|))) 14 T ELT)))
-(((-1032 |#1|) (-10 -7 (-14 -3626 ((-3 (-485) #1="failed") (-349 (-858 |#1|)))) (-14 -3626 ((-3 (-485) #1#) (-349 (-858 |#1|)) (-1091) (-751 (-349 (-858 |#1|))))) (-14 -3626 ((-3 (-485) #1#) (-349 (-858 |#1|)) (-1091) (-349 (-858 |#1|)) (-1074)))) (-392)) (T -1032))
-((-3626 (*1 *2 *3 *4 *3 *5) (|partial| -11 (-5 *3 (-349 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3626 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-751 (-349 (-858 *6)))) (-5 *3 (-349 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3626 (*1 *2 *3) (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *4)))))
-((-3652 (((-264 (-485)) (-45)) 12 T ELT)))
-(((-1033) (-10 -7 (-14 -3652 ((-264 (-485)) (-45))))) (T -1033))
-((-3652 (*1 *2 *3) (-11 (-5 *3 (-45)) (-5 *2 (-264 (-485))) (-5 *1 (-1033)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 22 T ELT)) (-3191 (((-82) $) 49 T ELT)) (-3324 (($ $ $) 28 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 75 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 59 T ELT)) (-3778 (($ $) NIL T ELT)) (-3974 (((-347 $) $) NIL T ELT)) (-1609 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) 61 T ELT)) (-3626 (((-485) $) NIL T ELT)) (-2444 (($ $ $) 56 T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL T ELT)) (-2567 (($ $ $) 42 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 70 T ELT) (((-631 (-485)) (-631 $)) 8 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3027 (((-3 (-349 (-485)) #1#) $) NIL T ELT)) (-3026 (((-82) $) NIL T ELT)) (-3025 (((-349 (-485)) $) NIL T ELT)) (-2997 (($) 73 T ELT) (($ $) 72 T ELT)) (-2566 (($ $ $) 41 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL T ELT)) (-3726 (((-82) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 71 T ELT)) (-3189 (((-82) $) 76 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-2564 (($ $ $) 27 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 50 T ELT)) (-2676 (((-82) $) 47 T ELT)) (-2563 (($ $) 23 T ELT)) (-3448 (((-633 $) $) NIL T ELT)) (-3190 (((-82) $) 60 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2043 (($ $ $ $) 57 T ELT)) (-2534 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2860 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2046 (($ $) NIL T ELT)) (-2012 (((-831) $) 66 T ELT)) (-3836 (($ $) 55 T ELT)) (-2282 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1896 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3449 (($) NIL T CONST)) (-2402 (($ (-831)) 65 T ELT)) (-2048 (($ $) 33 T ELT)) (-3246 (((-1034) $) 54 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3147 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3735 (((-347 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2677 (((-82) $) 48 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 44 T ELT)) (-3761 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2047 (($ $) 34 T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-178) $) NIL T ELT)) (-3950 (((-773) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3129 (((-695)) NIL T CONST)) (-2051 (((-82) $ $) NIL T ELT)) (-3104 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2697 (($) 17 T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2565 (($ $ $) 26 T ELT)) (-2045 (($ $ $ $) 58 T ELT)) (-3386 (($ $) 46 T ELT)) (-2313 (($ $ $) 25 T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2569 (((-82) $ $) 32 T ELT)) (-2570 (((-82) $ $) 30 T ELT)) (-3059 (((-82) $ $) 21 T ELT)) (-2687 (((-82) $ $) 31 T ELT)) (-2688 (((-82) $ $) 29 T ELT)) (-2314 (($ $ $) 24 T ELT)) (-3840 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3842 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT)))
-(((-1034) (-12 (-484) (-753) (-81) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-14 -3324 ($ $ $))))) (T -1034))
-((-3324 (*1 *1 *1 *1) (-5 *1 (-1034))))
-((-485) (|%ismall?| |#1|))
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3326 ((|#1| $) 42 T ELT)) (-3727 (($) 6 T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-3328 ((|#1| |#1| $) 44 T ELT)) (-3327 ((|#1| $) 43 T ELT)) (-2611 (((-584 |#1|) $) 49 T ELT)) (-3248 (((-82) |#1| $) 54 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 35 T ELT)) (-3612 (($ |#1| $) 36 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 52 T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 47 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3325 (((-695) $) 41 T ELT)) (-1732 (((-695) |#1| $) 53 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 48 T ELT)) (-3403 (($ $) 9 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) 38 T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 46 T ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 45 T ELT)))
-(((-1035 |#1|) (-110) (-1130)) (T -1035))
-((-3328 (*1 *2 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3327 (*1 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3326 (*1 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3325 (*1 *2 *1) (-11 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(-12 (-73 |t#1|) (-317 |t#1|) (-10 -8 (-14 -3328 (|t#1| |t#1| $)) (-14 -3327 (|t#1| $)) (-14 -3326 (|t#1| $)) (-14 -3325 ((-695) $))))
-(((-31) . T) ((-73 |#1|) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-3727 (($) 6 T CONST)) (-3329 (($ (-1 |#1| |#1|) $) 12 T ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3403 (($ $) 9 T ELT)))
-(((-1036 |#1|) (-110) (-1130)) (T -1036))
-((-3329 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130)))))
-(-12 (-31) (-10 -8 (-14 -3329 ($ (-1 |t#1| |t#1|) $))))
-(((-31) . T) ((-12) . T) ((-1130) . T))
-((-3333 ((|#3| $) 87 T ELT)) (-3160 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3159 (((-485) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3761 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3332 ((|#3| $) 89 T ELT)) (-3334 ((|#4| $) 43 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-485)) 95 T ELT)))
-(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 ** (|#1| |#1| (-485))) (-14 -3332 (|#3| |#1|)) (-14 -3333 (|#3| |#1|)) (-14 -3334 (|#4| |#1|)) (-14 -2281 ((-631 |#3|) (-631 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-14 -2281 ((-631 (-485)) (-631 |#1|))) (-14 -3950 (|#1| |#3|)) (-14 -3160 ((-3 |#3| #1="failed") |#1|)) (-14 -3159 (|#3| |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3761 (|#1| |#1| (-1 |#3| |#3|))) (-14 -3761 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-14 -3950 (|#1| (-485))) (-14 ** (|#1| |#1| (-695))) (-14 ** (|#1| |#1| (-831))) (-14 -3950 ((-773) |#1|))) (-1038 |#2| |#3| |#4| |#5|) (-695) (-962) (-195 |#2| |#3|) (-195 |#2| |#3|)) (T -1037))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3333 ((|#2| $) 91 T ELT)) (-3123 (((-82) $) 134 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3125 (((-82) $) 132 T ELT)) (-3336 (($ |#2|) 94 T ELT)) (-3727 (($) 23 T CONST)) (-3112 (($ $) 151 (|has| |#2| (-257)) ELT)) (-3114 ((|#3| $ (-485)) 146 T ELT)) (-3160 (((-3 (-485) #1="failed") $) 110 (|has| |#2| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) 107 (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 |#2| #1#) $) 104 T ELT)) (-3159 (((-485) $) 109 (|has| |#2| (-951 (-485))) ELT) (((-349 (-485)) $) 106 (|has| |#2| (-951 (-349 (-485)))) ELT) ((|#2| $) 105 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 100 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 99 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 98 T ELT) (((-631 |#2|) (-631 $)) 97 T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) 116 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 115 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 111 (|has| |#2| (-69)) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3111 (((-695) $) 152 (|has| |#2| (-496)) ELT)) (-3115 ((|#2| $ (-485) (-485)) 144 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3110 (((-695) $) 153 (|has| |#2| (-496)) ELT)) (-3109 (((-584 |#4|) $) 154 (|has| |#2| (-496)) ELT)) (-3117 (((-695) $) 140 T ELT)) (-3116 (((-695) $) 141 T ELT)) (-3330 ((|#2| $) 86 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3121 (((-485) $) 136 T ELT)) (-3119 (((-485) $) 138 T ELT)) (-2611 (((-584 |#2|) $) 117 T ELT)) (-3248 (((-82) |#2| $) 112 (|has| |#2| (-69)) ELT)) (-3120 (((-485) $) 137 T ELT)) (-3118 (((-485) $) 139 T ELT)) (-3126 (($ (-584 (-584 |#2|))) 131 T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) 148 T ELT) (($ (-1 |#2| |#2|) $) 126 T ELT)) (-3597 (((-584 (-584 |#2|)) $) 142 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 102 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 101 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 96 T ELT) (((-631 |#2|) (-1180 $)) 95 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3593 (((-3 $ "failed") $) 85 (|has| |#2| (-311)) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-1731 (((-3 |#2| "failed") (-1 (-82) |#2|) $) 114 T ELT)) (-3469 (((-3 $ "failed") $ |#2|) 149 (|has| |#2| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) 119 T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) 125 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 124 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 123 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 122 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) 130 T ELT)) (-3406 (((-82) $) 127 T ELT)) (-3568 (($) 128 T ELT)) (-3803 ((|#2| $ (-485) (-485) |#2|) 145 T ELT) ((|#2| $ (-485) (-485)) 143 T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-188)) ELT) (($ $ (-695)) 53 (|has| |#2| (-188)) ELT) (($ $ (-1091)) 63 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#2| (-812 (-1091))) ELT)) (-3332 ((|#2| $) 90 T ELT)) (-3335 (($ (-584 |#2|)) 93 T ELT)) (-3124 (((-82) $) 133 T ELT)) (-3334 ((|#3| $) 92 T ELT)) (-3331 ((|#2| $) 87 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1732 (((-695) (-1 (-82) |#2|) $) 118 T ELT) (((-695) |#2| $) 113 (|has| |#2| (-69)) ELT)) (-3403 (($ $) 129 T ELT)) (-3113 ((|#4| $ (-485)) 147 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 108 (|has| |#2| (-951 (-349 (-485)))) ELT) (($ |#2|) 103 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) 120 T ELT)) (-3122 (((-82) $) 135 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-188)) ELT) (($ $ (-695)) 52 (|has| |#2| (-188)) ELT) (($ $ (-1091)) 62 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#2| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#2|) 150 (|has| |#2| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 84 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 156 T ELT) (($ |#2| $) 155 T ELT) ((|#4| $ |#4|) 89 T ELT) ((|#3| |#3| $) 88 T ELT)) (-3961 (((-695) $) 121 T ELT)))
-(((-1038 |#1| |#2| |#3| |#4|) (-110) (-695) (-962) (-195 |t#1| |t#2|) (-195 |t#1| |t#2|)) (T -1038))
-((-3336 (*1 *1 *2) (-11 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)))) (-3335 (*1 *1 *2) (-11 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)))) (-3334 (*1 *2 *1) (-11 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (-3333 (*1 *2 *1) (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-962)))) (-3332 (*1 *2 *1) (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-11 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4)) (-4 *2 (-195 *3 *4)))) (* (*1 *2 *2 *1) (-11 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-195 *3 *4)) (-4 *5 (-195 *3 *4)))) (-3331 (*1 *2 *1) (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-962)))) (-3330 (*1 *2 *1) (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-962)))) (-3593 (*1 *1 *1) (|partial| -11 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-311)))) (** (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-311)))))
-(-12 (-183 |t#2|) (-79 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-354 |t#2|) (-328 |t#2|) (-10 -8 (IF (|has| |t#2| (-145)) (-6 (-655 |t#2|)) |%noBranch|) (-14 -3336 ($ |t#2|)) (-14 -3335 ($ (-584 |t#2|))) (-14 -3334 (|t#3| $)) (-14 -3333 (|t#2| $)) (-14 -3332 (|t#2| $)) (-14 * (|t#4| $ |t#4|)) (-14 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3997 "*"))) (PROGN (-6 (-35 |t#2|)) (-14 -3331 (|t#2| $)) (-14 -3330 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-311)) (PROGN (-14 -3593 ((-3 $ "failed") $)) (-14 ** ($ $ (-485)))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-31) . T) ((-35 |#2|) |has| |#2| (-6 (-3997 #1="*"))) ((-69) . T) ((-79 |#2| |#2|) . T) ((-101) . T) ((-556 (-349 (-485))) |has| |#2| (-951 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-185 $) OR (|has| |#2| (-188)) (|has| |#2| (-189))) ((-183 |#2|) . T) ((-189) |has| |#2| (-189)) ((-188) OR (|has| |#2| (-188)) (|has| |#2| (-189))) ((-224 |#2|) . T) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-317 |#2|) . T) ((-328 |#2|) . T) ((-354 |#2|) . T) ((-380 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-485)) |has| |#2| (-581 (-485))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-145)) (|has| |#2| (-6 (-3997 #1#)))) ((-581 (-485)) |has| |#2| (-581 (-485))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-145)) (|has| |#2| (-6 (-3997 #1#)))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-810 (-1091)) |has| |#2| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-349 (-485))) |has| |#2| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#2| (-951 (-485))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3339 ((|#4| |#4|) 81 T ELT)) (-3337 ((|#4| |#4|) 76 T ELT)) (-3341 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3340 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3338 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
-(((-1039 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3337 (|#4| |#4|)) (-14 -3338 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-14 -3339 (|#4| |#4|)) (-14 -3340 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-14 -3341 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-584 |#3|))) |#4| |#3|))) (-257) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|)) (T -1039))
-((-3341 (*1 *2 *3 *4) (-11 (-4 *5 (-257)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-584 *4)))) (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3340 (*1 *2 *3) (-11 (-4 *4 (-257)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3339 (*1 *2 *2) (-11 (-4 *3 (-257)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3338 (*1 *2 *3) (-11 (-4 *4 (-257)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3337 (*1 *2 *2) (-11 (-4 *3 (-257)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 18 T ELT)) (-3084 (((-584 |#2|) $) 174 T ELT)) (-3086 (((-1086 $) $ |#2|) 60 T ELT) (((-1086 |#1|) $) 49 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 120 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#1| $) 165 T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3759 (($ $ $ |#2|) NIL (|has| |#1| (-145)) ELT)) (-3962 (($ $) 218 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| |#1| (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 20 T ELT)) (-2422 (((-695) $) 30 T ELT)) (-3087 (($ (-1086 |#1|) |#2|) 54 T ELT) (($ (-1086 $) |#2|) 71 T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) 38 T ELT)) (-2896 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ |#2|) NIL T ELT)) (-2823 (((-470 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3085 (((-3 |#2| #1#) $) 177 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) 217 T ELT)) (-3177 ((|#1| $) 43 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) 39 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 148 (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-822)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3760 (($ $ |#2|) NIL (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3952 (((-470 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| |#1| (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3950 (((-773) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3820 (((-584 |#1|) $) 162 T ELT)) (-3680 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 87 T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) 123 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 12 T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-82) $ $) 106 T ELT)) (-3953 (($ $ |#1|) 132 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3842 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1040 |#1| |#2|) (-862 |#1| (-470 |#2|) |#2|) (-962) (-757)) (T -1040))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3495 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 125 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 121 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3497 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 129 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ $ (-584 |#2|) (-584 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) 119 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3815 (($ $ |#2|) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3679 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3772 (($ $ (-695)) 17 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3947 (($ $) 117 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3761 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3952 (((-470 |#2|) $) NIL T ELT)) (-3342 (((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|))) 87 T ELT)) (-3498 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 131 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 127 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 123 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 19 T ELT)) (-3950 (((-773) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-145)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3680 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 137 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 133 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 141 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 143 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 139 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 135 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 52 T CONST)) (-2669 (($) 62 T CONST)) (-2672 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) 196 (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 109 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-349 (-485))) 114 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 112 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
-(((-1041 |#1| |#2| |#3|) (-12 (-680 |#1| |#2|) (-10 -8 (-14 -3680 (|#3| $ (-695))) (-14 -3950 ($ |#2|)) (-14 -3950 ($ |#3|)) (-14 * ($ |#3| $)) (-14 -3342 ((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|)))) (IF (|has| |#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $ |#2| |#1|)) (-14 -3679 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-470 |#2|) |#2|)) (T -1041))
-((-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3950 (*1 *1 *2) (-11 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3950 (*1 *1 *2) (-11 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-11 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (-3342 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1041 *5 *6 *7)))) (-3815 (*1 *1 *1 *2 *3) (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3679 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3685 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-82)) 120 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) 107 T ELT) (((-82) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 135 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 99 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-3802 (((-3 $ #1#) $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3200 (((-82) |#4| $) 145 T ELT)) (-3198 (((-82) |#4| $) 142 T ELT)) (-3201 (((-82) |#4| $) 146 T ELT) (((-82) $) 143 T ELT)) (-3698 (((-82) |#4| $) 110 T ELT) (((-82) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) 137 T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 136 T ELT)) (-3801 (((-3 |#4| #1#) $) 89 T ELT)) (-3195 (((-584 $) |#4| $) 138 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) 141 T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 140 T ELT) (((-82) |#4| $) 139 T ELT)) (-3241 (((-584 $) |#4| $) 134 T ELT) (((-584 $) (-584 |#4|) $) 133 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 132 T ELT) (((-584 $) |#4| (-584 $)) 131 T ELT)) (-3443 (($ |#4| $) 126 T ELT) (($ (-584 |#4|) $) 125 T ELT)) (-3700 (((-584 |#4|) $) 113 T ELT)) (-3694 (((-82) |#4| $) 105 T ELT) (((-82) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-82) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) 106 T ELT) (((-82) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-3 |#4| #1#) $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 124 T ELT) (((-584 $) |#4| (-584 $)) 123 T ELT) (((-584 $) (-584 |#4|) $) 122 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 121 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-695) $) 112 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-3681 (((-695) $) 82 (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) 114 T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) 104 T ELT)) (-3192 (((-584 $) |#4| $) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT) (((-584 $) (-584 |#4|) $) 128 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 127 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3683 (((-584 |#3|) $) 87 T ELT)) (-3199 (((-82) |#4| $) 144 T ELT)) (-3937 (((-82) |#3| $) 86 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-1042 |#1| |#2| |#3| |#4|) (-110) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1042))
-NIL
-(-12 (-1021 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3576 (((-584 |#2|) |#1|) 15 T ELT)) (-3348 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3346 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3343 ((|#2| |#1|) 54 T ELT)) (-3344 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3345 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3347 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3352 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3350 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3349 ((|#2| |#2| |#2|) 50 T ELT)) (-3351 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
-(((-1043 |#1| |#2|) (-10 -7 (-14 -3576 ((-584 |#2|) |#1|)) (-14 -3343 (|#2| |#1|)) (-14 -3344 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-14 -3345 ((-584 |#2|) |#1|)) (-14 -3346 ((-584 |#2|) |#1|)) (-14 -3347 ((-584 |#2|) |#1|)) (-14 -3348 ((-584 |#2|) |#1|)) (-14 -3345 ((-584 |#2|) |#2| |#2|)) (-14 -3346 ((-584 |#2|) |#2| |#2| |#2|)) (-14 -3347 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-14 -3348 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-14 -3349 (|#2| |#2| |#2|)) (-14 -3350 (|#2| |#2| |#2| |#2|)) (-14 -3351 (|#2| |#2| |#2| |#2| |#2|)) (-14 -3352 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1156 |#2|) (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (T -1043))
-((-3352 (*1 *2 *2 *2 *2 *2 *2) (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3351 (*1 *2 *2 *2 *2 *2) (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3350 (*1 *2 *2 *2 *2) (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3349 (*1 *2 *2 *2) (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3348 (*1 *2 *3 *3 *3 *3 *3) (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3347 (*1 *2 *3 *3 *3 *3) (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3346 (*1 *2 *3 *3 *3) (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3345 (*1 *2 *3 *3) (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3348 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3347 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3346 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3345 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3344 (*1 *2 *3 *4) (-11 (-5 *4 (-1 *5 *5)) (-4 *5 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))) (-3343 (*1 *2 *3) (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))))
-((-3353 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-349 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-349 (-858 |#1|)))) (-584 (-1091))) 118 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-349 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-349 (-858 |#1|))) (-584 (-1091))) 113 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-349 (-858 |#1|)))) 97 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-349 (-858 |#1|))) (-1091)) 98 T ELT) (((-584 (-248 (-264 |#1|))) (-349 (-858 |#1|))) 92 T ELT) (((-584 (-248 (-264 |#1|))) (-349 (-858 |#1|)) (-1091)) 82 T ELT)) (-3354 (((-584 (-584 (-264 |#1|))) (-584 (-349 (-858 |#1|))) (-584 (-1091))) 111 T ELT) (((-584 (-264 |#1|)) (-349 (-858 |#1|)) (-1091)) 54 T ELT)) (-3355 (((-1081 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-349 (-858 |#1|)) (-1091)) 123 T ELT) (((-1081 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-349 (-858 |#1|))) (-1091)) 122 T ELT)))
-(((-1044 |#1|) (-10 -7 (-14 -3353 ((-584 (-248 (-264 |#1|))) (-349 (-858 |#1|)) (-1091))) (-14 -3353 ((-584 (-248 (-264 |#1|))) (-349 (-858 |#1|)))) (-14 -3353 ((-584 (-248 (-264 |#1|))) (-248 (-349 (-858 |#1|))) (-1091))) (-14 -3353 ((-584 (-248 (-264 |#1|))) (-248 (-349 (-858 |#1|))))) (-14 -3353 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-349 (-858 |#1|))) (-584 (-1091)))) (-14 -3353 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-349 (-858 |#1|))))) (-14 -3353 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-349 (-858 |#1|)))) (-584 (-1091)))) (-14 -3353 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-349 (-858 |#1|)))))) (-14 -3354 ((-584 (-264 |#1|)) (-349 (-858 |#1|)) (-1091))) (-14 -3354 ((-584 (-584 (-264 |#1|))) (-584 (-349 (-858 |#1|))) (-584 (-1091)))) (-14 -3355 ((-1081 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-349 (-858 |#1|))) (-1091))) (-14 -3355 ((-1081 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-349 (-858 |#1|)) (-1091)))) (-12 (-257) (-117))) (T -1044))
-((-3355 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-1081 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)))) (-3355 (*1 *2 *3 *4) (-11 (-5 *3 (-248 (-349 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-1081 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)))) (-3354 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-264 *5)))) (-5 *1 (-1044 *5)))) (-3354 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-264 *5))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3) (-11 (-5 *3 (-584 (-248 (-349 (-858 *4))))) (-4 *4 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1044 *4)))) (-3353 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-248 (-349 (-858 *5))))) (-5 *4 (-584 (-1091))) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3) (-11 (-5 *3 (-584 (-349 (-858 *4)))) (-4 *4 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1044 *4)))) (-3353 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3) (-11 (-5 *3 (-248 (-349 (-858 *4)))) (-4 *4 (-12 (-257) (-117))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)))) (-3353 (*1 *2 *3 *4) (-11 (-5 *3 (-248 (-349 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3) (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-12 (-257) (-117))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)))) (-3353 (*1 *2 *3 *4) (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)))))
-((-3357 (((-349 (-1086 (-264 |#1|))) (-1180 (-264 |#1|)) (-349 (-1086 (-264 |#1|))) (-485)) 36 T ELT)) (-3356 (((-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|)))) 48 T ELT)))
-(((-1045 |#1|) (-10 -7 (-14 -3356 ((-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|))) (-349 (-1086 (-264 |#1|))))) (-14 -3357 ((-349 (-1086 (-264 |#1|))) (-1180 (-264 |#1|)) (-349 (-1086 (-264 |#1|))) (-485)))) (-496)) (T -1045))
-((-3357 (*1 *2 *3 *2 *4) (-11 (-5 *2 (-349 (-1086 (-264 *5)))) (-5 *3 (-1180 (-264 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))) (-3356 (*1 *2 *2 *2 *2) (-11 (-5 *2 (-349 (-1086 (-264 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3)))))
-((-3576 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1091))) 244 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1091)) 23 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1091)) 29 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|))) 28 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|)) 24 T ELT)))
-(((-1046 |#1|) (-10 -7 (-14 -3576 ((-584 (-248 (-264 |#1|))) (-264 |#1|))) (-14 -3576 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)))) (-14 -3576 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1091))) (-14 -3576 ((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1091))) (-14 -3576 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1091))))) (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (T -1046))
-((-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-1091))) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-584 (-248 (-264 *5)))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-264 *5)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-248 (-264 *5))))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-248 (-264 *4))))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-264 *4)))))
-((-3359 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-82) |#1| |#1|)) 25 T ELT)) (-3358 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-82) |#1| |#1|)) 22 T ELT)))
-(((-1047 |#1| |#2|) (-10 -7 (-14 -3358 (|#2| |#2| (-1 (-82) |#1| |#1|))) (-14 -3359 (|#2| |#2| (-1 (-82) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-14 -3358 (|#2| |#2|)) (-14 -3359 (|#2| |#2|))) |%noBranch|)) (-1130) (-12 (-539 (-485) |#1|) (-317 |#1|) (-1036 |#1|))) (T -1047))
-((-3359 (*1 *2 *2) (-11 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-12 (-539 (-485) *3) (-317 *3) (-1036 *3))))) (-3358 (*1 *2 *2) (-11 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-12 (-539 (-485) *3) (-317 *3) (-1036 *3))))) (-3359 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-12 (-539 (-485) *4) (-317 *4) (-1036 *4))))) (-3358 (*1 *2 *2 *3) (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-12 (-539 (-485) *4) (-317 *4) (-1036 *4))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3892 (((-1080 3 |#1|) $) 141 T ELT)) (-3369 (((-82) $) 101 T ELT)) (-3370 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3375 (((-82) $) 72 T ELT)) (-3709 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3361 (((-2 (|:| -3854 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3379 (((-695) $) 53 T ELT)) (-3380 (((-695) $) 52 T ELT)) (-3891 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3367 (((-82) $) 111 T ELT)) (-3368 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-144)) (-144)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-144)) (-144)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-82) (-82)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-82) (-82)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-82) (-82)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3521 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3362 (((-584 (-144)) $) 133 T ELT)) (-3366 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3363 (((-584 (-584 (-144))) $) 132 T ELT)) (-3364 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3365 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3376 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3373 (((-82) $) 84 T ELT)) (-3374 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3381 (($) 48 T ELT) (($ (-1080 3 |#1|)) 49 T ELT)) (-3403 (($ $) 63 T ELT)) (-3377 (((-584 $) $) 62 T ELT)) (-3757 (($ (-584 $)) 59 T ELT)) (-3378 (((-584 $) $) 61 T ELT)) (-3950 (((-773) $) 146 T ELT)) (-3371 (((-82) $) 94 T ELT)) (-3372 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3360 (($ $) 140 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1048 |#1|) (-1049 |#1|) (-962)) (T -1048))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3892 (((-1080 3 |#1|) $) 17 T ELT)) (-3369 (((-82) $) 33 T ELT)) (-3370 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3375 (((-82) $) 48 T ELT)) (-3709 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3361 (((-2 (|:| -3854 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3379 (((-695) $) 62 T ELT)) (-3380 (((-695) $) 63 T ELT)) (-3891 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3367 (((-82) $) 25 T ELT)) (-3368 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-144)) (-144)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-144)) (-144)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-82) (-82)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-82) (-82)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-82) (-82)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3521 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3362 (((-584 (-144)) $) 20 T ELT)) (-3366 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3363 (((-584 (-584 (-144))) $) 21 T ELT)) (-3364 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3365 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3376 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3373 (((-82) $) 43 T ELT)) (-3374 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3381 (($) 65 T ELT) (($ (-1080 3 |#1|)) 64 T ELT)) (-3403 (($ $) 56 T ELT)) (-3377 (((-584 $) $) 57 T ELT)) (-3757 (($ (-584 $)) 59 T ELT)) (-3378 (((-584 $) $) 58 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-3371 (((-82) $) 38 T ELT)) (-3372 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3360 (($ $) 18 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-1049 |#1|) (-110) (-962)) (T -1049))
-((-3950 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3381 (*1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3381 (*1 *1 *2) (-11 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3380 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3379 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3521 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3521 (*1 *1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3757 (*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3378 (*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3377 (*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3403 (*1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3376 (*1 *2 *1 *3) (-11 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3891 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3709 (*1 *1 *1 *2) (-11 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3709 (*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3709 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3709 (*1 *1 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3709 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3375 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))) (-3374 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3374 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3374 (*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3374 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3373 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))) (-3372 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3372 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3372 (*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3372 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3371 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))) (-3370 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3370 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3370 (*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3370 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3369 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))) (-3368 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-144))) (-5 *4 (-144)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3368 (*1 *1 *1 *2 *3 *4) (-11 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-144))) (-5 *4 (-144)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3368 (*1 *1 *1 *2 *3 *3) (-11 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-82)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3368 (*1 *1 *1 *2 *3 *3) (-11 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-82)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3368 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3368 (*1 *1 *2 *3 *3) (-11 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-82)) (-4 *4 (-962)) (-4 *1 (-1049 *4)))) (-3368 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3367 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))) (-3366 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3365 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3364 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3363 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-144)))))) (-3362 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-144))))) (-3361 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3854 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3360 (*1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3892 (*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3)))))
-(-12 (-1014) (-10 -8 (-14 -3381 ($)) (-14 -3381 ($ (-1080 3 |t#1|))) (-14 -3380 ((-695) $)) (-14 -3379 ((-695) $)) (-14 -3521 ($ (-584 $))) (-14 -3521 ($ $ $)) (-14 -3757 ($ (-584 $))) (-14 -3378 ((-584 $) $)) (-14 -3377 ((-584 $) $)) (-14 -3403 ($ $)) (-14 -3376 ((-695) $ (-584 (-855 |t#1|)))) (-14 -3891 ($ $ (-695) (-855 |t#1|))) (-14 -3709 ($ $ (-855 |t#1|))) (-14 -3709 ($ $ (-584 |t#1|))) (-14 -3709 ($ $ (-695))) (-14 -3709 ($ (-855 |t#1|))) (-14 -3709 ((-855 |t#1|) $)) (-14 -3375 ((-82) $)) (-14 -3374 ($ $ (-584 (-855 |t#1|)))) (-14 -3374 ($ $ (-584 (-584 |t#1|)))) (-14 -3374 ($ (-584 (-855 |t#1|)))) (-14 -3374 ((-584 (-855 |t#1|)) $)) (-14 -3373 ((-82) $)) (-14 -3372 ($ $ (-584 (-855 |t#1|)))) (-14 -3372 ($ $ (-584 (-584 |t#1|)))) (-14 -3372 ($ (-584 (-855 |t#1|)))) (-14 -3372 ((-584 (-855 |t#1|)) $)) (-14 -3371 ((-82) $)) (-14 -3370 ($ $ (-584 (-855 |t#1|)))) (-14 -3370 ($ $ (-584 (-584 |t#1|)))) (-14 -3370 ($ (-584 (-855 |t#1|)))) (-14 -3370 ((-584 (-855 |t#1|)) $)) (-14 -3369 ((-82) $)) (-14 -3368 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-144)) (-144))) (-14 -3368 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-144)) (-144))) (-14 -3368 ($ $ (-584 (-584 (-855 |t#1|))) (-82) (-82))) (-14 -3368 ($ $ (-584 (-584 (-584 |t#1|))) (-82) (-82))) (-14 -3368 ($ (-584 (-584 (-855 |t#1|))))) (-14 -3368 ($ (-584 (-584 (-855 |t#1|))) (-82) (-82))) (-14 -3368 ((-584 (-584 (-855 |t#1|))) $)) (-14 -3367 ((-82) $)) (-14 -3366 ((-584 (-855 |t#1|)) $)) (-14 -3365 ((-584 (-584 (-584 (-695)))) $)) (-14 -3364 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-14 -3363 ((-584 (-584 (-144))) $)) (-14 -3362 ((-584 (-144)) $)) (-14 -3361 ((-2 (|:| -3854 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-14 -3360 ($ $)) (-14 -3892 ((-1080 3 |t#1|) $)) (-14 -3950 ((-773) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 185 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) 7 T ELT)) (-3569 (((-82) $ (|[\|\|]| (-463))) 19 T ELT) (((-82) $ (|[\|\|]| (-171))) 23 T ELT) (((-82) $ (|[\|\|]| (-618))) 27 T ELT) (((-82) $ (|[\|\|]| (-1191))) 31 T ELT) (((-82) $ (|[\|\|]| (-108))) 35 T ELT) (((-82) $ (|[\|\|]| (-540))) 39 T ELT) (((-82) $ (|[\|\|]| (-103))) 43 T ELT) (((-82) $ (|[\|\|]| (-1030))) 47 T ELT) (((-82) $ (|[\|\|]| (-64))) 51 T ELT) (((-82) $ (|[\|\|]| (-623))) 55 T ELT) (((-82) $ (|[\|\|]| (-459))) 59 T ELT) (((-82) $ (|[\|\|]| (-979))) 63 T ELT) (((-82) $ (|[\|\|]| (-1192))) 67 T ELT) (((-82) $ (|[\|\|]| (-464))) 71 T ELT) (((-82) $ (|[\|\|]| (-1068))) 75 T ELT) (((-82) $ (|[\|\|]| (-124))) 79 T ELT) (((-82) $ (|[\|\|]| (-614))) 83 T ELT) (((-82) $ (|[\|\|]| (-262))) 87 T ELT) (((-82) $ (|[\|\|]| (-949))) 91 T ELT) (((-82) $ (|[\|\|]| (-153))) 95 T ELT) (((-82) $ (|[\|\|]| (-884))) 99 T ELT) (((-82) $ (|[\|\|]| (-986))) 103 T ELT) (((-82) $ (|[\|\|]| (-1004))) 107 T ELT) (((-82) $ (|[\|\|]| (-1009))) 111 T ELT) (((-82) $ (|[\|\|]| (-566))) 116 T ELT) (((-82) $ (|[\|\|]| (-1082))) 120 T ELT) (((-82) $ (|[\|\|]| (-126))) 124 T ELT) (((-82) $ (|[\|\|]| (-107))) 128 T ELT) (((-82) $ (|[\|\|]| (-418))) 132 T ELT) (((-82) $ (|[\|\|]| (-529))) 136 T ELT) (((-82) $ (|[\|\|]| (-447))) 140 T ELT) (((-82) $ (|[\|\|]| (-1074))) 144 T ELT) (((-82) $ (|[\|\|]| (-485))) 148 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3575 (((-463) $) 20 T ELT) (((-171) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1191) $) 32 T ELT) (((-108) $) 36 T ELT) (((-540) $) 40 T ELT) (((-103) $) 44 T ELT) (((-1030) $) 48 T ELT) (((-64) $) 52 T ELT) (((-623) $) 56 T ELT) (((-459) $) 60 T ELT) (((-979) $) 64 T ELT) (((-1192) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1068) $) 76 T ELT) (((-124) $) 80 T ELT) (((-614) $) 84 T ELT) (((-262) $) 88 T ELT) (((-949) $) 92 T ELT) (((-153) $) 96 T ELT) (((-884) $) 100 T ELT) (((-986) $) 104 T ELT) (((-1004) $) 108 T ELT) (((-1009) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1082) $) 121 T ELT) (((-126) $) 125 T ELT) (((-107) $) 129 T ELT) (((-418) $) 133 T ELT) (((-529) $) 137 T ELT) (((-447) $) 141 T ELT) (((-1074) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1050) (-1052)) (T -1050))
-NIL
-((-3382 (((-584 (-1096)) (-1074)) 9 T ELT)))
-(((-1051) (-10 -7 (-14 -3382 ((-584 (-1096)) (-1074))))) (T -1051))
-((-3382 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-3569 (((-82) $ (|[\|\|]| (-463))) 88 T ELT) (((-82) $ (|[\|\|]| (-171))) 86 T ELT) (((-82) $ (|[\|\|]| (-618))) 84 T ELT) (((-82) $ (|[\|\|]| (-1191))) 82 T ELT) (((-82) $ (|[\|\|]| (-108))) 80 T ELT) (((-82) $ (|[\|\|]| (-540))) 78 T ELT) (((-82) $ (|[\|\|]| (-103))) 76 T ELT) (((-82) $ (|[\|\|]| (-1030))) 74 T ELT) (((-82) $ (|[\|\|]| (-64))) 72 T ELT) (((-82) $ (|[\|\|]| (-623))) 70 T ELT) (((-82) $ (|[\|\|]| (-459))) 68 T ELT) (((-82) $ (|[\|\|]| (-979))) 66 T ELT) (((-82) $ (|[\|\|]| (-1192))) 64 T ELT) (((-82) $ (|[\|\|]| (-464))) 62 T ELT) (((-82) $ (|[\|\|]| (-1068))) 60 T ELT) (((-82) $ (|[\|\|]| (-124))) 58 T ELT) (((-82) $ (|[\|\|]| (-614))) 56 T ELT) (((-82) $ (|[\|\|]| (-262))) 54 T ELT) (((-82) $ (|[\|\|]| (-949))) 52 T ELT) (((-82) $ (|[\|\|]| (-153))) 50 T ELT) (((-82) $ (|[\|\|]| (-884))) 48 T ELT) (((-82) $ (|[\|\|]| (-986))) 46 T ELT) (((-82) $ (|[\|\|]| (-1004))) 44 T ELT) (((-82) $ (|[\|\|]| (-1009))) 42 T ELT) (((-82) $ (|[\|\|]| (-566))) 40 T ELT) (((-82) $ (|[\|\|]| (-1082))) 38 T ELT) (((-82) $ (|[\|\|]| (-126))) 36 T ELT) (((-82) $ (|[\|\|]| (-107))) 34 T ELT) (((-82) $ (|[\|\|]| (-418))) 32 T ELT) (((-82) $ (|[\|\|]| (-529))) 30 T ELT) (((-82) $ (|[\|\|]| (-447))) 28 T ELT) (((-82) $ (|[\|\|]| (-1074))) 26 T ELT) (((-82) $ (|[\|\|]| (-485))) 24 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3575 (((-463) $) 87 T ELT) (((-171) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1191) $) 81 T ELT) (((-108) $) 79 T ELT) (((-540) $) 77 T ELT) (((-103) $) 75 T ELT) (((-1030) $) 73 T ELT) (((-64) $) 71 T ELT) (((-623) $) 69 T ELT) (((-459) $) 67 T ELT) (((-979) $) 65 T ELT) (((-1192) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1068) $) 59 T ELT) (((-124) $) 57 T ELT) (((-614) $) 55 T ELT) (((-262) $) 53 T ELT) (((-949) $) 51 T ELT) (((-153) $) 49 T ELT) (((-884) $) 47 T ELT) (((-986) $) 45 T ELT) (((-1004) $) 43 T ELT) (((-1009) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1082) $) 37 T ELT) (((-126) $) 35 T ELT) (((-107) $) 33 T ELT) (((-418) $) 31 T ELT) (((-529) $) 29 T ELT) (((-447) $) 27 T ELT) (((-1074) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-1052) (-110)) (T -1052))
-((-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-463)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-171))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-171)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-618)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1191)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-108)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-540)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-103))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-103)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1030)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-64))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-64)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-623)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-459)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-979)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1192)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-464)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1068)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-124))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-124)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-614)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-262)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-949)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-153)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-884)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-986)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1004)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1009)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-566)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1082)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-126))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-126)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-107))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-107)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-418)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-529)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-447)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1074)))) (-3569 (*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-82)))) (-3575 (*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-485)))))
-(-12 (-996) (-1176) (-10 -8 (-14 -3569 ((-82) $ (|[\|\|]| (-463)))) (-14 -3575 ((-463) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-171)))) (-14 -3575 ((-171) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-618)))) (-14 -3575 ((-618) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1191)))) (-14 -3575 ((-1191) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-108)))) (-14 -3575 ((-108) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-540)))) (-14 -3575 ((-540) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-103)))) (-14 -3575 ((-103) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1030)))) (-14 -3575 ((-1030) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-64)))) (-14 -3575 ((-64) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-623)))) (-14 -3575 ((-623) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-459)))) (-14 -3575 ((-459) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-979)))) (-14 -3575 ((-979) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1192)))) (-14 -3575 ((-1192) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-464)))) (-14 -3575 ((-464) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1068)))) (-14 -3575 ((-1068) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-124)))) (-14 -3575 ((-124) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-614)))) (-14 -3575 ((-614) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-262)))) (-14 -3575 ((-262) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-949)))) (-14 -3575 ((-949) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-153)))) (-14 -3575 ((-153) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-884)))) (-14 -3575 ((-884) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-986)))) (-14 -3575 ((-986) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1004)))) (-14 -3575 ((-1004) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1009)))) (-14 -3575 ((-1009) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-566)))) (-14 -3575 ((-566) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1082)))) (-14 -3575 ((-1082) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-126)))) (-14 -3575 ((-126) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-107)))) (-14 -3575 ((-107) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-418)))) (-14 -3575 ((-418) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-529)))) (-14 -3575 ((-529) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-447)))) (-14 -3575 ((-447) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-1074)))) (-14 -3575 ((-1074) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-485)))) (-14 -3575 ((-485) $))))
-(((-61) . T) ((-69) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-12) . T) ((-1014) . T) ((-996) . T) ((-1130) . T) ((-1176) . T))
-((-3385 (((-1186) (-584 (-773))) 22 T ELT) (((-1186) (-773)) 21 T ELT)) (-3384 (((-1186) (-584 (-773))) 20 T ELT) (((-1186) (-773)) 19 T ELT)) (-3383 (((-1186) (-584 (-773))) 18 T ELT) (((-1186) (-773)) 10 T ELT) (((-1186) (-1074) (-773)) 16 T ELT)))
-(((-1053) (-10 -7 (-14 -3383 ((-1186) (-1074) (-773))) (-14 -3383 ((-1186) (-773))) (-14 -3384 ((-1186) (-773))) (-14 -3385 ((-1186) (-773))) (-14 -3383 ((-1186) (-584 (-773)))) (-14 -3384 ((-1186) (-584 (-773)))) (-14 -3385 ((-1186) (-584 (-773)))))) (T -1053))
-((-3385 (*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3384 (*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3385 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3384 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3 *4) (-11 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-((-3389 (($ $ $) 10 T ELT)) (-3388 (($ $) 9 T ELT)) (-3392 (($ $ $) 13 T ELT)) (-3394 (($ $ $) 15 T ELT)) (-3391 (($ $ $) 12 T ELT)) (-3393 (($ $ $) 14 T ELT)) (-3396 (($ $) 17 T ELT)) (-3395 (($ $) 16 T ELT)) (-3386 (($ $) 6 T ELT)) (-3390 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3387 (($ $ $) 8 T ELT)))
-(((-1054) (-110)) (T -1054))
-((-3396 (*1 *1 *1) (-4 *1 (-1054))) (-3395 (*1 *1 *1) (-4 *1 (-1054))) (-3394 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1) (-4 *1 (-1054))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1) (-4 *1 (-1054))) (-3386 (*1 *1 *1) (-4 *1 (-1054))))
-(-12 (-10 -8 (-14 -3386 ($ $)) (-14 -3390 ($ $)) (-14 -3387 ($ $ $)) (-14 -3388 ($ $)) (-14 -3389 ($ $ $)) (-14 -3390 ($ $ $)) (-14 -3391 ($ $ $)) (-14 -3392 ($ $ $)) (-14 -3393 ($ $ $)) (-14 -3394 ($ $ $)) (-14 -3395 ($ $)) (-14 -3396 ($ $))))
-((-2571 (((-82) $ $) 44 T ELT)) (-3405 ((|#1| $) 17 T ELT)) (-3397 (((-82) $ $ (-1 (-82) |#2| |#2|)) 39 T ELT)) (-3404 (((-82) $) 19 T ELT)) (-3402 (($ $ |#1|) 30 T ELT)) (-3400 (($ $ (-82)) 32 T ELT)) (-3399 (($ $) 33 T ELT)) (-3401 (($ $ |#2|) 31 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3398 (((-82) $ $ (-1 (-82) |#1| |#1|) (-1 (-82) |#2| |#2|)) 38 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3406 (((-82) $) 16 T ELT)) (-3568 (($) 13 T ELT)) (-3403 (($ $) 29 T ELT)) (-3533 (($ |#1| |#2| (-82)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3926 ((|#2| $) 18 T ELT)) (-3950 (((-773) $) 53 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 42 T ELT)))
-(((-1055 |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -3568 ($)) (-14 -3406 ((-82) $)) (-14 -3405 (|#1| $)) (-14 -3926 (|#2| $)) (-14 -3404 ((-82) $)) (-14 -3533 ($ |#1| |#2| (-82))) (-14 -3533 ($ |#1| |#2|)) (-14 -3533 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-14 -3533 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-14 -3533 ((-584 $) |#1| (-584 |#2|))) (-14 -3403 ($ $)) (-14 -3402 ($ $ |#1|)) (-14 -3401 ($ $ |#2|)) (-14 -3400 ($ $ (-82))) (-14 -3399 ($ $)) (-14 -3398 ((-82) $ $ (-1 (-82) |#1| |#1|) (-1 (-82) |#2| |#2|))) (-14 -3397 ((-82) $ $ (-1 (-82) |#2| |#2|))))) (-12 (-1014) (-31)) (-12 (-1014) (-31))) (T -1055))
-((-3568 (*1 *1) (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3406 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))) (-3405 (*1 *2 *1) (-11 (-4 *2 (-12 (-1014) (-31))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-12 (-1014) (-31))))) (-3926 (*1 *2 *1) (-11 (-4 *2 (-12 (-1014) (-31))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-12 (-1014) (-31))))) (-3404 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))) (-3533 (*1 *1 *2 *3 *4) (-11 (-5 *4 (-82)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3533 (*1 *1 *2 *3) (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3533 (*1 *1 *2) (-11 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1055 *3 *4)))) (-3533 (*1 *2 *3) (-11 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-12 (-1014) (-31))) (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-3533 (*1 *2 *3 *4) (-11 (-5 *4 (-584 *5)) (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-12 (-1014) (-31))))) (-3403 (*1 *1 *1) (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3402 (*1 *1 *1 *2) (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3401 (*1 *1 *1 *2) (-11 (-5 *1 (-1055 *3 *2)) (-4 *3 (-12 (-1014) (-31))) (-4 *2 (-12 (-1014) (-31))))) (-3400 (*1 *1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))) (-3399 (*1 *1 *1) (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3398 (*1 *2 *1 *1 *3 *4) (-11 (-5 *3 (-1 (-82) *5 *5)) (-5 *4 (-1 (-82) *6 *6)) (-4 *5 (-12 (-1014) (-31))) (-4 *6 (-12 (-1014) (-31))) (-5 *2 (-82)) (-5 *1 (-1055 *5 *6)))) (-3397 (*1 *2 *1 *1 *3) (-11 (-5 *3 (-1 (-82) *5 *5)) (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-82)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-12 (-1014) (-31))))))
-((-2571 (((-82) $ $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-3405 (((-1055 |#1| |#2|) $) 27 T ELT)) (-3414 (($ $) 91 T ELT)) (-3410 (((-82) (-1055 |#1| |#2|) $ (-1 (-82) |#2| |#2|)) 100 T ELT)) (-3407 (($ $ $ (-584 (-1055 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-82) |#2| |#2|)) 109 T ELT)) (-3028 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 46 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3791 (((-1055 |#1| |#2|) $ #1="value" (-1055 |#1| |#2|)) NIL (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3029 (($ $ (-584 $)) 44 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3727 (($) NIL T CONST)) (-3412 (((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3408 (($ (-1055 |#1| |#2|) $) 42 T ELT)) (-3409 (($ (-1055 |#1| |#2|) $) 34 T ELT)) (-3845 (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|)) NIL T ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3034 (((-584 $) $) 54 T ELT)) (-3411 (((-82) (-1055 |#1| |#2|) $) 97 T ELT)) (-3030 (((-82) $ $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-2611 (((-584 (-1055 |#1| |#2|)) $) 58 T ELT)) (-3248 (((-82) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-3329 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 50 T ELT)) (-3846 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 49 T ELT)) (-3033 (((-584 (-1055 |#1| |#2|)) $) 56 T ELT)) (-3530 (((-82) $) 45 T ELT)) (-3245 (((-1074) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-1731 (((-3 (-1055 |#1| |#2|) #2="failed") (-1 (-82) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3415 (((-3 $ #2#) $) 89 T ELT)) (-1733 (((-82) (-1 (-82) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-1055 |#1| |#2|)))) NIL (-11 (|has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-248 (-1055 |#1| |#2|))) NIL (-11 (|has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-11 (|has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-584 (-1055 |#1| |#2|)) (-584 (-1055 |#1| |#2|))) NIL (-11 (|has| (-1055 |#1| |#2|) (-259 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT)) (-1223 (((-82) $ $) 53 T ELT)) (-3406 (((-82) $) 24 T ELT)) (-3568 (($) 26 T ELT)) (-3803 (((-1055 |#1| |#2|) $ #1#) NIL T ELT)) (-3032 (((-485) $ $) NIL T ELT)) (-3636 (((-82) $) 47 T ELT)) (-1732 (((-695) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT) (((-695) (-1 (-82) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3533 (($ (-1055 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1055 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3413 (((-584 |#2|) $) 96 T ELT)) (-3950 (((-773) $) 87 (|has| (-1055 |#1| |#2|) (-553 (-773))) ELT)) (-3525 (((-584 $) $) 31 T ELT)) (-3031 (((-82) $ $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-1734 (((-82) (-1 (-82) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3059 (((-82) $ $) 70 (|has| (-1055 |#1| |#2|) (-69)) ELT)) (-3961 (((-695) $) 64 T ELT)))
-(((-1056 |#1| |#2|) (-12 (-924 (-1055 |#1| |#2|)) (-317 (-1055 |#1| |#2|)) (-1036 (-1055 |#1| |#2|)) (-10 -8 (-14 -3415 ((-3 $ "failed") $)) (-14 -3414 ($ $)) (-14 -3533 ($ (-1055 |#1| |#2|))) (-14 -3533 ($ |#1| |#2| (-584 $))) (-14 -3533 ($ |#1| |#2| (-584 (-1055 |#1| |#2|)))) (-14 -3533 ($ |#1| |#2| |#1| (-584 |#2|))) (-14 -3413 ((-584 |#2|) $)) (-14 -3412 ((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-14 -3411 ((-82) (-1055 |#1| |#2|) $)) (-14 -3410 ((-82) (-1055 |#1| |#2|) $ (-1 (-82) |#2| |#2|))) (-14 -3409 ($ (-1055 |#1| |#2|) $)) (-14 -3408 ($ (-1055 |#1| |#2|) $)) (-14 -3407 ($ $ $ (-584 (-1055 |#1| |#2|)))) (-14 -3407 ($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-82) |#2| |#2|))))) (-12 (-1014) (-31)) (-12 (-1014) (-31))) (T -1056))
-((-3415 (*1 *1 *1) (|partial| -11 (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3414 (*1 *1 *1) (-11 (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3533 (*1 *1 *2) (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))) (-3533 (*1 *1 *2 *3 *4) (-11 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))))) (-3533 (*1 *1 *2 *3 *4) (-11 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31))) (-5 *1 (-1056 *2 *3)))) (-3533 (*1 *1 *2 *3 *2 *4) (-11 (-5 *4 (-584 *3)) (-4 *3 (-12 (-1014) (-31))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31))))) (-3413 (*1 *2 *1) (-11 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))) (-3412 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))) (-3411 (*1 *2 *3 *1) (-11 (-5 *3 (-1055 *4 *5)) (-4 *4 (-12 (-1014) (-31))) (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-82)) (-5 *1 (-1056 *4 *5)))) (-3410 (*1 *2 *3 *1 *4) (-11 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-82) *6 *6)) (-4 *5 (-12 (-1014) (-31))) (-4 *6 (-12 (-1014) (-31))) (-5 *2 (-82)) (-5 *1 (-1056 *5 *6)))) (-3409 (*1 *1 *2 *1) (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))) (-3408 (*1 *1 *2 *1) (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))) (-3407 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))) (-3407 (*1 *1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-82) *5 *5)) (-4 *4 (-12 (-1014) (-31))) (-4 *5 (-12 (-1014) (-31))) (-5 *1 (-1056 *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3417 (($ $) NIL T ELT)) (-3333 ((|#2| $) NIL T ELT)) (-3123 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3416 (($ (-631 |#2|)) 53 T ELT)) (-3125 (((-82) $) NIL T ELT)) (-3336 (($ |#2|) 14 T ELT)) (-3727 (($) NIL T CONST)) (-3112 (($ $) 66 (|has| |#2| (-257)) ELT)) (-3114 (((-196 |#1| |#2|) $ (-485)) 40 T ELT)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3845 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-69)) ELT)) (-3470 (((-3 $ #1#) $) 80 T ELT)) (-3111 (((-695) $) 68 (|has| |#2| (-496)) ELT)) (-3115 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3110 (((-695) $) 70 (|has| |#2| (-496)) ELT)) (-3109 (((-584 (-196 |#1| |#2|)) $) 74 (|has| |#2| (-496)) ELT)) (-3117 (((-695) $) NIL T ELT)) (-3617 (($ |#2|) 23 T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3330 ((|#2| $) 64 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3121 (((-485) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-2611 (((-584 |#2|) $) NIL T ELT)) (-3248 (((-82) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-3126 (($ (-584 (-584 |#2|))) 35 T ELT)) (-3846 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3597 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3593 (((-3 $ #1#) $) 77 (|has| |#2| (-311)) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1731 (((-3 |#2| #1#) (-1 (-82) |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1733 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3335 (($ (-584 |#2|)) 48 T ELT)) (-3124 (((-82) $) NIL T ELT)) (-3334 (((-196 |#1| |#2|) $) NIL T ELT)) (-3331 ((|#2| $) 62 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1732 (((-695) (-1 (-82) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-69)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) 87 (|has| |#2| (-554 (-474))) ELT)) (-3113 (((-196 |#1| |#2|) $ (-485)) 42 T ELT)) (-3950 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 50 T ELT)) (-3129 (((-695)) 21 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#2|) $) NIL T ELT)) (-3122 (((-82) $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-2669 (($) 19 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-188)) ELT) (($ $ (-695)) NIL (|has| |#2| (-188)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) 79 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-196 |#1| |#2|) $ (-196 |#1| |#2|)) 56 T ELT) (((-196 |#1| |#2|) (-196 |#1| |#2|) $) 58 T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1057 |#1| |#2|) (-12 (-1038 |#1| |#2| (-196 |#1| |#2|) (-196 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-14 -3617 ($ |#2|)) (-14 -3417 ($ $)) (-14 -3416 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3997 #1="*"))) (-6 -3986) |%noBranch|) (IF (|has| |#2| (-6 (-3997 #1#))) (IF (|has| |#2| (-6 -3994)) (-6 -3994) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-695) (-962)) (T -1057))
-((-3617 (*1 *1 *2) (-11 (-5 *1 (-1057 *3 *2)) (-13 *3 (-695)) (-4 *2 (-962)))) (-3417 (*1 *1 *1) (-11 (-5 *1 (-1057 *2 *3)) (-13 *2 (-695)) (-4 *3 (-962)))) (-3416 (*1 *1 *2) (-11 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-13 *3 (-695)))))
-((-3430 (($ $) 19 T ELT)) (-3420 (($ $ (-114)) 10 T ELT) (($ $ (-111)) 14 T ELT)) (-3428 (((-82) $ $) 24 T ELT)) (-3432 (($ $) 17 T ELT)) (-3803 (((-114) $ (-485) (-114)) NIL T ELT) (((-114) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3950 (($ (-114)) 29 T ELT) (((-773) $) NIL T ELT)))
-(((-1058 |#1|) (-10 -7 (-14 -3950 ((-773) |#1|)) (-14 -3803 (|#1| |#1| |#1|)) (-14 -3420 (|#1| |#1| (-111))) (-14 -3420 (|#1| |#1| (-114))) (-14 -3950 (|#1| (-114))) (-14 -3428 ((-82) |#1| |#1|)) (-14 -3430 (|#1| |#1|)) (-14 -3432 (|#1| |#1|)) (-14 -3803 (|#1| |#1| (-1147 (-485)))) (-14 -3803 ((-114) |#1| (-485))) (-14 -3803 ((-114) |#1| (-485) (-114)))) (-1059)) (T -1058))
-NIL
-((-2571 (((-82) $ $) 18 (|has| (-114) (-69)) ELT)) (-3429 (($ $) 131 T ELT)) (-3430 (($ $) 132 T ELT)) (-3420 (($ $ (-114)) 119 T ELT) (($ $ (-111)) 118 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 (-114))) ELT)) (-3427 (((-82) $ $) 129 T ELT)) (-3426 (((-82) $ $ (-485)) 128 T ELT)) (-3421 (((-584 $) $ (-114)) 121 T ELT) (((-584 $) $ (-111)) 120 T ELT)) (-1737 (((-82) (-1 (-82) (-114) (-114)) $) 96 T ELT) (((-82) $) 90 (|has| (-114) (-757)) ELT)) (-1735 (($ (-1 (-82) (-114) (-114)) $) 87 (|has| $ (-1036 (-114))) ELT) (($ $) 86 (-11 (|has| (-114) (-757)) (|has| $ (-1036 (-114)))) ELT)) (-2912 (($ (-1 (-82) (-114) (-114)) $) 97 T ELT) (($ $) 91 (|has| (-114) (-757)) ELT)) (-3791 (((-114) $ (-485) (-114)) 47 (|has| $ (-1036 (-114))) ELT) (((-114) $ (-1147 (-485)) (-114)) 55 (|has| $ (-1036 (-114))) ELT)) (-3713 (($ (-1 (-82) (-114)) $) 69 (|has| $ (-317 (-114))) ELT)) (-3727 (($) 6 T CONST)) (-3418 (($ $ (-114)) 115 T ELT) (($ $ (-111)) 114 T ELT)) (-2299 (($ $) 88 (|has| $ (-1036 (-114))) ELT)) (-2300 (($ $) 98 T ELT)) (-3423 (($ $ (-1147 (-485)) $) 125 T ELT)) (-1354 (($ $) 71 (-11 (|has| (-114) (-69)) (|has| $ (-317 (-114)))) ELT)) (-3409 (($ (-114) $) 70 (-11 (|has| (-114) (-69)) (|has| $ (-317 (-114)))) ELT) (($ (-1 (-82) (-114)) $) 68 (|has| $ (-317 (-114))) ELT)) (-3845 (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 110 (|has| (-114) (-69)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 106 T ELT) (((-114) (-1 (-114) (-114) (-114)) $) 105 T ELT)) (-1577 (((-114) $ (-485) (-114)) 48 (|has| $ (-1036 (-114))) ELT)) (-3115 (((-114) $ (-485)) 46 T ELT)) (-3428 (((-82) $ $) 130 T ELT)) (-3422 (((-485) (-1 (-82) (-114)) $) 95 T ELT) (((-485) (-114) $) 94 (|has| (-114) (-69)) ELT) (((-485) (-114) $ (-485)) 93 (|has| (-114) (-69)) ELT) (((-485) $ $ (-485)) 124 T ELT) (((-485) (-111) $ (-485)) 123 T ELT)) (-3617 (($ (-695) (-114)) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 80 (|has| (-114) (-757)) ELT)) (-3521 (($ (-1 (-82) (-114) (-114)) $ $) 99 T ELT) (($ $ $) 92 (|has| (-114) (-757)) ELT)) (-2611 (((-584 (-114)) $) 104 T ELT)) (-3248 (((-82) (-114) $) 109 (|has| (-114) (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 81 (|has| (-114) (-757)) ELT)) (-3424 (((-82) $ $ (-114)) 126 T ELT)) (-3425 (((-695) $ $ (-114)) 127 T ELT)) (-3329 (($ (-1 (-114) (-114)) $) 112 T ELT)) (-3846 (($ (-1 (-114) (-114)) $) 26 T ELT) (($ (-1 (-114) (-114) (-114)) $ $) 60 T ELT)) (-3431 (($ $) 133 T ELT)) (-3432 (($ $) 134 T ELT)) (-3419 (($ $ (-114)) 117 T ELT) (($ $ (-111)) 116 T ELT)) (-3245 (((-1074) $) 21 (|has| (-114) (-1014)) ELT)) (-2306 (($ (-114) $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| (-114) (-1014)) ELT)) (-3804 (((-114) $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-114) "failed") (-1 (-82) (-114)) $) 107 T ELT)) (-2201 (($ $ (-114)) 36 (|has| $ (-1036 (-114))) ELT)) (-1733 (((-82) (-1 (-82) (-114)) $) 102 T ELT)) (-3771 (($ $ (-584 (-248 (-114)))) 25 (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-248 (-114))) 24 (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-114) (-114)) 23 (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-584 (-114)) (-584 (-114))) 22 (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) (-114) $) 40 (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT)) (-2207 (((-584 (-114)) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 (((-114) $ (-485) (-114)) 45 T ELT) (((-114) $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT) (($ $ $) 113 T ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1732 (((-695) (-114) $) 108 (|has| (-114) (-69)) ELT) (((-695) (-1 (-82) (-114)) $) 103 T ELT)) (-1736 (($ $ $ (-485)) 89 (|has| $ (-1036 (-114))) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| (-114) (-554 (-474))) ELT)) (-3533 (($ (-584 (-114))) 67 T ELT)) (-3805 (($ $ (-114)) 64 T ELT) (($ (-114) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (($ (-114)) 122 T ELT) (((-773) $) 16 (|has| (-114) (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| (-114) (-69)) ELT)) (-1734 (((-82) (-1 (-82) (-114)) $) 101 T ELT)) (-2569 (((-82) $ $) 82 (|has| (-114) (-757)) ELT)) (-2570 (((-82) $ $) 84 (|has| (-114) (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| (-114) (-69)) ELT)) (-2687 (((-82) $ $) 83 (|has| (-114) (-757)) ELT)) (-2688 (((-82) $ $) 85 (|has| (-114) (-757)) ELT)) (-3961 (((-695) $) 100 T ELT)))
-(((-1059) (-110)) (T -1059))
-((-3432 (*1 *1 *1) (-4 *1 (-1059))) (-3431 (*1 *1 *1) (-4 *1 (-1059))) (-3430 (*1 *1 *1) (-4 *1 (-1059))) (-3429 (*1 *1 *1) (-4 *1 (-1059))) (-3428 (*1 *2 *1 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-82)))) (-3427 (*1 *2 *1 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-82)))) (-3426 (*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-82)))) (-3425 (*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-114)) (-5 *2 (-695)))) (-3424 (*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-114)) (-5 *2 (-82)))) (-3423 (*1 *1 *1 *2 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))) (-3422 (*1 *2 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-485)))) (-3422 (*1 *2 *3 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-111)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-114)) (-4 *1 (-1059)))) (-3421 (*1 *2 *1 *3) (-11 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3421 (*1 *2 *1 *3) (-11 (-5 *3 (-111)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3420 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3420 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111)))) (-3419 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3419 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111)))) (-3418 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3418 (*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111)))) (-3803 (*1 *1 *1 *1) (-4 *1 (-1059))))
-(-12 (-16 (-114)) (-10 -8 (-14 -3432 ($ $)) (-14 -3431 ($ $)) (-14 -3430 ($ $)) (-14 -3429 ($ $)) (-14 -3428 ((-82) $ $)) (-14 -3427 ((-82) $ $)) (-14 -3426 ((-82) $ $ (-485))) (-14 -3425 ((-695) $ $ (-114))) (-14 -3424 ((-82) $ $ (-114))) (-14 -3423 ($ $ (-1147 (-485)) $)) (-14 -3422 ((-485) $ $ (-485))) (-14 -3422 ((-485) (-111) $ (-485))) (-14 -3950 ($ (-114))) (-14 -3421 ((-584 $) $ (-114))) (-14 -3421 ((-584 $) $ (-111))) (-14 -3420 ($ $ (-114))) (-14 -3420 ($ $ (-111))) (-14 -3419 ($ $ (-114))) (-14 -3419 ($ $ (-111))) (-14 -3418 ($ $ (-114))) (-14 -3418 ($ $ (-111))) (-14 -3803 ($ $ $))))
-(((-31) . T) ((-69) OR (|has| (-114) (-1014)) (|has| (-114) (-757)) (|has| (-114) (-69))) ((-553 (-773)) OR (|has| (-114) (-1014)) (|has| (-114) (-757)) (|has| (-114) (-553 (-773)))) ((-121 (-114)) . T) ((-554 (-474)) |has| (-114) (-554 (-474))) ((-240 (-485) (-114)) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) (-114)) . T) ((-259 (-114)) -11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ((-317 (-114)) . T) ((-323 (-114)) . T) ((-380 (-114)) . T) ((-429 (-114)) . T) ((-539 (-485) (-114)) . T) ((-456 (-114) (-114)) -11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ((-12) . T) ((-594 (-114)) . T) ((-16 (-114)) . T) ((-757) |has| (-114) (-757)) ((-760) |has| (-114) (-757)) ((-1014) OR (|has| (-114) (-1014)) (|has| (-114) (-757))) ((-1036 (-114)) . T) ((-1130) . T))
-((-3439 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 112 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3440 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 97 T ELT)) (-3434 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3437 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-82)) 65 T ELT)) (-3438 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82) (-82) (-82) (-82)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82)) 85 T ELT)) (-3975 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
-(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-14 -3434 ((-695) (-584 |#4|) (-584 |#5|))) (-14 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-14 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-14 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-82))) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-14 -3437 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-14 -3438 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82))) (-14 -3438 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-82) (-82) (-82) (-82) (-82))) (-14 -3439 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-14 -3975 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-14 -3440 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1060))
-((-3440 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *2 *5 *6) (-11 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3438 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3438 (*1 *2 *3 *2 *4 *4) (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-11 (-5 *5 (-695)) (-5 *6 (-82)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-3436 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4) (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3685 (((-584 $) (-584 |#4|)) 117 T ELT) (((-584 $) (-584 |#4|) (-82)) 118 T ELT) (((-584 $) (-584 |#4|) (-82) (-82)) 116 T ELT) (((-584 $) (-584 |#4|) (-82) (-82) (-82) (-82)) 119 T ELT)) (-3084 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-3778 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 90 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3159 (($ (-584 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 44 T ELT)) (-3688 ((|#4| |#4| $) 72 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-3409 (($ |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT) (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3200 (((-82) |#4| $) NIL T ELT)) (-3198 (((-82) |#4| $) NIL T ELT)) (-3201 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3441 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-82) (-82)) 132 T ELT)) (-3698 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3183 ((|#3| $) 37 T ELT)) (-2611 (((-584 |#4|) $) 18 T ELT)) (-3248 (((-82) |#4| $) 26 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2917 (((-584 |#3|) $) NIL T ELT)) (-2916 (((-82) |#3| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3194 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3193 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 110 T ELT)) (-3801 (((-3 |#4| #1#) $) 41 T ELT)) (-3195 (((-584 $) |#4| $) 95 T ELT)) (-3197 (((-3 (-82) (-584 $)) |#4| $) NIL T ELT)) (-3196 (((-584 (-2 (|:| |val| (-82)) (|:| -1601 $))) |#4| $) 105 T ELT) (((-82) |#4| $) 61 T ELT)) (-3241 (((-584 $) |#4| $) 114 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 115 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3442 (((-584 $) (-584 |#4|) (-82) (-82) (-82)) 127 T ELT)) (-3443 (($ |#4| $) 81 T ELT) (($ (-584 |#4|) $) 82 T ELT) (((-584 $) |#4| $ (-82) (-82) (-82) (-82) (-82)) 80 T ELT)) (-3700 (((-584 |#4|) $) NIL T ELT)) (-3694 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3702 (((-82) $ $) NIL T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 39 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3772 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 97 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 92 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 17 T ELT)) (-3568 (($) 14 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) 13 T ELT)) (-3975 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 21 T ELT)) (-2913 (($ $ |#3|) 48 T ELT)) (-2915 (($ $ |#3|) 50 T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3681 (((-695) $) NIL (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) NIL T ELT)) (-3192 (((-584 $) |#4| $) 62 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3683 (((-584 |#3|) $) NIL T ELT)) (-3199 (((-82) |#4| $) NIL T ELT)) (-3937 (((-82) |#3| $) 68 T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1061 |#1| |#2| |#3| |#4|) (-12 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-14 -3443 ((-584 $) |#4| $ (-82) (-82) (-82) (-82) (-82))) (-14 -3685 ((-584 $) (-584 |#4|) (-82) (-82))) (-14 -3685 ((-584 $) (-584 |#4|) (-82) (-82) (-82) (-82))) (-14 -3442 ((-584 $) (-584 |#4|) (-82) (-82) (-82))) (-14 -3441 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-82) (-82))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1061))
-((-3443 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3685 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *4 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3442 (*1 *2 *3 *4 *4 *4) (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 32 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 30 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 29 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 31 T ELT) (($ $ (-831)) 28 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ $ $) 27 T ELT)))
-(((-1062) (-110)) (T -1062))
-NIL
-(-12 (-20) (-664))
-(((-20) . T) ((-22) . T) ((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3326 ((|#1| $) 38 T ELT)) (-3444 (($ (-584 |#1|)) 46 T ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3328 ((|#1| |#1| $) 41 T ELT)) (-3327 ((|#1| $) 36 T ELT)) (-2611 (((-584 |#1|) $) 19 T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 39 T ELT)) (-3612 (($ |#1| $) 42 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 33 T ELT)) (-3568 (($) 44 T ELT)) (-3325 (((-695) $) 31 T ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-3403 (($ $) 28 T ELT)) (-3950 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3059 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 32 T ELT)))
-(((-1063 |#1|) (-12 (-1035 |#1|) (-10 -8 (-14 -3444 ($ (-584 |#1|))))) (-1130)) (T -1063))
-((-3444 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3)))))
-((-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 51 T ELT) ((|#2| $ (-485) |#2|) 48 T ELT)) (-3446 (((-82) $) 12 T ELT)) (-3804 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2201 (($ $ |#2|) 47 T ELT)) (-3447 (((-82) $) 11 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3794 (($ $ $) 54 T ELT) (($ $ |#2|) NIL T ELT)) (-3805 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1064 |#1| |#2|) (-10 -7 (-14 -3446 ((-82) |#1|)) (-14 -3447 ((-82) |#1|)) (-14 -3791 (|#2| |#1| (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485) |#2|)) (-14 -3803 (|#2| |#1| (-485))) (-14 -2201 (|#1| |#1| |#2|)) (-14 -3803 (|#1| |#1| (-1147 (-485)))) (-14 -3805 (|#1| |#1| |#2|)) (-14 -3805 (|#1| (-584 |#1|))) (-14 -3791 (|#2| |#1| (-1147 (-485)) |#2|)) (-14 -3791 (|#2| |#1| #1="last" |#2|)) (-14 -3791 (|#1| |#1| #2="rest" |#1|)) (-14 -3791 (|#2| |#1| #3="first" |#2|)) (-14 -3794 (|#1| |#1| |#2|)) (-14 -3794 (|#1| |#1| |#1|)) (-14 -3803 (|#2| |#1| #1#)) (-14 -3803 (|#1| |#1| #2#)) (-14 -3804 (|#1| |#1| (-695))) (-14 -3803 (|#2| |#1| #3#)) (-14 -3804 (|#2| |#1|)) (-14 -3805 (|#1| |#2| |#1|)) (-14 -3805 (|#1| |#1| |#1|)) (-14 -3791 (|#2| |#1| #4="value" |#2|)) (-14 -3803 (|#2| |#1| #4#))) (-1065 |#2|) (-1130)) (T -1064))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 99 (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3445 (((-82) $ (-695)) 82 T ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 115 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 103 (|has| $ (-317 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-1354 (($ $) 101 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ (-1 (-82) |#1|) $) 104 (|has| $ (-317 |#1|)) ELT) (($ |#1| $) 102 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 89 T ELT)) (-3446 (((-82) $) 85 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) 107 T ELT)) (-3722 (((-82) $ (-695)) 83 T ELT)) (-2202 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2203 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 110 T ELT)) (-3719 (((-82) $ (-695)) 84 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-2306 (($ $ $ (-485)) 114 T ELT) (($ |#1| $ (-485)) 113 T ELT)) (-2205 (((-584 (-485)) $) 94 T ELT)) (-2206 (((-82) (-485) $) 93 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-2201 (($ $ |#1|) 98 (|has| $ (-1036 |#1|)) ELT)) (-3447 (((-82) $) 86 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 95 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 92 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 106 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-2307 (($ $ (-1147 (-485))) 112 T ELT) (($ $ (-485)) 111 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 105 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-1065 |#1|) (-110) (-1130)) (T -1065))
-((-3447 (*1 *2 *1) (-11 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-3446 (*1 *2 *1) (-11 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))) (-3719 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-3722 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))) (-3445 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))))
-(-12 (-1169 |t#1|) (-594 |t#1|) (-10 -8 (-14 -3447 ((-82) $)) (-14 -3446 ((-82) $)) (-14 -3719 ((-82) $ (-695))) (-14 -3722 ((-82) $ (-695))) (-14 -3445 ((-82) $ (-695)))))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T) ((-1169 |#1|) . T))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) NIL T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1066 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) |#2|) (T -1066))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3448 (((-633 $) $) 17 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3449 (($) 18 T CONST)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3059 (((-82) $ $) 8 T ELT)))
-(((-1067) (-110)) (T -1067))
-((-3449 (*1 *1) (-4 *1 (-1067))) (-3448 (*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-1067)))))
-(-12 (-1014) (-10 -8 (-14 -3449 ($) -3956) (-14 -3448 ((-633 $) $))))
-(((-69) . T) ((-553 (-773)) . T) ((-12) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3451 (((-633 (-1050)) $) 28 T ELT)) (-3450 (((-1050) $) 16 T ELT)) (-3452 (((-1050) $) 18 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3453 (((-447) $) 14 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 38 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1068) (-12 (-996) (-10 -8 (-14 -3453 ((-447) $)) (-14 -3452 ((-1050) $)) (-14 -3451 ((-633 (-1050)) $)) (-14 -3450 ((-1050) $))))) (T -1068))
-((-3453 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1068)))) (-3452 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1068)))) (-3451 (*1 *2 *1) (-11 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))) (-3450 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1068)))))
-((-3456 (((-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (-3454 (((-1070 |#1|) (-1070 |#1|)) 13 T ELT)) (-3457 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 20 T ELT)) (-3455 (((-1070 |#1|) (-1070 |#1|)) 15 T ELT)))
-(((-1069 |#1|) (-10 -7 (-14 -3454 ((-1070 |#1|) (-1070 |#1|))) (-14 -3455 ((-1070 |#1|) (-1070 |#1|))) (-14 -3456 ((-1070 |#1|) (-1070 |#1|))) (-14 -3457 ((-1070 |#1|) (-1070 |#1|) (-485) (-485)))) (-12 (-496) (-117))) (T -1069))
-((-3457 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-12 (-496) (-117))) (-5 *1 (-1069 *4)))) (-3456 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))) (-3455 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))) (-3454 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) NIL T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3800 (($ $) 60 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 93 (|has| $ (-1036 |#1|)) ELT)) (-3788 (($ $ (-485)) 122 (|has| $ (-1036 |#1|)) ELT)) (-3445 (((-82) $ (-695)) NIL T ELT)) (-3462 (((-773) $) 46 (|has| |#1| (-1014)) ELT)) (-3461 (((-82)) 49 (|has| |#1| (-1014)) ELT)) (-3028 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 109 (|has| $ (-1036 |#1|)) ELT) (($ $ (-485) $) 135 T ELT)) (-3789 ((|#1| $ |#1|) 119 (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 114 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 106 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 75 T ELT)) (-3799 ((|#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2325 (($ $) 11 T ELT)) (-3802 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3467 (((-82) (-584 |#1|) $) 128 (|has| |#1| (-1014)) ELT)) (-3468 (($ (-584 |#1|)) 124 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) 74 T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3446 (((-82) $) NIL T ELT)) (-3463 (((-1186) (-485) $) 133 (|has| |#1| (-1014)) ELT)) (-2324 (((-695) $) 131 T ELT)) (-3034 (((-584 $) $) NIL T ELT)) (-3030 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-3722 (((-82) $ (-695)) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3719 (((-82) $ (-695)) NIL T ELT)) (-3033 (((-584 |#1|) $) NIL T ELT)) (-3530 (((-82) $) NIL T ELT)) (-2327 (($ $) 107 T ELT)) (-2328 (((-82) $) 10 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) 90 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3460 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2326 ((|#1| $) 7 T ELT)) (-3804 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3466 (((-2 (|:| |cycle?| (-82)) (|:| -2598 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-3459 (($ (-1 (-82) |#1|) $) 139 T ELT)) (-3458 (($ (-1 (-82) |#1|) $) 140 T ELT)) (-2201 (($ $ |#1|) 85 (|has| $ (-1036 |#1|)) ELT)) (-3772 (($ $ (-485)) 40 T ELT)) (-3447 (((-82) $) 88 T ELT)) (-2329 (((-82) $) 9 T ELT)) (-2330 (((-82) $) 130 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 25 T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) 14 T ELT)) (-3568 (($) 53 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3032 (((-485) $ $) 57 T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3465 (($ (-1 $)) 56 T ELT)) (-3636 (((-82) $) 86 T ELT)) (-3795 (($ $) 87 T ELT)) (-3793 (($ $) 110 (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-3403 (($ $) 52 T ELT)) (-3975 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 68 T ELT)) (-3464 (($ |#1| $) 108 T ELT)) (-3794 (($ $ $) 112 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1036 |#1|)) ELT)) (-3805 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2894 (($ $) 59 T ELT)) (-3950 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) NIL T ELT)) (-3031 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 126 (|has| |#1| (-69)) ELT)))
-(((-1070 |#1|) (-12 (-617 |#1|) (-556 (-584 |#1|)) (-1036 |#1|) (-10 -8 (-14 -3468 ($ (-584 |#1|))) (IF (|has| |#1| (-1014)) (-14 -3467 ((-82) (-584 |#1|) $)) |%noBranch|) (-14 -3466 ((-2 (|:| |cycle?| (-82)) (|:| -2598 (-695)) (|:| |period| (-695))) (-695) $)) (-14 -3465 ($ (-1 $))) (-14 -3464 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-14 -3463 ((-1186) (-485) $)) (-14 -3462 ((-773) $)) (-14 -3461 ((-82)))) |%noBranch|) (-14 -3790 ($ $ (-485) $)) (-14 -3460 ($ (-1 |#1|))) (-14 -3460 ($ (-1 |#1| |#1|) |#1|)) (-14 -3459 ($ (-1 (-82) |#1|) $)) (-14 -3458 ($ (-1 (-82) |#1|) $)))) (-1130)) (T -1070))
-((-3468 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3467 (*1 *2 *3 *1) (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-82)) (-5 *1 (-1070 *4)))) (-3466 (*1 *2 *3 *1) (-11 (-5 *2 (-2 (|:| |cycle?| (-82)) (|:| -2598 (-695)) (|:| |period| (-695)))) (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))) (-3465 (*1 *1 *2) (-11 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3464 (*1 *1 *2 *1) (-11 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))) (-3463 (*1 *2 *3 *1) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)))) (-3462 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3461 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3460 (*1 *1 *2) (-11 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3460 (*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3459 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3458 (*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-((-3805 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15 T ELT)))
-(((-1071 |#1|) (-10 -7 (-14 -3805 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1130)) (T -1071))
-((-3805 (*1 *2 *3) (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) (-4 *4 (-1130)))))
-((-3844 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25 T ELT)) (-3845 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26 T ELT)) (-3846 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16 T ELT)))
-(((-1072 |#1| |#2|) (-10 -7 (-14 -3846 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-14 -3844 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-14 -3845 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1130) (-1130)) (T -1072))
-((-3845 (*1 *2 *2 *3 *4) (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1072 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6)))))
-((-3846 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21 T ELT)))
-(((-1073 |#1| |#2| |#3|) (-10 -7 (-14 -3846 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -1073))
-((-3846 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-1073 *6 *7 *8)))))
-((-2571 (((-82) $ $) NIL (|has| (-114) (-69)) ELT)) (-3429 (($ $) 42 T ELT)) (-3430 (($ $) NIL T ELT)) (-3420 (($ $ (-114)) NIL T ELT) (($ $ (-111)) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 (-114))) ELT)) (-3427 (((-82) $ $) 67 T ELT)) (-3426 (((-82) $ $ (-485)) 62 T ELT)) (-3538 (($ (-485)) 7 T ELT) (($ (-178)) 9 T ELT) (($ (-447)) 11 T ELT)) (-3421 (((-584 $) $ (-114)) 76 T ELT) (((-584 $) $ (-111)) 77 T ELT)) (-1737 (((-82) (-1 (-82) (-114) (-114)) $) NIL T ELT) (((-82) $) NIL (|has| (-114) (-757)) ELT)) (-1735 (($ (-1 (-82) (-114) (-114)) $) NIL (|has| $ (-1036 (-114))) ELT) (($ $) NIL (-11 (|has| $ (-1036 (-114))) (|has| (-114) (-757))) ELT)) (-2912 (($ (-1 (-82) (-114) (-114)) $) NIL T ELT) (($ $) NIL (|has| (-114) (-757)) ELT)) (-3791 (((-114) $ (-485) (-114)) 59 (|has| $ (-1036 (-114))) ELT) (((-114) $ (-1147 (-485)) (-114)) NIL (|has| $ (-1036 (-114))) ELT)) (-3713 (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT)) (-3727 (($) NIL T CONST)) (-3418 (($ $ (-114)) 80 T ELT) (($ $ (-111)) 81 T ELT)) (-2299 (($ $) NIL (|has| $ (-1036 (-114))) ELT)) (-2300 (($ $) NIL T ELT)) (-3423 (($ $ (-1147 (-485)) $) 57 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT)) (-3409 (($ (-114) $) NIL (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT) (($ (-1 (-82) (-114)) $) NIL (|has| $ (-317 (-114))) ELT)) (-3845 (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (|has| (-114) (-69)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL T ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1577 (((-114) $ (-485) (-114)) NIL (|has| $ (-1036 (-114))) ELT)) (-3115 (((-114) $ (-485)) NIL T ELT)) (-3428 (((-82) $ $) 91 T ELT)) (-3422 (((-485) (-1 (-82) (-114)) $) NIL T ELT) (((-485) (-114) $) NIL (|has| (-114) (-69)) ELT) (((-485) (-114) $ (-485)) 64 (|has| (-114) (-69)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-111) $ (-485)) 66 T ELT)) (-3617 (($ (-695) (-114)) 14 T ELT)) (-2202 (((-485) $) 36 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| (-114) (-757)) ELT)) (-3521 (($ (-1 (-82) (-114) (-114)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-114) (-757)) ELT)) (-2611 (((-584 (-114)) $) NIL T ELT)) (-3248 (((-82) (-114) $) NIL (|has| (-114) (-69)) ELT)) (-2203 (((-485) $) 50 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| (-114) (-757)) ELT)) (-3424 (((-82) $ $ (-114)) 92 T ELT)) (-3425 (((-695) $ $ (-114)) 88 T ELT)) (-3329 (($ (-1 (-114) (-114)) $) 41 T ELT)) (-3846 (($ (-1 (-114) (-114)) $) NIL T ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3431 (($ $) 45 T ELT)) (-3432 (($ $) NIL T ELT)) (-3419 (($ $ (-114)) 78 T ELT) (($ $ (-111)) 79 T ELT)) (-3245 (((-1074) $) 46 (|has| (-114) (-1014)) ELT)) (-2306 (($ (-114) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) 87 (|has| (-114) (-1014)) ELT)) (-3804 (((-114) $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 (-114) "failed") (-1 (-82) (-114)) $) NIL T ELT)) (-2201 (($ $ (-114)) NIL (|has| $ (-1036 (-114))) ELT)) (-1733 (((-82) (-1 (-82) (-114)) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-114)))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-248 (-114))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-114) (-114)) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT) (($ $ (-584 (-114)) (-584 (-114))) NIL (-11 (|has| (-114) (-259 (-114))) (|has| (-114) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) (-114) $) NIL (-11 (|has| $ (-317 (-114))) (|has| (-114) (-69))) ELT)) (-2207 (((-584 (-114)) $) NIL T ELT)) (-3406 (((-82) $) 19 T ELT)) (-3568 (($) 16 T ELT)) (-3803 (((-114) $ (-485) (-114)) NIL T ELT) (((-114) $ (-485)) 69 T ELT) (($ $ (-1147 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1732 (((-695) (-114) $) NIL (|has| (-114) (-69)) ELT) (((-695) (-1 (-82) (-114)) $) NIL T ELT)) (-1736 (($ $ $ (-485)) 83 (|has| $ (-1036 (-114))) ELT)) (-3403 (($ $) 24 T ELT)) (-3975 (((-474) $) NIL (|has| (-114) (-554 (-474))) ELT)) (-3533 (($ (-584 (-114))) NIL T ELT)) (-3805 (($ $ (-114)) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3950 (($ (-114)) NIL T ELT) (((-773) $) 35 (|has| (-114) (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| (-114) (-69)) ELT)) (-1734 (((-82) (-1 (-82) (-114)) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| (-114) (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| (-114) (-757)) ELT)) (-3059 (((-82) $ $) 21 (|has| (-114) (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| (-114) (-757)) ELT)) (-2688 (((-82) $ $) 22 (|has| (-114) (-757)) ELT)) (-3961 (((-695) $) 20 T ELT)))
-(((-1074) (-12 (-1059) (-10 -8 (-14 -3538 ($ (-485))) (-14 -3538 ($ (-178))) (-14 -3538 ($ (-447)))))) (T -1074))
-((-3538 (*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-1074)))) (-3538 (*1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-1074)))) (-3538 (*1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-1074)))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) (|has| |#1| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2233 (((-3 |#1| #1="failed") (-1074) $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1074) $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3845 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-1074)) NIL T ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-2234 (((-584 (-1074)) $) NIL T ELT)) (-2235 (((-82) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-584 (-1074)) $) NIL T ELT)) (-2206 (((-82) (-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-3804 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1276 (((-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))))) NIL (-11 (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-1074)) NIL T ELT) ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) (|has| |#1| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 (-1074)) (|:| |entry| |#1|)) (-69)) (|has| |#1| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1075 |#1|) (-1108 (-1074) |#1|) (-1014)) (T -1075))
-NIL
-((-3808 (((-1070 |#1|) (-1070 |#1|)) 83 T ELT)) (-3470 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 39 T ELT)) (-3481 (((-1070 |#1|) (-349 (-485)) (-1070 |#1|)) 131 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3484 (((-1070 |#1|) |#1| (-1070 |#1|)) 135 (|has| |#1| (-311)) ELT)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 97 T ELT)) (-3472 (((-1070 (-485)) (-485)) 63 T ELT)) (-3480 (((-1070 |#1|) (-1070 (-1070 |#1|))) 116 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3807 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 103 T ELT)) (-3942 (((-1070 |#1|) |#1| (-485)) 51 T ELT)) (-3474 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3482 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 133 (|has| |#1| (-311)) ELT)) (-3479 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 115 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3483 (((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|))) 134 (|has| |#1| (-311)) ELT)) (-3812 (((-1070 |#1|) (-1070 |#1|)) 96 T ELT)) (-3813 (((-1070 |#1|) (-1070 |#1|)) 82 T ELT)) (-3806 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 104 T ELT)) (-3815 (((-1070 |#1|) |#1| (-1070 |#1|)) 113 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3471 (((-1070 (-485)) (-485)) 62 T ELT)) (-3473 (((-1070 |#1|) |#1|) 65 T ELT)) (-3809 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 100 T ELT)) (-3476 (((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|)) 72 T ELT)) (-3469 (((-3 (-1070 |#1|) #1#) (-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3810 (((-1070 |#1|) (-1070 |#1|)) 98 T ELT)) (-3771 (((-1070 |#1|) (-1070 |#1|) |#1|) 77 T ELT)) (-3475 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3477 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 78 T ELT)) (-3950 (((-1070 |#1|) |#1|) 73 T ELT)) (-3478 (((-1070 |#1|) (-1070 (-1070 |#1|))) 88 T ELT)) (-3953 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3840 (((-1070 |#1|) (-1070 |#1|)) 21 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23 T ELT)) (-3842 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29 T ELT) (((-1070 |#1|) |#1| (-1070 |#1|)) 26 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27 T ELT)))
-(((-1076 |#1|) (-10 -7 (-14 -3842 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3840 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3840 ((-1070 |#1|) (-1070 |#1|))) (-14 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-14 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-14 -3469 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|) (-1070 |#1|))) (-14 -3953 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3470 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-14 -3942 ((-1070 |#1|) |#1| (-485))) (-14 -3471 ((-1070 (-485)) (-485))) (-14 -3472 ((-1070 (-485)) (-485))) (-14 -3473 ((-1070 |#1|) |#1|)) (-14 -3474 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3475 ((-1070 |#1|) (-1070 |#1|))) (-14 -3476 ((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|))) (-14 -3950 ((-1070 |#1|) |#1|)) (-14 -3771 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-14 -3477 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3813 ((-1070 |#1|) (-1070 |#1|))) (-14 -3808 ((-1070 |#1|) (-1070 |#1|))) (-14 -3478 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-14 -3812 ((-1070 |#1|) (-1070 |#1|))) (-14 -3811 ((-1070 |#1|) (-1070 |#1|))) (-14 -3810 ((-1070 |#1|) (-1070 |#1|))) (-14 -3809 ((-1070 |#1|) (-1070 |#1|) (-485) (-485))) (-14 -3807 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (-14 -3806 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (IF (|has| |#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ((-1070 |#1|) |#1| (-1070 |#1|))) (-14 -3479 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-14 -3480 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-14 -3481 ((-1070 |#1|) (-349 (-485)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-14 -3482 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3483 ((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|)))) (-14 -3484 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-962)) (T -1076))
-((-3484 (*1 *2 *3 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))) (-3482 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3481 (*1 *2 *3 *2) (-11 (-5 *2 (-1070 *4)) (-4 *4 (-35 *3)) (-4 *4 (-962)) (-5 *3 (-349 (-485))) (-5 *1 (-1076 *4)))) (-3480 (*1 *2 *3) (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962)))) (-3479 (*1 *2 *3 *4) (-11 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)))) (-3815 (*1 *2 *3 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3806 (*1 *2 *3 *3 *2) (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3807 (*1 *2 *3 *3 *2) (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3809 (*1 *2 *2 *3 *3) (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3810 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3811 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3812 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3478 (*1 *2 *3) (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-962)))) (-3808 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3813 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3477 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3771 (*1 *2 *2 *3) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3950 (*1 *2 *3) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3476 (*1 *2 *3 *2) (-11 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3475 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3474 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3473 (*1 *2 *3) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3472 (*1 *2 *3) (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3471 (*1 *2 *3) (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3942 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3470 (*1 *2 *2) (|partial| -11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3953 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3469 (*1 *2 *2 *2) (|partial| -11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3840 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3840 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3842 (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-((-3495 (((-1070 |#1|) (-1070 |#1|)) 102 T ELT)) (-3642 (((-1070 |#1|) (-1070 |#1|)) 59 T ELT)) (-3486 (((-2 (|:| -3493 (-1070 |#1|)) (|:| -3494 (-1070 |#1|))) (-1070 |#1|)) 98 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 99 T ELT)) (-3485 (((-2 (|:| -3641 (-1070 |#1|)) (|:| -3637 (-1070 |#1|))) (-1070 |#1|)) 54 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 55 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 104 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3946 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3947 (((-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 105 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 67 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 103 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 62 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 100 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 113 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 88 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 107 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 84 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 117 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 92 T ELT)) (-3504 (((-1070 |#1|) (-1070 |#1|)) 119 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 94 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 115 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 90 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 109 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 86 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 41 T ELT)))
-(((-1077 |#1|) (-10 -7 (-14 -3947 ((-1070 |#1|) (-1070 |#1|))) (-14 -3946 ((-1070 |#1|) (-1070 |#1|))) (-14 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3485 ((-2 (|:| -3641 (-1070 |#1|)) (|:| -3637 (-1070 |#1|))) (-1070 |#1|))) (-14 -3641 ((-1070 |#1|) (-1070 |#1|))) (-14 -3637 ((-1070 |#1|) (-1070 |#1|))) (-14 -3642 ((-1070 |#1|) (-1070 |#1|))) (-14 -3638 ((-1070 |#1|) (-1070 |#1|))) (-14 -3640 ((-1070 |#1|) (-1070 |#1|))) (-14 -3639 ((-1070 |#1|) (-1070 |#1|))) (-14 -3487 ((-1070 |#1|) (-1070 |#1|))) (-14 -3488 ((-1070 |#1|) (-1070 |#1|))) (-14 -3489 ((-1070 |#1|) (-1070 |#1|))) (-14 -3490 ((-1070 |#1|) (-1070 |#1|))) (-14 -3491 ((-1070 |#1|) (-1070 |#1|))) (-14 -3492 ((-1070 |#1|) (-1070 |#1|))) (-14 -3486 ((-2 (|:| -3493 (-1070 |#1|)) (|:| -3494 (-1070 |#1|))) (-1070 |#1|))) (-14 -3493 ((-1070 |#1|) (-1070 |#1|))) (-14 -3494 ((-1070 |#1|) (-1070 |#1|))) (-14 -3495 ((-1070 |#1|) (-1070 |#1|))) (-14 -3496 ((-1070 |#1|) (-1070 |#1|))) (-14 -3497 ((-1070 |#1|) (-1070 |#1|))) (-14 -3498 ((-1070 |#1|) (-1070 |#1|))) (-14 -3499 ((-1070 |#1|) (-1070 |#1|))) (-14 -3500 ((-1070 |#1|) (-1070 |#1|))) (-14 -3501 ((-1070 |#1|) (-1070 |#1|))) (-14 -3502 ((-1070 |#1|) (-1070 |#1|))) (-14 -3503 ((-1070 |#1|) (-1070 |#1|))) (-14 -3504 ((-1070 |#1|) (-1070 |#1|)))) (-35 (-349 (-485)))) (T -1077))
-((-3504 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3503 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3502 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *3) (-11 (-4 *4 (-35 (-349 (-485)))) (-5 *2 (-2 (|:| -3493 (-1070 *4)) (|:| -3494 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (-3492 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3642 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3641 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *3) (-11 (-4 *4 (-35 (-349 (-485)))) (-5 *2 (-2 (|:| -3641 (-1070 *4)) (|:| -3637 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3946 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))) (-3947 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3)))))
-((-3495 (((-1070 |#1|) (-1070 |#1|)) 60 T ELT)) (-3642 (((-1070 |#1|) (-1070 |#1|)) 42 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 63 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 45 T ELT)) (-3946 (((-1070 |#1|) (-1070 |#1|)) 34 T ELT)) (-3947 (((-1070 |#1|) (-1070 |#1|)) 29 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 64 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 46 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 61 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 43 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 58 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 50 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 48 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 53 T ELT)) (-3504 (((-1070 |#1|) (-1070 |#1|)) 72 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 54 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 70 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 52 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 69 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 51 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36 T ELT)))
-(((-1078 |#1|) (-10 -7 (-14 -3947 ((-1070 |#1|) (-1070 |#1|))) (-14 -3946 ((-1070 |#1|) (-1070 |#1|))) (-14 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-14 -3641 ((-1070 |#1|) (-1070 |#1|))) (-14 -3637 ((-1070 |#1|) (-1070 |#1|))) (-14 -3642 ((-1070 |#1|) (-1070 |#1|))) (-14 -3638 ((-1070 |#1|) (-1070 |#1|))) (-14 -3640 ((-1070 |#1|) (-1070 |#1|))) (-14 -3639 ((-1070 |#1|) (-1070 |#1|))) (-14 -3487 ((-1070 |#1|) (-1070 |#1|))) (-14 -3488 ((-1070 |#1|) (-1070 |#1|))) (-14 -3489 ((-1070 |#1|) (-1070 |#1|))) (-14 -3490 ((-1070 |#1|) (-1070 |#1|))) (-14 -3491 ((-1070 |#1|) (-1070 |#1|))) (-14 -3492 ((-1070 |#1|) (-1070 |#1|))) (-14 -3493 ((-1070 |#1|) (-1070 |#1|))) (-14 -3494 ((-1070 |#1|) (-1070 |#1|))) (-14 -3495 ((-1070 |#1|) (-1070 |#1|))) (-14 -3496 ((-1070 |#1|) (-1070 |#1|))) (-14 -3497 ((-1070 |#1|) (-1070 |#1|))) (-14 -3498 ((-1070 |#1|) (-1070 |#1|))) (-14 -3499 ((-1070 |#1|) (-1070 |#1|))) (-14 -3500 ((-1070 |#1|) (-1070 |#1|))) (-14 -3501 ((-1070 |#1|) (-1070 |#1|))) (-14 -3502 ((-1070 |#1|) (-1070 |#1|))) (-14 -3503 ((-1070 |#1|) (-1070 |#1|))) (-14 -3504 ((-1070 |#1|) (-1070 |#1|)))) (-35 (-349 (-485)))) (T -1078))
-((-3504 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3503 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3502 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3492 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3642 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3641 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3946 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))) (-3947 (*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-((-3505 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3506 ((|#2| |#2| |#1|) 19 (|has| |#1| (-257)) ELT)))
-(((-1079 |#1| |#2|) (-10 -7 (-14 -3505 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-257)) (-14 -3506 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1156 |#1|)) (T -1079))
-((-3506 (*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))) (-3505 (*1 *2 *3 *3) (-11 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3514 (($ $ (-584 (-695))) 79 T ELT)) (-3892 (($) 33 T ELT)) (-3523 (($ $) 51 T ELT)) (-3754 (((-584 $) $) 60 T ELT)) (-3529 (((-82) $) 19 T ELT)) (-3507 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3508 (($ $) 80 T ELT)) (-3524 (((-695) $) 47 T ELT)) (-3617 (($) 32 T ELT)) (-3517 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3521 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3509 (((-695) $) 87 T ELT)) (-3530 (((-82) $) 15 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3528 (((-82) $) 22 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3510 (((-144) $) 85 T ELT)) (-3513 (((-855 |#2|) $) 81 T ELT)) (-3512 (((-695) $) 82 T ELT)) (-3511 (((-82) $) 84 T ELT)) (-3515 (($ $ (-584 (-695)) (-144)) 78 T ELT)) (-3522 (($ $) 52 T ELT)) (-3950 (((-773) $) 99 T ELT)) (-3516 (($ $ (-584 (-695)) (-82)) 77 T ELT)) (-3525 (((-584 $) $) 11 T ELT)) (-3526 (($ $ (-695)) 46 T ELT)) (-3527 (($ $) 43 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3518 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3519 (($ $ (-855 |#2|)) 67 T ELT)) (-3520 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3059 (((-82) $ $) 92 T ELT)))
-(((-1080 |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -3530 ((-82) $)) (-14 -3529 ((-82) $)) (-14 -3528 ((-82) $)) (-14 -3617 ($)) (-14 -3892 ($)) (-14 -3527 ($ $)) (-14 -3526 ($ $ (-695))) (-14 -3525 ((-584 $) $)) (-14 -3524 ((-695) $)) (-14 -3523 ($ $)) (-14 -3522 ($ $)) (-14 -3521 ($ $ $)) (-14 -3521 ($ (-584 $))) (-14 -3754 ((-584 $) $)) (-14 -3520 ($ $ (-584 (-695)) (-855 |#2|))) (-14 -3519 ($ $ (-855 |#2|))) (-14 -3518 ($ $ $ (-855 |#2|) (-695))) (-14 -3517 ($ $ (-584 (-695)) (-855 |#2|))) (-14 -3520 ($ $ (-584 (-695)) (-695))) (-14 -3517 ($ $ (-584 (-695)) (-695))) (-14 -3520 ((-695) $ (-855 |#2|))) (-14 -3517 ($ $ (-695) (-855 |#2|))) (-14 -3516 ($ $ (-584 (-695)) (-82))) (-14 -3515 ($ $ (-584 (-695)) (-144))) (-14 -3514 ($ $ (-584 (-695)))) (-14 -3513 ((-855 |#2|) $)) (-14 -3512 ((-695) $)) (-14 -3511 ((-82) $)) (-14 -3510 ((-144) $)) (-14 -3509 ((-695) $)) (-14 -3508 ($ $)) (-14 -3507 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1080))
-((-3530 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3529 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3528 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3617 (*1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3892 (*1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3527 (*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3526 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3525 (*1 *2 *1) (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3524 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3523 (*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3522 (*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3521 (*1 *1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3521 (*1 *1 *2) (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3754 (*1 *2 *1) (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3520 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))) (-3519 (*1 *1 *1 *2) (-11 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)))) (-3518 (*1 *1 *1 *1 *2 *3) (-11 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))) (-3517 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))) (-3520 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)) (-4 *5 (-962)))) (-3517 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)) (-4 *5 (-962)))) (-3520 (*1 *2 *1 *3) (-11 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))) (-3517 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))) (-3516 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-82)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)) (-4 *5 (-962)))) (-3515 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-695))) (-5 *3 (-144)) (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)) (-4 *5 (-962)))) (-3514 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3513 (*1 *2 *1) (-11 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3512 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3511 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3510 (*1 *2 *1) (-11 (-5 *2 (-144)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3509 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))) (-3508 (*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))) (-3507 (*1 *2 *1) (-11 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3531 ((|#2| $) 11 T ELT)) (-3532 ((|#1| $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3533 (($ |#1| |#2|) 9 T ELT)) (-3950 (((-773) $) 16 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1081 |#1| |#2|) (-12 (-1014) (-10 -8 (-14 -3533 ($ |#1| |#2|)) (-14 -3532 (|#1| $)) (-14 -3531 (|#2| $)))) (-1014) (-1014)) (T -1081))
-((-3533 (*1 *1 *2 *3) (-11 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3532 (*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))) (-3531 (*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3534 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1082) (-12 (-996) (-10 -8 (-14 -3534 ((-1050) $))))) (T -1082))
-((-3534 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1082)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-1090 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2063 (((-82) $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-3774 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1090 |#1| |#2| |#3|) $) 42 T ELT)) (-3731 (((-3 (-1090 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3732 (((-1090 |#1| |#2| |#3|) $) 33 T ELT)) (-3495 (($ $) 116 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 92 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) 112 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 88 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3626 (((-485) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) 120 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 96 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1091) #1#) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT) (((-3 (-485) #1#) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT)) (-3159 (((-1090 |#1| |#2| |#3|) $) 140 T ELT) (((-1091) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (((-349 (-485)) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT) (((-485) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT)) (-3733 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-1090 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT)) (-3470 (((-3 $ #1#) $) 54 T ELT)) (-3730 (((-349 (-858 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-349 (-858 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2997 (($) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-3189 (((-82) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2895 (((-82) $) 28 T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-797 (-329))) (|has| |#1| (-311))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-311))) ELT)) (-3775 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3001 (((-1090 |#1| |#2| |#3|) $) 44 (|has| |#1| (-311)) ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3448 (((-633 $) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-311))) ELT)) (-3190 (((-82) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3780 (($ $ (-831)) NIL T ELT)) (-3818 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-485)) 19 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2860 (($ $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3946 (($ $) 81 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2282 (((-631 (-1090 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3782 (($ (-485) (-1090 |#1| |#2| |#3|)) 36 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) 79 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 80 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-311))) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (($ $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3133 (((-1090 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-485)) 158 T ELT)) (-3469 (((-3 $ #1#) $ $) 55 (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) 82 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1090 |#1| |#2| |#3|)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1091)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1090 |#1| |#2| |#3|)))) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1090 |#1| |#2| |#3|))) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1090 |#1| |#2| |#3|)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-259 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1026)) ELT) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-240 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1177 |#2|)) 57 T ELT) (($ $) 56 (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3000 (((-1090 |#1| |#2| |#3|) $) 46 (|has| |#1| (-311)) ELT)) (-3952 (((-485) $) 43 T ELT)) (-3498 (($ $) 122 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 98 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 118 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 94 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 114 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 90 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3975 (((-474) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-311))) ELT) (((-329) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-178) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-329)) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-329)))) (|has| |#1| (-311))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-311))) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-1090 |#1| |#2| |#3|)) 30 T ELT) (($ (-1177 |#2|)) 25 T ELT) (($ (-1091)) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT) (($ (-349 (-485))) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) (|has| |#1| (-35 (-349 (-485))))) ELT)) (-3680 ((|#1| $ (-485)) 77 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-115)) (|has| |#1| (-311))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-3134 (((-1090 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 128 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 104 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-3499 (($ $) 124 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 100 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 132 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 108 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-485)) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 134 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 110 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 130 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 106 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 126 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 102 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3386 (($ $) NIL (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2569 (((-82) $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2570 (((-82) $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2688 (((-82) $ $) NIL (OR (-11 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 49 (|has| |#1| (-311)) ELT) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 50 (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 83 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 137 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1090 |#1| |#2| |#3|)) 48 (|has| |#1| (-311)) ELT) (($ (-1090 |#1| |#2| |#3|) $) 47 (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1083 |#1| |#2| |#3|) (-12 (-1144 |#1| (-1090 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-14 -3950 ($ (-1177 |#2|))) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1083))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-962)) (-13 *5 *3))) (-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-3535 ((|#2| |#2| (-1005 |#2|)) 26 T ELT) ((|#2| |#2| (-1091)) 28 T ELT)))
-(((-1084 |#1| |#2|) (-10 -7 (-14 -3535 (|#2| |#2| (-1091))) (-14 -3535 (|#2| |#2| (-1005 |#2|)))) (-12 (-496) (-951 (-485)) (-581 (-485))) (-12 (-363 |#1|) (-130) (-24) (-1116))) (T -1084))
-((-3535 (*1 *2 *2 *3) (-11 (-5 *3 (-1005 *2)) (-4 *2 (-12 (-363 *4) (-130) (-24) (-1116))) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) (-3535 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-12 (-363 *4) (-130) (-24) (-1116))))))
-((-3535 (((-3 (-349 (-858 |#1|)) (-264 |#1|)) (-349 (-858 |#1|)) (-1005 (-349 (-858 |#1|)))) 31 T ELT) (((-349 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|))) 44 T ELT) (((-3 (-349 (-858 |#1|)) (-264 |#1|)) (-349 (-858 |#1|)) (-1091)) 33 T ELT) (((-349 (-858 |#1|)) (-858 |#1|) (-1091)) 36 T ELT)))
-(((-1085 |#1|) (-10 -7 (-14 -3535 ((-349 (-858 |#1|)) (-858 |#1|) (-1091))) (-14 -3535 ((-3 (-349 (-858 |#1|)) (-264 |#1|)) (-349 (-858 |#1|)) (-1091))) (-14 -3535 ((-349 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|)))) (-14 -3535 ((-3 (-349 (-858 |#1|)) (-264 |#1|)) (-349 (-858 |#1|)) (-1005 (-349 (-858 |#1|)))))) (-12 (-496) (-951 (-485)))) (T -1085))
-((-3535 (*1 *2 *3 *4) (-11 (-5 *4 (-1005 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-264 *5))) (-5 *1 (-1085 *5)))) (-3535 (*1 *2 *3 *4) (-11 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-349 *3)) (-5 *1 (-1085 *5)))) (-3535 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-3 (-349 (-858 *5)) (-264 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-349 (-858 *5))))) (-3535 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-349 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5)))))
-((-2571 (((-82) $ $) 172 T ELT)) (-3191 (((-82) $) 44 T ELT)) (-3770 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3768 (($ (-1086 |#1|)) NIL T ELT)) (-3086 (((-1086 $) $ (-995)) 83 T ELT) (((-1086 |#1|) $) 72 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 97 (|has| |#1| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-695)) 62 T ELT)) (-3763 (($ $ (-695)) 64 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3159 ((|#1| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3759 (($ $ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $ $) 162 (|has| |#1| (-145)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ $) 133 T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3506 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 70 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-995) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3536 (((-773) $ (-773)) 150 T ELT)) (-3775 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 49 T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3087 (($ (-1086 |#1|) (-995)) 74 T ELT) (($ (-1086 $) (-995)) 91 T ELT)) (-3780 (($ $ (-695)) 52 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) 89 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 155 T ELT)) (-2823 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3769 (((-1086 |#1|) $) NIL T ELT)) (-3085 (((-3 (-995) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) 77 T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) 61 T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-995)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (|has| |#1| (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) 51 T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 105 (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3741 (($ $ (-695) |#1| $) 125 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 110 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-496)) ELT)) (-3767 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 173 (|has| |#1| (-311)) ELT)) (-3760 (($ $ (-995)) NIL (|has| |#1| (-145)) ELT) ((|#1| $) 158 (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3952 (((-695) $) 79 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-995) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-773) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-995)) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) 42 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 122 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1086 |#1|) (-12 (-1156 |#1|) (-10 -8 (-14 -3536 ((-773) $ (-773))) (-14 -3741 ($ $ (-695) |#1| $)))) (-962)) (T -1086))
-((-3536 (*1 *2 *1 *2) (-11 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) (-3741 (*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))))
-((-3846 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13 T ELT)))
-(((-1087 |#1| |#2|) (-10 -7 (-14 -3846 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-962) (-962)) (T -1087))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6)))))
-((-3974 (((-347 (-1086 (-349 |#4|))) (-1086 (-349 |#4|))) 51 T ELT)) (-3735 (((-347 (-1086 (-349 |#4|))) (-1086 (-349 |#4|))) 52 T ELT)))
-(((-1088 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3735 ((-347 (-1086 (-349 |#4|))) (-1086 (-349 |#4|)))) (-14 -3974 ((-347 (-1086 (-349 |#4|))) (-1086 (-349 |#4|))))) (-718) (-757) (-392) (-862 |#3| |#1| |#2|)) (T -1088))
-((-3974 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-347 (-1086 (-349 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-349 *7))))) (-3735 (*1 *2 *3) (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-347 (-1086 (-349 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-349 *7))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) NIL T ELT) (($ $ (-349 (-485)) (-349 (-485))) NIL T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3159 (((-1083 |#1| |#2| |#3|) $) NIL T ELT) (((-1090 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-349 (-485)) $) 59 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3785 (($ (-349 (-485)) (-1083 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) NIL T ELT) (((-349 (-485)) $ (-349 (-485))) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-349 (-485))) 20 T ELT) (($ $ (-995) (-349 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3783 (((-1083 |#1| |#2| |#3|) $) 41 T ELT)) (-3781 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1083 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3952 (((-349 (-485)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-1083 |#1| |#2| |#3|)) 30 T ELT) (($ (-1090 |#1| |#2| |#3|)) 31 T ELT) (($ (-1177 |#2|)) 26 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 22 T CONST)) (-2669 (($) 16 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1089 |#1| |#2| |#3|) (-12 (-1165 |#1| (-1083 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1090 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1089))
-((-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 129 T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 119 T ELT)) (-3814 (((-1149 |#2| |#1|) $ (-695)) 69 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3495 (($ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1070 |#1|)) 113 T ELT)) (-3497 (($ $) 177 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 25 T ELT)) (-3819 (($ $) 28 T ELT)) (-3817 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2895 (((-82) $) 124 T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) NIL T ELT)) (-3818 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) 13 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) 135 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3815 (($ $) 133 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 134 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3772 (($ $ (-695)) 15 T ELT)) (-3469 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3947 (($ $) 137 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-695)))) ELT)) (-3803 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1026)) ELT)) (-3761 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 31 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-3498 (($ $) 179 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 175 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-145)) ELT) (($ (-1149 |#2| |#1|)) 55 T ELT) (($ (-1177 |#2|)) 36 T ELT)) (-3820 (((-1070 |#1|) $) 101 T ELT)) (-3680 ((|#1| $ (-695)) 121 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 58 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 185 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) 181 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 189 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-695)) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-695)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 191 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 187 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 183 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 17 T CONST)) (-2669 (($) 20 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3842 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-311)) ELT) (($ $ $) 138 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 141 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1090 |#1| |#2| |#3|) (-12 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-14 -3950 ($ (-1149 |#2| |#1|))) (-14 -3814 ((-1149 |#2| |#1|) $ (-695))) (-14 -3950 ($ (-1177 |#2|))) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1090))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-962)) (-13 *5 (-1091)) (-13 *6 *4))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-962)) (-13 *5 *3))) (-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3540 (($ $ (-584 (-773))) 48 T ELT)) (-3541 (($ $ (-584 (-773))) 46 T ELT)) (-3538 (((-1074) $) 88 T ELT)) (-3543 (((-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3544 (((-82) $) 86 T ELT)) (-3542 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3727 (($) 151 T CONST)) (-3160 (((-3 (-447) "failed") $) 155 T ELT)) (-3159 (((-447) $) NIL T ELT)) (-3546 (((-1186)) 123 T ELT)) (-2799 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 55 T ELT) (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 62 T ELT)) (-3617 (($) 109 T ELT) (($ $) 118 T ELT)) (-3545 (($ $) 87 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-2860 (($ $ $) NIL T ELT)) (-3537 (((-584 $) $) 124 T ELT)) (-3245 (((-1074) $) 101 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3803 (($ $ (-584 (-773))) 47 T ELT)) (-3975 (((-474) $) 33 T ELT) (((-1091) $) 34 T ELT) (((-801 (-485)) $) 66 T ELT) (((-801 (-329)) $) 64 T ELT)) (-3950 (((-773) $) 41 T ELT) (($ (-1074)) 35 T ELT) (($ (-447)) 153 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3539 (($ $ (-584 (-773))) 49 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 37 T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) 38 T ELT)))
-(((-1091) (-12 (-757) (-554 (-474)) (-554 (-1091)) (-556 (-1074)) (-951 (-447)) (-554 (-801 (-485))) (-554 (-801 (-329))) (-797 (-485)) (-797 (-329)) (-10 -8 (-14 -3617 ($)) (-14 -3617 ($ $)) (-14 -3546 ((-1186))) (-14 -3545 ($ $)) (-14 -3544 ((-82) $)) (-14 -3543 ((-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-14 -3542 ($ $ (-584 (-584 (-773))))) (-14 -3542 ($ $ (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-14 -3541 ($ $ (-584 (-773)))) (-14 -3540 ($ $ (-584 (-773)))) (-14 -3539 ($ $ (-584 (-773)))) (-14 -3803 ($ $ (-584 (-773)))) (-14 -3538 ((-1074) $)) (-14 -3537 ((-584 $) $)) (-14 -3727 ($) -3956)))) (T -1091))
-((-3617 (*1 *1) (-5 *1 (-1091))) (-3617 (*1 *1 *1) (-5 *1 (-1091))) (-3546 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1091)))) (-3545 (*1 *1 *1) (-5 *1 (-1091))) (-3544 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1091)))) (-3543 (*1 *2 *1) (-11 (-5 *2 (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3542 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))) (-3542 (*1 *1 *1 *2) (-11 (-5 *2 (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3541 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3539 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3538 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3537 (*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))) (-3727 (*1 *1) (-5 *1 (-1091))))
-((-3547 (((-1180 |#1|) |#1| (-831)) 18 T ELT) (((-1180 |#1|) (-584 |#1|)) 25 T ELT)))
-(((-1092 |#1|) (-10 -7 (-14 -3547 ((-1180 |#1|) (-584 |#1|))) (-14 -3547 ((-1180 |#1|) |#1| (-831)))) (-962)) (T -1092))
-((-3547 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))) (-3547 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3159 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| |#1| (-951 (-349 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3506 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| (-885) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 18 T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-885)) NIL T ELT)) (-2823 (((-885) $) NIL T ELT)) (-1626 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#1| $) NIL T ELT)) (-3741 (($ $ (-885) |#1| $) NIL (-11 (|has| (-885) (-101)) (|has| |#1| (-496))) ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3952 (((-885) $) NIL T ELT)) (-2820 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-951 (-349 (-485))))) ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-885)) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1093 |#1|) (-12 (-276 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-885) (-101)) (-14 -3741 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962)) (T -1093))
-((-3741 (*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-885)) (-4 *2 (-101)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
-((-3548 (((-1095) (-1091) $) 26 T ELT)) (-3558 (($) 30 T ELT)) (-3550 (((-3 (|:| |fst| (-376)) (|:| -3914 #1="void")) (-1091) $) 23 T ELT)) (-3552 (((-1186) (-1091) (-3 (|:| |fst| (-376)) (|:| -3914 #1#)) $) 42 T ELT) (((-1186) (-1091) (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) 43 T ELT) (((-1186) (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) 44 T ELT)) (-3560 (((-1186) (-1091)) 59 T ELT)) (-3551 (((-1186) (-1091) $) 56 T ELT) (((-1186) (-1091)) 57 T ELT) (((-1186)) 58 T ELT)) (-3556 (((-1186) (-1091)) 38 T ELT)) (-3554 (((-1091)) 37 T ELT)) (-3568 (($) 35 T ELT)) (-3567 (((-378) (-1091) (-378) (-1091) $) 46 T ELT) (((-378) (-584 (-1091)) (-378) (-1091) $) 50 T ELT) (((-378) (-1091) (-378)) 47 T ELT) (((-378) (-1091) (-378) (-1091)) 51 T ELT)) (-3555 (((-1091)) 36 T ELT)) (-3950 (((-773) $) 29 T ELT)) (-3557 (((-1186)) 31 T ELT) (((-1186) (-1091)) 34 T ELT)) (-3549 (((-584 (-1091)) (-1091) $) 25 T ELT)) (-3553 (((-1186) (-1091) (-584 (-1091)) $) 39 T ELT) (((-1186) (-1091) (-584 (-1091))) 40 T ELT) (((-1186) (-584 (-1091))) 41 T ELT)))
-(((-1094) (-12 (-553 (-773)) (-10 -8 (-14 -3558 ($)) (-14 -3557 ((-1186))) (-14 -3557 ((-1186) (-1091))) (-14 -3567 ((-378) (-1091) (-378) (-1091) $)) (-14 -3567 ((-378) (-584 (-1091)) (-378) (-1091) $)) (-14 -3567 ((-378) (-1091) (-378))) (-14 -3567 ((-378) (-1091) (-378) (-1091))) (-14 -3556 ((-1186) (-1091))) (-14 -3555 ((-1091))) (-14 -3554 ((-1091))) (-14 -3553 ((-1186) (-1091) (-584 (-1091)) $)) (-14 -3553 ((-1186) (-1091) (-584 (-1091)))) (-14 -3553 ((-1186) (-584 (-1091)))) (-14 -3552 ((-1186) (-1091) (-3 (|:| |fst| (-376)) (|:| -3914 #1="void")) $)) (-14 -3552 ((-1186) (-1091) (-3 (|:| |fst| (-376)) (|:| -3914 #1#)))) (-14 -3552 ((-1186) (-3 (|:| |fst| (-376)) (|:| -3914 #1#)))) (-14 -3551 ((-1186) (-1091) $)) (-14 -3551 ((-1186) (-1091))) (-14 -3551 ((-1186))) (-14 -3560 ((-1186) (-1091))) (-14 -3568 ($)) (-14 -3550 ((-3 (|:| |fst| (-376)) (|:| -3914 #1#)) (-1091) $)) (-14 -3549 ((-584 (-1091)) (-1091) $)) (-14 -3548 ((-1095) (-1091) $))))) (T -1094))
-((-3558 (*1 *1) (-5 *1 (-1094))) (-3557 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3557 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3567 (*1 *2 *3 *2 *3 *1) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3567 (*1 *2 *3 *2 *4 *1) (-11 (-5 *2 (-378)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-3567 (*1 *2 *3 *2) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3567 (*1 *2 *3 *2 *3) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3556 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3555 (*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3554 (*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3553 (*1 *2 *3 *4 *1) (-11 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3553 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3553 (*1 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4 *1) (-11 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3914 #1="void"))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3) (-11 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3560 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3568 (*1 *1) (-5 *1 (-1094))) (-3550 (*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *1 (-1094)))) (-3549 (*1 *2 *3 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-3548 (*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
-((-3562 (((-584 (-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $) 66 T ELT)) (-3564 (((-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-376) $) 47 T ELT)) (-3559 (($ (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| (-378))))) 17 T ELT)) (-3560 (((-1186) $) 73 T ELT)) (-3565 (((-584 (-1091)) $) 22 T ELT)) (-3561 (((-1016) $) 60 T ELT)) (-3566 (((-378) (-1091) $) 27 T ELT)) (-3563 (((-584 (-1091)) $) 30 T ELT)) (-3568 (($) 19 T ELT)) (-3567 (((-378) (-584 (-1091)) (-378) $) 25 T ELT) (((-378) (-1091) (-378) $) 24 T ELT)) (-3950 (((-773) $) 12 T ELT) (((-1103 (-1091) (-378)) $) 13 T ELT)))
-(((-1095) (-12 (-553 (-773)) (-10 -8 (-14 -3950 ((-1103 (-1091) (-378)) $)) (-14 -3568 ($)) (-14 -3567 ((-378) (-584 (-1091)) (-378) $)) (-14 -3567 ((-378) (-1091) (-378) $)) (-14 -3566 ((-378) (-1091) $)) (-14 -3565 ((-584 (-1091)) $)) (-14 -3564 ((-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-376) $)) (-14 -3563 ((-584 (-1091)) $)) (-14 -3562 ((-584 (-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $)) (-14 -3561 ((-1016) $)) (-14 -3560 ((-1186) $)) (-14 -3559 ($ (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| (-378))))))))) (T -1095))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-1103 (-1091) (-378))) (-5 *1 (-1095)))) (-3568 (*1 *1) (-5 *1 (-1095))) (-3567 (*1 *2 *3 *2 *1) (-11 (-5 *2 (-378)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))) (-3567 (*1 *2 *3 *2 *1) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3566 (*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-378)) (-5 *1 (-1095)))) (-3565 (*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3564 (*1 *2 *3 *1) (-11 (-5 *3 (-376)) (-5 *2 (-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) (-5 *1 (-1095)))) (-3563 (*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3562 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-3 (|:| -3545 (-1091)) (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) (-5 *1 (-1095)))) (-3561 (*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3560 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1095)))) (-3559 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| (-378))))) (-5 *1 (-1095)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3160 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-178) #1#) $) 35 T ELT) (((-3 (-447) #1#) $) 43 T ELT) (((-3 (-1074) #1#) $) 47 T ELT)) (-3159 (((-485) $) 30 T ELT) (((-178) $) 36 T ELT) (((-447) $) 40 T ELT) (((-1074) $) 48 T ELT)) (-3573 (((-82) $) 53 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3572 (((-3 (-485) (-178) (-447) (-1074) $) $) 56 T ELT)) (-3571 (((-584 $) $) 58 T ELT)) (-3975 (((-1016) $) 24 T ELT) (($ (-1016)) 25 T ELT)) (-3570 (((-82) $) 57 T ELT)) (-3950 (((-773) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-178)) 32 T ELT) (($ (-447)) 38 T ELT) (($ (-1074)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-178) $) 37 T ELT) (((-447) $) 41 T ELT) (((-1074) $) 49 T ELT)) (-3569 (((-82) $ (|[\|\|]| (-485))) 10 T ELT) (((-82) $ (|[\|\|]| (-178))) 13 T ELT) (((-82) $ (|[\|\|]| (-447))) 19 T ELT) (((-82) $ (|[\|\|]| (-1074))) 16 T ELT)) (-3574 (($ (-447) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3575 (((-485) $) 27 T ELT) (((-178) $) 33 T ELT) (((-447) $) 39 T ELT) (((-1074) $) 45 T ELT)) (-3059 (((-82) $ $) 7 T ELT)))
-(((-1096) (-12 (-1176) (-1014) (-951 (-485)) (-951 (-178)) (-951 (-447)) (-951 (-1074)) (-553 (-474)) (-10 -8 (-14 -3975 ((-1016) $)) (-14 -3975 ($ (-1016))) (-14 -3950 ((-485) $)) (-14 -3575 ((-485) $)) (-14 -3950 ((-178) $)) (-14 -3575 ((-178) $)) (-14 -3950 ((-447) $)) (-14 -3575 ((-447) $)) (-14 -3950 ((-1074) $)) (-14 -3575 ((-1074) $)) (-14 -3574 ($ (-447) (-584 $))) (-14 -3574 ($ $ (-584 $))) (-14 -3573 ((-82) $)) (-14 -3572 ((-3 (-485) (-178) (-447) (-1074) $) $)) (-14 -3571 ((-584 $) $)) (-14 -3570 ((-82) $)) (-14 -3569 ((-82) $ (|[\|\|]| (-485)))) (-14 -3569 ((-82) $ (|[\|\|]| (-178)))) (-14 -3569 ((-82) $ (|[\|\|]| (-447)))) (-14 -3569 ((-82) $ (|[\|\|]| (-1074))))))) (T -1096))
-((-3975 (*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3975 (*1 *1 *2) (-11 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-1096)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-1096)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3575 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3574 (*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))) (-3574 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1096)))) (-3572 (*1 *2 *1) (-11 (-5 *2 (-3 (-485) (-178) (-447) (-1074) (-1096))) (-5 *1 (-1096)))) (-3571 (*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3570 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1096)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-82)) (-5 *1 (-1096)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-82)) (-5 *1 (-1096)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82)) (-5 *1 (-1096)))) (-3569 (*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82)) (-5 *1 (-1096)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3139 (((-695)) 21 T ELT)) (-3727 (($) 10 T CONST)) (-2997 (($) 25 T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2012 (((-831) $) 23 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) 22 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)))
-(((-1097 |#1|) (-12 (-753) (-10 -8 (-14 -3727 ($) -3956))) (-831)) (T -1097))
-((-3727 (*1 *1) (-11 (-5 *1 (-1097 *2)) (-13 *2 (-831)))))
-((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) 24 T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) 18 T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2860 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3728 (($ $ $) 20 T ELT)) (-3729 (($ $ $) 19 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) 22 T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) 21 T ELT)))
-(((-1098 |#1|) (-12 (-753) (-605) (-10 -8 (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956))) (-831)) (T -1098))
-((-3729 (*1 *1 *1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831)))) (-3728 (*1 *1 *1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831)))) (-3727 (*1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831)))))
-((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 9 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 7 T ELT)))
-(((-1099) (-1014)) (T -1099))
-NIL
-((-3577 (((-584 (-584 (-858 |#1|))) (-584 (-349 (-858 |#1|))) (-584 (-1091))) 69 T ELT)) (-3576 (((-584 (-248 (-349 (-858 |#1|)))) (-248 (-349 (-858 |#1|)))) 81 T ELT) (((-584 (-248 (-349 (-858 |#1|)))) (-349 (-858 |#1|))) 77 T ELT) (((-584 (-248 (-349 (-858 |#1|)))) (-248 (-349 (-858 |#1|))) (-1091)) 82 T ELT) (((-584 (-248 (-349 (-858 |#1|)))) (-349 (-858 |#1|)) (-1091)) 76 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-248 (-349 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-349 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-248 (-349 (-858 |#1|)))) (-584 (-1091))) 109 T ELT) (((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-349 (-858 |#1|))) (-584 (-1091))) 106 T ELT)))
-(((-1100 |#1|) (-10 -7 (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-349 (-858 |#1|))) (-584 (-1091)))) (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-248 (-349 (-858 |#1|)))) (-584 (-1091)))) (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-349 (-858 |#1|))))) (-14 -3576 ((-584 (-584 (-248 (-349 (-858 |#1|))))) (-584 (-248 (-349 (-858 |#1|)))))) (-14 -3576 ((-584 (-248 (-349 (-858 |#1|)))) (-349 (-858 |#1|)) (-1091))) (-14 -3576 ((-584 (-248 (-349 (-858 |#1|)))) (-248 (-349 (-858 |#1|))) (-1091))) (-14 -3576 ((-584 (-248 (-349 (-858 |#1|)))) (-349 (-858 |#1|)))) (-14 -3576 ((-584 (-248 (-349 (-858 |#1|)))) (-248 (-349 (-858 |#1|))))) (-14 -3577 ((-584 (-584 (-858 |#1|))) (-584 (-349 (-858 |#1|))) (-584 (-1091))))) (-496)) (T -1100))
-((-3577 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-248 (-349 (-858 *4)))))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-349 (-858 *4))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-248 (-349 (-858 *5)))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-349 (-858 *5))))) (-3576 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-248 (-349 (-858 *4))))))) (-3576 (*1 *2 *3) (-11 (-5 *3 (-584 (-349 (-858 *4)))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-1100 *4)))) (-3576 (*1 *2 *3 *4) (-11 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-1100 *5)) (-5 *3 (-584 (-248 (-349 (-858 *5))))))) (-3576 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-1100 *5)))))
-((-3582 (((-1074)) 7 T ELT)) (-3579 (((-1074)) 11 T CONST)) (-3578 (((-1186) (-1074)) 13 T ELT)) (-3581 (((-1074)) 8 T CONST)) (-3580 (((-100)) 10 T CONST)))
-(((-1101) (-12 (-1130) (-10 -7 (-14 -3582 ((-1074))) (-14 -3581 ((-1074)) -3956) (-14 -3580 ((-100)) -3956) (-14 -3579 ((-1074)) -3956) (-14 -3578 ((-1186) (-1074)))))) (T -1101))
-((-3582 (*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3581 (*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3580 (*1 *2) (-11 (-5 *2 (-100)) (-5 *1 (-1101)))) (-3579 (*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3578 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101)))))
-((-3586 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3589 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3590 (((-1104 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3592 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3595 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3594 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3591 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3593 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3585 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3584 (((-584 (-584 (-584 |#1|))) (-1 (-82) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3583 (((-2 (|:| |fs| (-82)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-82) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3587 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3588 (((-584 (-584 |#1|)) (-1104 (-584 |#1|))) 60 T ELT)))
-(((-1102 |#1|) (-10 -7 (-14 -3583 ((-2 (|:| |fs| (-82)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-82) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-14 -3584 ((-584 (-584 (-584 |#1|))) (-1 (-82) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-14 -3585 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-14 -3586 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-14 -3587 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-14 -3588 ((-584 (-584 |#1|)) (-1104 (-584 |#1|)))) (-14 -3589 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-14 -3590 ((-1104 (-584 |#1|)) (-584 |#1|))) (-14 -3591 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-14 -3592 ((-584 (-584 |#1|)) (-584 |#1|))) (-14 -3593 ((-584 |#1|) (-584 |#1|))) (-14 -3594 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-14 -3595 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1102))
-((-3595 (*1 *2 *3) (-11 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3594 (*1 *2 *3 *4 *5 *4 *4 *4) (-11 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))) (-3593 (*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3592 (*1 *2 *3) (-11 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3591 (*1 *2 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3590 (*1 *2 *3) (-11 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3589 (*1 *2 *3) (-11 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 *4))))) (-3588 (*1 *2 *3) (-11 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)))) (-3587 (*1 *2 *3) (-11 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-4 *4 (-757)))) (-3586 (*1 *2 *2 *3) (-11 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3585 (*1 *2 *3 *2) (-11 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3584 (*1 *2 *3 *4 *2) (-11 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-82) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))) (-3583 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 (-82) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-82)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1102 *6)) (-5 *5 (-584 *4)))))
-((-2571 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3602 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-1354 (($ $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (-11 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2234 (((-584 |#1|) $) NIL T ELT)) (-2235 (((-82) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-584 |#1|) $) NIL T ELT)) (-2206 (((-82) |#1| $) NIL T ELT)) (-3246 (((-1034) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3804 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) NIL (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#2| $) NIL (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3950 (((-773) $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) NIL (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69))) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1103 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -1103))
-NIL
-((-3596 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3597 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3950 (((-773) $) 33 T ELT)))
-(((-1104 |#1|) (-10 -8 (-14 -3596 ($ (-584 (-584 |#1|)))) (-14 -3597 ((-584 (-584 |#1|)) $)) (-14 -3950 ((-773) $))) (-1014)) (T -1104))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3597 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3596 (*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3598 (($ |#1| (-52)) 11 T ELT)) (-3545 ((|#1| $) 13 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2636 (((-82) $ |#1|) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2524 (((-52) $) 15 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1105 |#1|) (-12 (-748 |#1|) (-10 -8 (-14 -3598 ($ |#1| (-52))))) (-1014)) (T -1105))
-((-3598 (*1 *1 *2 *3) (-11 (-5 *3 (-52)) (-5 *1 (-1105 *2)) (-4 *2 (-1014)))))
-((-3599 ((|#1| (-584 |#1|)) 46 T ELT)) (-3601 ((|#1| |#1| (-485)) 24 T ELT)) (-3600 (((-1086 |#1|) |#1| (-831)) 20 T ELT)))
-(((-1106 |#1|) (-10 -7 (-14 -3599 (|#1| (-584 |#1|))) (-14 -3600 ((-1086 |#1|) |#1| (-831))) (-14 -3601 (|#1| |#1| (-485)))) (-311)) (T -1106))
-((-3601 (*1 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-311)))) (-3600 (*1 *2 *3 *4) (-11 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-311)))) (-3599 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-311)))))
-((-3602 (($) 10 T ELT) (($ (-584 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3408 (($ (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-82) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2611 (((-584 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1275 (((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3612 (($ (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2205 (((-584 |#2|) $) 19 T ELT)) (-2206 (((-82) |#2| $) 61 T ELT)) (-1731 (((-3 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-82) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1276 (((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-2207 (((-584 |#3|) $) 37 T ELT)) (-3950 (((-773) $) 27 T ELT)) (-3059 (((-82) $ $) 47 T ELT)))
-(((-1107 |#1| |#2| |#3|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3846 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-14 -3602 (|#1| (-584 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))))) (-14 -3602 (|#1|)) (-14 -3846 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-14 -2611 ((-584 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-14 -1731 ((-3 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) #1="failed") (-1 (-82) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-14 -3408 ((-3 |#3| #1#) |#2| |#1|)) (-14 -3329 (|#1| (-1 |#3| |#3|) |#1|)) (-14 -3846 (|#1| (-1 |#3| |#3|) |#1|)) (-14 -2207 ((-584 |#3|) |#1|)) (-14 -2206 ((-82) |#2| |#1|)) (-14 -2205 ((-584 |#2|) |#1|)) (-14 -3408 (|#1| (-1 (-82) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-14 -3408 (|#1| (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-14 -1275 ((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-14 -3612 (|#1| (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-14 -1276 ((-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) |#1|)) (-14 -3329 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|)) (-14 -3846 (|#1| (-1 (-2 (|:| -3864 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3864 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1014) (-1014)) (T -1107))
-NIL
-((-2571 (((-82) $ $) 18 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3602 (($) 95 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (-2200 (((-1186) $ |#1| |#1|) 82 (|has| $ (-1036 |#2|)) ELT)) (-3791 ((|#2| $ |#1| |#2|) 70 (|has| $ (-1036 |#2|)) ELT)) (-1571 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3713 (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 59 T ELT)) (-3727 (($) 6 T CONST)) (-1354 (($ $) 51 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT)) (-3408 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 60 T ELT)) (-3409 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 50 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) ELT)) (-3845 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 111 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 107 T ELT) (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 106 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 69 (|has| $ (-1036 |#2|)) ELT)) (-3115 ((|#2| $ |#1|) 71 T ELT)) (-2202 ((|#1| $) 79 (|has| |#1| (-757)) ELT)) (-2611 (((-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 105 T ELT)) (-3248 (((-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 110 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT)) (-2203 ((|#1| $) 78 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 39 T ELT) (($ (-1 |#2| |#2|) $) 63 T ELT)) (-3846 (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 64 T ELT) (($ (-1 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 96 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 93 T ELT)) (-3245 (((-1074) $) 21 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2234 (((-584 |#1|) $) 61 T ELT)) (-2235 (((-82) |#1| $) 62 T ELT)) (-1275 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-3612 (($ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-2205 (((-584 |#1|) $) 76 T ELT)) (-2206 (((-82) |#1| $) 75 T ELT)) (-3246 (((-1034) $) 20 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3804 ((|#2| $) 80 (|has| |#1| (-757)) ELT)) (-1731 (((-3 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 108 T ELT)) (-2201 (($ $ |#2|) 81 (|has| $ (-1036 |#2|)) ELT)) (-1276 (((-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 37 T ELT)) (-1733 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-3771 (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 25 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 24 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 23 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 22 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 68 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 67 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-248 |#2|)) 66 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-248 |#2|))) 65 (-11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 100 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) 99 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 98 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-248 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))))) 97 (-11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#2| $) 77 (-11 (|has| $ (-317 |#2|)) (|has| |#2| (-69))) ELT)) (-2207 (((-584 |#2|) $) 74 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (-1467 (($) 46 T ELT) (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1732 (((-695) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) $) 109 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) ELT) (((-695) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 104 T ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 52 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3533 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (-3950 (((-773) $) 16 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-82) $ $) 19 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-1277 (($ (-584 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (-1734 (((-82) (-1 (-82) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3059 (((-82) $ $) 17 (OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-69)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69))) ELT)) (-3961 (((-695) $) 101 T ELT)))
-(((-1108 |#1| |#2|) (-110) (-1014) (-1014)) (T -1108))
-((-3602 (*1 *1) (-11 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3602 (*1 *1 *2) (-11 (-5 *2 (-584 (-2 (|:| -3864 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) (-3846 (*1 *1 *2 *1 *1) (-11 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(-12 (-550 |t#1| |t#2|) (-317 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-14 -3602 ($)) (-14 -3602 ($ (-584 (-2 (|:| -3864 |t#1|) (|:| |entry| |t#2|))))) (-14 -3846 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-31) . T) ((-73 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-69) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-69)) (|has| |#2| (-1014)) (|has| |#2| (-69))) ((-553 (-773)) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-121 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-182 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-192 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-242 |#1| |#2|) . T) ((-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-259 |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-317 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-380 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-380 |#2|) . T) ((-429 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) -11 (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -11 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1014))) ((-12) . T) ((-550 |#1| |#2|) . T) ((-1014) OR (|has| (-2 (|:| -3864 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3864 |#1|) (|:| |entry| |#2|))) . T) ((-1036 |#2|) . T) ((-1130) . T))
-((-3608 (((-82)) 29 T ELT)) (-3605 (((-1186) (-1074)) 31 T ELT)) (-3609 (((-82)) 41 T ELT)) (-3606 (((-1186)) 39 T ELT)) (-3604 (((-1186) (-1074) (-1074)) 30 T ELT)) (-3610 (((-82)) 42 T ELT)) (-3612 (((-1186) |#1| |#2|) 53 T ELT)) (-3603 (((-1186)) 26 T ELT)) (-3611 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3607 (((-1186)) 40 T ELT)))
-(((-1109 |#1| |#2|) (-10 -7 (-14 -3603 ((-1186))) (-14 -3604 ((-1186) (-1074) (-1074))) (-14 -3605 ((-1186) (-1074))) (-14 -3606 ((-1186))) (-14 -3607 ((-1186))) (-14 -3608 ((-82))) (-14 -3609 ((-82))) (-14 -3610 ((-82))) (-14 -3611 ((-3 |#2| "failed") |#1|)) (-14 -3612 ((-1186) |#1| |#2|))) (-1014) (-1014)) (T -1109))
-((-3612 (*1 *2 *3 *4) (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3611 (*1 *2 *3) (|partial| -11 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))) (-3610 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3609 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3608 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3607 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3606 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3605 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3604 (*1 *2 *3 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3603 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3618 (((-584 (-1074)) $) 37 T ELT)) (-3614 (((-584 (-1074)) $ (-584 (-1074))) 40 T ELT)) (-3613 (((-584 (-1074)) $ (-584 (-1074))) 39 T ELT)) (-3615 (((-584 (-1074)) $ (-584 (-1074))) 41 T ELT)) (-3616 (((-584 (-1074)) $) 36 T ELT)) (-3617 (($) 26 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3619 (((-584 (-1074)) $) 38 T ELT)) (-3620 (((-1186) $ (-485)) 33 T ELT) (((-1186) $) 34 T ELT)) (-3975 (($ (-773) (-485)) 31 T ELT) (($ (-773) (-485) (-773)) NIL T ELT)) (-3950 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1110) (-12 (-1014) (-556 (-773)) (-10 -8 (-14 -3975 ($ (-773) (-485))) (-14 -3975 ($ (-773) (-485) (-773))) (-14 -3620 ((-1186) $ (-485))) (-14 -3620 ((-1186) $)) (-14 -3619 ((-584 (-1074)) $)) (-14 -3618 ((-584 (-1074)) $)) (-14 -3617 ($)) (-14 -3616 ((-584 (-1074)) $)) (-14 -3615 ((-584 (-1074)) $ (-584 (-1074)))) (-14 -3614 ((-584 (-1074)) $ (-584 (-1074)))) (-14 -3613 ((-584 (-1074)) $ (-584 (-1074))))))) (T -1110))
-((-3975 (*1 *1 *2 *3) (-11 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3975 (*1 *1 *2 *3 *2) (-11 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3620 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3620 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3617 (*1 *1) (-5 *1 (-1110))) (-3616 (*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3615 (*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3614 (*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3613 (*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-((-3950 (((-1110) |#1|) 11 T ELT)))
-(((-1111 |#1|) (-10 -7 (-14 -3950 ((-1110) |#1|))) (-1014)) (T -1111))
-((-3950 (*1 *2 *3) (-11 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3625 (((-1074) $ (-1074)) 21 T ELT) (((-1074) $) 20 T ELT)) (-1698 (((-1074) $ (-1074)) 19 T ELT)) (-1702 (($ $ (-1074)) NIL T ELT)) (-3623 (((-3 (-1074) #1="failed") $) 11 T ELT)) (-3624 (((-1074) $) 8 T ELT)) (-3622 (((-3 (-1074) #1#) $) 12 T ELT)) (-1699 (((-1074) $) 9 T ELT)) (-1703 (($ (-337)) NIL T ELT) (($ (-337) (-1074)) NIL T ELT)) (-3545 (((-337) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3621 (((-82) $) 25 T ELT)) (-3950 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1112) (-12 (-313 (-337) (-1074)) (-10 -8 (-14 -3625 ((-1074) $ (-1074))) (-14 -3625 ((-1074) $)) (-14 -3624 ((-1074) $)) (-14 -3623 ((-3 (-1074) #1="failed") $)) (-14 -3622 ((-3 (-1074) #1#) $)) (-14 -3621 ((-82) $))))) (T -1112))
-((-3625 (*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3625 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3624 (*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3623 (*1 *2 *1) (|partial| -11 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3622 (*1 *2 *1) (|partial| -11 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3621 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1112)))))
-((-3626 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3627 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3628 (((-485) (-1074)) 33 T ELT)))
-(((-1113 |#1|) (-10 -7 (-14 -3626 ((-3 (-485) #1="failed") |#1|)) (-14 -3627 ((-3 (-485) #1#) |#1|)) (-14 -3628 ((-485) (-1074)))) (-962)) (T -1113))
-((-3628 (*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))) (-3627 (*1 *2 *3) (|partial| -11 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))) (-3626 (*1 *2 *3) (|partial| -11 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-((-3629 (((-1048 (-178))) 9 T ELT)))
-(((-1114) (-10 -7 (-14 -3629 ((-1048 (-178)))))) (T -1114))
-((-3629 (*1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1114)))))
-((-3630 (($) 12 T ELT)) (-3501 (($ $) 36 T ELT)) (-3499 (($ $) 34 T ELT)) (-3487 (($ $) 26 T ELT)) (-3503 (($ $) 18 T ELT)) (-3504 (($ $) 16 T ELT)) (-3502 (($ $) 20 T ELT)) (-3490 (($ $) 31 T ELT)) (-3500 (($ $) 35 T ELT)) (-3488 (($ $) 30 T ELT)))
-(((-1115 |#1|) (-10 -7 (-14 -3630 (|#1|)) (-14 -3501 (|#1| |#1|)) (-14 -3499 (|#1| |#1|)) (-14 -3503 (|#1| |#1|)) (-14 -3504 (|#1| |#1|)) (-14 -3502 (|#1| |#1|)) (-14 -3500 (|#1| |#1|)) (-14 -3487 (|#1| |#1|)) (-14 -3490 (|#1| |#1|)) (-14 -3488 (|#1| |#1|))) (-1116)) (T -1115))
-NIL
-((-3495 (($ $) 26 T ELT)) (-3642 (($ $) 11 T ELT)) (-3493 (($ $) 27 T ELT)) (-3641 (($ $) 10 T ELT)) (-3497 (($ $) 28 T ELT)) (-3640 (($ $) 9 T ELT)) (-3630 (($) 16 T ELT)) (-3946 (($ $) 19 T ELT)) (-3947 (($ $) 18 T ELT)) (-3498 (($ $) 29 T ELT)) (-3639 (($ $) 8 T ELT)) (-3496 (($ $) 30 T ELT)) (-3638 (($ $) 7 T ELT)) (-3494 (($ $) 31 T ELT)) (-3637 (($ $) 6 T ELT)) (-3501 (($ $) 20 T ELT)) (-3489 (($ $) 32 T ELT)) (-3499 (($ $) 21 T ELT)) (-3487 (($ $) 33 T ELT)) (-3503 (($ $) 22 T ELT)) (-3491 (($ $) 34 T ELT)) (-3504 (($ $) 23 T ELT)) (-3492 (($ $) 35 T ELT)) (-3502 (($ $) 24 T ELT)) (-3490 (($ $) 36 T ELT)) (-3500 (($ $) 25 T ELT)) (-3488 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
-(((-1116) (-110)) (T -1116))
-((-3630 (*1 *1) (-4 *1 (-1116))))
-(-12 (-1119) (-63) (-433) (-32) (-238) (-10 -8 (-14 -3630 ($))))
-(((-32) . T) ((-63) . T) ((-238) . T) ((-433) . T) ((-1119) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 19 T ELT)) (-3635 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3028 ((|#1| $ |#1|) 14 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 13 (|has| $ (-1036 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3034 (((-584 $) $) 59 T ELT)) (-3030 (((-82) $ $) 50 (|has| |#1| (-69)) ELT)) (-2611 (((-584 |#1|) $) 70 T ELT)) (-3248 (((-82) |#1| $) 69 (|has| |#1| (-69)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3033 (((-584 |#1|) $) 55 T ELT)) (-3530 (((-82) $) 53 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 67 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 101 T ELT)) (-3406 (((-82) $) 9 T ELT)) (-3568 (($) 10 T ELT)) (-3803 ((|#1| $ #1#) NIL T ELT)) (-3032 (((-485) $ $) 48 T ELT)) (-3631 (((-584 $) $) 83 T ELT)) (-3632 (((-82) $ $) 104 T ELT)) (-3633 (((-584 $) $) 99 T ELT)) (-3634 (($ $) 100 T ELT)) (-3636 (((-82) $) 76 T ELT)) (-1732 (((-695) |#1| $) 17 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 25 T ELT)) (-3403 (($ $) 82 T ELT)) (-3950 (((-773) $) 85 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 12 T ELT)) (-3031 (((-82) $ $) 39 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 66 T ELT)) (-3059 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3961 (((-695) $) 80 T ELT)))
-(((-1117 |#1|) (-12 (-924 |#1|) (-317 |#1|) (-1036 |#1|) (-10 -8 (-14 -3635 ($ |#1| (-584 $))) (-14 -3635 ($ (-584 |#1|))) (-14 -3635 ($ |#1|)) (-14 -3636 ((-82) $)) (-14 -3634 ($ $)) (-14 -3633 ((-584 $) $)) (-14 -3632 ((-82) $ $)) (-14 -3631 ((-584 $) $)))) (-1014)) (T -1117))
-((-3636 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3635 (*1 *1 *2 *3) (-11 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3635 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) (-3635 (*1 *1 *2) (-11 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3634 (*1 *1 *1) (-11 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3633 (*1 *2 *1) (-11 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3632 (*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3631 (*1 *2 *1) (-11 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-((-3642 (($ $) 15 T ELT)) (-3640 (($ $) 12 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 17 T ELT)))
-(((-1118 |#1|) (-10 -7 (-14 -3638 (|#1| |#1|)) (-14 -3639 (|#1| |#1|)) (-14 -3640 (|#1| |#1|)) (-14 -3642 (|#1| |#1|))) (-1119)) (T -1118))
-NIL
-((-3642 (($ $) 11 T ELT)) (-3641 (($ $) 10 T ELT)) (-3640 (($ $) 9 T ELT)) (-3639 (($ $) 8 T ELT)) (-3638 (($ $) 7 T ELT)) (-3637 (($ $) 6 T ELT)))
-(((-1119) (-110)) (T -1119))
-((-3642 (*1 *1 *1) (-4 *1 (-1119))) (-3641 (*1 *1 *1) (-4 *1 (-1119))) (-3640 (*1 *1 *1) (-4 *1 (-1119))) (-3639 (*1 *1 *1) (-4 *1 (-1119))) (-3638 (*1 *1 *1) (-4 *1 (-1119))) (-3637 (*1 *1 *1) (-4 *1 (-1119))))
-(-12 (-10 -8 (-14 -3637 ($ $)) (-14 -3638 ($ $)) (-14 -3639 ($ $)) (-14 -3640 ($ $)) (-14 -3641 ($ $)) (-14 -3642 ($ $))))
-((-3645 ((|#2| |#2|) 95 T ELT)) (-3648 (((-82) |#2|) 29 T ELT)) (-3646 ((|#2| |#2|) 33 T ELT)) (-3647 ((|#2| |#2|) 35 T ELT)) (-3643 ((|#2| |#2| (-1091)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3649 (((-141 |#2|) |#2|) 31 T ELT)) (-3644 ((|#2| |#2| (-1091)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
-(((-1120 |#1| |#2|) (-10 -7 (-14 -3643 (|#2| |#2|)) (-14 -3643 (|#2| |#2| (-1091))) (-14 -3644 (|#2| |#2|)) (-14 -3644 (|#2| |#2| (-1091))) (-14 -3645 (|#2| |#2|)) (-14 -3646 (|#2| |#2|)) (-14 -3647 (|#2| |#2|)) (-14 -3648 ((-82) |#2|)) (-14 -3649 ((-141 |#2|) |#2|))) (-12 (-392) (-951 (-485)) (-581 (-485))) (-12 (-24) (-1116) (-363 |#1|))) (T -1120))
-((-3649 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-141 *3)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3648 (*1 *2 *3) (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-82)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))) (-3647 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))) (-3646 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))) (-3645 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))) (-3644 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-3644 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))) (-3643 (*1 *2 *2 *3) (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))) (-3643 (*1 *2 *2) (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *3))))))
-((-3650 ((|#4| |#4| |#1|) 31 T ELT)) (-3651 ((|#4| |#4| |#1|) 32 T ELT)))
-(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3650 (|#4| |#4| |#1|)) (-14 -3651 (|#4| |#4| |#1|))) (-496) (-323 |#1|) (-323 |#1|) (-628 |#1| |#2| |#3|)) (T -1121))
-((-3651 (*1 *2 *2 *3) (-11 (-4 *3 (-496)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3650 (*1 *2 *2 *3) (-11 (-4 *3 (-496)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-3669 ((|#2| |#2|) 148 T ELT)) (-3671 ((|#2| |#2|) 145 T ELT)) (-3668 ((|#2| |#2|) 136 T ELT)) (-3670 ((|#2| |#2|) 133 T ELT)) (-3667 ((|#2| |#2|) 141 T ELT)) (-3666 ((|#2| |#2|) 129 T ELT)) (-3655 ((|#2| |#2|) 44 T ELT)) (-3654 ((|#2| |#2|) 105 T ELT)) (-3652 ((|#2| |#2|) 88 T ELT)) (-3665 ((|#2| |#2|) 143 T ELT)) (-3664 ((|#2| |#2|) 131 T ELT)) (-3677 ((|#2| |#2|) 153 T ELT)) (-3675 ((|#2| |#2|) 151 T ELT)) (-3676 ((|#2| |#2|) 152 T ELT)) (-3674 ((|#2| |#2|) 150 T ELT)) (-3653 ((|#2| |#2|) 163 T ELT)) (-3678 ((|#2| |#2|) 30 (-11 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3656 ((|#2| |#2|) 89 T ELT)) (-3657 ((|#2| |#2|) 154 T ELT)) (-3966 ((|#2| |#2|) 155 T ELT)) (-3663 ((|#2| |#2|) 142 T ELT)) (-3662 ((|#2| |#2|) 130 T ELT)) (-3661 ((|#2| |#2|) 149 T ELT)) (-3673 ((|#2| |#2|) 147 T ELT)) (-3660 ((|#2| |#2|) 137 T ELT)) (-3672 ((|#2| |#2|) 135 T ELT)) (-3659 ((|#2| |#2|) 139 T ELT)) (-3658 ((|#2| |#2|) 127 T ELT)))
-(((-1122 |#1| |#2|) (-10 -7 (-14 -3966 (|#2| |#2|)) (-14 -3652 (|#2| |#2|)) (-14 -3653 (|#2| |#2|)) (-14 -3654 (|#2| |#2|)) (-14 -3655 (|#2| |#2|)) (-14 -3656 (|#2| |#2|)) (-14 -3657 (|#2| |#2|)) (-14 -3658 (|#2| |#2|)) (-14 -3659 (|#2| |#2|)) (-14 -3660 (|#2| |#2|)) (-14 -3661 (|#2| |#2|)) (-14 -3662 (|#2| |#2|)) (-14 -3663 (|#2| |#2|)) (-14 -3664 (|#2| |#2|)) (-14 -3665 (|#2| |#2|)) (-14 -3666 (|#2| |#2|)) (-14 -3667 (|#2| |#2|)) (-14 -3668 (|#2| |#2|)) (-14 -3669 (|#2| |#2|)) (-14 -3670 (|#2| |#2|)) (-14 -3671 (|#2| |#2|)) (-14 -3672 (|#2| |#2|)) (-14 -3673 (|#2| |#2|)) (-14 -3674 (|#2| |#2|)) (-14 -3675 (|#2| |#2|)) (-14 -3676 (|#2| |#2|)) (-14 -3677 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-14 -3678 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-12 (-363 |#1|) (-1116))) (T -1122))
-((-3678 (*1 *2 *2) (-11 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3677 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3676 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3675 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3674 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3673 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3672 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3671 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3670 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3669 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3668 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3667 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3666 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3665 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3664 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3663 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3662 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3661 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3660 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3659 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3658 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3657 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3656 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3655 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3654 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3653 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3652 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))) (-3966 (*1 *2 *2) (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-1091)) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3817 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $ (-1091)) NIL T ELT) (((-695) $ (-1091) (-695)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ $ (-584 (-1091)) (-584 (-470 (-1091)))) NIL T ELT) (($ $ (-1091) (-470 (-1091))) NIL T ELT) (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3815 (($ $ (-1091)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3679 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3772 (($ $ (-695)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3761 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3952 (((-470 (-1091)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-1091)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3680 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-2672 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1123 |#1|) (-12 (-680 |#1| (-1091)) (-10 -8 (-14 -3680 ((-858 |#1|) $ (-695))) (-14 -3950 ($ (-1091))) (-14 -3950 ($ (-858 |#1|))) (IF (|has| |#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $ (-1091) |#1|)) (-14 -3679 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-962)) (T -1123))
-((-3680 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) (-3815 (*1 *1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)))) (-3679 (*1 *1 *2 *3 *4) (-11 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962)))))
-((-3696 (((-82) |#5| $) 68 T ELT) (((-82) $) 109 T ELT)) (-3691 ((|#5| |#5| $) 83 T ELT)) (-3713 (($ (-1 (-82) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3692 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-82) |#5| |#5|)) 81 T ELT)) (-3160 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3802 (((-3 $ #1#) $) 119 T ELT)) (-3688 ((|#5| |#5| $) 101 T ELT)) (-3697 (((-82) |#5| $ (-1 (-82) |#5| |#5|)) 36 T ELT)) (-3686 ((|#5| |#5| $) 105 T ELT)) (-3845 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-82) |#5| |#5|)) 77 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#5|)) (|:| -1703 (-584 |#5|))) $) 63 T ELT)) (-3698 (((-82) |#5| $) 66 T ELT) (((-82) $) 110 T ELT)) (-3183 ((|#4| $) 115 T ELT)) (-3801 (((-3 |#5| #1#) $) 117 T ELT)) (-3700 (((-584 |#5|) $) 55 T ELT)) (-3694 (((-82) |#5| $) 75 T ELT) (((-82) $) 114 T ELT)) (-3689 ((|#5| |#5| $) 89 T ELT)) (-3702 (((-82) $ $) 29 T ELT)) (-3695 (((-82) |#5| $) 71 T ELT) (((-82) $) 112 T ELT)) (-3690 ((|#5| |#5| $) 86 T ELT)) (-3804 (((-3 |#5| #1#) $) 116 T ELT)) (-3772 (($ $ |#5|) 135 T ELT)) (-3952 (((-695) $) 60 T ELT)) (-3533 (($ (-584 |#5|)) 132 T ELT)) (-2913 (($ $ |#4|) 130 T ELT)) (-2915 (($ $ |#4|) 128 T ELT)) (-3687 (($ $) 127 T ELT)) (-3950 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3681 (((-695) $) 139 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-82) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-82) |#5|) (-1 (-82) |#5| |#5|)) 51 T ELT)) (-3693 (((-82) $ (-1 (-82) |#5| (-584 |#5|))) 107 T ELT)) (-3683 (((-584 |#4|) $) 122 T ELT)) (-3937 (((-82) |#4| $) 125 T ELT)) (-3059 (((-82) $ $) 20 T ELT)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-14 -3681 ((-695) |#1|)) (-14 -3772 (|#1| |#1| |#5|)) (-14 -3713 ((-3 |#5| #1="failed") |#1| |#4|)) (-14 -3937 ((-82) |#4| |#1|)) (-14 -3683 ((-584 |#4|) |#1|)) (-14 -3802 ((-3 |#1| #1#) |#1|)) (-14 -3801 ((-3 |#5| #1#) |#1|)) (-14 -3804 ((-3 |#5| #1#) |#1|)) (-14 -3686 (|#5| |#5| |#1|)) (-14 -3687 (|#1| |#1|)) (-14 -3688 (|#5| |#5| |#1|)) (-14 -3689 (|#5| |#5| |#1|)) (-14 -3690 (|#5| |#5| |#1|)) (-14 -3691 (|#5| |#5| |#1|)) (-14 -3692 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-82) |#5| |#5|))) (-14 -3845 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-82) |#5| |#5|))) (-14 -3694 ((-82) |#1|)) (-14 -3695 ((-82) |#1|)) (-14 -3696 ((-82) |#1|)) (-14 -3693 ((-82) |#1| (-1 (-82) |#5| (-584 |#5|)))) (-14 -3694 ((-82) |#5| |#1|)) (-14 -3695 ((-82) |#5| |#1|)) (-14 -3696 ((-82) |#5| |#1|)) (-14 -3697 ((-82) |#5| |#1| (-1 (-82) |#5| |#5|))) (-14 -3698 ((-82) |#1|)) (-14 -3698 ((-82) |#5| |#1|)) (-14 -3699 ((-2 (|:| -3865 (-584 |#5|)) (|:| -1703 (-584 |#5|))) |#1|)) (-14 -3952 ((-695) |#1|)) (-14 -3700 ((-584 |#5|) |#1|)) (-14 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-82) |#5|) (-1 (-82) |#5| |#5|))) (-14 -3701 ((-3 (-2 (|:| |bas| |#1|) (|:| -3326 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-82) |#5| |#5|))) (-14 -3702 ((-82) |#1| |#1|)) (-14 -2913 (|#1| |#1| |#4|)) (-14 -2915 (|#1| |#1| |#4|)) (-14 -3183 (|#4| |#1|)) (-14 -3160 ((-3 |#1| #1#) (-584 |#5|))) (-14 -3950 ((-584 |#5|) |#1|)) (-14 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-14 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-14 -3845 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-14 -3533 (|#1| (-584 |#5|))) (-14 -3713 (|#1| (-1 (-82) |#5|) |#1|)) (-14 -3950 ((-773) |#1|)) (-14 -3059 ((-82) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-496) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -1124))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3685 (((-584 $) (-584 |#4|)) 92 T ELT)) (-3084 (((-584 |#3|) $) 39 T ELT)) (-2911 (((-82) $) 32 T ELT)) (-2902 (((-82) $) 23 (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) 107 T ELT) (((-82) $) 103 T ELT)) (-3691 ((|#4| |#4| $) 98 T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (-3713 (($ (-1 (-82) |#4|) $) 67 (|has| $ (-317 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3727 (($) 59 T CONST)) (-2907 (((-82) $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) 30 (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) 29 (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) 31 (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 99 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) 25 (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ "failed") (-584 |#4|)) 42 T ELT)) (-3159 (($ (-584 |#4|)) 41 T ELT)) (-3802 (((-3 $ "failed") $) 88 T ELT)) (-3688 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT)) (-3409 (($ |#4| $) 68 (-11 (|has| |#4| (-69)) (|has| $ (-317 |#4|))) ELT) (($ (-1 (-82) |#4|) $) 66 (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) 108 T ELT)) (-3686 ((|#4| |#4| $) 93 T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 100 T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3698 (((-82) |#4| $) 110 T ELT) (((-82) $) 109 T ELT)) (-3183 ((|#3| $) 40 T ELT)) (-2611 (((-584 |#4|) $) 48 T ELT)) (-3248 (((-82) |#4| $) 53 (|has| |#4| (-69)) ELT)) (-3329 (($ (-1 |#4| |#4|) $) 117 T ELT)) (-3846 (($ (-1 |#4| |#4|) $) 60 T ELT)) (-2917 (((-584 |#3|) $) 38 T ELT)) (-2916 (((-82) |#3| $) 37 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3801 (((-3 |#4| "failed") $) 89 T ELT)) (-3700 (((-584 |#4|) $) 113 T ELT)) (-3694 (((-82) |#4| $) 105 T ELT) (((-82) $) 101 T ELT)) (-3689 ((|#4| |#4| $) 96 T ELT)) (-3702 (((-82) $ $) 116 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) 106 T ELT) (((-82) $) 102 T ELT)) (-3690 ((|#4| |#4| $) 97 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3804 (((-3 |#4| "failed") $) 90 T ELT)) (-1731 (((-3 |#4| "failed") (-1 (-82) |#4|) $) 51 T ELT)) (-3682 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3772 (($ $ |#4|) 83 T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) 46 T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) 64 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 63 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) 62 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) 61 (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) 55 T ELT)) (-3406 (((-82) $) 58 T ELT)) (-3568 (($) 57 T ELT)) (-3952 (((-695) $) 112 T ELT)) (-1732 (((-695) |#4| $) 52 (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) 47 T ELT)) (-3403 (($ $) 56 T ELT)) (-3975 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) 65 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-2915 (($ $ |#3|) 36 T ELT)) (-3687 (($ $) 94 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3950 (((-773) $) 13 T ELT) (((-584 |#4|) $) 43 T ELT)) (-3681 (((-695) $) 82 (|has| |#3| (-319)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-82) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) 114 T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) 104 T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) 45 T ELT)) (-3683 (((-584 |#3|) $) 87 T ELT)) (-3937 (((-82) |#3| $) 86 T ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3961 (((-695) $) 44 T ELT)))
-(((-1125 |#1| |#2| |#3| |#4|) (-110) (-496) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1125))
-((-3702 (*1 *2 *1 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3701 (*1 *2 *3 *4) (|partial| -11 (-5 *4 (-1 (-82) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-3701 (*1 *2 *3 *4 *5) (|partial| -11 (-5 *4 (-1 (-82) *9)) (-5 *5 (-1 (-82) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3700 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) (-3699 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -3865 (-584 *6)) (|:| -1703 (-584 *6)))))) (-3698 (*1 *2 *3 *1) (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3698 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3697 (*1 *2 *3 *1 *4) (-11 (-5 *4 (-1 (-82) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-82)))) (-3696 (*1 *2 *3 *1) (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3695 (*1 *2 *3 *1) (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3694 (*1 *2 *3 *1) (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3693 (*1 *2 *1 *3) (-11 (-5 *3 (-1 (-82) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)))) (-3696 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3695 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3694 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))) (-3845 (*1 *2 *2 *1 *3 *4) (-11 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-82) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-978 *5 *6 *7)))) (-3692 (*1 *2 *2 *1 *3 *4) (-11 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-82) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)))) (-3691 (*1 *2 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3690 (*1 *2 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3689 (*1 *2 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3687 (*1 *1 *1) (-11 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3686 (*1 *2 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3685 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3684 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3865 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3804 (*1 *2 *1) (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3801 (*1 *2 *1) (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3802 (*1 *1 *1) (|partial| -11 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3683 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3937 (*1 *2 *3 *1) (-11 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-82)))) (-3713 (*1 *2 *1 *3) (|partial| -11 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) (-3682 (*1 *1 *1 *2) (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3772 (*1 *1 *1 *2) (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3681 (*1 *2 *1) (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-695)))))
-(-12 (-890 |t#1| |t#2| |t#3| |t#4|) (-1036 |t#4|) (-10 -8 (-14 -3702 ((-82) $ $)) (-14 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-82) |t#4| |t#4|))) (-14 -3701 ((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-82) |t#4|) (-1 (-82) |t#4| |t#4|))) (-14 -3700 ((-584 |t#4|) $)) (-14 -3952 ((-695) $)) (-14 -3699 ((-2 (|:| -3865 (-584 |t#4|)) (|:| -1703 (-584 |t#4|))) $)) (-14 -3698 ((-82) |t#4| $)) (-14 -3698 ((-82) $)) (-14 -3697 ((-82) |t#4| $ (-1 (-82) |t#4| |t#4|))) (-14 -3696 ((-82) |t#4| $)) (-14 -3695 ((-82) |t#4| $)) (-14 -3694 ((-82) |t#4| $)) (-14 -3693 ((-82) $ (-1 (-82) |t#4| (-584 |t#4|)))) (-14 -3696 ((-82) $)) (-14 -3695 ((-82) $)) (-14 -3694 ((-82) $)) (-14 -3845 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-82) |t#4| |t#4|))) (-14 -3692 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-82) |t#4| |t#4|))) (-14 -3691 (|t#4| |t#4| $)) (-14 -3690 (|t#4| |t#4| $)) (-14 -3689 (|t#4| |t#4| $)) (-14 -3688 (|t#4| |t#4| $)) (-14 -3687 ($ $)) (-14 -3686 (|t#4| |t#4| $)) (-14 -3685 ((-584 $) (-584 |t#4|))) (-14 -3684 ((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |t#4|)))) (-584 |t#4|))) (-14 -3804 ((-3 |t#4| "failed") $)) (-14 -3801 ((-3 |t#4| "failed") $)) (-14 -3802 ((-3 $ "failed") $)) (-14 -3683 ((-584 |t#3|) $)) (-14 -3937 ((-82) |t#3| $)) (-14 -3713 ((-3 |t#4| "failed") $ |t#3|)) (-14 -3682 ((-3 $ "failed") $ |t#4|)) (-14 -3772 ($ $ |t#4|)) (IF (|has| |t#3| (-319)) (-14 -3681 ((-695) $)) |%noBranch|)))
-(((-31) . T) ((-69) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-121 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-259 |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-317 |#4|) . T) ((-380 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ((-12) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1130) . T))
-((-3708 (($ |#1| (-584 (-584 (-855 (-178)))) (-82)) 19 T ELT)) (-3707 (((-82) $ (-82)) 18 T ELT)) (-3706 (((-82) $) 17 T ELT)) (-3704 (((-584 (-584 (-855 (-178)))) $) 13 T ELT)) (-3703 ((|#1| $) 8 T ELT)) (-3705 (((-82) $) 15 T ELT)))
-(((-1126 |#1|) (-10 -8 (-14 -3703 (|#1| $)) (-14 -3704 ((-584 (-584 (-855 (-178)))) $)) (-14 -3705 ((-82) $)) (-14 -3706 ((-82) $)) (-14 -3707 ((-82) $ (-82))) (-14 -3708 ($ |#1| (-584 (-584 (-855 (-178)))) (-82)))) (-888)) (T -1126))
-((-3708 (*1 *1 *2 *3 *4) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-82)) (-5 *1 (-1126 *2)) (-4 *2 (-888)))) (-3707 (*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3706 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3705 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3704 (*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3703 (*1 *2 *1) (-11 (-5 *1 (-1126 *2)) (-4 *2 (-888)))))
-((-3710 (((-855 (-178)) (-855 (-178))) 31 T ELT)) (-3709 (((-855 (-178)) (-178) (-178) (-178) (-178)) 10 T ELT)) (-3712 (((-584 (-855 (-178))) (-855 (-178)) (-855 (-178)) (-855 (-178)) (-178) (-584 (-584 (-178)))) 57 T ELT)) (-3839 (((-178) (-855 (-178)) (-855 (-178))) 27 T ELT)) (-3837 (((-855 (-178)) (-855 (-178)) (-855 (-178))) 28 T ELT)) (-3711 (((-584 (-584 (-178))) (-485)) 45 T ELT)) (-3840 (((-855 (-178)) (-855 (-178)) (-855 (-178))) 26 T ELT)) (-3842 (((-855 (-178)) (-855 (-178)) (-855 (-178))) 24 T ELT)) (* (((-855 (-178)) (-178) (-855 (-178))) 22 T ELT)))
-(((-1127) (-10 -7 (-14 -3709 ((-855 (-178)) (-178) (-178) (-178) (-178))) (-14 * ((-855 (-178)) (-178) (-855 (-178)))) (-14 -3842 ((-855 (-178)) (-855 (-178)) (-855 (-178)))) (-14 -3840 ((-855 (-178)) (-855 (-178)) (-855 (-178)))) (-14 -3839 ((-178) (-855 (-178)) (-855 (-178)))) (-14 -3837 ((-855 (-178)) (-855 (-178)) (-855 (-178)))) (-14 -3710 ((-855 (-178)) (-855 (-178)))) (-14 -3711 ((-584 (-584 (-178))) (-485))) (-14 -3712 ((-584 (-855 (-178))) (-855 (-178)) (-855 (-178)) (-855 (-178)) (-178) (-584 (-584 (-178))))))) (T -1127))
-((-3712 (*1 *2 *3 *3 *3 *4 *5) (-11 (-5 *5 (-584 (-584 (-178)))) (-5 *4 (-178)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1127)) (-5 *3 (-855 *4)))) (-3711 (*1 *2 *3) (-11 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-178)))) (-5 *1 (-1127)))) (-3710 (*1 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)))) (-3837 (*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)))) (-3839 (*1 *2 *3 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-178)) (-5 *1 (-1127)))) (-3840 (*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)))) (-3842 (*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)))) (* (*1 *2 *3 *2) (-11 (-5 *2 (-855 (-178))) (-5 *3 (-178)) (-5 *1 (-1127)))) (-3709 (*1 *2 *3 *3 *3 *3) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)) (-5 *3 (-178)))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3713 ((|#1| $ (-695)) 18 T ELT)) (-3836 (((-695) $) 13 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3950 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3059 (((-82) $ $) 22 (|has| |#1| (-1014)) ELT)))
-(((-1128 |#1|) (-12 (-430 (-870 |#1|)) (-10 -8 (-14 -3713 (|#1| $ (-695))) (-14 -3836 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1128))
-((-3713 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3836 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130)))))
-((-3716 (((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)) 92 T ELT)) (-3714 (((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 84 T ELT)) (-3715 (((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 68 T ELT)))
-(((-1129 |#1|) (-10 -7 (-14 -3714 ((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-14 -3715 ((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-14 -3716 ((-347 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)))) (-298)) (T -1129))
-((-3716 (*1 *2 *3 *4) (-11 (-5 *4 (-485)) (-4 *5 (-298)) (-5 *2 (-347 (-1086 (-1086 *5)))) (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))) (-3715 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-347 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))) (-3714 (*1 *2 *3) (-11 (-4 *4 (-298)) (-5 *2 (-347 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))))
-NIL
-(((-1130) (-110)) (T -1130))
-NIL
-(-12)
-(((-12) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 9 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1131) (-996)) (T -1131))
-NIL
-((-3720 (((-82)) 18 T ELT)) (-3717 (((-1186) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1186) (-584 |#1|)) 23 T ELT)) (-3722 (((-82) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3719 (((-82) |#1| |#1| (-1 (-82) |#1| |#1|)) 29 T ELT) (((-3 (-82) "failed") |#1| |#1|) 27 T ELT)) (-3721 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-82) |#1| |#1|)) 32 T ELT)) (-3718 (((-2 (|:| -3232 (-584 |#1|)) (|:| -3231 (-584 |#1|)))) 20 T ELT)))
-(((-1132 |#1|) (-10 -7 (-14 -3717 ((-1186) (-584 |#1|))) (-14 -3717 ((-1186) (-584 |#1|) (-584 |#1|))) (-14 -3718 ((-2 (|:| -3232 (-584 |#1|)) (|:| -3231 (-584 |#1|))))) (-14 -3719 ((-3 (-82) "failed") |#1| |#1|)) (-14 -3719 ((-82) |#1| |#1| (-1 (-82) |#1| |#1|))) (-14 -3721 (|#1| (-584 |#1|) (-1 (-82) |#1| |#1|))) (-14 -3720 ((-82))) (IF (|has| |#1| (-757)) (PROGN (-14 -3721 (|#1| (-584 |#1|))) (-14 -3722 ((-82) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1132))
-((-3722 (*1 *2 *3 *3) (-11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))) (-3721 (*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))) (-3720 (*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3721 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *2)) (-5 *4 (-1 (-82) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1014)))) (-3719 (*1 *2 *3 *3 *4) (-11 (-5 *4 (-1 (-82) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-82)) (-5 *1 (-1132 *3)))) (-3719 (*1 *2 *3 *3) (|partial| -11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3718 (*1 *2) (-11 (-5 *2 (-2 (|:| -3232 (-584 *3)) (|:| -3231 (-584 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3717 (*1 *2 *3 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) (-3717 (*1 *2 *3) (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))))
-((-3723 (((-1186) (-584 (-1091)) (-584 (-1091))) 14 T ELT) (((-1186) (-584 (-1091))) 12 T ELT)) (-3725 (((-1186)) 16 T ELT)) (-3724 (((-2 (|:| -3231 (-584 (-1091))) (|:| -3232 (-584 (-1091))))) 20 T ELT)))
-(((-1133) (-10 -7 (-14 -3723 ((-1186) (-584 (-1091)))) (-14 -3723 ((-1186) (-584 (-1091)) (-584 (-1091)))) (-14 -3724 ((-2 (|:| -3231 (-584 (-1091))) (|:| -3232 (-584 (-1091)))))) (-14 -3725 ((-1186))))) (T -1133))
-((-3725 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3724 (*1 *2) (-11 (-5 *2 (-2 (|:| -3231 (-584 (-1091))) (|:| -3232 (-584 (-1091))))) (-5 *1 (-1133)))) (-3723 (*1 *2 *3 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3723 (*1 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))))
-((-3778 (($ $) 17 T ELT)) (-3726 (((-82) $) 27 T ELT)))
-(((-1134 |#1|) (-10 -7 (-14 -3778 (|#1| |#1|)) (-14 -3726 ((-82) |#1|))) (-1135)) (T -1134))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 66 T ELT)) (-3974 (((-347 $) $) 67 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-82) $) 68 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3735 (((-347 $) $) 65 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-1135) (-110)) (T -1135))
-((-3726 (*1 *2 *1) (-11 (-4 *1 (-1135)) (-5 *2 (-82)))) (-3974 (*1 *2 *1) (-11 (-5 *2 (-347 *1)) (-4 *1 (-1135)))) (-3778 (*1 *1 *1) (-4 *1 (-1135))) (-3735 (*1 *2 *1) (-11 (-5 *2 (-347 *1)) (-4 *1 (-1135)))))
-(-12 (-392) (-10 -8 (-14 -3726 ((-82) $)) (-14 -3974 ((-347 $) $)) (-14 -3778 ($ $)) (-14 -3735 ((-347 $) $))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 $) . T) ((-69) . T) ((-79 $ $) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-245) . T) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-1136) (-12 (-753) (-605) (-10 -8 (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956)))) (T -1136))
-((-3729 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3727 (*1 *1) (-5 *1 (-1136))))
-((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-1137) (-12 (-753) (-605) (-10 -8 (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956)))) (T -1137))
-((-3729 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3727 (*1 *1) (-5 *1 (-1137))))
-((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-1138) (-12 (-753) (-605) (-10 -8 (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956)))) (T -1138))
-((-3729 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3727 (*1 *1) (-5 *1 (-1138))))
-((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3139 (((-695)) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2997 (($) NIL T ELT)) (-2534 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2860 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-831) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2402 (($ (-831)) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2569 (((-82) $ $) NIL T ELT)) (-2570 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL T ELT)) (-2688 (((-82) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)))
-(((-1139) (-12 (-753) (-605) (-10 -8 (-14 -3729 ($ $ $)) (-14 -3728 ($ $ $)) (-14 -3727 ($) -3956)))) (T -1139))
-((-3729 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3728 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3727 (*1 *1) (-5 *1 (-1139))))
-((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3132 (((-1170 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 10 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2063 (((-82) $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-3774 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3734 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3731 (((-3 (-1170 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3732 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3626 (((-485) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1170 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT) (((-3 (-485) #1#) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT)) (-3159 (((-1170 |#1| |#2| |#3|) $) NIL T ELT) (((-1091) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (((-349 (-485)) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT) (((-485) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) ELT)) (-3733 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-1170 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3730 (((-349 (-858 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-349 (-858 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2997 (($) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-3189 (((-82) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-797 (-329))) (|has| |#1| (-311))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-311))) ELT)) (-3775 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3001 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3448 (((-633 $) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-311))) ELT)) (-3190 (((-82) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3780 (($ $ (-831)) NIL T ELT)) (-3818 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-485)) 18 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2534 (($ $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2860 (($ $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2282 (((-631 (-1170 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-311))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3782 (($ (-485) (-1170 |#1| |#2| |#3|)) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) 27 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 28 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-311))) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (($ $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3133 (((-1170 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-485)) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1170 |#1| |#2| |#3|)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1091)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1170 |#1| |#2| |#3|)))) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1170 |#1| |#2| |#3|))) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1170 |#1| |#2| |#3|)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-259 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-240 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1177 |#2|)) 26 T ELT) (($ $) 25 (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3000 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3952 (((-485) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3975 (((-474) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-311))) ELT) (((-329) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-178) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-329)) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-329)))) (|has| |#1| (-311))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-311))) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-1170 |#1| |#2| |#3|)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT) (($ (-1091)) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT) (($ (-349 (-485))) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-311))) (|has| |#1| (-35 (-349 (-485))))) ELT)) (-3680 ((|#1| $ (-485)) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-115)) (|has| |#1| (-311))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 11 T ELT)) (-3134 (((-1170 |#1| |#2| |#3|) $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-311))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-496))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-485)) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3386 (($ $) NIL (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2663 (($) 20 T CONST)) (-2669 (($) 15 T CONST)) (-2672 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2569 (((-82) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2570 (((-82) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-2687 (((-82) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2688 (((-82) $ $) NIL (OR (-11 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-11 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT) (($ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT) (($ (-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1140 |#1| |#2| |#3|) (-12 (-1144 |#1| (-1170 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-14 -3950 ($ (-1177 |#2|))) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1140))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-962)) (-13 *5 *3))) (-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-3846 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23 T ELT)))
-(((-1141 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -3846 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1141))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-13 *7 (-1091)) (-13 *9 *5) (-13 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) (-13 *8 (-1091)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-485)) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) 192 (|has| |#1| (-311)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) 182 (|has| |#1| (-311)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 202 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 186 (|has| |#1| (-311)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-349 (-858 |#1|)) $ (-485)) 200 (|has| |#1| (-496)) ELT) (((-349 (-858 |#1|)) $ (-485) (-485)) 199 (|has| |#1| (-496)) ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 180 (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) 193 (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-485) $) 127 T ELT) (((-485) $ (-485)) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) 128 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 201 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 189 (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| (-485)) 82 T ELT) (($ $ (-995) (-485)) 98 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-584 $)) 178 (|has| |#1| (-311)) ELT) (($ $ $) 177 (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 197 (OR (-11 (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-35 (-349 (-485))))) (-11 (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-35 (-349 (-485)))))) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 179 (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) 176 (|has| |#1| (-311)) ELT) (($ $ $) 175 (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) 190 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-485)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 181 (|has| |#1| (-311)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT)) (-1608 (((-695) $) 183 (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-485)) 132 T ELT) (($ $ $) 108 (|has| (-485) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 120 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 118 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 117 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 110 (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT)) (-3952 (((-485) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-485)) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-485)) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1091)) 119 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 115 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 114 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-14 * (|#1| (-485) |#1|))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT) (($ $ $) 196 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 195 (|has| |#1| (-311)) ELT) (($ $ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 144 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1142 |#1|) (-110) (-962)) (T -1142))
-((-3821 (*1 *1 *2) (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1142 *3)))) (-3818 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) (-3730 (*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-349 (-858 *4))))) (-3730 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-349 (-858 *4))))) (-3815 (*1 *1 *1) (-11 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485)))))) (-3815 (*1 *1 *1 *2) (OR (-11 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-35 (-349 (-485)))))) (-11 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-11 (|has| *3 (-14 -3084 ((-584 *2) *3))) (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485)))))))))
-(-12 (-1159 |t#1| (-485)) (-10 -8 (-14 -3821 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-14 -3818 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-14 -3730 ((-349 (-858 |t#1|)) $ (-485))) (-14 -3730 ((-349 (-858 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $)) (IF (|has| |t#1| (-14 -3815 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-14 -3084 ((-584 (-1091)) |t#1|))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-26 (-485))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-485)) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-185 $) |has| |#1| (-14 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-14 * (|#1| (-485) |#1|))) ((-188) |has| |#1| (-14 * (|#1| (-485) |#1|))) ((-200) |has| |#1| (-311)) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-240 (-485) |#1|) . T) ((-240 $ $) |has| (-485) (-1026)) ((-245) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-380 |#1|) . T) ((-392) |has| |#1| (-311)) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-655 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ((-810 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ((-812 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-964 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-969 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-311)) ((-1159 |#1| (-485)) . T))
-((-3191 (((-82) $) 12 T ELT)) (-3160 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3159 ((|#3| $) 14 T ELT) (((-1091) $) NIL T ELT) (((-349 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT)))
-(((-1143 |#1| |#2| |#3|) (-10 -7 (-14 -3160 ((-3 (-485) #1="failed") |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3160 ((-3 (-1091) #1#) |#1|)) (-14 -3159 ((-1091) |#1|)) (-14 -3160 ((-3 |#3| #1#) |#1|)) (-14 -3159 (|#3| |#1|)) (-14 -3191 ((-82) |#1|))) (-1144 |#2| |#3|) (-962) (-1173 |#2|)) (T -1143))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3132 ((|#2| $) 267 (-2565 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-485)) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 131 T ELT)) (-3734 ((|#2| $) 303 T ELT)) (-3731 (((-3 |#2| "failed") $) 299 T ELT)) (-3732 ((|#2| $) 300 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 276 (-2565 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3778 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) 192 (|has| |#1| (-311)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 273 (-2565 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-1609 (((-82) $ $) 182 (|has| |#1| (-311)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3626 (((-485) $) 285 (-2565 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 202 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| #2="failed") $) 306 T ELT) (((-3 (-485) #2#) $) 296 (-2565 (|has| |#2| (-951 (-485))) (|has| |#1| (-311))) ELT) (((-3 (-349 (-485)) #2#) $) 294 (-2565 (|has| |#2| (-951 (-485))) (|has| |#1| (-311))) ELT) (((-3 (-1091) #2#) $) 278 (-2565 (|has| |#2| (-951 (-1091))) (|has| |#1| (-311))) ELT)) (-3159 ((|#2| $) 307 T ELT) (((-485) $) 295 (-2565 (|has| |#2| (-951 (-485))) (|has| |#1| (-311))) ELT) (((-349 (-485)) $) 293 (-2565 (|has| |#2| (-951 (-485))) (|has| |#1| (-311))) ELT) (((-1091) $) 277 (-2565 (|has| |#2| (-951 (-1091))) (|has| |#1| (-311))) ELT)) (-3733 (($ $) 302 T ELT) (($ (-485) $) 301 T ELT)) (-2567 (($ $ $) 186 (|has| |#1| (-311)) ELT)) (-3962 (($ $) 81 T ELT)) (-2281 (((-631 |#2|) (-631 $)) 255 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 254 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 253 (-2565 (|has| |#2| (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-631 $)) 252 (-2565 (|has| |#2| (-581 (-485))) (|has| |#1| (-311))) ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3730 (((-349 (-858 |#1|)) $ (-485)) 200 (|has| |#1| (-496)) ELT) (((-349 (-858 |#1|)) $ (-485) (-485)) 199 (|has| |#1| (-496)) ELT)) (-2997 (($) 269 (-2565 (|has| |#2| (-484)) (|has| |#1| (-311))) ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 180 (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) 193 (|has| |#1| (-311)) ELT)) (-3189 (((-82) $) 283 (-2565 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2895 (((-82) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 261 (-2565 (|has| |#2| (-797 (-329))) (|has| |#1| (-311))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 260 (-2565 (|has| |#2| (-797 (-485))) (|has| |#1| (-311))) ELT)) (-3775 (((-485) $) 127 T ELT) (((-485) $ (-485)) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2999 (($ $) 265 (|has| |#1| (-311)) ELT)) (-3001 ((|#2| $) 263 (|has| |#1| (-311)) ELT)) (-3014 (($ $ (-485)) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3448 (((-633 $) $) 297 (-2565 (|has| |#2| (-1067)) (|has| |#1| (-311))) ELT)) (-3190 (((-82) $) 284 (-2565 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3780 (($ $ (-831)) 128 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 201 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 189 (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| (-485)) 82 T ELT) (($ $ (-995) (-485)) 98 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 97 T ELT)) (-2534 (($ $ $) 292 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2860 (($ $ $) 291 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT) (($ (-1 |#2| |#2|) $) 245 (|has| |#1| (-311)) ELT)) (-3946 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2282 (((-631 |#2|) (-1180 $)) 257 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 256 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 251 (-2565 (|has| |#2| (-581 (-485))) (|has| |#1| (-311))) ELT) (((-631 (-485)) (-1180 $)) 250 (-2565 (|has| |#2| (-581 (-485))) (|has| |#1| (-311))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-584 $)) 178 (|has| |#1| (-311)) ELT) (($ $ $) 177 (|has| |#1| (-311)) ELT)) (-3782 (($ (-485) |#2|) 304 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 197 (OR (-11 (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-35 (-349 (-485))))) (-11 (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-35 (-349 (-485)))))) ELT)) (-3449 (($) 298 (-2565 (|has| |#2| (-1067)) (|has| |#1| (-311))) CONST)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 179 (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) 176 (|has| |#1| (-311)) ELT) (($ $ $) 175 (|has| |#1| (-311)) ELT)) (-3131 (($ $) 268 (-2565 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3133 ((|#2| $) 271 (-2565 (|has| |#2| (-484)) (|has| |#1| (-311))) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 274 (-2565 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 275 (-2565 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3735 (((-347 $) $) 190 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 188 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-485)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 181 (|has| |#1| (-311)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) 244 (-2565 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 243 (-2565 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 |#2|))) 242 (-2565 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-248 |#2|)) 241 (-2565 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ |#2| |#2|) 240 (-2565 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 239 (-2565 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT)) (-1608 (((-695) $) 183 (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-485)) 132 T ELT) (($ $ $) 108 (|has| (-485) (-1026)) ELT) (($ $ |#2|) 238 (-2565 (|has| |#2| (-240 |#2| |#2|)) (|has| |#1| (-311))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) 247 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 246 (|has| |#1| (-311)) ELT) (($ $) 112 (OR (-2565 (|has| |#2| (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 110 (OR (-2565 (|has| |#2| (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 120 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 118 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 117 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2998 (($ $) 266 (|has| |#1| (-311)) ELT)) (-3000 ((|#2| $) 264 (|has| |#1| (-311)) ELT)) (-3952 (((-485) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3975 (((-178) $) 282 (-2565 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-329) $) 281 (-2565 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-474) $) 280 (-2565 (|has| |#2| (-554 (-474))) (|has| |#1| (-311))) ELT) (((-801 (-329)) $) 259 (-2565 (|has| |#2| (-554 (-801 (-329)))) (|has| |#1| (-311))) ELT) (((-801 (-485)) $) 258 (-2565 (|has| |#2| (-554 (-801 (-485)))) (|has| |#1| (-311))) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 272 (-2565 (-2565 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#1| (-311))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT) (($ |#2|) 305 T ELT) (($ (-1091)) 279 (-2565 (|has| |#2| (-951 (-1091))) (|has| |#1| (-311))) ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-485)) 80 T ELT)) (-2705 (((-633 $) $) 69 (OR (-2565 (OR (|has| |#2| (-115)) (-2565 (|has| $ (-115)) (|has| |#2| (-822)))) (|has| |#1| (-311))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-3134 ((|#2| $) 270 (-2565 (|has| |#2| (-484)) (|has| |#1| (-311))) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-485)) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3386 (($ $) 286 (-2565 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) 249 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 248 (|has| |#1| (-311)) ELT) (($ $) 111 (OR (-2565 (|has| |#2| (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 109 (OR (-2565 (|has| |#2| (-188)) (|has| |#1| (-311))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 119 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 115 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 114 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (OR (-2565 (|has| |#2| (-812 (-1091))) (|has| |#1| (-311))) (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|))))) ELT)) (-2569 (((-82) $ $) 290 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2570 (((-82) $ $) 288 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-2687 (((-82) $ $) 289 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2688 (((-82) $ $) 287 (-2565 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT) (($ $ $) 196 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 262 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 195 (|has| |#1| (-311)) ELT) (($ $ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 144 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ $ |#2|) 237 (|has| |#1| (-311)) ELT) (($ |#2| $) 236 (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1144 |#1| |#2|) (-110) (-962) (-1173 |t#1|)) (T -1144))
-((-3952 (*1 *2 *1) (-11 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) (-3782 (*1 *1 *2 *3) (-11 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) (-3734 (*1 *2 *1) (-11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3733 (*1 *1 *1) (-11 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))) (-3733 (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) (-3732 (*1 *2 *1) (-11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3731 (*1 *2 *1) (|partial| -11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
-(-12 (-1142 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-14 -3782 ($ (-485) |t#2|)) (-14 -3952 ((-485) $)) (-14 -3734 (|t#2| $)) (-14 -3733 ($ $)) (-14 -3733 ($ (-485) $)) (-14 -3732 (|t#2| $)) (-14 -3731 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-311)) (-6 (-905 |t#2|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-485)) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-35 |#1|) |has| |#1| (-145)) ((-35 |#2|) |has| |#1| (-311)) ((-35 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-79 |#1| |#1|) . T) ((-79 |#2| |#2|) |has| |#1| (-311)) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-101) . T) ((-115) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-115))) (|has| |#1| (-115))) ((-117) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) (-11 (|has| |#1| (-311)) (|has| |#2| (-117))) (|has| |#1| (-117))) ((-556 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 (-1091)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) ((-556 |#1|) |has| |#1| (-145)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-554 (-178)) -11 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-329)) -11 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-474)) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-474)))) ((-554 (-801 (-329))) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-329))))) ((-554 (-801 (-485))) -11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-485))))) ((-185 $) OR (|has| |#1| (-14 * (|#1| (-485) |#1|))) (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (-11 (|has| |#1| (-311)) (|has| |#2| (-189)))) ((-183 |#2|) |has| |#1| (-311)) ((-189) OR (|has| |#1| (-14 * (|#1| (-485) |#1|))) (-11 (|has| |#1| (-311)) (|has| |#2| (-189)))) ((-188) OR (|has| |#1| (-14 * (|#1| (-485) |#1|))) (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (-11 (|has| |#1| (-311)) (|has| |#2| (-189)))) ((-224 |#2|) |has| |#1| (-311)) ((-200) |has| |#1| (-311)) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-240 (-485) |#1|) . T) ((-240 |#2| $) -11 (|has| |#1| (-311)) (|has| |#2| (-240 |#2| |#2|))) ((-240 $ $) |has| (-485) (-1026)) ((-245) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 |#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-311) |has| |#1| (-311)) ((-287 |#2|) |has| |#1| (-311)) ((-328 |#2|) |has| |#1| (-311)) ((-342 |#2|) |has| |#1| (-311)) ((-380 |#1|) . T) ((-380 |#2|) |has| |#1| (-311)) ((-392) |has| |#1| (-311)) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-456 (-1091) |#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-456 (-1091) |#2|))) ((-456 |#2| |#2|) -11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-311)) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-591 (-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-311)) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-583 |#1|) |has| |#1| (-145)) ((-583 |#2|) |has| |#1| (-311)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-581 (-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ((-581 |#2|) |has| |#1| (-311)) ((-655 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-655 |#1|) |has| |#1| (-145)) ((-655 |#2|) |has| |#1| (-311)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-664) . T) ((-715) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-717) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-719) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-722) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-741) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-756) -11 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-757) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) (-11 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-760) OR (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) (-11 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-807 $ (-1091)) OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091))))) ((-810 (-1091)) OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091))))) ((-812 (-1091)) OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-810 (-1091))))) ((-797 (-329)) -11 (|has| |#1| (-311)) (|has| |#2| (-797 (-329)))) ((-797 (-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-797 (-485)))) ((-795 |#2|) |has| |#1| (-311)) ((-822) -11 (|has| |#1| (-311)) (|has| |#2| (-822))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-311)) ((-905 |#2|) |has| |#1| (-311)) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-934) -11 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-951 (-349 (-485))) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ((-951 (-485)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ((-951 (-1091)) -11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) ((-951 |#2|) . T) ((-964 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-311)) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-969 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-311)) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) -11 (|has| |#1| (-311)) (|has| |#2| (-1067))) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-311)) ((-1142 |#1|) . T) ((-1159 |#1| (-485)) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 83 T ELT)) (-3132 ((|#2| $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 102 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3734 ((|#2| $) 11 T ELT)) (-3731 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3732 ((|#2| $) 36 T ELT)) (-3495 (($ $) 208 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 184 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) 204 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 180 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3626 (((-485) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3497 (($ $) 212 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 188 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-1091) #1#) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) ELT)) (-3159 ((|#2| $) 158 T ELT) (((-485) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ELT) (((-349 (-485)) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-485)))) ELT) (((-1091) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) ELT)) (-3733 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-631 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ELT)) (-3470 (((-3 $ #1#) $) 90 T ELT)) (-3730 (((-349 (-858 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-349 (-858 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2997 (($) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-484))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-3189 (((-82) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2895 (((-82) $) 76 T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-797 (-485)))) ELT)) (-3775 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2999 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3001 ((|#2| $) 167 (|has| |#1| (-311)) ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3448 (((-633 $) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-1067))) ELT)) (-3190 (((-82) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3780 (($ $ (-831)) 150 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-485)) 20 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2534 (($ $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2860 (($ $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-311)) ELT)) (-3946 (($ $) 178 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2282 (((-631 |#2|) (-1180 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-1180 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-581 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3782 (($ (-485) |#2|) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 161 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 230 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 235 (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT)) (-3449 (($) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-1067))) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (($ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3133 ((|#2| $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-484))) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-485)) 140 T ELT)) (-3469 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) 176 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 99 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-248 |#2|)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1026)) ELT) (($ $ |#2|) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-240 |#2| |#2|))) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) 151 (OR (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 155 (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT)) (-2998 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3000 ((|#2| $) 168 (|has| |#1| (-311)) ELT)) (-3952 (((-485) $) 12 T ELT)) (-3498 (($ $) 214 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 190 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 210 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 186 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 206 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 182 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3975 (((-178) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-329) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-474) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-554 (-474)))) ELT) (((-801 (-329)) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-485))))) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2894 (($ $) 138 T ELT)) (-3950 (((-773) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-145)) ELT) (($ |#2|) 21 T ELT) (($ (-1091)) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-951 (-1091)))) ELT) (($ (-349 (-485))) 171 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-485)) 87 T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#1| (-311)) (|has| |#2| (-822))) (|has| |#1| (-115)) (-11 (|has| |#1| (-311)) (|has| |#2| (-115)))) ELT)) (-3129 (((-695)) 157 T CONST)) (-3776 ((|#1| $) 104 T ELT)) (-3134 ((|#2| $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-484))) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 220 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 196 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) 216 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 192 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 224 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 200 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-485)) 136 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-485)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 226 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 202 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 222 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 218 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 194 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3386 (($ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2663 (($) 13 T CONST)) (-2669 (($) 18 T CONST)) (-2672 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-11 (|has| |#1| (-311)) (|has| |#2| (-188))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-485) |#1|)))) (-11 (|has| |#1| (-311)) (|has| |#2| (-812 (-1091))))) ELT)) (-2569 (((-82) $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2570 (((-82) $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3059 (((-82) $ $) 74 T ELT)) (-2687 (((-82) $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2688 (((-82) $ $) NIL (-11 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 165 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3842 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-311)) ELT) (($ |#2| $) 163 (|has| |#1| (-311)) ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1145 |#1| |#2|) (-1144 |#1| |#2|) (-962) (-1173 |#1|)) (T -1145))
-NIL
-((-3737 (((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82)) 13 T ELT)) (-3736 (((-347 |#1|) |#1|) 26 T ELT)) (-3735 (((-347 |#1|) |#1|) 24 T ELT)))
-(((-1146 |#1|) (-10 -7 (-14 -3735 ((-347 |#1|) |#1|)) (-14 -3736 ((-347 |#1|) |#1|)) (-14 -3737 ((-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-82)))) (-1156 (-485))) (T -1146))
-((-3737 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3846 (((-1070 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3232 ((|#1| $) 15 T ELT)) (-3234 ((|#1| $) 12 T ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3230 (((-485) $) 19 T ELT)) (-3231 ((|#1| $) 18 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (((-82) $) 17 T ELT)) (-3966 (((-1070 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1070 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3975 (($ |#1|) 26 T ELT)) (-3950 (($ (-1002 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1014)) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3740 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3235 (($ $ (-485)) 14 T ELT)) (-3059 (((-82) $ $) 30 (|has| |#1| (-1014)) ELT)))
-(((-1147 |#1|) (-12 (-1007 |#1|) (-10 -8 (-14 -3740 ($ |#1|)) (-14 -3739 ($ |#1|)) (-14 -3950 ($ (-1002 |#1|))) (-14 -3738 ((-82) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-1070 |#1|))) |%noBranch|))) (-1130)) (T -1147))
-((-3740 (*1 *1 *2) (-11 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3739 (*1 *1 *2) (-11 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) (-3738 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1147 *3)) (-4 *3 (-1130)))))
-((-3846 (((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 17 T ELT)))
-(((-1148 |#1| |#2|) (-10 -7 (-14 -3846 ((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) (IF (|has| |#1| (-756)) (-14 -3846 ((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1148))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3770 (((-1180 |#2|) $ (-695)) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3768 (($ (-1086 |#2|)) NIL T ELT)) (-3086 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3758 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3778 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-82) $ $) NIL (|has| |#2| (-311)) ELT)) (-3764 (($ $ (-695)) NIL T ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT) (((-349 (-485)) $) NIL (|has| |#2| (-951 (-349 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3759 (($ $ $ (-995)) NIL (|has| |#2| (-145)) ELT) ((|#2| $ $) NIL (|has| |#2| (-145)) ELT)) (-2567 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-2281 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3762 (($ $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3755 (((-2 (|:| -3958 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3506 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2821 (((-584 $) $) NIL T ELT)) (-3726 (((-82) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-695) $) NIL T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) NIL (-11 (|has| (-995) (-797 (-329))) (|has| |#2| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-11 (|has| (-995) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-3775 (((-695) $ $) NIL (|has| |#2| (-496)) ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-3448 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3087 (($ (-1086 |#2|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3780 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#2| (-695)) 18 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL T ELT)) (-2823 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3769 (((-1086 |#2|) $) NIL T ELT)) (-3085 (((-3 (-995) #1#) $) NIL T ELT)) (-2282 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) NIL T ELT)) (-2826 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2827 (((-3 (-2 (|:| |var| (-995)) (|:| -2403 (-695))) #1#) $) NIL T ELT)) (-3815 (($ $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT)) (-3449 (($) NIL (|has| |#2| (-1067)) CONST)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 ((|#2| $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3741 (($ $ (-695) |#2| $) NIL T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#2| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3469 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-3771 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#2|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-349 $) |#2|) NIL (|has| |#2| (-311)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#2| (-496)) ELT)) (-3767 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3760 (($ $ (-995)) NIL (|has| |#2| (-145)) ELT) ((|#2| $) NIL (|has| |#2| (-145)) ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3952 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3975 (((-801 (-329)) $) NIL (-11 (|has| (-995) (-554 (-801 (-329)))) (|has| |#2| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) NIL (-11 (|has| (-995) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-11 (|has| (-995) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2820 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) NIL (-11 (|has| $ (-115)) (|has| |#2| (-822))) ELT)) (-3757 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#2| (-496)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) NIL T ELT) (($ (-1177 |#1|)) 20 T ELT) (($ (-349 (-485))) NIL (OR (|has| |#2| (-35 (-349 (-485)))) (|has| |#2| (-951 (-349 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2705 (((-633 $) $) NIL (OR (-11 (|has| $ (-115)) (|has| |#2| (-822))) (|has| |#2| (-115))) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL (|has| |#2| (-496)) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) 14 T CONST)) (-2672 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-485))) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) NIL (|has| |#2| (-35 (-349 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1149 |#1| |#2|) (-12 (-1156 |#2|) (-556 (-1177 |#1|)) (-10 -8 (-14 -3741 ($ $ (-695) |#2| $)))) (-1091) (-962)) (T -1149))
-((-3741 (*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-13 *4 (-1091)) (-4 *3 (-962)))))
-((-3846 (((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)) 15 T ELT)))
-(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 ((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)))) (-1091) (-962) (-1091) (-962)) (T -1150))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-13 *5 (-1091)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) (-13 *7 (-1091)))))
-((-3744 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3742 ((|#1| |#3|) 13 T ELT)) (-3743 ((|#3| |#3|) 19 T ELT)))
-(((-1151 |#1| |#2| |#3|) (-10 -7 (-14 -3742 (|#1| |#3|)) (-14 -3743 (|#3| |#3|)) (-14 -3744 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-1156 |#2|)) (T -1151))
-((-3744 (*1 *2 *3) (-11 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-3743 (*1 *2 *2) (-11 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-1156 *4)))) (-3742 (*1 *2 *3) (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) (-4 *3 (-1156 *4)))))
-((-3746 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3745 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3748 (((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|) 50 T ELT)) (-3749 (((-584 |#2|) |#2|) 52 T ELT)) (-3747 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
-(((-1152 |#1| |#2|) (-10 -7 (-14 -3745 ((-3 |#2| #1="failed") |#2| (-695))) (-14 -3746 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-14 -3747 ((-3 |#2| #1#) |#2| |#2|)) (-14 -3748 ((-3 (-2 (|:| -3141 |#2|) (|:| -3140 |#2|)) #1#) |#2|)) (-14 -3749 ((-584 |#2|) |#2|))) (-12 (-496) (-117)) (-1156 |#1|)) (T -1152))
-((-3749 (*1 *2 *3) (-11 (-4 *4 (-12 (-496) (-117))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3748 (*1 *2 *3) (|partial| -11 (-4 *4 (-12 (-496) (-117))) (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3747 (*1 *2 *2 *2) (|partial| -11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1156 *3)))) (-3746 (*1 *2 *2 *3 *4) (|partial| -11 (-5 *3 (-695)) (-4 *4 (-12 (-496) (-117))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))) (-3745 (*1 *2 *2 *3) (|partial| -11 (-5 *3 (-695)) (-4 *4 (-12 (-496) (-117))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
-((-3750 (((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
-(((-1153 |#1| |#2|) (-10 -7 (-14 -3750 ((-3 (-2 (|:| -1974 |#2|) (|:| -2905 |#2|)) "failed") |#2| |#2|))) (-496) (-1156 |#1|)) (T -1153))
-((-3750 (*1 *2 *3 *3) (|partial| -11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4)))))
-((-3751 ((|#2| |#2| |#2|) 22 T ELT)) (-3752 ((|#2| |#2| |#2|) 36 T ELT)) (-3753 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT)))
-(((-1154 |#1| |#2|) (-10 -7 (-14 -3751 (|#2| |#2| |#2|)) (-14 -3752 (|#2| |#2| |#2|)) (-14 -3753 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1156 |#1|)) (T -1154))
-((-3753 (*1 *2 *2 *2 *3 *3) (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))) (-3752 (*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))) (-3751 (*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
-((-3770 (((-1180 |#2|) $ (-695)) 129 T ELT)) (-3084 (((-584 (-995)) $) 16 T ELT)) (-3768 (($ (-1086 |#2|)) 80 T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) 21 T ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 217 T ELT)) (-3778 (($ $) 207 T ELT)) (-3974 (((-347 $) $) 205 T ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 95 T ELT)) (-3764 (($ $ (-695)) 84 T ELT)) (-3763 (($ $ (-695)) 86 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3160 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-349 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3159 ((|#2| $) 130 T ELT) (((-349 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-995) $) NIL T ELT)) (-3756 (($ $ $) 182 T ELT)) (-3755 (((-2 (|:| -3958 |#2|) (|:| -1974 $) (|:| -2905 $)) $ $) 185 T ELT)) (-3775 (((-695) $ $) 202 T ELT)) (-3448 (((-633 $) $) 149 T ELT)) (-2896 (($ |#2| (-695)) NIL T ELT) (($ $ (-995) (-695)) 59 T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2823 (((-695) $) NIL T ELT) (((-695) $ (-995)) 54 T ELT) (((-584 (-695)) $ (-584 (-995))) 55 T ELT)) (-3769 (((-1086 |#2|) $) 72 T ELT)) (-3085 (((-3 (-995) #1#) $) 52 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) 83 T ELT)) (-3815 (($ $) 232 T ELT)) (-3449 (($) 134 T CONST)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 214 T ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 101 T ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 99 T ELT)) (-3735 (((-347 $) $) 120 T ELT)) (-3771 (($ $ (-584 (-248 $))) 51 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) 39 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 36 T ELT) (($ $ (-995) $) 32 T ELT) (($ $ (-584 (-995)) (-584 $)) 30 T ELT)) (-1608 (((-695) $) 220 T ELT)) (-3803 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) 176 T ELT) ((|#2| (-349 $) |#2|) 219 T ELT) (((-349 $) $ (-349 $)) 201 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 225 T ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3952 (((-695) $) NIL T ELT) (((-695) $ (-995)) 17 T ELT) (((-584 (-695)) $ (-584 (-995))) 23 T ELT)) (-2820 ((|#2| $) NIL T ELT) (($ $ (-995)) 151 T ELT)) (-3757 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-349 $) #1#) (-349 $) $) 189 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) 64 T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT)))
-(((-1155 |#1| |#2|) (-10 -7 (-14 -3950 (|#1| |#1|)) (-14 -2711 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-14 -3761 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-14 -3761 (|#1| |#1| (-1091) (-695))) (-14 -3761 (|#1| |#1| (-584 (-1091)))) (-14 -3761 (|#1| |#1| (-1091))) (-14 -3974 ((-347 |#1|) |#1|)) (-14 -3778 (|#1| |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3449 (|#1|) -3956) (-14 -3448 ((-633 |#1|) |#1|)) (-14 -3803 ((-349 |#1|) |#1| (-349 |#1|))) (-14 -1608 ((-695) |#1|)) (-14 -2882 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -3815 (|#1| |#1|)) (-14 -3803 (|#2| (-349 |#1|) |#2|)) (-14 -3754 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-14 -3755 ((-2 (|:| -3958 |#2|) (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| |#1|)) (-14 -3756 (|#1| |#1| |#1|)) (-14 -3757 ((-3 (-349 |#1|) #1="failed") (-349 |#1|) |#1|)) (-14 -3757 ((-3 |#1| #1#) |#1| |#1|)) (-14 -3775 ((-695) |#1| |#1|)) (-14 -3803 ((-349 |#1|) (-349 |#1|) (-349 |#1|))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-14 -3763 (|#1| |#1| (-695))) (-14 -3764 (|#1| |#1| (-695))) (-14 -3765 ((-2 (|:| -1974 |#1|) (|:| -2905 |#1|)) |#1| (-695))) (-14 -3768 (|#1| (-1086 |#2|))) (-14 -3769 ((-1086 |#2|) |#1|)) (-14 -3770 ((-1180 |#2|) |#1| (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-14 -3761 (|#1| |#1| (-1 |#2| |#2|))) (-14 -3761 (|#1| |#1| (-695))) (-14 -3761 (|#1| |#1|)) (-14 -3803 (|#1| |#1| |#1|)) (-14 -3803 (|#2| |#1| |#2|)) (-14 -3735 ((-347 |#1|) |#1|)) (-14 -2710 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2709 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2708 ((-347 (-1086 |#1|)) (-1086 |#1|))) (-14 -2707 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-14 -2820 (|#1| |#1| (-995))) (-14 -3084 ((-584 (-995)) |#1|)) (-14 -2822 ((-695) |#1| (-584 (-995)))) (-14 -2822 ((-695) |#1|)) (-14 -2896 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-14 -2896 (|#1| |#1| (-995) (-695))) (-14 -2823 ((-584 (-695)) |#1| (-584 (-995)))) (-14 -2823 ((-695) |#1| (-995))) (-14 -3085 ((-3 (-995) #1#) |#1|)) (-14 -3952 ((-584 (-695)) |#1| (-584 (-995)))) (-14 -3952 ((-695) |#1| (-995))) (-14 -3950 (|#1| (-995))) (-14 -3160 ((-3 (-995) #1#) |#1|)) (-14 -3159 ((-995) |#1|)) (-14 -3771 (|#1| |#1| (-584 (-995)) (-584 |#1|))) (-14 -3771 (|#1| |#1| (-995) |#1|)) (-14 -3771 (|#1| |#1| (-584 (-995)) (-584 |#2|))) (-14 -3771 (|#1| |#1| (-995) |#2|)) (-14 -3771 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-14 -3771 (|#1| |#1| |#1| |#1|)) (-14 -3771 (|#1| |#1| (-248 |#1|))) (-14 -3771 (|#1| |#1| (-584 (-248 |#1|)))) (-14 -3952 ((-695) |#1|)) (-14 -2896 (|#1| |#2| (-695))) (-14 -3160 ((-3 (-485) #1#) |#1|)) (-14 -3159 ((-485) |#1|)) (-14 -3160 ((-3 (-349 (-485)) #1#) |#1|)) (-14 -3159 ((-349 (-485)) |#1|)) (-14 -3159 (|#2| |#1|)) (-14 -3160 ((-3 |#2| #1#) |#1|)) (-14 -3950 (|#1| |#2|)) (-14 -2823 ((-695) |#1|)) (-14 -2820 (|#2| |#1|)) (-14 -3761 (|#1| |#1| (-995))) (-14 -3761 (|#1| |#1| (-584 (-995)))) (-14 -3761 (|#1| |#1| (-995) (-695))) (-14 -3761 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-14 -3950 (|#1| (-485))) (-14 -3950 ((-773) |#1|))) (-1156 |#2|) (-962)) (T -1155))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3770 (((-1180 |#1|) $ (-695)) 272 T ELT)) (-3084 (((-584 (-995)) $) 124 T ELT)) (-3768 (($ (-1086 |#1|)) 270 T ELT)) (-3086 (((-1086 $) $ (-995)) 139 T ELT) (((-1086 |#1|) $) 138 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 101 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 102 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 104 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 126 T ELT) (((-695) $ (-584 (-995))) 125 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3758 (($ $ $) 257 (|has| |#1| (-496)) ELT)) (-2710 (((-347 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3778 (($ $) 112 (|has| |#1| (-392)) ELT)) (-3974 (((-347 $) $) 111 (|has| |#1| (-392)) ELT)) (-2707 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1609 (((-82) $ $) 242 (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-695)) 265 T ELT)) (-3763 (($ $ (-695)) 264 T ELT)) (-3754 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 252 (|has| |#1| (-392)) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| #2="failed") $) 182 T ELT) (((-3 (-349 (-485)) #2#) $) 179 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-3 (-485) #2#) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #2#) $) 154 T ELT)) (-3159 ((|#1| $) 181 T ELT) (((-349 (-485)) $) 180 (|has| |#1| (-951 (-349 (-485)))) ELT) (((-485) $) 178 (|has| |#1| (-951 (-485))) ELT) (((-995) $) 155 T ELT)) (-3759 (($ $ $ (-995)) 122 (|has| |#1| (-145)) ELT) ((|#1| $ $) 260 (|has| |#1| (-145)) ELT)) (-2567 (($ $ $) 246 (|has| |#1| (-311)) ELT)) (-3962 (($ $) 172 T ELT)) (-2281 (((-631 (-485)) (-631 $)) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 148 T ELT) (((-631 |#1|) (-631 $)) 147 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 245 (|has| |#1| (-311)) ELT)) (-3762 (($ $ $) 263 T ELT)) (-3756 (($ $ $) 254 (|has| |#1| (-496)) ELT)) (-3755 (((-2 (|:| -3958 |#1|) (|:| -1974 $) (|:| -2905 $)) $ $) 253 (|has| |#1| (-496)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 240 (|has| |#1| (-311)) ELT)) (-3506 (($ $) 194 (|has| |#1| (-392)) ELT) (($ $ (-995)) 119 (|has| |#1| (-392)) ELT)) (-2821 (((-584 $) $) 123 T ELT)) (-3726 (((-82) $) 110 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 190 T ELT)) (-2799 (((-799 (-329) $) $ (-801 (-329)) (-799 (-329) $)) 98 (-11 (|has| (-995) (-797 (-329))) (|has| |#1| (-797 (-329)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 97 (-11 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3775 (((-695) $ $) 258 (|has| |#1| (-496)) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-2422 (((-695) $) 187 T ELT)) (-3448 (((-633 $) $) 238 (|has| |#1| (-1067)) ELT)) (-3087 (($ (-1086 |#1|) (-995)) 131 T ELT) (($ (-1086 $) (-995)) 130 T ELT)) (-3780 (($ $ (-695)) 269 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 249 (|has| |#1| (-311)) ELT)) (-2824 (((-584 $) $) 140 T ELT)) (-3941 (((-82) $) 170 T ELT)) (-2896 (($ |#1| (-695)) 171 T ELT) (($ $ (-995) (-695)) 133 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 132 T ELT)) (-3766 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $ (-995)) 134 T ELT) (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 267 T ELT)) (-2823 (((-695) $) 188 T ELT) (((-695) $ (-995)) 136 T ELT) (((-584 (-695)) $ (-584 (-995))) 135 T ELT)) (-1626 (($ (-1 (-695) (-695)) $) 189 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3769 (((-1086 |#1|) $) 271 T ELT)) (-3085 (((-3 (-995) #4="failed") $) 137 T ELT)) (-2282 (((-631 (-485)) (-1180 $)) 152 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 146 T ELT) (((-631 |#1|) (-1180 $)) 145 T ELT)) (-2897 (($ $) 168 T ELT)) (-3177 ((|#1| $) 167 T ELT)) (-1896 (($ (-584 $)) 108 (|has| |#1| (-392)) ELT) (($ $ $) 107 (|has| |#1| (-392)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3765 (((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695)) 266 T ELT)) (-2826 (((-3 (-584 $) #4#) $) 128 T ELT)) (-2825 (((-3 (-584 $) #4#) $) 129 T ELT)) (-2827 (((-3 (-2 (|:| |var| (-995)) (|:| -2403 (-695))) #4#) $) 127 T ELT)) (-3815 (($ $) 250 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3449 (($) 237 (|has| |#1| (-1067)) CONST)) (-3246 (((-1034) $) 12 T ELT)) (-1802 (((-82) $) 184 T ELT)) (-1801 ((|#1| $) 185 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 109 (|has| |#1| (-392)) ELT)) (-3147 (($ (-584 $)) 106 (|has| |#1| (-392)) ELT) (($ $ $) 105 (|has| |#1| (-392)) ELT)) (-2708 (((-347 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-2709 (((-347 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-3735 (((-347 $) $) 113 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 248 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 247 (|has| |#1| (-311)) ELT)) (-3469 (((-3 $ "failed") $ |#1|) 192 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 100 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 241 (|has| |#1| (-311)) ELT)) (-3771 (($ $ (-584 (-248 $))) 163 T ELT) (($ $ (-248 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ (-995) |#1|) 159 T ELT) (($ $ (-584 (-995)) (-584 |#1|)) 158 T ELT) (($ $ (-995) $) 157 T ELT) (($ $ (-584 (-995)) (-584 $)) 156 T ELT)) (-1608 (((-695) $) 243 (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ |#1|) 282 T ELT) (($ $ $) 281 T ELT) (((-349 $) (-349 $) (-349 $)) 259 (|has| |#1| (-496)) ELT) ((|#1| (-349 $) |#1|) 251 (|has| |#1| (-311)) ELT) (((-349 $) $ (-349 $)) 239 (|has| |#1| (-496)) ELT)) (-3767 (((-3 $ "failed") $ (-695)) 268 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 244 (|has| |#1| (-311)) ELT)) (-3760 (($ $ (-995)) 121 (|has| |#1| (-145)) ELT) ((|#1| $) 261 (|has| |#1| (-145)) ELT)) (-3761 (($ $ (-584 (-995)) (-584 (-695))) 52 T ELT) (($ $ (-995) (-695)) 51 T ELT) (($ $ (-584 (-995))) 50 T ELT) (($ $ (-995)) 48 T ELT) (($ $) 280 T ELT) (($ $ (-695)) 278 T ELT) (($ $ (-1 |#1| |#1|)) 276 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 275 T ELT) (($ $ (-1 |#1| |#1|) $) 262 T ELT) (($ $ (-1091)) 236 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 232 (|has| |#1| (-812 (-1091))) ELT)) (-3952 (((-695) $) 169 T ELT) (((-695) $ (-995)) 144 T ELT) (((-584 (-695)) $ (-584 (-995))) 143 T ELT)) (-3975 (((-801 (-329)) $) 96 (-11 (|has| (-995) (-554 (-801 (-329)))) (|has| |#1| (-554 (-801 (-329))))) ELT) (((-801 (-485)) $) 95 (-11 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 94 (-11 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2820 ((|#1| $) 193 (|has| |#1| (-392)) ELT) (($ $ (-995)) 120 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-1180 $) #1#) (-631 $)) 118 (-2565 (|has| $ (-115)) (|has| |#1| (-822))) ELT)) (-3757 (((-3 $ "failed") $ $) 256 (|has| |#1| (-496)) ELT) (((-3 (-349 $) "failed") (-349 $) $) 255 (|has| |#1| (-496)) ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 183 T ELT) (($ (-995)) 153 T ELT) (($ (-349 (-485))) 92 (OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ELT) (($ $) 99 (|has| |#1| (-496)) ELT)) (-3820 (((-584 |#1|) $) 186 T ELT)) (-3680 ((|#1| $ (-695)) 173 T ELT) (($ $ (-995) (-695)) 142 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 141 T ELT)) (-2705 (((-633 $) $) 93 (OR (-2565 (|has| $ (-115)) (|has| |#1| (-822))) (|has| |#1| (-115))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 191 (|has| |#1| (-145)) ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 103 (|has| |#1| (-496)) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-584 (-995)) (-584 (-695))) 55 T ELT) (($ $ (-995) (-695)) 54 T ELT) (($ $ (-584 (-995))) 53 T ELT) (($ $ (-995)) 49 T ELT) (($ $) 279 T ELT) (($ $ (-695)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 274 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 273 T ELT) (($ $ (-1091)) 235 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 231 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 230 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 229 (|has| |#1| (-812 (-1091))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 176 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ (-349 (-485)) $) 175 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ |#1| $) 165 T ELT) (($ $ |#1|) 164 T ELT)))
-(((-1156 |#1|) (-110) (-962)) (T -1156))
-((-3770 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))) (-3769 (*1 *2 *1) (-11 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))) (-3768 (*1 *1 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))) (-3780 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3767 (*1 *1 *1 *2) (|partial| -11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3766 (*1 *2 *1 *1) (-11 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1156 *3)))) (-3765 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1156 *4)))) (-3764 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3763 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3762 (*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)))) (-3761 (*1 *1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3760 (*1 *2 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-145)))) (-3759 (*1 *2 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-145)))) (-3803 (*1 *2 *2 *2) (-11 (-5 *2 (-349 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3775 (*1 *2 *1 *1) (-11 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3758 (*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3757 (*1 *1 *1 *1) (|partial| -11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3757 (*1 *2 *2 *1) (|partial| -11 (-5 *2 (-349 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3756 (*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3755 (*1 *2 *1 *1) (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3958 *3) (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-1156 *3)))) (-3754 (*1 *2 *1 *1) (-11 (-4 *3 (-392)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))) (-3803 (*1 *2 *3 *2) (-11 (-5 *3 (-349 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3815 (*1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485)))))))
-(-12 (-862 |t#1| (-695) (-995)) (-240 |t#1| |t#1|) (-240 $ $) (-189) (-183 |t#1|) (-10 -8 (-14 -3770 ((-1180 |t#1|) $ (-695))) (-14 -3769 ((-1086 |t#1|) $)) (-14 -3768 ($ (-1086 |t#1|))) (-14 -3780 ($ $ (-695))) (-14 -3767 ((-3 $ "failed") $ (-695))) (-14 -3766 ((-2 (|:| -1974 $) (|:| -2905 $)) $ $)) (-14 -3765 ((-2 (|:| -1974 $) (|:| -2905 $)) $ (-695))) (-14 -3764 ($ $ (-695))) (-14 -3763 ($ $ (-695))) (-14 -3762 ($ $ $)) (-14 -3761 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-145)) (PROGN (-14 -3760 (|t#1| $)) (-14 -3759 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-240 (-349 $) (-349 $))) (-14 -3803 ((-349 $) (-349 $) (-349 $))) (-14 -3775 ((-695) $ $)) (-14 -3758 ($ $ $)) (-14 -3757 ((-3 $ "failed") $ $)) (-14 -3757 ((-3 (-349 $) "failed") (-349 $) $)) (-14 -3756 ($ $ $)) (-14 -3755 ((-2 (|:| -3958 |t#1|) (|:| -1974 $) (|:| -2905 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-14 -3754 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-257)) (-6 -3993) (-14 -3803 (|t#1| (-349 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-35 (-349 (-485)))) (-14 -3815 ($ $)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-695)) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-951 (-349 (-485)))) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 (-995)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-554 (-474)) -11 (|has| |#1| (-554 (-474))) (|has| (-995) (-554 (-474)))) ((-554 (-801 (-329))) -11 (|has| |#1| (-554 (-801 (-329)))) (|has| (-995) (-554 (-801 (-329))))) ((-554 (-801 (-485))) -11 (|has| |#1| (-554 (-801 (-485)))) (|has| (-995) (-554 (-801 (-485))))) ((-185 $) . T) ((-183 |#1|) . T) ((-189) . T) ((-188) . T) ((-224 |#1|) . T) ((-240 (-349 $) (-349 $)) |has| |#1| (-496)) ((-240 |#1| |#1|) . T) ((-240 $ $) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 $) . T) ((-276 |#1| (-695)) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-380 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-456 (-995) |#1|) . T) ((-456 (-995) $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-995)) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-995)) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-995)) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-329)) -11 (|has| |#1| (-797 (-329))) (|has| (-995) (-797 (-329)))) ((-797 (-485)) -11 (|has| |#1| (-797 (-485))) (|has| (-995) (-797 (-485)))) ((-862 |#1| (-695) (-995)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-311)) ((-951 (-349 (-485))) |has| |#1| (-951 (-349 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-995)) . T) ((-951 |#1|) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-3846 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
-(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1156 |#1|) (-962) (-1156 |#3|)) (T -1157))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5)))))
-((-3084 (((-584 (-995)) $) 34 T ELT)) (-3962 (($ $) 31 T ELT)) (-2896 (($ |#2| |#3|) NIL T ELT) (($ $ (-995) |#3|) 28 T ELT) (($ $ (-584 (-995)) (-584 |#3|)) 27 T ELT)) (-2897 (($ $) 14 T ELT)) (-3177 ((|#2| $) 12 T ELT)) (-3952 ((|#3| $) 10 T ELT)))
-(((-1158 |#1| |#2| |#3|) (-10 -7 (-14 -3084 ((-584 (-995)) |#1|)) (-14 -2896 (|#1| |#1| (-584 (-995)) (-584 |#3|))) (-14 -2896 (|#1| |#1| (-995) |#3|)) (-14 -3962 (|#1| |#1|)) (-14 -2896 (|#1| |#2| |#3|)) (-14 -3952 (|#3| |#1|)) (-14 -2897 (|#1| |#1|)) (-14 -3177 (|#2| |#1|))) (-1159 |#2| |#3|) (-962) (-717)) (T -1158))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ |#2|) 125 T ELT) (($ $ |#2| |#2|) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 131 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2895 (((-82) $) 95 T ELT)) (-3775 ((|#2| $) 127 T ELT) ((|#2| $ |#2|) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3780 (($ $ (-831)) 128 T ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| |#2|) 82 T ELT) (($ $ (-995) |#2|) 98 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3772 (($ $ |#2|) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| |#2|))) ELT)) (-3803 ((|#1| $ |#2|) 132 T ELT) (($ $ $) 108 (|has| |#2| (-1026)) ELT)) (-3761 (($ $ (-1091)) 120 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 118 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 117 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $) 112 (|has| |#1| (-14 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 110 (|has| |#1| (-14 * (|#1| |#2| |#1|))) ELT)) (-3952 ((|#2| $) 84 T ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT)) (-3680 ((|#1| $ |#2|) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3773 ((|#1| $ |#2|) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| |#2|))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1091)) 119 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 115 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 114 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-14 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-14 * (|#1| |#2| |#1|))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1159 |#1| |#2|) (-110) (-962) (-717)) (T -1159))
-((-3777 (*1 *2 *1) (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3834 (*1 *2 *1) (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) (-3776 (*1 *2 *1) (-11 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3780 (*1 *1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3775 (*1 *2 *1) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3775 (*1 *2 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3774 (*1 *1 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3774 (*1 *1 *1 *2 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *2 *1 *3) (-11 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-14 ** (*2 *2 *3))) (|has| *2 (-14 -3950 (*2 (-1091)))) (-4 *2 (-962)))) (-3772 (*1 *1 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3771 (*1 *2 *1 *3) (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-14 ** (*3 *3 *4))) (-5 *2 (-1070 *3)))))
-(-12 (-887 |t#1| |t#2| (-995)) (-240 |t#2| |t#1|) (-10 -8 (-14 -3777 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-14 -3834 ((-1091) $)) (-14 -3776 (|t#1| $)) (-14 -3780 ($ $ (-831))) (-14 -3775 (|t#2| $)) (-14 -3775 (|t#2| $ |t#2|)) (-14 -3774 ($ $ |t#2|)) (-14 -3774 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-14 -3950 (|t#1| (-1091)))) (IF (|has| |t#1| (-14 ** (|t#1| |t#1| |t#2|))) (-14 -3773 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-14 -3772 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-240 $ $)) |%noBranch|) (IF (|has| |t#1| (-14 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-189)) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-14 ** (|t#1| |t#1| |t#2|))) (-14 -3771 ((-1070 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| |#2|) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-185 $) |has| |#1| (-14 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-14 * (|#1| |#2| |#1|))) ((-188) |has| |#1| (-14 * (|#1| |#2| |#1|))) ((-240 |#2| |#1|) . T) ((-240 $ $) |has| |#2| (-1026)) ((-245) |has| |#1| (-496)) ((-380 |#1|) . T) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ((-810 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ((-812 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-995)) . T) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3778 ((|#2| |#2|) 12 T ELT)) (-3974 (((-347 |#2|) |#2|) 14 T ELT)) (-3779 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT)))
-(((-1160 |#1| |#2|) (-10 -7 (-14 -3974 ((-347 |#2|) |#2|)) (-14 -3778 (|#2| |#2|)) (-14 -3779 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-12 (-1156 |#1|) (-496) (-10 -8 (-14 -3147 ($ $ $))))) (T -1160))
-((-3779 (*1 *2 *2) (-11 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-12 (-1156 *3) (-496) (-10 -8 (-14 -3147 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1160 *3 *4)))) (-3778 (*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-12 (-1156 *3) (-496) (-10 -8 (-14 -3147 ($ $ $))))))) (-3974 (*1 *2 *3) (-11 (-4 *4 (-496)) (-5 *2 (-347 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-12 (-1156 *4) (-496) (-10 -8 (-14 -3147 ($ $ $))))))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) NIL T ELT) (($ $ (-349 (-485)) (-349 (-485))) NIL T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1170 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3159 (((-1140 |#1| |#2| |#3|) $) NIL T ELT) (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3784 (((-349 (-485)) $) 68 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3785 (($ (-349 (-485)) (-1140 |#1| |#2| |#3|)) NIL T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) NIL T ELT) (((-349 (-485)) $ (-349 (-485))) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) NIL T ELT) (($ $ (-349 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-349 (-485))) 30 T ELT) (($ $ (-995) (-349 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3783 (((-1140 |#1| |#2| |#3|) $) 71 T ELT)) (-3781 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3782 (((-1140 |#1| |#2| |#3|) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3815 (($ $) 39 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) NIL T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3952 (((-349 (-485)) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3950 (((-773) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT) (($ (-1140 |#1| |#2| |#3|)) 16 T ELT) (($ (-1170 |#1| |#2| |#3|)) 17 T ELT) (($ (-1177 |#2|)) 36 T ELT) (($ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 12 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) 73 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 32 T CONST)) (-2669 (($) 26 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1161 |#1| |#2| |#3|) (-12 (-1165 |#1| (-1140 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1170 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1161))
-((-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-3846 (((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)) 24 T ELT)))
-(((-1162 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-14 -3846 ((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1162))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-13 *7 (-1091)) (-13 *9 *5) (-13 *10 *6) (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) (-13 *8 (-1091)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) 125 T ELT) (($ $ (-349 (-485)) (-349 (-485))) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) 192 (|has| |#1| (-311)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) 182 (|has| |#1| (-311)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) 200 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-2567 (($ $ $) 186 (|has| |#1| (-311)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-311)) ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 180 (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) 193 (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) 127 T ELT) (((-349 (-485)) $ (-349 (-485))) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) 128 T ELT) (($ $ (-349 (-485))) 199 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 189 (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| (-349 (-485))) 82 T ELT) (($ $ (-995) (-349 (-485))) 98 T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-584 $)) 178 (|has| |#1| (-311)) ELT) (($ $ $) 177 (|has| |#1| (-311)) ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 197 (OR (-11 (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-35 (-349 (-485))))) (-11 (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-35 (-349 (-485)))))) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 179 (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) 176 (|has| |#1| (-311)) ELT) (($ $ $) 175 (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) 190 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 181 (|has| |#1| (-311)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) 183 (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) 132 T ELT) (($ $ $) 108 (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 120 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 118 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 117 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) 110 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3952 (((-349 (-485)) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1091)) 119 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 115 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 114 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT) (($ $ $) 196 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 195 (|has| |#1| (-311)) ELT) (($ $ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 144 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1163 |#1|) (-110) (-962)) (T -1163))
-((-3821 (*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1163 *4)))) (-3780 (*1 *1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))) (-3815 (*1 *1 *1) (-11 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485)))))) (-3815 (*1 *1 *1 *2) (OR (-11 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-35 (-349 (-485)))))) (-11 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-11 (|has| *3 (-14 -3084 ((-584 *2) *3))) (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485)))))))))
-(-12 (-1159 |t#1| (-349 (-485))) (-10 -8 (-14 -3821 ($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |t#1|))))) (-14 -3780 ($ $ (-349 (-485)))) (IF (|has| |t#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $)) (IF (|has| |t#1| (-14 -3815 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-14 -3084 ((-584 (-1091)) |t#1|))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-26 (-485))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-349 (-485))) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-185 $) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-189) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-188) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-200) |has| |#1| (-311)) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-240 (-349 (-485)) |#1|) . T) ((-240 $ $) |has| (-349 (-485)) (-1026)) ((-245) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-380 |#1|) . T) ((-392) |has| |#1| (-311)) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-655 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-810 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-812 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-887 |#1| (-349 (-485)) (-995)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-964 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-969 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-311)) ((-1159 |#1| (-349 (-485))) . T))
-((-3191 (((-82) $) 12 T ELT)) (-3160 (((-3 |#3| "failed") $) 17 T ELT)) (-3159 ((|#3| $) 14 T ELT)))
-(((-1164 |#1| |#2| |#3|) (-10 -7 (-14 -3160 ((-3 |#3| "failed") |#1|)) (-14 -3159 (|#3| |#1|)) (-14 -3191 ((-82) |#1|))) (-1165 |#2| |#3|) (-962) (-1142 |#2|)) (T -1164))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) 125 T ELT) (($ $ (-349 (-485)) (-349 (-485))) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) 192 (|has| |#1| (-311)) ELT)) (-3040 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) 182 (|has| |#1| (-311)) ELT)) (-3493 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) 200 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#2| "failed") $) 213 T ELT)) (-3159 ((|#2| $) 214 T ELT)) (-2567 (($ $ $) 186 (|has| |#1| (-311)) ELT)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3784 (((-349 (-485)) $) 210 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-311)) ELT)) (-3785 (($ (-349 (-485)) |#2|) 211 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 180 (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) 193 (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) 127 T ELT) (((-349 (-485)) $ (-349 (-485))) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) 128 T ELT) (($ $ (-349 (-485))) 199 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 189 (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| (-349 (-485))) 82 T ELT) (($ $ (-995) (-349 (-485))) 98 T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-1896 (($ (-584 $)) 178 (|has| |#1| (-311)) ELT) (($ $ $) 177 (|has| |#1| (-311)) ELT)) (-3783 ((|#2| $) 209 T ELT)) (-3781 (((-3 |#2| "failed") $) 207 T ELT)) (-3782 ((|#2| $) 208 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 194 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 197 (OR (-11 (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-35 (-349 (-485))))) (-11 (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-35 (-349 (-485)))))) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 179 (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) 176 (|has| |#1| (-311)) ELT) (($ $ $) 175 (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) 190 (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 188 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 187 (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 181 (|has| |#1| (-311)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) 183 (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) 132 T ELT) (($ $ $) 108 (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 120 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 118 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 117 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) 110 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3952 (((-349 (-485)) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT) (($ |#2|) 212 T ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1091)) 119 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 115 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 114 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT) (($ $ $) 196 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 195 (|has| |#1| (-311)) ELT) (($ $ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 144 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1165 |#1| |#2|) (-110) (-962) (-1142 |t#1|)) (T -1165))
-((-3952 (*1 *2 *1) (-11 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-349 (-485))))) (-3785 (*1 *1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) (-4 *3 (-1142 *4)))) (-3784 (*1 *2 *1) (-11 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-349 (-485))))) (-3783 (*1 *2 *1) (-11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3782 (*1 *2 *1) (-11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3781 (*1 *2 *1) (|partial| -11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
-(-12 (-1163 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-14 -3785 ($ (-349 (-485)) |t#2|)) (-14 -3784 ((-349 (-485)) $)) (-14 -3783 (|t#2| $)) (-14 -3952 ((-349 (-485)) $)) (-14 -3782 (|t#2| $)) (-14 -3781 ((-3 |t#2| "failed") $))))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-349 (-485))) . T) ((-22) . T) ((-35 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-185 $) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-189) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-188) |has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ((-200) |has| |#1| (-311)) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-240 (-349 (-485)) |#1|) . T) ((-240 $ $) |has| (-349 (-485)) (-1026)) ((-245) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-380 |#1|) . T) ((-392) |has| |#1| (-311)) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-12) . T) ((-589 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-655 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-810 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-812 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ((-887 |#1| (-349 (-485)) (-995)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-951 |#2|) . T) ((-964 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-969 (-349 (-485))) OR (|has| |#1| (-311)) (|has| |#1| (-35 (-349 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-311)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-311)) ((-1159 |#1| (-349 (-485))) . T) ((-1163 |#1|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 104 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-349 (-485))) 116 T ELT) (($ $ (-349 (-485)) (-349 (-485))) 118 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3495 (($ $) 192 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3778 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3974 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1609 (((-82) $ $) NIL (|has| |#1| (-311)) ELT)) (-3493 (($ $) 188 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-695) (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3497 (($ $) 196 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 85 T ELT)) (-3784 (((-349 (-485)) $) 13 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3785 (($ (-349 (-485)) |#2|) 11 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-82) $) NIL (|has| |#1| (-311)) ELT)) (-2895 (((-82) $) 74 T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-349 (-485)) $) 113 T ELT) (((-349 (-485)) $ (-349 (-485))) 114 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) 130 T ELT) (($ $ (-349 (-485))) 128 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-349 (-485))) 33 T ELT) (($ $ (-995) (-349 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-349 (-485)))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3946 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-1896 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3783 ((|#2| $) 12 T ELT)) (-3781 (((-3 |#2| #1#) $) 44 T ELT)) (-3782 ((|#2| $) 45 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-2487 (($ $) 101 (|has| |#1| (-311)) ELT)) (-3815 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 151 (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-311)) ELT)) (-3147 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3735 (((-347 $) $) NIL (|has| |#1| (-311)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3772 (($ $ (-349 (-485))) 122 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3947 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3803 ((|#1| $ (-349 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-349 (-485)) (-1026)) ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3761 (($ $ (-1091)) 138 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3952 (((-349 (-485)) $) 16 T ELT)) (-3498 (($ $) 198 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 194 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 190 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 120 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-145)) ELT) (($ |#2|) 34 T ELT) (($ (-349 (-485))) 139 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3680 ((|#1| $ (-349 (-485))) 107 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 127 T CONST)) (-3776 ((|#1| $) 106 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) 204 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 180 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) 200 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 176 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 208 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 184 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-349 (-485))) NIL (-11 (|has| |#1| (-14 ** (|#1| |#1| (-349 (-485))))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) 210 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 186 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 206 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 182 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 202 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 178 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 17 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-349 (-485)) |#1|))) ELT)) (-3059 (((-82) $ $) 72 T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 100 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3842 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1166 |#1| |#2|) (-1165 |#1| |#2|) (-962) (-1142 |#1|)) (T -1166))
-NIL
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 37 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 (-485) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-349 (-485)) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-349 (-485)))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3159 (((-485) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-349 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-349 (-485)))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3962 (($ $) 41 T ELT)) (-3470 (((-3 $ #1#) $) 27 T ELT)) (-3506 (($ $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-1625 (($ $ (-1161 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) 11 T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ (-1161 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) 25 T ELT)) (-2823 (((-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-269 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) $) NIL T ELT)) (-3846 (($ (-1 (-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3787 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2897 (($ $) NIL T ELT)) (-3177 (((-1161 |#2| |#3| |#4|) $) 20 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-1802 (((-82) $) NIL T ELT)) (-1801 (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3786 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $) 74 T ELT)) (-3952 (((-269 |#2| |#3| |#4|) $) 17 T ELT)) (-2820 (((-1161 |#2| |#3| |#4|) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-485))) NIL (OR (|has| (-1161 |#2| |#3| |#4|) (-951 (-349 (-485)))) (|has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485))))) ELT)) (-3820 (((-584 (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3680 (((-1161 |#2| |#3| |#4|) $ (-269 |#2| |#3| |#4|)) NIL T ELT)) (-2705 (((-633 $) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| (-1161 |#2| |#3| |#4|) (-145)) ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-2064 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|) $) NIL T ELT) (($ (-349 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| (-1161 |#2| |#3| |#4|) (-35 (-349 (-485)))) ELT)))
-(((-1167 |#1| |#2| |#3| |#4|) (-12 (-276 (-1161 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) (-496) (-10 -8 (-14 -3787 ((-3 (-751 |#2|) #1="failed") $)) (-14 -3786 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-349 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $)))) (-12 (-951 (-485)) (-581 (-485)) (-392)) (-12 (-24) (-1116) (-363 |#1|)) (-1091) |#2|) (T -1167))
-((-3787 (*1 *2 *1) (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4))) (-3786 (*1 *2 *1) (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-349 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4))))
-((-3405 ((|#2| $) 34 T ELT)) (-3798 ((|#2| $) 18 T ELT)) (-3800 (($ $) 43 T ELT)) (-3788 (($ $ (-485)) 78 T ELT)) (-3028 ((|#2| $ |#2|) 75 T ELT)) (-3789 ((|#2| $ |#2|) 71 T ELT)) (-3791 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3029 (($ $ (-584 $)) 74 T ELT)) (-3799 ((|#2| $) 17 T ELT)) (-3802 (($ $) NIL T ELT) (($ $ (-695)) 51 T ELT)) (-3034 (((-584 $) $) 31 T ELT)) (-3030 (((-82) $ $) 62 T ELT)) (-3530 (((-82) $) 33 T ELT)) (-3801 ((|#2| $) 25 T ELT) (($ $ (-695)) 57 T ELT)) (-3803 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3636 (((-82) $) 23 T ELT)) (-3795 (($ $) 46 T ELT)) (-3793 (($ $) 79 T ELT)) (-3796 (((-695) $) 50 T ELT)) (-3797 (($ $) 49 T ELT)) (-3805 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3525 (((-584 $) $) 32 T ELT)) (-3059 (((-82) $ $) 60 T ELT)))
-(((-1168 |#1| |#2|) (-10 -7 (-14 -3059 ((-82) |#1| |#1|)) (-14 -3788 (|#1| |#1| (-485))) (-14 -3791 (|#2| |#1| #1="last" |#2|)) (-14 -3789 (|#2| |#1| |#2|)) (-14 -3791 (|#1| |#1| #2="rest" |#1|)) (-14 -3791 (|#2| |#1| #3="first" |#2|)) (-14 -3793 (|#1| |#1|)) (-14 -3795 (|#1| |#1|)) (-14 -3796 ((-695) |#1|)) (-14 -3797 (|#1| |#1|)) (-14 -3798 (|#2| |#1|)) (-14 -3799 (|#2| |#1|)) (-14 -3800 (|#1| |#1|)) (-14 -3801 (|#1| |#1| (-695))) (-14 -3803 (|#2| |#1| #1#)) (-14 -3801 (|#2| |#1|)) (-14 -3802 (|#1| |#1| (-695))) (-14 -3803 (|#1| |#1| #2#)) (-14 -3802 (|#1| |#1|)) (-14 -3803 (|#2| |#1| #3#)) (-14 -3805 (|#1| |#2| |#1|)) (-14 -3805 (|#1| |#1| |#1|)) (-14 -3028 (|#2| |#1| |#2|)) (-14 -3791 (|#2| |#1| #4="value" |#2|)) (-14 -3029 (|#1| |#1| (-584 |#1|))) (-14 -3030 ((-82) |#1| |#1|)) (-14 -3636 ((-82) |#1|)) (-14 -3803 (|#2| |#1| #4#)) (-14 -3405 (|#2| |#1|)) (-14 -3530 ((-82) |#1|)) (-14 -3034 ((-584 |#1|) |#1|)) (-14 -3525 ((-584 |#1|) |#1|))) (-1169 |#2|) (-1130)) (T -1168))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3405 ((|#1| $) 43 T ELT)) (-3798 ((|#1| $) 62 T ELT)) (-3800 (($ $) 64 T ELT)) (-3788 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3028 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3789 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3792 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3029 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3799 ((|#1| $) 63 T ELT)) (-3727 (($) 6 T CONST)) (-3802 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-3034 (((-584 $) $) 45 T ELT)) (-3030 (((-82) $ $) 37 (|has| |#1| (-69)) ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3033 (((-584 |#1|) $) 40 T ELT)) (-3530 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-3801 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3032 (((-485) $ $) 39 T ELT)) (-3636 (((-82) $) 41 T ELT)) (-3795 (($ $) 59 T ELT)) (-3793 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3796 (((-695) $) 60 T ELT)) (-3797 (($ $) 61 T ELT)) (-3403 (($ $) 9 T ELT)) (-3794 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3805 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-3525 (((-584 $) $) 46 T ELT)) (-3031 (((-82) $ $) 38 (|has| |#1| (-69)) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)))
-(((-1169 |#1|) (-110) (-1130)) (T -1169))
-((-3805 (*1 *1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3805 (*1 *1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3804 (*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3802 (*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *2) (-11 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3802 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3801 (*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1 *3) (-11 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3799 (*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3798 (*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3797 (*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3796 (*1 *2 *1) (-11 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3795 (*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3794 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3794 (*1 *1 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *2 *1 *3 *2) (-11 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *1 *1 *2 *1) (-11 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3789 (*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *2 *1 *3 *2) (-11 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3788 (*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))))
-(-12 (-924 |t#1|) (-10 -8 (-14 -3805 ($ $ $)) (-14 -3805 ($ |t#1| $)) (-14 -3804 (|t#1| $)) (-14 -3803 (|t#1| $ "first")) (-14 -3804 ($ $ (-695))) (-14 -3802 ($ $)) (-14 -3803 ($ $ "rest")) (-14 -3802 ($ $ (-695))) (-14 -3801 (|t#1| $)) (-14 -3803 (|t#1| $ "last")) (-14 -3801 ($ $ (-695))) (-14 -3800 ($ $)) (-14 -3799 (|t#1| $)) (-14 -3798 (|t#1| $)) (-14 -3797 ($ $)) (-14 -3796 ((-695) $)) (-14 -3795 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-14 -3794 ($ $ $)) (-14 -3794 ($ $ |t#1|)) (-14 -3793 ($ $)) (-14 -3792 (|t#1| $ |t#1|)) (-14 -3791 (|t#1| $ "first" |t#1|)) (-14 -3790 ($ $ $)) (-14 -3791 ($ $ "rest" $)) (-14 -3789 (|t#1| $ |t#1|)) (-14 -3791 (|t#1| $ "last" |t#1|)) (-14 -3788 ($ $ (-485)))) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3084 (((-584 (-995)) $) NIL T ELT)) (-3834 (((-1091) $) 87 T ELT)) (-3814 (((-1149 |#2| |#1|) $ (-695)) 70 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 139 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3495 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3040 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1070 |#1|)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) NIL T CONST)) (-3808 (($ $) 131 T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3819 (($ $) 137 T ELT)) (-3817 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2895 (((-82) $) NIL T ELT)) (-3630 (($) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3811 (($ $) 115 T ELT)) (-3014 (($ $ (-485)) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3807 (($ (-485) (-485) $) 133 T ELT)) (-3780 (($ $ (-831)) 136 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3941 (((-82) $) NIL T ELT)) (-2896 (($ |#1| (-695)) 16 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3946 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3812 (($ $) 113 T ELT)) (-3813 (($ $) 111 T ELT)) (-3806 (($ (-485) (-485) $) 135 T ELT)) (-3815 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 153 (OR (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-11 (|has| |#1| (-35 (-349 (-485)))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3809 (($ $ (-485) (-485)) 119 T ELT)) (-3772 (($ $ (-695)) 121 T ELT)) (-3469 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3947 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3810 (($ $) 117 T ELT)) (-3771 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-14 ** (|#1| |#1| (-695)))) ELT)) (-3803 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1026)) ELT)) (-3761 (($ $ (-1091)) 106 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 101 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 123 T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-349 (-485))) 145 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-145)) ELT) (($ (-1149 |#2| |#1|)) 78 T ELT) (($ (-1177 |#2|)) 22 T ELT)) (-3820 (((-1070 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ (-695)) 92 T ELT)) (-2705 (((-633 $) $) NIL (|has| |#1| (-115)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3776 ((|#1| $) 88 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-695)) 86 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-695)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 18 T CONST)) (-2669 (($) 13 T CONST)) (-2672 (($ $ (-1091)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3953 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-349 (-485)) $) NIL (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) NIL (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1170 |#1| |#2| |#3|) (-12 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-14 -3950 ($ (-1149 |#2| |#1|))) (-14 -3814 ((-1149 |#2| |#1|) $ (-695))) (-14 -3950 ($ (-1177 |#2|))) (-14 -3813 ($ $)) (-14 -3812 ($ $)) (-14 -3811 ($ $)) (-14 -3810 ($ $)) (-14 -3809 ($ $ (-485) (-485))) (-14 -3808 ($ $)) (-14 -3807 ($ (-485) (-485) $)) (-14 -3806 ($ (-485) (-485) $)) (IF (|has| |#1| (-35 (-349 (-485)))) (-14 -3815 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1170))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3) (-5 *1 (-1170 *3 *4 *5)))) (-3814 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) (-4 *4 (-962)) (-13 *5 (-1091)) (-13 *6 *4))) (-3950 (*1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *5 *3))) (-3813 (*1 *1 *1) (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))) (-3812 (*1 *1 *1) (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))) (-3811 (*1 *1 *1) (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))) (-3810 (*1 *1 *1) (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))) (-3809 (*1 *1 *1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3))) (-3808 (*1 *1 *1) (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))) (-3807 (*1 *1 *2 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3))) (-3806 (*1 *1 *2 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3))) (-3815 (*1 *1 *1 *2) (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3))))
-((-3846 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
-(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3846 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1173 |#1|) (-1173 |#2|)) (T -1171))
-((-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5)))))
-((-3191 (((-82) $) 17 T ELT)) (-3495 (($ $) 105 T ELT)) (-3642 (($ $) 81 T ELT)) (-3493 (($ $) 101 T ELT)) (-3641 (($ $) 77 T ELT)) (-3497 (($ $) 109 T ELT)) (-3640 (($ $) 85 T ELT)) (-3946 (($ $) 75 T ELT)) (-3947 (($ $) 73 T ELT)) (-3498 (($ $) 111 T ELT)) (-3639 (($ $) 87 T ELT)) (-3496 (($ $) 107 T ELT)) (-3638 (($ $) 83 T ELT)) (-3494 (($ $) 103 T ELT)) (-3637 (($ $) 79 T ELT)) (-3950 (((-773) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-349 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3501 (($ $) 117 T ELT)) (-3489 (($ $) 93 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 89 T ELT)) (-3503 (($ $) 121 T ELT)) (-3491 (($ $) 97 T ELT)) (-3504 (($ $) 123 T ELT)) (-3492 (($ $) 99 T ELT)) (-3502 (($ $) 119 T ELT)) (-3490 (($ $) 95 T ELT)) (-3500 (($ $) 115 T ELT)) (-3488 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-349 (-485))) 71 T ELT)))
-(((-1172 |#1| |#2|) (-10 -7 (-14 ** (|#1| |#1| (-349 (-485)))) (-14 -3642 (|#1| |#1|)) (-14 -3641 (|#1| |#1|)) (-14 -3640 (|#1| |#1|)) (-14 -3639 (|#1| |#1|)) (-14 -3638 (|#1| |#1|)) (-14 -3637 (|#1| |#1|)) (-14 -3488 (|#1| |#1|)) (-14 -3490 (|#1| |#1|)) (-14 -3492 (|#1| |#1|)) (-14 -3491 (|#1| |#1|)) (-14 -3487 (|#1| |#1|)) (-14 -3489 (|#1| |#1|)) (-14 -3494 (|#1| |#1|)) (-14 -3496 (|#1| |#1|)) (-14 -3498 (|#1| |#1|)) (-14 -3497 (|#1| |#1|)) (-14 -3493 (|#1| |#1|)) (-14 -3495 (|#1| |#1|)) (-14 -3500 (|#1| |#1|)) (-14 -3502 (|#1| |#1|)) (-14 -3504 (|#1| |#1|)) (-14 -3503 (|#1| |#1|)) (-14 -3499 (|#1| |#1|)) (-14 -3501 (|#1| |#1|)) (-14 -3946 (|#1| |#1|)) (-14 -3947 (|#1| |#1|)) (-14 ** (|#1| |#1| |#1|)) (-14 ** (|#1| |#1| |#2|)) (-14 -3950 (|#1| |#2|)) (-14 -3950 (|#1| |#1|)) (-14 -3950 (|#1| (-349 (-485)))) (-14 -3950 (|#1| (-485))) (-14 ** (|#1| |#1| (-695))) (-14 ** (|#1| |#1| (-831))) (-14 -3191 ((-82) |#1|)) (-14 -3950 ((-773) |#1|))) (-1173 |#2|) (-962)) (T -1172))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3084 (((-584 (-995)) $) 96 T ELT)) (-3834 (((-1091) $) 130 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 72 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 73 (|has| |#1| (-496)) ELT)) (-2063 (((-82) $) 75 (|has| |#1| (-496)) ELT)) (-3774 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 124 T ELT)) (-3777 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 131 T ELT)) (-3495 (($ $) 164 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3642 (($ $) 147 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3040 (($ $) 146 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3641 (($ $) 148 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3821 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 184 T ELT) (($ (-1070 |#1|)) 182 T ELT)) (-3497 (($ $) 162 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3727 (($) 23 T CONST)) (-3962 (($ $) 81 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3819 (($ $) 181 T ELT)) (-3817 (((-858 |#1|) $ (-695)) 179 T ELT) (((-858 |#1|) $ (-695) (-695)) 178 T ELT)) (-2895 (((-82) $) 95 T ELT)) (-3630 (($) 174 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3775 (((-695) $) 127 T ELT) (((-695) $ (-695)) 126 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3014 (($ $ (-485)) 145 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3780 (($ $ (-831)) 128 T ELT)) (-3818 (($ (-1 |#1| (-485)) $) 180 T ELT)) (-3941 (((-82) $) 83 T ELT)) (-2896 (($ |#1| (-695)) 82 T ELT) (($ $ (-995) (-695)) 98 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 97 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3946 (($ $) 171 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2897 (($ $) 85 T ELT)) (-3177 ((|#1| $) 86 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3815 (($ $) 176 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-1091)) 175 (OR (-11 (|has| |#1| (-26 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-35 (-349 (-485))))) (-11 (|has| |#1| (-14 -3084 ((-584 (-1091)) |#1|))) (|has| |#1| (-14 -3815 (|#1| |#1| (-1091)))) (|has| |#1| (-35 (-349 (-485)))))) ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3772 (($ $ (-695)) 122 T ELT)) (-3469 (((-3 $ "failed") $ $) 71 (|has| |#1| (-496)) ELT)) (-3947 (($ $) 172 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3771 (((-1070 |#1|) $ |#1|) 121 (|has| |#1| (-14 ** (|#1| |#1| (-695)))) ELT)) (-3803 ((|#1| $ (-695)) 132 T ELT) (($ $ $) 108 (|has| (-695) (-1026)) ELT)) (-3761 (($ $ (-1091)) 120 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 118 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 117 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 116 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) 112 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 110 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT)) (-3952 (((-695) $) 84 T ELT)) (-3498 (($ $) 161 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3639 (($ $) 150 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3496 (($ $) 160 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3638 (($ $) 151 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3637 (($ $) 152 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2894 (($ $) 94 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-349 (-485))) 78 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $) 70 (|has| |#1| (-496)) ELT) (($ |#1|) 68 (|has| |#1| (-145)) ELT)) (-3820 (((-1070 |#1|) $) 183 T ELT)) (-3680 ((|#1| $ (-695)) 80 T ELT)) (-2705 (((-633 $) $) 69 (|has| |#1| (-115)) ELT)) (-3129 (((-695)) 40 T CONST)) (-3776 ((|#1| $) 129 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-3501 (($ $) 170 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2064 (((-82) $ $) 74 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 169 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3503 (($ $) 168 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3491 (($ $) 156 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3773 ((|#1| $ (-695)) 123 (-11 (|has| |#1| (-14 ** (|#1| |#1| (-695)))) (|has| |#1| (-14 -3950 (|#1| (-1091))))) ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3504 (($ $) 167 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3492 (($ $) 155 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3502 (($ $) 166 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-35 (-349 (-485)))) ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-2672 (($ $ (-1091)) 119 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 115 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 114 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 113 (-11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-14 * (|#1| (-695) |#1|))) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 79 (|has| |#1| (-311)) ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ |#1|) 177 (|has| |#1| (-311)) ELT) (($ $ $) 173 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 144 (|has| |#1| (-35 (-349 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| $) 88 T ELT) (($ (-349 (-485)) $) 77 (|has| |#1| (-35 (-349 (-485)))) ELT) (($ $ (-349 (-485))) 76 (|has| |#1| (-35 (-349 (-485)))) ELT)))
-(((-1173 |#1|) (-110) (-962)) (T -1173))
-((-3821 (*1 *1 *2) (-11 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3820 (*1 *2 *1) (-11 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))) (-3821 (*1 *1 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3819 (*1 *1 *1) (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)))) (-3818 (*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))) (-3817 (*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3817 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3815 (*1 *1 *1) (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485)))))) (-3815 (*1 *1 *1 *2) (OR (-11 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-35 (-349 (-485)))))) (-11 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-11 (|has| *3 (-14 -3084 ((-584 *2) *3))) (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485)))))))))
-(-12 (-1159 |t#1| (-695)) (-10 -8 (-14 -3821 ($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-14 -3820 ((-1070 |t#1|) $)) (-14 -3821 ($ (-1070 |t#1|))) (-14 -3819 ($ $)) (-14 -3818 ($ (-1 |t#1| (-485)) $)) (-14 -3817 ((-858 |t#1|) $ (-695))) (-14 -3817 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-311)) (-14 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-35 (-349 (-485)))) (PROGN (-14 -3815 ($ $)) (IF (|has| |t#1| (-14 -3815 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-14 -3084 ((-584 (-1091)) |t#1|))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-26 (-485))) (-14 -3815 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-44 |#1| (-695)) . T) ((-22) . T) ((-35 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-35 |#1|) |has| |#1| (-145)) ((-35 $) |has| |#1| (-496)) ((-32) |has| |#1| (-35 (-349 (-485)))) ((-63) |has| |#1| (-35 (-349 (-485)))) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-79 |#1| |#1|) . T) ((-79 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-101) . T) ((-115) |has| |#1| (-115)) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-145)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-145) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-185 $) |has| |#1| (-14 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-14 * (|#1| (-695) |#1|))) ((-188) |has| |#1| (-14 * (|#1| (-695) |#1|))) ((-238) |has| |#1| (-35 (-349 (-485)))) ((-240 (-695) |#1|) . T) ((-240 $ $) |has| (-695) (-1026)) ((-245) |has| |#1| (-496)) ((-380 |#1|) . T) ((-433) |has| |#1| (-35 (-349 (-485)))) ((-496) |has| |#1| (-496)) ((-12) . T) ((-589 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-583 |#1|) |has| |#1| (-145)) ((-583 $) |has| |#1| (-496)) ((-655 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-655 |#1|) |has| |#1| (-145)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ((-810 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ((-812 (-1091)) -11 (|has| |#1| (-810 (-1091))) (|has| |#1| (-14 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-995)) . T) ((-916) |has| |#1| (-35 (-349 (-485)))) ((-964 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-969 (-349 (-485))) |has| |#1| (-35 (-349 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-145))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-35 (-349 (-485)))) ((-1119) |has| |#1| (-35 (-349 (-485)))) ((-1130) . T) ((-1159 |#1| (-695)) . T))
-((-3824 (((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3823 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3822 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3827 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3826 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3828 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3829 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3825 ((|#2| |#2| |#2|) 43 T ELT)))
-(((-1174 |#1| |#2|) (-10 -7 (-14 -3822 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-14 -3823 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-14 -3824 ((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|)))) (-14 -3825 (|#2| |#2| |#2|)) (-14 -3826 (|#2| (-1 |#2| |#2|) |#1|)) (-14 -3827 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-14 -3828 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-14 -3829 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-35 (-349 (-485))) (-1173 |#1|)) (T -1174))
-((-3829 (*1 *2 *3 *4) (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-35 (-349 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1174 *5 *6)))) (-3828 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-35 (-349 (-485)))) (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))) (-3827 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-35 (-349 (-485)))))) (-3826 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-35 (-349 (-485)))))) (-3825 (*1 *2 *2 *2) (-11 (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))) (-3824 (*1 *2 *3) (-11 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485)))) (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))) (-3823 (*1 *2 *3) (-11 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))) (-3822 (*1 *2 *3) (-11 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
-((-3831 ((|#2| |#4| (-695)) 31 T ELT)) (-3830 ((|#4| |#2|) 26 T ELT)) (-3833 ((|#4| (-349 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3832 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT)))
-(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3830 (|#4| |#2|)) (-14 -3831 (|#2| |#4| (-695))) (-14 -3832 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-14 -3833 (|#4| (-349 |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-601 |#2|) (-1173 |#1|)) (T -1175))
-((-3833 (*1 *2 *3) (-11 (-5 *3 (-349 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3832 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))) (-3831 (*1 *2 *3 *4) (-11 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))) (-3830 (*1 *2 *3) (-11 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
-NIL
-(((-1176) (-110)) (T -1176))
-NIL
-(-12 (-10 -7 (-6 -2289)))
-((-2571 (((-82) $ $) NIL T ELT)) (-3834 (((-1091)) 12 T ELT)) (-3245 (((-1074) $) 18 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 11 T ELT) (((-1091) $) 8 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 15 T ELT)))
-(((-1177 |#1|) (-12 (-1014) (-553 (-1091)) (-10 -8 (-14 -3950 ((-1091) $)) (-14 -3834 ((-1091))))) (-1091)) (T -1177))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-13 *3 *2))) (-3834 (*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-13 *3 *2))))
-((-3841 (($ (-695)) 19 T ELT)) (-3838 (((-631 |#2|) $ $) 41 T ELT)) (-3835 ((|#2| $) 51 T ELT)) (-3836 ((|#2| $) 50 T ELT)) (-3839 ((|#2| $ $) 36 T ELT)) (-3837 (($ $ $) 47 T ELT)) (-3840 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3842 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
-(((-1178 |#1| |#2|) (-10 -7 (-14 -3835 (|#2| |#1|)) (-14 -3836 (|#2| |#1|)) (-14 -3837 (|#1| |#1| |#1|)) (-14 -3838 ((-631 |#2|) |#1| |#1|)) (-14 -3839 (|#2| |#1| |#1|)) (-14 * (|#1| |#1| |#2|)) (-14 * (|#1| |#2| |#1|)) (-14 * (|#1| (-485) |#1|)) (-14 -3840 (|#1| |#1| |#1|)) (-14 -3840 (|#1| |#1|)) (-14 -3841 (|#1| (-695))) (-14 -3842 (|#1| |#1| |#1|))) (-1179 |#2|) (-1130)) (T -1178))
-NIL
-((-2571 (((-82) $ $) 18 (|has| |#1| (-69)) ELT)) (-3841 (($ (-695)) 123 (|has| |#1| (-20)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 35 (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) 96 T ELT) (((-82) $) 90 (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) 87 (|has| $ (-1036 |#1|)) ELT) (($ $) 86 (-11 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) 47 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) 69 (|has| $ (-317 |#1|)) ELT)) (-3727 (($) 6 T CONST)) (-2299 (($ $) 88 (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) 98 T ELT)) (-1354 (($ $) 71 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT)) (-3409 (($ |#1| $) 70 (-11 (|has| |#1| (-69)) (|has| $ (-317 |#1|))) ELT) (($ (-1 (-82) |#1|) $) 68 (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 105 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) 46 T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) 95 T ELT) (((-485) |#1| $) 94 (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) 93 (|has| |#1| (-69)) ELT)) (-3838 (((-631 |#1|) $ $) 116 (|has| |#1| (-962)) ELT)) (-3617 (($ (-695) |#1|) 65 T ELT)) (-2202 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) 80 (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 104 T ELT)) (-3248 (((-82) |#1| $) 109 (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) 112 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3835 ((|#1| $) 113 (-11 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3836 ((|#1| $) 114 (-11 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3245 (((-1074) $) 21 (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2205 (((-584 (-485)) $) 41 T ELT)) (-2206 (((-82) (-485) $) 42 T ELT)) (-3246 (((-1034) $) 20 (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) 107 T ELT)) (-2201 (($ $ |#1|) 36 (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) 102 T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) 25 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) 24 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 23 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 22 (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) 10 T ELT)) (-2204 (((-82) |#1| $) 40 (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) 43 T ELT)) (-3406 (((-82) $) 7 T ELT)) (-3568 (($) 8 T ELT)) (-3803 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-3839 ((|#1| $ $) 117 (|has| |#1| (-962)) ELT)) (-2307 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3837 (($ $ $) 115 (|has| |#1| (-962)) ELT)) (-1732 (((-695) |#1| $) 108 (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) 103 T ELT)) (-1736 (($ $ $ (-485)) 89 (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) 9 T ELT)) (-3975 (((-474) $) 72 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 67 T ELT)) (-3805 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3950 (((-773) $) 16 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) 19 (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) 101 T ELT)) (-2569 (((-82) $ $) 82 (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) 84 (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) 17 (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) 83 (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) 85 (|has| |#1| (-757)) ELT)) (-3840 (($ $) 122 (|has| |#1| (-18)) ELT) (($ $ $) 121 (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) 124 (|has| |#1| (-22)) ELT)) (* (($ (-485) $) 120 (|has| |#1| (-18)) ELT) (($ |#1| $) 119 (|has| |#1| (-664)) ELT) (($ $ |#1|) 118 (|has| |#1| (-664)) ELT)) (-3961 (((-695) $) 100 T ELT)))
-(((-1179 |#1|) (-110) (-1130)) (T -1179))
-((-3842 (*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-22)))) (-3841 (*1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-20)) (-4 *3 (-1130)))) (-3840 (*1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-18)))) (-3840 (*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-18)))) (* (*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-18)))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (-3839 (*1 *2 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3838 (*1 *2 *1 *1) (-11 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3837 (*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3836 (*1 *2 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3835 (*1 *2 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
-(-12 (-16 |t#1|) (-10 -8 (IF (|has| |t#1| (-22)) (-14 -3842 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-20)) (-14 -3841 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-18)) (PROGN (-14 -3840 ($ $)) (-14 -3840 ($ $ $)) (-14 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-14 * ($ |t#1| $)) (-14 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-14 -3839 (|t#1| $ $)) (-14 -3838 ((-631 |t#1|) $ $)) (-14 -3837 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-14 -3836 (|t#1| $)) (-14 -3835 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-31) . T) ((-69) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-69))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-121 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-240 (-485) |#1|) . T) ((-240 (-1147 (-485)) $) . T) ((-242 (-485) |#1|) . T) ((-259 |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-317 |#1|) . T) ((-323 |#1|) . T) ((-380 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ((-12) . T) ((-594 |#1|) . T) ((-16 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T))
-((-2571 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-3841 (($ (-695)) NIL (|has| |#1| (-20)) ELT)) (-3843 (($ (-584 |#1|)) 9 T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1737 (((-82) (-1 (-82) |#1| |#1|) $) NIL T ELT) (((-82) $) NIL (|has| |#1| (-757)) ELT)) (-1735 (($ (-1 (-82) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-11 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2912 (($ (-1 (-82) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3791 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3713 (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3727 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-3409 (($ |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT) (($ (-1 (-82) |#1|) $) NIL (|has| $ (-317 |#1|)) ELT)) (-3845 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-69)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3115 ((|#1| $ (-485)) NIL T ELT)) (-3422 (((-485) (-1 (-82) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-69)) ELT)) (-3838 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3617 (($ (-695) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3521 (($ (-1 (-82) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2611 (((-584 |#1|) $) 15 T ELT)) (-3248 (((-82) |#1| $) NIL (|has| |#1| (-69)) ELT)) (-2203 (((-485) $) 11 (|has| (-485) (-757)) ELT)) (-2860 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3329 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3835 ((|#1| $) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3836 ((|#1| $) NIL (-11 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3245 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-584 (-485)) $) NIL T ELT)) (-2206 (((-82) (-485) $) NIL T ELT)) (-3246 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3804 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1731 (((-3 |#1| "failed") (-1 (-82) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1733 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-3771 (($ $ (-584 (-248 |#1|))) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-248 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-11 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-2204 (((-82) |#1| $) NIL (-11 (|has| $ (-317 |#1|)) (|has| |#1| (-69))) ELT)) (-2207 (((-584 |#1|) $) NIL T ELT)) (-3406 (((-82) $) NIL T ELT)) (-3568 (($) NIL T ELT)) (-3803 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3839 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1732 (((-695) |#1| $) NIL (|has| |#1| (-69)) ELT) (((-695) (-1 (-82) |#1|) $) NIL T ELT)) (-1736 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) 19 (|has| |#1| (-554 (-474))) ELT)) (-3533 (($ (-584 |#1|)) 8 T ELT)) (-3805 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3950 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-1734 (((-82) (-1 (-82) |#1|) $) NIL T ELT)) (-2569 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2570 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3059 (((-82) $ $) NIL (|has| |#1| (-69)) ELT)) (-2687 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-2688 (((-82) $ $) NIL (|has| |#1| (-757)) ELT)) (-3840 (($ $) NIL (|has| |#1| (-18)) ELT) (($ $ $) NIL (|has| |#1| (-18)) ELT)) (-3842 (($ $ $) NIL (|has| |#1| (-22)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-18)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1180 |#1|) (-12 (-1179 |#1|) (-10 -8 (-14 -3843 ($ (-584 |#1|))))) (-1130)) (T -1180))
-((-3843 (*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3)))))
-((-3844 (((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 13 T ELT)) (-3845 ((|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 15 T ELT)) (-3846 (((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)) 30 T ELT) (((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|)) 18 T ELT)))
-(((-1181 |#1| |#2|) (-10 -7 (-14 -3844 ((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-14 -3845 (|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-14 -3846 ((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|))) (-14 -3846 ((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)))) (-1130) (-1130)) (T -1181))
-((-3846 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3846 (*1 *2 *3 *4) (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3845 (*1 *2 *3 *4 *2) (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1181 *5 *2)))) (-3844 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5)))))
-((-3847 (((-408) (-584 (-584 (-855 (-178)))) (-584 (-220))) 22 T ELT) (((-408) (-584 (-584 (-855 (-178))))) 21 T ELT) (((-408) (-584 (-584 (-855 (-178)))) (-784) (-784) (-831) (-584 (-220))) 20 T ELT)) (-3848 (((-1183) (-584 (-584 (-855 (-178)))) (-584 (-220))) 30 T ELT) (((-1183) (-584 (-584 (-855 (-178)))) (-784) (-784) (-831) (-584 (-220))) 29 T ELT)) (-3950 (((-1183) (-408)) 46 T ELT)))
-(((-1182) (-10 -7 (-14 -3847 ((-408) (-584 (-584 (-855 (-178)))) (-784) (-784) (-831) (-584 (-220)))) (-14 -3847 ((-408) (-584 (-584 (-855 (-178)))))) (-14 -3847 ((-408) (-584 (-584 (-855 (-178)))) (-584 (-220)))) (-14 -3848 ((-1183) (-584 (-584 (-855 (-178)))) (-784) (-784) (-831) (-584 (-220)))) (-14 -3848 ((-1183) (-584 (-584 (-855 (-178)))) (-584 (-220)))) (-14 -3950 ((-1183) (-408))))) (T -1182))
-((-3950 (*1 *2 *3) (-11 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3848 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3848 (*1 *2 *3 *4 *4 *5 *6) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3847 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-584 (-220))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3847 (*1 *2 *3) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3847 (*1 *2 *3 *4 *4 *5 *6) (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-220))) (-5 *2 (-408)) (-5 *1 (-1182)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3866 (((-1074) $ (-1074)) 107 T ELT) (((-1074) $ (-1074) (-1074)) 105 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 104 T ELT)) (-3862 (($) 69 T ELT)) (-3849 (((-1186) $ (-408) (-831)) 54 T ELT)) (-3855 (((-1186) $ (-831) (-1074)) 89 T ELT) (((-1186) $ (-831) (-784)) 90 T ELT)) (-3877 (((-1186) $ (-831) (-329) (-329)) 57 T ELT)) (-3887 (((-1186) $ (-1074)) 84 T ELT)) (-3850 (((-1186) $ (-831) (-1074)) 94 T ELT)) (-3851 (((-1186) $ (-831) (-329) (-329)) 58 T ELT)) (-3888 (((-1186) $ (-831) (-831)) 55 T ELT)) (-3868 (((-1186) $) 85 T ELT)) (-3853 (((-1186) $ (-831) (-1074)) 93 T ELT)) (-3857 (((-1186) $ (-408) (-831)) 41 T ELT)) (-3854 (((-1186) $ (-831) (-1074)) 92 T ELT)) (-3890 (((-584 (-220)) $) 29 T ELT) (($ $ (-584 (-220))) 30 T ELT)) (-3889 (((-1186) $ (-695) (-695)) 52 T ELT)) (-3861 (($ $) 70 T ELT) (($ (-408) (-584 (-220))) 71 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3864 (((-485) $) 48 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3858 (((-1180 (-3 (-408) "undefined")) $) 47 T ELT)) (-3859 (((-1180 (-2 (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)) (|:| -3854 (-485)) (|:| -3852 (-485)) (|:| |spline| (-485)) (|:| -3883 (-485)) (|:| |axesColor| (-784)) (|:| -3855 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3860 (((-1186) $ (-831) (-178) (-178) (-178) (-178) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485)) 83 T ELT)) (-3863 (((-584 (-855 (-178))) $) NIL T ELT)) (-3856 (((-408) $ (-831)) 43 T ELT)) (-3886 (((-1186) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3884 (((-1186) $ (-1074)) 95 T ELT)) (-3852 (((-1186) $ (-831) (-1074)) 91 T ELT)) (-3950 (((-773) $) 102 T ELT)) (-3865 (((-1186) $) 96 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3883 (((-1186) $ (-831) (-1074)) 87 T ELT) (((-1186) $ (-831) (-784)) 88 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1183) (-12 (-1014) (-10 -8 (-14 -3863 ((-584 (-855 (-178))) $)) (-14 -3862 ($)) (-14 -3861 ($ $)) (-14 -3890 ((-584 (-220)) $)) (-14 -3890 ($ $ (-584 (-220)))) (-14 -3861 ($ (-408) (-584 (-220)))) (-14 -3860 ((-1186) $ (-831) (-178) (-178) (-178) (-178) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485))) (-14 -3859 ((-1180 (-2 (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)) (|:| -3854 (-485)) (|:| -3852 (-485)) (|:| |spline| (-485)) (|:| -3883 (-485)) (|:| |axesColor| (-784)) (|:| -3855 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $)) (-14 -3858 ((-1180 (-3 (-408) "undefined")) $)) (-14 -3887 ((-1186) $ (-1074))) (-14 -3857 ((-1186) $ (-408) (-831))) (-14 -3856 ((-408) $ (-831))) (-14 -3883 ((-1186) $ (-831) (-1074))) (-14 -3883 ((-1186) $ (-831) (-784))) (-14 -3855 ((-1186) $ (-831) (-1074))) (-14 -3855 ((-1186) $ (-831) (-784))) (-14 -3854 ((-1186) $ (-831) (-1074))) (-14 -3853 ((-1186) $ (-831) (-1074))) (-14 -3852 ((-1186) $ (-831) (-1074))) (-14 -3884 ((-1186) $ (-1074))) (-14 -3865 ((-1186) $)) (-14 -3886 ((-1186) $ (-695) (-695) (-831) (-831))) (-14 -3851 ((-1186) $ (-831) (-329) (-329))) (-14 -3877 ((-1186) $ (-831) (-329) (-329))) (-14 -3850 ((-1186) $ (-831) (-1074))) (-14 -3889 ((-1186) $ (-695) (-695))) (-14 -3849 ((-1186) $ (-408) (-831))) (-14 -3888 ((-1186) $ (-831) (-831))) (-14 -3866 ((-1074) $ (-1074))) (-14 -3866 ((-1074) $ (-1074) (-1074))) (-14 -3866 ((-1074) $ (-1074) (-584 (-1074)))) (-14 -3868 ((-1186) $)) (-14 -3864 ((-485) $)) (-14 -3950 ((-773) $))))) (T -1183))
-((-3950 (*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1) (-11 (-5 *2 (-584 (-855 (-178)))) (-5 *1 (-1183)))) (-3862 (*1 *1) (-5 *1 (-1183))) (-3861 (*1 *1 *1) (-5 *1 (-1183))) (-3890 (*1 *2 *1) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1183)))) (-3890 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1183)))) (-3861 (*1 *1 *2 *3) (-11 (-5 *2 (-408)) (-5 *3 (-584 (-220))) (-5 *1 (-1183)))) (-3860 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-11 (-5 *3 (-831)) (-5 *4 (-178)) (-5 *5 (-485)) (-5 *6 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3859 (*1 *2 *1) (-11 (-5 *2 (-1180 (-2 (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)) (|:| -3854 (-485)) (|:| -3852 (-485)) (|:| |spline| (-485)) (|:| -3883 (-485)) (|:| |axesColor| (-784)) (|:| -3855 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) (-5 *1 (-1183)))) (-3858 (*1 *2 *1) (-11 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))) (-3887 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3857 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3856 (*1 *2 *1 *3) (-11 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3855 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3855 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3 *4 *4) (-11 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3851 (*1 *2 *1 *3 *4 *4) (-11 (-5 *3 (-831)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3877 (*1 *2 *1 *3 *4 *4) (-11 (-5 *3 (-831)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3889 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3849 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3888 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3868 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1183)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3878 (((-1186) $ (-329)) 168 T ELT) (((-1186) $ (-329) (-329) (-329)) 169 T ELT)) (-3866 (((-1074) $ (-1074)) 177 T ELT) (((-1074) $ (-1074) (-1074)) 175 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 174 T ELT)) (-3894 (($) 67 T ELT)) (-3885 (((-1186) $ (-329) (-329) (-329) (-329) (-329)) 140 T ELT) (((-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))) $) 138 T ELT) (((-1186) $ (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) 139 T ELT) (((-1186) $ (-485) (-485) (-329) (-329) (-329)) 143 T ELT) (((-1186) $ (-329) (-329)) 144 T ELT) (((-1186) $ (-329) (-329) (-329)) 151 T ELT)) (-3897 (((-329)) 121 T ELT) (((-329) (-329)) 122 T ELT)) (-3899 (((-329)) 116 T ELT) (((-329) (-329)) 118 T ELT)) (-3898 (((-329)) 119 T ELT) (((-329) (-329)) 120 T ELT)) (-3895 (((-329)) 125 T ELT) (((-329) (-329)) 126 T ELT)) (-3896 (((-329)) 123 T ELT) (((-329) (-329)) 124 T ELT)) (-3877 (((-1186) $ (-329) (-329)) 170 T ELT)) (-3887 (((-1186) $ (-1074)) 152 T ELT)) (-3892 (((-1048 (-178)) $) 68 T ELT) (($ $ (-1048 (-178))) 69 T ELT)) (-3873 (((-1186) $ (-1074)) 186 T ELT)) (-3872 (((-1186) $ (-1074)) 187 T ELT)) (-3879 (((-1186) $ (-329) (-329)) 150 T ELT) (((-1186) $ (-485) (-485)) 167 T ELT)) (-3888 (((-1186) $ (-831) (-831)) 159 T ELT)) (-3868 (((-1186) $) 136 T ELT)) (-3876 (((-1186) $ (-1074)) 185 T ELT)) (-3881 (((-1186) $ (-1074)) 133 T ELT)) (-3890 (((-584 (-220)) $) 70 T ELT) (($ $ (-584 (-220))) 71 T ELT)) (-3889 (((-1186) $ (-695) (-695)) 158 T ELT)) (-3891 (((-1186) $ (-695) (-855 (-178))) 192 T ELT)) (-3893 (($ $) 73 T ELT) (($ (-1048 (-178)) (-1074)) 74 T ELT) (($ (-1048 (-178)) (-584 (-220))) 75 T ELT)) (-3870 (((-1186) $ (-329) (-329) (-329)) 130 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3864 (((-485) $) 127 T ELT)) (-3869 (((-1186) $ (-329)) 172 T ELT)) (-3874 (((-1186) $ (-329)) 190 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3875 (((-1186) $ (-329)) 189 T ELT)) (-3880 (((-1186) $ (-1074)) 135 T ELT)) (-3886 (((-1186) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3882 (((-1186) $ (-1074)) 132 T ELT)) (-3884 (((-1186) $ (-1074)) 134 T ELT)) (-3867 (((-1186) $ (-127) (-127)) 156 T ELT)) (-3950 (((-773) $) 165 T ELT)) (-3865 (((-1186) $) 137 T ELT)) (-3871 (((-1186) $ (-1074)) 188 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3883 (((-1186) $ (-1074)) 131 T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1184) (-12 (-1014) (-10 -8 (-14 -3899 ((-329))) (-14 -3899 ((-329) (-329))) (-14 -3898 ((-329))) (-14 -3898 ((-329) (-329))) (-14 -3897 ((-329))) (-14 -3897 ((-329) (-329))) (-14 -3896 ((-329))) (-14 -3896 ((-329) (-329))) (-14 -3895 ((-329))) (-14 -3895 ((-329) (-329))) (-14 -3894 ($)) (-14 -3893 ($ $)) (-14 -3893 ($ (-1048 (-178)) (-1074))) (-14 -3893 ($ (-1048 (-178)) (-584 (-220)))) (-14 -3892 ((-1048 (-178)) $)) (-14 -3892 ($ $ (-1048 (-178)))) (-14 -3891 ((-1186) $ (-695) (-855 (-178)))) (-14 -3890 ((-584 (-220)) $)) (-14 -3890 ($ $ (-584 (-220)))) (-14 -3889 ((-1186) $ (-695) (-695))) (-14 -3888 ((-1186) $ (-831) (-831))) (-14 -3887 ((-1186) $ (-1074))) (-14 -3886 ((-1186) $ (-695) (-695) (-831) (-831))) (-14 -3885 ((-1186) $ (-329) (-329) (-329) (-329) (-329))) (-14 -3885 ((-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))) $)) (-14 -3885 ((-1186) $ (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))) (-14 -3885 ((-1186) $ (-485) (-485) (-329) (-329) (-329))) (-14 -3885 ((-1186) $ (-329) (-329))) (-14 -3885 ((-1186) $ (-329) (-329) (-329))) (-14 -3884 ((-1186) $ (-1074))) (-14 -3883 ((-1186) $ (-1074))) (-14 -3882 ((-1186) $ (-1074))) (-14 -3881 ((-1186) $ (-1074))) (-14 -3880 ((-1186) $ (-1074))) (-14 -3879 ((-1186) $ (-329) (-329))) (-14 -3879 ((-1186) $ (-485) (-485))) (-14 -3878 ((-1186) $ (-329))) (-14 -3878 ((-1186) $ (-329) (-329) (-329))) (-14 -3877 ((-1186) $ (-329) (-329))) (-14 -3876 ((-1186) $ (-1074))) (-14 -3875 ((-1186) $ (-329))) (-14 -3874 ((-1186) $ (-329))) (-14 -3873 ((-1186) $ (-1074))) (-14 -3872 ((-1186) $ (-1074))) (-14 -3871 ((-1186) $ (-1074))) (-14 -3870 ((-1186) $ (-329) (-329) (-329))) (-14 -3869 ((-1186) $ (-329))) (-14 -3868 ((-1186) $)) (-14 -3867 ((-1186) $ (-127) (-127))) (-14 -3866 ((-1074) $ (-1074))) (-14 -3866 ((-1074) $ (-1074) (-1074))) (-14 -3866 ((-1074) $ (-1074) (-584 (-1074)))) (-14 -3865 ((-1186) $)) (-14 -3864 ((-485) $))))) (T -1184))
-((-3899 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3899 (*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3898 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3898 (*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3897 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3896 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3895 (*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3895 (*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))) (-3894 (*1 *1) (-5 *1 (-1184))) (-3893 (*1 *1 *1) (-5 *1 (-1184))) (-3893 (*1 *1 *2 *3) (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-1074)) (-5 *1 (-1184)))) (-3893 (*1 *1 *2 *3) (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-584 (-220))) (-5 *1 (-1184)))) (-3892 (*1 *2 *1) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1184)))) (-3892 (*1 *1 *1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1184)))) (-3891 (*1 *2 *1 *3 *4) (-11 (-5 *3 (-695)) (-5 *4 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3890 (*1 *2 *1) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1184)))) (-3890 (*1 *1 *1 *2) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1184)))) (-3889 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3888 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3887 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3 *4 *4) (-11 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1) (-11 (-5 *2 (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3) (-11 (-5 *3 (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178)) (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178)) (|:| |deltaX| (-178)) (|:| |deltaY| (-178)))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3 *4 *4 *4) (-11 (-5 *3 (-485)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3881 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3880 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3874 (*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3873 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3872 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3871 (*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3870 (*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3869 (*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1 *3 *3) (-11 (-5 *3 (-127)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1184)))))
-((-3908 (((-584 (-1074)) (-584 (-1074))) 103 T ELT) (((-584 (-1074))) 96 T ELT)) (-3909 (((-584 (-1074))) 94 T ELT)) (-3906 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3905 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3907 (((-1186)) 71 T ELT)) (-3911 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3910 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3903 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3913 (((-178)) 91 T ELT) (((-178) (-329)) 93 T ELT)) (-3912 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3904 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3900 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3901 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3902 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT)))
-(((-1185) (-10 -7 (-14 -3900 ((-784))) (-14 -3900 ((-784) (-784))) (-14 -3901 ((-784))) (-14 -3901 ((-784) (-784))) (-14 -3902 ((-784))) (-14 -3902 ((-784) (-784))) (-14 -3903 ((-784))) (-14 -3903 ((-784) (-784))) (-14 -3904 ((-831))) (-14 -3904 ((-831) (-831))) (-14 -3905 ((-584 (-695)))) (-14 -3905 ((-584 (-695)) (-584 (-695)))) (-14 -3906 ((-584 (-831)))) (-14 -3906 ((-584 (-831)) (-584 (-831)))) (-14 -3907 ((-1186))) (-14 -3908 ((-584 (-1074)))) (-14 -3908 ((-584 (-1074)) (-584 (-1074)))) (-14 -3909 ((-584 (-1074)))) (-14 -3910 ((-831))) (-14 -3911 ((-831))) (-14 -3910 ((-831) (-831))) (-14 -3911 ((-831) (-831))) (-14 -3912 ((-831) (-831))) (-14 -3912 ((-831))) (-14 -3913 ((-178) (-329))) (-14 -3913 ((-178))))) (T -1185))
-((-3913 (*1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-1185)))) (-3913 (*1 *2 *3) (-11 (-5 *3 (-329)) (-5 *2 (-178)) (-5 *1 (-1185)))) (-3912 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3912 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3911 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3910 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3911 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3910 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3908 (*1 *2 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3908 (*1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3907 (*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3906 (*1 *2 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3906 (*1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3905 (*1 *2 *2) (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3905 (*1 *2) (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3904 (*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3904 (*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3903 (*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3903 (*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3902 (*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3902 (*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3901 (*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3901 (*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))))
-((-3914 (($) 6 T ELT)) (-3950 (((-773) $) 9 T ELT)))
-(((-1186) (-12 (-553 (-773)) (-10 -8 (-14 -3914 ($))))) (T -1186))
-((-3914 (*1 *1) (-5 *1 (-1186))))
-((-3953 (($ $ |#2|) 10 T ELT)))
-(((-1187 |#1| |#2|) (-10 -7 (-14 -3953 (|#1| |#1| |#2|))) (-1188 |#2|) (-311)) (T -1187))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-1215 (((-82) $ $) 20 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3915 (((-104)) 39 T ELT)) (-3950 (((-773) $) 13 T ELT)) (-1266 (((-82) $ $) 6 T ELT)) (-2663 (($) 24 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ |#1|) 40 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-1188 |#1|) (-110) (-311)) (T -1188))
-((-3953 (*1 *1 *1 *2) (-11 (-4 *1 (-1188 *2)) (-4 *2 (-311)))) (-3915 (*1 *2) (-11 (-4 *1 (-1188 *3)) (-4 *3 (-311)) (-5 *2 (-104)))))
-(-12 (-655 |t#1|) (-10 -8 (-14 -3953 ($ $ |t#1|)) (-14 -3915 ((-104)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3920 (((-584 (-1123 |#1|)) (-1091) (-1123 |#1|)) 83 T ELT)) (-3918 (((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|))) 63 T ELT)) (-3921 (((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))) 74 T ELT)) (-3916 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 65 T ELT)) (-3919 (((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091)) 32 T ELT)) (-3917 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 64 T ELT)))
-(((-1189 |#1|) (-10 -7 (-14 -3916 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-14 -3917 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-14 -3918 ((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|)))) (-14 -3919 ((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091))) (-14 -3920 ((-584 (-1123 |#1|)) (-1091) (-1123 |#1|))) (-14 -3921 ((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))))) (-311)) (T -1189))
-((-3921 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))) (-3920 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-4 *5 (-311)) (-5 *2 (-584 (-1123 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))) (-3919 (*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-311)))) (-3918 (*1 *2 *3 *4) (-11 (-5 *3 (-1091)) (-4 *5 (-311)) (-5 *2 (-1070 (-1070 (-858 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))) (-3917 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-311)))) (-3916 (*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-311)))))
-((-3923 (((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3922 (((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT)))
-(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-14 -3922 ((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-14 -3923 ((-2 (|:| -2014 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-298) (-1156 |#1|) (-1156 |#2|) (-352 |#2| |#3|)) (T -1190))
-((-3923 (*1 *2 *3) (-11 (-4 *4 (-298)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5)))) (-3922 (*1 *2) (-11 (-4 *3 (-298)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2014 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3924 (((-1050) $) 12 T ELT)) (-3925 (((-1050) $) 10 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1191) (-12 (-996) (-10 -8 (-14 -3925 ((-1050) $)) (-14 -3924 ((-1050) $))))) (T -1191))
-((-3925 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1191)))) (-3924 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1191)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3926 (((-1050) $) 11 T ELT)) (-3950 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)))
-(((-1192) (-12 (-996) (-10 -8 (-14 -3926 ((-1050) $))))) (T -1192))
-((-3926 (*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1192)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-145)) ELT)) (-3129 (((-695)) NIL T CONST)) (-3927 (((-1186) (-695)) 16 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 36 T CONST)) (-2669 (($) 85 T CONST)) (-3059 (((-82) $ $) 88 T ELT)) (-3953 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3840 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-145)) ELT) (($ $ |#1|) NIL (|has| |#1| (-145)) ELT)))
-(((-1193 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-12 (-962) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-35 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-14 -3953 ((-3 $ "failed") $ $)) |%noBranch|) (-14 -3927 ((-1186) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1193))
-((-3953 (*1 *1 *1 *1) (|partial| -11 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-13 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-13 *7 (-584 (-695))) (-13 *8 (-695)))) (-3927 (*1 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-13 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-13 *9 (-584 *3)) (-13 *10 *3))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3684 (((-584 (-2 (|:| -3865 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3685 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3084 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-82) $) NIL T ELT)) (-2902 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3691 ((|#4| |#4| $) NIL T ELT)) (-2912 (((-2 (|:| |under| $) (|:| -3133 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3713 (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3727 (($) NIL T CONST)) (-2907 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-82) $ $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-82) $) NIL (|has| |#1| (-496)) ELT)) (-3692 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) 31 T ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2904 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3160 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3159 (($ (-584 |#4|)) NIL T ELT)) (-3802 (((-3 $ #1#) $) 77 T ELT)) (-3688 ((|#4| |#4| $) 82 T ELT)) (-1354 (($ $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT)) (-3409 (($ |#4| $) NIL (-11 (|has| $ (-317 |#4|)) (|has| |#4| (-69))) ELT) (($ (-1 (-82) |#4|) $) NIL (|has| $ (-317 |#4|)) ELT)) (-2905 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3697 (((-82) |#4| $ (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3845 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-69)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3699 (((-2 (|:| -3865 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3698 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3183 ((|#3| $) 83 T ELT)) (-2611 (((-584 |#4|) $) 32 T ELT)) (-3248 (((-82) |#4| $) NIL (|has| |#4| (-69)) ELT)) (-3930 (((-3 $ #1#) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-3329 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3846 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2917 (((-584 |#3|) $) NIL T ELT)) (-2916 (((-82) |#3| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) NIL T ELT)) (-3700 (((-584 |#4|) $) 53 T ELT)) (-3694 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3689 ((|#4| |#4| $) 81 T ELT)) (-3702 (((-82) $ $) 92 T ELT)) (-2906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-82) |#4| $) NIL T ELT) (((-82) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3804 (((-3 |#4| #1#) $) 76 T ELT)) (-1731 (((-3 |#4| #1#) (-1 (-82) |#4|) $) NIL T ELT)) (-3682 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3772 (($ $ |#4|) NIL T ELT)) (-1733 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3771 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-248 |#4|)) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-11 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-82) $ $) NIL T ELT)) (-3406 (((-82) $) 74 T ELT)) (-3568 (($) 45 T ELT)) (-3952 (((-695) $) NIL T ELT)) (-1732 (((-695) |#4| $) NIL (|has| |#4| (-69)) ELT) (((-695) (-1 (-82) |#4|) $) NIL T ELT)) (-3403 (($ $) NIL T ELT)) (-3975 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3533 (($ (-584 |#4|)) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2915 (($ $ |#3|) NIL T ELT)) (-3687 (($ $) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3681 (((-695) $) NIL (|has| |#3| (-319)) ELT)) (-3929 (((-3 $ #1#) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3928 (((-584 $) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3701 (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3326 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-82) |#4|) (-1 (-82) |#4| |#4|)) NIL T ELT)) (-3693 (((-82) $ (-1 (-82) |#4| (-584 |#4|))) NIL T ELT)) (-1734 (((-82) (-1 (-82) |#4|) $) NIL T ELT)) (-3683 (((-584 |#3|) $) NIL T ELT)) (-3937 (((-82) |#3| $) NIL T ELT)) (-3059 (((-82) $ $) NIL T ELT)) (-3961 (((-695) $) NIL T ELT)))
-(((-1194 |#1| |#2| |#3| |#4|) (-12 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-14 -3930 ((-3 $ #1="failed") (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-14 -3930 ((-3 $ #1#) (-584 |#4|))) (-14 -3929 ((-3 $ #1#) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-14 -3929 ((-3 $ #1#) (-584 |#4|))) (-14 -3928 ((-584 $) (-584 |#4|) (-1 (-82) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-14 -3928 ((-584 $) (-584 |#4|))))) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1194))
-((-3930 (*1 *1 *2 *3 *4) (|partial| -11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3930 (*1 *1 *2) (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3929 (*1 *1 *2 *3 *4) (|partial| -11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3929 (*1 *1 *2) (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3928 (*1 *2 *3 *4 *5) (-11 (-5 *3 (-584 *9)) (-5 *4 (-1 (-82) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))) (-3928 (*1 *2 *3) (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) (-5 *1 (-1194 *4 *5 *6 *7)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3727 (($) 23 T CONST)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT)))
-(((-1195 |#1|) (-110) (-962)) (T -1195))
-NIL
-(-12 (-962) (-79 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-145)) (-6 (-35 |t#1|)) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#1|) |has| |#1| (-145)) ((-69) . T) ((-79 |#1| |#1|) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-145)) ((-655 |#1|) |has| |#1| (-145)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2571 (((-82) $ $) 69 T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3938 (((-584 |#1|) $) 54 T ELT)) (-3951 (($ $ (-695)) 47 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ (-695)) 25 (|has| |#2| (-145)) ELT) (($ $ $) 26 (|has| |#2| (-145)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3160 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3159 (((-740 |#1|) $) NIL T ELT)) (-3962 (($ $) 40 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-82) $) NIL T ELT)) (-3954 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3940 (($ $) 41 T ELT)) (-3945 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3959 (((-740 |#1|) $) NIL T ELT)) (-3960 (((-740 |#1|) $) 42 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1754 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-740 |#1|) $) 36 T ELT)) (-3177 ((|#2| $) 38 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3952 (((-695) $) 44 T ELT)) (-3957 (((-82) $) 48 T ELT)) (-3956 ((|#2| $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3958 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 14 T CONST)) (-2669 (($) 20 T CONST)) (-2668 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3059 (((-82) $ $) 45 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ $ |#2|) 70 T ELT) (($ |#2| $) 28 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
-(((-1196 |#1| |#2|) (-12 (-334 |#2| (-740 |#1|)) (-1203 |#1| |#2|)) (-757) (-962)) (T -1196))
-NIL
-((-3946 ((|#3| |#3| (-695)) 28 T ELT)) (-3947 ((|#3| |#3| (-695)) 34 T ELT)) (-3931 ((|#3| |#3| |#3| (-695)) 35 T ELT)))
-(((-1197 |#1| |#2| |#3|) (-10 -7 (-14 -3947 (|#3| |#3| (-695))) (-14 -3946 (|#3| |#3| (-695))) (-14 -3931 (|#3| |#3| |#3| (-695)))) (-12 (-962) (-655 (-349 (-485)))) (-757) (-1203 |#2| |#1|)) (T -1197))
-((-3931 (*1 *2 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3946 (*1 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3947 (*1 *2 *2 *3) (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
-((-3936 (((-82) $) 15 T ELT)) (-3937 (((-82) $) 14 T ELT)) (-3932 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT)))
-(((-1198 |#1| |#2|) (-10 -7 (-14 -3932 (|#1| |#1| (-695))) (-14 -3932 (|#1| |#1|)) (-14 -3936 ((-82) |#1|)) (-14 -3937 ((-82) |#1|))) (-1199 |#2|) (-311)) (T -1198))
-NIL
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-2066 (((-2 (|:| -1777 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-82) $) 52 T ELT)) (-3936 (((-82) $) 114 T ELT)) (-3933 (((-695)) 110 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3778 (($ $) 91 T ELT)) (-3974 (((-347 $) $) 90 T ELT)) (-1609 (((-82) $ $) 75 T ELT)) (-3727 (($) 23 T CONST)) (-3160 (((-3 |#1| "failed") $) 121 T ELT)) (-3159 ((|#1| $) 122 T ELT)) (-2567 (($ $ $) 71 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-2566 (($ $ $) 72 T ELT)) (-2744 (((-2 (|:| -3958 (-584 $)) (|:| -2411 $)) (-584 $)) 66 T ELT)) (-1769 (($ $ (-695)) 107 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3726 (((-82) $) 89 T ELT)) (-3775 (((-744 (-831)) $) 104 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1896 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-2487 (($ $) 88 T ELT)) (-3935 (((-82) $) 113 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-2711 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3147 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3735 (((-347 $) $) 92 T ELT)) (-3934 (((-744 (-831))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3469 (((-3 $ "failed") $ $) 56 T ELT)) (-2743 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2882 (((-2 (|:| -1974 $) (|:| -2905 $)) $ $) 73 T ELT)) (-1770 (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3915 (((-104)) 119 T ELT)) (-3952 (((-744 (-831)) $) 112 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2705 (((-633 $) $) 103 (OR (|has| |#1| (-115)) (|has| |#1| (-319))) ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-2064 (((-82) $ $) 53 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-3937 (((-82) $) 115 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3932 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-695)) 108 (|has| |#1| (-319)) ELT)) (-3059 (((-82) $ $) 8 T ELT)) (-3953 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-485))) 86 T ELT) (($ (-349 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
-(((-1199 |#1|) (-110) (-311)) (T -1199))
-((-3937 (*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))) (-3936 (*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))) (-3935 (*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3934 (*1 *2) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3933 (*1 *2) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-695)))) (-3932 (*1 *1 *1) (-11 (-4 *1 (-1199 *2)) (-4 *2 (-311)) (-4 *2 (-319)))) (-3932 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-4 *3 (-319)))))
-(-12 (-311) (-951 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-117)) (-6 (-117)) |%noBranch|) (IF (|has| |t#1| (-115)) (-6 (-344)) |%noBranch|) (-14 -3937 ((-82) $)) (-14 -3936 ((-82) $)) (-14 -3935 ((-82) $)) (-14 -3952 ((-744 (-831)) $)) (-14 -3934 ((-744 (-831)))) (-14 -3933 ((-695))) (IF (|has| |t#1| (-319)) (PROGN (-6 (-344)) (-14 -3932 ($ $)) (-14 -3932 ($ $ (-695)))) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 (-349 (-485))) . T) ((-35 $) . T) ((-69) . T) ((-79 (-349 (-485)) (-349 (-485))) . T) ((-79 |#1| |#1|) . T) ((-79 $ $) . T) ((-101) . T) ((-115) OR (|has| |#1| (-319)) (|has| |#1| (-115))) ((-117) |has| |#1| (-117)) ((-556 (-349 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-145) . T) ((-200) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-115))) ((-392) . T) ((-496) . T) ((-12) . T) ((-589 (-349 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-349 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-349 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-349 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-349 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-349 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3938 (((-584 |#1|) $) 56 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3939 (($ $ $) 58 (|has| |#2| (-145)) ELT) (($ $ (-695)) 57 (|has| |#2| (-145)) ELT)) (-3727 (($) 23 T CONST)) (-3943 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3159 (((-740 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3955 (((-82) $) 60 T ELT)) (-3954 (($ $) 59 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3941 (((-82) $) 65 T ELT)) (-3942 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3940 (($ $) 64 T ELT)) (-3945 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3959 (((-740 |#1|) $) 76 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3944 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3957 (((-82) $) 62 T ELT)) (-3956 ((|#2| $) 61 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3958 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1200 |#1| |#2|) (-110) (-757) (-962)) (T -1200))
-((* (*1 *1 *1 *2) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3959 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3945 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3958 (*1 *2 *1 *3) (-11 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3958 (*1 *2 *1 *1) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3944 (*1 *1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3944 (*1 *1 *1 *2) (-11 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3944 (*1 *1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3943 (*1 *1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3943 (*1 *1 *1 *2) (-11 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3943 (*1 *1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3942 (*1 *1 *2 *3) (-11 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))) (-3941 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82)))) (-3940 (*1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3950 (*1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3957 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82)))) (-3956 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3955 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82)))) (-3954 (*1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3939 (*1 *1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-145)))) (-3939 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-145)))) (-3938 (*1 *2 *1) (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
-(-12 (-962) (-1195 |t#2|) (-380 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-14 * ($ |t#1| $)) (-14 * ($ $ |t#2|)) (-14 -3959 ((-740 |t#1|) $)) (-14 -3945 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-14 -3958 (|t#2| $ (-740 |t#1|))) (-14 -3958 (|t#2| $ $)) (-14 -3944 ($ $ |t#1|)) (-14 -3944 ($ $ (-740 |t#1|))) (-14 -3944 ($ $ $)) (-14 -3943 ($ $ |t#1|)) (-14 -3943 ($ $ (-740 |t#1|))) (-14 -3943 ($ $ $)) (-14 -3942 ($ (-740 |t#1|) |t#2|)) (-14 -3941 ((-82) $)) (-14 -3940 ($ $)) (-14 -3950 ($ |t#1|)) (-14 -3957 ((-82) $)) (-14 -3956 (|t#2| $)) (-14 -3955 ((-82) $)) (-14 -3954 ($ $)) (IF (|has| |t#2| (-145)) (PROGN (-14 -3939 ($ $ $)) (-14 -3939 ($ $ (-695)))) |%noBranch|) (-14 -3938 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3990)) (-6 -3990) |%noBranch|)))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#2|) |has| |#2| (-145)) ((-69) . T) ((-79 |#2| |#2|) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-380 |#2|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-145)) ((-655 |#2|) |has| |#2| (-145)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3938 (((-584 |#1|) $) 99 T ELT)) (-3951 (($ $ (-695)) 103 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) NIL (|has| |#2| (-145)) ELT) (($ $ (-695)) NIL (|has| |#2| (-145)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3159 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3962 (($ $) 102 T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-82) $) 90 T ELT)) (-3954 (($ $) 93 T ELT)) (-3948 (($ $ $ (-695)) 104 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3940 (($ $) 120 T ELT)) (-3945 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3959 (((-740 |#1|) $) NIL T ELT)) (-3960 (((-740 |#1|) $) NIL T ELT)) (-3846 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3944 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3946 (($ $ (-695)) 113 (|has| |#2| (-655 (-349 (-485)))) ELT)) (-1754 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2897 (((-804 |#1|) $) 84 T ELT)) (-3177 ((|#2| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3947 (($ $ (-695)) 110 (|has| |#2| (-655 (-349 (-485)))) ELT)) (-3952 (((-695) $) 100 T ELT)) (-3957 (((-82) $) 85 T ELT)) (-3956 ((|#2| $) 88 T ELT)) (-3950 (((-773) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1196 |#1| |#2|) $) 77 T ELT) (((-1205 |#1| |#2|) $) 82 T ELT)) (-3820 (((-584 |#2|) $) NIL T ELT)) (-3680 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3958 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 21 T CONST)) (-2669 (($) 27 T CONST)) (-2668 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3949 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3059 (((-82) $ $) 78 T ELT)) (-3840 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3842 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT)))
-(((-1201 |#1| |#2|) (-12 (-1203 |#1| |#2|) (-334 |#2| (-804 |#1|)) (-10 -8 (-14 -3950 ($ (-607 |#1| |#2|))) (-14 -3950 ((-1196 |#1| |#2|) $)) (-14 -3950 ((-1205 |#1| |#2|) $)) (-14 -3949 ((-3 (-607 |#1| |#2|) "failed") $)) (-14 -3948 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-349 (-485)))) (PROGN (-14 -3947 ($ $ (-695))) (-14 -3946 ($ $ (-695)))) |%noBranch|))) (-757) (-145)) (T -1201))
-((-3950 (*1 *1 *2) (-11 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *1 (-1201 *3 *4)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3950 (*1 *2 *1) (-11 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3949 (*1 *2 *1) (|partial| -11 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3948 (*1 *1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))) (-3947 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-349 (-485)))) (-4 *3 (-757)) (-4 *4 (-145)))) (-3946 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-349 (-485)))) (-4 *3 (-757)) (-4 *4 (-145)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3938 (((-584 (-1091)) $) NIL T ELT)) (-3965 (($ (-1196 (-1091) |#1|)) NIL T ELT)) (-3951 (($ $ (-695)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) NIL (|has| |#1| (-145)) ELT) (($ $ (-695)) NIL (|has| |#1| (-145)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3160 (((-3 (-740 (-1091)) #1#) $) NIL T ELT)) (-3159 (((-740 (-1091)) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) NIL T ELT)) (-3955 (((-82) $) NIL T ELT)) (-3954 (($ $) NIL T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ (-740 (-1091)) |#1|) NIL T ELT)) (-3940 (($ $) NIL T ELT)) (-3945 (((-2 (|:| |k| (-740 (-1091))) (|:| |c| |#1|)) $) NIL T ELT)) (-3959 (((-740 (-1091)) $) NIL T ELT)) (-3960 (((-740 (-1091)) $) NIL T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3966 (((-1196 (-1091) |#1|) $) NIL T ELT)) (-3952 (((-695) $) NIL T ELT)) (-3957 (((-82) $) NIL T ELT)) (-3956 ((|#1| $) NIL T ELT)) (-3950 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT)) (-3958 ((|#1| $ (-740 (-1091))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3129 (((-695)) NIL T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) NIL T CONST)) (-3964 (((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL T ELT)) (-2669 (($) NIL T CONST)) (-3059 (((-82) $ $) NIL T ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1091) $) NIL T ELT)))
-(((-1202 |#1|) (-12 (-1203 (-1091) |#1|) (-10 -8 (-14 -3966 ((-1196 (-1091) |#1|) $)) (-14 -3965 ($ (-1196 (-1091) |#1|))) (-14 -3964 ((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-962)) (T -1202))
-((-3966 (*1 *2 *1) (-11 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) (-3965 (*1 *1 *2) (-11 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) (-3964 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) (-5 *1 (-1202 *3)) (-4 *3 (-962)))))
-((-2571 (((-82) $ $) 7 T ELT)) (-3191 (((-82) $) 22 T ELT)) (-3938 (((-584 |#1|) $) 56 T ELT)) (-3951 (($ $ (-695)) 90 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3939 (($ $ $) 58 (|has| |#2| (-145)) ELT) (($ $ (-695)) 57 (|has| |#2| (-145)) ELT)) (-3727 (($) 23 T CONST)) (-3943 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3160 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3159 (((-740 |#1|) $) 80 T ELT)) (-3470 (((-3 $ "failed") $) 42 T ELT)) (-3955 (((-82) $) 60 T ELT)) (-3954 (($ $) 59 T ELT)) (-1215 (((-82) $ $) 20 T ELT)) (-2412 (((-82) $) 44 T ELT)) (-3941 (((-82) $) 65 T ELT)) (-3942 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3940 (($ $) 64 T ELT)) (-3945 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3959 (((-740 |#1|) $) 76 T ELT)) (-3960 (((-740 |#1|) $) 92 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 81 T ELT)) (-3944 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3245 (((-1074) $) 11 T ELT)) (-3246 (((-1034) $) 12 T ELT)) (-3952 (((-695) $) 91 T ELT)) (-3957 (((-82) $) 62 T ELT)) (-3956 ((|#2| $) 61 T ELT)) (-3950 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3958 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3129 (((-695)) 40 T CONST)) (-1266 (((-82) $ $) 6 T ELT)) (-3128 (((-82) $ $) 33 T ELT)) (-2663 (($) 24 T CONST)) (-2669 (($) 45 T CONST)) (-3059 (((-82) $ $) 8 T ELT)) (-3840 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3842 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1203 |#1| |#2|) (-110) (-757) (-962)) (T -1203))
-((-3960 (*1 *2 *1) (-11 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3952 (*1 *2 *1) (-11 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3951 (*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-(-12 (-1200 |t#1| |t#2|) (-10 -8 (-14 -3960 ((-740 |t#1|) $)) (-14 -3952 ((-695) $)) (-14 -3951 ($ $ (-695)))))
-(((-18) . T) ((-20) . T) ((-22) . T) ((-35 |#2|) |has| |#2| (-145)) ((-69) . T) ((-79 |#2| |#2|) . T) ((-101) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-380 |#2|) . T) ((-12) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-145)) ((-655 |#2|) |has| |#2| (-145)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T) ((-1200 |#1| |#2|) . T))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3727 (($) NIL T CONST)) (-3160 (((-3 |#2| #1#) $) NIL T ELT)) (-3159 ((|#2| $) NIL T ELT)) (-3962 (($ $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 43 T ELT)) (-3955 (((-82) $) 37 T ELT)) (-3954 (($ $) 38 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-2422 (((-695) $) NIL T ELT)) (-2824 (((-584 $) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ |#2| |#1|) NIL T ELT)) (-3959 ((|#2| $) 25 T ELT)) (-3960 ((|#2| $) 23 T ELT)) (-3846 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2897 ((|#2| $) NIL T ELT)) (-3177 ((|#1| $) NIL T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3957 (((-82) $) 33 T ELT)) (-3956 ((|#1| $) 34 T ELT)) (-3950 (((-773) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3820 (((-584 |#1|) $) NIL T ELT)) (-3680 ((|#1| $ |#2|) NIL T ELT)) (-3958 ((|#1| $ |#2|) 29 T ELT)) (-3129 (((-695)) 14 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 30 T CONST)) (-2669 (($) 11 T CONST)) (-2668 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3059 (((-82) $ $) 31 T ELT)) (-3953 (($ $ |#1|) 68 (|has| |#1| (-311)) ELT)) (-3840 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3842 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3961 (((-695) $) 18 T ELT)))
-(((-1204 |#1| |#2|) (-12 (-962) (-1195 |#1|) (-334 |#1| |#2|) (-556 |#2|) (-380 |#1|) (-10 -8 (-14 * ($ $ |#1|)) (-14 -3961 ((-695) $)) (-14 -3960 (|#2| $)) (-14 -3959 (|#2| $)) (-14 -3962 ($ $)) (-14 -3958 (|#1| $ |#2|)) (-14 -3957 ((-82) $)) (-14 -3956 (|#1| $)) (-14 -3955 ((-82) $)) (-14 -3954 ($ $)) (IF (|has| |#1| (-311)) (-14 -3953 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-755)) (T -1204))
-((* (*1 *1 *1 *2) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3962 (*1 *1 *1) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3961 (*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3960 (*1 *2 *1) (-11 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3959 (*1 *2 *1) (-11 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3958 (*1 *2 *1 *3) (-11 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3957 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3956 (*1 *2 *1) (-11 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3955 (*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3954 (*1 *1 *1) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3953 (*1 *1 *1 *2) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755)))))
-((-2571 (((-82) $ $) 27 T ELT)) (-3191 (((-82) $) NIL T ELT)) (-3938 (((-584 |#1|) $) 132 T ELT)) (-3965 (($ (-1196 |#1| |#2|)) 50 T ELT)) (-3951 (($ $ (-695)) 38 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3939 (($ $ $) 54 (|has| |#2| (-145)) ELT) (($ $ (-695)) 52 (|has| |#2| (-145)) ELT)) (-3727 (($) NIL T CONST)) (-3943 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3160 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3159 (((-740 |#1|) $) NIL T ELT)) (-3470 (((-3 $ #1#) $) 122 T ELT)) (-3955 (((-82) $) 117 T ELT)) (-3954 (($ $) 118 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) NIL T ELT)) (-3941 (((-82) $) NIL T ELT)) (-3942 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3940 (($ $) NIL T ELT)) (-3945 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3959 (((-740 |#1|) $) 123 T ELT)) (-3960 (((-740 |#1|) $) 126 T ELT)) (-3846 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3944 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3966 (((-1196 |#1| |#2|) $) 94 T ELT)) (-3952 (((-695) $) 129 T ELT)) (-3957 (((-82) $) 81 T ELT)) (-3956 ((|#2| $) 32 T ELT)) (-3950 (((-773) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3958 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3129 (((-695)) 120 T CONST)) (-1266 (((-82) $ $) NIL T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 15 T CONST)) (-3964 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2669 (($) 33 T CONST)) (-3059 (((-82) $ $) 14 T ELT)) (-3840 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3842 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
-(((-1205 |#1| |#2|) (-12 (-1203 |#1| |#2|) (-10 -8 (-14 -3966 ((-1196 |#1| |#2|) $)) (-14 -3965 ($ (-1196 |#1| |#2|))) (-14 -3964 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1205))
-((-3966 (*1 *2 *1) (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3965 (*1 *1 *2) (-11 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1205 *3 *4)))) (-3964 (*1 *2 *1) (-11 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3968 (($ (-584 (-831))) 11 T ELT)) (-3967 (((-885) $) 12 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3950 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1266 (((-82) $ $) NIL T ELT)) (-3059 (((-82) $ $) 17 T ELT)))
-(((-1206) (-12 (-1014) (-430 (-885)) (-10 -8 (-14 -3968 ($ (-584 (-831)))) (-14 -3967 ((-885) $))))) (T -1206))
-((-3968 (*1 *1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))) (-3967 (*1 *2 *1) (-11 (-5 *2 (-885)) (-5 *1 (-1206)))))
-((-3969 (((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)) 16 T ELT) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 13 T ELT)))
-(((-1207 |#1|) (-10 -7 (-14 -3969 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-14 -3969 ((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)))) (-1130)) (T -1207))
-((-3969 (*1 *2 *3 *4) (-11 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))) (-3969 (*1 *2 *3) (-11 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1130)))))
-((-3971 (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82)) 173 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82)) 172 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82) (-82)) 171 T ELT) (((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3970 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-82)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-82) (-82)) 83 T ELT)) (-3974 (((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3972 (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82)) 139 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82)) 138 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82) (-82)) 137 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3973 (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82)) 144 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82)) 143 T ELT) (((-584 (-584 (-938 (-349 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3975 (((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1086 (-938 (-349 |#1|))) (-1086 |#1|)) 102 T ELT) (((-858 (-938 (-349 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-349 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT)))
-(((-1208 |#1| |#2| |#3|) (-10 -7 (-14 -3970 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-82) (-82))) (-14 -3970 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-82))) (-14 -3970 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-14 -3971 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-14 -3971 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82) (-82))) (-14 -3971 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82) (-82))) (-14 -3971 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-82))) (-14 -3971 ((-584 (-2 (|:| -1752 (-1086 |#1|)) (|:| -3227 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-14 -3972 ((-584 (-584 (-938 (-349 |#1|)))) (-959 |#1| |#2|))) (-14 -3972 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82) (-82))) (-14 -3972 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82))) (-14 -3972 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82))) (-14 -3972 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)))) (-14 -3973 ((-584 (-584 (-938 (-349 |#1|)))) (-959 |#1| |#2|))) (-14 -3973 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82) (-82))) (-14 -3973 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)) (-82))) (-14 -3973 ((-584 (-584 (-938 (-349 |#1|)))) (-584 (-858 |#1|)))) (-14 -3974 ((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-14 -3975 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-14 -3975 ((-858 (-938 (-349 |#1|))) (-858 |#1|))) (-14 -3975 ((-858 (-938 (-349 |#1|))) (-704 |#1| (-774 |#3|)))) (-14 -3975 ((-1086 (-938 (-349 |#1|))) (-1086 |#1|))) (-14 -3975 ((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-12 (-756) (-257) (-117) (-934)) (-584 (-1091)) (-584 (-1091))) (T -1208))
-((-3975 (*1 *2 *3) (-11 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-1086 *4)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-1086 (-938 (-349 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-349 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-858 *4)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-858 (-938 (-349 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3975 (*1 *2 *3) (-11 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))) (-3974 (*1 *2 *3) (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))) (-3973 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3973 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3973 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3973 (*1 *2 *3) (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))) (-3972 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3972 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3972 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3972 (*1 *2 *3 *4 *4 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3972 (*1 *2 *3) (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))) (-3971 (*1 *2 *3) (-11 (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3971 (*1 *2 *3 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4 *4) (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3971 (*1 *2 *3) (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))) (-3970 (*1 *2 *3) (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))) (-3970 (*1 *2 *3 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4) (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091))))))
-((-3978 (((-3 (-1180 (-349 (-485))) #1="failed") (-1180 |#1|) |#1|) 21 T ELT)) (-3976 (((-82) (-1180 |#1|)) 12 T ELT)) (-3977 (((-3 (-1180 (-485)) #1#) (-1180 |#1|)) 16 T ELT)))
-(((-1209 |#1|) (-10 -7 (-14 -3976 ((-82) (-1180 |#1|))) (-14 -3977 ((-3 (-1180 (-485)) #1="failed") (-1180 |#1|))) (-14 -3978 ((-3 (-1180 (-349 (-485))) #1#) (-1180 |#1|) |#1|))) (-12 (-962) (-581 (-485)))) (T -1209))
-((-3978 (*1 *2 *3 *4) (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485)))) (-5 *2 (-1180 (-349 (-485)))) (-5 *1 (-1209 *4)))) (-3977 (*1 *2 *3) (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485)))) (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))) (-3976 (*1 *2 *3) (-11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485)))) (-5 *2 (-82)) (-5 *1 (-1209 *4)))))
-((-2571 (((-82) $ $) NIL T ELT)) (-3191 (((-82) $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3139 (((-695)) 9 T ELT)) (-3727 (($) NIL T CONST)) (-3470 (((-3 $ #1#) $) 57 T ELT)) (-2997 (($) 46 T ELT)) (-1215 (((-82) $ $) NIL T ELT)) (-2412 (((-82) $) 38 T ELT)) (-3448 (((-633 $) $) 36 T ELT)) (-2012 (((-831) $) 14 T ELT)) (-3245 (((-1074) $) NIL T ELT)) (-3449 (($) 26 T CONST)) (-2402 (($ (-831)) 47 T ELT)) (-3246 (((-1034) $) NIL T ELT)) (-3975 (((-485) $) 16 T ELT)) (-3950 (((-773) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3129 (((-695)) 10 T CONST)) (-1266 (((-82) $ $) 59 T ELT)) (-3128 (((-82) $ $) NIL T ELT)) (-2663 (($) 23 T CONST)) (-2669 (($) 25 T CONST)) (-3059 (((-82) $ $) 31 T ELT)) (-3840 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3842 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT)))
-(((-1210 |#1|) (-12 (-145) (-319) (-554 (-485)) (-1067)) (-831)) (T -1210))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 2793509 2793514 2793519 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2793494 2793499 2793504 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2793479 2793484 2793489 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2793464 2793469 2793474 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2792443 2793382 2793459 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2791658 2791837 2792056 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2782817 2784686 2786620 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2782205 2782358 2782547 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2781667 2781970 2782083 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2779227 2781129 2781332 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2776111 2777764 2778314 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2773350 2775080 2775134 "XPOLYC" 2775419 XPOLYC (NIL T T) -9 NIL 2775532 NIL) (-1202 2770869 2772854 2773057 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2767117 2769728 2770116 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2762067 2763700 2763754 "XFALG" 2765800 XFALG (NIL T T) -9 NIL 2766562 NIL) (-1199 2757223 2759956 2759998 "XF" 2760616 XF (NIL T) -9 NIL 2761012 NIL) (-1198 2756941 2757051 2757218 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2756168 2756290 2756494 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2753910 2756068 2756163 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2752491 2753286 2753328 "XALG" 2753333 XALG (NIL T) -9 NIL 2753442 NIL) (-1194 2746342 2750901 2751379 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2744585 2745587 2745908 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2744184 2744456 2744525 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2743671 2743974 2744067 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2742748 2742958 2743253 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2741044 2741507 2741969 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2739933 2740518 2740560 "VSPACE" 2740696 VSPACE (NIL T) -9 NIL 2740770 NIL) (-1187 2739804 2739837 2739928 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2739647 2739701 2739769 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2736630 2737425 2738162 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2727728 2730329 2732502 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2721305 2723196 2724775 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2719789 2720184 2720590 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2718616 2718897 2719213 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2714013 2718443 2718535 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2707339 2711668 2711711 "VECTCAT" 2712699 VECTCAT (NIL T) -9 NIL 2713283 NIL) (-1178 2706618 2706944 2707334 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2706112 2706354 2706474 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2706045 2706050 2706080 "UTYPE" 2706085 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2705032 2705208 2705469 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2702883 2703391 2703915 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2692747 2698717 2698759 "UTSCAT" 2699857 UTSCAT (NIL T) -9 NIL 2700614 NIL) (-1172 2690812 2691755 2692742 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2690486 2690535 2690666 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2682197 2688682 2689161 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2676741 2679014 2679057 "URAGG" 2681097 URAGG (NIL T) -9 NIL 2681822 NIL) (-1168 2674812 2675744 2676736 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2670519 2673788 2674250 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2662948 2670443 2670514 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2651581 2659068 2659129 "UPXSCCA" 2659697 UPXSCCA (NIL T T) -9 NIL 2659929 NIL) (-1164 2651302 2651404 2651576 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2639836 2647048 2647090 "UPXSCAT" 2647730 UPXSCAT (NIL T) -9 NIL 2648338 NIL) (-1162 2639349 2639434 2639611 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2631035 2638940 2639202 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2629930 2630200 2630550 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2622615 2626100 2626154 "UPSCAT" 2627223 UPSCAT (NIL T T) -9 NIL 2627987 NIL) (-1158 2622035 2622287 2622610 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2621709 2621758 2621889 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2605820 2614775 2614817 "UPOLYC" 2616895 UPOLYC (NIL T) -9 NIL 2618115 NIL) (-1155 2599875 2602723 2605815 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2599311 2599436 2599599 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2598945 2599032 2599171 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2597758 2598025 2598329 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2597091 2597221 2597406 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2596683 2596758 2596905 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2587447 2596449 2596577 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2586809 2586946 2587151 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2585410 2586257 2586533 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2584639 2584836 2585061 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2571449 2584563 2584634 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2551205 2564440 2564501 "ULSCCAT" 2565132 ULSCCAT (NIL T T) -9 NIL 2565419 NIL) (-1143 2550540 2550826 2551200 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2538894 2546028 2546070 "ULSCAT" 2546923 ULSCAT (NIL T) -9 NIL 2547653 NIL) (-1141 2538407 2538492 2538669 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2520524 2537906 2538147 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2519558 2520251 2520365 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2520476) (-1138 2518591 2519284 2519398 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2519509) (-1137 2517624 2518317 2518431 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2518542) (-1136 2516657 2517350 2517464 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2517575) (-1135 2514664 2515885 2515915 "UFD" 2516126 UFD (NIL) -9 NIL 2516239 NIL) (-1134 2514508 2514565 2514659 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2513760 2513967 2514183 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2511980 2512433 2512898 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2511705 2511945 2511975 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2511643 2511648 2511678 "TYPE" 2511683 TYPE (NIL) -9 NIL 2511690 NIL) (-1129 2510802 2511022 2511262 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2509980 2510411 2510646 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2508134 2508707 2509246 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2507168 2507404 2507640 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2495766 2499943 2500039 "TSETCAT" 2505254 TSETCAT (NIL T T T T) -9 NIL 2506758 NIL) (-1124 2492103 2493919 2495761 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2486495 2491329 2491611 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2481832 2482845 2483774 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2481329 2481404 2481567 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2479405 2479695 2480050 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2478889 2479038 2479068 "TRIGCAT" 2479281 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2478640 2478743 2478884 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2475636 2477746 2478027 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2474742 2475438 2475468 "TRANFUN" 2475503 TRANFUN (NIL) -9 NIL 2475569 NIL) (-1115 2474206 2474457 2474737 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2474043 2474081 2474142 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2473500 2473631 2473782 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2472241 2472898 2473134 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2472053 2472090 2472162 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2470267 2470913 2471342 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2468647 2468984 2469306 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2458632 2466336 2466392 "TBAGG" 2466709 TBAGG (NIL T T) -9 NIL 2466919 NIL) (-1107 2456037 2457292 2458627 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2455514 2455639 2455784 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2455024 2455344 2455434 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2454521 2454638 2454776 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2447025 2454449 2454516 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2442778 2444073 2445318 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2442147 2442306 2442487 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2439301 2440054 2440837 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2439075 2439265 2439296 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2438029 2438714 2438840 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2439026) (-1097 2437293 2437841 2437920 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2437980) (-1096 2434116 2435275 2435975 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2431799 2432482 2433116 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2427877 2428923 2429900 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2424976 2427532 2427761 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2424572 2424659 2424781 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2421196 2422670 2423489 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2414156 2420393 2420686 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2405842 2413747 2414009 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2405121 2405260 2405477 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2404805 2404870 2404981 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2395528 2404517 2404642 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2394258 2394556 2394911 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2393663 2393741 2393932 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2375815 2393162 2393403 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2375414 2375686 2375755 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2374750 2375031 2375171 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2369352 2370611 2371564 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2368884 2368984 2369148 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2363995 2365277 2366424 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2358453 2359924 2361235 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2351368 2353432 2355223 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2343537 2351306 2351363 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2338486 2343251 2343366 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2338073 2338156 2338300 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2337224 2337425 2337660 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2336964 2337022 2337115 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2330490 2335167 2335775 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2329666 2329871 2330102 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2328911 2329282 2329429 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2328399 2328641 2328671 "STEP" 2328765 STEP (NIL) -9 NIL 2328836 NIL) (-1066 2320893 2328317 2328394 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2315918 2319673 2319716 "STAGG" 2320143 STAGG (NIL T) -9 NIL 2320317 NIL) (-1064 2314376 2315084 2315913 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2312538 2314203 2314295 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2311818 2312357 2312387 "SRING" 2312392 SRING (NIL) -9 NIL 2312412 NIL) (-1061 2304733 2310356 2310795 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2298507 2299946 2301450 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2291124 2295782 2295812 "SRAGG" 2297111 SRAGG (NIL) -9 NIL 2297715 NIL) (-1058 2290421 2290741 2291119 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2284527 2289743 2290166 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2278456 2281880 2282631 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2274885 2275704 2276341 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2273860 2274165 2274195 "SPFCAT" 2274639 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2272797 2273049 2273313 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2263555 2265829 2265859 "SPADXPT" 2270496 SPADXPT (NIL) -9 NIL 2272620 NIL) (-1051 2263357 2263403 2263472 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2261013 2263321 2263352 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2252687 2254776 2254818 "SPACEC" 2259133 SPACEC (NIL T) -9 NIL 2260938 NIL) (-1048 2250516 2252634 2252682 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2249495 2249684 2249967 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2247899 2248232 2248643 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2247164 2247398 2247659 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2243344 2244304 2245299 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2239702 2240401 2241130 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2233724 2238987 2239083 "SNTSCAT" 2239088 SNTSCAT (NIL T T T T) -9 NIL 2239158 NIL) (-1041 2227545 2232365 2232755 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2221317 2227464 2227540 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2219749 2220080 2220478 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2211363 2216297 2216399 "SMATCAT" 2217742 SMATCAT (NIL NIL T T T) -9 NIL 2218290 NIL) (-1037 2209204 2210188 2211358 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2208806 2208978 2209021 "SMAGG" 2209106 SMAGG (NIL T) -9 NIL 2209163 NIL) (-1035 2206349 2207955 2207998 "SKAGG" 2208259 SKAGG (NIL T) -9 NIL 2208395 NIL) (-1034 2202395 2206169 2206280 "SINT" NIL SINT (NIL) -8 NIL NIL 2206321) (-1033 2202205 2202249 2202315 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2201280 2201512 2201780 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2200284 2200446 2200722 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2199630 2199970 2200093 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2198976 2199283 2199423 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2197087 2197579 2198085 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2190571 2197006 2197082 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2190074 2190311 2190341 "SGROUP" 2190434 SGROUP (NIL) -9 NIL 2190496 NIL) (-1025 2189964 2189996 2190069 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2189602 2189642 2189683 "SGPOPC" 2189688 SGPOPC (NIL T) -9 NIL 2189889 NIL) (-1023 2189136 2189413 2189519 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2186559 2187328 2188050 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2180680 2185943 2186039 "SFRTCAT" 2186044 SFRTCAT (NIL T T T T) -9 NIL 2186082 NIL) (-1020 2175072 2176185 2177312 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2169248 2170409 2171573 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2168220 2169122 2169243 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2163828 2164723 2164818 "SEXCAT" 2167431 SEXCAT (NIL T T T T T) -9 NIL 2167982 NIL) (-1016 2162801 2163755 2163823 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2161192 2161777 2162079 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2160715 2160900 2160930 "SETCAT" 2161047 SETCAT (NIL) -9 NIL 2161131 NIL) (-1013 2160547 2160611 2160710 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2157599 2158983 2159026 "SETAGG" 2159894 SETAGG (NIL T) -9 NIL 2160232 NIL) (-1011 2157205 2157357 2157594 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2154450 2157152 2157200 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2153916 2154226 2154326 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2153043 2153409 2153470 "SEGXCAT" 2153756 SEGXCAT (NIL T T) -9 NIL 2153876 NIL) (-1007 2151968 2152236 2152279 "SEGCAT" 2152801 SEGCAT (NIL T) -9 NIL 2153022 NIL) (-1006 2151648 2151713 2151826 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2150714 2151184 2151392 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2150292 2150571 2150647 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2149657 2149793 2149997 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2148723 2149470 2149652 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2147976 2148671 2148718 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2139461 2147843 2147971 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2138321 2138611 2138928 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2137627 2137839 2138027 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2136977 2137134 2137310 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2136550 2136781 2136809 "SASTCAT" 2136814 SASTCAT (NIL) -9 NIL 2136827 NIL) (-995 2136017 2136442 2136516 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2135620 2135661 2135832 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2135251 2135292 2135449 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2128332 2135168 2135246 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2126982 2127311 2127707 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2125743 2126104 2126404 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2125367 2125588 2125669 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2122827 2123461 2123914 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2122666 2122699 2122767 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2122157 2122460 2122551 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2117785 2118653 2119564 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2106840 2112103 2112197 "RSETCAT" 2116253 RSETCAT (NIL T T T T) -9 NIL 2117341 NIL) (-983 2105378 2106020 2106835 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2099152 2100597 2102104 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2097034 2097591 2097663 "RRCC" 2098736 RRCC (NIL T T) -9 NIL 2099077 NIL) (-980 2096559 2096758 2097029 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2096029 2096339 2096437 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2068562 2079276 2079340 "RPOLCAT" 2089814 RPOLCAT (NIL T T T) -9 NIL 2092959 NIL) (-977 2062661 2065484 2068557 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2058828 2062409 2062547 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2057156 2057895 2058151 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2052799 2055611 2055639 "RNS" 2055901 RNS (NIL) -9 NIL 2056153 NIL) (-973 2051702 2052189 2052726 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2050820 2051221 2051421 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2049958 2050520 2050548 "RNG" 2050608 RNG (NIL) -9 NIL 2050662 NIL) (-970 2049847 2049881 2049953 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2049109 2049614 2049654 "RMODULE" 2049659 RMODULE (NIL T) -9 NIL 2049685 NIL) (-968 2048048 2048154 2048484 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2044945 2047638 2047931 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2037786 2040230 2040342 "RMATCAT" 2043513 RMATCAT (NIL NIL NIL T T T) -9 NIL 2044444 NIL) (-965 2037303 2037482 2037781 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2036871 2037082 2037123 "RLINSET" 2037184 RLINSET (NIL T) -9 NIL 2037228 NIL) (-963 2036516 2036597 2036723 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2035362 2036093 2036121 "RING" 2036176 RING (NIL) -9 NIL 2036268 NIL) (-961 2035207 2035263 2035357 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2034261 2034528 2034784 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2025485 2033889 2034090 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2024710 2025221 2025260 "RGBCSPC" 2025317 RGBCSPC (NIL T) -9 NIL 2025368 NIL) (-957 2023744 2024230 2024269 "RGBCMDL" 2024497 RGBCMDL (NIL T) -9 NIL 2024611 NIL) (-956 2023456 2023525 2023626 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2023219 2023260 2023355 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2021643 2022073 2022453 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2019230 2019898 2020566 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2018780 2018878 2019038 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2018402 2018500 2018541 "RETRACT" 2018672 RETRACT (NIL T) -9 NIL 2018759 NIL) (-950 2018282 2018313 2018397 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2017884 2018156 2018223 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2016364 2017255 2017452 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2016055 2016116 2016212 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2015798 2015839 2015944 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2015533 2015574 2015683 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2010604 2012055 2013270 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2007700 2008458 2009266 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2005669 2006291 2006891 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 1998597 2004220 2004656 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 1997909 1998189 1998338 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 1997394 1997509 1997674 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 1992987 1996797 1997018 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 1992219 1992418 1992631 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 1989509 1990347 1991229 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 1986091 1987127 1988186 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 1985927 1985980 1986008 "REAL" 1986013 REAL (NIL) -9 NIL 1986048 NIL) (-933 1985417 1985721 1985812 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 1984897 1984975 1985180 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 1984130 1984322 1984533 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1983018 1983315 1983682 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1981285 1981755 1982288 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1980209 1980486 1980873 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1979038 1979347 1979766 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1972386 1975898 1975926 "RCFIELD" 1977203 RCFIELD (NIL) -9 NIL 1977933 NIL) (-925 1971004 1971616 1972313 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1967758 1969090 1969131 "RCAGG" 1970185 RCAGG (NIL T) -9 NIL 1970647 NIL) (-923 1967485 1967595 1967753 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1966930 1967059 1967220 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1966547 1966626 1966745 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1965962 1966112 1966262 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1965744 1965794 1965865 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1958186 1964862 1965170 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1947888 1958053 1958181 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1947522 1947615 1947643 "RADCAT" 1947800 RADCAT (NIL) -9 NIL NIL NIL) (-915 1947360 1947420 1947517 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1945465 1947191 1947280 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1945146 1945195 1945322 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1937415 1941499 1941539 "QUATCAT" 1942317 QUATCAT (NIL T) -9 NIL 1943081 NIL) (-911 1934665 1935945 1937321 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1930505 1934615 1934660 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1927843 1929502 1929543 "QUAGG" 1929918 QUAGG (NIL T) -9 NIL 1930094 NIL) (-908 1927445 1927717 1927784 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1926451 1927081 1927244 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1926132 1926181 1926308 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1915714 1921883 1921923 "QFCAT" 1922581 QFCAT (NIL T) -9 NIL 1923574 NIL) (-904 1912598 1914037 1915620 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1912144 1912278 1912408 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1906340 1907501 1908663 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1905759 1905939 1906171 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1903581 1904109 1904532 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1902480 1902722 1903039 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1900841 1901039 1901392 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1896597 1897813 1897854 "PTRANFN" 1899738 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1895244 1895589 1895910 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1894937 1895000 1895107 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1889234 1893678 1893718 "PTCAT" 1894010 PTCAT (NIL T) -9 NIL 1894163 NIL) (-893 1888927 1888968 1889092 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1887806 1888122 1888456 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1876685 1879246 1881555 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1869887 1872450 1872544 "PSETCAT" 1875518 PSETCAT (NIL T T T T) -9 NIL 1876327 NIL) (-889 1868337 1869071 1869882 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1867656 1867851 1867879 "PSCURVE" 1868147 PSCURVE (NIL) -9 NIL 1868314 NIL) (-887 1863240 1865060 1865124 "PSCAT" 1865959 PSCAT (NIL T T T) -9 NIL 1866198 NIL) (-886 1862554 1862836 1863235 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1860951 1861866 1862129 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1860442 1860745 1860836 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1851462 1853884 1856072 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1849156 1850725 1850765 "PRQAGG" 1850948 PRQAGG (NIL T) -9 NIL 1851051 NIL) (-881 1848329 1848775 1848803 "PROPLOG" 1848942 PROPLOG (NIL) -9 NIL 1849056 NIL) (-880 1848004 1848067 1848190 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1847440 1847579 1847751 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1845688 1846451 1846748 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1845240 1845372 1845500 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1839681 1844180 1845000 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1839510 1839548 1839607 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1838949 1839089 1839240 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1837417 1837836 1838302 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1837134 1837195 1837223 "PRIMCAT" 1837347 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1836305 1836501 1836729 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1832466 1836255 1836300 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1832165 1832227 1832338 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1829301 1831814 1832047 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1828752 1828909 1828937 "PPCURVE" 1829142 PPCURVE (NIL) -9 NIL 1829278 NIL) (-866 1828365 1828610 1828693 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1826121 1826542 1827134 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1825564 1825628 1825861 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1822284 1822770 1823381 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1807856 1813986 1814050 "POLYCAT" 1817535 POLYCAT (NIL T T T) -9 NIL 1819412 NIL) (-861 1803366 1805513 1807851 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1803023 1803097 1803216 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1802716 1802779 1802886 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1796079 1802449 1802608 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1794966 1795229 1795505 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1793570 1793883 1794213 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1789013 1793520 1793565 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1787501 1787912 1788287 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1786258 1786567 1786963 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1785929 1786013 1786130 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1785508 1785583 1785757 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1784994 1785090 1785250 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1784466 1784586 1784740 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1783361 1783579 1783956 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1782972 1783057 1783209 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1782523 1782605 1782786 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1782215 1782296 1782409 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1781728 1781803 1782011 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1781076 1781204 1781406 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1780438 1780572 1780735 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1779742 1779924 1780105 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1779465 1779539 1779633 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1776033 1777222 1778138 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1775117 1775318 1775553 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1770682 1772066 1773208 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1750603 1755490 1760337 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1750343 1750396 1750499 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1749784 1749918 1750098 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1747793 1749014 1749042 "PID" 1749239 PID (NIL) -9 NIL 1749366 NIL) (-832 1747581 1747624 1747699 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1746768 1747428 1747515 "PI" NIL PI (NIL) -8 NIL NIL 1747555) (-830 1746220 1746371 1746547 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1742548 1743506 1744411 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1740912 1741201 1741567 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1740354 1740469 1740630 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1736895 1739223 1739576 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1735501 1735781 1736106 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1734266 1734520 1734868 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1732976 1733203 1733555 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1729986 1731546 1731574 "PFECAT" 1732167 PFECAT (NIL) -9 NIL 1732544 NIL) (-821 1729609 1729774 1729981 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1728433 1728715 1729016 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1726615 1727002 1727432 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1722585 1726541 1726610 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1718488 1719635 1720502 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1716420 1717509 1717550 "PERMCAT" 1717949 PERMCAT (NIL T) -9 NIL 1718246 NIL) (-815 1716116 1716163 1716286 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1712565 1714246 1714891 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1710591 1712320 1712441 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1709474 1709737 1709776 "PDSPC" 1710297 PDSPC (NIL T) -9 NIL 1710542 NIL) (-811 1708843 1709109 1709469 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1707480 1708473 1708512 "PDRING" 1708517 PDRING (NIL T) -9 NIL 1708544 NIL) (-809 1706192 1706981 1707032 "PDMOD" 1707037 PDMOD (NIL T T) -9 NIL 1707140 NIL) (-808 1705285 1705497 1705746 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1704890 1704957 1705011 "PDDOM" 1705176 PDDOM (NIL T T) -9 NIL 1705256 NIL) (-806 1704742 1704778 1704885 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1704528 1704567 1704656 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1702845 1703599 1703898 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1702534 1702597 1702706 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1700672 1701102 1701553 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1694292 1696121 1697413 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1693923 1693996 1694128 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1691625 1692305 1692786 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1689829 1690257 1690660 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1689275 1689523 1689564 "PATMAB" 1689671 PATMAB (NIL T) -9 NIL 1689754 NIL) (-796 1687922 1688326 1688583 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1687460 1687591 1687632 "PATAB" 1687637 PATAB (NIL T) -9 NIL 1687809 NIL) (-794 1686003 1686440 1686863 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1685681 1685756 1685858 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1685370 1685433 1685542 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1685175 1685221 1685288 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1684853 1684928 1685030 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1684542 1684605 1684714 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1684233 1684303 1684400 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1683922 1683985 1684094 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1683083 1683462 1683641 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1682690 1682788 1682907 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1681658 1682083 1682302 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1680323 1680977 1681337 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1673413 1679727 1679921 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1665834 1672911 1673095 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1662559 1664474 1664514 "PADICCT" 1665095 PADICCT (NIL NIL) -9 NIL 1665377 NIL) (-779 1660549 1662509 1662554 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1659711 1659921 1660187 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1659053 1659196 1659400 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1657434 1658461 1658739 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1656958 1657217 1657314 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1656017 1656695 1656867 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1646439 1649308 1651507 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1645834 1646145 1646271 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1645120 1645312 1645340 "OUTBCON" 1645655 OUTBCON (NIL) -9 NIL 1645818 NIL) (-770 1644830 1644959 1645115 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1644211 1644356 1644517 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1643582 1644009 1644098 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1642997 1643412 1643440 "OSGROUP" 1643445 OSGROUP (NIL) -9 NIL 1643467 NIL) (-766 1641961 1642222 1642507 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1639230 1641836 1641956 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1636371 1638981 1639107 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1634389 1634917 1635477 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1627731 1630271 1630311 "OREPCAT" 1632632 OREPCAT (NIL T) -9 NIL 1633734 NIL) (-761 1625757 1626691 1627726 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1624954 1625225 1625253 "ORDTYPE" 1625558 ORDTYPE (NIL) -9 NIL 1625716 NIL) (-759 1624488 1624699 1624949 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1623950 1624326 1624483 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1623444 1623807 1623835 "ORDSET" 1623840 ORDSET (NIL) -9 NIL 1623862 NIL) (-756 1622009 1623031 1623059 "ORDRING" 1623064 ORDRING (NIL) -9 NIL 1623092 NIL) (-755 1621257 1621814 1621842 "ORDMON" 1621847 ORDMON (NIL) -9 NIL 1621868 NIL) (-754 1620561 1620723 1620915 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1619772 1620280 1620308 "ORDFIN" 1620373 ORDFIN (NIL) -9 NIL 1620447 NIL) (-752 1619166 1619305 1619491 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1615841 1618134 1618540 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1615248 1615603 1615708 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1615056 1615101 1615167 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1614357 1614633 1614674 "OPERCAT" 1614885 OPERCAT (NIL T) -9 NIL 1614981 NIL) (-747 1614169 1614236 1614352 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1611535 1612971 1613467 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1610956 1611083 1611257 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1607857 1610095 1610461 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1604723 1607232 1607272 "OMSAGG" 1607333 OMSAGG (NIL T) -9 NIL 1607397 NIL) (-742 1603135 1604394 1604562 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1601331 1602572 1602600 "OINTDOM" 1602605 OINTDOM (NIL) -9 NIL 1602626 NIL) (-740 1598761 1600333 1600662 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1598015 1598711 1598756 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1595217 1597856 1598010 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1586754 1595088 1595212 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1580209 1586645 1586749 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1579181 1579418 1579691 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1576822 1577492 1578196 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1572599 1573559 1574582 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1572107 1572195 1572389 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1569556 1570138 1570811 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1566951 1567459 1568055 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1563948 1564487 1565133 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1563303 1563411 1563669 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1562461 1562586 1562807 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1558745 1559541 1560454 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1558185 1558280 1558502 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1557866 1557915 1558042 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1554469 1557665 1557784 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1553629 1554251 1554279 "OCAMON" 1554284 OCAMON (NIL) -9 NIL 1554305 NIL) (-721 1547823 1550637 1550677 "OC" 1551772 OC (NIL T) -9 NIL 1552628 NIL) (-720 1545823 1546749 1547729 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1545239 1545657 1545685 "OASGP" 1545690 OASGP (NIL) -9 NIL 1545710 NIL) (-718 1544302 1544951 1544979 "OAMONS" 1545019 OAMONS (NIL) -9 NIL 1545062 NIL) (-717 1543447 1544028 1544056 "OAMON" 1544113 OAMON (NIL) -9 NIL 1544164 NIL) (-716 1543343 1543375 1543442 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1542094 1542868 1542896 "OAGROUP" 1543042 OAGROUP (NIL) -9 NIL 1543134 NIL) (-714 1541885 1541972 1542089 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1541625 1541681 1541769 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1536687 1538250 1539777 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1533382 1534416 1535451 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1532492 1532725 1532943 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1521353 1524381 1526829 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1515476 1520739 1520833 "NTSCAT" 1520838 NTSCAT (NIL T T T T) -9 NIL 1520876 NIL) (-707 1514817 1514996 1515189 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1514510 1514573 1514680 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1502177 1512130 1512940 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1491186 1502042 1502172 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1489906 1490231 1490588 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1488742 1489006 1489364 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1487909 1488042 1488258 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1486227 1486546 1486952 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1485940 1485974 1486098 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1485759 1485794 1485863 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1485535 1485725 1485754 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1485099 1485166 1485343 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1483385 1484462 1484717 "NNI" NIL NNI (NIL) -8 NIL NIL 1485064) (-694 1482113 1482450 1482814 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1481090 1481342 1481644 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1480182 1480742 1480783 "NETCLT" 1480954 NETCLT (NIL T) -9 NIL 1481035 NIL) (-691 1479086 1479353 1479634 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1478885 1478928 1479003 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1477416 1477804 1478224 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1476049 1477015 1477043 "NASRING" 1477153 NASRING (NIL) -9 NIL 1477233 NIL) (-687 1475894 1475950 1476044 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1474823 1475501 1475529 "NARNG" 1475646 NARNG (NIL) -9 NIL 1475737 NIL) (-685 1474599 1474684 1474818 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1473365 1474119 1474159 "NAALG" 1474238 NAALG (NIL T) -9 NIL 1474299 NIL) (-683 1473235 1473270 1473360 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1468214 1469399 1470585 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1467609 1467696 1467880 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1459600 1464095 1464147 "MTSCAT" 1465207 MTSCAT (NIL T T) -9 NIL 1465721 NIL) (-679 1459366 1459426 1459518 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1459192 1459231 1459291 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1456821 1458706 1458747 "MSETAGG" 1458752 MSETAGG (NIL T) -9 NIL 1458786 NIL) (-676 1453191 1455864 1456185 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1449584 1451407 1452126 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1449221 1449294 1449423 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1448874 1448915 1449059 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1446739 1447076 1447507 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1440137 1446638 1446734 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1439662 1439703 1439911 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1439221 1439270 1439453 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1438495 1438588 1438807 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1437112 1437473 1437863 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1436633 1436700 1436739 "MONOPC" 1436799 MONOPC (NIL T) -9 NIL 1437018 NIL) (-665 1436084 1436420 1436548 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1435226 1435605 1435633 "MONOID" 1435851 MONOID (NIL) -9 NIL 1435995 NIL) (-663 1434885 1435035 1435221 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1423823 1430693 1430752 "MONOGEN" 1431426 MONOGEN (NIL T T) -9 NIL 1431882 NIL) (-661 1421835 1422721 1423704 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1420549 1421093 1421121 "MONADWU" 1421512 MONADWU (NIL) -9 NIL 1421747 NIL) (-659 1420097 1420297 1420544 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1419374 1419675 1419703 "MONAD" 1419910 MONAD (NIL) -9 NIL 1420022 NIL) (-657 1419141 1419237 1419369 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1417531 1418301 1418580 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1416665 1417192 1417232 "MODULE" 1417237 MODULE (NIL T) -9 NIL 1417275 NIL) (-654 1416344 1416470 1416660 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1414063 1414949 1415263 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1411242 1412659 1413172 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1409876 1410450 1410726 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1399095 1408541 1408954 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1396059 1398103 1398372 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1395143 1395510 1395700 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1394712 1394761 1394940 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1392537 1393533 1393573 "MLO" 1393990 MLO (NIL T) -9 NIL 1394230 NIL) (-645 1390418 1390945 1391540 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1389886 1389982 1390136 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1389556 1389632 1389755 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1388768 1388954 1389182 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1388261 1388377 1388533 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1387633 1387747 1387932 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1386660 1386933 1387210 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1386093 1386181 1386352 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1383251 1384130 1385009 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1381918 1382266 1382619 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1379342 1381005 1381046 "MDAGG" 1381303 MDAGG (NIL T) -9 NIL 1381448 NIL) (-634 1378616 1378780 1378980 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1377694 1377980 1378210 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1375791 1376368 1376929 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1371535 1375381 1375628 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1367884 1368653 1369387 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1366637 1366806 1367135 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1356082 1359706 1359782 "MATCAT" 1364770 MATCAT (NIL T T T) -9 NIL 1366216 NIL) (-627 1353363 1354669 1356077 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1351764 1352124 1352508 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1350897 1351094 1351316 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1349648 1349974 1350301 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1348810 1349212 1349388 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1348479 1348543 1348666 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1348127 1348200 1348314 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1347662 1347777 1347919 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1345871 1346639 1346940 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1345365 1345667 1345757 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1339686 1343662 1343703 "LZSTAGG" 1344480 LZSTAGG (NIL T) -9 NIL 1344770 NIL) (-616 1337035 1338347 1339681 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1334422 1335388 1335871 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1334003 1334282 1334356 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1326218 1333864 1333998 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1325581 1325726 1325954 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1323065 1323763 1324475 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1321281 1321604 1322038 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1314661 1320313 1320354 "LSAGG" 1320416 LSAGG (NIL T) -9 NIL 1320494 NIL) (-608 1312355 1313454 1314656 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1309835 1311704 1311953 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1309502 1309593 1309716 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1309173 1309252 1309280 "LOGIC" 1309391 LOGIC (NIL) -9 NIL 1309473 NIL) (-604 1309068 1309097 1309168 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1308387 1308545 1308738 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1307172 1307421 1307772 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1302994 1305793 1305833 "LODOCAT" 1306265 LODOCAT (NIL T) -9 NIL 1306476 NIL) (-600 1302787 1302863 1302989 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1299787 1302664 1302782 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1296885 1299737 1299782 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1293972 1296815 1296880 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1293025 1293200 1293502 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1291157 1292287 1292540 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1287072 1289298 1289339 "LNAGG" 1290198 LNAGG (NIL T) -9 NIL 1290636 NIL) (-593 1286459 1286726 1287067 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1283031 1283972 1284609 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1282293 1282798 1282838 "LMODULE" 1282843 LMODULE (NIL T) -9 NIL 1282869 NIL) (-590 1279762 1282029 1282152 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1279330 1279541 1279582 "LLINSET" 1279643 LLINSET (NIL T) -9 NIL 1279687 NIL) (-588 1279006 1279266 1279325 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1278605 1278685 1278824 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1277056 1277404 1277803 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1276227 1276423 1276651 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1269541 1275483 1275737 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1269118 1269351 1269392 "LINSET" 1269397 LINSET (NIL T) -9 NIL 1269430 NIL) (-582 1268019 1268741 1268908 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1266285 1267040 1267080 "LINEXP" 1267566 LINEXP (NIL T) -9 NIL 1267839 NIL) (-580 1264907 1265894 1266075 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1263734 1264006 1264308 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1262947 1263536 1263646 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1260505 1261227 1261977 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1259140 1259437 1259828 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1257933 1258535 1258575 "LIECAT" 1258715 LIECAT (NIL T) -9 NIL 1258866 NIL) (-574 1257807 1257840 1257928 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1252063 1257497 1257725 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1243703 1251739 1251895 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1240155 1241104 1242039 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1238779 1239687 1239715 "LFCAT" 1239922 LFCAT (NIL) -9 NIL 1240061 NIL) (-569 1237018 1237348 1237693 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1234535 1235200 1235881 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1231547 1232525 1233028 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1231038 1231341 1231432 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1229745 1230069 1230469 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1229011 1229096 1229322 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1224014 1227579 1228115 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1223639 1223689 1223849 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1222410 1223183 1223223 "LALG" 1223284 LALG (NIL T) -9 NIL 1223342 NIL) (-560 1222193 1222270 1222405 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1220046 1221461 1221712 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1219875 1219905 1219946 "KVTFROM" 1220008 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1218691 1219406 1219595 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1218520 1218550 1218591 "KRCFROM" 1218653 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1217622 1217819 1218114 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1217451 1217481 1217522 "KONVERT" 1217584 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1217280 1217310 1217351 "KOERCE" 1217413 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1216850 1216943 1217075 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1214903 1215797 1216169 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1207890 1212582 1212636 "KDAGG" 1213012 KDAGG (NIL T T) -9 NIL 1213252 NIL) (-549 1207548 1207683 1207885 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1200852 1207340 1207486 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1200505 1200785 1200847 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1199475 1199974 1200223 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1198601 1199050 1199255 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1197467 1197958 1198257 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1196749 1197148 1197309 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1196462 1196696 1196744 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1190717 1196152 1196380 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1190135 1190468 1190588 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1186863 1188323 1188375 "IXAGG" 1189272 IXAGG (NIL T T) -9 NIL 1189732 NIL) (-538 1186150 1186481 1186858 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1185219 1185494 1185736 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1183881 1184088 1184381 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1182832 1183054 1183337 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1182507 1182570 1182693 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1181769 1182141 1182315 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1179745 1181045 1181319 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1169293 1175062 1176219 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1168538 1168690 1168926 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1168029 1168332 1168423 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1167322 1167413 1167626 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1166454 1166679 1166919 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1164867 1165248 1165676 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1164652 1164696 1164772 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1163502 1163799 1164094 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1162775 1163126 1163277 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1161978 1162109 1162322 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1160140 1160637 1161181 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1157221 1158489 1159178 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1157046 1157086 1157146 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1153044 1156972 1157041 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1151047 1152983 1153039 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1150421 1150719 1150848 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1149874 1150162 1150294 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1148960 1149580 1149706 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1148375 1148864 1148892 "IOBCON" 1148897 IOBCON (NIL) -9 NIL 1148918 NIL) (-512 1147946 1148010 1148192 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1140005 1142376 1144701 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1137116 1137899 1138763 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1136793 1136890 1137007 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1134235 1136729 1136788 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1132347 1132876 1133443 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1131849 1131963 1132103 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1130233 1130639 1131101 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1128012 1128606 1129217 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1125385 1125995 1126715 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1124789 1124947 1125155 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1124308 1124394 1124582 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1122513 1123034 1123491 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1115603 1117256 1118985 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1114969 1115131 1115304 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1112842 1113306 1113850 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1110968 1111918 1111946 "INTDOM" 1112245 INTDOM (NIL) -9 NIL 1112450 NIL) (-495 1110521 1110723 1110963 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1106328 1108800 1108854 "INTCAT" 1109650 INTCAT (NIL T) -9 NIL 1109966 NIL) (-493 1105893 1106013 1106140 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1104733 1104905 1105211 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1104306 1104402 1104559 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1096789 1104213 1104301 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1096087 1096642 1096707 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096741) (-488 1095384 1095939 1096004 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096038) (-487 1094681 1095236 1095301 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095335) (-486 1093978 1094533 1094598 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094632) (-485 1090441 1093897 1093973 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1084498 1087981 1088009 "INS" 1088939 INS (NIL) -9 NIL 1089598 NIL) (-483 1082560 1083478 1084425 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1081619 1081842 1082117 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1080833 1080974 1081171 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1079823 1079964 1080201 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1078975 1079139 1079399 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1078255 1078370 1078558 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1076994 1077263 1077587 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1076274 1076415 1076598 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1075937 1076009 1076107 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1073015 1074501 1075024 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1072614 1072721 1072835 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1071775 1072415 1072516 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1070625 1070893 1071214 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1069615 1070555 1070620 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1069240 1069320 1069437 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1068156 1068699 1068903 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1064251 1065306 1066249 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1063111 1063432 1063460 "INBCON" 1063971 INBCON (NIL) -9 NIL 1064235 NIL) (-465 1062567 1062831 1063106 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1062061 1062363 1062453 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1061518 1061827 1061932 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1060357 1060498 1060815 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1058780 1059049 1059388 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1053623 1058711 1058775 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1053003 1053337 1053452 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1048095 1052441 1052627 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1047125 1048017 1048090 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1046697 1046774 1046828 "IEVALAB" 1047035 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1046452 1046532 1046692 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1045837 1046064 1046221 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1044830 1045757 1045832 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1043893 1044750 1044825 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1042976 1043622 1043759 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1041440 1042011 1042062 "IDPC" 1042471 IDPC (NIL T T) -9 NIL 1042762 NIL) (-449 1040728 1041362 1041435 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1039898 1040650 1040723 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1039591 1039804 1039864 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1039295 1039335 1039374 "IDEMOPC" 1039379 IDEMOPC (NIL T) -9 NIL 1039516 NIL) (-445 1036366 1037247 1038139 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1029992 1031269 1032308 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1029254 1029384 1029583 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1028427 1028926 1029064 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1026818 1027149 1027540 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1022855 1026774 1026813 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1020113 1020737 1021432 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1018339 1018819 1019352 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1016154 1018245 1018334 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1012296 1016092 1016149 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1005875 1011260 1011728 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1005443 1005506 1005679 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1004935 1005084 1005112 "HYPCAT" 1005319 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1004591 1004744 1004930 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1004204 1004449 1004532 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1004037 1004086 1004127 "HOMOTOP" 1004132 HOMOTOP (NIL T) -9 NIL 1004165 NIL) (-429 1002540 1003352 1003393 "HOAGG" 1003398 HOAGG (NIL T) -9 NIL 1003698 NIL) (-428 1002167 1002314 1002535 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 995367 1001892 1002040 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 994302 994560 994823 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 993237 994167 994297 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 991436 993070 993158 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 990751 991103 991236 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 984249 990684 990746 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 977388 983985 984136 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 976841 976998 977161 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 969341 976758 976836 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 968832 969135 969226 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 966382 968619 968798 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 962068 966265 966377 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 954545 961965 962063 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 946482 953914 954169 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 945506 946015 946043 "GROUP" 946246 GROUP (NIL) -9 NIL 946380 NIL) (-412 945049 945250 945501 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 943721 944060 944447 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 942543 942900 942951 "GRMOD" 943480 GRMOD (NIL T T) -9 NIL 943646 NIL) (-409 942362 942410 942538 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 938485 939696 940696 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 937207 937531 937846 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 936760 936888 937029 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 935833 936332 936383 "GRALG" 936536 GRALG (NIL T T) -9 NIL 936626 NIL) (-404 935552 935653 935828 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 932571 935243 935410 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 931984 932047 932304 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 927838 928734 929259 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 927013 927215 927453 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 922016 922943 923962 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 921764 921821 921910 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 921246 921335 921500 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 920755 920796 921009 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 919556 919839 920143 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 912831 919246 919407 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 902614 907621 908725 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 900666 901769 901797 "GCDDOM" 902052 GCDDOM (NIL) -9 NIL 902209 NIL) (-391 900289 900446 900661 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 891082 893552 895940 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 889217 889542 889960 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 888158 888347 888614 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 887029 887236 887540 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 886492 886634 886782 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 885104 885452 885765 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 883649 883970 884292 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 881275 881631 882036 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 874527 876188 877766 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 874179 874400 874468 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 873924 873966 874007 "FUNCTOR" 874091 FUNCTOR (NIL T) -9 NIL 874150 NIL) (-379 873548 873769 873850 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-378 871645 872328 872788 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-377 870238 870545 870937 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-376 868893 869252 869576 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-375 868196 868320 868507 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-374 867170 867436 867783 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-373 864828 865358 865840 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-372 864411 864471 864640 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-371 862711 863625 863928 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-370 861859 861993 862216 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-369 861030 861191 861418 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-368 857246 859907 859948 "FSAGG" 860318 FSAGG (NIL T) -9 NIL 860579 NIL) (-367 855600 856359 857151 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-366 853556 853852 854396 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-365 852603 852785 853085 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-364 852284 852333 852460 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-363 832440 841941 841982 "FS" 845852 FS (NIL T) -9 NIL 848130 NIL) (-362 824671 828164 832143 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-361 824205 824332 824484 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-360 818728 821886 821926 "FRNAALG" 823246 FRNAALG (NIL T) -9 NIL 823844 NIL) (-359 815469 816720 817978 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-358 815150 815199 815326 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-357 813637 814194 814488 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-356 812923 813016 813303 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 810757 811523 811839 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-354 809866 810309 810350 "FRETRCT" 810355 FRETRCT (NIL T) -9 NIL 810526 NIL) (-353 809239 809517 809861 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-352 805983 807503 807562 "FRAMALG" 808444 FRAMALG (NIL T T) -9 NIL 808736 NIL) (-351 804579 805130 805760 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-350 804272 804335 804442 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-349 797913 804077 804267 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-348 797606 797669 797776 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-347 790015 794586 795893 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-346 783793 787296 787324 "FPS" 788443 FPS (NIL) -9 NIL 788999 NIL) (-345 783350 783483 783647 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-344 780160 782203 782231 "FPC" 782456 FPC (NIL) -9 NIL 782598 NIL) (-343 780006 780058 780155 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-342 778783 779492 779533 "FPATMAB" 779538 FPATMAB (NIL T) -9 NIL 779690 NIL) (-341 777213 777809 778156 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-340 776788 776846 777019 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-339 775291 776186 776360 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-338 773906 774411 774439 "FNCAT" 774896 FNCAT (NIL) -9 NIL 775153 NIL) (-337 773363 773873 773901 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-336 771950 773312 773358 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-335 768538 769896 769937 "FMONCAT" 771154 FMONCAT (NIL T) -9 NIL 771758 NIL) (-334 765497 766577 766630 "FMCAT" 767712 FMCAT (NIL T T) -9 NIL 768182 NIL) (-333 764197 765320 765419 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-332 763245 764045 764192 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-331 761432 761884 762378 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-330 759367 759903 760481 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-329 752753 757704 758318 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-328 751234 752335 752375 "FLINEXP" 752380 FLINEXP (NIL T) -9 NIL 752473 NIL) (-327 750643 750902 751229 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-326 749892 750051 750265 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-325 746775 747854 747906 "FLALG" 749133 FLALG (NIL T T) -9 NIL 749600 NIL) (-324 745946 746107 746334 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-323 739652 743342 743383 "FLAGG" 744622 FLAGG (NIL T) -9 NIL 745270 NIL) (-322 738760 739164 739647 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-321 735321 736585 736644 "FINRALG" 737772 FINRALG (NIL T T) -9 NIL 738280 NIL) (-320 734712 734977 735316 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-319 734010 734306 734334 "FINITE" 734530 FINITE (NIL) -9 NIL 734637 NIL) (-318 733918 733944 734005 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-317 730688 732014 732055 "FINAGG" 733054 FINAGG (NIL T) -9 NIL 733561 NIL) (-316 729607 730130 730683 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-315 721568 724159 724199 "FINAALG" 727851 FINAALG (NIL T) -9 NIL 729289 NIL) (-314 717835 719080 720203 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-313 716387 716806 716860 "FILECAT" 717544 FILECAT (NIL T T) -9 NIL 717760 NIL) (-312 715738 716212 716315 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-311 712986 714864 714892 "FIELD" 714932 FIELD (NIL) -9 NIL 715012 NIL) (-310 712011 712472 712981 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-309 710015 710961 711307 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-308 709258 709439 709658 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-307 704528 709196 709253 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-306 704190 704257 704392 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-305 703730 703772 703981 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-304 700410 701287 702064 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-303 695694 700342 700405 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-302 690373 695183 695373 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-301 684854 689654 689912 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-300 679061 684305 684516 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-299 678084 678294 678609 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-298 673524 676229 676257 "FFIELDC" 676876 FFIELDC (NIL) -9 NIL 677251 NIL) (-297 672593 673033 673519 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-296 672208 672266 672390 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-295 670352 670875 671392 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-294 665446 670151 670252 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-293 660546 665235 665342 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-292 655212 660337 660445 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-291 654666 654715 654950 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-290 633241 644275 644361 "FFCAT" 649511 FFCAT (NIL T T T) -9 NIL 650947 NIL) (-289 629481 630707 632013 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-288 624324 629412 629476 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-287 623347 623816 623857 "FEVALAB" 623862 FEVALAB (NIL T) -9 NIL 624101 NIL) (-286 622752 623004 623342 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-285 619579 620490 620605 "FDIVCAT" 622172 FDIVCAT (NIL T T T T) -9 NIL 622608 NIL) (-284 619373 619405 619574 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-283 618680 618773 619050 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-282 617166 618164 618367 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-281 616259 616643 616845 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-280 615381 615870 616010 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-279 606968 611611 611651 "FAXF" 613452 FAXF (NIL T) -9 NIL 614142 NIL) (-278 604884 605688 606503 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-277 600033 604406 604580 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-276 594472 596896 596948 "FAMR" 597959 FAMR (NIL T T) -9 NIL 598418 NIL) (-275 593671 594036 594467 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-274 592692 593613 593666 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-273 590286 591165 591218 "FAMONC" 592159 FAMONC (NIL T T) -9 NIL 592544 NIL) (-272 588842 590144 590281 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-271 586922 587283 587685 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-270 586199 586396 586618 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-269 578059 585646 585845 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-268 576078 576648 577234 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-267 572980 573622 574342 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-266 568137 568844 569649 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-265 567826 567889 567998 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-264 552619 566875 567301 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-263 543146 551939 552227 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-262 542640 542942 543032 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-261 542416 542606 542635 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-260 542105 542173 542286 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-259 541622 541764 541805 "EVALAB" 541975 EVALAB (NIL T) -9 NIL 542079 NIL) (-258 541250 541396 541617 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-257 538293 539888 539916 "EUCDOM" 540470 EUCDOM (NIL) -9 NIL 540819 NIL) (-256 537220 537713 538288 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-255 536945 537001 537101 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-254 536633 536697 536806 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-253 530404 532304 532332 "ES" 535074 ES (NIL) -9 NIL 536458 NIL) (-252 526919 528451 530243 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-251 526267 526420 526596 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-250 518773 526197 526262 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-249 518462 518525 518634 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-248 512199 515324 516728 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-247 508502 509598 510691 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-246 507331 507681 507986 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-245 506216 506947 506975 "ENTIRER" 506980 ENTIRER (NIL) -9 NIL 507024 NIL) (-244 506105 506139 506211 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-243 502746 504543 504892 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-242 501847 502062 502114 "ELTAGG" 502480 ELTAGG (NIL T T) -9 NIL 502694 NIL) (-241 501629 501703 501842 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-240 501375 501410 501464 "ELTAB" 501548 ELTAB (NIL T T) -9 NIL 501600 NIL) (-239 500626 500796 500995 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-238 500350 500424 500452 "ELEMFUN" 500557 ELEMFUN (NIL) -9 NIL NIL NIL) (-237 500250 500277 500345 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-236 495567 498257 498298 "ELAGG" 499231 ELAGG (NIL T) -9 NIL 499692 NIL) (-235 494365 494903 495562 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-234 493783 493950 494106 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-233 492696 493015 493294 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-232 486089 488087 488914 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-231 480068 482064 482874 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-230 477882 478288 478759 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-229 468882 470795 472336 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-228 467995 468496 468645 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-227 466693 467367 467407 "DVARCAT" 467690 DVARCAT (NIL T) -9 NIL 467830 NIL) (-226 466112 466376 466688 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-225 458179 465980 466107 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-224 456517 457308 457349 "DSEXT" 457712 DSEXT (NIL T) -9 NIL 458006 NIL) (-223 455322 455846 456512 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-222 455046 455111 455209 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-221 451197 452413 453544 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-220 446843 448198 449262 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-219 445518 445879 446265 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-218 445204 445263 445381 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-217 444179 444477 444767 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-216 443764 443839 443989 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-215 436177 438289 440404 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-214 431694 432713 433792 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-213 428242 430303 430344 "DQAGG" 430973 DQAGG (NIL T) -9 NIL 431246 NIL) (-212 414766 422407 422489 "DPOLCAT" 424326 DPOLCAT (NIL T T T T) -9 NIL 424869 NIL) (-211 411174 412822 414761 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-210 404223 411072 411169 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-209 397181 404052 404218 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-208 396774 397034 397123 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-207 396188 396636 396716 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-206 395474 395799 395950 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-205 388613 395210 395361 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-204 386362 387679 387719 "DMEXT" 387724 DMEXT (NIL T) -9 NIL 387899 NIL) (-203 386018 386080 386224 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-202 379610 385503 385693 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-201 376818 378421 378462 "DLAGG" 379003 DLAGG (NIL T) -9 NIL 379235 NIL) (-200 375169 376040 376068 "DIVRING" 376160 DIVRING (NIL) -9 NIL 376243 NIL) (-199 374620 374864 375164 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-198 373048 373465 373871 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-197 372085 372306 372571 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-196 365603 372017 372080 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-195 353923 360345 360398 "DIRPCAT" 360654 DIRPCAT (NIL NIL T) -9 NIL 361529 NIL) (-194 351929 352699 353586 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-193 351376 351542 351728 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-192 348699 350235 350276 "DIOPS" 350696 DIOPS (NIL T) -9 NIL 350924 NIL) (-191 348359 348503 348694 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-190 347366 348112 348140 "DIOID" 348145 DIOID (NIL) -9 NIL 348167 NIL) (-189 346194 347023 347051 "DIFRING" 347056 DIFRING (NIL) -9 NIL 347077 NIL) (-188 345830 345928 345956 "DIFFSPC" 346075 DIFFSPC (NIL) -9 NIL 346150 NIL) (-187 345571 345673 345825 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-186 344474 345099 345139 "DIFFMOD" 345144 DIFFMOD (NIL T) -9 NIL 345241 NIL) (-185 344158 344215 344256 "DIFFDOM" 344377 DIFFDOM (NIL T) -9 NIL 344445 NIL) (-184 344039 344069 344153 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-183 341712 343233 343273 "DIFEXT" 343278 DIFEXT (NIL T) -9 NIL 343430 NIL) (-182 339640 341176 341217 "DIAGG" 341222 DIAGG (NIL T) -9 NIL 341242 NIL) (-181 339196 339386 339635 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-180 334380 338386 338663 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-179 330838 331891 332901 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-178 325388 329992 330319 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-177 323954 324246 324621 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-176 321236 322488 322856 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-175 318961 321067 321156 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-174 318344 318489 318671 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-173 315662 316386 317186 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-172 313771 314229 314791 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-171 313154 313487 313601 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-170 306354 312879 313027 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-169 304274 304784 305288 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-168 303913 303962 304113 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-167 303172 303734 303825 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-166 301196 301638 301998 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-165 300488 300777 300923 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-164 299939 300085 300237 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-163 297301 298094 298821 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-162 296740 296886 297057 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-161 294812 295123 295490 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-160 294369 294624 294725 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-159 293570 293953 293981 "CTORCAT" 294162 CTORCAT (NIL) -9 NIL 294274 NIL) (-158 293273 293407 293565 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-157 292766 293023 293131 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-156 292182 292613 292686 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-155 291641 291758 291911 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-154 288035 288791 289546 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-153 287526 287829 287920 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-152 286745 286954 287182 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-151 286249 286354 286558 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-150 286002 286036 286142 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-149 282941 283703 284421 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-148 282460 282602 282741 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-147 278353 280923 281415 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-146 278227 278254 278282 "CONDUIT" 278319 CONDUIT (NIL) -9 NIL NIL NIL) (-145 277106 277837 277865 "COMRING" 277870 COMRING (NIL) -9 NIL 277920 NIL) (-144 276271 276638 276816 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-143 275967 276008 276136 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-142 275660 275723 275830 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-141 264502 275610 275655 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-140 263963 264102 264262 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-139 263716 263757 263855 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-138 245129 257379 257419 "COMPCAT" 258420 COMPCAT (NIL T) -9 NIL 259762 NIL) (-137 237667 241180 244773 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-136 237343 237383 237422 "COMOPC" 237427 COMOPC (NIL T) -9 NIL 237592 NIL) (-135 237030 237148 237261 "COMOP" NIL COMOP (NIL T) -8 NIL NIL NIL) (-134 236789 236823 236925 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-133 236619 236658 236716 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-132 236200 236479 236553 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-131 235777 236018 236105 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-130 234972 235220 235248 "COMBOPC" 235586 COMBOPC (NIL) -9 NIL 235761 NIL) (-129 234036 234288 234530 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-128 230968 231652 232275 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-127 229848 230299 230534 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-126 229339 229642 229733 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-125 229026 229079 229204 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-124 228496 228806 228904 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-123 225016 226086 227166 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-122 223311 224296 224534 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-121 220915 222076 222117 "CLAGG" 222586 CLAGG (NIL T) -9 NIL 222913 NIL) (-120 220585 220717 220910 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-119 220214 220305 220445 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-118 218151 218658 219206 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-117 217112 217843 217871 "CHARZ" 217876 CHARZ (NIL) -9 NIL 217890 NIL) (-116 216906 216952 217030 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-115 215745 216508 216536 "CHARNZ" 216597 CHARNZ (NIL) -9 NIL 216645 NIL) (-114 213223 214320 214843 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-113 212931 213010 213038 "CFCAT" 213149 CFCAT (NIL) -9 NIL NIL NIL) (-112 212274 212403 212585 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-111 208542 211687 211967 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-110 207920 208107 208284 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-109 207448 207867 207915 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-108 206921 207230 207327 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-107 206412 206715 206806 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-106 205661 205821 206042 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-105 201761 203018 203726 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-104 200127 201158 201409 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-103 199708 199987 200061 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-102 199142 199395 199423 "CACHSET" 199555 CACHSET (NIL) -9 NIL 199633 NIL) (-101 198494 198909 198937 "CABMON" 198987 CABMON (NIL) -9 NIL 199043 NIL) (-100 198024 198288 198398 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-99 193641 197699 197856 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-98 192617 193321 193454 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193613) (-97 190087 192388 192492 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-96 187524 189841 189949 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-95 184702 186908 186947 "BTCAT" 187014 BTCAT (NIL T) -9 NIL 187095 NIL) (-94 184453 184551 184697 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-93 179770 183626 183652 "BTAGG" 183763 BTAGG (NIL) -9 NIL 183871 NIL) (-92 179401 179562 179765 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-91 176480 178893 179083 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-90 175750 175902 176080 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-89 172826 174447 174486 "BRAGG" 175115 BRAGG (NIL T) -9 NIL 175375 NIL) (-88 171901 172332 172821 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-87 164435 171406 171587 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-86 162427 164387 164430 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-85 162160 162196 162307 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-84 160399 160832 161280 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-83 156365 157781 158671 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-82 155241 156132 156254 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-81 154827 154984 155010 "BOOLE" 155118 BOOLE (NIL) -9 NIL 155199 NIL) (-80 154620 154701 154822 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-79 153758 154285 154335 "BMODULE" 154340 BMODULE (NIL T T) -9 NIL 154404 NIL) (-78 149643 153615 153684 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-77 149456 149496 149535 "BINOPC" 149540 BINOPC (NIL T) -9 NIL 149585 NIL) (-76 148998 149271 149373 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-75 148519 148663 148801 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-74 141725 148249 148394 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-73 139941 140914 140953 "BGAGG" 141209 BGAGG (NIL T) -9 NIL 141349 NIL) (-72 139810 139848 139936 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-71 138661 138862 139147 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-70 135316 137841 138146 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-69 134901 134994 135020 "BASTYPE" 135191 BASTYPE (NIL) -9 NIL 135287 NIL) (-68 134671 134767 134896 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-67 134186 134274 134424 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-66 133085 133760 133945 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-65 132833 132838 132864 "ATTREG" 132869 ATTREG (NIL) -9 NIL NIL NIL) (-64 132438 132710 132775 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-63 131938 132087 132113 "ATRIG" 132314 ATRIG (NIL) -9 NIL NIL NIL) (-62 131793 131846 131933 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-61 131363 131594 131620 "ASTCAT" 131625 ASTCAT (NIL) -9 NIL 131655 NIL) (-60 131162 131239 131358 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-59 129326 130995 131083 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-58 128133 128446 128811 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-57 125926 128063 128128 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-56 125117 125308 125529 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-55 120985 124848 124962 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-54 115535 117597 117672 "ARR2CAT" 119940 ARR2CAT (NIL T T T) -9 NIL 120591 NIL) (-53 114496 114978 115530 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-52 113864 114235 114357 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-51 112796 112964 113260 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-50 112497 112551 112669 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-49 111880 112026 112182 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-48 111285 111575 111695 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-47 108980 110141 110443 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-46 108505 108765 108861 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-45 102200 107567 108009 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-44 97835 99498 99548 "AMR" 100189 AMR (NIL T T) -9 NIL 100764 NIL) (-43 97189 97469 97830 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-42 79174 97123 97184 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-41 75577 78850 79019 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-40 72587 73247 73854 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-39 71966 72079 72263 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-38 68378 69003 69595 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-37 57867 68071 68221 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-36 57184 57338 57516 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-35 55897 56692 56730 "ALGEBRA" 56735 ALGEBRA (NIL T) -9 NIL 56775 NIL) (-34 55683 55760 55892 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-33 33898 52685 52737 "ALAGG" 52872 ALAGG (NIL T T) -9 NIL 53044 NIL) (-32 33398 33547 33573 "AHYP" 33774 AHYP (NIL) -9 NIL NIL NIL) (-31 32880 33012 33038 "AGG" 33243 AGG (NIL) -9 NIL 33369 NIL) (-30 32723 32781 32875 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-29 30862 31322 31722 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-28 30357 30660 30749 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-27 29727 30022 30178 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-26 17285 26564 26602 "ACFS" 27209 ACFS (NIL T) -9 NIL 27448 NIL) (-25 15908 16518 17280 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-24 11460 13839 13865 "ACF" 14744 ACF (NIL) -9 NIL 15156 NIL) (-23 10556 10962 11455 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-22 10058 10298 10324 "ABELSG" 10416 ABELSG (NIL) -9 NIL 10481 NIL) (-21 9956 9987 10053 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-20 9111 9485 9511 "ABELMON" 9736 ABELMON (NIL) -9 NIL 9869 NIL) (-19 8793 8933 9106 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-18 8005 8488 8514 "ABELGRP" 8586 ABELGRP (NIL) -9 NIL 8661 NIL) (-17 7558 7754 8000 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-16 3036 6767 6806 "A1AGG" 6811 A1AGG (NIL T) -9 NIL 6845 NIL) (-15 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
+(((|ElementaryFunctionCategory&| |#1|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| |#1|))) (|ElementaryFunctionCategory|)) (T |ElementaryFunctionCategory&|))
+NIL
+((|log| (($ $) 6 T ELT)) (|exp| (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
+(((|ElementaryFunctionCategory|) (|Category|)) (T |ElementaryFunctionCategory|))
+((** (*1 *1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|))) (|exp| (*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|))) (|log| (*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |log| ($ $)) (SIGNATURE |exp| ($ $)) (SIGNATURE ** ($ $ $))))
+((|sncndn| (((|List| #1=(|Stream| |#1|)) #1# |#1|) 35 T ELT)) (|sn| (#2=(|#2| |#2| |#1|) 39 T ELT)) (|dn| (#2# 41 T ELT)) (|cn| (#2# 40 T ELT)))
+(((|EllipticFunctionsUnivariateTaylorSeries| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sn| #1=(|#2| |#2| |#1|)) (SIGNATURE |cn| #1#) (SIGNATURE |dn| #1#) (SIGNATURE |sncndn| ((|List| #2=(|Stream| |#1|)) #2# |#1|))) (|Field|) (|UnivariateTaylorSeriesCategory| |#1|)) (T |EllipticFunctionsUnivariateTaylorSeries|))
+((|sncndn| (*1 *2 *3 *4) (AND (|ofCategory| *4 #1=(|Field|)) (|isDomain| *2 (|List| #2=(|Stream| *4))) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *4 *5)) (|isDomain| *3 #2#) (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4)))) (|dn| #3=(*1 *2 *2 *3) #4=(AND (|ofCategory| *3 #1#) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|cn| #3# #4#) (|sn| #3# #4#))
+((|elt| ((|#2| $ |#1|) 6 T ELT)))
+(((|Eltable| |#1| |#2|) (|Category|) (|Type|) (|Type|)) (T |Eltable|))
+((|elt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Eltable| *3 *2)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |elt| (|t#2| $ |t#1|))))
+(((|Join|) . T) ((|Type|) . T))
+((|qsetelt!| ((|#3| $ |#2| |#3|) 12 T ELT)) (|qelt| ((|#3| $ |#2|) 10 T ELT)))
+(((|EltableAggregate&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |qsetelt!| (|#3| |#1| |#2| |#3|)) (SIGNATURE |qelt| (|#3| |#1| |#2|))) (|EltableAggregate| |#2| |#3|) (|BasicType|) (|Type|)) (T |EltableAggregate&|))
+NIL
+((|setelt| ((|#2| $ |#1| |#2|) 10 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qsetelt!| ((|#2| $ |#1| |#2|) 9 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qelt| ((|#2| $ |#1|) 11 T ELT)) (|elt| ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
+(((|EltableAggregate| |#1| |#2|) (|Category|) (|BasicType|) (|Type|)) (T |EltableAggregate|))
+((|elt| (*1 *2 *1 *3 *2) (AND (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))) (|qelt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))) (|qsetelt!| (*1 *2 *1 *3 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|Eltable| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |elt| (|t#2| $ |t#1| |t#2|)) (SIGNATURE |qelt| (|t#2| $ |t#1|)) (IF (|has| $ (|ShallowlyMutableAggregate| |t#2|)) (PROGN (SIGNATURE |setelt| (|t#2| $ |t#1| |t#2|)) (SIGNATURE |qsetelt!| (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((|Eltable| |#1| |#2|) . T) ((|Join|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) 37 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 44 T ELT)) (|unitCanonical| (#4=($ $) 41 T ELT)) (|unit?| #5=(#3# NIL T ELT)) (|subtractIfCan| #6=((#7=(|Union| $ #8="failed") $ $) NIL T ELT)) (|sizeLess?| #1#) (|sample| (#9=($) NIL T CONST)) (|rem| (#10=($ $ $) 35 T ELT)) (|reduce| (($ |#2| |#3|) 18 T ELT)) (|recip| ((#7# $) NIL T ELT)) (|quo| #11=(#10# NIL T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #12=(|List| $)) #13=(|:| |generator| $)) #12#) NIL T ELT)) (|opposite?| #1#) (|one?| #5#) (|multiEuclidean| (((|Union| #12# #8#) #12# $) NIL T ELT)) (|modulus| ((|#3| $) NIL T ELT)) (|lcm| #11# #14=(($ #12#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#4# 19 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15=(|SparseUnivariatePolynomial| $) #15# #15#) NIL T ELT)) (|gcd| #11# #14#) (|extendedEuclidean| (((|Record| #16=(|:| |coef1| $) #17=(|:| |coef2| $) #13#) $ $) NIL T ELT) (((|Union| (|Record| #16# #17#) #8#) $ $ $) NIL T ELT)) (|exquo| #6#) (|expressIdealMember| (((|Maybe| #12#) #12# $) NIL T ELT)) (|exQuo| #6#) (|euclideanSize| ((#18=(|NonNegativeInteger|) $) 36 T ELT)) (|elt| ((|#2| $ |#2|) 46 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 23 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #19=(|Integer|)) NIL T ELT) #20=(#4# NIL T ELT) ((|#2| $) NIL T ELT)) (|characteristic| ((#18#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#9# 31 T CONST)) (|One| (#9# 39 T CONST)) (= #1#) (- #20# #11#) (+ #11#) (** (($ $ #21=(|PositiveInteger|)) NIL T ELT) (($ $ #18#) NIL T ELT)) (* (($ #21# $) NIL T ELT) (($ #18# $) NIL T ELT) (($ #19# $) NIL T ELT) (#10# 40 T ELT)))
+(((|EuclideanModularRing| |#1| |#2| |#3| |#4| |#5| |#6|) (|Join| (|EuclideanDomain|) (|Eltable| |#2| |#2|) (CATEGORY |domain| (SIGNATURE |modulus| (|#3| $)) (SIGNATURE |coerce| (|#2| $)) (SIGNATURE |reduce| ($ |#2| |#3|)) (SIGNATURE |exQuo| (#1=(|Union| $ #2="failed") $ $)) (SIGNATURE |recip| (#1# $)) (SIGNATURE |inv| ($ $)))) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#1|) (|AbelianMonoid|) (|Mapping| |#2| |#2| |#3|) (|Mapping| (|Union| |#3| #2#) |#3| |#3|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| |#3|)) (T |EuclideanModularRing|))
+((|recip| #1=(*1 *1 *1) #2=(|partial| AND #3=(|ofCategory| *2 #4=(|CommutativeRing|)) #5=(|isDomain| *1 (|EuclideanModularRing| *2 *3 *4 *5 *6 *7)) #6=(|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) #7=(|ofCategory| *4 #8=(|AbelianMonoid|)) #9=(|ofType| *5 (|Mapping| *3 *3 *4)) #10=(|ofType| *6 (|Mapping| #11=(|Union| *4 #12="failed") *4 *4)) #13=(|ofType| *7 (|Mapping| #14=(|Union| *3 #12#) *3 *3 *4)))) (|modulus| #15=(*1 *2 *1) (AND #16=(|ofCategory| *3 #4#) (|ofCategory| *2 #8#) (|isDomain| *1 (|EuclideanModularRing| *3 *4 *2 *5 *6 *7)) (|ofCategory| *4 #17=(|UnivariatePolynomialCategory| *3)) (|ofType| *5 (|Mapping| *4 *4 *2)) (|ofType| *6 (|Mapping| #18=(|Union| *2 #12#) *2 *2)) (|ofType| *7 (|Mapping| #11# *4 *4 *2)))) (|coerce| #15# (AND (|ofCategory| *2 #17#) (|isDomain| *1 (|EuclideanModularRing| *3 *2 *4 *5 *6 *7)) #16# #7# (|ofType| *5 (|Mapping| *2 *2 *4)) #10# (|ofType| *7 (|Mapping| #18# *2 *2 *4)))) (|reduce| (*1 *1 *2 *3) (AND (|ofCategory| *4 #4#) (|isDomain| *1 (|EuclideanModularRing| *4 *2 *3 *5 *6 *7)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *3 #8#) (|ofType| *5 (|Mapping| *2 *2 *3)) (|ofType| *6 (|Mapping| #14# *3 *3)) (|ofType| *7 (|Mapping| #18# *2 *2 *3)))) (|exQuo| (*1 *1 *1 *1) #2#) (|inv| #1# (AND #3# #5# #6# #7# #9# #10# #13#)))
+((|annihilate?| (((|Boolean|) $ $) 10 T ELT)))
+(((|EntireRing&| |#1|) (CATEGORY |package| (SIGNATURE |annihilate?| ((|Boolean|) |#1| |#1|))) (|EntireRing|)) (T |EntireRing&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|EntireRing|) (|Category|)) (T |EntireRing|))
+NIL
+(|Join| (|Ring|) (|BiModule| $ $) (CATEGORY |package| (ATTRIBUTE |noZeroDivisors|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|scopes| (((|List| (|Scope|)) $) 10 T ELT)) (|putProperty| (($ #1=(|Identifier|) #1# #2=(|SExpression|) $) 19 T ELT)) (|putProperties| (($ #1# #3=(|List| (|Property|)) $) 23 T ELT)) (|interactiveEnv| (#4=($) 25 T ELT)) (|getProperty| (((|Maybe| #2#) #1# #1# $) 18 T ELT)) (|getProperties| ((#3# #1# $) 22 T ELT)) (|empty| (#4# 7 T ELT)) (|currentEnv| (#4# 24 T ELT)) (|coerce| (((|OutputForm|) $) 29 T ELT)) (|categoryFrame| (#4# 26 T ELT)))
+(((|Environment|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |empty| #1=($)) (SIGNATURE |scopes| ((|List| (|Scope|)) $)) (SIGNATURE |getProperty| ((|Maybe| #2=(|SExpression|)) #3=(|Identifier|) #3# $)) (SIGNATURE |putProperty| ($ #3# #3# #2# $)) (SIGNATURE |getProperties| (#4=(|List| (|Property|)) #3# $)) (SIGNATURE |putProperties| ($ #3# #4# $)) (SIGNATURE |currentEnv| #1#) (SIGNATURE |interactiveEnv| #1#) (SIGNATURE |categoryFrame| #1#)))) (T |Environment|))
+((|empty| #1=(*1 *1) #2=(|isDomain| *1 (|Environment|))) (|scopes| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Scope|))) #2#)) (|getProperty| (*1 *2 *3 *3 *1) (AND #3=(|isDomain| *3 #4=(|Identifier|)) (|isDomain| *2 (|Maybe| #5=(|SExpression|))) #2#)) (|putProperty| (*1 *1 *2 *2 *3 *1) (AND #6=(|isDomain| *2 #4#) (|isDomain| *3 #5#) #2#)) (|getProperties| (*1 *2 *3 *1) (AND #3# (|isDomain| *2 #7=(|List| (|Property|))) #2#)) (|putProperties| (*1 *1 *2 *3 *1) (AND #6# (|isDomain| *3 #7#) #2#)) (|currentEnv| #1# #2#) (|interactiveEnv| #1# #2#) (|categoryFrame| #1# #2#))
+((|generalizedEigenvectors| (((|List| (|Record| #1=(|:| |eigval| #2=(|Union| #3=(|Fraction| #4=(|Polynomial| |#1|)) (|SuchThat| #5=(|Symbol|) #4#))) (|:| |geneigvec| #6=(|List| #7=(|Matrix| #3#))))) #7#) 103 T ELT)) (|generalizedEigenvector| ((#6# #8=(|Record| #1# (|:| |eigmult| #9=(|NonNegativeInteger|)) (|:| |eigvec| #6#)) #7#) 98 T ELT) ((#6# #2# #7# #9# #9#) 42 T ELT)) (|eigenvectors| (((|List| #8#) #7#) 100 T ELT)) (|eigenvector| ((#6# #2# #7#) 76 T ELT)) (|eigenvalues| (((|List| #2#) #7#) 75 T ELT)) (|characteristicPolynomial| ((#4# #7#) 56 T ELT) ((#4# #7# #5#) 57 T ELT)))
+(((|EigenPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (#1=(|Polynomial| |#1|) #2=(|Matrix| #3=(|Fraction| #1#)) #4=(|Symbol|))) (SIGNATURE |characteristicPolynomial| (#1# #2#)) (SIGNATURE |eigenvalues| ((|List| #5=(|Union| #3# (|SuchThat| #4# #1#))) #2#)) (SIGNATURE |eigenvector| (#6=(|List| #2#) #5# #2#)) (SIGNATURE |generalizedEigenvector| (#6# #5# #2# #7=(|NonNegativeInteger|) #7#)) (SIGNATURE |generalizedEigenvector| (#6# #8=(|Record| #9=(|:| |eigval| #5#) (|:| |eigmult| #7#) (|:| |eigvec| #6#)) #2#)) (SIGNATURE |generalizedEigenvectors| ((|List| (|Record| #9# (|:| |geneigvec| #6#))) #2#)) (SIGNATURE |eigenvectors| ((|List| #8#) #2#))) (|GcdDomain|)) (T |EigenPackage|))
+((|eigenvectors| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|GcdDomain|)) (|isDomain| *2 (|List| (|Record| #4=(|:| |eigval| #5=(|Union| #6=(|Fraction| #7=(|Polynomial| *4)) (|SuchThat| #8=(|Symbol|) #7#))) #9=(|:| |eigmult| #10=(|NonNegativeInteger|)) (|:| |eigvec| #11=(|List| #12=(|Matrix| #6#)))))) #13=(|isDomain| *1 (|EigenPackage| *4)) #14=(|isDomain| *3 #12#))) (|generalizedEigenvectors| #1# (AND #2# (|isDomain| *2 (|List| (|Record| #4# (|:| |geneigvec| #11#)))) #13# #14#)) (|generalizedEigenvector| #15=(*1 *2 *3 *4) (AND (|isDomain| *3 (|Record| (|:| |eigval| #16=(|Union| #17=(|Fraction| #18=(|Polynomial| *5)) (|SuchThat| #8# #18#))) #9# (|:| |eigvec| (|List| *4)))) #19=(|ofCategory| *5 #3#) #20=(|isDomain| *2 (|List| #21=(|Matrix| #17#))) #22=(|isDomain| *1 (|EigenPackage| *5)) #23=(|isDomain| *4 #21#))) (|generalizedEigenvector| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *3 (|Union| #24=(|Fraction| #25=(|Polynomial| *6)) (|SuchThat| #8# #25#))) (|isDomain| *5 #10#) (|ofCategory| *6 #3#) (|isDomain| *2 (|List| #26=(|Matrix| #24#))) (|isDomain| *1 (|EigenPackage| *6)) (|isDomain| *4 #26#))) (|eigenvector| #15# (AND (|isDomain| *3 #16#) #19# #20# #22# #23#)) (|eigenvalues| #1# (AND #14# #2# (|isDomain| *2 (|List| #5#)) #13#)) (|characteristicPolynomial| #1# (AND #14# (|isDomain| *2 #7#) #13# #2#)) (|characteristicPolynomial| #15# (AND (|isDomain| *3 #21#) (|isDomain| *4 #8#) (|isDomain| *2 #18#) #22# #19#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|SetCategory|)) ELT)) (|zero?| (#5=(#3# $) NIL #6=(|has| |#1| (|AbelianGroup|)) ELT)) (|swap| (#7=($ $) 12 T ELT)) (|subtractIfCan| ((#8=(|Union| $ "failed") $ $) NIL #6# ELT)) (|subst| (#9=($ $ $) 95 (|has| |#1| (|ExpressionSpace|)) ELT)) (|sample| (#10=($) NIL (OR #6# #11=(|has| |#1| (|Monoid|))) CONST)) (|rightZero| (#7# 51 #6# ELT)) (|rightOne| (#12=(#8# $) 62 #11# ELT)) (|rhs| (#13=(|#1| $) 11 T ELT)) (|recip| (#12# 60 #11# ELT)) (|opposite?| (#2# NIL #6# ELT)) (|one?| (#5# NIL #11# ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 14 T ELT)) (|lhs| (#13# 10 T ELT)) (|leftZero| (#7# 50 #6# ELT)) (|leftOne| (#12# 61 #11# ELT)) (|latex| (((|String|) $) NIL #4# ELT)) (|inv| (#7# 64 #14=(OR #15=(|has| |#1| (|Field|)) #16=(|has| |#1| (|Group|))) ELT)) (|hash| (((|SingleInteger|) $) NIL #4# ELT)) (|factorAndSplit| ((#17=(|List| $) $) 85 (|has| |#1| (|IntegralDomain|)) ELT)) (|eval| (#9# 24 #18=(AND (|has| |#1| (|Evalable| |#1|)) #4#) ELT) (($ $ #17#) 28 #18# ELT) (($ $ #19=(|Symbol|) |#1|) 17 #20=(|has| |#1| (|InnerEvalable| #19# |#1|)) ELT) (($ $ #21=(|List| #19#) (|List| |#1|)) 21 #20# ELT)) (|equation| (#22=($ |#1| |#1|) 9 T ELT)) (|dimension| (((|CardinalNumber|)) 90 #15# ELT)) (|differentiate| (#23=($ $ #19#) 87 #24=(|has| |#1| (|PartialDifferentialRing| #19#)) ELT) #25=(($ $ #21#) NIL #24# ELT) #26=(($ $ #19# #27=(|NonNegativeInteger|)) NIL #24# ELT) #28=(($ $ #21# (|List| #27#)) NIL #24# ELT)) (|conjugate| #29=(#9# NIL #16# ELT)) (|commutator| #29#) (|coerce| (($ #30=(|Integer|)) NIL #31=(|has| |#1| (|Ring|)) ELT) (#5# 37 #4# ELT) (((|OutputForm|) $) 36 #4# ELT)) (|characteristic| ((#27#) 67 #31# CONST)) (|before?| #1#) (|annihilate?| (#2# NIL #31# ELT)) (|Zero| (#10# 47 #6# CONST)) (|One| (#10# 57 #11# CONST)) (D (#23# NIL #24# ELT) #25# #26# #28#) (= (#22# 8 T ELT) (#2# 32 #4# ELT)) (/ (#32=($ $ |#1|) NIL #15# ELT) (#9# 92 #14# ELT)) (- (#33=($ |#1| $) 45 #6# ELT) (#32# 46 #6# ELT) (#9# 44 #6# ELT) (#7# 43 #6# ELT)) (+ (#33# 40 #34=(|has| |#1| (|AbelianSemiGroup|)) ELT) (#32# 41 #34# ELT) (#9# 39 #34# ELT)) (** (($ $ #30#) NIL #16# ELT) (($ $ #27#) NIL #11# ELT) (($ $ #35=(|PositiveInteger|)) NIL #36=(|has| |#1| (|SemiGroup|)) ELT)) (* (#32# 55 #36# ELT) (#33# 54 #36# ELT) (#9# 53 #36# ELT) (($ #30# $) 70 #6# ELT) (($ #27# $) NIL #6# ELT) (($ #35# $) NIL #34# ELT)))
+(((|Equation| |#1|) (|Join| (|Functorial| |#1|) (CATEGORY |domain| (SIGNATURE = #1=($ |#1| |#1|)) (SIGNATURE |equation| #1#) (SIGNATURE |swap| #2=($ $)) (SIGNATURE |lhs| #3=(|#1| $)) (SIGNATURE |rhs| #3#) (IF (|has| |#1| #4=(|InnerEvalable| #5=(|Symbol|) |#1|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| #6=(|SetCategory|)) (PROGN (ATTRIBUTE #6#) (ATTRIBUTE (|CoercibleTo| (|Boolean|))) (IF (|has| |#1| (|Evalable| |#1|)) (PROGN (SIGNATURE |eval| #7=($ $ $)) (SIGNATURE |eval| ($ $ #8=(|List| $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| #9=(|AbelianSemiGroup|)) (PROGN (ATTRIBUTE #9#) (SIGNATURE + #10=($ |#1| $)) (SIGNATURE + #11=($ $ |#1|))) |%noBranch|) (IF (|has| |#1| #12=(|AbelianGroup|)) (PROGN (ATTRIBUTE #12#) (SIGNATURE |leftZero| #2#) (SIGNATURE |rightZero| #2#) (SIGNATURE - #10#) (SIGNATURE - #11#)) |%noBranch|) (IF (|has| |#1| #13=(|SemiGroup|)) (PROGN (ATTRIBUTE #13#) (SIGNATURE * #10#) (SIGNATURE * #11#)) |%noBranch|) (IF (|has| |#1| #14=(|Monoid|)) (PROGN (ATTRIBUTE #14#) #15=(SIGNATURE |leftOne| #16=((|Union| $ "failed") $)) #17=(SIGNATURE |rightOne| #16#)) |%noBranch|) (IF (|has| |#1| #18=(|Group|)) (PROGN (ATTRIBUTE #18#) #15# #17#) |%noBranch|) (IF (|has| |#1| #19=(|Ring|)) (PROGN (ATTRIBUTE #19#) (ATTRIBUTE (|BiModule| |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |%noBranch|) (IF (|has| |#1| (|IntegralDomain|)) (SIGNATURE |factorAndSplit| (#8# $)) |%noBranch|) (IF (|has| |#1| #20=(|PartialDifferentialRing| #5#)) (ATTRIBUTE #20#) |%noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (ATTRIBUTE (|VectorSpace| |#1|)) (SIGNATURE / #7#) (SIGNATURE |inv| #2#)) |%noBranch|) (IF (|has| |#1| (|ExpressionSpace|)) (SIGNATURE |subst| #7#) |%noBranch|))) (|Type|)) (T |Equation|))
+((= #1=(*1 *1 *2 *2) #2=(AND #3=(|isDomain| *1 (|Equation| *2)) #4=(|ofCategory| *2 #5=(|Type|)))) (|equation| #1# #2#) (|swap| #6=(*1 *1 *1) #2#) (|lhs| #7=(*1 *2 *1) #2#) (|rhs| #7# #2#) (|eval| #8=(*1 *1 *1 *1) (AND (|ofCategory| *2 (|Evalable| *2)) (|ofCategory| *2 #9=(|SetCategory|)) #4# #3#)) (|eval| #10=(*1 *1 *1 *2) (AND #11=(|isDomain| *2 (|List| #12=(|Equation| *3))) (|ofCategory| *3 (|Evalable| *3)) (|ofCategory| *3 #9#) #13=(|ofCategory| *3 #5#) #14=(|isDomain| *1 #12#))) (+ #15=(*1 *1 *2 *1) #16=(AND #3# (|ofCategory| *2 (|AbelianSemiGroup|)) #4#)) (+ #10# #16#) (|leftZero| #6# #17=(AND #3# (|ofCategory| *2 (|AbelianGroup|)) #4#)) (|rightZero| #6# #17#) (- #15# #17#) (- #10# #17#) (|leftOne| #6# #18=(|partial| AND #3# (|ofCategory| *2 (|Monoid|)) #4#)) (|rightOne| #6# #18#) (|factorAndSplit| #7# (AND #11# #14# (|ofCategory| *3 (|IntegralDomain|)) #13#)) (|subst| #8# (AND #3# (|ofCategory| *2 (|ExpressionSpace|)) #4#)) (* #10# #19=(AND #3# (|ofCategory| *2 (|SemiGroup|)) #4#)) (* #15# #19#) (/ #8# #20=(OR (AND #3# (|ofCategory| *2 (|Field|)) . #21=(#4#)) (AND #3# (|ofCategory| *2 (|Group|)) . #21#))) (|inv| #6# #20#))
+((|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) 14 T ELT)))
+(((|EquationFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)))) #1=(|Type|) #1#) (T |EquationFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Equation| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Equation| *6)) (|isDomain| *1 (|EquationFunctions2| *5 *6)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|table| #8=(#9=($) NIL T ELT) #10=(($ #11=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #12=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| #13=(#14=(|#2| $ |#1| |#2|) NIL #12# ELT)) (|select!| #15=(($ #16=(|Mapping| #3# #5#) $) NIL #17=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #15#) (|search| #18=(((|Union| |#2| #19="failed") |#1| $) NIL T ELT)) (|sample| (#9# NIL T CONST)) (|removeDuplicates| (#20=($ $) NIL #21=(AND #17# #4#) ELT)) (|remove!| (#22=($ #5# $) NIL #17# ELT) #15# #18#) (|remove| (#22# NIL #21# ELT) #15#) (|reduce| ((#5# #23=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #23# $ #5#) NIL T ELT) ((#5# #23# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #24=((|#2| $ |#1|) NIL T ELT)) (|minIndex| #25=((|#1| $) NIL #26=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#11# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #25#) (|map!| #27=(($ (|Mapping| #5# #5#) . #28=($)) NIL T ELT) #29=(($ (|Mapping| |#2| |#2|) . #28#) NIL T ELT)) (|map| #27# #29# #27# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #30=(OR #31=(|has| #5# #32=(|SetCategory|)) #33=(|has| |#2| #32#)) ELT)) (|keys| #34=(((|List| |#1|) $) NIL T ELT)) (|key?| #35=((#3# |#1| $) NIL T ELT)) (|inspect| #36=((#5# $) NIL T ELT)) (|insert!| (#22# NIL T ELT)) (|indices| #34#) (|index?| #35#) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| ((|#2| $) NIL #26# ELT)) (|find| (((|Union| #5# #19#) #16# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #12# ELT)) (|extract!| #36#) (|every?| #37=((#3# #16# $) NIL T ELT)) (|eval| #38=(($ $ (|List| #39=(|Equation| #5#))) NIL #40=(AND (|has| #5# (|Evalable| #5#)) #31#) ELT) #41=(($ $ #39#) NIL #40# ELT) #42=(($ $ #5# #5#) NIL #40# ELT) #43=(($ $ #11# #11#) NIL #40# ELT) (($ $ #44=(|List| |#2|) #44#) NIL #45=(AND (|has| |#2| (|Evalable| |#2|)) #33#) ELT) (($ $ |#2| |#2|) NIL #45# ELT) (($ $ #46=(|Equation| |#2|)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT) #43# #42# #41# #38#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT)) (|entries| ((#44# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #8#) (|elt| #24# (#14# NIL T ELT)) (|dictionary| #8# #10#) (|count| ((#47=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#47# #16# $) NIL T ELT)) (|copy| (#20# NIL T ELT)) (|convert| ((#48=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #48#)) ELT)) (|construct| #10#) (|coerce| ((#49=(|OutputForm|) $) NIL (OR (|has| #5# #50=(|CoercibleTo| #49#)) (|has| |#2| #50#)) ELT)) (|before?| #1#) (|bag| #10#) (|any?| #37#) (= #1#) (|#| ((#47# $) NIL T ELT)))
+(((|EqTable| |#1| |#2|) (|TableAggregate| |#1| |#2|) #1=(|SetCategory|) #1#) (T |EqTable|))
+NIL
+((|error| ((#1=(|Exit|) #2=(|String|) #3=(|List| #2#)) 17 T ELT) ((#1# #2# #2#) 16 T ELT) ((#1# #3#) 15 T ELT) ((#1# #2#) 14 T ELT)))
+(((|ErrorFunctions|) (CATEGORY |package| (SIGNATURE |error| (#1=(|Exit|) #2=(|String|))) (SIGNATURE |error| (#1# #3=(|List| #2#))) (SIGNATURE |error| (#1# #2# #2#)) (SIGNATURE |error| (#1# #2# #3#)))) (T |ErrorFunctions|))
+((|error| (*1 *2 *3 *4) (AND (|isDomain| *4 #1=(|List| #2=(|String|))) #3=(|isDomain| *3 #2#) #4=(|isDomain| *2 (|Exit|)) #5=(|isDomain| *1 (|ErrorFunctions|)))) (|error| (*1 *2 *3 *3) #6=(AND #3# #4# #5#)) (|error| #7=(*1 *2 *3) (AND (|isDomain| *3 #1#) #4# #5#)) (|error| #7# #6#))
+((|tower| ((#1=(|List| #2=(|Kernel| $)) $) 27 T ELT)) (|subst| (#3=($ $ #4=(|Equation| $)) 78 T ELT) (#5=($ $ (|List| #4#)) 140 T ELT) #6=(($ $ #1# #7=(|List| $)) NIL T ELT)) (|retractIfCan| (#8=((|Union| #2# "failed") $) 128 T ELT)) (|retract| ((#2# $) 127 T ELT)) (|paren| (#9=($ $) 17 T ELT) (#10=($ #7#) 54 T ELT)) (|operators| ((#11=(|List| #12=(|BasicOperator|)) $) 35 T ELT)) (|operator| ((#12# #12#) 89 T ELT)) (|odd?| (#13=(#14=(|Boolean|) $) 151 T ELT)) (|map| (($ #15=(|Mapping| $ $) #2#) 87 T ELT)) (|mainKernel| (#8# 95 T ELT)) (|kernel| (#16=($ #12# $) 59 T ELT) (#17=($ #12# #7#) 111 T ELT)) (|is?| ((#14# $ #12#) 133 T ELT) (#18=(#14# $ #19=(|Symbol|)) 132 T ELT)) (|height| (((|NonNegativeInteger|) $) 44 T ELT)) (|freeOf?| ((#14# $ $) 57 T ELT) (#18# 49 T ELT)) (|even?| (#13# 149 T ELT)) (|eval| (($ $ #2# $) NIL T ELT) #6# (#5# 138 T ELT) (#3# NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #7# #7#) NIL T ELT) (($ $ #20=(|List| #19#) #21=(|List| #15#)) 81 T ELT) (($ $ #20# #22=(|List| #23=(|Mapping| $ #7#))) NIL T ELT) (($ $ #19# #23#) 67 T ELT) (($ $ #19# #15#) 72 T ELT) (($ $ #11# #21#) 80 T ELT) (($ $ #11# #22#) 83 T ELT) (($ $ #12# #23#) 68 T ELT) (($ $ #12# #15#) 74 T ELT)) (|elt| (#16# 60 T ELT) (($ #12# $ $) 61 T ELT) (($ #12# $ $ $) 62 T ELT) (($ #12# $ $ $ $) 63 T ELT) (#17# 124 T ELT)) (|distribute| (#9# 51 T ELT) (($ $ $) 136 T ELT)) (|box| (#9# 15 T ELT) (#10# 53 T ELT)) (|belong?| ((#14# #12#) 21 T ELT)))
+(((|ExpressionSpace&| |#1|) (CATEGORY |package| (SIGNATURE |odd?| #1=(#2=(|Boolean|) |#1|)) (SIGNATURE |even?| #1#) (SIGNATURE |eval| (|#1| |#1| #3=(|BasicOperator|) #4=(|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| #3# #5=(|Mapping| |#1| #6=(|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| #7=(|List| #3#) #8=(|List| #5#))) (SIGNATURE |eval| (|#1| |#1| #7# #9=(|List| #4#))) (SIGNATURE |eval| (|#1| |#1| #10=(|Symbol|) #4#)) (SIGNATURE |eval| (|#1| |#1| #10# #5#)) (SIGNATURE |eval| (|#1| |#1| #11=(|List| #10#) #8#)) (SIGNATURE |eval| (|#1| |#1| #11# #9#)) (SIGNATURE |freeOf?| #12=(#2# |#1| #10#)) (SIGNATURE |freeOf?| (#2# |#1| |#1|)) (SIGNATURE |map| (|#1| #4# #13=(|Kernel| |#1|))) (SIGNATURE |kernel| #14=(|#1| #3# #6#)) (SIGNATURE |kernel| #15=(|#1| #3# |#1|)) (SIGNATURE |is?| #12#) (SIGNATURE |is?| (#2# |#1| #3#)) (SIGNATURE |belong?| (#2# #3#)) (SIGNATURE |operator| (#3# #3#)) (SIGNATURE |operators| (#7# |#1|)) (SIGNATURE |tower| (#16=(|List| #13#) |#1|)) (SIGNATURE |mainKernel| #17=((|Union| #13# "failed") |#1|)) (SIGNATURE |height| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |distribute| (|#1| |#1| |#1|)) (SIGNATURE |distribute| #18=(|#1| |#1|)) (SIGNATURE |paren| #19=(|#1| #6#)) (SIGNATURE |paren| #18#) (SIGNATURE |box| #19#) (SIGNATURE |box| #18#) (SIGNATURE |subst| #20=(|#1| |#1| #16# #6#)) (SIGNATURE |subst| #21=(|#1| |#1| (|List| #22=(|Equation| |#1|)))) (SIGNATURE |subst| #23=(|#1| |#1| #22#)) (SIGNATURE |elt| #14#) (SIGNATURE |elt| (|#1| #3# |#1| |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| #3# |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| #3# |#1| |#1|)) (SIGNATURE |elt| #15#) (SIGNATURE |eval| (|#1| |#1| #6# #6#)) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| #23#) (SIGNATURE |eval| #21#) (SIGNATURE |eval| #20#) (SIGNATURE |eval| (|#1| |#1| #13# |#1|)) (SIGNATURE |retractIfCan| #17#) (SIGNATURE |retract| (#13# |#1|))) (|ExpressionSpace|)) (T |ExpressionSpace&|))
+((|operator| (*1 *2 *2) (AND (|isDomain| *2 #1=(|BasicOperator|)) (|isDomain| *1 (|ExpressionSpace&| *3)) (|ofCategory| *3 #2=(|ExpressionSpace|)))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 #1#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ExpressionSpace&| *4)) (|ofCategory| *4 #2#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|tower| (((|List| (|Kernel| $)) $) 42 T ELT)) (|subst| (($ $ (|Equation| $)) 54 T ELT) (($ $ (|List| (|Equation| $))) 53 T ELT) (($ $ (|List| (|Kernel| $)) (|List| $)) 52 T ELT)) (|retractIfCan| (((|Union| #2=(|Kernel| $) "failed") $) 67 T ELT)) (|retract| ((#2# $) 68 T ELT)) (|paren| (($ $) 49 T ELT) (($ (|List| $)) 48 T ELT)) (|operators| (((|List| (|BasicOperator|)) $) 41 T ELT)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 40 T ELT)) (|odd?| (((|Boolean|) $) 20 (|has| $ (|RetractableTo| (|Integer|))) ELT)) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) 23 (|has| $ (|Ring|)) ELT)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) 34 T ELT)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|kernels| (((|List| (|Kernel| $)) $) 43 T ELT)) (|kernel| (($ (|BasicOperator|) $) 36 T ELT) (($ (|BasicOperator|) (|List| $)) 35 T ELT)) (|is?| (((|Boolean|) $ (|BasicOperator|)) 38 T ELT) (((|Boolean|) $ (|Symbol|)) 37 T ELT)) (|height| (((|NonNegativeInteger|) $) 45 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|freeOf?| (((|Boolean|) $ $) 33 T ELT) (((|Boolean|) $ (|Symbol|)) 32 T ELT)) (|even?| (((|Boolean|) $) 21 (|has| $ (|RetractableTo| (|Integer|))) ELT)) (|eval| (($ $ #3=(|Kernel| $) $) 65 T ELT) (($ $ (|List| #3#) (|List| $)) 64 T ELT) (($ $ (|List| (|Equation| $))) 63 T ELT) (($ $ (|Equation| $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (|List| $) (|List| $)) 60 T ELT) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) 31 T ELT) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) 30 T ELT) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) 29 T ELT) (($ $ (|Symbol|) (|Mapping| $ $)) 28 T ELT) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) 27 T ELT) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) 26 T ELT) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) 25 T ELT) (($ $ (|BasicOperator|) (|Mapping| $ $)) 24 T ELT)) (|elt| (($ (|BasicOperator|) $) 59 T ELT) (($ (|BasicOperator|) $ $) 58 T ELT) (($ (|BasicOperator|) $ $ $) 57 T ELT) (($ (|BasicOperator|) $ $ $ $) 56 T ELT) (($ (|BasicOperator|) (|List| $)) 55 T ELT)) (|distribute| (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (|definingPolynomial| (($ $) 22 (|has| $ (|Ring|)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ #2#) 66 T ELT)) (|box| (($ $) 51 T ELT) (($ (|List| $)) 50 T ELT)) (|belong?| (((|Boolean|) (|BasicOperator|)) 39 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|ExpressionSpace|) (|Category|)) (T |ExpressionSpace|))
+((|elt| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Equation| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Equation| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|box| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|box| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|paren| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|paren| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|distribute| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|distribute| (*1 *1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|height| (*1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|mainKernel| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Kernel| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|kernels| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|tower| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|operators| (*1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|List| (|BasicOperator|))))) (|operator| (*1 *2 *2) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|belong?| (*1 *2 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|)))) (|is?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|)))) (|is?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)))) (|kernel| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|kernel| (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|map| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *1 *1)) (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|freeOf?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))) (|freeOf?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *1 *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|minPoly| (*1 *2 *3) (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|Ring|)) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *1)))) (|definingPolynomial| (*1 *1 *1) (AND (|ofCategory| *1 (|Ring|)) (|ofCategory| *1 (|ExpressionSpace|)))) (|even?| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| (|Integer|))) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))) (|odd?| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| (|Integer|))) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|SetCategory|) (|RetractableTo| (|Kernel| $)) (|InnerEvalable| (|Kernel| $) $) (|Evalable| $) (CATEGORY |domain| (SIGNATURE |elt| ($ (|BasicOperator|) $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $ $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) (|List| $))) (SIGNATURE |subst| ($ $ (|Equation| $))) (SIGNATURE |subst| ($ $ (|List| (|Equation| $)))) (SIGNATURE |subst| ($ $ (|List| (|Kernel| $)) (|List| $))) (SIGNATURE |box| ($ $)) (SIGNATURE |box| ($ (|List| $))) (SIGNATURE |paren| ($ $)) (SIGNATURE |paren| ($ (|List| $))) (SIGNATURE |distribute| ($ $)) (SIGNATURE |distribute| ($ $ $)) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |mainKernel| ((|Union| (|Kernel| $) "failed") $)) (SIGNATURE |kernels| ((|List| (|Kernel| $)) $)) (SIGNATURE |tower| ((|List| (|Kernel| $)) $)) (SIGNATURE |operators| ((|List| (|BasicOperator|)) $)) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |is?| ((|Boolean|) $ (|BasicOperator|))) (SIGNATURE |is?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |kernel| ($ (|BasicOperator|) $)) (SIGNATURE |kernel| ($ (|BasicOperator|) (|List| $))) (SIGNATURE |map| ($ (|Mapping| $ $) (|Kernel| $))) (SIGNATURE |freeOf?| ((|Boolean|) $ $)) (SIGNATURE |freeOf?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|Symbol|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|Symbol|) (|Mapping| $ $))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|BasicOperator|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|BasicOperator|) (|Mapping| $ $))) (IF (|has| $ (|Ring|)) (PROGN (SIGNATURE |minPoly| ((|SparseUnivariatePolynomial| $) (|Kernel| $))) (SIGNATURE |definingPolynomial| ($ $))) |%noBranch|) (IF (|has| $ (|RetractableTo| (|Integer|))) (PROGN (SIGNATURE |even?| ((|Boolean|) $)) (SIGNATURE |odd?| ((|Boolean|) $))) |%noBranch|)))
+(((|BasicType|) . T) ((|CoercibleFrom| #1=(|Kernel| $)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Evalable| $) . T) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|Join|) . T) ((|RetractableTo| #1#) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) 18 T ELT)))
+(((|ExpressionSpaceFunctions1| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)))) (|ExpressionSpace|) (|Type|)) (T |ExpressionSpaceFunctions1|))
+((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|String|)) (|isDomain| *5 (|Kernel| *6)) (|ofCategory| *6 (|ExpressionSpace|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ExpressionSpaceFunctions1| *6 *2)))))
+((|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) 17 T ELT)))
+(((|ExpressionSpaceFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)))) #1=(|ExpressionSpace|) #1#) (T |ExpressionSpaceFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Kernel| *5)) (|ofCategory| *5 #1=(|ExpressionSpace|)) (|ofCategory| *2 #1#) (|isDomain| *1 (|ExpressionSpaceFunctions2| *5 *2)))))
+((|sizeLess?| (((|Boolean|) $ $) 14 T ELT)) (|rem| (#1=($ $ $) 18 T ELT)) (|quo| (#1# 17 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #2=(|List| $)) #3=(|:| |generator| $)) #2#) 50 T ELT)) (|multiEuclidean| (((|Union| #2# #4="failed") #2# $) 67 T ELT)) (|gcd| (#1# 25 T ELT) (($ #2#) NIL T ELT)) (|extendedEuclidean| (((|Record| #5=(|:| |coef1| $) #6=(|:| |coef2| $) #3#) $ $) 35 T ELT) (((|Union| (|Record| #5# #6#) #4#) $ $ $) 40 T ELT)) (|exquo| (((|Union| $ #4#) $ $) 21 T ELT)) (|expressIdealMember| (((|Maybe| #2#) #2# $) 55 T ELT)))
+(((|EuclideanDomain&| |#1|) (CATEGORY |package| (SIGNATURE |multiEuclidean| ((|Union| #1=(|List| |#1|) #2="failed") #1# |#1|)) (SIGNATURE |extendedEuclidean| ((|Union| (|Record| #3=(|:| |coef1| |#1|) #4=(|:| |coef2| |#1|)) #2#) |#1| |#1| |#1|)) (SIGNATURE |extendedEuclidean| ((|Record| #3# #4# #5=(|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rem| #6=(|#1| |#1| |#1|)) (SIGNATURE |quo| #6#) (SIGNATURE |sizeLess?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |expressIdealMember| ((|Maybe| #1#) #1# |#1|)) (SIGNATURE |principalIdeal| ((|Record| (|:| |coef| #1#) #5#) #1#)) (SIGNATURE |gcd| (|#1| #1#)) (SIGNATURE |gcd| #6#) (SIGNATURE |exquo| ((|Union| |#1| #2#) |#1| |#1|))) (|EuclideanDomain|)) (T |EuclideanDomain&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#4=($) 23 T CONST)) (|rem| (($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (($ $ $) 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #5=(|List| $)) (|:| |generator| $)) #5#) 66 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 68 T ELT)) (|lcm| (#6=($ $ $) 60 T ELT) (#7=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#8=(|SparseUnivariatePolynomial| $) #8# #8#) 58 T ELT)) (|gcd| (#6# 62 T ELT) (#7# 61 T ELT)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #5#) #5# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|EuclideanDomain|) (|Category|)) (T |EuclideanDomain|))
+((|sizeLess?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|EuclideanDomain|)) (|isDomain| *2 (|Boolean|)))) (|euclideanSize| (*1 *2 *1) (AND (|ofCategory| *1 (|EuclideanDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|divide| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|quo| (*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|))) (|rem| (*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|))) (|extendedEuclidean| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|extendedEuclidean| (*1 *2 *1 *1 *1) (|partial| AND (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|multiEuclidean| (*1 *2 *2 *1) (|partial| AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|EuclideanDomain|)))))
+(|Join| (|PrincipalIdealDomain|) (CATEGORY |domain| (SIGNATURE |sizeLess?| ((|Boolean|) $ $)) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) $)) (SIGNATURE |divide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |quo| ($ $ $)) (SIGNATURE |rem| ($ $ $)) (SIGNATURE |extendedEuclidean| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |extendedEuclidean| ((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (SIGNATURE |multiEuclidean| ((|Union| (|List| $) "failed") (|List| $) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|eval| (($ $ #1=(|List| |#2|) #1#) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ #2=(|Equation| |#2|)) 11 T ELT) (($ $ (|List| #2#)) NIL T ELT)))
+(((|Evalable&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |eval| (|#1| |#1| (|List| #1=(|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| #1#)) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| #2=(|List| |#2|) #2#))) (|Evalable| |#2|) (|SetCategory|)) (T |Evalable&|))
+NIL
+((|eval| (($ $ (|List| |#1|) (|List| |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (|Equation| |#1|)) 13 T ELT) (($ $ (|List| (|Equation| |#1|))) 12 T ELT)))
+(((|Evalable| |#1|) (|Category|) (|SetCategory|)) (T |Evalable|))
+((|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Equation| *3)) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|)))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Equation| *3))) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(|Join| (|InnerEvalable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |eval| ($ $ (|Equation| |t#1|))) (SIGNATURE |eval| ($ $ (|List| (|Equation| |t#1|))))))
+(((|InnerEvalable| |#1| |#1|) . T))
+((|eval| ((|#1| (|Mapping| |#1| #1=(|Integer|)) (|SymmetricPolynomial| (|Fraction| #1#))) 26 T ELT)))
+(((|EvaluateCycleIndicators| |#1|) (CATEGORY |package| (SIGNATURE |eval| (|#1| (|Mapping| |#1| #1=(|Integer|)) (|SymmetricPolynomial| #2=(|Fraction| #1#))))) (|Algebra| #2#)) (T |EvaluateCycleIndicators|))
+((|eval| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 #1=(|Integer|))) (|isDomain| *4 (|SymmetricPolynomial| #2=(|Fraction| #1#))) (|isDomain| *1 (|EvaluateCycleIndicators| *2)) (|ofCategory| *2 (|Algebra| #2#)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 7 T ELT)) (|before?| #1#) (= (#2# 9 T ELT)))
+(((|Exit|) (|SetCategory|)) (T |Exit|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|level| (((|Integer|) $) 13 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 10 T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|ExitAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $)) (SIGNATURE |level| ((|Integer|) $))))) (T |ExitAst|))
+((|expression| #1=(*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) #2=(|isDomain| *1 (|ExitAst|)))) (|level| #1# (AND (|isDomain| *2 (|Integer|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 60 T ELT)) (|wholePart| (#5=(#6=(|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) NIL #7=(|has| #6# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #8=(#9=($ $) NIL T ELT)) (|unit?| #10=(#4# NIL T ELT)) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #6# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #8#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#19=(#20=(|Integer|) $) NIL #21=(|has| #6# (|OrderedIntegralDomain|)) ELT)) (|sample| #22=(#23=($) NIL T CONST)) (|retractIfCan| (((|Union| #6# . #24=(#13#)) . #25=($)) NIL T ELT) (((|Union| #26=(|Symbol|) . #24#) . #25#) NIL #27=(|has| #6# (|RetractableTo| #26#)) ELT) (((|Union| #28=(|Fraction| #20#) . #24#) . #25#) NIL #29=(|has| #6# (|RetractableTo| #20#)) ELT) (((|Union| #20# . #24#) . #25#) NIL #29# ELT) (((|Union| #30=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) . #24#) $) 26 T ELT)) (|retract| (#5# NIL T ELT) ((#26# . #31=($)) NIL #27# ELT) ((#28# . #31#) NIL #29# ELT) (#19# NIL #29# ELT) ((#30# . #31#) NIL T ELT)) (|rem| #32=(#33=($ $ $) NIL T ELT)) (|reducedSystem| ((#34=(|Matrix| #20#) . #35=(#36=(|Matrix| $))) NIL #37=(|has| #6# (|LinearlyExplicitRingOver| #20#)) ELT) ((#38=(|Record| (|:| |mat| #34#) (|:| |vec| (|Vector| #20#))) . #39=(#36# #40=(|Vector| $))) NIL #37# ELT) ((#41=(|Record| (|:| |mat| #42=(|Matrix| #6#)) (|:| |vec| (|Vector| #6#))) . #39#) NIL T ELT) ((#42# . #35#) NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#23# NIL #43=(|has| #6# (|IntegerNumberSystem|)) ELT)) (|quo| #32#) (|principalIdeal| (((|Record| (|:| |coef| #44=(|List| $)) #45=(|:| |generator| $)) #44#) NIL T ELT)) (|prime?| #10#) (|positive?| #46=(#4# NIL #21# ELT)) (|patternMatch| ((#47=(|PatternMatchResult| #20# . #48=($)) $ #49=(|Pattern| #20#) #47#) NIL (|has| #6# (|PatternMatchable| #20#)) ELT) ((#50=(|PatternMatchResult| #51=(|Float|) . #48#) $ #52=(|Pattern| #51#) #50#) NIL (|has| #6# (|PatternMatchable| #51#)) ELT)) (|opposite?| #1#) (|one?| #10#) (|numerator| #8#) (|numer| (#5# 22 T ELT)) (|nextItem| (#53=((|Maybe| $) $) NIL #54=(|has| #6# (|StepThrough|)) ELT)) (|negative?| #46#) (|multiEuclidean| (((|Union| #44# #13#) #44# $) NIL T ELT)) (|min| #55=(#33# NIL #56=(|has| #6# (|OrderedSet|)) ELT)) (|max| #55#) (|map| (($ #57=(|Mapping| #6# #6#) $) NIL T ELT)) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) #13#) $) 80 T ELT)) (|leftReducedSystem| ((#34# . #58=(#40#)) NIL #37# ELT) ((#38# . #59=(#40# $)) NIL #37# ELT) ((#41# . #59#) NIL T ELT) ((#42# . #58#) NIL T ELT)) (|lcm| #32# #60=(($ #44#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #8#) (|init| (#23# NIL #54# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #32# #60#) (|fractionPart| (#9# NIL #7# ELT)) (|floor| #61=(#5# NIL #43# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #62=(|:| |coef1| $) #63=(|:| |coef2| $) #45#) $ $) NIL T ELT) (((|Union| (|Record| #62# #63#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #44#) #44# $) NIL T ELT)) (|eval| (($ $ #64=(|List| #6#) #64#) NIL #65=(|has| #6# (|Evalable| #6#)) ELT) (($ $ #6# #6#) NIL #65# ELT) (($ $ #66=(|Equation| #6#)) NIL #65# ELT) (($ $ (|List| #66#)) NIL #65# ELT) (($ $ #67=(|List| #26#) #64#) NIL #68=(|has| #6# (|InnerEvalable| #26# #6#)) ELT) (($ $ #26# #6#) NIL #68# ELT)) (|euclideanSize| ((#69=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#70=($ $ #6#) NIL (|has| #6# (|Eltable| #6# #6#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #71=(($ $ #57#) NIL T ELT) #72=(($ $ #57# #69#) NIL T ELT) #73=(($ $ #26#) NIL #74=(|has| #6# (|PartialDifferentialSpace| #26#)) ELT) #75=(($ $ #67#) NIL #74# ELT) #76=(($ $ #26# #69#) NIL #74# ELT) #77=(($ $ #67# (|List| #69#)) NIL #74# ELT) #78=(#9# NIL #79=(|has| #6# (|DifferentialSpace|)) ELT) #80=(#81=($ $ #69#) NIL #79# ELT)) (|denominator| #8#) (|denom| (#5# 19 T ELT)) (|convert| ((#49# . #82=($)) NIL (|has| #6# (|ConvertibleTo| #49#)) ELT) ((#52# . #82#) NIL (|has| #6# (|ConvertibleTo| #52#)) ELT) ((#83=(|InputForm|) . #82#) NIL (|has| #6# (|ConvertibleTo| #83#)) ELT) ((#51# . #82#) NIL #84=(|has| #6# (|RealConstant|)) ELT) (((|DoubleFloat|) . #82#) NIL #84# ELT)) (|conditionP| (((|Union| #40# #13#) #36#) NIL #85=(AND (|has| $ #86=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) #8# (($ #28#) NIL T ELT) (($ #6#) 30 T ELT) (($ #26#) NIL #27# ELT) (($ #30#) 37 T ELT)) (|charthRoot| (#53# NIL (OR #85# (|has| #6# #86#)) ELT)) (|characteristic| ((#69#) NIL T CONST)) (|ceiling| #61#) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#9# NIL #21# ELT)) (|Zero| #22#) (|One| #22#) (D #71# #72# #73# #75# #76# #77# #78# #80#) (>= #87=(#2# NIL #56# ELT)) (> #87#) (= #1#) (<= #87#) (< #87#) (/ (#33# 35 T ELT) (($ #6# #6#) 32 T ELT)) (- #8# #32#) (+ #32#) (** (($ $ #88=(|PositiveInteger|)) NIL T ELT) (#81# NIL T ELT) (($ $ #20#) NIL T ELT)) (* (($ #88# $) NIL T ELT) (($ #69# $) NIL T ELT) (($ #20# . #89=($)) NIL T ELT) #32# (($ $ #28#) NIL T ELT) (($ #28# . #89#) NIL T ELT) (($ #6# . #89#) 31 T ELT) (#70# NIL T ELT)))
+(((|ExponentialExpansion| |#1| |#2| |#3| |#4|) (|Join| (|QuotientFieldCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|RetractableTo| #1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) "failed") $)) (SIGNATURE |coerce| ($ #1#)))) (|Join| (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |ExponentialExpansion|))
+((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *4 *5 *6)) #1=(|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) #2=(|ofType| *5 (|Symbol|)) #3=(|ofType| *6 *4) #4=(|ofCategory| *3 (|Join| (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#) (|GcdDomain|))) #6=(|isDomain| *1 (|ExponentialExpansion| *3 *4 *5 *6)))) (|limitPlus| (*1 *2 *1) (|partial| AND #4# (|isDomain| *2 (|OrderedCompletion| *4)) #6# #1# #2# #3#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zerosOf| #4=((#5=(|List| $) $ #6=(|Symbol|)) NIL #7=(|has| |#1| (|IntegralDomain|)) ELT) #8=((#5# $) NIL #7# ELT) #9=((#5# #10=(|SparseUnivariatePolynomial| $) #6#) NIL #7# ELT) #11=((#5# #10#) NIL #7# ELT) #12=((#5# #13=(|Polynomial| $)) NIL #7# ELT)) (|zeroOf| #14=(#15=($ $ #6#) NIL #7# ELT) #16=(#17=($ $) NIL #7# ELT) (#18=($ #10# #6#) NIL #7# ELT) #19=(($ #10#) NIL #7# ELT) #20=(($ #13#) NIL #7# ELT)) (|zero?| (#21=(#3# $) 29 #22=(OR #23=(|has| |#1| (|AbelianSemiGroup|)) #24=(AND (|has| |#1| (|LinearlyExplicitRingOver| #25=(|Integer|))) #26=(|has| |#1| #27=(|Ring|)))) ELT)) (|variables| ((#28=(|List| #6#) $) 365 T ELT)) (|univariate| (((|Fraction| #10#) $ #29=(|Kernel| $)) NIL #7# ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #7# ELT)) (|unitCanonical| #16#) (|unit?| #30=(#21# NIL #7# ELT)) (|tower| (#31=(#32=(|List| #29#) $) NIL T ELT)) (|tanh| (#17# 170 #7# ELT)) (|tan| (#17# 146 #7# ELT)) (|summation| (#33=($ $ (|SegmentBinding| $)) 231 #7# ELT) (#15# 227 #7# ELT)) (|subtractIfCan| (#34=(#35=(|Union| $ #36="failed") $ $) NIL #37=(OR (|has| |#1| (|AbelianGroup|)) #24#) ELT)) (|subst| #38=(($ $ #39=(|Equation| $)) NIL T ELT) (#40=($ $ (|List| #39#)) 383 T ELT) (#41=($ $ #32# #5#) 438 T ELT)) (|squareFreePolynomial| (#42=((|Factored| #10#) #10#) 305 #43=(AND (|has| |#1| (|GcdDomain|)) #7#) ELT)) (|squareFreePart| #16#) (|squareFree| #44=((#45=(|Factored| $) $) NIL #7# ELT)) (|sqrt| #16#) (|sizeLess?| #46=(#2# NIL #7# ELT)) (|sinh| (#17# 166 #7# ELT)) (|sin| (#17# 142 #7# ELT)) (|simplifyPower| (#47=($ $ #25#) 68 #7# ELT)) (|sech| (#17# 174 #7# ELT)) (|sec| (#17# 150 #7# ELT)) (|sample| (#48=($) NIL (OR #23# #24# #49=(|has| |#1| (|SemiGroup|))) CONST)) (|rootsOf| #4# #8# #9# #11# #12#) (|rootOf| #14# #16# (#18# 133 #7# ELT) #19# #20#) (|retractIfCan| (#50=((|Union| #29# . #51=(#36#)) . #52=($)) 18 T ELT) (((|Union| #6# . #51#) . #52#) NIL T ELT) (((|Union| |#1| . #51#) $) 450 T ELT) (((|Union| #53=(|AlgebraicNumber|) . #51#) $) 333 #54=(AND #7# #55=(|has| |#1| #56=(|RetractableTo| #25#))) ELT) (((|Union| #25# . #51#) . #52#) NIL #55# ELT) (((|Union| #57=(|Fraction| #58=(|Polynomial| |#1|)) . #51#) . #52#) NIL #7# ELT) (((|Union| #58# . #51#) . #52#) NIL #26# ELT) (((|Union| #59=(|Fraction| #25#) . #51#) $) 48 #60=(OR #54# #61=(|has| |#1| (|RetractableTo| #59#))) ELT)) (|retract| ((#29# . #62=($)) 12 T ELT) ((#6# . #62#) NIL T ELT) (#63=(|#1| $) 429 T ELT) ((#53# . #62#) NIL #54# ELT) ((#25# . #62#) NIL #55# ELT) ((#57# . #62#) NIL #7# ELT) ((#58# . #62#) NIL #26# ELT) ((#59# $) 316 #60# ELT)) (|rem| #64=(#65=($ $ $) NIL #7# ELT)) (|reducedSystem| ((#66=(|Record| (|:| |mat| #67=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) #68=(|Matrix| $) #69=(|Vector| $)) 124 #26# ELT) ((#67# #68#) 114 #26# ELT) ((#70=(|Record| (|:| |mat| #71=(|Matrix| #25#)) (|:| |vec| (|Vector| #25#))) #68# #69#) NIL #24# ELT) ((#71# #68#) NIL #24# ELT)) (|reduce| (#17# 95 #7# ELT)) (|recip| ((#35# $) NIL #49# ELT)) (|quo| #64#) (|product| (#33# 235 #7# ELT) (#15# 233 #7# ELT)) (|principalIdeal| (((|Record| (|:| |coef| #5#) #72=(|:| |generator| $)) #5#) NIL #7# ELT)) (|prime?| #30#) (|polygamma| (#65# 201 #7# ELT)) (|pi| (#48# 136 #7# ELT)) (|permutation| (#65# 221 #7# ELT)) (|patternMatch| ((#73=(|PatternMatchResult| #25# . #74=($)) $ #75=(|Pattern| #25#) #73#) 389 (|has| |#1| (|PatternMatchable| #25#)) ELT) ((#76=(|PatternMatchResult| #77=(|Float|) . #74#) $ #78=(|Pattern| #77#) #76#) 396 (|has| |#1| (|PatternMatchable| #77#)) ELT)) (|paren| #79=(#17# NIL T ELT) #80=(#81=($ #5#) NIL T ELT)) (|opposite?| (#2# NIL #22# ELT)) (|operators| ((#82=(|List| #83=(|BasicOperator|)) $) NIL T ELT)) (|operator| ((#83# #83#) 275 T ELT)) (|one?| (#21# 27 #49# ELT)) (|odd?| #84=(#21# NIL (|has| $ #56#) ELT)) (|numerator| (#17# 73 #26# ELT)) (|numer| (#85=(#86=(|SparseMultivariatePolynomial| |#1| #29#) $) 90 #26# ELT)) (|number?| (#21# 49 #7# ELT)) (|nthRoot| (#47# NIL #7# ELT)) (|multiEuclidean| ((#87=(|Union| #5# #36#) #5# $) NIL #7# ELT)) (|minPoly| ((#10# #29#) 276 #88=(|has| $ #27#) ELT)) (|map| (($ #89=(|Mapping| $ $) #29#) 434 T ELT)) (|mainKernel| (#50# NIL T ELT)) (|log| (#17# 140 #7# ELT)) (|li| (#17# 246 #7# ELT)) (|leftReducedSystem| ((#66# . #90=(#69# $)) NIL #26# ELT) ((#67# . #91=(#69#)) NIL #26# ELT) ((#70# . #90#) NIL #24# ELT) ((#71# . #91#) NIL #24# ELT)) (|lcm| #92=(#81# NIL #7# ELT) #64#) (|latex| (((|String|) $) NIL T ELT)) (|kernels| (#31# 51 T ELT)) (|kernel| #93=(($ #83# $) NIL T ELT) (#94=($ #83# #5#) 439 T ELT)) (|isTimes| (#95=(#87# $) NIL #49# ELT)) (|isPower| (((|Union| (|Record| (|:| |val| $) #96=(|:| |exponent| #25#)) #36#) $) NIL #26# ELT)) (|isPlus| (#95# 444 #23# ELT)) (|isMult| (((|Union| (|Record| (|:| |coef| #25#) #97=(|:| |var| #29#)) #36#) $) 448 #23# ELT)) (|isExpt| ((#98=(|Union| (|Record| #97# #96#) #36#) $) NIL #49# ELT) ((#98# $ #83#) NIL #26# ELT) ((#98# $ #6#) NIL #26# ELT)) (|is?| ((#3# $ #83#) NIL T ELT) (#99=(#3# $ #6#) 53 T ELT)) (|inv| (#17# NIL #100=(OR #101=(|has| |#1| (|Group|)) #7#) ELT)) (|integral| (#15# 250 #7# ELT) (#33# 252 #7# ELT)) (|height| (#102=(#103=(|NonNegativeInteger|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| (#21# 45 T ELT)) (|ground| (#63# NIL T ELT)) (|gcdPolynomial| ((#10# #10# #10#) 298 #7# ELT)) (|gcd| #92# #64#) (|freeOf?| #1# (#99# NIL T ELT)) (|factorials| (#15# 225 #7# ELT) (#17# 223 #7# ELT)) (|factorial| (#17# 217 #7# ELT)) (|factorPolynomial| (#42# 303 #43# ELT)) (|factor| #44#) (|extendedEuclidean| (((|Union| (|Record| #104=(|:| |coef1| $) #105=(|:| |coef2| $)) #36#) $ $ $) NIL #7# ELT) (((|Record| #104# #105# #72#) $ $) NIL #7# ELT)) (|exquo| (#34# NIL #7# ELT)) (|expressIdealMember| (((|Maybe| #5#) #5# $) NIL #7# ELT)) (|exp| (#17# 138 #7# ELT)) (|even?| #84#) (|eval| (($ $ #29# $) NIL T ELT) (#41# 433 T ELT) (#40# NIL T ELT) #38# (($ $ $ $) NIL T ELT) (($ $ #5# #5#) NIL T ELT) (($ $ #28# #106=(|List| #89#)) NIL T ELT) (($ $ #28# #107=(|List| #108=(|Mapping| $ #5#))) NIL T ELT) (($ $ #6# #108#) NIL T ELT) (($ $ #6# #89#) NIL T ELT) (($ $ #82# #106#) 376 T ELT) (($ $ #82# #107#) NIL T ELT) (($ $ #83# #108#) NIL T ELT) (($ $ #83# #89#) NIL T ELT) (#15# NIL #109=(|has| |#1| (|ConvertibleTo| #110=(|InputForm|))) ELT) (#111=($ $ #28#) NIL #109# ELT) (#17# NIL #109# ELT) (($ $ #83# $ #6#) 363 #109# ELT) (($ $ #82# #5# #6#) 362 #109# ELT) (($ $ #28# #112=(|List| #103#) #106#) NIL #26# ELT) (($ $ #28# #112# #107#) NIL #26# ELT) (($ $ #6# #103# #108#) NIL #26# ELT) (($ $ #6# #103# #89#) NIL #26# ELT)) (|euclideanSize| (#102# NIL #7# ELT)) (|erf| (#17# 238 #7# ELT)) (|elt| #93# (($ #83# $ $) NIL T ELT) (($ #83# $ $ $) NIL T ELT) (($ #83# $ $ $ $) NIL T ELT) (#94# NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #7# ELT)) (|distribute| #79# (#65# NIL T ELT)) (|dilog| (#17# 248 #7# ELT)) (|digamma| (#17# 199 #7# ELT)) (|differentiate| #113=(#15# NIL #26# ELT) #114=(#111# NIL #26# ELT) #115=(($ $ #6# #103#) NIL #26# ELT) #116=(($ $ #28# #112#) NIL #26# ELT)) (|denominator| (#17# 74 #7# ELT)) (|denom| (#85# 92 #7# ELT)) (|definingPolynomial| (#17# 314 #88# ELT)) (|csch| (#17# 176 #7# ELT)) (|csc| (#17# 152 #7# ELT)) (|coth| (#17# 172 #7# ELT)) (|cot| (#17# 148 #7# ELT)) (|cosh| (#17# 168 #7# ELT)) (|cos| (#17# 144 #7# ELT)) (|convert| ((#75# . #117=($)) NIL (|has| |#1| (|ConvertibleTo| #75#)) ELT) ((#78# . #117#) NIL (|has| |#1| (|ConvertibleTo| #78#)) ELT) (($ #45#) NIL #7# ELT) ((#110# $) 360 #109# ELT)) (|conjugate| #118=(#65# NIL #101# ELT)) (|commutator| #118#) (|coerce| (((|OutputForm|) $) 432 T ELT) (($ #29#) 423 T ELT) (($ #6#) 378 T ELT) (($ |#1|) 334 T ELT) #16# (($ #53#) 309 #54# ELT) (($ #86#) 94 #26# ELT) (($ #119=(|Fraction| |#1|)) NIL #7# ELT) (($ #120=(|Polynomial| #119#)) NIL #7# ELT) (($ (|Fraction| #120#)) NIL #7# ELT) (($ #57#) NIL #7# ELT) (($ #58#) NIL #26# ELT) (($ #25#) 36 (OR #55# #26#) ELT) (($ #59#) NIL (OR #7# #61#) ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#103#) NIL #26# CONST)) (|box| #79# #80#) (|binomial| (#65# 219 #7# ELT)) (|besselY| (#65# 205 #7# ELT)) (|besselK| (#65# 209 #7# ELT)) (|besselJ| (#65# 203 #7# ELT)) (|besselI| (#65# 207 #7# ELT)) (|belong?| ((#3# #83#) 10 T ELT)) (|before?| (#2# 85 T ELT)) (|atanh| (#17# 182 #7# ELT)) (|atan| (#17# 158 #7# ELT)) (|associates?| #46#) (|asinh| (#17# 178 #7# ELT)) (|asin| (#17# 154 #7# ELT)) (|asech| (#17# 186 #7# ELT)) (|asec| (#17# 162 #7# ELT)) (|applyQuote| (($ #6# $) NIL T ELT) (($ #6# $ $) NIL T ELT) (($ #6# $ $ $) NIL T ELT) (($ #6# $ $ $ $) NIL T ELT) (($ #6# #5#) NIL T ELT)) (|annihilate?| (#2# NIL #26# ELT)) (|airyBi| (#17# 213 #7# ELT)) (|airyAi| (#17# 211 #7# ELT)) (|acsch| (#17# 188 #7# ELT)) (|acsc| (#17# 164 #7# ELT)) (|acoth| (#17# 184 #7# ELT)) (|acot| (#17# 160 #7# ELT)) (|acosh| (#17# 180 #7# ELT)) (|acos| (#17# 156 #7# ELT)) (|abs| (#17# 191 #7# ELT)) (|Zero| (#48# 23 #22# CONST)) (|Si| (#17# 242 #7# ELT)) (|One| (#48# 25 #49# CONST)) (|Gamma| (#17# 193 #7# ELT) (#65# 195 #7# ELT)) (|Ei| (#17# 240 #7# ELT)) (D #113# #114# #115# #116#) (|Ci| (#17# 244 #7# ELT)) (|Beta| (#65# 197 #7# ELT)) (= (#2# 87 T ELT)) (/ (($ #86# #86#) 105 #7# ELT) (#65# 44 #100# ELT)) (- (#65# 42 #37# ELT) (#17# 31 #37# ELT)) (+ (#65# 40 #22# ELT)) (** (#65# 65 #7# ELT) (#121=($ $ #59#) 311 #7# ELT) (#47# 79 #100# ELT) (($ $ #103#) 75 #49# ELT) (($ $ #122=(|PositiveInteger|)) 83 #49# ELT)) (* (($ #59# . #123=($)) NIL #7# ELT) (#121# NIL #7# ELT) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ |#1| . #123#) NIL #26# ELT) (#65# 38 #49# ELT) (($ #25# $) 34 #37# ELT) (($ #103# $) NIL #22# ELT) (($ #122# $) NIL #22# ELT)))
+(((|Expression| |#1|) (|Join| (|FunctionSpace| |#1|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (PROGN (ATTRIBUTE (|AlgebraicallyClosedFunctionSpace| |#1|)) (ATTRIBUTE (|TranscendentalFunctionCategory|)) (ATTRIBUTE (|CombinatorialOpsCategory|)) (ATTRIBUTE (|LiouvillianFunctionCategory|)) (ATTRIBUTE (|SpecialFunctionCategory|)) (SIGNATURE |reduce| ($ $)) (SIGNATURE |number?| ((|Boolean|) $)) (SIGNATURE |simplifyPower| ($ $ #1=(|Integer|))) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |factorPolynomial| #2=((|Factored| #3=(|SparseUnivariatePolynomial| $)) #3#)) (SIGNATURE |squareFreePolynomial| #2#)) |%noBranch|) (IF (|has| |#1| (|RetractableTo| #1#)) (ATTRIBUTE (|RetractableTo| (|AlgebraicNumber|))) |%noBranch|)) |%noBranch|))) (|SetCategory|)) (T |Expression|))
+((|reduce| (*1 *1 *1) (AND (|isDomain| *1 (|Expression| *2)) (|ofCategory| *2 #1=(|IntegralDomain|)) (|ofCategory| *2 #2=(|SetCategory|)))) (|number?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #3=(|isDomain| *1 (|Expression| *3)) #4=(|ofCategory| *3 #1#) #5=(|ofCategory| *3 #2#))) (|simplifyPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #3# #4# #5#)) (|factorPolynomial| #6=(*1 *2 *3) #7=(AND (|isDomain| *2 (|Factored| #8=(|SparseUnivariatePolynomial| *1))) (|isDomain| *1 (|Expression| *4)) (|isDomain| *3 #8#) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 #1#) (|ofCategory| *4 #2#))) (|squareFreePolynomial| #6# #7#))
+((|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) 13 T ELT)))
+(((|ExpressionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)))) #1=(|SetCategory|) #1#) (T |ExpressionFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Expression| *5)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Expression| *6)) (|isDomain| *1 (|ExpressionFunctions2| *5 *6)))))
+((|taylor| ((#1=(|Any|) |#2| #2=(|Equation| |#2|) #3=(|NonNegativeInteger|)) 40 T ELT) (#4=(#1# |#2| #2#) 32 T ELT) ((#1# |#2| #3#) 35 T ELT) (#5=(#1# |#2|) 33 T ELT) (#6=(#1# (|Symbol|)) 26 T ELT)) (|series| (#7=(#1# |#2| #2# #8=(|Fraction| #9=(|Integer|))) 59 T ELT) (#4# 56 T ELT) (#10=(#1# |#2| #8#) 58 T ELT) (#5# 57 T ELT) (#6# 55 T ELT)) (|puiseux| (#7# 54 T ELT) (#4# 51 T ELT) (#10# 53 T ELT) (#5# 52 T ELT) (#6# 50 T ELT)) (|laurent| ((#1# |#2| #2# #9#) 47 T ELT) (#4# 44 T ELT) ((#1# |#2| #9#) 46 T ELT) (#5# 45 T ELT) (#6# 43 T ELT)))
+(((|ExpressionToUnivariatePowerSeries| |#1| |#2|) (CATEGORY |package| (SIGNATURE |taylor| #1=(#2=(|Any|) (|Symbol|))) (SIGNATURE |taylor| #3=(#2# |#2|)) (SIGNATURE |taylor| (#2# |#2| #4=(|NonNegativeInteger|))) (SIGNATURE |taylor| #5=(#2# |#2| #6=(|Equation| |#2|))) (SIGNATURE |taylor| (#2# |#2| #6# #4#)) (SIGNATURE |laurent| #1#) (SIGNATURE |laurent| #3#) (SIGNATURE |laurent| (#2# |#2| #7=(|Integer|))) (SIGNATURE |laurent| #5#) (SIGNATURE |laurent| (#2# |#2| #6# #7#)) (SIGNATURE |puiseux| #1#) (SIGNATURE |puiseux| #3#) (SIGNATURE |puiseux| #8=(#2# |#2| #9=(|Fraction| #7#))) (SIGNATURE |puiseux| #5#) (SIGNATURE |puiseux| #10=(#2# |#2| #6# #9#)) (SIGNATURE |series| #1#) (SIGNATURE |series| #3#) (SIGNATURE |series| #8#) (SIGNATURE |series| #5#) (SIGNATURE |series| #10#)) (|Join| (|GcdDomain|) (|RetractableTo| #7#) (|LinearlyExplicitRingOver| #7#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ExpressionToUnivariatePowerSeries|))
+((|series| #1=(*1 *2 *3 *4 *5) #2=(AND #3=(|isDomain| *4 (|Equation| *3)) (|isDomain| *5 #4=(|Fraction| #5=(|Integer|))) #6=(|ofCategory| *3 (|Join| #7=(|AlgebraicallyClosedField|) #8=(|TranscendentalFunctionCategory|) (|FunctionSpace| *6))) #9=(|ofCategory| *6 #10=(|Join| #11=(|GcdDomain|) (|RetractableTo| #5#) (|LinearlyExplicitRingOver| #5#))) #12=(|isDomain| *2 (|Any|)) #13=(|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *6 *3)))) (|series| #14=(*1 *2 *3 *4) #15=(AND #3# #16=(|ofCategory| *3 (|Join| #7# #8# (|FunctionSpace| *5))) #17=(|ofCategory| *5 #10#) #12# #18=(|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3)))) (|series| #14# #19=(AND (|isDomain| *4 #4#) #17# #12# #18# #16#)) (|series| #20=(*1 *2 *3) #21=(AND #22=(|ofCategory| *4 #10#) #12# (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *3)) (|ofCategory| *3 #23=(|Join| #7# #8# (|FunctionSpace| *4))))) (|series| #20# #24=(AND (|isDomain| *3 (|Symbol|)) #22# #12# (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *5)) (|ofCategory| *5 #23#))) (|puiseux| #1# #2#) (|puiseux| #14# #15#) (|puiseux| #14# #19#) (|puiseux| #20# #21#) (|puiseux| #20# #24#) (|laurent| #1# (AND #3# #6# (|ofCategory| *6 (|Join| #11# (|RetractableTo| *5) (|LinearlyExplicitRingOver| *5))) (|isDomain| *5 #5#) #12# #13#)) (|laurent| #14# #15#) (|laurent| #14# (AND (|isDomain| *4 #5#) (|ofCategory| *5 (|Join| #11# (|RetractableTo| *4) (|LinearlyExplicitRingOver| *4))) #12# #18# #16#)) (|laurent| #20# #21#) (|laurent| #20# #24#) (|taylor| #1# (AND #3# (|isDomain| *5 #25=(|NonNegativeInteger|)) #6# #9# #12# #13#)) (|taylor| #14# #15#) (|taylor| #14# (AND (|isDomain| *4 #25#) #17# #12# #18# #16#)) (|taylor| #20# #21#) (|taylor| #20# #24#))
+((|seriesSolve| ((#1=(|Any|) |#2| #2=(|BasicOperator|) #3=(|Equation| |#2|) #4=(|List| |#2|)) 89 T ELT) ((#1# |#2| #2# #3# #3#) 85 T ELT) ((#1# |#2| #2# #3# |#2|) 87 T ELT) ((#1# #3# #2# #3# |#2|) 88 T ELT) ((#1# #4# #5=(|List| #2#) #3# #6=(|List| #3#)) 81 T ELT) ((#1# #4# #5# #3# #4#) 83 T ELT) ((#1# #6# #5# #3# #4#) 84 T ELT) ((#1# #6# #5# #3# #6#) 82 T ELT) ((#1# #3# #2# #3# #4#) 90 T ELT) ((#1# #3# #2# #3# #3#) 86 T ELT)))
+(((|ExpressionSpaceODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |seriesSolve| (#1=(|Any|) #2=(|Equation| |#2|) #3=(|BasicOperator|) #2# #2#)) (SIGNATURE |seriesSolve| (#1# #2# #3# #2# #4=(|List| |#2|))) (SIGNATURE |seriesSolve| (#1# #5=(|List| #2#) #6=(|List| #3#) #2# #5#)) (SIGNATURE |seriesSolve| (#1# #5# #6# #2# #4#)) (SIGNATURE |seriesSolve| (#1# #4# #6# #2# #4#)) (SIGNATURE |seriesSolve| (#1# #4# #6# #2# #5#)) (SIGNATURE |seriesSolve| (#1# #2# #3# #2# |#2|)) (SIGNATURE |seriesSolve| (#1# |#2| #3# #2# |#2|)) (SIGNATURE |seriesSolve| (#1# |#2| #3# #2# #2#)) (SIGNATURE |seriesSolve| (#1# |#2| #3# #2# #4#))) (|Join| (|IntegralDomain|) (|ConvertibleTo| (|InputForm|))) (|FunctionSpace| |#1|)) (T |ExpressionSpaceODESolver|))
+((|seriesSolve| #1=(*1 *2 *3 *4 *5 *6) (AND #2=(|isDomain| *4 #3=(|BasicOperator|)) #4=(|isDomain| *5 (|Equation| *3)) (|isDomain| *6 (|List| *3)) (|ofCategory| *3 #5=(|FunctionSpace| *7)) #6=(|ofCategory| *7 #7=(|Join| (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) #8=(|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *3)))) (|seriesSolve| (*1 *2 *3 *4 *5 *5) #9=(AND #2# #4# (|ofCategory| *3 #10=(|FunctionSpace| *6)) #11=(|ofCategory| *6 #7#) #8# (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *3)))) (|seriesSolve| #12=(*1 *2 *3 *4 *5 *3) #9#) (|seriesSolve| #13=(*1 *2 *3 *4 *3 *5) (AND (|isDomain| *3 (|Equation| *5)) #2# (|ofCategory| *5 #10#) #11# #8# (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *5)))) (|seriesSolve| #1# (AND (|isDomain| *3 #14=(|List| *8)) #15=(|isDomain| *4 (|List| #3#)) (|isDomain| *6 #16=(|List| #17=(|Equation| *8))) #18=(|ofCategory| *8 #5#) #19=(|isDomain| *5 #17#) #6# #8# #20=(|isDomain| *1 (|ExpressionSpaceODESolver| *7 *8)))) (|seriesSolve| #12# (AND (|isDomain| *3 #21=(|List| *7)) #15# #22=(|isDomain| *5 #23=(|Equation| *7)) #24=(|ofCategory| *7 #10#) #11# #8# #25=(|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7)))) (|seriesSolve| #1# (AND (|isDomain| *3 #16#) #15# #19# (|isDomain| *6 #14#) #18# #6# #8# #20#)) (|seriesSolve| #12# (AND (|isDomain| *3 (|List| #23#)) #15# #22# #24# #11# #8# #25#)) (|seriesSolve| #13# (AND (|isDomain| *3 #23#) #2# (|isDomain| *5 #21#) #24# #11# #8# #25#)) (|seriesSolve| (*1 *2 *3 *4 *3 *3) (AND (|isDomain| *3 (|Equation| *6)) #2# (|ofCategory| *6 (|FunctionSpace| *5)) (|ofCategory| *5 #7#) #8# (|isDomain| *1 (|ExpressionSpaceODESolver| *5 *6)))))
+((|tubePlot| ((#1=(|TubePlot| (|Plot3D|)) #2=(|Expression| #3=(|Integer|)) #2# #2# #4=(|Mapping| #5=(|DoubleFloat|) #5#) #6=(|Segment| #5#) #5# #3# #7=(|String|)) 67 T ELT) ((#1# #2# #2# #2# #4# #6# #5# #3#) 68 T ELT) ((#1# #2# #2# #2# #4# #6# #4# #3# #7#) 64 T ELT) ((#1# #2# #2# #2# #4# #6# #4# #3#) 65 T ELT)) (|constantToUnaryFunction| ((#4# #5#) 66 T ELT)))
+(((|ExpressionTubePlot|) (CATEGORY |package| (SIGNATURE |constantToUnaryFunction| (#1=(|Mapping| #2=(|DoubleFloat|) #2#) #2#)) (SIGNATURE |tubePlot| (#3=(|TubePlot| (|Plot3D|)) #4=(|Expression| #5=(|Integer|)) #4# #4# #1# #6=(|Segment| #2#) #1# #5#)) (SIGNATURE |tubePlot| (#3# #4# #4# #4# #1# #6# #1# #5# #7=(|String|))) (SIGNATURE |tubePlot| (#3# #4# #4# #4# #1# #6# #2# #5#)) (SIGNATURE |tubePlot| (#3# #4# #4# #4# #1# #6# #2# #5# #7#)))) (T |ExpressionTubePlot|))
+((|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (AND #1=(|isDomain| *3 (|Expression| #2=(|Integer|))) #3=(|isDomain| *4 #4=(|Mapping| #5=(|DoubleFloat|) #5#)) #6=(|isDomain| *5 (|Segment| #5#)) #7=(|isDomain| *6 #5#) #8=(|isDomain| *7 #2#) (|isDomain| *8 #9=(|String|)) #10=(|isDomain| *2 (|TubePlot| (|Plot3D|))) #11=(|isDomain| *1 (|ExpressionTubePlot|)))) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *6 *7) (AND #1# #3# #6# #7# #8# #10# #11#)) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (AND #1# #3# #6# #12=(|isDomain| *6 #2#) (|isDomain| *7 #9#) #10# #11#)) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *4 *6) (AND #1# #3# #6# #12# #10# #11#)) (|constantToUnaryFunction| (*1 *2 *3) (AND (|isDomain| *2 #4#) #11# (|isDomain| *3 #5#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 26 T ELT)) (|variables| ((#5=(|List| #6=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#7=(|Symbol|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #8=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #9=(#10=($ $) NIL #8# ELT)) (|unit?| (#4# NIL #8# ELT)) (|truncate| #11=(#12=($ $ #13=(|Fraction| #14=(|Integer|))) NIL T ELT) (($ $ #13# #13#) NIL T ELT)) (|terms| ((#15=(|Stream| (|Record| (|:| |k| #13#) (|:| |c| |#1|))) $) 20 T ELT)) (|tanh| #16=(#10# NIL #17=(|has| |#1| (|Algebra| #13#)) ELT)) (|tan| #16#) (|subtractIfCan| (#18=(#19=(|Union| $ #20="failed") $ $) NIL T ELT)) (|squareFreePart| #21=(#10# NIL #22=(|has| |#1| (|Field|)) ELT)) (|squareFree| #23=(((|Factored| $) $) NIL #22# ELT)) (|sqrt| #16#) (|sizeLess?| (#2# NIL #22# ELT)) (|sinh| #16#) (|sin| #16#) (|series| (($ #24=(|NonNegativeInteger|) #15#) NIL T ELT)) (|sech| #16#) (|sec| #16#) (|sample| #25=(#26=($) NIL T CONST)) (|rem| #27=(#28=($ $ $) NIL #22# ELT)) (|reductum| (#10# 36 T ELT)) (|recip| ((#19# $) NIL T ELT)) (|quo| #27#) (|principalIdeal| (((|Record| (|:| |coef| #29=(|List| $)) #30=(|:| |generator| $)) #29#) NIL #22# ELT)) (|prime?| (#4# NIL #22# ELT)) (|positive?| #31=(#4# NIL T ELT)) (|pole?| #31#) (|pi| (#26# NIL #17# ELT)) (|order| #32=(#33=(#13# $) NIL T ELT) ((#13# $ #13#) 16 T ELT)) (|opposite?| #1#) (|one?| #31#) (|nthRoot| (#34=($ $ #14#) NIL #17# ELT)) (|multiplyExponents| #35=(($ $ #36=(|PositiveInteger|)) NIL T ELT) #11#) (|multiEuclidean| (((|Union| #29# #20#) #29# $) NIL #22# ELT)) (|monomial?| #31#) (|monomial| (($ |#1| #13#) NIL T ELT) (($ $ #6# #13#) NIL T ELT) (($ $ #5# (|List| #13#)) NIL T ELT)) (|min| #37=(#28# NIL T ELT)) (|max| #37#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| #16#) (|leadingMonomial| #38=(#10# NIL T ELT)) (|leadingCoefficient| #39=((|#1| $) NIL T ELT)) (|lcm| #40=(($ #29#) NIL #22# ELT) #27#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #21#) (|integrate| #16# (#41=($ $ #7#) NIL (OR (AND #17# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #14#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #17# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |variables| (#42=(|List| #7#) |#1|))))) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#43=(|SparseUnivariatePolynomial| $) #43# #43#) NIL #22# ELT)) (|gcd| #40# #27#) (|factor| #23#) (|extendedEuclidean| (((|Union| (|Record| #44=(|:| |coef1| $) #45=(|:| |coef2| $)) #20#) $ $ $) NIL #22# ELT) (((|Record| #44# #45# #30#) $ $) NIL #22# ELT)) (|extend| #11#) (|exquo| (#18# NIL #8# ELT)) (|expressIdealMember| (((|Maybe| #29#) #29# $) NIL #22# ELT)) (|exponentialOrder| (#33# 17 T ELT)) (|exponential| (($ #46=(|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) 11 T ELT)) (|exponent| ((#46# $) 12 T ELT)) (|exp| #16#) (|eval| (((|Stream| |#1|) $ |#1|) NIL #47=(|has| |#1| (SIGNATURE ** (|#1| |#1| #13#))) ELT)) (|euclideanSize| ((#24# $) NIL #22# ELT)) (|elt| (#48=(|#1| $ #13#) NIL T ELT) (#28# NIL (|has| #13# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #22# ELT)) (|differentiate| #49=(#41# NIL #50=(AND (|has| |#1| (|PartialDifferentialRing| #7#)) #51=(|has| |#1| (SIGNATURE * (|#1| #13# |#1|)))) ELT) #52=(($ $ #42#) NIL #50# ELT) #53=(($ $ #7# #24#) NIL #50# ELT) #54=(($ $ #42# (|List| #24#)) NIL #50# ELT) #55=(#10# NIL #51# ELT) #56=(#57=($ $ #24#) NIL #51# ELT)) (|degree| #32#) (|csch| #16#) (|csc| #16#) (|coth| #16#) (|cot| #16#) (|cosh| #16#) (|cos| #16#) (|complete| (#10# 10 T ELT)) (|coerce| (((|OutputForm|) $) 42 T ELT) (($ #14#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #13#) NIL #17# ELT) #9#) (|coefficient| (#48# 34 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#24#) NIL T CONST)) (|center| #39#) (|before?| #1#) (|atanh| #16#) (|atan| #16#) (|associates?| (#2# NIL #8# ELT)) (|asinh| #16#) (|asin| #16#) (|asech| #16#) (|asec| #16#) (|approximate| (#48# NIL (AND #47# (|has| |#1| (SIGNATURE |coerce| (|#1| #7#)))) ELT)) (|annihilate?| #1#) (|acsch| #16#) (|acsc| #16#) (|acoth| #16#) (|acot| #16#) (|acosh| #16#) (|acos| #16#) (|Zero| #25#) (|One| #25#) (D #49# #52# #53# #54# #55# #56#) (>= #1#) (> #1#) (= (#2# 28 T ELT)) (<= #1#) (< (#2# 37 T ELT)) (/ (#58=($ $ |#1|) NIL #22# ELT) #27#) (- #38# #37#) (+ #37#) (** #35# (#57# NIL T ELT) (#34# NIL #22# ELT) (#28# NIL #17# ELT) #59=(#12# NIL #17# ELT)) (* (($ #36# $) NIL T ELT) (($ #24# $) NIL T ELT) (($ #14# . #60=($)) NIL T ELT) #37# (#58# NIL T ELT) (($ |#1| . #60#) NIL T ELT) (($ #13# . #60#) NIL #17# ELT) #59#))
+(((|ExponentialOfUnivariatePuiseuxSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesCategory| |#1|) (|OrderedAbelianMonoid|) (CATEGORY |domain| (SIGNATURE |exponential| ($ #1=(|UnivariatePuiseuxSeries| |#1| |#2| |#3|))) (SIGNATURE |exponent| (#1# $)) (SIGNATURE |exponentialOrder| ((|Fraction| (|Integer|)) $)))) (|Field|) (|Symbol|) |#1|) (T |ExponentialOfUnivariatePuiseuxSeries|))
+((|exponential| (*1 *1 *2) (AND #1=(|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5)) #2=(|ofCategory| *3 (|Field|)) #3=(|ofType| *4 (|Symbol|)) #4=(|ofType| *5 *3) #5=(|isDomain| *1 (|ExponentialOfUnivariatePuiseuxSeries| *3 *4 *5)))) (|exponent| #6=(*1 *2 *1) (AND #1# #5# #2# #3# #4#)) (|exponentialOrder| #6# (AND (|isDomain| *2 (|Fraction| (|Integer|))) #5# #2# #3# #4#)))
+((|nthRoot| (((|Record| (|:| |exponent| #1=(|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) #2=(|Factored| |#1|) #1#) 35 T ELT)) (|log| (((|List| (|Record| (|:| |coef| #1#) (|:| |logand| |#1|))) #2#) 40 T ELT)))
+(((|FactoredFunctions| |#1|) (CATEGORY |package| (SIGNATURE |nthRoot| ((|Record| (|:| |exponent| #1=(|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) #2=(|Factored| |#1|) #1#)) (SIGNATURE |log| ((|List| (|Record| (|:| |coef| #1#) (|:| |logand| |#1|))) #2#))) (|IntegralDomain|)) (T |FactoredFunctions|))
+((|log| (*1 *2 *3) (AND (|isDomain| *3 (|Factored| *4)) (|ofCategory| *4 #1=(|IntegralDomain|)) (|isDomain| *2 (|List| (|Record| (|:| |coef| #2=(|NonNegativeInteger|)) (|:| |logand| *4)))) (|isDomain| *1 (|FactoredFunctions| *4)))) (|nthRoot| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 #1#) (|isDomain| *2 (|Record| (|:| |exponent| #2#) (|:| |coef| *5) (|:| |radicand| (|List| *5)))) (|isDomain| *1 (|FactoredFunctions| *5)) (|isDomain| *4 #2#))))
+((|variables| ((#1=(|List| |#2|) #2=(|SparseUnivariatePolynomial| |#4|)) 45 T ELT)) (|ran| ((|#3| #3=(|Integer|)) 48 T ELT)) (|raisePolynomial| ((#2# #4=(|SparseUnivariatePolynomial| |#3|)) 30 T ELT)) (|normalDeriv| ((#2# #2# #3#) 67 T ELT)) (|lowerPolynomial| ((#4# #2#) 21 T ELT)) (|degree| (((|List| (|NonNegativeInteger|)) #2# #1#) 41 T ELT)) (|completeEval| ((#4# #2# #1# (|List| |#3|)) 35 T ELT)))
+(((|FactoringUtilities| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |completeEval| (#1=(|SparseUnivariatePolynomial| |#3|) #2=(|SparseUnivariatePolynomial| |#4|) #3=(|List| |#2|) (|List| |#3|))) (SIGNATURE |degree| ((|List| (|NonNegativeInteger|)) #2# #3#)) (SIGNATURE |variables| (#3# #2#)) (SIGNATURE |lowerPolynomial| (#1# #2#)) (SIGNATURE |raisePolynomial| (#2# #1#)) (SIGNATURE |normalDeriv| (#2# #2# #4=(|Integer|))) (SIGNATURE |ran| (|#3| #4#))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Ring|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |FactoringUtilities|))
+((|ran| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 (|Integer|)) #3=(|ofCategory| *4 #4=(|OrderedAbelianMonoidSup|)) #5=(|ofCategory| *5 #6=(|OrderedSet|)) (|ofCategory| *2 #7=(|Ring|)) (|isDomain| *1 (|FactoringUtilities| *4 *5 *2 *6)) (|ofCategory| *6 (|PolynomialCategory| *2 *4 *5)))) (|normalDeriv| (*1 *2 *2 *3) (AND #8=(|isDomain| *2 #9=(|SparseUnivariatePolynomial| *7)) #2# #10=(|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)) #3# #5# #11=(|ofCategory| *6 #7#) #12=(|isDomain| *1 (|FactoringUtilities| *4 *5 *6 *7)))) (|raisePolynomial| #1# (AND (|isDomain| *3 #13=(|SparseUnivariatePolynomial| *6)) #11# #3# #5# #8# #12# #10#)) (|lowerPolynomial| #1# (AND #14=(|isDomain| *3 #9#) #10# #3# #5# #11# (|isDomain| *2 #13#) #12#)) (|variables| #1# (AND #14# #10# #3# #5# #11# (|isDomain| *2 (|List| *5)) #12#)) (|degree| (*1 *2 *3 *4) (AND (|isDomain| *3 #15=(|SparseUnivariatePolynomial| *8)) (|isDomain| *4 (|List| *6)) (|ofCategory| *6 #6#) (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6)) (|ofCategory| *5 #4#) (|ofCategory| *7 #7#) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|FactoringUtilities| *5 *6 *7 *8)))) (|completeEval| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9)) (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| *8)) (|ofCategory| *7 #6#) (|ofCategory| *8 #7#) (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) (|ofCategory| *6 #4#) (|isDomain| *2 #15#) (|isDomain| *1 (|FactoringUtilities| *6 *7 *8 *9)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#3# $) 19 T ELT)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #4=(|Integer|)))) $) 21 T ELT)) (|subtractIfCan| (((|Union| $ #5="failed") $ $) NIL T ELT)) (|size| ((#6=(|NonNegativeInteger|) $) NIL T ELT)) (|sample| #7=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #5#) $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|opposite?| #1#) (|nthFactor| ((|#1| $ #4#) NIL T ELT)) (|nthCoef| ((#4# $ #4#) NIL T ELT)) (|min| #8=(#9=($ $ $) NIL #10=(|has| |#1| (|OrderedSet|)) ELT)) (|max| #8#) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|mapCoef| (($ (|Mapping| #4# #4#) $) 11 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|highCommonTerms| (#9# NIL (|has| #4# (|OrderedAbelianMonoid|)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) NIL T ELT)) (|coefficient| ((#4# |#1| $) NIL T ELT)) (|before?| #1#) (|Zero| #7#) (>= #11=(#2# NIL #10# ELT)) (> #11#) (= #1#) (<= #11#) (< (#2# 30 #10# ELT)) (- (($ $) 12 T ELT) (#9# 29 T ELT)) (+ (#9# NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #6# $) NIL T ELT) (($ #4# $) NIL T ELT) (($ $ #4#) NIL T ELT) (($ #4# |#1|) 28 T ELT)))
+(((|FreeAbelianGroup| |#1|) (|Join| (|AbelianGroup|) (|Module| #1=(|Integer|)) (|FreeAbelianMonoidCategory| |#1| #1#) (CATEGORY |package| (IF (|has| |#1| #2=(|OrderedSet|)) (ATTRIBUTE #2#) |%noBranch|))) (|SetCategory|)) (T |FreeAbelianGroup|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) 34 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|size| (((|NonNegativeInteger|) $) 35 T ELT)) (|sample| (#3=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 39 T ELT)) (|retract| ((|#1| $) 40 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|nthFactor| ((|#1| $ (|Integer|)) 32 T ELT)) (|nthCoef| ((|#2| $ (|Integer|)) 33 T ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 29 T ELT)) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) 30 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|highCommonTerms| (($ $ $) 28 (|has| |#2| (|OrderedAbelianMonoid|)) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ |#1|) 38 T ELT)) (|coefficient| ((|#2| |#1| $) 31 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
+(((|FreeAbelianMonoidCategory| |#1| |#2|) (|Category|) (|SetCategory|) (|CancellationAbelianMonoid|)) (T |FreeAbelianMonoidCategory|))
+((+ (*1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|CancellationAbelianMonoid|)))) (* (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|size| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4)))))) (|nthCoef| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *4 *2)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *4)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|ofCategory| *2 (|SetCategory|)))) (|coefficient| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|mapCoef| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)))) (|highCommonTerms| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|CancellationAbelianMonoid|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))))
+(|Join| (|CancellationAbelianMonoid|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE + ($ |t#1| $)) (SIGNATURE * ($ |t#2| |t#1|)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |terms| ((|List| (|Record| (|:| |gen| |t#1|) (|:| |exp| |t#2|))) $)) (SIGNATURE |nthCoef| (|t#2| $ (|Integer|))) (SIGNATURE |nthFactor| (|t#1| $ (|Integer|))) (SIGNATURE |coefficient| (|t#2| |t#1| $)) (SIGNATURE |mapCoef| ($ (|Mapping| |t#2| |t#2|) $)) (SIGNATURE |mapGen| ($ (|Mapping| |t#1| |t#1|) $)) (IF (|has| |t#2| (|OrderedAbelianMonoid|)) (SIGNATURE |highCommonTerms| ($ $ $)) |%noBranch|)))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #3=(|NonNegativeInteger|)))) $) NIL T ELT)) (|subtractIfCan| (((|Union| $ #4="failed") $ $) NIL T ELT)) (|size| ((#3# $) NIL T ELT)) (|sample| #5=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #4#) $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|opposite?| #1#) (|nthFactor| ((|#1| $ #6=(|Integer|)) NIL T ELT)) (|nthCoef| ((#3# $ #6#) NIL T ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|mapCoef| (($ (|Mapping| #3# #3#) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|highCommonTerms| (#7=($ $ $) NIL (|has| #3# (|OrderedAbelianMonoid|)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) NIL T ELT)) (|coefficient| ((#3# |#1| $) NIL T ELT)) (|before?| #1#) (|Zero| #5#) (= #1#) (+ (#7# NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #3# $) NIL T ELT) (($ #3# |#1|) NIL T ELT)))
+(((|FreeAbelianMonoid| |#1|) (|FreeAbelianMonoidCategory| |#1| (|NonNegativeInteger|)) (|SetCategory|)) (T |FreeAbelianMonoid|))
+NIL
+((|primitivePart| (($ $) 72 T ELT)) (|pomopo!| (($ $ |#2| |#3| $) 14 T ELT)) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) 51 T ELT)) (|ground?| (((|Boolean|) $) 42 T ELT)) (|ground| (#1=(|#2| $) 44 T ELT)) (|exquo| ((#2=(|Union| $ "failed") $ $) NIL T ELT) ((#2# $ |#2|) 64 T ELT)) (|content| (#1# 68 T ELT)) (|coefficients| (((|List| |#2|) $) 56 T ELT)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 37 T ELT)) (/ (($ $ |#2|) 60 T ELT)))
+(((|FiniteAbelianMonoidRing&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| #1=(|#2| |#1|)) (SIGNATURE |exquo| (#2=(|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |binomThmExpt| (|#1| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |pomopo!| (|#1| |#1| |#2| |#3| |#1|)) (SIGNATURE |mapExponents| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |ground| #1#) (SIGNATURE |ground?| ((|Boolean|) |#1|)) (SIGNATURE |exquo| (#2# |#1| |#1|)) (SIGNATURE / (|#1| |#1| |#2|))) (|FiniteAbelianMonoidRing| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |FiniteAbelianMonoidRing&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #3=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 75 (|has| |#1| . #3#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#5=($) 23 T CONST)) (|retractIfCan| (((|Union| #6=(|Integer|) . #7=("failed")) . #8=($)) 110 (|has| |#1| . #9=((|RetractableTo| #6#))) ELT) (((|Union| #10=(|Fraction| #6#) . #7#) . #8#) 108 (|has| |#1| . #11=((|RetractableTo| #10#))) ELT) (((|Union| |#1| . #7#) . #8#) 105 T ELT)) (|retract| ((#6# . #12=($)) 109 (|has| |#1| . #9#) ELT) ((#10# . #12#) 107 (|has| |#1| . #11#) ELT) ((|#1| . #12#) 106 T ELT)) (|reductum| (#13=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|primitivePart| (($ $) 94 (|has| |#1| (|GcdDomain|)) ELT)) (|pomopo!| (($ $ |#1| |#2| $) 98 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 101 T ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| |#2|) 82 T ELT)) (|minimumDegree| ((|#2| $) 100 T ELT)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) 99 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|leadingMonomial| (#13# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 104 T ELT)) (|ground| ((|#1| $) 103 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #3#) ELT) (((|Union| $ "failed") $ |#1|) 96 (|has| |#1| (|IntegralDomain|)) ELT)) (|degree| ((|#2| $) 84 T ELT)) (|content| ((|#1| $) 95 (|has| |#1| (|GcdDomain|)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 70 (|has| |#1| . #3#) ELT) (($ |#1|) 68 T ELT) (($ #14=(|Fraction| (|Integer|))) 78 (OR (|has| |#1| . #11#) (|has| |#1| . #15=((|Algebra| #14#)))) ELT)) (|coefficients| (((|List| |#1|) $) 102 T ELT)) (|coefficient| ((|#1| $ |#2|) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 97 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#4# $ $) 74 (|has| |#1| . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #16=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #16#) 88 T ELT) (($ #14# . #16#) 77 (|has| |#1| . #15#) ELT) (($ $ #14#) 76 (|has| |#1| . #15#) ELT)))
+(((|FiniteAbelianMonoidRing| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |FiniteAbelianMonoidRing|))
+((|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (|ground| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|List| *3)))) (|numberOfMonomials| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|mapExponents| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|pomopo!| (*1 *1 *1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|binomThmExpt| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *3 (|CommutativeRing|)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|IntegralDomain|)))) (|content| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|GcdDomain|)))))
+(|Join| (|AbelianMonoidRing| |t#1| |t#2|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |ground| (|t#1| $)) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| (|t#2| $)) (SIGNATURE |mapExponents| ($ (|Mapping| |t#2| |t#2|) $)) (SIGNATURE |pomopo!| ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (|CommutativeRing|)) (SIGNATURE |binomThmExpt| ($ $ $ (|NonNegativeInteger|))) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |content| (|t#1| $)) (SIGNATURE |primitivePart| ($ $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) NIL #6=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #7=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#8=(#3# $) NIL #9=(|has| |#1| #10=(|OrderedSet|)) ELT)) (|sort!| (#11=($ #7# $) NIL #6# ELT) (#12=($ $) NIL (AND #6# #9#) ELT)) (|sort| (#11# NIL T ELT) (#12# NIL #9# ELT)) (|shrinkable| ((#3# #3#) NIL T ELT)) (|setelt| #13=(#14=(|#1| $ #5# |#1|) NIL #6# ELT) ((|#1| $ #15=(|UniversalSegment| #5#) |#1|) NIL #6# ELT)) (|select!| #16=(#17=($ #18=(|Mapping| #3# |#1|) $) NIL T ELT)) (|select| #19=(#17# NIL #20=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#21=($) NIL T CONST)) (|reverse!| (#12# NIL #6# ELT)) (|reverse| #22=(#12# NIL T ELT)) (|removeDuplicates!| (#12# NIL #4# ELT)) (|removeDuplicates| (#12# NIL #23=(AND #20# #4#) ELT)) (|remove!| (#24=($ |#1| $) NIL #4# ELT) #16#) (|remove| (#24# NIL #23# ELT) #19#) (|reduce| ((|#1| #25=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #25# $ |#1|) NIL T ELT) ((|#1| #25# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #26=((|#1| $ #5#) NIL T ELT)) (|position| ((#5# #18# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT) ((#5# |#1| $ #5#) NIL #4# ELT)) (|physicalLength!| #27=(($ $ #5#) NIL T ELT)) (|physicalLength| #28=((#29=(|NonNegativeInteger|) $) NIL T ELT)) (|new| (($ #29# |#1|) NIL T ELT)) (|minIndex| #30=((#5# $) NIL #31=(|has| #5# #10#) ELT)) (|min| #32=(#33=($ $ $) NIL #9# ELT)) (|merge!| #32# #34=(($ #7# $ $) NIL T ELT)) (|merge| #34# #32#) (|members| #35=((#36=(|List| |#1|) $) NIL T ELT)) (|member?| (#37=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| #30#) (|max| #32#) (|map!| #38=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #38# (($ #25# $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #39=(|has| |#1| (|SetCategory|)) ELT)) (|insert!| #40=(#41=($ $ $ #5#) NIL T ELT) #42=(($ |#1| $ #5#) NIL T ELT)) (|insert| #42# #40#) (|indices| (((|List| #5#) $) NIL T ELT)) (|index?| ((#3# #5# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #39# ELT)) (|flexibleArray| #43=(($ #36#) NIL T ELT)) (|first| ((|#1| $) NIL #31# ELT)) (|find| (((|Union| |#1| "failed") #18# $) NIL T ELT)) (|fill!| (#44=($ $ |#1|) NIL #6# ELT)) (|every?| #45=((#3# #18# $) NIL T ELT)) (|eval| (($ $ (|List| #46=(|Equation| |#1|))) NIL #47=(AND (|has| |#1| (|Evalable| |#1|)) #39#) ELT) (($ $ #46#) NIL #47# ELT) (($ $ |#1| |#1|) NIL #47# ELT) (($ $ #36# #36#) NIL #47# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#37# NIL #23# ELT)) (|entries| #35#) (|empty?| (#8# NIL T ELT)) (|empty| (#21# NIL T ELT)) (|elt| (#14# NIL T ELT) #26# #48=(($ $ #15#) NIL T ELT)) (|delete!| #48# #27#) (|delete| #27# #48#) (|count| ((#29# |#1| $) NIL #4# ELT) ((#29# #18# $) NIL T ELT)) (|copyInto!| (#41# NIL #6# ELT)) (|copy| #22#) (|convert| ((#49=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #49#)) ELT)) (|construct| #43#) (|concat!| #50=(#33# NIL T ELT) #51=(#44# NIL T ELT)) (|concat| #51# (#24# NIL T ELT) #50# (($ (|List| $)) NIL T ELT)) (|coerce| ((#52=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #52#)) ELT)) (|before?| #1#) (|any?| #45#) (>= #53=(#2# NIL #9# ELT)) (> #53#) (= #1#) (<= #53#) (< #53#) (|#| #28#))
+(((|FlexibleArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| (#1=(|Boolean|) #1#)))) (|Type|)) (T |FlexibleArray|))
+((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 (|Type|)) #2=(|isDomain| *1 (|FlexibleArray| *3)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) #2# #1#)) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #2# #1#)) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) #2# #1#)))
+((|transcendent?| (#1=((|Boolean|) $) 47 T ELT)) (|transcendenceDegree| (#2=((|NonNegativeInteger|)) 23 T ELT)) (|trace| (#3=(|#2| $) 51 T ELT) (#4=($ $ #5=(|PositiveInteger|)) 123 T ELT)) (|size| (#2# 124 T ELT)) (|represents| (($ #6=(|Vector| |#2|)) 20 T ELT)) (|normal?| (#1# 136 T ELT)) (|norm| (#3# 53 T ELT) (#4# 120 T ELT)) (|minimalPolynomial| (#7=(#8=(|SparseUnivariatePolynomial| |#2|) $) NIL T ELT) (((|SparseUnivariatePolynomial| $) $ #5#) 111 T ELT)) (|linearAssociatedOrder| (#7# 95 T ELT)) (|linearAssociatedLog| (#7# 91 T ELT) (((|Union| #8# "failed") $ $) 88 T ELT)) (|linearAssociatedExp| (($ $ #8#) 58 T ELT)) (|extensionDegree| ((#9=(|OnePointCompletion| #5#)) 30 T ELT) ((#5#) 48 T ELT)) (|dimension| (((|CardinalNumber|)) 27 T ELT)) (|degree| ((#9# $) 32 T ELT) ((#5# $) 139 T ELT)) (|createNormalElement| (($) 130 T ELT)) (|coordinates| ((#6# $) NIL T ELT) (((|Matrix| |#2|) (|Vector| $)) 42 T ELT)) (|charthRoot| (($ $) NIL T ELT) (((|Maybe| $) $) 100 T ELT)) (|algebraic?| (#1# 45 T ELT)))
+(((|FiniteAlgebraicExtensionField&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |charthRoot| ((|Maybe| |#1|) |#1|)) (SIGNATURE |size| #1=((|NonNegativeInteger|))) (SIGNATURE |charthRoot| (|#1| |#1|)) (SIGNATURE |linearAssociatedLog| ((|Union| #2=(|SparseUnivariatePolynomial| |#2|) "failed") |#1| |#1|)) (SIGNATURE |linearAssociatedLog| #3=(#2# |#1|)) (SIGNATURE |linearAssociatedOrder| #3#) (SIGNATURE |linearAssociatedExp| (|#1| |#1| #2#)) (SIGNATURE |normal?| #4=((|Boolean|) |#1|)) (SIGNATURE |createNormalElement| (|#1|)) (SIGNATURE |trace| #5=(|#1| |#1| #6=(|PositiveInteger|))) (SIGNATURE |norm| #5#) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| |#1|) |#1| #6#)) (SIGNATURE |trace| #7=(|#2| |#1|)) (SIGNATURE |norm| #7#) (SIGNATURE |degree| (#6# |#1|)) (SIGNATURE |extensionDegree| (#6#)) (SIGNATURE |minimalPolynomial| #3#) (SIGNATURE |represents| (|#1| #8=(|Vector| |#2|))) (SIGNATURE |coordinates| ((|Matrix| |#2|) (|Vector| |#1|))) (SIGNATURE |coordinates| (#8# |#1|)) (SIGNATURE |transcendenceDegree| #1#) (SIGNATURE |extensionDegree| (#9=(|OnePointCompletion| #6#))) (SIGNATURE |degree| (#9# |#1|)) (SIGNATURE |transcendent?| #4#) (SIGNATURE |algebraic?| #4#) (SIGNATURE |dimension| ((|CardinalNumber|)))) (|FiniteAlgebraicExtensionField| |#2|) (|Field|)) (T |FiniteAlgebraicExtensionField&|))
+((|dimension| #1=(*1 *2) (AND #2=(|ofCategory| *4 (|Field|)) (|isDomain| *2 (|CardinalNumber|)) #3=(|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4)) #4=(|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4)))) (|extensionDegree| #1# (AND #2# (|isDomain| *2 (|OnePointCompletion| #5=(|PositiveInteger|))) #3# #4#)) (|transcendenceDegree| #1# #6=(AND #2# (|isDomain| *2 (|NonNegativeInteger|)) #3# #4#)) (|extensionDegree| #1# (AND #2# (|isDomain| *2 #5#) #3# #4#)) (|size| #1# #6#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|transcendent?| (#4=((|Boolean|) $) 114 T ELT)) (|transcendenceDegree| ((#5=(|NonNegativeInteger|)) 110 T ELT)) (|trace| ((|#1| $) 162 T ELT) (($ $ (|PositiveInteger|)) 159 (|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #6=(|PositiveInteger|) #7=(|NonNegativeInteger|)) #8=(|Integer|)) 144 (|has| |#1| . #9=((|Finite|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#10=((|Factored| $) $) 90 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|size| (((|NonNegativeInteger|)) 134 (|has| |#1| . #9#) ELT)) (|sample| (#11=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 121 T ELT)) (|retract| ((|#1| $) 122 T ELT)) (|represents| (($ (|Vector| |#1|)) 168 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| . #9#) ELT)) (|rem| (#12=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|random| (($) 131 (|has| |#1| . #9#) ELT)) (|quo| (#12# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #13=(|List| $)) (|:| |generator| $)) #13#) 66 T ELT)) (|primitiveElement| (#14=($) 146 (|has| |#1| . #9#) ELT)) (|primitive?| (((|Boolean|) $) 147 (|has| |#1| . #9#) ELT)) (|primeFrobenius| (($ $ #15=(|NonNegativeInteger|)) 107 (OR (|has| |#1| . #16=((|CharacteristicNonZero|))) (|has| |#1| . #17=((|Finite|)))) ELT) (($ $) 106 (OR (|has| |#1| . #16#) (|has| |#1| . #17#)) ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|order| ((#6# $) 149 (|has| |#1| . #9#) ELT) (((|OnePointCompletion| (|PositiveInteger|)) $) 104 (OR (|has| |#1| . #16#) (|has| |#1| . #17#)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|normalElement| (($) 157 (|has| |#1| (|Finite|)) ELT)) (|normal?| (((|Boolean|) $) 156 (|has| |#1| (|Finite|)) ELT)) (|norm| ((|#1| $) 163 T ELT) (($ $ (|PositiveInteger|)) 160 (|has| |#1| (|Finite|)) ELT)) (|nextItem| (((|Maybe| $) $) 135 (|has| |#1| . #9#) ELT)) (|multiEuclidean| (((|Union| #18=(|List| $) #19="failed") #18# $) 68 T ELT)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 167 T ELT) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) 161 (|has| |#1| (|Finite|)) ELT)) (|lookup| ((#20=(|PositiveInteger|) $) 132 (|has| |#1| . #9#) ELT)) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) 153 (|has| |#1| (|Finite|)) ELT)) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| |#1|) $) 152 (|has| |#1| (|Finite|)) ELT) (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) 151 (|has| |#1| (|Finite|)) ELT)) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) 154 (|has| |#1| (|Finite|)) ELT)) (|lcm| (#21=($ $ $) 60 T ELT) (#22=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|init| (($) 136 (|has| |#1| . #9#) CONST)) (|index| (($ #20#) 133 (|has| |#1| . #9#) ELT)) (|inGroundField?| (#4# 113 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|generator| (($) 155 (|has| |#1| (|Finite|)) ELT)) (|gcdPolynomial| ((#23=(|SparseUnivariatePolynomial| $) #23# #23#) 58 T ELT)) (|gcd| (#21# 62 T ELT) (#22# 61 T ELT)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #8#) (|:| |exponent| #8#)))) 143 (|has| |#1| . #9#) ELT)) (|factor| (#10# 92 T ELT)) (|extensionDegree| ((#24=(|OnePointCompletion| (|PositiveInteger|))) 111 T ELT) (((|PositiveInteger|)) 165 T ELT)) (|extendedEuclidean| (((|Record| #25=(|:| |coef1| $) #26=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #25# #26#) #19#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #13#) #13# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|discreteLog| ((#7# $) 148 (|has| |#1| . #9#) ELT) (((|Union| #15# "failed") $ $) 105 (OR (|has| |#1| . #16#) (|has| |#1| . #17#)) ELT)) (|dimension| (((|CardinalNumber|)) 119 T ELT)) (|differentiate| (#27=($ $ (|NonNegativeInteger|)) 139 (|has| |#1| . #9#) ELT) (($ . #28=($)) 137 (|has| |#1| . #9#) ELT)) (|degree| ((#24# $) 112 T ELT) (((|PositiveInteger|) $) 164 T ELT)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) 166 T ELT)) (|createPrimitiveElement| (#14# 145 (|has| |#1| . #9#) ELT)) (|createNormalElement| (($) 158 (|has| |#1| (|Finite|)) ELT)) (|coordinates| (((|Vector| |#1|) $) 170 T ELT) (((|Matrix| |#1|) (|Vector| $)) 169 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 142 (|has| |#1| . #9#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #29=(|Fraction| #30=(|Integer|))) 84 T ELT) (($ |#1|) 120 T ELT)) (|charthRoot| (($ $) 141 (|has| |#1| . #9#) ELT) (((|Maybe| $) $) 103 (OR (|has| |#1| . #16#) (|has| |#1| . #17#)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|basis| (((|Vector| $)) 172 T ELT) (((|Vector| $) (|PositiveInteger|)) 171 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|algebraic?| (#4# 115 T ELT)) (|Zero| (#11# 24 T CONST)) (|One| (($) 45 T CONST)) (|Frobenius| (($ $) 109 (|has| |#1| . #17#) ELT) (($ $ #5#) 108 (|has| |#1| . #17#) ELT)) (D (#27# 140 (|has| |#1| . #9#) ELT) (($ . #28#) 138 (|has| |#1| . #9#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #30#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #31=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #29#) 86 T ELT) (($ #29# . #31#) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| . #31#) 116 T ELT)))
+(((|FiniteAlgebraicExtensionField| |#1|) (|Category|) (|Field|)) (T |FiniteAlgebraicExtensionField|))
+((|basis| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)))) (|basis| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)))) (|coordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *3)))) (|coordinates| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)))) (|minimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|definingPolynomial| (*1 *2) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|extensionDegree| (*1 *2) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Field|)))) (|trace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Field|)))) (|minimalPolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)))) (|norm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)))) (|trace| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)))) (|createNormalElement| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|normalElement| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|normal?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|Boolean|)))) (|generator| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|linearAssociatedExp| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)))) (|linearAssociatedOrder| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|linearAssociatedLog| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|linearAssociatedLog| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
+(|Join| (|ExtensionField| |t#1|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| $))) (SIGNATURE |basis| ((|Vector| $) (|PositiveInteger|))) (SIGNATURE |coordinates| ((|Vector| |t#1|) $)) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|))) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| |t#1|))) (SIGNATURE |extensionDegree| ((|PositiveInteger|))) (SIGNATURE |degree| ((|PositiveInteger|) $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |trace| (|t#1| $)) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|FiniteFieldCategory|)) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|))) (SIGNATURE |norm| ($ $ (|PositiveInteger|))) (SIGNATURE |trace| ($ $ (|PositiveInteger|))) (SIGNATURE |createNormalElement| ($)) (SIGNATURE |normalElement| ($)) (SIGNATURE |normal?| ((|Boolean|) $)) (SIGNATURE |generator| ($)) (SIGNATURE |linearAssociatedExp| ($ $ (|SparseUnivariatePolynomial| |t#1|))) (SIGNATURE |linearAssociatedOrder| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |linearAssociatedLog| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |linearAssociatedLog| ((|Union| (|SparseUnivariatePolynomial| |t#1|) "failed") $ $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialDomain| $) |has| |#1| (|Finite|)) ((|DifferentialRing|) |has| |#1| (|Finite|)) ((|DifferentialSpace|) |has| |#1| (|Finite|)) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|ExtensionField| |#1|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|Finite|) |has| |#1| (|Finite|)) ((|FiniteFieldCategory|) |has| |#1| (|Finite|)) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| |#1|) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|Finite|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| |#1|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|sin?| ((#3# $) 13 T ELT)) (|sin| (#4=($ |#1|) 10 T ELT)) (|min| #5=(($ $ $) NIL T ELT)) (|max| #5#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|cos| (#4# 12 T ELT)) (|coerce| (((|OutputForm|) $) 19 T ELT)) (|before?| #1#) (|argument| ((|#1| $) 14 T ELT)) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 21 T ELT)))
+(((|FourierComponent| |#1|) (|Join| #1=(|OrderedSet|) (CATEGORY |domain| (SIGNATURE |sin| #2=($ |#1|)) (SIGNATURE |cos| #2#) (SIGNATURE |sin?| ((|Boolean|) $)) (SIGNATURE |argument| (|#1| $)))) #1#) (T |FourierComponent|))
+((|sin| #1=(*1 *1 *2) #2=(AND (|isDomain| *1 (|FourierComponent| *2)) (|ofCategory| *2 #3=(|OrderedSet|)))) (|cos| #1# #2#) (|sin?| #4=(*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FourierComponent| *3)) (|ofCategory| *3 #3#))) (|argument| #4# #2#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|lookupFunction| (((|Identifier|) $) 20 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|encodingDirectory| (((|PrimitiveArray| #3=(|NonNegativeInteger|)) $) 18 T ELT)) (|domainTemplate| (((|DomainTemplate|) $) 7 T ELT)) (|coerce| (((|OutputForm|) $) 26 T ELT)) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) 16 T ELT)) (|before?| #1#) (|attributeData| (((|List| (|Pair| (|Syntax|) #3#)) $) 12 T ELT)) (= (#2# 22 T ELT)))
+(((|FunctorData|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |domainTemplate| ((|DomainTemplate|) $)) (SIGNATURE |attributeData| ((|List| (|Pair| (|Syntax|) #1=(|NonNegativeInteger|))) $)) (SIGNATURE |encodingDirectory| ((|PrimitiveArray| #1#) $)) (SIGNATURE |categories| ((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $)) (SIGNATURE |lookupFunction| ((|Identifier|) $))))) (T |FunctorData|))
+((|domainTemplate| #1=(*1 *2 *1) (AND (|isDomain| *2 (|DomainTemplate|)) #2=(|isDomain| *1 (|FunctorData|)))) (|attributeData| #1# (AND (|isDomain| *2 (|List| (|Pair| (|Syntax|) #3=(|NonNegativeInteger|)))) #2#)) (|encodingDirectory| #1# (AND (|isDomain| *2 (|PrimitiveArray| #3#)) #2#)) (|categories| #1# (AND (|isDomain| *2 (|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|)))) #2#)) (|lookupFunction| #1# (AND (|isDomain| *2 (|Identifier|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ #5="failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|reduce| (#7=($ $) 34 T ELT)) (|principal?| #4#) (|opposite?| #1#) (|latex| (((|String|) $) NIL T ELT)) (|lSpaceBasis| (#8=((|Vector| |#4|) $) 133 T ELT)) (|ideal| ((#9=(|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) 32 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (((|Union| |#4| #5#) $) 37 T ELT)) (|finiteBasis| (#8# 125 T ELT)) (|divisor| (($ #9#) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| #10=(|Integer|)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (|decompose| (((|Record| (|:| |id| #9#) (|:| |principalPart| |#4|)) $) 40 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT)) (|before?| #1#) (|Zero| (#6# 15 T CONST)) (= (#2# 21 T ELT)) (- (#7# 28 T ELT) (#11=($ $ $) NIL T ELT)) (+ (#11# 26 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #10# $) 24 T ELT)))
+(((|FiniteDivisor| |#1| |#2| |#3| |#4|) (|Join| (|FiniteDivisorCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |finiteBasis| #1=((|Vector| |#4|) $)) (SIGNATURE |lSpaceBasis| #1#))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |FiniteDivisor|))
+((|finiteBasis| #1=(*1 *2 *1) #2=(AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|FiniteDivisor| *3 *4 *5 *6)) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)))) (|lSpaceBasis| #1# #2#))
+((|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) 33 T ELT)))
+(((|FiniteDivisorFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| ((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) #1=(|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|) #1# (|UnivariatePolynomialCategory| |#5|) (|UnivariatePolynomialCategory| (|Fraction| |#6|)) (|FunctionFieldCategory| |#5| |#6| |#7|)) (T |FiniteDivisorFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *9 *5)) (|isDomain| *4 (|FiniteDivisor| *5 *6 *7 *8)) (|ofCategory| *5 #1=(|Field|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7)) (|ofCategory| *9 #1#) (|ofCategory| *10 (|UnivariatePolynomialCategory| *9)) (|ofCategory| *11 (|UnivariatePolynomialCategory| (|Fraction| *10))) (|isDomain| *2 (|FiniteDivisor| *9 *10 *11 *12)) (|isDomain| *1 (|FiniteDivisorFunctions2| *5 *6 *7 *8 *9 *10 *11 *12)) (|ofCategory| *12 (|FunctionFieldCategory| *9 *10 *11)))))
+((|principal?| (((|Boolean|) $) 14 T ELT)))
+(((|FiniteDivisorCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |principal?| ((|Boolean|) |#1|))) (|FiniteDivisorCategory| |#2| |#3| |#4| |#5|) (|Field|) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| (|Fraction| |#3|)) (|FunctionFieldCategory| |#2| |#3| |#4|)) (T |FiniteDivisorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|reduce| (($ $) 35 T ELT)) (|principal?| (((|Boolean|) $) 34 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) 41 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|generator| (((|Union| |#4| "failed") $) 33 T ELT)) (|divisor| (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (|Integer|)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT)))
+(((|FiniteDivisorCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Field|) (|UnivariatePolynomialCategory| |t#1|) (|UnivariatePolynomialCategory| (|Fraction| |t#2|)) (|FunctionFieldCategory| |t#1| |t#2| |t#3|)) (T |FiniteDivisorCategory|))
+((|ideal| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)))) (|divisor| (*1 *1 *2) (AND (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)))) (|divisor| (*1 *1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5)))) (|divisor| (*1 *1 *2 *2) (AND (|ofCategory| *2 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5)) (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4)))) (|divisor| (*1 *1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *1 (|FiniteDivisorCategory| *2 *4 *5 *6)) (|ofCategory| *6 (|FunctionFieldCategory| *2 *4 *5)))) (|decompose| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|Record| (|:| |id| (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)) (|:| |principalPart| *6))))) (|reduce| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4)))) (|principal?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|generator| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5)))) (|divisor| (*1 *1 *2 *3 *3 *3 *4) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *1 (|FiniteDivisorCategory| *4 *3 *5 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *4 *3 *5)))))
+(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |ideal| ((|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|) $)) (SIGNATURE |divisor| ($ (|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|))) (SIGNATURE |divisor| ($ |t#4|)) (SIGNATURE |divisor| ($ |t#1| |t#1|)) (SIGNATURE |divisor| ($ |t#1| |t#1| (|Integer|))) (SIGNATURE |decompose| ((|Record| (|:| |id| (|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (SIGNATURE |reduce| ($ $)) (SIGNATURE |principal?| ((|Boolean|) $)) (SIGNATURE |generator| ((|Union| |t#4| "failed") $)) (SIGNATURE |divisor| ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|eval| (($ $ #1=(|Symbol|) |#2|) NIL T ELT) (($ $ (|List| #1#) #2=(|List| |#2|)) 20 T ELT) (($ $ (|List| #3=(|Equation| |#2|))) 15 T ELT) (($ $ #3#) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ #2# #2#) NIL T ELT)) (|elt| (($ $ |#2|) 11 T ELT)))
+(((|FullyEvalableOver&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |elt| (|#1| |#1| |#2|)) (SIGNATURE |eval| (|#1| |#1| #1=(|List| |#2|) #1#)) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| #2=(|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| #2#))) (SIGNATURE |eval| (|#1| |#1| (|List| #3=(|Symbol|)) #1#)) (SIGNATURE |eval| (|#1| |#1| #3# |#2|))) (|FullyEvalableOver| |#2|) (|SetCategory|)) (T |FullyEvalableOver&|))
+NIL
+((|map| (($ (|Mapping| |#1| |#1|) $) 6 T ELT)) (|eval| (($ $ #1=(|Symbol|) |#1|) 17 (|has| |#1| (|InnerEvalable| #2=(|Symbol|) |#1|)) ELT) (($ $ (|List| #1#) (|List| |#1|)) 16 (|has| |#1| (|InnerEvalable| #2# |#1|)) ELT) (($ $ (|List| (|Equation| |#1|))) 15 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|Equation| |#1|)) 14 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 12 (|has| |#1| (|Evalable| |#1|)) ELT)) (|elt| (($ $ |#1|) 11 (|has| |#1| (|Eltable| |#1| |#1|)) ELT)))
+(((|FullyEvalableOver| |#1|) (|Category|) (|SetCategory|)) (T |FullyEvalableOver|))
+NIL
+(|Join| (|Functorial| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|Eltable| |t#1| |t#1|)) (ATTRIBUTE (|Eltable| |t#1| $)) |%noBranch|) (IF (|has| |t#1| (|Evalable| |t#1|)) (ATTRIBUTE (|Evalable| |t#1|)) |%noBranch|) (IF (|has| |t#1| (|InnerEvalable| (|Symbol|) |t#1|)) (ATTRIBUTE (|InnerEvalable| (|Symbol|) |t#1|)) |%noBranch|)))
+(((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Functorial| |#1|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Join|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #9=((#10=(|PrimeField| |#1|) $) NIL T ELT) #11=(#12=($ $ #13=(|PositiveInteger|)) NIL #14=(|has| #10# (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #13# #8#) #15=(|Integer|)) NIL #14# ELT)) (|subtractIfCan| #16=((#17=(|Union| $ #18="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#7# NIL #14# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# #18#) $) NIL T ELT)) (|retract| #9#) (|represents| (($ #22=(|Vector| #10#)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #14# ELT)) (|rem| #23=(($ $ $) NIL T ELT)) (|recip| ((#17# $) NIL T ELT)) (|random| #24=(#21# NIL #14# ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| #24#) (|primitive?| #27=(#4# NIL #14# ELT)) (|primeFrobenius| (#28=($ $ #8#) NIL #29=(OR (|has| #10# (|CharacteristicNonZero|)) #14#) ELT) (#6# NIL #29# ELT)) (|prime?| #3#) (|order| #30=(#31=(#13# $) NIL #14# ELT) (#32=(#33=(|OnePointCompletion| #13#) $) NIL #29# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #24#) (|normal?| #27#) (|norm| #9# #11#) (|nextItem| (#34=((|Maybe| $) $) NIL #14# ELT)) (|multiEuclidean| (((|Union| #25# #18#) #25# $) NIL T ELT)) (|minimalPolynomial| (#35=(#36=(|SparseUnivariatePolynomial| #10#) $) NIL T ELT) ((#37=(|SparseUnivariatePolynomial| $) $ #13#) NIL #14# ELT)) (|lookup| #30#) (|linearAssociatedOrder| #38=(#35# NIL #14# ELT)) (|linearAssociatedLog| #38# (((|Union| #36# #18#) $ $) NIL #14# ELT)) (|linearAssociatedExp| (($ $ #36#) NIL #14# ELT)) (|lcm| #23# #39=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#21# NIL #14# CONST)) (|index| (($ #13#) NIL #14# ELT)) (|inGroundField?| #3#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| #24#) (|gcdPolynomial| ((#37# #37# #37#) NIL T ELT)) (|gcd| #23# #39#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #15#) (|:| |exponent| #15#)))) NIL #14# ELT)) (|factor| #19#) (|extensionDegree| ((#33#) NIL T ELT) ((#13#) NIL T ELT)) (|extendedEuclidean| (((|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #40# #41#) #18#) $ $ $) NIL T ELT)) (|exquo| #16#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| (#42=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#42# NIL #14# ELT) (((|Union| #8# #18#) $ $) NIL #29# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #43=(#28# NIL #14# ELT) #44=(#6# NIL #14# ELT)) (|degree| (#32# NIL T ELT) (#31# NIL T ELT)) (|definingPolynomial| ((#36#) NIL T ELT)) (|createPrimitiveElement| #24#) (|createNormalElement| #24#) (|coordinates| ((#22# $) NIL T ELT) (((|Matrix| #10#) #45=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #45# #18#) (|Matrix| $)) NIL #14# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) #5# (($ #46=(|Fraction| #15#)) NIL T ELT) (($ #10#) NIL T ELT)) (|charthRoot| #44# (#34# NIL #29# ELT)) (|characteristic| (#7# NIL T CONST)) (|before?| #1#) (|basis| ((#45#) NIL T ELT) ((#45# #13#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #20#) (|One| #20#) (|Frobenius| #44# #43#) (D #43# #44#) (= #1#) (/ #23# #47=(($ $ #10#) NIL T ELT)) (- #5# #23#) (+ #23#) (** (#12# NIL T ELT) (#28# NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #15# . #48=($)) NIL T ELT) #23# (($ $ #46#) NIL T ELT) (($ #46# . #48#) NIL T ELT) #47# (($ #10# . #48#) NIL T ELT)))
+(((|FiniteField| |#1| |#2|) (|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) #1=(|PositiveInteger|) #1#) (T |FiniteField|))
+NIL
+((|yCoordinates| (((|Record| (|:| |num| #1=(|Vector| |#3|)) #2=(|:| |den| |#3|)) $) 39 T ELT)) (|represents| (($ #3=(|Vector| #4=(|Fraction| |#3|)) #5=(|Vector| $)) NIL T ELT) (($ #3#) NIL T ELT) (($ #1# |#3|) 172 T ELT)) (|reduceBasisAtInfinity| (#6=(#5# #5#) 156 T ELT)) (|rationalPoints| (((|List| (|List| |#2|))) 126 T ELT)) (|rationalPoint?| ((#7=(|Boolean|) |#2| |#2|) 76 T ELT)) (|primitivePart| (#8=($ $) 148 T ELT)) (|numberOfComponents| (#9=(#10=(|NonNegativeInteger|)) 171 T ELT)) (|normalizeAtInfinity| (#6# 219 T ELT)) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) #11=(|Symbol|)) 115 T ELT)) (|integralAtInfinity?| (#12=(#7# $) 168 T ELT)) (|integral?| (#12# 27 T ELT) ((#7# $ |#2|) 31 T ELT) ((#7# $ |#3|) 223 T ELT)) (|hyperelliptic| (#13=((|Union| |#3| "failed")) 52 T ELT)) (|genus| (#9# 183 T ELT)) (|elt| ((|#2| $ |#2| |#2|) 140 T ELT)) (|elliptic| (#13# 71 T ELT)) (|differentiate| (($ $ #14=(|Mapping| #4# #4#)) NIL T ELT) (($ $ #14# #10#) NIL T ELT) (($ $ #15=(|Mapping| |#3| |#3|)) 227 T ELT) (($ $ #16=(|List| #11#) (|List| #10#)) NIL T ELT) (($ $ #11# #10#) NIL T ELT) (($ $ #16#) NIL T ELT) (($ $ #11#) NIL T ELT) (($ $ #10#) NIL T ELT) (#8# NIL T ELT)) (|complementaryBasis| (#6# 162 T ELT)) (|algSplitSimple| (((|Record| (|:| |num| $) #2# (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ #15#) 68 T ELT)) (|absolutelyIrreducible?| ((#7#) 34 T ELT)))
+(((|FunctionFieldCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |differentiate| #1=(|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #2=(|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| #3=(|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| #4=(|List| #3#))) (SIGNATURE |differentiate| (|#1| |#1| #3# #2#)) (SIGNATURE |differentiate| (|#1| |#1| #4# (|List| #2#))) (SIGNATURE |rationalPoints| ((|List| (|List| |#2|)))) (SIGNATURE |nonSingularModel| ((|List| (|Polynomial| |#2|)) #3#)) (SIGNATURE |algSplitSimple| ((|Record| (|:| |num| |#1|) #5=(|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| #6=(|Mapping| |#3| |#3|))) (SIGNATURE |hyperelliptic| #7=((|Union| |#3| "failed"))) (SIGNATURE |elliptic| #7#) (SIGNATURE |elt| (|#2| |#1| |#2| |#2|)) (SIGNATURE |primitivePart| #1#) (SIGNATURE |differentiate| (|#1| |#1| #6#)) (SIGNATURE |integral?| (#8=(|Boolean|) |#1| |#3|)) (SIGNATURE |integral?| (#8# |#1| |#2|)) (SIGNATURE |represents| (|#1| #9=(|Vector| |#3|) |#3|)) (SIGNATURE |yCoordinates| ((|Record| (|:| |num| #9#) #5#) |#1|)) (SIGNATURE |reduceBasisAtInfinity| #10=(#11=(|Vector| |#1|) #11#)) (SIGNATURE |normalizeAtInfinity| #10#) (SIGNATURE |complementaryBasis| #10#) (SIGNATURE |integral?| #12=(#8# |#1|)) (SIGNATURE |integralAtInfinity?| #12#) (SIGNATURE |rationalPoint?| (#8# |#2| |#2|)) (SIGNATURE |absolutelyIrreducible?| (#8#)) (SIGNATURE |genus| #13=(#2#)) (SIGNATURE |numberOfComponents| #13#) (SIGNATURE |differentiate| (|#1| |#1| #14=(|Mapping| #15=(|Fraction| |#3|) #15#) #2#)) (SIGNATURE |differentiate| (|#1| |#1| #14#)) (SIGNATURE |represents| (|#1| #16=(|Vector| #15#))) (SIGNATURE |represents| (|#1| #16# #11#))) (|FunctionFieldCategory| |#2| |#3| |#4|) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| #15#)) (T |FunctionFieldCategory&|))
+((|numberOfComponents| #1=(*1 *2) #2=(AND #3=(|ofCategory| *4 #4=(|UniqueFactorizationDomain|)) #5=(|ofCategory| *5 #6=(|UnivariatePolynomialCategory| *4)) #7=(|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|isDomain| *2 (|NonNegativeInteger|)) #8=(|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *5 *6)) #9=(|ofCategory| *3 (|FunctionFieldCategory| *4 *5 *6)))) (|genus| #1# #2#) (|absolutelyIrreducible?| #1# (AND #3# #5# #7# #10=(|isDomain| *2 (|Boolean|)) #8# #9#)) (|rationalPoint?| (*1 *2 *3 *3) (AND (|ofCategory| *3 #4#) (|ofCategory| *5 (|UnivariatePolynomialCategory| *3)) #7# #10# (|isDomain| *1 (|FunctionFieldCategory&| *4 *3 *5 *6)) (|ofCategory| *4 (|FunctionFieldCategory| *3 *5 *6)))) (|elliptic| #1# #11=(|partial| AND #3# (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 #6#) (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *2 *5)) (|ofCategory| *3 (|FunctionFieldCategory| *4 *2 *5)))) (|hyperelliptic| #1# #11#) (|nonSingularModel| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *5 #4#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *2 (|List| (|Polynomial| *5))) (|isDomain| *1 (|FunctionFieldCategory&| *4 *5 *6 *7)) (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7)))) (|rationalPoints| #1# (AND #3# #5# #7# (|isDomain| *2 (|List| (|List| *4))) #8# #9#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 114 (|has| (|Fraction| |#2|) . #3=((|Field|))) ELT)) (|unitCanonical| (($ $) 115 (|has| (|Fraction| |#2|) . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 117 (|has| (|Fraction| |#2|) . #3#) ELT)) (|traceMatrix| (((|Matrix| (|Fraction| |#2|)) #5=(|Vector| $)) 61 T ELT) (((|Matrix| (|Fraction| |#2|))) 77 T ELT)) (|trace| (((|Fraction| |#2|) . #6=($)) 67 T ELT)) (|tableForDiscreteLogarithm| (((|Table| #7=(|PositiveInteger|) #8=(|NonNegativeInteger|)) #9=(|Integer|)) 167 (|has| (|Fraction| |#2|) . #10=((|FiniteFieldCategory|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 134 (|has| (|Fraction| |#2|) . #3#) ELT)) (|squareFree| (#11=((|Factored| $) $) 135 (|has| (|Fraction| |#2|) . #3#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 125 (|has| (|Fraction| |#2|) . #3#) ELT)) (|size| (((|NonNegativeInteger|)) 108 (|has| (|Fraction| |#2|) . #12=((|Finite|))) ELT)) (|singularAtInfinity?| (((|Boolean|)) 242 T ELT)) (|singular?| (((|Boolean|) |#1|) 241 T ELT) (((|Boolean|) |#2|) 240 T ELT)) (|sample| (#13=($) 23 T CONST)) (|retractIfCan| (((|Union| #14=(|Integer|) . #15=("failed")) . #16=($)) 194 (|has| (|Fraction| |#2|) . #17=((|RetractableTo| #14#))) ELT) (((|Union| #18=(|Fraction| #14#) . #15#) . #16#) 192 (|has| (|Fraction| |#2|) . #19=((|RetractableTo| #18#))) ELT) (((|Union| (|Fraction| |#2|) . #15#) . #16#) 189 T ELT)) (|retract| ((#14# . #20=($)) 193 (|has| (|Fraction| |#2|) . #17#) ELT) ((#18# . #20#) 191 (|has| (|Fraction| |#2|) . #19#) ELT) (((|Fraction| |#2|) . #20#) 190 T ELT)) (|represents| (($ (|Vector| (|Fraction| |#2|)) #5#) 63 T ELT) (($ (|Vector| (|Fraction| |#2|))) 80 T ELT) (($ (|Vector| |#2|) |#2|) 224 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 173 (|has| (|Fraction| |#2|) . #10#) ELT)) (|rem| (#21=($ $ $) 129 (|has| (|Fraction| |#2|) . #3#) ELT)) (|regularRepresentation| (((|Matrix| (|Fraction| |#2|)) $ #5#) 68 T ELT) (((|Matrix| (|Fraction| |#2|)) $) 75 T ELT)) (|reducedSystem| (((|Matrix| #22=(|Integer|)) . #23=(#24=(|Matrix| $))) 186 (|has| (|Fraction| |#2|) . #25=((|LinearlyExplicitRingOver| #22#))) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #26=(#24# #27=(|Vector| $))) 185 (|has| (|Fraction| |#2|) . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| (|Fraction| |#2|))) (|:| |vec| (|Vector| (|Fraction| |#2|)))) . #26#) 184 T ELT) (((|Matrix| (|Fraction| |#2|)) . #23#) 183 T ELT)) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) 230 T ELT)) (|reduce| (($ |#3|) 178 T ELT) (((|Union| $ "failed") (|Fraction| |#3|)) 175 (|has| (|Fraction| |#2|) . #3#) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rationalPoints| (((|List| (|List| |#1|))) 211 (|has| |#1| (|Finite|)) ELT)) (|rationalPoint?| (((|Boolean|) |#1| |#1|) 246 T ELT)) (|rank| (((|PositiveInteger|)) 69 T ELT)) (|random| (($) 111 (|has| (|Fraction| |#2|) . #12#) ELT)) (|ramifiedAtInfinity?| (((|Boolean|)) 239 T ELT)) (|ramified?| (((|Boolean|) |#1|) 238 T ELT) (((|Boolean|) |#2|) 237 T ELT)) (|quo| (#21# 128 (|has| (|Fraction| |#2|) . #3#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #28=(|List| $)) (|:| |generator| $)) #28#) 123 (|has| (|Fraction| |#2|) . #3#) ELT)) (|primitivePart| (($ $) 217 T ELT)) (|primitiveElement| (#29=($) 169 (|has| (|Fraction| |#2|) . #10#) ELT)) (|primitive?| (((|Boolean|) $) 170 (|has| (|Fraction| |#2|) . #10#) ELT)) (|primeFrobenius| (($ $ #30=(|NonNegativeInteger|)) 161 (|has| (|Fraction| |#2|) . #10#) ELT) (($ $) 160 (|has| (|Fraction| |#2|) . #10#) ELT)) (|prime?| (((|Boolean|) $) 136 (|has| (|Fraction| |#2|) . #3#) ELT)) (|order| ((#7# $) 172 (|has| (|Fraction| |#2|) . #10#) ELT) (((|OnePointCompletion| (|PositiveInteger|)) $) 158 (|has| (|Fraction| |#2|) . #10#) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfComponents| (((|NonNegativeInteger|)) 249 T ELT)) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) 231 T ELT)) (|norm| (((|Fraction| |#2|) . #6#) 66 T ELT)) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) 212 (|has| |#1| (|Field|)) ELT)) (|nextItem| (((|Maybe| $) $) 162 (|has| (|Fraction| |#2|) . #10#) ELT)) (|multiEuclidean| (((|Union| #31=(|List| $) #32="failed") #31# $) 132 (|has| (|Fraction| |#2|) . #3#) ELT)) (|minimalPolynomial| ((|#3| . #33=($)) 59 (|has| (|Fraction| |#2|) (|Field|)) ELT)) (|lookup| ((#34=(|PositiveInteger|) $) 110 (|has| (|Fraction| |#2|) . #12#) ELT)) (|lift| ((|#3| $) 176 T ELT)) (|leftReducedSystem| (((|Matrix| #22#) . #35=(#27#)) 188 (|has| (|Fraction| |#2|) . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #36=(#27# $)) 187 (|has| (|Fraction| |#2|) . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| (|Fraction| |#2|))) (|:| |vec| (|Vector| (|Fraction| |#2|)))) . #36#) 182 T ELT) (((|Matrix| (|Fraction| |#2|)) . #35#) 181 T ELT)) (|lcm| (#37=($ (|List| $)) 121 (|has| (|Fraction| |#2|) . #3#) ELT) (#38=($ $ $) 120 (|has| (|Fraction| |#2|) . #3#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 226 T ELT)) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) 228 T ELT)) (|inv| (($ $) 137 (|has| (|Fraction| |#2|) . #3#) ELT)) (|integralRepresents| (($ (|Vector| |#2|) |#2|) 222 T ELT)) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 227 T ELT)) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) 229 T ELT)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) 221 T ELT)) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (|integralBasisAtInfinity| (((|Vector| $)) 235 T ELT)) (|integralBasis| (((|Vector| $)) 236 T ELT)) (|integralAtInfinity?| (((|Boolean|) $) 234 T ELT)) (|integral?| (((|Boolean|) $) 233 T ELT) (((|Boolean|) $ |#1|) 220 T ELT) (((|Boolean|) $ |#2|) 219 T ELT)) (|init| (($) 163 (|has| (|Fraction| |#2|) . #10#) CONST)) (|index| (($ #34#) 109 (|has| (|Fraction| |#2|) . #12#) ELT)) (|hyperelliptic| (((|Union| |#2| "failed")) 214 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|genus| (((|NonNegativeInteger|)) 248 T ELT)) (|generator| (($) 180 T ELT)) (|gcdPolynomial| ((#39=(|SparseUnivariatePolynomial| $) #39# #39#) 122 (|has| (|Fraction| |#2|) . #3#) ELT)) (|gcd| (#37# 119 (|has| (|Fraction| |#2|) . #3#) ELT) (#38# 118 (|has| (|Fraction| |#2|) . #3#) ELT)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #9#) (|:| |exponent| #9#)))) 166 (|has| (|Fraction| |#2|) . #10#) ELT)) (|factor| (#11# 133 (|has| (|Fraction| |#2|) . #3#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $)) #32#) $ $ $) 131 (|has| (|Fraction| |#2|) . #3#) ELT) (((|Record| #40# #41# (|:| |generator| $)) $ $) 130 (|has| (|Fraction| |#2|) . #3#) ELT)) (|exquo| (((|Union| $ "failed") $ $) 113 (|has| (|Fraction| |#2|) . #3#) ELT)) (|expressIdealMember| (((|Maybe| #28#) #28# $) 124 (|has| (|Fraction| |#2|) . #3#) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 126 (|has| (|Fraction| |#2|) . #3#) ELT)) (|elt| ((|#1| $ |#1| |#1|) 216 T ELT)) (|elliptic| (((|Union| |#2| "failed")) 215 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 127 (|has| (|Fraction| |#2|) . #3#) ELT)) (|discriminant| (((|Fraction| |#2|) #5#) 62 T ELT) (((|Fraction| |#2|)) 76 T ELT)) (|discreteLog| ((#8# $) 171 (|has| (|Fraction| |#2|) . #10#) ELT) (((|Union| #30# "failed") $ $) 159 (|has| (|Fraction| |#2|) . #10#) ELT)) (|differentiate| (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 145 (|has| (|Fraction| |#2|) . #3#) ELT) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) . #42=((|NonNegativeInteger|))) 144 (|has| (|Fraction| |#2|) . #3#) ELT) (($ $ (|Mapping| |#2| |#2|)) 218 T ELT) (($ $ (|List| #43=(|Symbol|)) . #44=((|List| #45=(|NonNegativeInteger|)))) 150 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46=((|PartialDifferentialSpace| #43#)))) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47=((|PartialDifferentialRing| (|Symbol|))))) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ #43# . #48=(#45#)) 149 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ (|List| #43#)) 148 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ #43#) 146 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (#49=($ $ (|NonNegativeInteger|)) 156 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #50=((|DifferentialSpace|)))) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #51=((|DifferentialRing|)))) (|and| (|has| (|Fraction| |#2|) . #50#) (|has| (|Fraction| |#2|) . #3#)) (|has| (|Fraction| |#2|) . #10#)) ELT) (($ . #52=($)) 154 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #50#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #51#)) (|and| (|has| (|Fraction| |#2|) . #50#) (|has| (|Fraction| |#2|) . #3#)) (|has| (|Fraction| |#2|) . #10#)) ELT)) (|derivationCoordinates| (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 174 (|has| (|Fraction| |#2|) . #3#) ELT)) (|definingPolynomial| ((|#3|) 179 T ELT)) (|createPrimitiveElement| (#29# 168 (|has| (|Fraction| |#2|) . #10#) ELT)) (|coordinates| (((|Vector| (|Fraction| |#2|)) $ #5#) 65 T ELT) (((|Matrix| (|Fraction| |#2|)) #5# #5#) 64 T ELT) (((|Vector| (|Fraction| |#2|)) . #53=($)) 82 T ELT) (((|Matrix| (|Fraction| |#2|)) #54=(|Vector| $)) 81 T ELT)) (|convert| (((|Vector| (|Fraction| |#2|)) . #53#) 79 T ELT) (($ (|Vector| (|Fraction| |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 165 (|has| (|Fraction| |#2|) . #10#) ELT)) (|complementaryBasis| (((|Vector| $) (|Vector| $)) 232 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ (|Fraction| |#2|)) 52 T ELT) (($ #55=(|Fraction| #56=(|Integer|))) 107 (OR (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #19#)) ELT) (($ $) 112 (|has| (|Fraction| |#2|) . #3#) ELT)) (|charthRoot| (($ $) 164 (|has| (|Fraction| |#2|) . #10#) ELT) (((|Maybe| $) $) 58 (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| ((|#3| . #33#) 60 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|branchPointAtInfinity?| (((|Boolean|)) 245 T ELT)) (|branchPoint?| (((|Boolean|) |#1|) 244 T ELT) (((|Boolean|) |#2|) 243 T ELT)) (|before?| (#1# 6 T ELT)) (|basis| ((#54#) 83 T ELT)) (|associates?| ((#4# $ $) 116 (|has| (|Fraction| |#2|) . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) 213 T ELT)) (|absolutelyIrreducible?| (((|Boolean|)) 247 T ELT)) (|Zero| (#13# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 143 (|has| (|Fraction| |#2|) . #3#) ELT) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) . #42#) 142 (|has| (|Fraction| |#2|) . #3#) ELT) (($ $ (|List| #43#) . #44#) 153 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ #43# . #48#) 152 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ (|List| #43#)) 151 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (($ $ #43#) 147 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #46#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #47#)) (|and| (|has| (|Fraction| |#2|) . #46#) (|has| (|Fraction| |#2|) . #3#))) ELT) (#49# 157 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #50#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #51#)) (|and| (|has| (|Fraction| |#2|) . #50#) (|has| (|Fraction| |#2|) . #3#)) (|has| (|Fraction| |#2|) . #10#)) ELT) (($ . #52#) 155 (OR (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #50#)) (|and| (|has| (|Fraction| |#2|) . #3#) (|has| (|Fraction| |#2|) . #51#)) (|and| (|has| (|Fraction| |#2|) . #50#) (|has| (|Fraction| |#2|) . #3#)) (|has| (|Fraction| |#2|) . #10#)) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 141 (|has| (|Fraction| |#2|) . #3#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #56#) 138 (|has| (|Fraction| |#2|) . #3#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #57=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (|Fraction| |#2|)) 54 T ELT) (($ (|Fraction| |#2|) . #57#) 53 T ELT) (($ #55# . #57#) 140 (|has| (|Fraction| |#2|) . #3#) ELT) (($ $ #55#) 139 (|has| (|Fraction| |#2|) . #3#) ELT)))
+(((|FunctionFieldCategory| |#1| |#2| |#3|) (|Category|) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |t#1|) (|UnivariatePolynomialCategory| (|Fraction| |t#2|))) (T |FunctionFieldCategory|))
+((|numberOfComponents| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|NonNegativeInteger|)))) (|genus| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|NonNegativeInteger|)))) (|absolutelyIrreducible?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|rationalPoint?| (*1 *2 *3 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPointAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPoint?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPoint?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|singularAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|singular?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|singular?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|ramifiedAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|ramified?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|ramified?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|integralBasis| (*1 *2) (AND (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)))) (|integralBasisAtInfinity| (*1 *2) (AND (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)))) (|integralAtInfinity?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|integral?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|complementaryBasis| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|normalizeAtInfinity| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|reduceBasisAtInfinity| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|integralMatrix| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|inverseIntegralMatrix| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|integralMatrixAtInfinity| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|inverseIntegralMatrixAtInfinity| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|yCoordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))) (|represents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|integralCoordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))) (|integralRepresents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|integralDerivationMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5 *5)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|isDomain| *2 (|Record| (|:| |num| (|Matrix| *5)) (|:| |den| *5))))) (|integral?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|integral?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4)) (|ofCategory| *2 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|elt| (*1 *2 *1 *2 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4)) (|ofCategory| *2 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|elliptic| (*1 *2) (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|hyperelliptic| (*1 *2) (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|algSplitSimple| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| *5 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|isDomain| *2 (|Record| (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)))) (|nonSingularModel| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Polynomial| *4))))) (|rationalPoints| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|List| (|List| *3))))))
+(|Join| (|MonogenicAlgebra| (|Fraction| |t#2|) |t#3|) (CATEGORY |domain| (SIGNATURE |numberOfComponents| ((|NonNegativeInteger|))) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |absolutelyIrreducible?| ((|Boolean|))) (SIGNATURE |rationalPoint?| ((|Boolean|) |t#1| |t#1|)) (SIGNATURE |branchPointAtInfinity?| ((|Boolean|))) (SIGNATURE |branchPoint?| ((|Boolean|) |t#1|)) (SIGNATURE |branchPoint?| ((|Boolean|) |t#2|)) (SIGNATURE |singularAtInfinity?| ((|Boolean|))) (SIGNATURE |singular?| ((|Boolean|) |t#1|)) (SIGNATURE |singular?| ((|Boolean|) |t#2|)) (SIGNATURE |ramifiedAtInfinity?| ((|Boolean|))) (SIGNATURE |ramified?| ((|Boolean|) |t#1|)) (SIGNATURE |ramified?| ((|Boolean|) |t#2|)) (SIGNATURE |integralBasis| ((|Vector| $))) (SIGNATURE |integralBasisAtInfinity| ((|Vector| $))) (SIGNATURE |integralAtInfinity?| ((|Boolean|) $)) (SIGNATURE |integral?| ((|Boolean|) $)) (SIGNATURE |complementaryBasis| ((|Vector| $) (|Vector| $))) (SIGNATURE |normalizeAtInfinity| ((|Vector| $) (|Vector| $))) (SIGNATURE |reduceBasisAtInfinity| ((|Vector| $) (|Vector| $))) (SIGNATURE |integralMatrix| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |inverseIntegralMatrix| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |integralMatrixAtInfinity| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |inverseIntegralMatrixAtInfinity| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |yCoordinates| ((|Record| (|:| |num| (|Vector| |t#2|)) (|:| |den| |t#2|)) $)) (SIGNATURE |represents| ($ (|Vector| |t#2|) |t#2|)) (SIGNATURE |integralCoordinates| ((|Record| (|:| |num| (|Vector| |t#2|)) (|:| |den| |t#2|)) $)) (SIGNATURE |integralRepresents| ($ (|Vector| |t#2|) |t#2|)) (SIGNATURE |integralDerivationMatrix| ((|Record| (|:| |num| (|Matrix| |t#2|)) (|:| |den| |t#2|)) (|Mapping| |t#2| |t#2|))) (SIGNATURE |integral?| ((|Boolean|) $ |t#1|)) (SIGNATURE |integral?| ((|Boolean|) $ |t#2|)) (SIGNATURE |differentiate| ($ $ (|Mapping| |t#2| |t#2|))) (SIGNATURE |primitivePart| ($ $)) (SIGNATURE |elt| (|t#1| $ |t#1| |t#1|)) (SIGNATURE |elliptic| ((|Union| |t#2| "failed"))) (SIGNATURE |hyperelliptic| ((|Union| |t#2| "failed"))) (SIGNATURE |algSplitSimple| ((|Record| (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (|Mapping| |t#2| |t#2|))) (IF (|has| |t#1| (|Field|)) (SIGNATURE |nonSingularModel| ((|List| (|Polynomial| |t#1|)) (|Symbol|))) |%noBranch|) (IF (|has| |t#1| (|Finite|)) (SIGNATURE |rationalPoints| ((|List| (|List| |t#1|)))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Algebra| #2=(|Fraction| |#2|)) . T) ((|Algebra| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|BasicType|) . T) ((|BiModule| #1# #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|BiModule| #2# #2#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| (|Fraction| |#2|) (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|CoercibleFrom| #2#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| |#3|) . T) ((|DifferentialDomain| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (AND (|has| (|Fraction| |#2|) (|DifferentialSpace|)) (|has| (|Fraction| |#2|) (|Field|))) (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|)))) ((|DifferentialExtension| #2#) |has| (|Fraction| |#2|) (|Field|)) ((|DifferentialRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|)))) ((|DifferentialSpace|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (AND (|has| (|Fraction| |#2|) (|DifferentialSpace|)) (|has| (|Fraction| |#2|) (|Field|))) (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|)))) ((|DifferentialSpaceExtension| #2#) |has| (|Fraction| |#2|) (|Field|)) ((|DivisionRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|EntireRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|EuclideanDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Field|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|FieldOfPrimeCharacteristic|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|Finite|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Finite|))) ((|FiniteFieldCategory|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|FiniteRankAlgebra| #2# |#3|) . T) ((|FramedAlgebra| #2# |#3|) . T) ((|FullyLinearlyExplicitRingOver| #2#) . T) ((|FullyRetractableTo| #2#) . T) ((|GcdDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|IntegralDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LeftLinearSet| #2#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LeftModule| #2#) . T) ((|LeftModule| #3=(|Integer|)) |has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| $) . T) ((|LinearSet| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LinearSet| #2#) . T) ((|LinearSet| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LinearlyExplicitRingOver| #2#) . T) ((|LinearlyExplicitRingOver| #3#) |has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((|Module| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Module| #2#) . T) ((|Module| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|MonogenicAlgebra| #2# |#3|) . T) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #4=(|Symbol|)) OR (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialSpace| #4#) OR (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) ((|PrincipalIdealDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| #2#) . T) ((|RetractableTo| (|Integer|)) |has| (|Fraction| |#2|) (|RetractableTo| (|Integer|))) ((|RightLinearSet| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|RightLinearSet| #2#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|RightModule| #2#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))))
+((|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) 19 T ELT)))
+(((|FunctionFieldCategoryFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| (|#8| (|Mapping| |#5| |#1|) |#4|))) #1=(|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|) #1# (|UnivariatePolynomialCategory| |#5|) (|UnivariatePolynomialCategory| (|Fraction| |#6|)) (|FunctionFieldCategory| |#5| |#6| |#7|)) (T |FunctionFieldCategoryFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *5)) (|ofCategory| *5 #1=(|UniqueFactorizationDomain|)) (|ofCategory| *8 #1#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|ofCategory| *9 (|UnivariatePolynomialCategory| *8)) (|ofCategory| *2 (|FunctionFieldCategory| *8 *9 *10)) (|isDomain| *1 (|FunctionFieldCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2)) (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7)) (|ofCategory| *10 (|UnivariatePolynomialCategory| (|Fraction| *9))))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #9=((#10=(|PrimeField| |#1|) $) NIL T ELT) #11=(#12=($ $ #13=(|PositiveInteger|)) NIL #14=(|has| #10# (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #13# #8#) #15=(|Integer|)) NIL #14# ELT)) (|subtractIfCan| #16=((#17=(|Union| $ #18="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#7# NIL #14# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# #18#) $) NIL T ELT)) (|retract| #9#) (|represents| (($ #22=(|Vector| #10#)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #14# ELT)) (|rem| #23=(($ $ $) NIL T ELT)) (|recip| ((#17# $) NIL T ELT)) (|random| #24=(#21# NIL #14# ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| #24#) (|primitive?| #27=(#4# NIL #14# ELT)) (|primeFrobenius| (#28=($ $ #8#) NIL #29=(OR (|has| #10# (|CharacteristicNonZero|)) #14#) ELT) (#6# NIL #29# ELT)) (|prime?| #3#) (|order| #30=(#31=(#13# $) NIL #14# ELT) (#32=(#33=(|OnePointCompletion| #13#) $) NIL #29# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #24#) (|normal?| #27#) (|norm| #9# #11#) (|nextItem| (#34=((|Maybe| $) $) NIL #14# ELT)) (|multiEuclidean| (((|Union| #25# #18#) #25# $) NIL T ELT)) (|minimalPolynomial| (#35=(#36=(|SparseUnivariatePolynomial| #10#) $) NIL T ELT) ((#37=(|SparseUnivariatePolynomial| $) $ #13#) NIL #14# ELT)) (|lookup| #30#) (|linearAssociatedOrder| #38=(#35# NIL #14# ELT)) (|linearAssociatedLog| #38# (((|Union| #36# #18#) $ $) NIL #14# ELT)) (|linearAssociatedExp| (($ $ #36#) NIL #14# ELT)) (|lcm| #23# #39=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#21# NIL #14# CONST)) (|index| (($ #13#) NIL #14# ELT)) (|inGroundField?| #3#) (|hash| ((#40=(|SingleInteger|) $) NIL T ELT)) (|getZechTable| (((|PrimitiveArray| #40#)) NIL T ELT)) (|generator| #24#) (|gcdPolynomial| ((#37# #37# #37#) NIL T ELT)) (|gcd| #23# #39#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #15#) (|:| |exponent| #15#)))) NIL #14# ELT)) (|factor| #19#) (|extensionDegree| ((#33#) NIL T ELT) ((#13#) NIL T ELT)) (|extendedEuclidean| (((|Record| #41=(|:| |coef1| $) #42=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #41# #42#) #18#) $ $ $) NIL T ELT)) (|exquo| #16#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| (#43=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#43# NIL #14# ELT) (((|Union| #8# #18#) $ $) NIL #29# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #44=(#28# NIL #14# ELT) #45=(#6# NIL #14# ELT)) (|degree| (#32# NIL T ELT) (#31# NIL T ELT)) (|definingPolynomial| ((#36#) NIL T ELT)) (|createPrimitiveElement| #24#) (|createNormalElement| #24#) (|coordinates| ((#22# $) NIL T ELT) (((|Matrix| #10#) #46=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #46# #18#) (|Matrix| $)) NIL #14# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) #5# (($ #47=(|Fraction| #15#)) NIL T ELT) (($ #10#) NIL T ELT)) (|charthRoot| #45# (#34# NIL #29# ELT)) (|characteristic| (#7# NIL T CONST)) (|before?| #1#) (|basis| ((#46#) NIL T ELT) ((#46# #13#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #20#) (|One| #20#) (|Frobenius| #45# #44#) (D #44# #45#) (= #1#) (/ #23# #48=(($ $ #10#) NIL T ELT)) (- #5# #23#) (+ #23#) (** (#12# NIL T ELT) (#28# NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #15# . #49=($)) NIL T ELT) #23# (($ $ #47#) NIL T ELT) (($ #47# . #49#) NIL T ELT) #48# (($ #10# . #49#) NIL T ELT)))
+(((|FiniteFieldCyclicGroup| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) (CATEGORY |package| (SIGNATURE |getZechTable| ((|PrimitiveArray| (|SingleInteger|)))))) #1=(|PositiveInteger|) #1#) (T |FiniteFieldCyclicGroup|))
+((|getZechTable| (*1 *2) (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|))) (|isDomain| *1 (|FiniteFieldCyclicGroup| *3 *4)) (|ofType| *3 #1=(|PositiveInteger|)) (|ofType| *4 #1#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 58 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #7=(#4# NIL T ELT)) (|transcendent?| #7#) (|transcendenceDegree| (#8=(#9=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #10=(#11=(|#1| $) NIL T ELT) #12=(#13=($ $ #14=(|PositiveInteger|)) NIL #15=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #14# #9#) #16=(|Integer|)) 56 #15# ELT)) (|subtractIfCan| #17=((#18=(|Union| $ #19="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #20=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#8# NIL #15# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #19#) $) 139 T ELT)) (|retract| (#11# 111 T ELT)) (|represents| (($ #22=(|Vector| |#1|)) 128 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 119 #15# ELT)) (|rem| #23=(#24=($ $ $) NIL T ELT)) (|recip| ((#18# $) NIL T ELT)) (|random| (#21# 122 #15# ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| (#21# 155 #15# ELT)) (|primitive?| (#4# 65 #15# ELT)) (|primeFrobenius| (#27=($ $ #9#) NIL #28=(OR (|has| |#1| (|CharacteristicNonZero|)) #15#) ELT) (#6# NIL #28# ELT)) (|prime?| #7#) (|order| (#29=(#14# $) 60 #15# ELT) (#30=(#31=(|OnePointCompletion| #14#) $) NIL #28# ELT)) (|opposite?| #1#) (|one?| (#4# 62 T ELT)) (|normalElement| (#21# 157 #15# ELT)) (|normal?| (#4# NIL #15# ELT)) (|norm| #10# #12#) (|nextItem| (#32=((|Maybe| $) $) NIL #15# ELT)) (|multiEuclidean| (((|Union| #25# #19#) #25# $) NIL T ELT)) (|minimalPolynomial| (#33=(#34=(|SparseUnivariatePolynomial| |#1|) $) 115 T ELT) ((#35=(|SparseUnivariatePolynomial| $) $ #14#) NIL #15# ELT)) (|lookup| (#29# 165 #15# ELT)) (|linearAssociatedOrder| #36=(#33# NIL #15# ELT)) (|linearAssociatedLog| #36# (((|Union| #34# #19#) $ $) NIL #15# ELT)) (|linearAssociatedExp| (($ $ #34#) NIL #15# ELT)) (|lcm| #23# #37=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#6# 172 T ELT)) (|init| (#21# NIL #15# CONST)) (|index| (($ #14#) 94 #15# ELT)) (|inGroundField?| (#4# 142 T ELT)) (|hash| ((#38=(|SingleInteger|) $) NIL T ELT)) (|getZechTable| (((|PrimitiveArray| #38#)) 57 T ELT)) (|generator| (#21# 153 #15# ELT)) (|gcdPolynomial| ((#35# #35# #35#) NIL T ELT)) (|gcd| #23# #37#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #16#) (|:| |exponent| #16#)))) 117 #15# ELT)) (|factor| #20#) (|extensionDegree| ((#31#) 88 T ELT) ((#14#) 89 T ELT)) (|extendedEuclidean| (((|Record| #39=(|:| |coef1| $) #40=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #39# #40#) #19#) $ $ $) NIL T ELT)) (|exquo| #17#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| (#41=(#9# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#41# 156 #15# ELT) (((|Union| #9# #19#) $ $) 149 #28# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #42=(#27# NIL #15# ELT) #43=(#6# NIL #15# ELT)) (|degree| (#30# NIL T ELT) (#29# NIL T ELT)) (|definingPolynomial| ((#34#) 120 T ELT)) (|createPrimitiveElement| (#21# 154 #15# ELT)) (|createNormalElement| (#21# 162 #15# ELT)) (|coordinates| ((#22# $) 76 T ELT) (((|Matrix| |#1|) #44=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #44# #19#) (|Matrix| $)) NIL #15# ELT)) (|coerce| (((|OutputForm|) $) 168 T ELT) (($ #16#) NIL T ELT) #5# (($ #45=(|Fraction| #16#)) NIL T ELT) (($ |#1|) 98 T ELT)) (|charthRoot| #43# (#32# NIL #28# ELT)) (|characteristic| (#8# 150 T CONST)) (|before?| #1#) (|basis| ((#44#) 141 T ELT) ((#44# #14#) 96 T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #7#) (|Zero| (#21# 66 T CONST)) (|One| (#21# 101 T CONST)) (|Frobenius| (#6# 105 #15# ELT) #42#) (D #42# #43#) (= (#2# 64 T ELT)) (/ (#24# 170 T ELT) (#46=($ $ |#1|) 171 T ELT)) (- (#6# 152 T ELT) #23#) (+ (#24# 84 T ELT)) (** (#13# 174 T ELT) (#27# 175 T ELT) (($ $ #16#) 173 T ELT)) (* (($ #14# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #16# $) 100 T ELT) (#24# 99 T ELT) (($ $ #45#) NIL T ELT) (($ #45# $) NIL T ELT) (#46# NIL T ELT) (($ |#1| $) 169 T ELT)))
+(((|FiniteFieldCyclicGroupExtensionByPolynomial| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getZechTable| ((|PrimitiveArray| (|SingleInteger|)))))) (|FiniteFieldCategory|) (|SparseUnivariatePolynomial| |#1|)) (T |FiniteFieldCyclicGroupExtensionByPolynomial|))
+((|getZechTable| (*1 *2) (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|))) (|isDomain| *1 (|FiniteFieldCyclicGroupExtensionByPolynomial| *3 *4)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|SparseUnivariatePolynomial| *3)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #9=((|#1| $) NIL T ELT) #10=(#11=($ $ #12=(|PositiveInteger|)) NIL #13=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #12# #8#) #14=(|Integer|)) NIL #13# ELT)) (|subtractIfCan| #15=((#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #18=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#7# NIL #13# ELT)) (|sample| #19=(#20=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #17#) $) NIL T ELT)) (|retract| #9#) (|represents| (($ #21=(|Vector| |#1|)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #13# ELT)) (|rem| #22=(($ $ $) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|random| #23=(#20# NIL #13# ELT)) (|quo| #22#) (|principalIdeal| (((|Record| (|:| |coef| #24=(|List| $)) #25=(|:| |generator| $)) #24#) NIL T ELT)) (|primitiveElement| #23#) (|primitive?| #26=(#4# NIL #13# ELT)) (|primeFrobenius| (#27=($ $ #8#) NIL #28=(OR (|has| |#1| (|CharacteristicNonZero|)) #13#) ELT) (#6# NIL #28# ELT)) (|prime?| #3#) (|order| #29=(#30=(#12# $) NIL #13# ELT) (#31=(#32=(|OnePointCompletion| #12#) $) NIL #28# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #23#) (|normal?| #26#) (|norm| #9# #10#) (|nextItem| (#33=((|Maybe| $) $) NIL #13# ELT)) (|multiEuclidean| (((|Union| #24# #17#) #24# $) NIL T ELT)) (|minimalPolynomial| (#34=(#35=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT) ((#36=(|SparseUnivariatePolynomial| $) $ #12#) NIL #13# ELT)) (|lookup| #29#) (|linearAssociatedOrder| #37=(#34# NIL #13# ELT)) (|linearAssociatedLog| #37# (((|Union| #35# #17#) $ $) NIL #13# ELT)) (|linearAssociatedExp| (($ $ #35#) NIL #13# ELT)) (|lcm| #22# #38=(($ #24#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#20# NIL #13# CONST)) (|index| (($ #12#) NIL #13# ELT)) (|inGroundField?| #3#) (|hash| ((#39=(|SingleInteger|) $) NIL T ELT)) (|getZechTable| (((|PrimitiveArray| #39#)) NIL T ELT)) (|generator| #23#) (|gcdPolynomial| ((#36# #36# #36#) NIL T ELT)) (|gcd| #22# #38#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #14#) (|:| |exponent| #14#)))) NIL #13# ELT)) (|factor| #18#) (|extensionDegree| ((#32#) NIL T ELT) ((#12#) NIL T ELT)) (|extendedEuclidean| (((|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $) #25#) $ $) NIL T ELT) (((|Union| (|Record| #40# #41#) #17#) $ $ $) NIL T ELT)) (|exquo| #15#) (|expressIdealMember| (((|Maybe| #24#) #24# $) NIL T ELT)) (|euclideanSize| (#42=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#42# NIL #13# ELT) (((|Union| #8# #17#) $ $) NIL #28# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #43=(#27# NIL #13# ELT) #44=(#6# NIL #13# ELT)) (|degree| (#31# NIL T ELT) (#30# NIL T ELT)) (|definingPolynomial| ((#35#) NIL T ELT)) (|createPrimitiveElement| #23#) (|createNormalElement| #23#) (|coordinates| ((#21# $) NIL T ELT) (((|Matrix| |#1|) #45=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #45# #17#) (|Matrix| $)) NIL #13# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) NIL T ELT) #5# (($ #46=(|Fraction| #14#)) NIL T ELT) (($ |#1|) NIL T ELT)) (|charthRoot| #44# (#33# NIL #28# ELT)) (|characteristic| (#7# NIL T CONST)) (|before?| #1#) (|basis| ((#45#) NIL T ELT) ((#45# #12#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #19#) (|One| #19#) (|Frobenius| #44# #43#) (D #43# #44#) (= #1#) (/ #22# #47=(($ $ |#1|) NIL T ELT)) (- #5# #22#) (+ #22#) (** (#11# NIL T ELT) (#27# NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #14# . #48=($)) NIL T ELT) #22# (($ $ #46#) NIL T ELT) (($ #46# . #48#) NIL T ELT) #47# (($ |#1| . #48#) NIL T ELT)))
+(((|FiniteFieldCyclicGroupExtension| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getZechTable| ((|PrimitiveArray| (|SingleInteger|)))))) (|FiniteFieldCategory|) (|PositiveInteger|)) (T |FiniteFieldCyclicGroupExtension|))
+((|getZechTable| (*1 *2) (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|))) (|isDomain| *1 (|FiniteFieldCyclicGroupExtension| *3 *4)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|PositiveInteger|)))))
+((|sizeMultiplication| (((|NonNegativeInteger|) #1=(|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #2=(|SingleInteger|)))))) 61 T ELT)) (|createZechTable| (((|PrimitiveArray| #2#) #3=(|SparseUnivariatePolynomial| |#1|)) 112 T ELT)) (|createMultiplicationTable| ((#1# #3#) 103 T ELT)) (|createMultiplicationMatrix| (((|Matrix| |#1|) #1#) 113 T ELT)) (|createLowComplexityTable| (((|Union| #1# "failed") #4=(|PositiveInteger|)) 13 T ELT)) (|createLowComplexityNormalBasis| (((|Union| #3# #1#) #4#) 18 T ELT)))
+(((|FiniteFieldFunctions| |#1|) (CATEGORY |package| (SIGNATURE |createZechTable| ((|PrimitiveArray| #1=(|SingleInteger|)) #2=(|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |createMultiplicationTable| (#3=(|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #1#)))) #2#)) (SIGNATURE |createMultiplicationMatrix| ((|Matrix| |#1|) #3#)) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|) #3#)) (SIGNATURE |createLowComplexityTable| ((|Union| #3# "failed") #4=(|PositiveInteger|))) (SIGNATURE |createLowComplexityNormalBasis| ((|Union| #2# #3#) #4#))) (|FiniteFieldCategory|)) (T |FiniteFieldFunctions|))
+((|createLowComplexityNormalBasis| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Union| #3=(|SparseUnivariatePolynomial| *4) #4=(|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| #5=(|SingleInteger|))))))) #6=(|isDomain| *1 (|FiniteFieldFunctions| *4)) #7=(|ofCategory| *4 (|FiniteFieldCategory|)))) (|createLowComplexityTable| #1# (|partial| AND #2# #8=(|isDomain| *2 #4#) #6# #7#)) (|sizeMultiplication| #1# (AND #9=(|isDomain| *3 #4#) #7# (|isDomain| *2 (|NonNegativeInteger|)) #6#)) (|createMultiplicationMatrix| #1# (AND #9# #7# (|isDomain| *2 (|Matrix| *4)) #6#)) (|createMultiplicationTable| #1# (AND #10=(|isDomain| *3 #3#) #7# #8# #6#)) (|createZechTable| #1# (AND #10# #7# (|isDomain| *2 (|PrimitiveArray| #5#)) #6#)))
+((|coerce| ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
+(((|FiniteFieldHomomorphisms| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |coerce| (|#3| |#1|)) (SIGNATURE |coerce| (|#1| |#3|))) #1=(|FiniteAlgebraicExtensionField| |#2|) (|FiniteFieldCategory|) #1#) (T |FiniteFieldHomomorphisms|))
+((|coerce| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 (|FiniteFieldCategory|)) #3=(|ofCategory| *2 #4=(|FiniteAlgebraicExtensionField| *4)) (|isDomain| *1 (|FiniteFieldHomomorphisms| *2 *4 *3)) #5=(|ofCategory| *3 #4#))) (|coerce| #1# (AND #2# #3# (|isDomain| *1 (|FiniteFieldHomomorphisms| *3 *4 *2)) #5#)))
+((|primitive?| (((|Boolean|) $) 65 T ELT)) (|order| (((|OnePointCompletion| #1=(|PositiveInteger|)) $) 26 T ELT) ((#1# $) 69 T ELT)) (|nextItem| (#2=((|Maybe| $) $) 21 T ELT)) (|init| (#3=($) 9 T CONST)) (|gcdPolynomial| ((#4=(|SparseUnivariatePolynomial| $) #4# #4#) 120 T ELT)) (|discreteLog| (((|Union| #5=(|NonNegativeInteger|) #6="failed") $ $) 98 T ELT) ((#5# $) 84 T ELT)) (|differentiate| (#7=($ $) 8 T ELT) (($ $ #5#) NIL T ELT)) (|createPrimitiveElement| (#3# 58 T ELT)) (|conditionP| (((|Union| (|Vector| $) #6#) (|Matrix| $)) 41 T ELT)) (|charthRoot| (#2# 50 T ELT) (#7# 47 T ELT)))
+(((|FiniteFieldCategory&| |#1|) (CATEGORY |package| (SIGNATURE |order| (#1=(|PositiveInteger|) |#1|)) (SIGNATURE |discreteLog| (#2=(|NonNegativeInteger|) |#1|)) (SIGNATURE |primitive?| ((|Boolean|) |#1|)) (SIGNATURE |createPrimitiveElement| #3=(|#1|)) (SIGNATURE |conditionP| ((|Union| (|Vector| |#1|) #4="failed") (|Matrix| |#1|))) (SIGNATURE |charthRoot| #5=(|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #2#)) (SIGNATURE |differentiate| #5#) (SIGNATURE |init| #3# |constant|) (SIGNATURE |nextItem| #6=((|Maybe| |#1|) |#1|)) (SIGNATURE |discreteLog| ((|Union| #2# #4#) |#1| |#1|)) (SIGNATURE |order| ((|OnePointCompletion| #1#) |#1|)) (SIGNATURE |charthRoot| #6#) (SIGNATURE |gcdPolynomial| (#7=(|SparseUnivariatePolynomial| |#1|) #7# #7#))) (|FiniteFieldCategory|)) (T |FiniteFieldCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 113 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|size| (((|NonNegativeInteger|)) 123 T ELT)) (|sample| (#5=($) 23 T CONST)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (|rem| (#6=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|random| (($) 126 T ELT)) (|quo| (#6# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 66 T ELT)) (|primitiveElement| (($) 111 T ELT)) (|primitive?| (((|Boolean|) $) 110 T ELT)) (|primeFrobenius| (($ $) 97 T ELT) (($ $ #8=(|NonNegativeInteger|)) 96 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 99 T ELT) (((|PositiveInteger|) $) 108 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nextItem| (((|Maybe| $) $) 122 T ELT)) (|multiEuclidean| (((|Union| #9=(|List| $) #10="failed") #9# $) 68 T ELT)) (|lookup| ((#11=(|PositiveInteger|) $) 125 T ELT)) (|lcm| (#12=($ $ $) 60 T ELT) (#13=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|init| (($) 121 T CONST)) (|index| (($ #11#) 124 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#14=(|SparseUnivariatePolynomial| $) #14# #14#) 58 T ELT)) (|gcd| (#12# 62 T ELT) (#13# 61 T ELT)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 114 T ELT)) (|factor| (#4# 92 T ELT)) (|extendedEuclidean| (((|Record| #15=(|:| |coef1| $) #16=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #15# #16#) #10#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #7#) #7# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|discreteLog| (((|Union| #8# "failed") $ $) 98 T ELT) (((|NonNegativeInteger|) $) 109 T ELT)) (|differentiate| (($ . #17=($)) 120 T ELT) (#18=($ $ (|NonNegativeInteger|)) 118 T ELT)) (|createPrimitiveElement| (($) 112 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 115 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #19=(|Fraction| #20=(|Integer|))) 84 T ELT)) (|charthRoot| (((|Maybe| $) $) 100 T ELT) (($ $) 116 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ . #17#) 119 T ELT) (#18# 117 T ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #20#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #21=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #19#) 86 T ELT) (($ #19# . #21#) 85 T ELT)))
+(((|FiniteFieldCategory|) (|Category|)) (T |FiniteFieldCategory|))
+((|charthRoot| (*1 *1 *1) (|ofCategory| *1 (|FiniteFieldCategory|))) (|conditionP| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Matrix| *1)) (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|Vector| *1)))) (|factorsOfCyclicGroupSize| (*1 *2) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))))) (|tableForDiscreteLogarithm| (*1 *2 *3) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Table| (|PositiveInteger|) (|NonNegativeInteger|))))) (|createPrimitiveElement| (*1 *1) (|ofCategory| *1 (|FiniteFieldCategory|))) (|primitiveElement| (*1 *1) (|ofCategory| *1 (|FiniteFieldCategory|))) (|primitive?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|)))) (|discreteLog| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|PositiveInteger|)))) (|representationType| (*1 *2) (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|Union| "prime" "polynomial" "normal" "cyclic")))))
+(|Join| (|FieldOfPrimeCharacteristic|) (|Finite|) (|StepThrough|) (|DifferentialRing|) (CATEGORY |domain| (SIGNATURE |charthRoot| ($ $)) (SIGNATURE |conditionP| ((|Union| (|Vector| $) "failed") (|Matrix| $))) (SIGNATURE |factorsOfCyclicGroupSize| ((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|)))))) (SIGNATURE |tableForDiscreteLogarithm| ((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|))) (SIGNATURE |createPrimitiveElement| ($)) (SIGNATURE |primitiveElement| ($)) (SIGNATURE |primitive?| ((|Boolean|) $)) (SIGNATURE |discreteLog| ((|NonNegativeInteger|) $)) (SIGNATURE |order| ((|PositiveInteger|) $)) (SIGNATURE |representationType| ((|Union| "prime" "polynomial" "normal" "cyclic")))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialDomain| $) . T) ((|DifferentialRing|) . T) ((|DifferentialSpace|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) . T) ((|Finite|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|localIntegralBasis| ((#1=(|Record| (|:| |basis| #2=(|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| #2#)) |#1|) 55 T ELT)) (|integralBasis| ((#1#) 53 T ELT)))
+(((|FunctionFieldIntegralBasis| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |integralBasis| (#1=(|Record| (|:| |basis| #2=(|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| #2#)))) (SIGNATURE |localIntegralBasis| (#1# |#1|))) (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $)))) (|UnivariatePolynomialCategory| |#1|) (|FramedAlgebra| |#1| |#2|)) (T |FunctionFieldIntegralBasis|))
+((|localIntegralBasis| (*1 *2 *3) #1=(AND (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Record| (|:| |basis| #2=(|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| #2#))) (|isDomain| *1 (|FunctionFieldIntegralBasis| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|integralBasis| (*1 *2) #1#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| #7=(#8=(#9=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #10=((#11=(|PrimeField| |#1|) $) NIL T ELT) #12=(#13=($ $ #14=(|PositiveInteger|)) NIL #15=(|has| #11# (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #14# #9#) #16=(|Integer|)) NIL #15# ELT)) (|subtractIfCan| #17=((#18=(|Union| $ #19="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #20=(((|Factored| $) $) NIL T ELT)) (|sizeMultiplication| #7#) (|sizeLess?| #1#) (|size| (#8# NIL #15# ELT)) (|sample| #21=(#22=($) NIL T CONST)) (|retractIfCan| (((|Union| #11# #19#) $) NIL T ELT)) (|retract| #10#) (|represents| (($ #23=(|Vector| #11#)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #15# ELT)) (|rem| #24=(($ $ $) NIL T ELT)) (|recip| ((#18# $) NIL T ELT)) (|random| #25=(#22# NIL #15# ELT)) (|quo| #24#) (|principalIdeal| (((|Record| (|:| |coef| #26=(|List| $)) #27=(|:| |generator| $)) #26#) NIL T ELT)) (|primitiveElement| #25#) (|primitive?| #28=(#4# NIL #15# ELT)) (|primeFrobenius| (#29=($ $ #9#) NIL #30=(OR (|has| #11# (|CharacteristicNonZero|)) #15#) ELT) (#6# NIL #30# ELT)) (|prime?| #3#) (|order| #31=(#32=(#14# $) NIL #15# ELT) (#33=(#34=(|OnePointCompletion| #14#) $) NIL #30# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #25#) (|normal?| #28#) (|norm| #10# #12#) (|nextItem| (#35=((|Maybe| $) $) NIL #15# ELT)) (|multiEuclidean| (((|Union| #26# #19#) #26# $) NIL T ELT)) (|minimalPolynomial| (#36=(#37=(|SparseUnivariatePolynomial| #11#) $) NIL T ELT) ((#38=(|SparseUnivariatePolynomial| $) $ #14#) NIL #15# ELT)) (|lookup| #31#) (|linearAssociatedOrder| #39=(#36# NIL #15# ELT)) (|linearAssociatedLog| #39# (((|Union| #37# #19#) $ $) NIL #15# ELT)) (|linearAssociatedExp| (($ $ #37#) NIL #15# ELT)) (|lcm| #24# #40=(($ #26#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#22# NIL #15# CONST)) (|index| (($ #14#) NIL #15# ELT)) (|inGroundField?| #3#) (|hash| ((#41=(|SingleInteger|) $) NIL T ELT)) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| #11#) (|:| |index| #41#))))) NIL T ELT)) (|getMultiplicationMatrix| ((#42=(|Matrix| #11#)) NIL T ELT)) (|generator| #25#) (|gcdPolynomial| ((#38# #38# #38#) NIL T ELT)) (|gcd| #24# #40#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #16#) (|:| |exponent| #16#)))) NIL #15# ELT)) (|factor| #20#) (|extensionDegree| ((#34#) NIL T ELT) ((#14#) NIL T ELT)) (|extendedEuclidean| (((|Record| #43=(|:| |coef1| $) #44=(|:| |coef2| $) #27#) $ $) NIL T ELT) (((|Union| (|Record| #43# #44#) #19#) $ $ $) NIL T ELT)) (|exquo| #17#) (|expressIdealMember| (((|Maybe| #26#) #26# $) NIL T ELT)) (|euclideanSize| (#45=(#9# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#45# NIL #15# ELT) (((|Union| #9# #19#) $ $) NIL #30# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #46=(#29# NIL #15# ELT) #47=(#6# NIL #15# ELT)) (|degree| (#33# NIL T ELT) (#32# NIL T ELT)) (|definingPolynomial| ((#37#) NIL T ELT)) (|createPrimitiveElement| #25#) (|createNormalElement| #25#) (|coordinates| ((#23# $) NIL T ELT) ((#42# #48=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #48# #19#) (|Matrix| $)) NIL #15# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #16#) NIL T ELT) #5# (($ #49=(|Fraction| #16#)) NIL T ELT) (($ #11#) NIL T ELT)) (|charthRoot| #47# (#35# NIL #30# ELT)) (|characteristic| (#8# NIL T CONST)) (|before?| #1#) (|basis| ((#48#) NIL T ELT) ((#48# #14#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #21#) (|One| #21#) (|Frobenius| #47# #46#) (D #46# #47#) (= #1#) (/ #24# #50=(($ $ #11#) NIL T ELT)) (- #5# #24#) (+ #24#) (** (#13# NIL T ELT) (#29# NIL T ELT) (($ $ #16#) NIL T ELT)) (* (($ #14# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #16# . #51=($)) NIL T ELT) #24# (($ $ #49#) NIL T ELT) (($ #49# . #51#) NIL T ELT) #50# (($ #11# . #51#) NIL T ELT)))
+(((|FiniteFieldNormalBasis| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| #1=(|PrimeField| |#1|)) (CATEGORY |package| (SIGNATURE |getMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| #1#) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |getMultiplicationMatrix| ((|Matrix| #1#))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|))))) #2=(|PositiveInteger|) #2#) (T |FiniteFieldNormalBasis|))
+((|getMultiplicationTable| #1=(*1 *2) (AND (|isDomain| *2 (|Vector| (|List| (|Record| (|:| |value| #2=(|PrimeField| *3)) (|:| |index| (|SingleInteger|)))))) #3=(|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4)) #4=(|ofType| *3 #5=(|PositiveInteger|)) #6=(|ofType| *4 #5#))) (|getMultiplicationMatrix| #1# (AND (|isDomain| *2 (|Matrix| #2#)) #3# #4# #6#)) (|sizeMultiplication| #1# (AND (|isDomain| *2 (|NonNegativeInteger|)) #3# #4# #6#)))
+((~= (#1=(#2=(|Boolean|) $ $) 72 T ELT)) (|zero?| (#3=(#2# $) 87 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(#5=($ $) NIL T ELT)) (|unit?| #6=(#3# NIL T ELT)) (|transcendent?| #6#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| (#9=(|#1| $) 105 T ELT) (#10=($ $ #11=(|PositiveInteger|)) 103 #12=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #11# #8#) #13=(|Integer|)) 168 #12# ELT)) (|subtractIfCan| #14=((#15=(|Union| $ #16="failed") $ $) NIL T ELT)) (|squareFreePart| #4#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|sizeMultiplication| (#7# 102 T ELT)) (|sizeLess?| #18=(#1# NIL T ELT)) (|size| (#7# 185 #12# ELT)) (|sample| (#19=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #16#) $) 126 T ELT)) (|retract| (#9# 104 T ELT)) (|represents| (($ #20=(|Vector| |#1|)) 70 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 211 #12# ELT)) (|rem| #21=(#22=($ $ $) NIL T ELT)) (|recip| ((#15# $) NIL T ELT)) (|random| (#19# 180 #12# ELT)) (|quo| #21#) (|principalIdeal| (((|Record| (|:| |coef| #23=(|List| $)) #24=(|:| |generator| $)) #23#) NIL T ELT)) (|primitiveElement| (#19# 169 #12# ELT)) (|primitive?| (#3# NIL #12# ELT)) (|primeFrobenius| (#25=($ $ #8#) NIL #26=(OR (|has| |#1| (|CharacteristicNonZero|)) #12#) ELT) (#5# NIL #26# ELT)) (|prime?| #6#) (|order| (#27=(#11# $) NIL #12# ELT) (#28=(#29=(|OnePointCompletion| #11#) $) NIL #26# ELT)) (|opposite?| #18#) (|one?| #6#) (|normalElement| (#19# 112 #12# ELT)) (|normal?| (#3# 198 #12# ELT)) (|norm| (#9# 107 T ELT) (#10# 106 #12# ELT)) (|nextItem| (#30=((|Maybe| $) $) NIL #12# ELT)) (|multiEuclidean| (((|Union| #23# #16#) #23# $) NIL T ELT)) (|minimalPolynomial| (#31=(#32=(|SparseUnivariatePolynomial| |#1|) $) 212 T ELT) ((#33=(|SparseUnivariatePolynomial| $) $ #11#) NIL #12# ELT)) (|lookup| (#27# 146 #12# ELT)) (|linearAssociatedOrder| (#31# 86 #12# ELT)) (|linearAssociatedLog| (#31# 83 #12# ELT) (((|Union| #32# #16#) $ $) 95 #12# ELT)) (|linearAssociatedExp| (($ $ #32#) 82 #12# ELT)) (|lcm| #21# #34=(($ #23#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#5# 216 T ELT)) (|init| (#19# NIL #12# CONST)) (|index| (($ #11#) 148 #12# ELT)) (|inGroundField?| (#3# 122 T ELT)) (|hash| ((#35=(|SingleInteger|) $) NIL T ELT)) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #35#))))) 96 T ELT)) (|getMultiplicationMatrix| ((#36=(|Matrix| |#1|)) 100 T ELT)) (|generator| (#19# 109 #12# ELT)) (|gcdPolynomial| ((#33# #33# #33#) NIL T ELT)) (|gcd| #21# #34#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #13#) (|:| |exponent| #13#)))) 171 #12# ELT)) (|factor| #17#) (|extensionDegree| ((#29#) NIL T ELT) ((#11#) 172 T ELT)) (|extendedEuclidean| (((|Record| #37=(|:| |coef1| $) #38=(|:| |coef2| $) #24#) $ $) NIL T ELT) (((|Union| (|Record| #37# #38#) #16#) $ $ $) NIL T ELT)) (|exquo| #14#) (|expressIdealMember| (((|Maybe| #23#) #23# $) NIL T ELT)) (|euclideanSize| (#39=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#39# NIL #12# ELT) (((|Union| #8# #16#) $ $) NIL #26# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #40=(#25# NIL #12# ELT) #41=(#5# NIL #12# ELT)) (|degree| (#28# NIL T ELT) (#27# 74 T ELT)) (|definingPolynomial| ((#32#) 173 T ELT)) (|createPrimitiveElement| (#19# 145 #12# ELT)) (|createNormalElement| (#19# NIL #12# ELT)) (|coordinates| ((#20# $) 120 T ELT) ((#36# #42=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #42# #16#) (|Matrix| $)) NIL #12# ELT)) (|coerce| (((|OutputForm|) $) 138 T ELT) (($ #13#) NIL T ELT) #4# (($ #43=(|Fraction| #13#)) NIL T ELT) (($ |#1|) 69 T ELT)) (|charthRoot| #41# (#30# NIL #26# ELT)) (|characteristic| (#7# 178 T CONST)) (|before?| #18#) (|basis| ((#42#) 195 T ELT) ((#42# #11#) 115 T ELT)) (|associates?| #18#) (|annihilate?| #18#) (|algebraic?| #6#) (|Zero| (#19# 184 T CONST)) (|One| (#19# 159 T CONST)) (|Frobenius| (#5# 121 #12# ELT) (#25# 113 #12# ELT)) (D #40# #41#) (= (#1# 206 T ELT)) (/ (#22# 118 T ELT) (#44=($ $ |#1|) 119 T ELT)) (- (#5# 200 T ELT) (#22# 204 T ELT)) (+ (#22# 202 T ELT)) (** (#10# NIL T ELT) (#25# NIL T ELT) (($ $ #13#) 151 T ELT)) (* (($ #11# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #13# $) 209 T ELT) (#22# 162 T ELT) (($ $ #43#) NIL T ELT) (($ #43# $) NIL T ELT) (#44# NIL T ELT) (($ |#1| $) 117 T ELT)))
+(((|FiniteFieldNormalBasisExtensionByPolynomial| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getMultiplicationTable| (#1=(|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |getMultiplicationMatrix| ((|Matrix| |#1|))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|))))) (|FiniteFieldCategory|) (|Union| (|SparseUnivariatePolynomial| |#1|) #1#)) (T |FiniteFieldNormalBasisExtensionByPolynomial|))
+((|getMultiplicationTable| #1=(*1 *2) (AND (|isDomain| *2 #2=(|Vector| (|List| (|Record| (|:| |value| *3) (|:| |index| (|SingleInteger|)))))) #3=(|isDomain| *1 (|FiniteFieldNormalBasisExtensionByPolynomial| *3 *4)) #4=(|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|Union| #5=(|SparseUnivariatePolynomial| *3) *2)))) (|getMultiplicationMatrix| #1# (AND (|isDomain| *2 (|Matrix| *3)) #3# #4# #6=(|ofType| *4 (|Union| #5# #2#)))) (|sizeMultiplication| #1# (AND (|isDomain| *2 (|NonNegativeInteger|)) #3# #4# #6#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| #7=(#8=(#9=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #10=((|#1| $) NIL T ELT) #11=(#12=($ $ #13=(|PositiveInteger|)) NIL #14=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #13# #9#) #15=(|Integer|)) NIL #14# ELT)) (|subtractIfCan| #16=((#17=(|Union| $ #18="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|sizeMultiplication| #7#) (|sizeLess?| #1#) (|size| (#8# NIL #14# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #18#) $) NIL T ELT)) (|retract| #10#) (|represents| (($ #22=(|Vector| |#1|)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #14# ELT)) (|rem| #23=(($ $ $) NIL T ELT)) (|recip| ((#17# $) NIL T ELT)) (|random| #24=(#21# NIL #14# ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| #24#) (|primitive?| #27=(#4# NIL #14# ELT)) (|primeFrobenius| (#28=($ $ #9#) NIL #29=(OR (|has| |#1| (|CharacteristicNonZero|)) #14#) ELT) (#6# NIL #29# ELT)) (|prime?| #3#) (|order| #30=(#31=(#13# $) NIL #14# ELT) (#32=(#33=(|OnePointCompletion| #13#) $) NIL #29# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #24#) (|normal?| #27#) (|norm| #10# #11#) (|nextItem| (#34=((|Maybe| $) $) NIL #14# ELT)) (|multiEuclidean| (((|Union| #25# #18#) #25# $) NIL T ELT)) (|minimalPolynomial| (#35=(#36=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT) ((#37=(|SparseUnivariatePolynomial| $) $ #13#) NIL #14# ELT)) (|lookup| #30#) (|linearAssociatedOrder| #38=(#35# NIL #14# ELT)) (|linearAssociatedLog| #38# (((|Union| #36# #18#) $ $) NIL #14# ELT)) (|linearAssociatedExp| (($ $ #36#) NIL #14# ELT)) (|lcm| #23# #39=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#21# NIL #14# CONST)) (|index| (($ #13#) NIL #14# ELT)) (|inGroundField?| #3#) (|hash| ((#40=(|SingleInteger|) $) NIL T ELT)) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #40#))))) NIL T ELT)) (|getMultiplicationMatrix| ((#41=(|Matrix| |#1|)) NIL T ELT)) (|generator| #24#) (|gcdPolynomial| ((#37# #37# #37#) NIL T ELT)) (|gcd| #23# #39#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #15#) (|:| |exponent| #15#)))) NIL #14# ELT)) (|factor| #19#) (|extensionDegree| ((#33#) NIL T ELT) ((#13#) NIL T ELT)) (|extendedEuclidean| (((|Record| #42=(|:| |coef1| $) #43=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #42# #43#) #18#) $ $ $) NIL T ELT)) (|exquo| #16#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| (#44=(#9# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#44# NIL #14# ELT) (((|Union| #9# #18#) $ $) NIL #29# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #45=(#28# NIL #14# ELT) #46=(#6# NIL #14# ELT)) (|degree| (#32# NIL T ELT) (#31# NIL T ELT)) (|definingPolynomial| ((#36#) NIL T ELT)) (|createPrimitiveElement| #24#) (|createNormalElement| #24#) (|coordinates| ((#22# $) NIL T ELT) ((#41# #47=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #47# #18#) (|Matrix| $)) NIL #14# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) #5# (($ #48=(|Fraction| #15#)) NIL T ELT) (($ |#1|) NIL T ELT)) (|charthRoot| #46# (#34# NIL #29# ELT)) (|characteristic| (#8# NIL T CONST)) (|before?| #1#) (|basis| ((#47#) NIL T ELT) ((#47# #13#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #20#) (|One| #20#) (|Frobenius| #46# #45#) (D #45# #46#) (= #1#) (/ #23# #49=(($ $ |#1|) NIL T ELT)) (- #5# #23#) (+ #23#) (** (#12# NIL T ELT) (#28# NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #15# . #50=($)) NIL T ELT) #23# (($ $ #48#) NIL T ELT) (($ #48# . #50#) NIL T ELT) #49# (($ |#1| . #50#) NIL T ELT)))
+(((|FiniteFieldNormalBasisExtension| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |getMultiplicationMatrix| ((|Matrix| |#1|))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|))))) (|FiniteFieldCategory|) (|PositiveInteger|)) (T |FiniteFieldNormalBasisExtension|))
+((|getMultiplicationTable| #1=(*1 *2) (AND (|isDomain| *2 (|Vector| (|List| (|Record| (|:| |value| *3) (|:| |index| (|SingleInteger|)))))) #2=(|isDomain| *1 (|FiniteFieldNormalBasisExtension| *3 *4)) #3=(|ofCategory| *3 (|FiniteFieldCategory|)) #4=(|ofType| *4 (|PositiveInteger|)))) (|getMultiplicationMatrix| #1# (AND (|isDomain| *2 (|Matrix| *3)) #2# #3# #4#)) (|sizeMultiplication| #1# (AND (|isDomain| *2 (|NonNegativeInteger|)) #2# #3# #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #6=(#7=($ $) NIL T ELT)) (|unit?| #4#) (|transcendent?| #4#) (|transcendenceDegree| (#8=(#9=(|NonNegativeInteger|)) NIL T ELT)) (|trace| (#10=(|#1| $) NIL T ELT) (#11=($ $ #12=(|PositiveInteger|)) NIL #13=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #12# #9#) #14=(|Integer|)) 130 #13# ELT)) (|subtractIfCan| #15=((#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePart| #6#) (|squareFree| #18=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#8# 156 #13# ELT)) (|sample| (#19=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #17#) $) 104 T ELT)) (|retract| (#10# 101 T ELT)) (|represents| (($ #20=(|Vector| |#1|)) 96 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 127 #13# ELT)) (|rem| #21=(#22=($ $ $) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|random| (#19# 93 #13# ELT)) (|quo| #21#) (|principalIdeal| (((|Record| (|:| |coef| #23=(|List| $)) #24=(|:| |generator| $)) #23#) NIL T ELT)) (|primitiveElement| (#19# 52 #13# ELT)) (|primitive?| (#5# NIL #13# ELT)) (|primeFrobenius| (#25=($ $ #9#) NIL #26=(OR (|has| |#1| (|CharacteristicNonZero|)) #13#) ELT) (#7# NIL #26# ELT)) (|prime?| #4#) (|order| (#27=(#12# $) NIL #13# ELT) (#28=(#29=(|OnePointCompletion| #12#) $) NIL #26# ELT)) (|opposite?| #1#) (|one?| #4#) (|normalElement| (#19# 131 #13# ELT)) (|normal?| (#5# 85 #13# ELT)) (|norm| (#10# 48 T ELT) (#11# 53 #13# ELT)) (|nextItem| (#30=((|Maybe| $) $) NIL #13# ELT)) (|multiEuclidean| (((|Union| #23# #17#) #23# $) NIL T ELT)) (|minimalPolynomial| (#31=(#32=(|SparseUnivariatePolynomial| |#1|) $) 76 T ELT) ((#33=(|SparseUnivariatePolynomial| $) $ #12#) NIL #13# ELT)) (|lookup| (#27# 108 #13# ELT)) (|linearAssociatedOrder| #34=(#31# NIL #13# ELT)) (|linearAssociatedLog| #34# (((|Union| #32# #17#) $ $) NIL #13# ELT)) (|linearAssociatedExp| (($ $ #32#) NIL #13# ELT)) (|lcm| #21# #35=(($ #23#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #6#) (|init| (#19# NIL #13# CONST)) (|index| (($ #12#) 106 #13# ELT)) (|inGroundField?| (#5# 158 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (#19# 45 #13# ELT)) (|gcdPolynomial| ((#33# #33# #33#) NIL T ELT)) (|gcd| #21# #35#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #14#) (|:| |exponent| #14#)))) 125 #13# ELT)) (|factor| #18#) (|extensionDegree| ((#29#) NIL T ELT) ((#12#) 155 T ELT)) (|extendedEuclidean| (((|Record| #36=(|:| |coef1| $) #37=(|:| |coef2| $) #24#) $ $) NIL T ELT) (((|Union| (|Record| #36# #37#) #17#) $ $ $) NIL T ELT)) (|exquo| #15#) (|expressIdealMember| (((|Maybe| #23#) #23# $) NIL T ELT)) (|euclideanSize| (#38=(#9# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#38# NIL #13# ELT) (((|Union| #9# #17#) $ $) NIL #26# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #39=(#25# NIL #13# ELT) #40=(#7# NIL #13# ELT)) (|degree| (#28# NIL T ELT) (#27# 68 T ELT)) (|definingPolynomial| ((#32#) 99 T ELT)) (|createPrimitiveElement| (#19# 136 #13# ELT)) (|createNormalElement| (#19# NIL #13# ELT)) (|coordinates| ((#20# $) 64 T ELT) (((|Matrix| |#1|) #41=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #41# #17#) (|Matrix| $)) NIL #13# ELT)) (|coerce| (((|OutputForm|) $) 154 T ELT) (($ #14#) NIL T ELT) #6# (($ #42=(|Fraction| #14#)) NIL T ELT) (($ |#1|) 98 T ELT)) (|charthRoot| #40# (#30# NIL #26# ELT)) (|characteristic| (#8# 160 T CONST)) (|before?| (#2# 162 T ELT)) (|basis| ((#41#) 120 T ELT) ((#41# #12#) 59 T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #4#) (|Zero| (#19# 122 T CONST)) (|One| (#19# 40 T CONST)) (|Frobenius| (#7# 79 #13# ELT) #39#) (D #39# #40#) (= (#2# 118 T ELT)) (/ (#22# 110 T ELT) (#43=($ $ |#1|) 111 T ELT)) (- (#7# 91 T ELT) (#22# 116 T ELT)) (+ (#22# 114 T ELT)) (** (#11# NIL T ELT) (#25# 54 T ELT) (($ $ #14#) 139 T ELT)) (* (($ #12# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #14# $) 89 T ELT) (#22# 66 T ELT) (($ $ #42#) NIL T ELT) (($ #42# $) NIL T ELT) (#43# NIL T ELT) (($ |#1| $) 87 T ELT)))
+(((|FiniteFieldExtensionByPolynomial| |#1| |#2|) (|FiniteAlgebraicExtensionField| |#1|) (|FiniteFieldCategory|) (|SparseUnivariatePolynomial| |#1|)) (T |FiniteFieldExtensionByPolynomial|))
+NIL
+((|reducedQPowers| (((|PrimitiveArray| #1=(|SparseUnivariatePolynomial| |#1|)) #1#) 49 T ELT)) (|random| ((#1# #2=(|PositiveInteger|) #2#) 159 T ELT) (#3=(#1# #2#) 155 T ELT)) (|primitive?| (#4=((|Boolean|) #1#) 110 T ELT)) (|numberOfPrimitivePoly| (#5=(#2# #2#) 85 T ELT)) (|numberOfNormalPoly| (#5# 94 T ELT)) (|numberOfIrreduciblePoly| (#5# 83 T ELT)) (|normal?| (#4# 114 T ELT)) (|nextPrimitivePoly| (#6=((|Union| #1# "failed") #1#) 139 T ELT)) (|nextPrimitiveNormalPoly| (#6# 144 T ELT)) (|nextNormalPrimitivePoly| (#6# 143 T ELT)) (|nextNormalPoly| (#6# 142 T ELT)) (|nextIrreduciblePoly| (#6# 134 T ELT)) (|leastAffineMultiple| ((#1# #1#) 71 T ELT)) (|createPrimitivePoly| (#3# 149 T ELT)) (|createPrimitiveNormalPoly| (#3# 152 T ELT)) (|createNormalPrimitivePoly| (#3# 151 T ELT)) (|createNormalPoly| (#3# 150 T ELT)) (|createIrreduciblePoly| (#3# 147 T ELT)))
+(((|FiniteFieldPolynomialPackage| |#1|) (CATEGORY |package| (SIGNATURE |primitive?| #1=((|Boolean|) #2=(|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |normal?| #1#) (SIGNATURE |numberOfIrreduciblePoly| #3=(#4=(|PositiveInteger|) #4#)) (SIGNATURE |numberOfPrimitivePoly| #3#) (SIGNATURE |numberOfNormalPoly| #3#) (SIGNATURE |createIrreduciblePoly| #5=(#2# #4#)) (SIGNATURE |createPrimitivePoly| #5#) (SIGNATURE |createNormalPoly| #5#) (SIGNATURE |createNormalPrimitivePoly| #5#) (SIGNATURE |createPrimitiveNormalPoly| #5#) (SIGNATURE |nextIrreduciblePoly| #6=((|Union| #2# "failed") #2#)) (SIGNATURE |nextPrimitivePoly| #6#) (SIGNATURE |nextNormalPoly| #6#) (SIGNATURE |nextNormalPrimitivePoly| #6#) (SIGNATURE |nextPrimitiveNormalPoly| #6#) (SIGNATURE |random| #5#) (SIGNATURE |random| (#2# #4# #4#)) (SIGNATURE |leastAffineMultiple| (#2# #2#)) (SIGNATURE |reducedQPowers| ((|PrimitiveArray| #2#) #2#))) (|FiniteFieldCategory|)) (T |FiniteFieldPolynomialPackage|))
+((|reducedQPowers| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|FiniteFieldCategory|)) (|isDomain| *2 (|PrimitiveArray| #4=(|SparseUnivariatePolynomial| *4))) #5=(|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) #6=(|isDomain| *3 #4#))) (|leastAffineMultiple| #7=(*1 *2 *2) (AND #8=(|isDomain| *2 (|SparseUnivariatePolynomial| *3)) #9=(|ofCategory| *3 #3#) #10=(|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|random| (*1 *2 *3 *3) #11=(AND (|isDomain| *3 #12=(|PositiveInteger|)) (|isDomain| *2 #4#) #5# #2#)) (|random| #1# #11#) (|nextPrimitiveNormalPoly| #7# #13=(|partial| AND #8# #9# #10#)) (|nextNormalPrimitivePoly| #7# #13#) (|nextNormalPoly| #7# #13#) (|nextPrimitivePoly| #7# #13#) (|nextIrreduciblePoly| #7# #13#) (|createPrimitiveNormalPoly| #1# #11#) (|createNormalPrimitivePoly| #1# #11#) (|createNormalPoly| #1# #11#) (|createPrimitivePoly| #1# #11#) (|createIrreduciblePoly| #1# #11#) (|numberOfNormalPoly| #7# #14=(AND (|isDomain| *2 #12#) #10# #9#)) (|numberOfPrimitivePoly| #7# #14#) (|numberOfIrreduciblePoly| #7# #14#) (|normal?| #1# #15=(AND #6# #2# (|isDomain| *2 (|Boolean|)) #5#)) (|primitive?| #1# #15#))
+((|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) 60 T ELT)))
+(((|FiniteFieldPolynomialPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rootOfIrreduciblePoly| (|#1| (|SparseUnivariatePolynomial| |#2|)))) (|Join| (|FieldOfPrimeCharacteristic|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |lookup| (#1=(|PositiveInteger|) |#1|)) (SIGNATURE |basis| ((|Vector| |#1|) #1#)) (SIGNATURE |Frobenius| (|#1| |#1|)))) (|FiniteFieldCategory|)) (T |FiniteFieldPolynomialPackage2|))
+((|rootOfIrreduciblePoly| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|ofCategory| *2 (|Join| (|FieldOfPrimeCharacteristic|) (CATEGORY |package| (SIGNATURE |coerce| (*2 *4)) (SIGNATURE |lookup| (#1=(|PositiveInteger|) *2)) (SIGNATURE |basis| ((|Vector| *2) #1#)) (SIGNATURE |Frobenius| (*2 *2))))) (|isDomain| *1 (|FiniteFieldPolynomialPackage2| *2 *4)))))
+((|solveLinearPolynomialEquation| (((|Union| #1=(|List| |#3|) "failed") #1# |#3|) 40 T ELT)))
+(((|FiniteFieldSolveLinearPolynomialEquation| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #1=(|List| |#3|) "failed") #1# |#3|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |FiniteFieldSolveLinearPolynomialEquation|))
+((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldSolveLinearPolynomialEquation| *4 *5 *3)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #9=((|#1| $) NIL T ELT) #10=(#11=($ $ #12=(|PositiveInteger|)) NIL #13=(|has| |#1| (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #12# #8#) #14=(|Integer|)) NIL #13# ELT)) (|subtractIfCan| #15=((#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #18=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#7# NIL #13# ELT)) (|sample| #19=(#20=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #17#) $) NIL T ELT)) (|retract| #9#) (|represents| (($ #21=(|Vector| |#1|)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #13# ELT)) (|rem| #22=(($ $ $) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|random| #23=(#20# NIL #13# ELT)) (|quo| #22#) (|principalIdeal| (((|Record| (|:| |coef| #24=(|List| $)) #25=(|:| |generator| $)) #24#) NIL T ELT)) (|primitiveElement| #23#) (|primitive?| #26=(#4# NIL #13# ELT)) (|primeFrobenius| (#27=($ $ #8#) NIL #28=(OR (|has| |#1| (|CharacteristicNonZero|)) #13#) ELT) (#6# NIL #28# ELT)) (|prime?| #3#) (|order| #29=(#30=(#12# $) NIL #13# ELT) (#31=(#32=(|OnePointCompletion| #12#) $) NIL #28# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #23#) (|normal?| #26#) (|norm| #9# #10#) (|nextItem| (#33=((|Maybe| $) $) NIL #13# ELT)) (|multiEuclidean| (((|Union| #24# #17#) #24# $) NIL T ELT)) (|minimalPolynomial| (#34=(#35=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT) ((#36=(|SparseUnivariatePolynomial| $) $ #12#) NIL #13# ELT)) (|lookup| #29#) (|linearAssociatedOrder| #37=(#34# NIL #13# ELT)) (|linearAssociatedLog| #37# (((|Union| #35# #17#) $ $) NIL #13# ELT)) (|linearAssociatedExp| (($ $ #35#) NIL #13# ELT)) (|lcm| #22# #38=(($ #24#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#20# NIL #13# CONST)) (|index| (($ #12#) NIL #13# ELT)) (|inGroundField?| #3#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| #23#) (|gcdPolynomial| ((#36# #36# #36#) NIL T ELT)) (|gcd| #22# #38#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #14#) (|:| |exponent| #14#)))) NIL #13# ELT)) (|factor| #18#) (|extensionDegree| ((#32#) NIL T ELT) ((#12#) NIL T ELT)) (|extendedEuclidean| (((|Record| #39=(|:| |coef1| $) #40=(|:| |coef2| $) #25#) $ $) NIL T ELT) (((|Union| (|Record| #39# #40#) #17#) $ $ $) NIL T ELT)) (|exquo| #15#) (|expressIdealMember| (((|Maybe| #24#) #24# $) NIL T ELT)) (|euclideanSize| (#41=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#41# NIL #13# ELT) (((|Union| #8# #17#) $ $) NIL #28# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #42=(#27# NIL #13# ELT) #43=(#6# NIL #13# ELT)) (|degree| (#31# NIL T ELT) (#30# NIL T ELT)) (|definingPolynomial| ((#35#) NIL T ELT)) (|createPrimitiveElement| #23#) (|createNormalElement| #23#) (|coordinates| ((#21# $) NIL T ELT) (((|Matrix| |#1|) #44=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #44# #17#) (|Matrix| $)) NIL #13# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) NIL T ELT) #5# (($ #45=(|Fraction| #14#)) NIL T ELT) (($ |#1|) NIL T ELT)) (|charthRoot| #43# (#33# NIL #28# ELT)) (|characteristic| (#7# NIL T CONST)) (|before?| #1#) (|basis| ((#44#) NIL T ELT) ((#44# #12#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #19#) (|One| #19#) (|Frobenius| #43# #42#) (D #42# #43#) (= #1#) (/ #22# #46=(($ $ |#1|) NIL T ELT)) (- #5# #22#) (+ #22#) (** (#11# NIL T ELT) (#27# NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #14# . #47=($)) NIL T ELT) #22# (($ $ #45#) NIL T ELT) (($ #45# . #47#) NIL T ELT) #46# (($ |#1| . #47#) NIL T ELT)))
+(((|FiniteFieldExtension| |#1| |#2|) (|FiniteAlgebraicExtensionField| |#1|) (|FiniteFieldCategory|) (|PositiveInteger|)) (T |FiniteFieldExtension|))
+NIL
+((|zeroDimensional?| (((|Boolean|) #1=(|List| (|Polynomial| |#1|))) 41 T ELT)) (|groebner| ((#1# #1#) 53 T ELT)) (|fglmIfCan| (((|Union| #1# "failed") #1#) 48 T ELT)))
+(((|FGLMIfCanPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |zeroDimensional?| ((|Boolean|) #1=(|List| (|Polynomial| |#1|)))) (SIGNATURE |fglmIfCan| ((|Union| #1# "failed") #1#)) (SIGNATURE |groebner| (#1# #1#))) (|GcdDomain|) (|List| (|Symbol|))) (T |FGLMIfCanPackage|))
+((|groebner| #1=(*1 *2 *2) (AND #2=(|isDomain| *2 (|List| (|Polynomial| *3))) #3=(|ofCategory| *3 #4=(|GcdDomain|)) #5=(|isDomain| *1 (|FGLMIfCanPackage| *3 *4)) #6=(|ofType| *4 #7=(|List| (|Symbol|))))) (|fglmIfCan| #1# (|partial| AND #2# #3# #5# #6#)) (|zeroDimensional?| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofCategory| *4 #4#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FGLMIfCanPackage| *4 *5)) (|ofType| *5 #7#))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|size| ((#3=(|NonNegativeInteger|) $) NIL T ELT)) (|sample| (#4=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #5="failed") $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|recip| (((|Union| $ #5#) $) NIL T ELT)) (|one?| ((#2# $) 17 T ELT)) (|nthFactor| ((|#1| $ #6=(|Integer|)) NIL T ELT)) (|nthExpon| ((#6# $ #6#) NIL T ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 34 T ELT)) (|mapExpon| (($ (|Mapping| #6# #6#) $) 26 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (($ $) 28 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #6#))) $) 30 T ELT)) (|conjugate| #7=(#8=($ $ $) NIL T ELT)) (|commutator| #7#) (|coerce| (((|OutputForm|) $) 40 T ELT) (($ |#1|) NIL T ELT)) (|before?| #1#) (|One| (#4# 7 T CONST)) (= #1#) (/ #7#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ #3#) NIL T ELT) (($ $ #6#) NIL T ELT) (($ |#1| #6#) 19 T ELT)) (* (#8# 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
+(((|FreeGroup| |#1|) (|Join| (|Group|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| #1=(|Integer|))) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |nthExpon| (#1# $ #1#)) (SIGNATURE |nthFactor| (|#1| $ #1#)) (SIGNATURE |mapExpon| ($ (|Mapping| #1# #1#) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #1#))) $)))) (|SetCategory|)) (T |FreeGroup|))
+((* #1=(*1 *1 *2 *1) #2=(AND #3=(|isDomain| *1 (|FreeGroup| *2)) #4=(|ofCategory| *2 #5=(|SetCategory|)))) (* (*1 *1 *1 *2) #2#) (** (*1 *1 *2 *3) #6=(AND (|isDomain| *3 #7=(|Integer|)) #3# #4#)) (|size| #8=(*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) #9=(|isDomain| *1 (|FreeGroup| *3)) #10=(|ofCategory| *3 #5#))) (|nthExpon| (*1 *2 *1 *2) (AND (|isDomain| *2 #7#) #9# #10#)) (|nthFactor| (*1 *2 *1 *3) #6#) (|mapExpon| #1# (AND (|isDomain| *2 (|Mapping| #7# #7#)) #9# #10#)) (|mapGen| #1# (AND (|isDomain| *2 (|Mapping| *3 *3)) #10# #9#)) (|factors| #8# (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| #7#)))) #9# #10#)))
+((|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 13 T ELT)) (|unitCanonical| (#1=($ $) 14 T ELT)) (|squareFree| (#2=((|Factored| $) $) 31 T ELT)) (|prime?| ((#3=(|Boolean|) $) 27 T ELT)) (|inv| (#1# 19 T ELT)) (|gcd| (#4=($ $ $) 22 T ELT) (($ (|List| $)) NIL T ELT)) (|factor| (#2# 32 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 21 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 25 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 36 T ELT)) (|associates?| ((#3# $ $) 16 T ELT)) (/ (#4# 34 T ELT)))
+(((|Field&| |#1|) (CATEGORY |package| (SIGNATURE / #1=(|#1| |#1| |#1|)) (SIGNATURE |inv| #2=(|#1| |#1|)) (SIGNATURE |prime?| (#3=(|Boolean|) |#1|)) (SIGNATURE |squareFree| #4=((|Factored| |#1|) |#1|)) (SIGNATURE |factor| #4#) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| #1#) (SIGNATURE |associates?| (#3# |#1| |#1|)) (SIGNATURE |unitCanonical| #2#) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|))) (|Field|)) (T |Field&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#5=($) 23 T CONST)) (|rem| (#6=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#6# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiEuclidean| (((|Union| #8=(|List| $) #9="failed") #8# $) 68 T ELT)) (|lcm| (#10=($ $ $) 60 T ELT) (#11=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#12=(|SparseUnivariatePolynomial| $) #12# #12#) 58 T ELT)) (|gcd| (#10# 62 T ELT) (#11# 61 T ELT)) (|factor| (#4# 92 T ELT)) (|extendedEuclidean| (((|Record| #13=(|:| |coef1| $) #14=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #13# #14#) #9#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #7#) #7# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #15=(|Fraction| #16=(|Integer|))) 84 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #16#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #17=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #15#) 86 T ELT) (($ #15# . #17#) 85 T ELT)))
+(((|Field|) (|Category|)) (T |Field|))
+((/ (*1 *1 *1 *1) (|ofCategory| *1 (|Field|))))
+(|Join| (|EuclideanDomain|) (|UniqueFactorizationDomain|) (|DivisionRing|) (CATEGORY |domain| (SIGNATURE / ($ $ $)) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|write!| ((|#1| $ |#1|) 35 T ELT)) (|reopen!| (($ $ #3=(|String|)) 23 T ELT)) (|readIfCan!| (((|Union| |#1| "failed") $) 34 T ELT)) (|read!| ((|#1| $) 32 T ELT)) (|open| (($ #4=(|FileName|)) 22 T ELT) (($ #4# #3#) 21 T ELT)) (|name| ((#4# $) 25 T ELT)) (|latex| (#5=(#3# $) NIL T ELT)) (|iomode| (#5# 26 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT)) (|close!| (($ $) 24 T ELT)) (|before?| #1#) (= (#2# 19 T ELT)))
+(((|File| |#1|) (|Join| (|FileCategory| (|FileName|) |#1|) (CATEGORY |domain| (SIGNATURE |readIfCan!| ((|Union| |#1| "failed") $)))) (|SetCategory|)) (T |File|))
+((|readIfCan!| (*1 *2 *1) (|partial| AND (|isDomain| *1 (|File| *2)) (|ofCategory| *2 (|SetCategory|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|write!| ((|#2| $ |#2|) 17 T ELT)) (|reopen!| (($ $ (|String|)) 22 T ELT)) (|read!| ((|#2| $) 18 T ELT)) (|open| (($ |#1|) 24 T ELT) (($ |#1| (|String|)) 23 T ELT)) (|name| ((|#1| $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|iomode| (((|String|) $) 19 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|close!| (($ $) 21 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|FileCategory| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |FileCategory|))
+((|open| (*1 *1 *2) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|open| (*1 *1 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *1 (|FileCategory| *2 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|reopen!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|close!| (*1 *1 *1) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|name| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|iomode| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|String|)))) (|read!| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|write!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|FileCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |open| ($ |t#1|)) (SIGNATURE |open| ($ |t#1| (|String|))) (SIGNATURE |reopen!| ($ $ (|String|))) (SIGNATURE |close!| ($ $)) (SIGNATURE |name| (|t#1| $)) (SIGNATURE |iomode| ((|String|) $)) (SIGNATURE |read!| (|t#2| $)) (SIGNATURE |write!| (|t#2| $ |t#2|))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|structuralConstants| (((|Vector| #1=(|Matrix| |#2|)) #2=(|Vector| $)) 67 T ELT)) (|rightTraceMatrix| (#3=(#1# #2#) 139 T ELT)) (|rightTrace| (#4=(|#2| $) 36 T ELT)) (|rightRegularRepresentation| (#5=(#1# $ #2#) 142 T ELT)) (|rightRecip| (#6=((|Union| $ "failed") $) 89 T ELT)) (|rightNorm| (#4# 39 T ELT)) (|rightMinimalPolynomial| (#7=((|SparseUnivariatePolynomial| |#2|) $) 98 T ELT)) (|rightDiscriminant| (#8=(|#2| #2#) 122 T ELT)) (|rightCharacteristicPolynomial| (#7# 32 T ELT)) (|rightAlternative?| (#9=((|Boolean|)) 116 T ELT)) (|represents| (($ #10=(|Vector| |#2|) #2#) 132 T ELT)) (|recip| (#6# 93 T ELT)) (|noncommutativeJordanAlgebra?| (#9# 111 T ELT)) (|lieAlgebra?| (#9# 106 T ELT)) (|lieAdmissible?| (#9# 58 T ELT)) (|leftTraceMatrix| (#3# 137 T ELT)) (|leftTrace| (#4# 35 T ELT)) (|leftRegularRepresentation| (#5# 141 T ELT)) (|leftRecip| (#6# 87 T ELT)) (|leftNorm| (#4# 38 T ELT)) (|leftMinimalPolynomial| (#7# 97 T ELT)) (|leftDiscriminant| (#8# 120 T ELT)) (|leftCharacteristicPolynomial| (#7# 30 T ELT)) (|leftAlternative?| (#9# 115 T ELT)) (|jordanAlgebra?| (#9# 108 T ELT)) (|jordanAdmissible?| (#9# 56 T ELT)) (|jacobiIdentity?| (#9# 103 T ELT)) (|flexible?| (#9# 117 T ELT)) (|coordinates| ((#10# $ #2#) NIL T ELT) ((#1# #2# #2#) 128 T ELT)) (|commutative?| (#9# 113 T ELT)) (|associatorDependence| (((|List| #10#)) 102 T ELT)) (|associative?| (#9# 114 T ELT)) (|antiCommutative?| (#9# 112 T ELT)) (|antiAssociative?| (#9# 51 T ELT)) (|alternative?| (#9# 118 T ELT)))
+(((|FiniteRankNonAssociativeAlgebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rightMinimalPolynomial| #1=((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |leftMinimalPolynomial| #1#) (SIGNATURE |associatorDependence| ((|List| #2=(|Vector| |#2|)))) (SIGNATURE |rightRecip| #3=((|Union| |#1| "failed") |#1|)) (SIGNATURE |leftRecip| #3#) (SIGNATURE |recip| #3#) (SIGNATURE |lieAlgebra?| #4=((|Boolean|))) (SIGNATURE |jordanAlgebra?| #4#) (SIGNATURE |noncommutativeJordanAlgebra?| #4#) (SIGNATURE |jordanAdmissible?| #4#) (SIGNATURE |lieAdmissible?| #4#) (SIGNATURE |jacobiIdentity?| #4#) (SIGNATURE |alternative?| #4#) (SIGNATURE |flexible?| #4#) (SIGNATURE |rightAlternative?| #4#) (SIGNATURE |leftAlternative?| #4#) (SIGNATURE |antiAssociative?| #4#) (SIGNATURE |associative?| #4#) (SIGNATURE |antiCommutative?| #4#) (SIGNATURE |commutative?| #4#) (SIGNATURE |rightCharacteristicPolynomial| #1#) (SIGNATURE |leftCharacteristicPolynomial| #1#) (SIGNATURE |rightTraceMatrix| #5=(#6=(|Matrix| |#2|) #7=(|Vector| |#1|))) (SIGNATURE |leftTraceMatrix| #5#) (SIGNATURE |rightDiscriminant| #8=(|#2| #7#)) (SIGNATURE |leftDiscriminant| #8#) (SIGNATURE |represents| (|#1| #2# #7#)) (SIGNATURE |coordinates| (#6# #7# #7#)) (SIGNATURE |coordinates| (#2# |#1| #7#)) (SIGNATURE |rightNorm| #9=(|#2| |#1|)) (SIGNATURE |leftNorm| #9#) (SIGNATURE |rightTrace| #9#) (SIGNATURE |leftTrace| #9#) (SIGNATURE |rightRegularRepresentation| #10=(#6# |#1| #7#)) (SIGNATURE |leftRegularRepresentation| #10#) (SIGNATURE |structuralConstants| ((|Vector| #6#) #7#))) (|FiniteRankNonAssociativeAlgebra| |#2|) (|CommutativeRing|)) (T |FiniteRankNonAssociativeAlgebra&|))
+((|commutative?| #1=(*1 *2) #2=(AND #3=(|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4)) #5=(|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4)))) (|antiCommutative?| #1# #2#) (|associative?| #1# #2#) (|antiAssociative?| #1# #2#) (|leftAlternative?| #1# #2#) (|rightAlternative?| #1# #2#) (|flexible?| #1# #2#) (|alternative?| #1# #2#) (|jacobiIdentity?| #1# #2#) (|lieAdmissible?| #1# #2#) (|jordanAdmissible?| #1# #2#) (|noncommutativeJordanAlgebra?| #1# #2#) (|jordanAlgebra?| #1# #2#) (|lieAlgebra?| #1# #2#) (|associatorDependence| #1# (AND #3# (|isDomain| *2 (|List| (|Vector| *4))) #4# #5#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unit| (((|Union| $ "failed")) 48 (|has| |#1| (|IntegralDomain|)) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) 89 T ELT)) (|someBasis| (((|Vector| $)) 92 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) 51 (|has| |#1| (|IntegralDomain|)) ELT)) (|rightUnit| (((|Union| $ "failed")) 49 (|has| |#1| (|IntegralDomain|)) ELT)) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) 76 T ELT)) (|rightTrace| ((|#1| $) 85 T ELT)) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) 87 T ELT)) (|rightRecip| (((|Union| $ "failed") $) 56 (|has| |#1| (|IntegralDomain|)) ELT)) (|rightPower| (#4=($ $ (|PositiveInteger|)) 37 T ELT)) (|rightNorm| ((|#1| $) 83 T ELT)) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 53 (|has| |#1| (|IntegralDomain|)) ELT)) (|rightDiscriminant| ((|#1| (|Vector| $)) 78 T ELT)) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 74 T ELT)) (|rightAlternative?| (((|Boolean|)) 68 T ELT)) (|represents| (($ (|Vector| |#1|) (|Vector| $)) 80 T ELT)) (|recip| (((|Union| $ "failed") $) 58 (|has| |#1| (|IntegralDomain|)) ELT)) (|rank| (((|PositiveInteger|)) 91 T ELT)) (|powerAssociative?| (((|Boolean|)) 65 T ELT)) (|plenaryPower| (($ $ (|PositiveInteger|)) 44 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|noncommutativeJordanAlgebra?| (((|Boolean|)) 61 T ELT)) (|lieAlgebra?| (((|Boolean|)) 59 T ELT)) (|lieAdmissible?| (((|Boolean|)) 63 T ELT)) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) 52 (|has| |#1| (|IntegralDomain|)) ELT)) (|leftUnit| (((|Union| $ "failed")) 50 (|has| |#1| (|IntegralDomain|)) ELT)) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) 77 T ELT)) (|leftTrace| ((|#1| $) 86 T ELT)) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) 88 T ELT)) (|leftRecip| (((|Union| $ "failed") $) 57 (|has| |#1| (|IntegralDomain|)) ELT)) (|leftPower| (#4# 38 T ELT)) (|leftNorm| ((|#1| $) 84 T ELT)) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 54 (|has| |#1| (|IntegralDomain|)) ELT)) (|leftDiscriminant| ((|#1| (|Vector| $)) 79 T ELT)) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 75 T ELT)) (|leftAlternative?| (((|Boolean|)) 69 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|jordanAlgebra?| (((|Boolean|)) 60 T ELT)) (|jordanAdmissible?| (((|Boolean|)) 62 T ELT)) (|jacobiIdentity?| (((|Boolean|)) 64 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|flexible?| (((|Boolean|)) 67 T ELT)) (|coordinates| (((|Vector| |#1|) $ (|Vector| $)) 82 T ELT) (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) 81 T ELT)) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) 90 T ELT)) (|commutator| (#5=($ $ $) 34 T ELT)) (|commutative?| (((|Boolean|)) 73 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|associatorDependence| (((|List| (|Vector| |#1|))) 55 (|has| |#1| (|IntegralDomain|)) ELT)) (|associator| (($ $ $ $) 35 T ELT)) (|associative?| (((|Boolean|)) 71 T ELT)) (|antiCommutator| (#5# 33 T ELT)) (|antiCommutative?| (((|Boolean|)) 72 T ELT)) (|antiAssociative?| (((|Boolean|)) 70 T ELT)) (|alternative?| (((|Boolean|)) 66 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (#4# 39 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #6=($)) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| . #6#) 45 T ELT)))
+(((|FiniteRankNonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |FiniteRankNonAssociativeAlgebra|))
+((|someBasis| (*1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|rank| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|PositiveInteger|)))) (|conditionsForIdempotents| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|List| (|Polynomial| *4))))) (|structuralConstants| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| *4))))) (|leftRegularRepresentation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|rightRegularRepresentation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|leftTrace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightTrace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|leftNorm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightNorm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|coordinates| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *4)))) (|coordinates| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Vector| *1)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)))) (|leftDiscriminant| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightDiscriminant| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|leftTraceMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|rightTraceMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|leftCharacteristicPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|rightCharacteristicPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|commutative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|antiCommutative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|associative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|antiAssociative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|leftAlternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|rightAlternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|flexible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|alternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|powerAssociative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jacobiIdentity?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|lieAdmissible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jordanAdmissible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|noncommutativeJordanAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jordanAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|lieAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|recip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|leftRecip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|rightRecip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|associatorDependence| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Vector| *3))))) (|leftMinimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|rightMinimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|leftUnits| (*1 *2) (|partial| AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1)))) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|rightUnits| (*1 *2) (|partial| AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1)))) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|leftUnit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightUnit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))) (|unit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))))
+(|Join| (|NonAssociativeAlgebra| |t#1|) (CATEGORY |domain| (SIGNATURE |someBasis| ((|Vector| $))) (SIGNATURE |rank| ((|PositiveInteger|))) (SIGNATURE |conditionsForIdempotents| ((|List| (|Polynomial| |t#1|)) (|Vector| $))) (SIGNATURE |structuralConstants| ((|Vector| (|Matrix| |t#1|)) (|Vector| $))) (SIGNATURE |leftRegularRepresentation| ((|Matrix| |t#1|) $ (|Vector| $))) (SIGNATURE |rightRegularRepresentation| ((|Matrix| |t#1|) $ (|Vector| $))) (SIGNATURE |leftTrace| (|t#1| $)) (SIGNATURE |rightTrace| (|t#1| $)) (SIGNATURE |leftNorm| (|t#1| $)) (SIGNATURE |rightNorm| (|t#1| $)) (SIGNATURE |coordinates| ((|Vector| |t#1|) $ (|Vector| $))) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|) (|Vector| $))) (SIGNATURE |leftDiscriminant| (|t#1| (|Vector| $))) (SIGNATURE |rightDiscriminant| (|t#1| (|Vector| $))) (SIGNATURE |leftTraceMatrix| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |rightTraceMatrix| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |leftCharacteristicPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |rightCharacteristicPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |commutative?| ((|Boolean|))) (SIGNATURE |antiCommutative?| ((|Boolean|))) (SIGNATURE |associative?| ((|Boolean|))) (SIGNATURE |antiAssociative?| ((|Boolean|))) (SIGNATURE |leftAlternative?| ((|Boolean|))) (SIGNATURE |rightAlternative?| ((|Boolean|))) (SIGNATURE |flexible?| ((|Boolean|))) (SIGNATURE |alternative?| ((|Boolean|))) (SIGNATURE |powerAssociative?| ((|Boolean|))) (SIGNATURE |jacobiIdentity?| ((|Boolean|))) (SIGNATURE |lieAdmissible?| ((|Boolean|))) (SIGNATURE |jordanAdmissible?| ((|Boolean|))) (SIGNATURE |noncommutativeJordanAlgebra?| ((|Boolean|))) (SIGNATURE |jordanAlgebra?| ((|Boolean|))) (SIGNATURE |lieAlgebra?| ((|Boolean|))) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |leftRecip| ((|Union| $ "failed") $)) (SIGNATURE |rightRecip| ((|Union| $ "failed") $)) (SIGNATURE |associatorDependence| ((|List| (|Vector| |t#1|)))) (SIGNATURE |leftMinimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |rightMinimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |leftUnits| ((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed"))) (SIGNATURE |rightUnits| ((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed"))) (SIGNATURE |leftUnit| ((|Union| $ "failed"))) (SIGNATURE |rightUnit| ((|Union| $ "failed"))) (SIGNATURE |unit| ((|Union| $ "failed"))) (ATTRIBUTE |unitsKnown|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeAlgebra| |#1|) . T) ((|NonAssociativeRng|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|reduce| ((|#2| #1=(|Mapping| |#2| |#2| |#2|) $) NIL T ELT) ((|#2| #1# $ |#2|) NIL T ELT) ((|#2| #1# $ |#2| |#2|) 38 T ELT)) (|member?| ((#2=(|Boolean|) |#2| $) 35 T ELT)) (|find| (((|Union| |#2| "failed") #3=(|Mapping| #2# |#2|) $) 30 T ELT)) (|every?| (#4=(#2# #3# $) 24 T ELT)) (|empty?| ((#2# $) 13 T ELT)) (|count| ((#5=(|NonNegativeInteger|) #3# $) 27 T ELT) ((#5# |#2| $) 33 T ELT)) (|coerce| (((|OutputForm|) $) 46 T ELT)) (|any?| (#4# 21 T ELT)) (= ((#2# $ $) 40 T ELT)) (|#| ((#5# $) 17 T ELT)))
+(((|FiniteAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = (#1=(|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |reduce| (|#2| #2=(|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |member?| (#1# |#2| |#1|)) (SIGNATURE |count| (#3=(|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |find| ((|Union| |#2| "failed") #4=(|Mapping| #1# |#2|) |#1|)) (SIGNATURE |reduce| (|#2| #2# |#1| |#2|)) (SIGNATURE |reduce| (|#2| #2# |#1|)) (SIGNATURE |count| (#3# #4# |#1|)) (SIGNATURE |every?| #5=(#1# #4# |#1|)) (SIGNATURE |any?| #5#) (SIGNATURE |#| (#3# |#1|)) (SIGNATURE |empty?| (#1# |#1|))) (|FiniteAggregate| |#2|) (|Type|)) (T |FiniteAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|sample| (#3=($) 6 T CONST)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (|BasicType|)) ELT)) (|members| (((|List| |#1|) $) 40 T ELT)) (|member?| (((|Boolean|) |#1| $) 35 (|has| |#1| (|BasicType|)) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #4=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #4#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 37 T ELT)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 42 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT)) (|eq?| ((#5=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#5# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 41 T ELT) (((|NonNegativeInteger|) |#1| $) 36 (|has| |#1| (|BasicType|)) ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 43 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| (((|NonNegativeInteger|) $) 44 T ELT)))
+(((|FiniteAggregate| |#1|) (|Category|) (|Type|)) (T |FiniteAggregate|))
+((|#| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|members| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *3)))) (|reduce| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|reduce| (*1 *2 *3 *1 *2) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|find| (*1 *2 *3 *1) (|partial| AND (|isDomain| *3 (|Mapping| (|Boolean|) *2)) (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|count| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|member?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|)))) (|reduce| (*1 *2 *3 *1 *2 *2) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *2 (|BasicType|)) (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |members| ((|List| |t#1|) $)) (SIGNATURE |reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $)) (SIGNATURE |reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $ |t#1|)) (SIGNATURE |find| ((|Union| |t#1| "failed") (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|BasicType|)) (PROGN (SIGNATURE |count| ((|NonNegativeInteger|) |t#1| $)) (SIGNATURE |member?| ((|Boolean|) |t#1| $)) (SIGNATURE |reduce| (|t#1| (|Mapping| |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((|random| (($) 15 T ELT)))
+(((|Finite&| |#1|) (CATEGORY |package| (SIGNATURE |random| (|#1|))) (|Finite|)) (T |Finite&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|size| (((|NonNegativeInteger|)) 20 T ELT)) (|random| (($) 17 T ELT)) (|lookup| (((|PositiveInteger|) $) 18 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|index| (($ (|PositiveInteger|)) 19 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|Finite|) (|Category|)) (T |Finite|))
+((|size| (*1 *2) (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|index| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|Finite|)))) (|lookup| (*1 *2 *1) (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|PositiveInteger|)))) (|random| (*1 *1) (|ofCategory| *1 (|Finite|))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |index| ($ (|PositiveInteger|))) (SIGNATURE |lookup| ((|PositiveInteger|) $)) (SIGNATURE |random| ($))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|traceMatrix| ((#1=(|Matrix| |#2|) #2=(|Vector| $)) 45 T ELT)) (|represents| (($ #3=(|Vector| |#2|) #2#) 39 T ELT)) (|regularRepresentation| ((#1# $ #2#) 47 T ELT)) (|discriminant| ((|#2| #2#) 13 T ELT)) (|coordinates| ((#3# $ #2#) NIL T ELT) ((#1# #2# #2#) 27 T ELT)))
+(((|FiniteRankAlgebra&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |traceMatrix| (#1=(|Matrix| |#2|) #2=(|Vector| |#1|))) (SIGNATURE |discriminant| (|#2| #2#)) (SIGNATURE |represents| (|#1| #3=(|Vector| |#2|) #2#)) (SIGNATURE |coordinates| (#1# #2# #2#)) (SIGNATURE |coordinates| (#3# |#1| #2#)) (SIGNATURE |regularRepresentation| (#1# |#1| #2#))) (|FiniteRankAlgebra| |#2| |#3|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#2|)) (T |FiniteRankAlgebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) 61 T ELT)) (|trace| ((|#1| $) 67 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|represents| (($ (|Vector| |#1|) (|Vector| $)) 63 T ELT)) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) 68 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rank| (((|PositiveInteger|)) 69 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|norm| ((|#1| $) 66 T ELT)) (|minimalPolynomial| ((|#2| $) 59 (|has| |#1| (|Field|)) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|discriminant| ((|#1| (|Vector| $)) 62 T ELT)) (|coordinates| (((|Vector| |#1|) $ (|Vector| $)) 65 T ELT) (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) 64 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT)) (|charthRoot| (((|Maybe| $) $) 58 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| ((|#2| $) 60 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #4#) 53 T ELT)))
+(((|FiniteRankAlgebra| |#1| |#2|) (|Category|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |t#1|)) (T |FiniteRankAlgebra|))
+((|rank| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *4)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|PositiveInteger|)))) (|regularRepresentation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Matrix| *4)))) (|trace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankAlgebra| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankAlgebra| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|coordinates| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Vector| *4)))) (|coordinates| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Vector| *1)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)))) (|discriminant| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankAlgebra| *2 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|traceMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Matrix| *4)))) (|characteristicPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|minimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(|Join| (|Algebra| |t#1|) (CATEGORY |domain| (SIGNATURE |rank| ((|PositiveInteger|))) (SIGNATURE |regularRepresentation| ((|Matrix| |t#1|) $ (|Vector| $))) (SIGNATURE |trace| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |coordinates| ((|Vector| |t#1|) $ (|Vector| $))) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|) (|Vector| $))) (SIGNATURE |discriminant| (|t#1| (|Vector| $))) (SIGNATURE |traceMatrix| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |characteristicPolynomial| (|t#2| $)) (IF (|has| |t#1| (|Field|)) (SIGNATURE |minimalPolynomial| (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|sorted?| ((#1=(|Boolean|) #2=(|Mapping| #1# |#2| |#2|) $) NIL T ELT) ((#1# $) 18 T ELT)) (|sort!| (#3=($ #2# $) NIL T ELT) (#4=($ $) 28 T ELT)) (|sort| (#3# 27 T ELT) (#4# 22 T ELT)) (|reverse| (#4# 25 T ELT)) (|position| ((#5=(|Integer|) (|Mapping| #1# |#2|) $) NIL T ELT) ((#5# |#2| $) 11 T ELT) ((#5# |#2| $ #5#) NIL T ELT)) (|merge| (($ #2# $ $) NIL T ELT) (($ $ $) 20 T ELT)))
+(((|FiniteLinearAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sort!| #1=(|#1| |#1|)) (SIGNATURE |sort!| #2=(|#1| #3=(|Mapping| #4=(|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sorted?| (#4# |#1|)) (SIGNATURE |sort| #1#) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| (#5=(|Integer|) |#2| |#1| #5#)) (SIGNATURE |position| (#5# |#2| |#1|)) (SIGNATURE |position| (#5# (|Mapping| #4# |#2|) |#1|)) (SIGNATURE |sorted?| (#4# #3# |#1|)) (SIGNATURE |sort| #2#) (SIGNATURE |reverse| #1#) (SIGNATURE |merge| (|#1| #3# |#1| |#1|))) (|FiniteLinearAggregate| |#2|) (|Type|)) (T |FiniteLinearAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 96 T ELT) (((|Boolean|) $) 90 (|has| |#1| (|OrderedSet|)) ELT)) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $) 86 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (|ShallowlyMutableAggregate| |#1|))) ELT)) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 97 T ELT) (($ $) 91 (|has| |#1| (|OrderedSet|)) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #4=(|UniversalSegment| #3#) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#7=($) 6 T CONST)) (|reverse!| (($ $) 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|reverse| (($ $) 98 T ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #8=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #8#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #5# |#1|) . #6#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| . #9=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 105 T ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 95 T ELT) (((|Integer|) |#1| $) 94 (|has| |#1| (|BasicType|)) ELT) (((|Integer|) |#1| $ (|Integer|)) 93 (|has| |#1| (|BasicType|)) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #10=($)) 38 (|has| #3# . #11=((|OrderedSet|))) ELT)) (|min| (#12=($ $ $) 80 (|has| |#1| . #13=((|OrderedSet|))) ELT)) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| (|OrderedSet|)) ELT)) (|members| (((|List| |#1|) $) 104 T ELT)) (|member?| ((#14=(|Boolean|) |#1| $) 109 (|has| |#1| . #9#) ELT)) (|maxIndex| ((#3# . #10#) 39 (|has| #3# . #11#) ELT)) (|max| (#12# 81 (|has| |#1| . #13#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #15=((|SetCategory|))) ELT)) (|insert| (($ |#1| $ #3#) 57 T ELT) (($ $ $ #3#) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#16=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #15#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #11#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #14# |#1|) $) 107 T ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|every?| ((#14# (|Mapping| #14# |#1|) . #17=($)) 102 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #15#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #15#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #15#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #15#)) ELT)) (|eq?| ((#18=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#16# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#18# $) 7 T ELT)) (|empty| (#7# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ #4#) 66 T ELT)) (|delete| (($ $ #3#) 59 T ELT) (($ $ #4#) 58 T ELT)) (|count| ((#19=(|NonNegativeInteger|) |#1| $) 108 (|has| |#1| . #9#) ELT) ((#19# (|Mapping| #14# |#1|) $) 103 T ELT)) (|copyInto!| (($ $ $ (|Integer|)) 89 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#20=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #20#)) ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#14# (|Mapping| #14# |#1|) . #17#) 101 T ELT)) (>= (#21=((|Boolean|) $ $) 82 (|has| |#1| . #13#) ELT)) (> (#21# 84 (|has| |#1| . #13#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (<= (#21# 83 (|has| |#1| . #13#) ELT)) (< (#21# 85 (|has| |#1| . #13#) ELT)) (|#| ((#19# $) 100 T ELT)))
+(((|FiniteLinearAggregate| |#1|) (|Category|) (|Type|)) (T |FiniteLinearAggregate|))
+((|merge| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|reverse| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|sort| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|sorted?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *1 (|FiniteLinearAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|position| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *1 (|FiniteLinearAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))) (|sort| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))) (|sorted?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|copyInto!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|reverse!| (*1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|sort!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|sort!| (*1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))))
+(|Join| (|LinearAggregate| |t#1|) (|FiniteAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |merge| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $ $)) (SIGNATURE |reverse| ($ $)) (SIGNATURE |sort| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|BasicType|)) (PROGN (SIGNATURE |position| ((|Integer|) |t#1| $)) (SIGNATURE |position| ((|Integer|) |t#1| $ (|Integer|)))) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (ATTRIBUTE (|OrderedSet|)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |sort| ($ $)) (SIGNATURE |sorted?| ((|Boolean|) $))) |%noBranch|) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (PROGN (SIGNATURE |copyInto!| ($ $ $ (|Integer|))) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |sort!| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (IF (|has| |t#1| (|OrderedSet|)) (SIGNATURE |sort!| ($ $)) |%noBranch|)) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T))
+((|scan| ((|#4| #1=(|Mapping| |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (|reduce| ((|#3| #1# |#2| |#3|) 17 T ELT)) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 23 T ELT)))
+(((|FiniteLinearAggregateFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| #1=(|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| #1# |#2| |#3|))) #2=(|Type|) (|FiniteLinearAggregate| |#1|) #2# (|FiniteLinearAggregate| |#3|)) (T |FiniteLinearAggregateFunctions2|))
+((|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) #1=(|ofCategory| *6 #2=(|Type|)) #3=(|ofCategory| *5 #2#) (|ofCategory| *2 #4=(|FiniteLinearAggregate| *5)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *6 *4 *5 *2)) (|ofCategory| *4 #5=(|FiniteLinearAggregate| *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #3# (|ofCategory| *2 #2#) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *2 *6)) #6=(|ofCategory| *4 #4#) (|ofCategory| *6 (|FiniteLinearAggregate| *2)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #3# #1# (|ofCategory| *2 #5#) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *6 *2)) #6#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|varList| (((|List| |#1|) $) 43 T ELT)) (|trunc| (($ $ (|NonNegativeInteger|)) 44 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 47 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|mirror| (($ $) 45 T ELT)) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 48 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|eval| (($ $ |#1| $) 42 T ELT) (($ $ (|List| |#1|) (|List| $)) 41 T ELT)) (|degree| (((|NonNegativeInteger|) $) 49 T ELT)) (|construct| (($ $ $) 40 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ |#1|) 52 T ELT) (((|XDistributedPolynomial| |#1| |#2|) $) 51 T ELT) (((|XRecursivePolynomial| |#1| |#2|) $) 50 T ELT)) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) 53 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (|LiePoly| (($ (|LyndonWord| |#1|)) 46 T ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#2|) 39 (|has| |#2| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#2| . #4#) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((|FreeLieAlgebra| |#1| |#2|) (|Category|) (|OrderedSet|) (|CommutativeRing|)) (T |FreeLieAlgebra|))
+((|coef| (*1 *2 *3 *1) (AND (|isDomain| *3 (|XRecursivePolynomial| *4 *2)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *2)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|CommutativeRing|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XDistributedPolynomial| *3 *4)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XRecursivePolynomial| *3 *4)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|lquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|rquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|LiePoly| (*1 *1 *2) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *4 (|CommutativeRing|)))) (|mirror| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|trunc| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|varList| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|List| *3)))) (|eval| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|CommutativeRing|)))))
+(|Join| (|LieAlgebra| |t#2|) (CATEGORY |domain| (SIGNATURE |coef| (|t#2| (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |lquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |rquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |LiePoly| ($ (|LyndonWord| |t#1|))) (SIGNATURE |mirror| ($ $)) (SIGNATURE |trunc| ($ $ (|NonNegativeInteger|))) (SIGNATURE |varList| ((|List| |t#1|) $)) (SIGNATURE |eval| ($ $ |t#1| $)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| $)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#2|) . T) ((|LeftModule| |#2|) . T) ((|LieAlgebra| |#2|) . T) ((|LinearSet| |#2|) . T) ((|Module| |#2|) . T) ((|RightLinearSet| |#2|) . T) ((|RightModule| |#2|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|shellSort| (#1=(|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 40 T ELT)) (|quickSort| (#1# 13 T ELT)) (|heapSort| (#1# 33 T ELT)))
+(((|FiniteLinearAggregateSort| |#1| |#2|) (CATEGORY |package| (SIGNATURE |quickSort| #1=(|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |heapSort| #1#) (SIGNATURE |shellSort| #1#)) (|Type|) (|Join| (|FiniteLinearAggregate| |#1|) (|ShallowlyMutableAggregate| |#1|))) (T |FiniteLinearAggregateSort|))
+((|shellSort| #1=(*1 *2 *3 *2) #2=(AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (|ShallowlyMutableAggregate| *4))))) (|heapSort| #1# #2#) (|quickSort| #1# #2#))
+((|reducedSystem| ((#1=(|Matrix| |#2|) #2=(|Matrix| $)) NIL T ELT) (((|Record| (|:| |mat| #1#) (|:| |vec| (|Vector| |#2|))) #2# #3=(|Vector| $)) NIL T ELT) (((|Record| (|:| |mat| #4=(|Matrix| #5=(|Integer|))) (|:| |vec| (|Vector| #5#))) #2# #3#) 22 T ELT) ((#4# #2#) 14 T ELT)))
+(((|FullyLinearlyExplicitRingOver&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |reducedSystem| (#1=(|Matrix| #2=(|Integer|)) #3=(|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #1#) (|:| |vec| (|Vector| #2#))) #3# #4=(|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #5=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) #3# #4#)) (SIGNATURE |reducedSystem| (#5# #3#))) (|FullyLinearlyExplicitRingOver| |#2|) (|Ring|)) (T |FullyLinearlyExplicitRingOver&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|reducedSystem| (((|Matrix| |#1|) . #4=(#5=(|Matrix| $))) 36 T ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #6=(#5# #7=(|Vector| $))) 35 T ELT) (((|Record| (|:| |mat| (|Matrix| #8=(|Integer|))) (|:| |vec| (|Vector| #8#))) . #6#) 47 (|has| |#1| . #9=((|LinearlyExplicitRingOver| (|Integer|)))) ELT) (((|Matrix| #8#) . #4#) 46 (|has| |#1| . #9#) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|leftReducedSystem| (((|Matrix| |#1|) . #10=(#7#)) 38 T ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #11=(#7# $)) 37 T ELT) (((|Record| (|:| |mat| (|Matrix| #8#)) (|:| |vec| (|Vector| #8#))) . #11#) 45 (|has| |#1| . #9#) ELT) (((|Matrix| #8#) . #10#) 44 (|has| |#1| . #9#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #12=($)) 30 T ELT) (($ |#1| . #12#) 33 T ELT)))
+(((|FullyLinearlyExplicitRingOver| |#1|) (|Category|) (|Ring|)) (T |FullyLinearlyExplicitRingOver|))
+NIL
+(|Join| (|LinearlyExplicitRingOver| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|LinearlyExplicitRingOver| (|Integer|))) (ATTRIBUTE (|LinearlyExplicitRingOver| (|Integer|))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| #1=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LinearlyExplicitRingOver| #1#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 16 T ELT)) (|wholePart| (#5=(#6=(|Integer|) $) 44 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #7=(#8=($ $) NIL T ELT)) (|unit?| #9=(#4# NIL T ELT)) (|truncate| (#8# 120 T ELT)) (|tanh| (#8# 81 T ELT)) (|tan| (#8# 72 T ELT)) (|subtractIfCan| #10=((#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|squareFreePart| #7#) (|squareFree| #13=(((|Factored| $) $) NIL T ELT)) (|sqrt| (#8# 28 T ELT)) (|sizeLess?| #1#) (|sinh| (#8# 79 T ELT)) (|sin| (#8# 67 T ELT)) (|sign| (#5# 60 T ELT)) (|shift| (#14=($ $ #6#) 55 T ELT)) (|sech| #7#) (|sec| #7#) (|sample| (#15=($) NIL T CONST)) (|round| (#8# 122 T ELT)) (|retractIfCan| (((|Union| #6# . #16=(#12#)) $) 217 T ELT) (((|Union| #17=(|Fraction| #6#) . #16#) $) 213 T ELT)) (|retract| (#5# 215 T ELT) ((#17# $) 211 T ELT)) (|rem| #18=(#19=($ $ $) NIL T ELT)) (|relerror| ((#6# $ $) 110 T ELT)) (|recip| ((#11# $) 125 T ELT)) (|rationalApproximation| ((#17# $ #20=(|NonNegativeInteger|)) 218 T ELT) ((#17# $ #20# #20#) 210 T ELT)) (|quo| #18#) (|principalIdeal| (((|Record| (|:| |coef| #21=(|List| $)) #22=(|:| |generator| $)) #21#) NIL T ELT)) (|prime?| #9#) (|precision| (#23=(#24=(|PositiveInteger|)) 106 T ELT) (#25=(#24# #24#) 107 #26=(|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|positive?| (#4# 38 T ELT)) (|pi| (#15# 22 T ELT)) (|patternMatch| ((#27=(|PatternMatchResult| #28=(|Float|) $) $ #29=(|Pattern| #28#) #27#) NIL T ELT)) (|outputSpacing| (#30=(#31=(|Void|) #20#) 177 T ELT)) (|outputGeneral| (#32=(#31#) 182 T ELT) (#30# 183 T ELT)) (|outputFloating| (#32# 184 T ELT) (#30# 185 T ELT)) (|outputFixed| (#32# 180 T ELT) (#30# 181 T ELT)) (|order| (#5# 50 T ELT)) (|opposite?| #1#) (|one?| (#4# 21 T ELT)) (|nthRoot| (#14# NIL T ELT)) (|normalize| (#8# 32 T ELT)) (|norm| #7#) (|negative?| (#4# 18 T ELT)) (|multiEuclidean| (((|Union| #21# #12#) #21# $) NIL T ELT)) (|min| #18# #33=(#15# NIL (AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) (|not| #26#)) ELT)) (|max| #18# #33#) (|mantissa| (#5# 112 T ELT)) (|log2| (#15# 90 T ELT) (#8# 97 T ELT)) (|log10| (#15# 96 T ELT) (#8# 98 T ELT)) (|log| (#8# 84 T ELT)) (|lcm| #18# #34=(($ #21#) NIL T ELT)) (|latex| (#35=((|String|) $) NIL T ELT)) (|inv| (#8# 127 T ELT)) (|increasePrecision| (#36=(#24# #6#) 27 #26# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#37=(|SparseUnivariatePolynomial| $) #37# #37#) NIL T ELT)) (|gcd| #18# #34#) (|fractionPart| (#8# 41 T ELT)) (|floor| (#8# 119 T ELT)) (|float| (($ #6# #6#) 115 T ELT) (($ #6# #6# #24#) 116 T ELT)) (|factor| #13#) (|extendedEuclidean| (((|Record| #38=(|:| |coef1| $) #39=(|:| |coef2| $) #22#) $ $) NIL T ELT) (((|Union| (|Record| #38# #39#) #12#) $ $ $) NIL T ELT)) (|exquo| #10#) (|expressIdealMember| (((|Maybe| #21#) #21# $) NIL T ELT)) (|exponent| (#5# 113 T ELT)) (|exp1| (#15# 99 T ELT)) (|exp| (#8# 78 T ELT)) (|euclideanSize| ((#20# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|digits| (#23# 108 T ELT) (#25# 109 #26# ELT)) (|differentiate| (#8# 126 T ELT) #40=(($ $ #20#) NIL T ELT)) (|decreasePrecision| (#36# 31 #26# ELT)) (|csch| #7#) (|csc| #7#) (|coth| #7#) (|cot| #7#) (|cosh| (#8# 80 T ELT)) (|cos| (#8# 71 T ELT)) (|convert| ((#28# $) 202 T ELT) (#41=(#42=(|DoubleFloat|) $) 204 T ELT) ((#29# $) NIL T ELT) (#35# 188 T ELT) (((|InputForm|) $) 200 T ELT) (($ #42#) 209 T ELT)) (|coerce| (((|OutputForm|) $) 192 T ELT) #43=(($ #6#) 214 T ELT) #7# #44=(($ #17#) NIL T ELT) #43# #44# (#41# 205 T ELT)) (|characteristic| ((#20#) NIL T CONST)) (|ceiling| (#8# 121 T ELT)) (|bits| (#23# 42 T ELT) (#25# 62 #26# ELT)) (|before?| #1#) (|base| (#23# 111 T ELT)) (|atanh| (#8# 87 T ELT)) (|atan| (#8# 30 T ELT) (#19# 40 T ELT)) (|associates?| #1#) (|asinh| (#8# 85 T ELT)) (|asin| (#8# 20 T ELT)) (|asech| #7#) (|asec| #7#) (|annihilate?| #1#) (|acsch| #7#) (|acsc| #7#) (|acoth| #7#) (|acot| #7#) (|acosh| (#8# 86 T ELT)) (|acos| (#8# 33 T ELT)) (|abs| (#8# 39 T ELT)) (|Zero| (#15# 17 T CONST)) (|One| (#15# 24 T CONST)) (D #7# #40#) (>= (#2# 189 T ELT)) (> (#2# 26 T ELT)) (= (#2# 37 T ELT)) (<= #1#) (< (#2# 43 T ELT)) (/ (#19# 29 T ELT) (#14# 23 T ELT)) (- (#8# 19 T ELT) (#19# 34 T ELT)) (+ (#19# 54 T ELT)) (** (($ $ #24#) 65 T ELT) #40# (#14# 91 T ELT) (#45=($ $ #17#) 137 T ELT) (#19# 129 T ELT)) (* (($ #24# $) 61 T ELT) (($ #20# $) NIL T ELT) (($ #6# $) 66 T ELT) (#19# 53 T ELT) (#45# NIL T ELT) (($ #17# $) NIL T ELT)))
+(((|Float|) (|Join| (|FloatingPointSystem|) (|DifferentialRing|) (|ConvertibleTo| (|String|)) (|CoercibleTo| #1=(|DoubleFloat|)) (|TranscendentalFunctionCategory|) (|ConvertibleTo| (|InputForm|)) (|ConvertibleFrom| #1#) (CATEGORY |domain| (SIGNATURE / #2=($ $ #3=(|Integer|))) (SIGNATURE ** #4=($ $ $)) (SIGNATURE |normalize| #5=($ $)) (SIGNATURE |relerror| (#3# $ $)) (SIGNATURE |shift| #2#) (SIGNATURE |rationalApproximation| (#6=(|Fraction| #3#) $ #7=(|NonNegativeInteger|))) (SIGNATURE |rationalApproximation| (#6# $ #7# #7#)) (SIGNATURE |log2| #8=($)) (SIGNATURE |log10| #8#) (SIGNATURE |exp1| #8#) (SIGNATURE |atan| #4#) (SIGNATURE |log2| #5#) (SIGNATURE |log10| #5#) (SIGNATURE |outputFloating| #9=(#10=(|Void|))) (SIGNATURE |outputFloating| #11=(#10# #7#)) (SIGNATURE |outputFixed| #9#) (SIGNATURE |outputFixed| #11#) (SIGNATURE |outputGeneral| #9#) (SIGNATURE |outputGeneral| #11#) (SIGNATURE |outputSpacing| #11#) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |arbitraryExponent|)))) (T |Float|))
+((** #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|Float|))) (/ #3=(*1 *1 *1 *2) #4=(AND (|isDomain| *2 #5=(|Integer|)) #2#)) (|normalize| #6=(*1 *1 *1) #2#) (|relerror| (*1 *2 *1 *1) #4#) (|shift| #3# #4#) (|rationalApproximation| (*1 *2 *1 *3) #7=(AND #8=(|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Fraction| #5#)) #2#)) (|rationalApproximation| (*1 *2 *1 *3 *3) #7#) (|log2| #9=(*1 *1) #2#) (|log10| #9# #2#) (|exp1| #9# #2#) (|atan| #1# #2#) (|log2| #6# #2#) (|log10| #6# #2#) (|outputFloating| #10=(*1 *2) #11=(AND #12=(|isDomain| *2 (|Void|)) #2#)) (|outputFloating| #13=(*1 *2 *3) #14=(AND #8# #12# #2#)) (|outputFixed| #10# #11#) (|outputFixed| #13# #14#) (|outputGeneral| #10# #11#) (|outputGeneral| #13# #14#) (|outputSpacing| #13# #14#))
+((|complexSolve| ((#1=(|List| (|Equation| (|Polynomial| #2=(|Complex| |#1|)))) #3=(|Equation| #4=(|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) 52 T ELT) ((#1# #4# |#1|) 51 T ELT) ((#5=(|List| #1#) (|List| #3#) |#1|) 48 T ELT) ((#5# #6=(|List| #4#) |#1|) 42 T ELT)) (|complexRoots| (((|List| #7=(|List| #2#)) #6# (|List| (|Symbol|)) |#1|) 30 T ELT) ((#7# #4# |#1|) 18 T ELT)))
+(((|FloatingComplexPackage| |#1|) (CATEGORY |package| (SIGNATURE |complexSolve| (#1=(|List| #2=(|List| (|Equation| (|Polynomial| #3=(|Complex| |#1|))))) #4=(|List| #5=(|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|)) (SIGNATURE |complexSolve| (#1# (|List| #6=(|Equation| #5#)) |#1|)) (SIGNATURE |complexSolve| (#2# #5# |#1|)) (SIGNATURE |complexSolve| (#2# #6# |#1|)) (SIGNATURE |complexRoots| (#7=(|List| #3#) #5# |#1|)) (SIGNATURE |complexRoots| ((|List| #7#) #4# (|List| (|Symbol|)) |#1|))) (|Join| (|Field|) (|OrderedRing|))) (T |FloatingComplexPackage|))
+((|complexRoots| (*1 *2 *3 *4 *5) (AND #1=(|isDomain| *3 (|List| #2=(|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|List| (|List| (|Complex| *5)))) (|isDomain| *1 (|FloatingComplexPackage| *5)) (|ofCategory| *5 #3=(|Join| (|Field|) (|OrderedRing|))))) (|complexRoots| #4=(*1 *2 *3 *4) (AND #5=(|isDomain| *3 #2#) (|isDomain| *2 (|List| #6=(|Complex| *4))) #7=(|isDomain| *1 (|FloatingComplexPackage| *4)) #8=(|ofCategory| *4 #3#))) (|complexSolve| #4# (AND (|isDomain| *3 #9=(|Equation| #2#)) #10=(|isDomain| *2 #11=(|List| (|Equation| (|Polynomial| #6#)))) #7# #8#)) (|complexSolve| #4# (AND #5# #10# #7# #8#)) (|complexSolve| #4# (AND (|isDomain| *3 (|List| #9#)) #12=(|isDomain| *2 (|List| #11#)) #7# #8#)) (|complexSolve| #4# (AND #1# #12# #7# #8#)))
+((|solve| ((#1=(|List| (|Equation| (|Polynomial| |#1|))) #2=(|Equation| #3=(|Fraction| (|Polynomial| (|Integer|)))) |#1|) 47 T ELT) ((#1# #3# |#1|) 46 T ELT) ((#4=(|List| #1#) (|List| #2#) |#1|) 43 T ELT) ((#4# #5=(|List| #3#) |#1|) 37 T ELT)) (|realRoots| ((#6=(|List| |#1|) #3# |#1|) 20 T ELT) (((|List| #6#) #5# (|List| (|Symbol|)) |#1|) 30 T ELT)))
+(((|FloatingRealPackage| |#1|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|List| #2=(|List| (|Equation| (|Polynomial| |#1|)))) #3=(|List| #4=(|Fraction| (|Polynomial| (|Integer|)))) |#1|)) (SIGNATURE |solve| (#1# (|List| #5=(|Equation| #4#)) |#1|)) (SIGNATURE |solve| (#2# #4# |#1|)) (SIGNATURE |solve| (#2# #5# |#1|)) (SIGNATURE |realRoots| ((|List| #6=(|List| |#1|)) #3# (|List| (|Symbol|)) |#1|)) (SIGNATURE |realRoots| (#6# #4# |#1|))) (|Join| (|OrderedRing|) (|Field|))) (T |FloatingRealPackage|))
+((|realRoots| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 #3=(|Fraction| (|Polynomial| (|Integer|)))) (|isDomain| *2 (|List| *4)) #4=(|isDomain| *1 (|FloatingRealPackage| *4)) #5=(|ofCategory| *4 #6=(|Join| (|OrderedRing|) (|Field|))))) (|realRoots| (*1 *2 *3 *4 *5) (AND #7=(|isDomain| *3 (|List| #3#)) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|List| (|List| *5))) (|isDomain| *1 (|FloatingRealPackage| *5)) (|ofCategory| *5 #6#))) (|solve| #1# (AND (|isDomain| *3 #8=(|Equation| #3#)) #9=(|isDomain| *2 #10=(|List| (|Equation| (|Polynomial| *4)))) #4# #5#)) (|solve| #1# (AND #2# #9# #4# #5#)) (|solve| #1# (AND (|isDomain| *3 (|List| #8#)) #11=(|isDomain| *2 (|List| #10#)) #4# #5#)) (|solve| #1# (AND #7# #11# #4# #5#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|terms| ((#3=(|List| (|IndexedProductTerm| |#1| |#2|)) $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#4=($) NIL T CONST)) (|reductum| #5=(($ $) NIL T ELT)) (|opposite?| #1#) (|monomial| (($ |#1| |#2|) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingSupport| ((|#2| $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #3#) NIL T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT)) (|before?| #1#) (|Zero| (#4# 12 T CONST)) (= #1#) (- #5# #6=(($ $ $) NIL T ELT)) (+ #6#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
+(((|FreeModule| |#1| |#2|) (|Join| (|BiModule| |#1| |#1|) (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |package| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |%noBranch|))) (|Ring|) (|OrderedType|)) (T |FreeModule|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ #4="failed") $ $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| #4#) $) 29 T ELT)) (|retract| (#6=(|#2| $) 31 T ELT)) (|reductum| #7=(($ $) NIL T ELT)) (|opposite?| #1#) (|numberOfMonomials| ((#8=(|NonNegativeInteger|) $) 13 T ELT)) (|monomials| (((|List| $) $) 23 T ELT)) (|monomial?| #3#) (|monom| (#9=($ |#2| |#1|) 21 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingTerm| ((#10=(|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (|leadingMonomial| (#6# 18 T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 50 T ELT) (($ |#2|) 30 T ELT)) (|coefficients| (((|List| |#1|) $) 20 T ELT)) (|coefficient| ((|#1| $ |#2|) 54 T ELT)) (|before?| #1#) (|Zero| (#5# 32 T CONST)) (|ListOfTerms| (((|List| #10#) $) 14 T ELT)) (= #1#) (- #11=(($ $ $) NIL T ELT) #7#) (+ #11#) (* (($ $ |#1|) 36 T ELT) (($ |#1| $) 35 T ELT) (($ (|Integer|) $) NIL T ELT) (($ #8# $) NIL T ELT) (($ (|PositiveInteger|) $) NIL T ELT) (($ |#1| |#2|) 38 T ELT) (#9# 39 T ELT)))
+(((|FreeModule1| |#1| |#2|) (|Join| (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ |#2| |#1|)))) (|Ring|) (|OrderedSet|)) (T |FreeModule1|))
+((* (*1 *1 *2 *3) (AND (|isDomain| *1 (|FreeModule1| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)))))
+((~= (#1=((|Boolean|) $ $) 31 T ELT)) (|zero?| ((#2=(|Boolean|) $) 40 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 43 T ELT)) (|sample| (#3=($) 39 T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 28 T ELT)) (|retract| ((|#2| $) 29 T ELT)) (|reductum| (($ $) 15 T ELT)) (|opposite?| ((#2# $ $) 42 T ELT)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 19 T ELT)) (|monomials| (((|List| $) $) 20 T ELT)) (|monomial?| (((|Boolean|) $) 23 T ELT)) (|monom| (($ |#2| |#1|) 24 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 6 T ELT)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 16 T ELT)) (|leadingMonomial| ((|#2| $) 18 T ELT)) (|leadingCoefficient| ((|#1| $) 17 T ELT)) (|latex| (((|String|) $) 35 T ELT)) (|hash| (((|SingleInteger|) $) 34 T ELT)) (|coerce| (((|OutputForm|) $) 33 T ELT) (($ |#2|) 27 T ELT)) (|coefficients| (((|List| |#1|) $) 21 T ELT)) (|coefficient| ((|#1| $ |#2|) 25 T ELT)) (|before?| (#1# 32 T ELT)) (|Zero| (#3# 38 T CONST)) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 22 T ELT)) (= (#1# 30 T ELT)) (- (($ $ $) 46 T ELT) (($ $) 45 T ELT)) (+ (($ $ $) 36 T ELT)) (* (($ $ |#1|) 48 T ELT) (($ |#1| . #4=($)) 47 T ELT) (($ (|Integer|) . #4#) 44 T ELT) (($ (|NonNegativeInteger|) $) 41 T ELT) (($ (|PositiveInteger|) $) 37 T ELT) (($ |#1| |#2|) 26 T ELT)))
+(((|FreeModuleCat| |#1| |#2|) (|Category|) (|Ring|) (|SetCategory|)) (T |FreeModuleCat|))
+((* (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|monom| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|ListOfTerms| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|monomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FreeModuleCat| *3 *4)))) (|numberOfMonomials| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingMonomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|leadingTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |k| *4) (|:| |c| *3))))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|)))))
+(|Join| (|Functorial| |t#1|) (|BiModule| |t#1| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| |t#2|)) (SIGNATURE |coefficient| (|t#1| $ |t#2|)) (SIGNATURE |monom| ($ |t#2| |t#1|)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |ListOfTerms| ((|List| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingMonomial| (|t#2| $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingTerm| ((|Record| (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (SIGNATURE |reductum| ($ $)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| |#2|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Functorial| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|RetractableTo| |#2|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|size| (((|NonNegativeInteger|) $) 40 T ELT)) (|sample| (#2=($) 23 T CONST)) (|rquo| (((|Union| $ "failed") $ $) 43 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) 51 T ELT)) (|retract| ((|#1| $) 52 T ELT)) (|recip| (((|Union| $ "failed") $) 20 T ELT)) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (|one?| (((|Boolean|) $) 22 T ELT)) (|nthFactor| ((|#1| $ (|Integer|)) 37 T ELT)) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) 38 T ELT)) (|min| (#3=($ $ $) 29 (|has| |#1| . #4=((|OrderedSet|))) ELT)) (|max| (#3# 30 (|has| |#1| . #4#) ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 35 T ELT)) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) 36 T ELT)) (|lquo| (((|Union| $ "failed") $ $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hcrf| (($ $ $) 45 T ELT)) (|hclf| (($ $ $) 46 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) 39 T ELT)) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ |#1|) 50 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (#2# 24 T CONST)) (>= (#5=((|Boolean|) $ $) 31 (|has| |#1| . #4#) ELT)) (> (#5# 33 (|has| |#1| . #4#) ELT)) (= (#1# 8 T ELT)) (<= (#5# 32 (|has| |#1| . #4#) ELT)) (< (#5# 34 (|has| |#1| . #4#) ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT) (($ $ (|NonNegativeInteger|)) 21 T ELT) (($ |#1| (|NonNegativeInteger|)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
+(((|FreeMonoidCategory| |#1|) (|Category|) (|SetCategory|)) (T |FreeMonoidCategory|))
+((* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (** (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|hclf| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|hcrf| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|lquo| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|rquo| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|divide| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |lm| *1) (|:| |rm| *1))) (|ofCategory| *1 (|FreeMonoidCategory| *3)))) (|overlap| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (|ofCategory| *1 (|FreeMonoidCategory| *3)))) (|size| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeMonoidCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|factors| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeMonoidCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| (|NonNegativeInteger|))))))) (|nthExpon| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeMonoidCategory| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeMonoidCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|mapExpon| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|))) (|ofCategory| *1 (|FreeMonoidCategory| *3)) (|ofCategory| *3 (|SetCategory|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FreeMonoidCategory| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(|Join| (|Monoid|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|)) (SIGNATURE ** ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |hclf| ($ $ $)) (SIGNATURE |hcrf| ($ $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ $)) (SIGNATURE |rquo| ((|Union| $ "failed") $ $)) (SIGNATURE |divide| ((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (SIGNATURE |overlap| ((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |t#1|) (|:| |exp| (|NonNegativeInteger|)))) $)) (SIGNATURE |nthExpon| ((|NonNegativeInteger|) $ (|Integer|))) (SIGNATURE |nthFactor| (|t#1| $ (|Integer|))) (SIGNATURE |mapExpon| ($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $)) (SIGNATURE |mapGen| ($ (|Mapping| |t#1| |t#1|) $)) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|)))
+(((|BasicType|) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|RetractableTo| |#1|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|size| ((#4=(|NonNegativeInteger|) $) 74 T ELT)) (|sample| (#5=($) NIL T CONST)) (|rquo| (#6=(#7=(|Union| $ #8="failed") $ $) 77 T ELT)) (|retractIfCan| (((|Union| |#1| #8#) $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|recip| ((#7# $) NIL T ELT)) (|overlap| (((|Record| #9=(|:| |lm| $) (|:| |mm| $) #10=(|:| |rm| $)) $ $) 64 T ELT)) (|one?| ((#3# $) 17 T ELT)) (|nthFactor| ((|#1| $ #11=(|Integer|)) NIL T ELT)) (|nthExpon| ((#4# $ #11#) NIL T ELT)) (|min| #12=(#13=($ $ $) NIL #14=(|has| |#1| (|OrderedSet|)) ELT)) (|max| #12#) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 40 T ELT)) (|mapExpon| (($ (|Mapping| #4# #4#) $) 37 T ELT)) (|lquo| (#6# 60 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hcrf| (#13# 28 T ELT)) (|hclf| (#13# 26 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #4#))) $) 34 T ELT)) (|divide| (((|Union| (|Record| #9# #10#) #8#) $ $) 70 T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ |#1|) NIL T ELT)) (|before?| #1#) (|One| (#5# 7 T CONST)) (>= #15=(#2# NIL #14# ELT)) (> #15#) (= #1#) (<= #15#) (< (#2# 83 #14# ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ #4#) NIL T ELT) (($ |#1| #4#) 42 T ELT)) (* (#13# 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
+(((|FreeMonoid| |#1|) (|FreeMonoidCategory| |#1|) (|SetCategory|)) (T |FreeMonoid|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|writable?| (#4=(#3# $) 25 T ELT)) (|readable?| (#4# 22 T ELT)) (|new| (#5=($ #6=(|String|) #6# #6#) 26 T ELT)) (|name| (#7=(#6# $) 16 T ELT)) (|latex| (#7# NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|filename| (#5# 14 T ELT)) (|extension| (#7# 17 T ELT)) (|exists?| (#4# 18 T ELT)) (|directory| (#7# 15 T ELT)) (|coerce| (((|OutputForm|) $) 12 T ELT) (($ #6#) 13 T ELT) (#7# 9 T ELT)) (|before?| #1#) (= (#2# 7 T ELT)))
+(((|FileName|) (|FileNameCategory|)) (T |FileName|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|writable?| (((|Boolean|) $) 20 T ELT)) (|readable?| (((|Boolean|) $) 21 T ELT)) (|new| (($ (|String|) (|String|) (|String|)) 19 T ELT)) (|name| (((|String|) $) 24 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|filename| (($ (|String|) (|String|) (|String|)) 26 T ELT)) (|extension| (((|String|) $) 23 T ELT)) (|exists?| (((|Boolean|) $) 22 T ELT)) (|directory| (((|String|) $) 25 T ELT)) (|coerce| (((|OutputForm|) . #2=($)) 13 T ELT) (($ #3=(|String|)) 28 T ELT) ((#3# . #2#) 27 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|FileNameCategory|) (|Category|)) (T |FileNameCategory|))
+((|filename| (*1 *1 *2 *2 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|)))) (|directory| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|name| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|extension| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|exists?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|readable?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|writable?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|new| (*1 *1 *2 *2 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|)))))
+(|Join| (|SetCategory|) (|HomotopicTo| (|String|)) (CATEGORY |domain| (SIGNATURE |filename| ($ (|String|) (|String|) (|String|))) (SIGNATURE |directory| ((|String|) $)) (SIGNATURE |name| ((|String|) $)) (SIGNATURE |extension| ((|String|) $)) (SIGNATURE |exists?| ((|Boolean|) $)) (SIGNATURE |readable?| ((|Boolean|) $)) (SIGNATURE |writable?| ((|Boolean|) $)) (SIGNATURE |new| ($ (|String|) (|String|) (|String|)))))
+(((|BasicType|) . T) ((|CoercibleFrom| #1=(|String|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| #1#) . T) ((|HomotopicTo| #1#) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#3# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|shallowExpand| (#4=((|OutputForm|) $) 64 T ELT)) (|sample| (#5=($) NIL T CONST)) (|rightPower| #6=(($ $ #7=(|PositiveInteger|)) NIL T ELT)) (|plenaryPower| #6#) (|opposite?| #1#) (|leftPower| #6#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (($ #8=(|NonNegativeInteger|)) 38 T ELT)) (|dimension| ((#8#) 18 T ELT)) (|deepExpand| (#4# 66 T ELT)) (|commutator| #9=(#10=($ $ $) NIL T ELT)) (|coerce| (#4# NIL T ELT)) (|before?| #1#) (|associator| (($ $ $ $) NIL T ELT)) (|antiCommutator| #9#) (|Zero| (#5# 24 T CONST)) (= (#2# 41 T ELT)) (- (($ $) 48 T ELT) (#10# 50 T ELT)) (+ (#10# 51 T ELT)) (** #6#) (* (($ #7# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ (|Integer|) . #11=($)) NIL T ELT) (#10# 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| . #11#) 47 T ELT)))
+(((|FreeNilpotentLie| |#1| |#2| |#3|) (|Join| (|NonAssociativeAlgebra| |#3|) (CATEGORY |domain| (SIGNATURE |dimension| (#1=(|NonNegativeInteger|))) (SIGNATURE |deepExpand| #2=((|OutputForm|) $)) (SIGNATURE |shallowExpand| #2#) (SIGNATURE |generator| ($ #1#)))) #1# #1# (|CommutativeRing|)) (T |FreeNilpotentLie|))
+((|dimension| (*1 *2) #1=(AND (|isDomain| *2 #2=(|NonNegativeInteger|)) #3=(|isDomain| *1 (|FreeNilpotentLie| *3 *4 *5)) (|ofType| *3 *2) (|ofType| *4 *2) #4=(|ofCategory| *5 (|CommutativeRing|)))) (|deepExpand| #5=(*1 *2 *1) #6=(AND (|isDomain| *2 (|OutputForm|)) #3# (|ofType| *3 #2#) (|ofType| *4 #2#) #4#)) (|shallowExpand| #5# #6#) (|generator| (*1 *1 *2) #1#))
+((|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) 16 T ELT)))
+(((|FindOrderFinite| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |order| ((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) (|Join| (|Finite|) (|Field|)) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |FindOrderFinite|))
+((|order| (*1 *2 *3) (AND (|isDomain| *3 (|FiniteDivisor| *4 *5 *6 *7)) (|ofCategory| *4 (|Join| (|Finite|) (|Field|))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofCategory| *7 (|FunctionFieldCategory| *4 *5 *6)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FindOrderFinite| *4 *5 *6 *7)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|polyPart| ((|#2| $) 38 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fullPartialFraction| (($ #2=(|Fraction| |#2|)) 93 T ELT)) (|fracPart| ((#3=(|List| (|Record| (|:| |exponent| #4=(|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (|differentiate| (#5=($ $ #4#) 36 T ELT) (#6=($ $) 34 T ELT)) (|convert| ((#2# $) 49 T ELT)) (|construct| (($ #3#) 33 T ELT)) (|coerce| (((|OutputForm|) $) 131 T ELT)) (|before?| #1#) (D (#5# 37 T ELT) (#6# 35 T ELT)) (= #1#) (+ (($ |#2| $) 41 T ELT)))
+(((|FullPartialFractionExpansion| |#1| |#2|) (|Join| (|SetCategory|) (|DifferentialSpace|) (|ConvertibleTo| #1=(|Fraction| |#2|)) (CATEGORY |domain| (SIGNATURE + ($ |#2| $)) (SIGNATURE |fullPartialFraction| ($ #1#)) (SIGNATURE |polyPart| (|#2| $)) (SIGNATURE |fracPart| (#2=(|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $)) (SIGNATURE |construct| ($ #2#)))) (|Join| (|Field|) (|CharacteristicZero|)) (|UnivariatePolynomialCategory| |#1|)) (T |FullPartialFractionExpansion|))
+((+ (*1 *1 *2 *1) (AND #1=(|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) #2=(|isDomain| *1 (|FullPartialFractionExpansion| *3 *2)) #3=(|ofCategory| *2 #4=(|UnivariatePolynomialCategory| *3)))) (|fullPartialFraction| #5=(*1 *1 *2) (AND (|isDomain| *2 (|Fraction| *4)) #6=(|ofCategory| *4 #4#) #1# #7=(|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)))) (|polyPart| #8=(*1 *2 *1) (AND #3# #2# #1#)) (|fracPart| #8# (AND #1# #9=(|isDomain| *2 (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| *4) (|:| |num| *4)))) #7# #6#)) (|construct| #5# (AND #9# #6# #1# #7#)))
+((~= (#1=((|Boolean|) $ $) 10 (OR (|has| |#1| . #2=((|PatternMatchable| (|Integer|)))) (|has| |#1| . #3=((|PatternMatchable| (|Float|))))) ELT)) (|patternMatch| (((|PatternMatchResult| #4=(|Float|) . #5=($)) $ (|Pattern| #4#) (|PatternMatchResult| #4# . #5#)) 16 (|has| |#1| . #3#) ELT) (((|PatternMatchResult| #6=(|Integer|) . #5#) $ (|Pattern| #6#) (|PatternMatchResult| #6# . #5#)) 15 (|has| |#1| . #2#) ELT)) (|latex| (((|String|) $) 14 (OR (|has| |#1| . #2#) (|has| |#1| . #3#)) ELT)) (|hash| (((|SingleInteger|) $) 13 (OR (|has| |#1| . #2#) (|has| |#1| . #3#)) ELT)) (|coerce| (((|OutputForm|) $) 12 (OR (|has| |#1| . #2#) (|has| |#1| . #3#)) ELT)) (|before?| (#1# 11 (OR (|has| |#1| . #2#) (|has| |#1| . #3#)) ELT)) (= (#1# 9 (OR (|has| |#1| . #2#) (|has| |#1| . #3#)) ELT)))
+(((|FullyPatternMatchable| |#1|) (|Category|) (|Type|)) (T |FullyPatternMatchable|))
+NIL
+(|Join| (|Type|) (CATEGORY |package| (IF (|has| |t#1| (|PatternMatchable| (|Integer|))) (ATTRIBUTE (|PatternMatchable| (|Integer|))) |%noBranch|) (IF (|has| |t#1| (|PatternMatchable| (|Float|))) (ATTRIBUTE (|PatternMatchable| (|Float|))) |%noBranch|)))
+(((|BasicType|) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|Join|) . T) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|SetCategory|) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|Type|) . T))
+((|primeFrobenius| (($ $) 10 T ELT) (($ $ (|NonNegativeInteger|)) 12 T ELT)))
+(((|FieldOfPrimeCharacteristic&| |#1|) (CATEGORY |package| (SIGNATURE |primeFrobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |primeFrobenius| (|#1| |#1|))) (|FieldOfPrimeCharacteristic|)) (T |FieldOfPrimeCharacteristic&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#5=($) 23 T CONST)) (|rem| (#6=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#6# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 66 T ELT)) (|primeFrobenius| (($ $) 97 T ELT) (($ $ (|NonNegativeInteger|)) 96 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 99 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiEuclidean| (((|Union| #8=(|List| $) #9="failed") #8# $) 68 T ELT)) (|lcm| (#10=($ $ $) 60 T ELT) (#11=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#12=(|SparseUnivariatePolynomial| $) #12# #12#) 58 T ELT)) (|gcd| (#10# 62 T ELT) (#11# 61 T ELT)) (|factor| (#4# 92 T ELT)) (|extendedEuclidean| (((|Record| #13=(|:| |coef1| $) #14=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #13# #14#) #9#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #7#) #7# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 98 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #15=(|Fraction| #16=(|Integer|))) 84 T ELT)) (|charthRoot| (((|Maybe| $) $) 100 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #16#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #17=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #15#) 86 T ELT) (($ #15# . #17#) 85 T ELT)))
+(((|FieldOfPrimeCharacteristic|) (|Category|)) (T |FieldOfPrimeCharacteristic|))
+((|order| (*1 *2 *1) (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|discreteLog| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|primeFrobenius| (*1 *1 *1) (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))) (|primeFrobenius| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|Field|) (|CharacteristicNonZero|) (CATEGORY |domain| (SIGNATURE |order| ((|OnePointCompletion| (|PositiveInteger|)) $)) (SIGNATURE |discreteLog| ((|Union| (|NonNegativeInteger|) "failed") $ $)) (SIGNATURE |primeFrobenius| ($ $)) (SIGNATURE |primeFrobenius| ($ $ (|NonNegativeInteger|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|float| (($ #1=(|Integer|) #1#) 11 T ELT) (($ #1# #1# #2=(|PositiveInteger|)) NIL T ELT)) (|digits| ((#2#) 19 T ELT) ((#2# #2#) NIL T ELT)))
+(((|FloatingPointSystem&| |#1|) (CATEGORY |package| (SIGNATURE |digits| (#1=(|PositiveInteger|) #1#)) (SIGNATURE |digits| (#1#)) (SIGNATURE |float| (|#1| #2=(|Integer|) #2# #1#)) (SIGNATURE |float| (|#1| #2# #2#))) (|FloatingPointSystem|)) (T |FloatingPointSystem&|))
+((|digits| (*1 *2) #1=(AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|FloatingPointSystem&| *3)) (|ofCategory| *3 (|FloatingPointSystem|)))) (|digits| (*1 *2 *2) #1#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|wholePart| ((#3=(|Integer|) $) 108 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#4=(|Boolean|) $) 52 T ELT)) (|truncate| (#5=($ $) 106 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#6=((|Factored| $) $) 90 T ELT)) (|sqrt| (($ $) 116 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sign| (((|Integer|) $) 133 T ELT)) (|sample| (#7=($) 23 T CONST)) (|round| (#5# 105 T ELT)) (|retractIfCan| (((|Union| #3# . #8=("failed")) . #9=($)) 121 T ELT) (((|Union| #10=(|Fraction| #3#) . #8#) . #9#) 118 T ELT)) (|retract| ((#3# . #11=($)) 122 T ELT) ((#10# . #11#) 119 T ELT)) (|rem| (#12=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#12# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #13=(|List| $)) (|:| |generator| $)) #13#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|precision| (((|PositiveInteger|)) 149 T ELT) (((|PositiveInteger|) (|PositiveInteger|)) 146 (|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|positive?| (((|Boolean|) $) 131 T ELT)) (|patternMatch| (((|PatternMatchResult| #14=(|Float|) . #15=($)) $ (|Pattern| #14#) (|PatternMatchResult| #14# . #15#)) 112 T ELT)) (|order| (((|Integer|) $) 155 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #16=(|Integer|)) 115 T ELT)) (|norm| (#5# 111 T ELT)) (|negative?| (((|Boolean|) $) 132 T ELT)) (|multiEuclidean| (((|Union| #17=(|List| $) #18="failed") #17# $) 68 T ELT)) (|min| (#19=($ $ $) 125 T ELT) (($) 143 (AND (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|)))) ELT)) (|max| (#19# 126 T ELT) (($) 142 (AND (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|)))) ELT)) (|mantissa| (((|Integer|) $) 152 T ELT)) (|lcm| (#20=($ $ $) 60 T ELT) (#21=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) 145 (|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#22=(|SparseUnivariatePolynomial| $) #22# #22#) 58 T ELT)) (|gcd| (#20# 62 T ELT) (#21# 61 T ELT)) (|fractionPart| (#5# 107 T ELT)) (|floor| (#5# 109 T ELT)) (|float| (($ (|Integer|) (|Integer|)) 157 T ELT) (($ (|Integer|) (|Integer|) (|PositiveInteger|)) 156 T ELT)) (|factor| (#6# 92 T ELT)) (|extendedEuclidean| (((|Record| #23=(|:| |coef1| $) #24=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #23# #24#) #18#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #13#) #13# $) 65 T ELT)) (|exponent| (((|Integer|) $) 153 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|digits| (((|PositiveInteger|)) 150 T ELT) (((|PositiveInteger|) (|PositiveInteger|)) 147 (|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) 144 (|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|convert| (((|Float|) . #25=($)) 124 T ELT) (((|DoubleFloat|) . #25#) 123 T ELT) (((|Pattern| #14#) . #25#) 113 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #26=(|Fraction| #27=(|Integer|))) 84 T ELT) (($ #3#) 120 T ELT) (($ #10#) 117 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|ceiling| (#5# 110 T ELT)) (|bits| (((|PositiveInteger|)) 151 T ELT) (((|PositiveInteger|) (|PositiveInteger|)) 148 (|has| $ (ATTRIBUTE |arbitraryPrecision|)) ELT)) (|before?| (#1# 6 T ELT)) (|base| (((|PositiveInteger|)) 154 T ELT)) (|associates?| ((#4# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| (($ $) 134 T ELT)) (|Zero| (#7# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#28=((|Boolean|) $ $) 127 T ELT)) (> (#28# 129 T ELT)) (= (#1# 8 T ELT)) (<= (#28# 128 T ELT)) (< (#28# 130 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #27#) 87 T ELT) (($ $ (|Fraction| #16#)) 114 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #29=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #26#) 86 T ELT) (($ #26# . #29#) 85 T ELT)))
+(((|FloatingPointSystem|) (|Category|)) (T |FloatingPointSystem|))
+((|float| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|float| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|base| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|exponent| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|mantissa| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|bits| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|digits| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|precision| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|bits| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|digits| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|precision| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|increasePrecision| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|decreasePrecision| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|min| (*1 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|))))) (|max| (*1 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|))))))
+(|Join| (|RealNumberSystem|) (CATEGORY |domain| (ATTRIBUTE |approximate|) (SIGNATURE |float| ($ (|Integer|) (|Integer|))) (SIGNATURE |float| ($ (|Integer|) (|Integer|) (|PositiveInteger|))) (SIGNATURE |order| ((|Integer|) $)) (SIGNATURE |base| ((|PositiveInteger|))) (SIGNATURE |exponent| ((|Integer|) $)) (SIGNATURE |mantissa| ((|Integer|) $)) (SIGNATURE |bits| ((|PositiveInteger|))) (SIGNATURE |digits| ((|PositiveInteger|))) (SIGNATURE |precision| ((|PositiveInteger|))) (IF (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (PROGN (SIGNATURE |bits| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |digits| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |precision| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |increasePrecision| ((|PositiveInteger|) (|Integer|))) (SIGNATURE |decreasePrecision| ((|PositiveInteger|) (|Integer|)))) |%noBranch|) (IF (|has| $ (ATTRIBUTE |arbitraryExponent|)) |%noBranch| (IF (|has| $ (ATTRIBUTE |arbitraryPrecision|)) |%noBranch| (PROGN (SIGNATURE |min| ($)) (SIGNATURE |max| ($)))))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|Pattern| #2=(|Float|))) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|PatternMatchable| #2#) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RealConstant|) . T) ((|RealNumberSystem|) . T) ((|RetractableTo| (|Fraction| #3=(|Integer|))) . T) ((|RetractableTo| #3#) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 59 T ELT)) (|unitNormalize| (#5=($ $) 77 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 189 T ELT)) (|unitCanonical| #6=(#5# NIL T ELT)) (|unit?| (#4# 48 T ELT)) (|unit| (#7=(|#1| $) 16 T ELT)) (|subtractIfCan| (#8=(#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|squareFreePart| (#5# NIL #11=(|has| |#1| (|UniqueFactorizationDomain|)) ELT)) (|squareFree| #12=(((|Factored| $) $) NIL #11# ELT)) (|sqfrFactor| (#13=($ |#1| #14=(|Integer|)) 42 T ELT)) (|sample| (#15=($) NIL T CONST)) (|retractIfCan| (((|Union| #14# . #16=(#10#)) $) NIL #17=(|has| |#1| (|RetractableTo| #14#)) ELT) (#18=((|Union| #19=(|Fraction| #14#) #10#) $) NIL #20=(|has| |#1| (|RetractableTo| #19#)) ELT) (((|Union| |#1| . #16#) $) 147 T ELT)) (|retract| (#21=(#14# $) NIL #17# ELT) (#22=(#19# $) NIL #20# ELT) (#7# 73 T ELT)) (|recip| ((#9# $) 163 T ELT)) (|rationalIfCan| (#18# 84 #23=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#4# 80 #23# ELT)) (|rational| (#22# 82 #23# ELT)) (|primeFactor| (#13# 44 T ELT)) (|prime?| (#4# 209 #11# ELT)) (|opposite?| #1#) (|one?| (#4# 61 T ELT)) (|numberOfFactors| ((#24=(|NonNegativeInteger|) $) 51 T ELT)) (|nthFlag| ((#25=(|Union| "nil" "sqfr" "irred" "prime") $ #14#) 174 T ELT)) (|nthFactor| ((|#1| $ #14#) 173 T ELT)) (|nthExponent| ((#14# $ #14#) 172 T ELT)) (|nilFactor| (#13# 41 T ELT)) (|map| (($ #26=(|Mapping| |#1| |#1|) $) 182 T ELT)) (|makeFR| (($ |#1| #27=(|List| (|Record| (|:| |flg| #25#) (|:| |fctr| |#1|) (|:| |xpnt| #14#)))) 78 T ELT)) (|lcm| #28=(($ #29=(|List| $)) NIL #30=(|has| |#1| (|GcdDomain|)) ELT) (#31=($ $ $) NIL #30# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|irreducibleFactor| (#13# 43 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#32=(|SparseUnivariatePolynomial| $) #32# #32#) NIL #30# ELT)) (|gcd| #28# (#31# 190 #30# ELT)) (|flagFactor| (($ |#1| #14# #25#) 40 T ELT)) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| #14#))) $) 72 T ELT)) (|factorList| ((#27# $) 12 T ELT)) (|factor| #12#) (|exquo| (#8# 175 T ELT)) (|exponent| (#21# 166 T ELT)) (|expand| (#7# 74 T ELT)) (|eval| (($ $ #33=(|List| |#1|) #33#) NIL #34=(|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) NIL #34# ELT) (($ $ #35=(|Equation| |#1|)) NIL #34# ELT) (($ $ (|List| #35#)) 99 #34# ELT) (($ $ #36=(|List| #37=(|Symbol|)) #33#) 105 #38=(|has| |#1| (|InnerEvalable| #37# |#1|)) ELT) (($ $ #37# |#1|) NIL #38# ELT) (($ $ #37# $) NIL #39=(|has| |#1| (|InnerEvalable| #37# $)) ELT) (($ $ #36# #29#) 106 #39# ELT) (($ $ (|List| #40=(|Equation| $))) 102 #41=(|has| |#1| (|Evalable| $)) ELT) (($ $ #40#) NIL #41# ELT) (($ $ $ $) NIL #41# ELT) (($ $ #29# #29#) NIL #41# ELT)) (|elt| (#42=($ $ |#1|) 91 (|has| |#1| (|Eltable| |#1| |#1|)) ELT) (#31# 92 (|has| |#1| (|Eltable| $ $)) ELT)) (|differentiate| (#43=($ $ #26#) 181 T ELT) #44=(($ $ #26# #24#) NIL T ELT) #45=(#5# NIL #46=(|has| |#1| (|DifferentialSpace|)) ELT) #47=(#48=($ $ #24#) NIL #46# ELT) #49=(($ $ #37#) NIL #50=(|has| |#1| (|PartialDifferentialSpace| #37#)) ELT) #51=(($ $ #36#) NIL #50# ELT) #52=(($ $ #37# #24#) NIL #50# ELT) #53=(($ $ #36# (|List| #24#)) NIL #50# ELT)) (|convert| ((#54=(|InputForm|) $) 39 (|has| |#1| (|ConvertibleTo| #54#)) ELT) (((|Float|) $) 112 #55=(|has| |#1| (|RealConstant|)) ELT) (((|DoubleFloat|) $) 118 #55# ELT)) (|coerce| (((|OutputForm|) $) 145 T ELT) (($ #14#) 64 T ELT) #6# (($ |#1|) 63 T ELT) (($ #19#) NIL #20# ELT)) (|characteristic| ((#24#) 66 T CONST)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#15# 53 T CONST)) (|One| (#15# 52 T CONST)) (D (#43# NIL T ELT) #44# #45# #47# #49# #51# #52# #53#) (= (#2# 158 T ELT)) (- (#5# 160 T ELT) (#31# NIL T ELT)) (+ (#31# 179 T ELT)) (** (($ $ #56=(|PositiveInteger|)) NIL T ELT) (#48# 124 T ELT)) (* (($ #56# $) NIL T ELT) (($ #24# $) NIL T ELT) (($ #14# $) 68 T ELT) (#31# 67 T ELT) (($ |#1| $) 69 T ELT) (#42# NIL T ELT)))
+(((|Factored| |#1|) (|Join| #1=(|IntegralDomain|) (|DifferentialExtension| |#1|) (|Algebra| |#1|) (|FullyEvalableOver| |#1|) (|FullyRetractableTo| |#1|) (|Functorial| |#1|) (CATEGORY |domain| (SIGNATURE |expand| #2=(|#1| $)) (SIGNATURE |exponent| (#3=(|Integer|) $)) (SIGNATURE |makeFR| ($ |#1| #4=(|List| (|Record| (|:| |flg| #5=(|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| #3#))))) (SIGNATURE |factorList| (#4# $)) (SIGNATURE |nilFactor| #6=($ |#1| #3#)) (SIGNATURE |factors| ((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| #3#))) $)) (SIGNATURE |irreducibleFactor| #6#) (SIGNATURE |nthExponent| (#3# $ #3#)) (SIGNATURE |nthFactor| (|#1| $ #3#)) (SIGNATURE |nthFlag| (#5# $ #3#)) (SIGNATURE |numberOfFactors| ((|NonNegativeInteger|) $)) (SIGNATURE |primeFactor| #6#) (SIGNATURE |sqfrFactor| #6#) (SIGNATURE |flagFactor| ($ |#1| #3# #5#)) (SIGNATURE |unit| #2#) (SIGNATURE |unitNormalize| ($ $)) (IF (|has| |#1| #7=(|GcdDomain|)) (ATTRIBUTE #7#) |%noBranch|) (IF (|has| |#1| #8=(|RealConstant|)) (ATTRIBUTE #8#) |%noBranch|) (IF (|has| |#1| #9=(|UniqueFactorizationDomain|)) (ATTRIBUTE #9#) |%noBranch|) (IF (|has| |#1| #10=(|ConvertibleTo| (|InputForm|))) (ATTRIBUTE #10#) |%noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| (#11=(|Fraction| #3#) $)) (SIGNATURE |rationalIfCan| ((|Union| #11# "failed") $))) |%noBranch|) (IF (|has| |#1| #12=(|Eltable| $ $)) (ATTRIBUTE #12#) |%noBranch|) (IF (|has| |#1| #13=(|Evalable| $)) (ATTRIBUTE #13#) |%noBranch|) (IF (|has| |#1| #14=(|InnerEvalable| (|Symbol|) $)) (ATTRIBUTE #14#) |%noBranch|))) #1#) (T |Factored|))
+((|expand| #1=(*1 *2 *1) #2=(AND #3=(|isDomain| *1 (|Factored| *2)) #4=(|ofCategory| *2 #5=(|IntegralDomain|)))) (|exponent| #1# #6=(AND (|isDomain| *2 #7=(|Integer|)) #8=(|isDomain| *1 (|Factored| *3)) #9=(|ofCategory| *3 #5#))) (|makeFR| #10=(*1 *1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| #11=(|:| |flg| #12=(|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) #13=(|:| |xpnt| #7#)))) #4# #3#)) (|factorList| #1# (AND (|isDomain| *2 (|List| (|Record| #11# (|:| |fctr| *3) #13#))) #8# #9#)) (|nilFactor| #10# #14=(AND #15=(|isDomain| *3 #7#) #3# #4#)) (|factors| #1# (AND (|isDomain| *2 (|List| (|Record| (|:| |factor| *3) (|:| |exponent| #7#)))) #8# #9#)) (|irreducibleFactor| #10# #14#) (|nthExponent| (*1 *2 *1 *2) #6#) (|nthFactor| #16=(*1 *2 *1 *3) #14#) (|nthFlag| #16# (AND #15# (|isDomain| *2 #12#) (|isDomain| *1 (|Factored| *4)) (|ofCategory| *4 #5#))) (|numberOfFactors| #1# (AND (|isDomain| *2 (|NonNegativeInteger|)) #8# #9#)) (|primeFactor| #10# #14#) (|sqfrFactor| #10# #14#) (|flagFactor| (*1 *1 *2 *3 *4) (AND #15# (|isDomain| *4 #12#) #3# #4#)) (|unit| #1# #2#) (|unitNormalize| (*1 *1 *1) #2#) (|rational?| #1# (AND (|isDomain| *2 (|Boolean|)) #8# #17=(|ofCategory| *3 (|IntegerNumberSystem|)) #9#)) (|rational| #1# (AND #18=(|isDomain| *2 (|Fraction| #7#)) #8# #17# #9#)) (|rationalIfCan| #1# (|partial| AND #18# #8# #17# #9#)))
+((|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) 20 T ELT)))
+(((|FactoredFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)))) #1=(|IntegralDomain|) #1#) (T |FactoredFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Factored| *5)) (|ofCategory| *5 #1=(|IntegralDomain|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Factored| *6)) (|isDomain| *1 (|FactoredFunctions2| *5 *6)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 13 T ELT)) (|wholePart| (#5=(|#1| $) 21 #6=(|has| |#1| (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #7=(#8=($ $) NIL T ELT)) (|unit?| #9=(#4# NIL T ELT)) (|subtractIfCan| #10=((#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|squareFreePolynomial| (#13=((|Factored| #14=(|SparseUnivariatePolynomial| $)) #14#) NIL #15=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #7#) (|squareFree| #16=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #17=(|List| #14#) #12#) #17# #14#) NIL #15# ELT)) (|sizeLess?| #1#) (|sign| (#18=(#19=(|Integer|) $) NIL #20=(|has| |#1| (|OrderedIntegralDomain|)) ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #22=(#12#)) $) 17 T ELT) (((|Union| #23=(|Symbol|) . #22#) . #24=($)) NIL #25=(|has| |#1| (|RetractableTo| #23#)) ELT) (((|Union| #26=(|Fraction| #19#) . #22#) $) 54 #27=(|has| |#1| (|RetractableTo| #19#)) ELT) (((|Union| #19# . #22#) . #24#) NIL #27# ELT)) (|retract| (#5# 15 T ELT) ((#23# $) NIL #25# ELT) ((#26# $) 51 #27# ELT) (#18# NIL #27# ELT)) (|rem| #28=(#29=($ $ $) NIL T ELT)) (|reducedSystem| ((#30=(|Matrix| #19#) . #31=(#32=(|Matrix| $))) NIL #33=(|has| |#1| (|LinearlyExplicitRingOver| #19#)) ELT) ((#34=(|Record| (|:| |mat| #30#) (|:| |vec| (|Vector| #19#))) . #35=(#32# #36=(|Vector| $))) NIL #33# ELT) ((#37=(|Record| (|:| |mat| #38=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #35#) NIL T ELT) ((#38# . #31#) NIL T ELT)) (|recip| ((#11# $) 32 T ELT)) (|random| (#21# NIL #39=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|quo| #28#) (|principalIdeal| (((|Record| (|:| |coef| #40=(|List| $)) #41=(|:| |generator| $)) #40#) NIL T ELT)) (|prime?| #9#) (|positive?| (#4# NIL #20# ELT)) (|patternMatch| ((#42=(|PatternMatchResult| #19# . #43=($)) $ #44=(|Pattern| #19#) #42#) NIL (|has| |#1| (|PatternMatchable| #19#)) ELT) ((#45=(|PatternMatchResult| #46=(|Float|) . #43#) $ #47=(|Pattern| #46#) #45#) NIL (|has| |#1| (|PatternMatchable| #46#)) ELT)) (|opposite?| #1#) (|one?| (#4# 38 T ELT)) (|numerator| #7#) (|numer| (#5# 55 T ELT)) (|nextItem| (#48=((|Maybe| $) $) NIL #49=(|has| |#1| (|StepThrough|)) ELT)) (|negative?| (#4# 22 #20# ELT)) (|multiEuclidean| (((|Union| #40# #12#) #40# $) NIL T ELT)) (|min| #50=(#29# NIL #51=(|has| |#1| (|OrderedSet|)) ELT)) (|max| #50#) (|map| (($ #52=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|leftReducedSystem| ((#30# . #53=(#36#)) NIL #33# ELT) ((#34# . #54=(#36# $)) NIL #33# ELT) ((#37# . #54#) NIL T ELT) ((#38# . #53#) NIL T ELT)) (|lcm| #28# #55=(($ #40#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #7#) (|init| (#21# NIL #49# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#14# #14# #14#) 82 T ELT)) (|gcd| #28# #55#) (|fractionPart| (#8# NIL #6# ELT)) (|floor| (#5# 26 #39# ELT)) (|factorSquareFreePolynomial| (#13# 133 #15# ELT)) (|factorPolynomial| (#13# 128 #15# ELT)) (|factor| #16#) (|extendedEuclidean| (((|Record| #56=(|:| |coef1| $) #57=(|:| |coef2| $) #41#) $ $) NIL T ELT) (((|Union| (|Record| #56# #57#) #12#) $ $ $) NIL T ELT)) (|exquo| #10#) (|expressIdealMember| (((|Maybe| #40#) #40# $) NIL T ELT)) (|eval| (($ $ #58=(|List| |#1|) #58#) NIL #59=(|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) NIL #59# ELT) (($ $ #60=(|Equation| |#1|)) NIL #59# ELT) (($ $ (|List| #60#)) NIL #59# ELT) (($ $ #61=(|List| #23#) #58#) NIL #62=(|has| |#1| (|InnerEvalable| #23# |#1|)) ELT) (($ $ #23# |#1|) NIL #62# ELT)) (|euclideanSize| ((#63=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#64=($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| (#65=($ $ #52#) 45 T ELT) #66=(($ $ #52# #63#) NIL T ELT) #67=(($ $ #23#) NIL #68=(|has| |#1| (|PartialDifferentialSpace| #23#)) ELT) #69=(($ $ #61#) NIL #68# ELT) #70=(($ $ #23# #63#) NIL #68# ELT) #71=(($ $ #61# (|List| #63#)) NIL #68# ELT) #72=(#8# NIL #73=(|has| |#1| (|DifferentialSpace|)) ELT) #74=(#75=($ $ #63#) NIL #73# ELT)) (|denominator| #7#) (|denom| (#5# 57 T ELT)) (|convert| ((#44# . #76=($)) NIL (|has| |#1| (|ConvertibleTo| #44#)) ELT) ((#47# . #76#) NIL (|has| |#1| (|ConvertibleTo| #47#)) ELT) ((#77=(|InputForm|) . #76#) NIL (|has| |#1| (|ConvertibleTo| #77#)) ELT) ((#46# . #76#) NIL #78=(|has| |#1| (|RealConstant|)) ELT) (((|DoubleFloat|) . #76#) NIL #78# ELT)) (|conditionP| (((|Union| #36# #12#) #32#) 112 #79=(AND (|has| $ #80=(|CharacteristicNonZero|)) #15#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #19#) NIL T ELT) #7# (($ #26#) NIL T ELT) (($ |#1|) 10 T ELT) (($ #23#) NIL #25# ELT)) (|charthRoot| (#48# 92 (OR #79# (|has| |#1| #80#)) ELT)) (|characteristic| ((#63#) 93 T CONST)) (|ceiling| (#5# 24 #39# ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#8# NIL #20# ELT)) (|Zero| (#21# 28 T CONST)) (|One| (#21# 8 T CONST)) (D (#65# NIL T ELT) #66# #67# #69# #70# #71# #72# #74#) (>= #81=(#2# NIL #51# ELT)) (> #81#) (= (#2# 48 T ELT)) (<= #81#) (< #81#) (/ (#29# 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (- (#8# 23 T ELT) (#29# 37 T ELT)) (+ (#29# 35 T ELT)) (** (($ $ #82=(|PositiveInteger|)) NIL T ELT) (#75# NIL T ELT) (($ $ #19#) 122 T ELT)) (* (($ #82# $) NIL T ELT) (($ #63# $) NIL T ELT) (($ #19# $) 42 T ELT) (#29# 39 T ELT) (($ $ #26#) NIL T ELT) (($ #26# $) NIL T ELT) (($ |#1| $) 43 T ELT) (#64# 70 T ELT)))
+(((|Fraction| |#1|) (|Join| (|QuotientFieldCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| #1=(ATTRIBUTE |canonical|)) (IF (|has| |#1| (|GcdDomain|)) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) #1# |%noBranch|) |%noBranch|) |%noBranch|))) (|IntegralDomain|)) (T |Fraction|))
+NIL
+((|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) 13 T ELT)))
+(((|FractionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)))) #1=(|IntegralDomain|) #1#) (T |FractionFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Fraction| *5)) (|ofCategory| *5 #1=(|IntegralDomain|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Fraction| *6)) (|isDomain| *1 (|FractionFunctions2| *5 *6)))))
+((|traceMatrix| (#1=(#2=(|Matrix| |#2|) #3=(|Vector| $)) NIL T ELT) ((#2#) 18 T ELT)) (|represents| (($ #4=(|Vector| |#2|) #3#) NIL T ELT) (#5=($ #4#) 24 T ELT)) (|regularRepresentation| ((#2# $ #3#) NIL T ELT) ((#2# $) 40 T ELT)) (|minimalPolynomial| (#6=(|#3| $) 69 T ELT)) (|discriminant| ((|#2| #3#) NIL T ELT) ((|#2|) 20 T ELT)) (|coordinates| ((#4# $ #3#) NIL T ELT) ((#2# #3# #3#) NIL T ELT) (#7=(#4# $) 22 T ELT) (#1# 38 T ELT)) (|convert| (#7# 11 T ELT) (#5# 13 T ELT)) (|characteristicPolynomial| (#6# 55 T ELT)))
+(((|FramedAlgebra&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |regularRepresentation| (#1=(|Matrix| |#2|) |#1|)) (SIGNATURE |discriminant| (|#2|)) (SIGNATURE |traceMatrix| (#1#)) (SIGNATURE |convert| #2=(|#1| #3=(|Vector| |#2|))) (SIGNATURE |convert| #4=(#3# |#1|)) (SIGNATURE |represents| #2#) (SIGNATURE |coordinates| #5=(#1# #6=(|Vector| |#1|))) (SIGNATURE |coordinates| #4#) (SIGNATURE |minimalPolynomial| #7=(|#3| |#1|)) (SIGNATURE |characteristicPolynomial| #7#) (SIGNATURE |traceMatrix| #5#) (SIGNATURE |discriminant| (|#2| #6#)) (SIGNATURE |represents| (|#1| #3# #6#)) (SIGNATURE |coordinates| (#1# #6# #6#)) (SIGNATURE |coordinates| (#3# |#1| #6#)) (SIGNATURE |regularRepresentation| (#1# |#1| #6#))) (|FramedAlgebra| |#2| |#3|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#2|)) (T |FramedAlgebra&|))
+((|traceMatrix| #1=(*1 *2) (AND (|ofCategory| *4 #2=(|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|FramedAlgebra&| *3 *4 *5)) (|ofCategory| *3 (|FramedAlgebra| *4 *5)))) (|discriminant| #1# (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 #2#) (|isDomain| *1 (|FramedAlgebra&| *3 *2 *4)) (|ofCategory| *3 (|FramedAlgebra| *2 *4)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|traceMatrix| (((|Matrix| |#1|) #3=(|Vector| $)) 61 T ELT) (((|Matrix| |#1|)) 77 T ELT)) (|trace| ((|#1| . #4=($)) 67 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#5=($) 23 T CONST)) (|represents| (($ (|Vector| |#1|) #3#) 63 T ELT) (($ (|Vector| |#1|)) 80 T ELT)) (|regularRepresentation| (((|Matrix| |#1|) $ #3#) 68 T ELT) (((|Matrix| |#1|) $) 75 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rank| (((|PositiveInteger|)) 69 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|norm| ((|#1| . #4#) 66 T ELT)) (|minimalPolynomial| ((|#2| . #6=($)) 59 (|has| |#1| (|Field|)) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|discriminant| ((|#1| #3#) 62 T ELT) ((|#1|) 76 T ELT)) (|coordinates| (((|Vector| |#1|) $ #3#) 65 T ELT) (((|Matrix| |#1|) #3# #3#) 64 T ELT) (((|Vector| |#1|) $) 82 T ELT) (((|Matrix| |#1|) (|Vector| $)) 81 T ELT)) (|convert| (((|Vector| |#1|) $) 79 T ELT) (($ (|Vector| |#1|)) 78 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT)) (|charthRoot| (((|Maybe| $) $) 58 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| ((|#2| . #6#) 60 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|basis| (((|Vector| $)) 83 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #7=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #7#) 53 T ELT)))
+(((|FramedAlgebra| |#1| |#2|) (|Category|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |t#1|)) (T |FramedAlgebra|))
+((|basis| (*1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FramedAlgebra| *3 *4)))) (|coordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Vector| *3)))) (|coordinates| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FramedAlgebra| *4 *5)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (|convert| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Vector| *3)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (|traceMatrix| (*1 *2) (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Matrix| *3)))) (|discriminant| (*1 *2) (AND (|ofCategory| *1 (|FramedAlgebra| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|regularRepresentation| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Matrix| *3)))))
+(|Join| (|FiniteRankAlgebra| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| $))) (SIGNATURE |coordinates| ((|Vector| |t#1|) $)) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|))) (SIGNATURE |convert| ((|Vector| |t#1|) $)) (SIGNATURE |convert| ($ (|Vector| |t#1|))) (SIGNATURE |traceMatrix| ((|Matrix| |t#1|))) (SIGNATURE |discriminant| (|t#1|)) (SIGNATURE |regularRepresentation| ((|Matrix| |t#1|) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|FiniteRankAlgebra| |#1| |#2|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|retractIfCan| (((|Union| |#2| #1="failed") $) NIL T ELT) (((|Union| #2=(|Fraction| #3=(|Integer|)) #1#) $) 27 T ELT) (((|Union| #3# #1#) $) 19 T ELT)) (|retract| ((|#2| $) NIL T ELT) ((#2# $) 24 T ELT) ((#3# $) 14 T ELT)) (|coerce| (($ |#2|) NIL T ELT) (($ #2#) 22 T ELT) (($ #3#) 11 T ELT)))
+(((|FullyRetractableTo&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| #1=(|Integer|))) (SIGNATURE |retractIfCan| ((|Union| #1# #2="failed") |#1|)) (SIGNATURE |retract| (#1# |#1|)) (SIGNATURE |coerce| (|#1| #3=(|Fraction| #1#))) (SIGNATURE |retractIfCan| ((|Union| #3# #2#) |#1|)) (SIGNATURE |retract| (#3# |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #2#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|))) (|FullyRetractableTo| |#2|) (|Type|)) (T |FullyRetractableTo&|))
+NIL
+((|retractIfCan| (((|Union| |#1| . #1=("failed")) . #2=($)) 9 T ELT) (((|Union| #3=(|Fraction| (|Integer|)) . #1#) . #2#) 16 (|has| |#1| . #4=((|RetractableTo| (|Fraction| (|Integer|))))) ELT) (((|Union| #5=(|Integer|) . #1#) . #2#) 13 (|has| |#1| . #6=((|RetractableTo| (|Integer|)))) ELT)) (|retract| ((|#1| . #7=($)) 8 T ELT) ((#3# . #7#) 17 (|has| |#1| . #4#) ELT) ((#5# . #7#) 14 (|has| |#1| . #6#) ELT)) (|coerce| (($ |#1|) 6 T ELT) (($ #3#) 15 (|has| |#1| . #4#) ELT) (($ #5#) 12 (|has| |#1| . #6#) ELT)))
+(((|FullyRetractableTo| |#1|) (|Category|) (|Type|)) (T |FullyRetractableTo|))
+NIL
+(|Join| (|RetractableTo| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Integer|))) |%noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Fraction| (|Integer|)))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|)))) |%noBranch|)))
+(((|CoercibleFrom| #1=(|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|CoercibleFrom| #2=(|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|CoercibleFrom| |#1|) . T) ((|RetractableTo| #1#) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| #2#) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|sample| (#4=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|randomLC| ((|#4| #5=(|NonNegativeInteger|) #6=(|Vector| |#4|)) 55 T ELT)) (|one?| ((#3# $) NIL T ELT)) (|numer| (#7=(#6# $) 15 T ELT)) (|norm| ((|#2| $) 53 T ELT)) (|minimize| (#8=($ $) 156 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#8# 103 T ELT)) (|ideal| (($ #6#) 102 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|denom| ((|#1| $) 16 T ELT)) (|conjugate| #9=(#10=($ $ $) NIL T ELT)) (|commutator| #9#) (|coerce| (((|OutputForm|) $) 147 T ELT)) (|before?| #1#) (|basis| (#7# 140 T ELT)) (|One| (#4# 11 T CONST)) (= (#2# 39 T ELT)) (/ #9#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ #5#) NIL T ELT) (($ $ (|Integer|)) 133 T ELT)) (* (#10# 130 T ELT)))
+(((|FractionalIdeal| |#1| |#2| |#3| |#4|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |ideal| ($ #1=(|Vector| |#4|))) (SIGNATURE |basis| #2=(#1# $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |numer| #2#) (SIGNATURE |denom| (|#1| $)) (SIGNATURE |minimize| ($ $)) (SIGNATURE |randomLC| (|#4| (|NonNegativeInteger|) #1#)))) (|EuclideanDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|Join| (|FramedAlgebra| |#2| |#3|) (|RetractableTo| |#2|))) (T |FractionalIdeal|))
+((|ideal| (*1 *1 *2) (AND #1=(|isDomain| *2 (|Vector| *6)) #2=(|ofCategory| *6 (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4))) #3=(|ofCategory| *4 #4=(|QuotientFieldCategory| *3)) #5=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) #6=(|ofCategory| *3 #7=(|EuclideanDomain|)) #8=(|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6)))) (|basis| #9=(*1 *2 *1) #10=(AND #6# #3# #5# #1# #8# #2#)) (|norm| #9# (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 #4#) (|isDomain| *1 (|FractionalIdeal| *3 *2 *4 *5)) #6# (|ofCategory| *5 (|Join| (|FramedAlgebra| *2 *4) (|RetractableTo| *2))))) (|numer| #9# #10#) (|denom| #9# (AND #11=(|ofCategory| *3 (|QuotientFieldCategory| *2)) #12=(|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) #13=(|ofCategory| *2 #7#) #14=(|isDomain| *1 (|FractionalIdeal| *2 *3 *4 *5)) #15=(|ofCategory| *5 (|Join| (|FramedAlgebra| *3 *4) (|RetractableTo| *3))))) (|minimize| (*1 *1 *1) (AND #13# #11# #12# #14# #15#)) (|randomLC| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Vector| *2)) (|ofCategory| *5 #7#) (|ofCategory| *6 (|QuotientFieldCategory| *5)) (|ofCategory| *2 (|Join| (|FramedAlgebra| *6 *7) (|RetractableTo| *6))) (|isDomain| *1 (|FractionalIdeal| *5 *6 *7 *2)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)))))
+((|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) 35 T ELT)))
+(((|FractionalIdealFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| ((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)))) #1=(|EuclideanDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|Join| (|FramedAlgebra| |#2| |#3|) (|RetractableTo| |#2|)) #1# (|QuotientFieldCategory| |#5|) (|UnivariatePolynomialCategory| |#6|) (|Join| (|FramedAlgebra| |#6| |#7|) (|RetractableTo| |#6|))) (T |FractionalIdealFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *9 *5)) (|isDomain| *4 (|FractionalIdeal| *5 *6 *7 *8)) (|ofCategory| *5 #1=(|EuclideanDomain|)) (|ofCategory| *6 (|QuotientFieldCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *8 (|Join| (|FramedAlgebra| *6 *7) (|RetractableTo| *6))) (|ofCategory| *9 #1#) (|ofCategory| *10 (|QuotientFieldCategory| *9)) (|ofCategory| *11 (|UnivariatePolynomialCategory| *10)) (|isDomain| *2 (|FractionalIdeal| *9 *10 *11 *12)) (|isDomain| *1 (|FractionalIdealFunctions2| *5 *6 *7 *8 *9 *10 *11 *12)) (|ofCategory| *12 (|Join| (|FramedAlgebra| *10 *11) (|RetractableTo| *10))))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|sample| (#3=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|one?| ((#2# $) NIL T ELT)) (|norm| ((|#2| $) 69 T ELT)) (|module| (($ #4=(|Vector| |#4|)) 27 T ELT) (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (|RetractableTo| |#2|)) ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 37 T ELT)) (|before?| #1#) (|basis| ((#4# $) 28 T ELT)) (|One| (#3# 26 T CONST)) (= #1#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
+(((|FramedModule| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Monoid|) (CATEGORY |domain| (SIGNATURE |basis| (#1=(|Vector| |#4|) $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |module| ($ #1#)) (IF (|has| |#4| (|RetractableTo| |#2|)) (SIGNATURE |module| ($ (|FractionalIdeal| |#1| |#2| |#3| |#4|))) |%noBranch|))) (|EuclideanDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|FramedAlgebra| |#2| |#3|) #1#) (T |FramedModule|))
+((|basis| #1=(*1 *2 *1) (AND #2=(|ofCategory| *3 (|EuclideanDomain|)) #3=(|ofCategory| *4 #4=(|QuotientFieldCategory| *3)) #5=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) #6=(|isDomain| *2 #7=(|Vector| *6)) #8=(|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7)) #9=(|ofCategory| *6 (|FramedAlgebra| *4 *5)) #10=(|ofType| *7 *2))) (|norm| #1# (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 #4#) (|isDomain| *1 (|FramedModule| *3 *2 *4 *5 *6)) #2# (|ofCategory| *5 (|FramedAlgebra| *2 *4)) (|ofType| *6 (|Vector| *5)))) (|module| #11=(*1 *1 *2) (AND #6# #9# #3# #5# #2# #8# #10#)) (|module| #11# (AND (|isDomain| *2 (|FractionalIdeal| *3 *4 *5 *6)) (|ofCategory| *6 (|RetractableTo| *4)) #2# #3# #5# #9# (|ofType| *7 #7#) #8#)))
+((|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) 29 T ELT)))
+(((|FramedNonAssociativeAlgebraFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) (|FramedNonAssociativeAlgebra| |#2|) #1=(|CommutativeRing|) (|FramedNonAssociativeAlgebra| |#4|) #1#) (T |FramedNonAssociativeAlgebraFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|CommutativeRing|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|FramedNonAssociativeAlgebra| *6)) (|isDomain| *1 (|FramedNonAssociativeAlgebraFunctions2| *4 *5 *2 *6)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *5)))))
+((|unit| (#1=((|Union| $ #2="failed")) 99 T ELT)) (|structuralConstants| ((#3=(|Vector| #4=(|Matrix| |#2|)) #5=(|Vector| $)) NIL T ELT) ((#3#) 104 T ELT)) (|rightUnits| (#6=((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #2#)) 97 T ELT)) (|rightUnit| (#1# 96 T ELT)) (|rightTraceMatrix| #7=(#8=(#4# #5#) NIL T ELT) (#9=(#4#) 115 T ELT)) (|rightRegularRepresentation| #10=((#4# $ #5#) NIL T ELT) (#11=(#4# $) 123 T ELT)) (|rightRankPolynomial| (#12=((|SparseUnivariatePolynomial| #13=(|Polynomial| |#2|))) 64 T ELT)) (|rightDiscriminant| #14=((|#2| #5#) NIL T ELT) (#15=(|#2|) 119 T ELT)) (|represents| (($ #16=(|Vector| |#2|) #5#) NIL T ELT) (#17=($ #16#) 125 T ELT)) (|leftUnits| (#6# 95 T ELT)) (|leftUnit| (#1# 87 T ELT)) (|leftTraceMatrix| #7# (#9# 113 T ELT)) (|leftRegularRepresentation| #10# (#11# 121 T ELT)) (|leftRankPolynomial| (#12# 63 T ELT)) (|leftDiscriminant| #14# (#15# 117 T ELT)) (|coordinates| ((#16# $ #5#) NIL T ELT) ((#4# #5# #5#) NIL T ELT) (#18=(#16# $) 124 T ELT) (#8# 133 T ELT)) (|convert| (#18# 109 T ELT) (#17# 111 T ELT)) (|conditionsForIdempotents| ((#19=(|List| #13#) #5#) NIL T ELT) ((#19#) 107 T ELT)) (|apply| (($ #4# $) 103 T ELT)))
+(((|FramedNonAssociativeAlgebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |apply| (|#1| #1=(|Matrix| |#2|) |#1|)) (SIGNATURE |rightRankPolynomial| #2=((|SparseUnivariatePolynomial| #3=(|Polynomial| |#2|)))) (SIGNATURE |leftRankPolynomial| #2#) (SIGNATURE |rightRegularRepresentation| #4=(#1# |#1|)) (SIGNATURE |leftRegularRepresentation| #4#) (SIGNATURE |rightTraceMatrix| #5=(#1#)) (SIGNATURE |leftTraceMatrix| #5#) (SIGNATURE |rightDiscriminant| #6=(|#2|)) (SIGNATURE |leftDiscriminant| #6#) (SIGNATURE |convert| #7=(|#1| #8=(|Vector| |#2|))) (SIGNATURE |convert| #9=(#8# |#1|)) (SIGNATURE |represents| #7#) (SIGNATURE |conditionsForIdempotents| (#10=(|List| #3#))) (SIGNATURE |structuralConstants| (#11=(|Vector| #1#))) (SIGNATURE |coordinates| #12=(#1# #13=(|Vector| |#1|))) (SIGNATURE |coordinates| #9#) (SIGNATURE |unit| #14=((|Union| |#1| #15="failed"))) (SIGNATURE |rightUnit| #14#) (SIGNATURE |leftUnit| #14#) (SIGNATURE |rightUnits| #16=((|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) #15#))) (SIGNATURE |leftUnits| #16#) (SIGNATURE |rightTraceMatrix| #12#) (SIGNATURE |leftTraceMatrix| #12#) (SIGNATURE |rightDiscriminant| #17=(|#2| #13#)) (SIGNATURE |leftDiscriminant| #17#) (SIGNATURE |represents| (|#1| #8# #13#)) (SIGNATURE |coordinates| (#1# #13# #13#)) (SIGNATURE |coordinates| (#8# |#1| #13#)) (SIGNATURE |rightRegularRepresentation| #18=(#1# |#1| #13#)) (SIGNATURE |leftRegularRepresentation| #18#) (SIGNATURE |structuralConstants| (#11# #13#)) (SIGNATURE |conditionsForIdempotents| (#10# #13#))) (|FramedNonAssociativeAlgebra| |#2|) (|CommutativeRing|)) (T |FramedNonAssociativeAlgebra&|))
+((|structuralConstants| #1=(*1 *2) (AND #2=(|ofCategory| *4 #3=(|CommutativeRing|)) (|isDomain| *2 (|Vector| #4=(|Matrix| *4))) #5=(|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4)) #6=(|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|conditionsForIdempotents| #1# (AND #2# (|isDomain| *2 (|List| #7=(|Polynomial| *4))) #5# #6#)) (|leftDiscriminant| #1# #8=(AND (|ofCategory| *2 #3#) (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *2)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *2)))) (|rightDiscriminant| #1# #8#) (|leftTraceMatrix| #1# #9=(AND #2# (|isDomain| *2 #4#) #5# #6#)) (|rightTraceMatrix| #1# #9#) (|leftRankPolynomial| #1# #10=(AND #2# (|isDomain| *2 (|SparseUnivariatePolynomial| #7#)) #5# #6#)) (|rightRankPolynomial| #1# #10#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unit| (#3=(#4=(|Union| $ #5="failed")) 48 (|has| |#1| . #6=((|IntegralDomain|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) #7=(|Vector| $)) 89 T ELT) (((|Vector| (|Matrix| |#1|))) 115 T ELT)) (|someBasis| ((#7#) 92 T ELT)) (|sample| (#8=($) 23 T CONST)) (|rightUnits| (#9=((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #5#)) 51 (|has| |#1| . #6#) ELT)) (|rightUnit| (#3# 49 (|has| |#1| . #6#) ELT)) (|rightTraceMatrix| (((|Matrix| |#1|) . #10=(#7#)) 76 T ELT) (((|Matrix| |#1|)) 107 T ELT)) (|rightTrace| ((|#1| . #11=($)) 85 T ELT)) (|rightRegularRepresentation| (((|Matrix| |#1|) . #12=($ #7#)) 87 T ELT) (((|Matrix| |#1|) $) 105 T ELT)) (|rightRecip| (#13=(#4# $) 56 (|has| |#1| . #6#) ELT)) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) 103 (|has| |#1| (|Field|)) ELT)) (|rightPower| (#14=($ $ (|PositiveInteger|)) 37 T ELT)) (|rightNorm| ((|#1| . #11#) 83 T ELT)) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #15=($)) 53 (|has| |#1| . #6#) ELT)) (|rightDiscriminant| ((|#1| . #16=(#7#)) 78 T ELT) ((|#1|) 109 T ELT)) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #15#) 74 T ELT)) (|rightAlternative?| (#17=((|Boolean|)) 68 T ELT)) (|represents| (($ (|Vector| |#1|) #7#) 80 T ELT) (($ (|Vector| |#1|)) 113 T ELT)) (|recip| (#13# 58 (|has| |#1| . #6#) ELT)) (|rank| (((|PositiveInteger|)) 91 T ELT)) (|powerAssociative?| (#17# 65 T ELT)) (|plenaryPower| (($ $ (|PositiveInteger|)) 44 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|noncommutativeJordanAlgebra?| (#17# 61 T ELT)) (|lieAlgebra?| (#17# 59 T ELT)) (|lieAdmissible?| (#17# 63 T ELT)) (|leftUnits| (#9# 52 (|has| |#1| . #6#) ELT)) (|leftUnit| (#3# 50 (|has| |#1| . #6#) ELT)) (|leftTraceMatrix| (((|Matrix| |#1|) . #10#) 77 T ELT) (((|Matrix| |#1|)) 108 T ELT)) (|leftTrace| ((|#1| . #11#) 86 T ELT)) (|leftRegularRepresentation| (((|Matrix| |#1|) . #12#) 88 T ELT) (((|Matrix| |#1|) $) 106 T ELT)) (|leftRecip| (#13# 57 (|has| |#1| . #6#) ELT)) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) 104 (|has| |#1| (|Field|)) ELT)) (|leftPower| (#14# 38 T ELT)) (|leftNorm| ((|#1| . #11#) 84 T ELT)) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #15#) 54 (|has| |#1| . #6#) ELT)) (|leftDiscriminant| ((|#1| . #16#) 79 T ELT) ((|#1|) 110 T ELT)) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) . #15#) 75 T ELT)) (|leftAlternative?| (#17# 69 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|jordanAlgebra?| (#17# 60 T ELT)) (|jordanAdmissible?| (#17# 62 T ELT)) (|jacobiIdentity?| (#17# 64 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|flexible?| (#17# 67 T ELT)) (|elt| ((|#1| $ (|Integer|)) 119 T ELT)) (|coordinates| (((|Vector| |#1|) $ #7#) 82 T ELT) (((|Matrix| |#1|) #7# #7#) 81 T ELT) (((|Vector| |#1|) $) 117 T ELT) (((|Matrix| |#1|) (|Vector| $)) 116 T ELT)) (|convert| (((|Vector| |#1|) $) 112 T ELT) (($ (|Vector| |#1|)) 111 T ELT)) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) #7#) 90 T ELT) (((|List| (|Polynomial| |#1|))) 114 T ELT)) (|commutator| (#18=($ $ $) 34 T ELT)) (|commutative?| (#17# 73 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|basis| (((|Vector| $)) 118 T ELT)) (|associatorDependence| (((|List| (|Vector| |#1|))) 55 (|has| |#1| . #6#) ELT)) (|associator| (($ $ $ $) 35 T ELT)) (|associative?| (#17# 71 T ELT)) (|apply| (($ (|Matrix| |#1|) $) 102 T ELT)) (|antiCommutator| (#18# 33 T ELT)) (|antiCommutative?| (#17# 72 T ELT)) (|antiAssociative?| (#17# 70 T ELT)) (|alternative?| (#17# 66 T ELT)) (|Zero| (#8# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (#14# 39 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #19=($)) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| . #19#) 45 T ELT)))
+(((|FramedNonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |FramedNonAssociativeAlgebra|))
+((|basis| (*1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)))) (|coordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *3)))) (|coordinates| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|structuralConstants| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| *3))))) (|conditionsForIdempotents| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|List| (|Polynomial| *3))))) (|represents| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)))) (|convert| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *3)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)))) (|leftDiscriminant| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightDiscriminant| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|leftTraceMatrix| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))) (|rightTraceMatrix| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))) (|leftRegularRepresentation| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))) (|rightRegularRepresentation| (*1 *2 *1) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))) (|leftRankPolynomial| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *3))))) (|rightRankPolynomial| (*1 *2) (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *3))))) (|apply| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)))))
+(|Join| (|FiniteRankNonAssociativeAlgebra| |t#1|) (|Eltable| (|Integer|) |t#1|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| $))) (SIGNATURE |coordinates| ((|Vector| |t#1|) $)) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |structuralConstants| ((|Vector| (|Matrix| |t#1|)))) (SIGNATURE |conditionsForIdempotents| ((|List| (|Polynomial| |t#1|)))) (SIGNATURE |represents| ($ (|Vector| |t#1|))) (SIGNATURE |convert| ((|Vector| |t#1|) $)) (SIGNATURE |convert| ($ (|Vector| |t#1|))) (SIGNATURE |leftDiscriminant| (|t#1|)) (SIGNATURE |rightDiscriminant| (|t#1|)) (SIGNATURE |leftTraceMatrix| ((|Matrix| |t#1|))) (SIGNATURE |rightTraceMatrix| ((|Matrix| |t#1|))) (SIGNATURE |leftRegularRepresentation| ((|Matrix| |t#1|) $)) (SIGNATURE |rightRegularRepresentation| ((|Matrix| |t#1|) $)) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |leftRankPolynomial| ((|SparseUnivariatePolynomial| (|Polynomial| |t#1|)))) (SIGNATURE |rightRankPolynomial| ((|SparseUnivariatePolynomial| (|Polynomial| |t#1|))))) |%noBranch|) (SIGNATURE |apply| ($ (|Matrix| |t#1|) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Eltable| (|Integer|) |#1|) . T) ((|FiniteRankNonAssociativeAlgebra| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeAlgebra| |#1|) . T) ((|NonAssociativeRng|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|refine| ((#1=(|Factored| |#1|) #1# (|Mapping| #1# |#1|)) 28 T ELT)) (|mergeFactors| ((#1# #1# #1#) 17 T ELT)))
+(((|FactoredFunctionUtilities| |#1|) (CATEGORY |package| (SIGNATURE |refine| (#1=(|Factored| |#1|) #1# (|Mapping| #1# |#1|))) (SIGNATURE |mergeFactors| (#1# #1# #1#))) (|IntegralDomain|)) (T |FactoredFunctionUtilities|))
+((|mergeFactors| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Factored| *3)) (|ofCategory| *3 #1=(|IntegralDomain|)) (|isDomain| *1 (|FactoredFunctionUtilities| *3)))) (|refine| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| #2=(|Factored| *4) *4)) (|ofCategory| *4 #1#) (|isDomain| *2 #2#) (|isDomain| *1 (|FactoredFunctionUtilities| *4)))))
+((|variables| ((#1=(|List| #2=(|Symbol|)) $) 81 T ELT)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ #3=(|Kernel| $)) 313 T ELT)) (|subst| #4=(($ $ #5=(|Equation| $)) NIL T ELT) #6=(($ $ (|List| #5#)) NIL T ELT) (#7=($ $ #8=(|List| #3#) #9=(|List| $)) 277 T ELT)) (|retractIfCan| (#10=((|Union| #3# #11="failed") $) NIL T ELT) (((|Union| #2# #11#) $) 84 T ELT) (((|Union| #12=(|Integer|) #11#) $) NIL T ELT) (((|Union| |#2| #11#) $) 273 T ELT) (((|Union| #13=(|Fraction| #14=(|Polynomial| |#2|)) #11#) $) 363 T ELT) (((|Union| #14# #11#) $) 275 T ELT) (((|Union| #15=(|Fraction| #12#) #11#) $) NIL T ELT)) (|retract| ((#3# $) NIL T ELT) ((#2# $) 28 T ELT) ((#12# $) NIL T ELT) (#16=(|#2| $) 271 T ELT) ((#13# $) 345 T ELT) ((#14# $) 272 T ELT) ((#15# $) NIL T ELT)) (|operator| ((#17=(|BasicOperator|) #17#) 47 T ELT)) (|numerator| (#18=($ $) 99 T ELT)) (|mainKernel| (#10# 268 T ELT)) (|kernels| ((#8# $) 269 T ELT)) (|isTimes| (#19=((|Union| #9# #11#) $) 287 T ELT)) (|isPower| (((|Union| (|Record| (|:| |val| $) #20=(|:| |exponent| #12#)) #11#) $) 294 T ELT)) (|isPlus| (#19# 285 T ELT)) (|isMult| (((|Union| (|Record| (|:| |coef| #12#) #21=(|:| |var| #3#)) #11#) $) 304 T ELT)) (|isExpt| ((#22=(|Union| (|Record| #21# #20#) #11#) $) 291 T ELT) ((#22# $ #17#) 255 T ELT) ((#22# $ #2#) 257 T ELT)) (|ground?| ((#23=(|Boolean|) $) 17 T ELT)) (|ground| (#16# 19 T ELT)) (|eval| (($ $ #3# $) NIL T ELT) (#7# 276 T ELT) #6# #4# (($ $ $ $) NIL T ELT) (($ $ #9# #9#) NIL T ELT) (($ $ #1# #24=(|List| #25=(|Mapping| $ $))) NIL T ELT) (($ $ #1# #26=(|List| #27=(|Mapping| $ #9#))) 109 T ELT) (($ $ #2# #27#) NIL T ELT) (($ $ #2# #25#) NIL T ELT) (($ $ #28=(|List| #17#) #24#) NIL T ELT) (($ $ #28# #26#) NIL T ELT) (($ $ #17# #27#) NIL T ELT) (($ $ #17# #25#) NIL T ELT) (#29=($ $ #2#) 62 T ELT) (#30=($ $ #1#) 280 T ELT) (#18# 281 T ELT) (($ $ #17# $ #2#) 65 T ELT) (($ $ #28# #9# #2#) 72 T ELT) (($ $ #1# #31=(|List| #32=(|NonNegativeInteger|)) #24#) 120 T ELT) (($ $ #1# #31# #26#) 282 T ELT) (($ $ #2# #32# #27#) 105 T ELT) (($ $ #2# #32# #25#) 104 T ELT)) (|elt| (($ #17# $) NIL T ELT) (($ #17# $ $) NIL T ELT) (($ #17# $ $ $) NIL T ELT) (($ #17# $ $ $ $) NIL T ELT) (($ #17# #9#) 119 T ELT)) (|differentiate| (#29# 278 T ELT) (#30# NIL T ELT) (($ $ #2# #32#) NIL T ELT) (($ $ #1# #31#) NIL T ELT)) (|denominator| (#18# 324 T ELT)) (|convert| (((|Pattern| #12#) $) 297 T ELT) (((|Pattern| (|Float|)) $) 301 T ELT) (($ (|Factored| $)) 359 T ELT) (((|InputForm|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 279 T ELT) (($ #3#) 93 T ELT) (($ #2#) 24 T ELT) (($ |#2|) NIL T ELT) (($ (|SparseMultivariatePolynomial| |#2| #3#)) NIL T ELT) (($ #33=(|Fraction| |#2|)) 329 T ELT) (($ #34=(|Polynomial| #33#)) 368 T ELT) (($ (|Fraction| #34#)) 341 T ELT) (($ #13#) 335 T ELT) (#18# NIL T ELT) (($ #14#) 216 T ELT) (($ #12#) NIL T ELT) (($ #15#) 373 T ELT)) (|characteristic| ((#32#) 88 T CONST)) (|belong?| ((#23# #17#) 42 T ELT)) (|applyQuote| (($ #2# $) 31 T ELT) (($ #2# $ $) 32 T ELT) (($ #2# $ $ $) 33 T ELT) (($ #2# $ $ $ $) 34 T ELT) (($ #2# #9#) 39 T ELT)) (* (($ #15# $) NIL T ELT) (($ $ #15#) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ #12# $) NIL T ELT) (($ #32# $) NIL T ELT) (($ (|PositiveInteger|) $) NIL T ELT)))
+(((|FunctionSpace&| |#1| |#2|) (CATEGORY |package| (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE * (|#1| #1=(|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| #2=(|Integer|) |#1|)) (SIGNATURE |coerce| (|#1| #3=(|Fraction| #2#))) (SIGNATURE |retractIfCan| ((|Union| #3# #4="failed") |#1|)) (SIGNATURE |retract| (#3# |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE |coerce| (|#1| #2#)) (SIGNATURE |characteristic| (#1#) |constant|) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |coerce| (|#1| #5=(|Polynomial| |#2|))) (SIGNATURE |retractIfCan| ((|Union| #5# #4#) |#1|)) (SIGNATURE |retract| (#5# |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #6=(|List| #7=(|Symbol|)) #8=(|List| #1#))) (SIGNATURE |differentiate| (|#1| |#1| #7# #1#)) (SIGNATURE |differentiate| #9=(|#1| |#1| #6#)) (SIGNATURE |differentiate| #10=(|#1| |#1| #7#)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| #11=(|#1| |#1|)) (SIGNATURE * (|#1| |#1| #3#)) (SIGNATURE * (|#1| #3# |#1|)) (SIGNATURE |coerce| (|#1| #12=(|Fraction| #5#))) (SIGNATURE |retractIfCan| ((|Union| #12# #4#) |#1|)) (SIGNATURE |retract| (#12# |#1|)) (SIGNATURE |univariate| ((|Fraction| (|SparseUnivariatePolynomial| |#1|)) |#1| #13=(|Kernel| |#1|))) (SIGNATURE |coerce| (|#1| (|Fraction| #14=(|Polynomial| #15=(|Fraction| |#2|))))) (SIGNATURE |coerce| (|#1| #14#)) (SIGNATURE |coerce| (|#1| #15#)) (SIGNATURE |denominator| #11#) (SIGNATURE |convert| (|#1| (|Factored| |#1|))) (SIGNATURE |eval| (|#1| |#1| #7# #1# #16=(|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| #7# #1# #17=(|Mapping| |#1| #18=(|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| #6# #8# #19=(|List| #17#))) (SIGNATURE |eval| (|#1| |#1| #6# #8# #20=(|List| #16#))) (SIGNATURE |isPower| ((|Union| (|Record| (|:| |val| |#1|) #21=(|:| |exponent| #2#)) #4#) |#1|)) (SIGNATURE |isExpt| (#22=(|Union| (|Record| #23=(|:| |var| #13#) #21#) #4#) |#1| #7#)) (SIGNATURE |isExpt| (#22# |#1| #24=(|BasicOperator|))) (SIGNATURE |numerator| #11#) (SIGNATURE |coerce| (|#1| (|SparseMultivariatePolynomial| |#2| #13#))) (SIGNATURE |isMult| ((|Union| (|Record| (|:| |coef| #2#) #23#) #4#) |#1|)) (SIGNATURE |isPlus| #25=((|Union| #18# #4#) |#1|)) (SIGNATURE |isExpt| (#22# |#1|)) (SIGNATURE |isTimes| #25#) (SIGNATURE |eval| (|#1| |#1| #26=(|List| #24#) #18# #7#)) (SIGNATURE |eval| (|#1| |#1| #24# |#1| #7#)) (SIGNATURE |eval| #11#) (SIGNATURE |eval| #9#) (SIGNATURE |eval| #10#) (SIGNATURE |applyQuote| (|#1| #7# #18#)) (SIGNATURE |applyQuote| (|#1| #7# |#1| |#1| |#1| |#1|)) (SIGNATURE |applyQuote| (|#1| #7# |#1| |#1| |#1|)) (SIGNATURE |applyQuote| (|#1| #7# |#1| |#1|)) (SIGNATURE |applyQuote| (|#1| #7# |#1|)) (SIGNATURE |variables| (#6# |#1|)) (SIGNATURE |ground| #27=(|#2| |#1|)) (SIGNATURE |ground?| (#28=(|Boolean|) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #4#) |#1|)) (SIGNATURE |retract| #27#) (SIGNATURE |retract| (#2# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #2# #4#) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |convert| ((|Pattern| #2#) |#1|)) (SIGNATURE |coerce| (|#1| #7#)) (SIGNATURE |retractIfCan| ((|Union| #7# #4#) |#1|)) (SIGNATURE |retract| (#7# |#1|)) (SIGNATURE |eval| (|#1| |#1| #24# #16#)) (SIGNATURE |eval| (|#1| |#1| #24# #17#)) (SIGNATURE |eval| (|#1| |#1| #26# #19#)) (SIGNATURE |eval| (|#1| |#1| #26# #20#)) (SIGNATURE |eval| (|#1| |#1| #7# #16#)) (SIGNATURE |eval| (|#1| |#1| #7# #17#)) (SIGNATURE |eval| (|#1| |#1| #6# #19#)) (SIGNATURE |eval| (|#1| |#1| #6# #20#)) (SIGNATURE |belong?| (#28# #24#)) (SIGNATURE |operator| (#24# #24#)) (SIGNATURE |kernels| (#29=(|List| #13#) |#1|)) (SIGNATURE |mainKernel| #30=((|Union| #13# #4#) |#1|)) (SIGNATURE |subst| #31=(|#1| |#1| #29# #18#)) (SIGNATURE |subst| #32=(|#1| |#1| (|List| #33=(|Equation| |#1|)))) (SIGNATURE |subst| #34=(|#1| |#1| #33#)) (SIGNATURE |elt| (|#1| #24# #18#)) (SIGNATURE |elt| (|#1| #24# |#1| |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| #24# |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| #24# |#1| |#1|)) (SIGNATURE |elt| (|#1| #24# |#1|)) (SIGNATURE |eval| (|#1| |#1| #18# #18#)) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| #34#) (SIGNATURE |eval| #32#) (SIGNATURE |eval| #31#) (SIGNATURE |eval| (|#1| |#1| #13# |#1|)) (SIGNATURE |coerce| (|#1| #13#)) (SIGNATURE |retractIfCan| #30#) (SIGNATURE |retract| (#13# |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|FunctionSpace| |#2|) (|SetCategory|)) (T |FunctionSpace&|))
+((|operator| (*1 *2 *2) (AND (|isDomain| *2 #1=(|BasicOperator|)) #2=(|ofCategory| *4 #3=(|SetCategory|)) #4=(|isDomain| *1 (|FunctionSpace&| *3 *4)) #5=(|ofCategory| *3 (|FunctionSpace| *4)))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 #1#) (|ofCategory| *5 #3#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FunctionSpace&| *4 *5)) (|ofCategory| *4 (|FunctionSpace| *5)))) (|characteristic| (*1 *2) (AND #2# (|isDomain| *2 (|NonNegativeInteger|)) #4# #5#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 129 (|has| |#1| . #3=((|AbelianSemiGroup|))) ELT)) (|variables| (((|List| (|Symbol|)) $) 222 T ELT)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) 190 (|has| |#1| (|IntegralDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 162 (|has| |#1| . #4=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 163 (|has| |#1| . #4#) ELT)) (|unit?| ((#5=(|Boolean|) $) 165 (|has| |#1| . #4#) ELT)) (|tower| (#6=(#7=(|List| #8=(|Kernel| $)) $) 42 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 132 (|has| |#1| . #9=((|AbelianGroup|))) ELT)) (|subst| (($ $ #10=(|Equation| $)) 54 T ELT) (($ $ (|List| #10#)) 53 T ELT) (($ $ #7# #11=(|List| $)) 52 T ELT)) (|squareFreePart| (($ $) 182 (|has| |#1| . #4#) ELT)) (|squareFree| (#12=((|Factored| $) $) 183 (|has| |#1| . #4#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 173 (|has| |#1| . #4#) ELT)) (|sample| (#13=($) 117 (OR (|has| |#1| . #14=((|SemiGroup|))) (|has| |#1| . #3#)) CONST)) (|retractIfCan| (((|Union| #8# . #15=("failed")) . #16=($)) 67 T ELT) (((|Union| #17=(|Symbol|) . #15#) . #16#) 235 T ELT) (((|Union| #18=(|Integer|) . #15#) . #16#) 229 (|has| |#1| . #19=((|RetractableTo| #18#))) ELT) (((|Union| |#1| . #15#) . #16#) 226 T ELT) (((|Union| (|Fraction| (|Polynomial| |#1|)) . #15#) . #16#) 188 (|has| |#1| . #20=((|IntegralDomain|))) ELT) (((|Union| (|Polynomial| |#1|) . #15#) . #16#) 137 (|has| |#1| . #21=((|Ring|))) ELT) (((|Union| #22=(|Fraction| #18#) . #15#) . #16#) 111 (OR (AND (|has| |#1| . #23=((|RetractableTo| (|Integer|)))) (|has| |#1| . #24=((|IntegralDomain|)))) (|has| |#1| . #25=((|RetractableTo| #22#)))) ELT)) (|retract| ((#8# . #26=($)) 68 T ELT) ((#17# . #26#) 236 T ELT) ((#18# . #26#) 228 (|has| |#1| . #19#) ELT) ((|#1| . #26#) 227 T ELT) (((|Fraction| (|Polynomial| |#1|)) . #26#) 189 (|has| |#1| . #20#) ELT) (((|Polynomial| |#1|) . #26#) 138 (|has| |#1| . #21#) ELT) ((#22# . #26#) 112 (OR (AND (|has| |#1| . #23#) (|has| |#1| . #24#)) (|has| |#1| . #25#)) ELT)) (|rem| (#27=($ $ $) 177 (|has| |#1| . #4#) ELT)) (|reducedSystem| (((|Matrix| #28=(|Integer|)) . #29=(#30=(|Matrix| $))) 155 (|and| (|has| |#1| . #31=((|LinearlyExplicitRingOver| #28#))) (|has| |#1| . #32=((|Ring|)))) ELT) (((|Record| (|:| |mat| (|Matrix| #28#)) (|:| |vec| (|Vector| #28#))) . #33=(#30# #34=(|Vector| $))) 154 (|and| (|has| |#1| . #31#) (|has| |#1| . #32#)) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #33#) 153 (|has| |#1| . #32#) ELT) (((|Matrix| |#1|) . #29#) 152 (|has| |#1| . #32#) ELT)) (|recip| (((|Union| $ "failed") $) 119 (|has| |#1| . #14#) ELT)) (|quo| (#27# 176 (|has| |#1| . #4#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #35=(|List| $)) (|:| |generator| $)) #35#) 171 (|has| |#1| . #4#) ELT)) (|prime?| (((|Boolean|) $) 184 (|has| |#1| . #4#) ELT)) (|patternMatch| (((|PatternMatchResult| #36=(|Integer|) . #37=($)) $ (|Pattern| #36#) (|PatternMatchResult| #36# . #37#)) 231 (|has| |#1| (|PatternMatchable| #36#)) ELT) (((|PatternMatchResult| #38=(|Float|) . #37#) $ (|Pattern| #38#) (|PatternMatchResult| #38# . #37#)) 230 (|has| |#1| (|PatternMatchable| #38#)) ELT)) (|paren| (#39=($ $) 49 T ELT) (#40=($ #11#) 48 T ELT)) (|opposite?| ((#2# $ $) 131 (|has| |#1| . #3#) ELT)) (|operators| ((#41=(|List| #42=(|BasicOperator|)) $) 41 T ELT)) (|operator| ((#42# #42#) 40 T ELT)) (|one?| (((|Boolean|) $) 118 (|has| |#1| . #14#) ELT)) (|odd?| (#43=(#44=(|Boolean|) $) 20 #45=(|has| $ (|RetractableTo| (|Integer|))) ELT)) (|numerator| (($ $) 205 (|has| |#1| (|Ring|)) ELT)) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 206 (|has| |#1| (|Ring|)) ELT)) (|multiEuclidean| (((|Union| #46=(|List| $) #47="failed") #46# $) 180 (|has| |#1| . #4#) ELT)) (|minPoly| (((|SparseUnivariatePolynomial| $) #8#) 23 #48=(|has| $ (|Ring|)) ELT)) (|map| (($ #49=(|Mapping| $ $) #8#) 34 T ELT)) (|mainKernel| (((|Union| #8# "failed") $) 44 T ELT)) (|leftReducedSystem| (((|Matrix| #28#) . #50=(#34#)) 157 (|and| (|has| |#1| . #31#) (|has| |#1| . #32#)) ELT) (((|Record| (|:| |mat| (|Matrix| #28#)) (|:| |vec| (|Vector| #28#))) . #51=(#34# $)) 156 (|and| (|has| |#1| . #31#) (|has| |#1| . #32#)) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #51#) 151 (|has| |#1| . #32#) ELT) (((|Matrix| |#1|) . #50#) 150 (|has| |#1| . #32#) ELT)) (|lcm| (#52=($ (|List| $)) 169 (|has| |#1| . #4#) ELT) (#53=($ $ $) 168 (|has| |#1| . #4#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|kernels| (#6# 43 T ELT)) (|kernel| (#54=($ #42# $) 36 T ELT) (#55=($ #42# #11#) 35 T ELT)) (|isTimes| (((|Union| (|List| $) "failed") $) 211 (|has| |#1| (|SemiGroup|)) ELT)) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) 202 (|has| |#1| (|Ring|)) ELT)) (|isPlus| (((|Union| (|List| $) "failed") $) 209 (|has| |#1| (|AbelianSemiGroup|)) ELT)) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) 208 (|has| |#1| (|AbelianSemiGroup|)) ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) 210 (|has| |#1| (|SemiGroup|)) ELT) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) 204 (|has| |#1| (|Ring|)) ELT) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) 203 (|has| |#1| (|Ring|)) ELT)) (|is?| ((#44# $ #42#) 38 T ELT) (#56=(#44# $ #57=(|Symbol|)) 37 T ELT)) (|inv| (($ $) 121 (OR (|has| |#1| . #58=((|Group|))) (|has| |#1| . #4#)) ELT)) (|height| (((|NonNegativeInteger|) $) 45 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 224 T ELT)) (|ground| ((|#1| $) 223 T ELT)) (|gcdPolynomial| ((#59=(|SparseUnivariatePolynomial| $) #59# #59#) 170 (|has| |#1| . #4#) ELT)) (|gcd| (#52# 167 (|has| |#1| . #4#) ELT) (#53# 166 (|has| |#1| . #4#) ELT)) (|freeOf?| ((#44# $ $) 33 T ELT) (#56# 32 T ELT)) (|factor| (#12# 181 (|has| |#1| . #4#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #60=(|:| |coef1| $) #61=(|:| |coef2| $)) #47#) $ $ $) 179 (|has| |#1| . #4#) ELT) (((|Record| #60# #61# (|:| |generator| $)) $ $) 178 (|has| |#1| . #4#) ELT)) (|exquo| (((|Union| $ "failed") $ $) 161 (|has| |#1| . #4#) ELT)) (|expressIdealMember| (((|Maybe| #35#) #35# $) 172 (|has| |#1| . #4#) ELT)) (|even?| (#43# 21 #45# ELT)) (|eval| (($ $ #8# $) 65 T ELT) (($ $ (|List| #8#) (|List| $)) 64 T ELT) (($ $ (|List| (|Equation| $))) 63 T ELT) (($ $ (|Equation| $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (|List| $) (|List| $)) 60 T ELT) (($ $ #62=(|List| #57#) #63=(|List| #49#)) 31 T ELT) (($ $ #62# #64=(|List| #65=(|Mapping| $ #11#))) 30 T ELT) (($ $ #57# #65#) 29 T ELT) (($ $ #57# #49#) 28 T ELT) (($ $ #41# #63#) 27 T ELT) (($ $ #41# #64#) 26 T ELT) (($ $ #42# #65#) 25 T ELT) (($ $ #42# #49#) 24 T ELT) (($ $ (|Symbol|)) 216 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (($ $ (|List| (|Symbol|))) 215 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (($ $) 214 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (($ $ (|BasicOperator|) $ (|Symbol|)) 213 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) 212 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) 201 (|has| |#1| (|Ring|)) ELT) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) 200 (|has| |#1| (|Ring|)) ELT) (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) 199 (|has| |#1| (|Ring|)) ELT) (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) 198 (|has| |#1| (|Ring|)) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 174 (|has| |#1| . #4#) ELT)) (|elt| (#54# 59 T ELT) (($ #42# $ $) 58 T ELT) (($ #42# $ $ $) 57 T ELT) (($ #42# $ $ $ $) 56 T ELT) (#55# 55 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 175 (|has| |#1| . #4#) ELT)) (|distribute| (#39# 47 T ELT) (($ $ $) 46 T ELT)) (|differentiate| (($ $ #66=(|Symbol|)) 148 (|has| |#1| . #67=((|Ring|))) ELT) (($ $ (|List| #66#)) 146 (|has| |#1| . #67#) ELT) (($ $ #66# . #68=(#69=(|NonNegativeInteger|))) 145 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#) . #70=((|List| #69#))) 144 (|has| |#1| . #67#) ELT)) (|denominator| (($ $) 195 (|has| |#1| (|IntegralDomain|)) ELT)) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 196 (|has| |#1| (|IntegralDomain|)) ELT)) (|definingPolynomial| (#39# 22 #48# ELT)) (|convert| ((#71=(|Pattern| (|Integer|)) . #72=($)) 233 (|has| |#1| (|ConvertibleTo| #71#)) ELT) ((#73=(|Pattern| (|Float|)) . #72#) 232 (|has| |#1| (|ConvertibleTo| #73#)) ELT) (($ (|Factored| $)) 197 (|has| |#1| (|IntegralDomain|)) ELT) (((|InputForm|) . #72#) 113 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT)) (|conjugate| (#74=($ $ $) 124 (|has| |#1| . #58#) ELT)) (|commutator| (#74# 125 (|has| |#1| . #58#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ #8#) 66 T ELT) (($ #17#) 234 T ELT) (($ |#1|) 225 T ELT) (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 207 (|has| |#1| (|Ring|)) ELT) (($ (|Fraction| |#1|)) 193 (|has| |#1| (|IntegralDomain|)) ELT) (($ (|Polynomial| (|Fraction| |#1|))) 192 (|has| |#1| (|IntegralDomain|)) ELT) (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) 191 (|has| |#1| (|IntegralDomain|)) ELT) (($ (|Fraction| (|Polynomial| |#1|))) 187 (|has| |#1| . #20#) ELT) (($ $) 160 (|has| |#1| . #4#) ELT) (($ (|Polynomial| |#1|)) 136 (|has| |#1| . #21#) ELT) (($ #22#) 110 (OR (|has| |#1| . #4#) (AND (|has| |#1| . #23#) (|has| |#1| . #24#)) (|has| |#1| . #25#)) ELT) (($ #18#) 109 (OR (|has| |#1| . #67#) (|has| |#1| . #19#)) ELT)) (|charthRoot| (((|Maybe| $) $) 158 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 140 (|has| |#1| . #67#) CONST)) (|box| (#39# 51 T ELT) (#40# 50 T ELT)) (|belong?| ((#44# #42#) 39 T ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#5# $ $) 164 (|has| |#1| . #4#) ELT)) (|applyQuote| (($ (|Symbol|) $) 221 T ELT) (($ (|Symbol|) $ $) 220 T ELT) (($ (|Symbol|) $ $ $) 219 T ELT) (($ (|Symbol|) $ $ $ $) 218 T ELT) (($ (|Symbol|) (|List| $)) 217 T ELT)) (|annihilate?| (((|Boolean|) $ $) 139 (|has| |#1| . #67#) ELT)) (|Zero| (($) 128 (|has| |#1| . #3#) CONST)) (|One| (#13# 116 (|has| |#1| . #14#) CONST)) (D (($ $ #66#) 147 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#)) 143 (|has| |#1| . #67#) ELT) (($ $ #66# . #68#) 142 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#) . #70#) 141 (|has| |#1| . #67#) ELT)) (= (#1# 8 T ELT)) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 194 (|has| |#1| (|IntegralDomain|)) ELT) (#74# 122 (OR (|has| |#1| . #58#) (|has| |#1| . #4#)) ELT)) (- (($ $ $) 135 (|has| |#1| . #9#) ELT) (($ $) 134 (|has| |#1| . #9#) ELT)) (+ (($ $ $) 126 (|has| |#1| . #3#) ELT)) (** (($ $ (|Integer|)) 123 (OR (|has| |#1| . #58#) (|has| |#1| . #4#)) ELT) (($ $ (|NonNegativeInteger|)) 120 (|has| |#1| (|SemiGroup|)) ELT) (($ $ (|PositiveInteger|)) 115 (|has| |#1| . #14#) ELT)) (* (($ #75=(|Fraction| (|Integer|)) . #76=($)) 186 (|has| |#1| . #4#) ELT) (($ $ #75#) 185 (|has| |#1| . #4#) ELT) (($ $ |#1|) 159 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#1| . #76#) 149 (|has| |#1| . #32#) ELT) (($ (|Integer|) . #76#) 133 (|has| |#1| . #9#) ELT) (($ (|NonNegativeInteger|) $) 130 (|has| |#1| . #3#) ELT) (($ (|PositiveInteger|) $) 127 (|has| |#1| . #3#) ELT) (($ $ $) 114 (|has| |#1| . #14#) ELT)))
+(((|FunctionSpace| |#1|) (|Category|) (|SetCategory|)) (T |FunctionSpace|))
+((|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|ground| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| (|Symbol|))))) (|applyQuote| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)))) (|applyQuote| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)))) (|applyQuote| (*1 *1 *2 *1 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)))) (|applyQuote| (*1 *1 *2 *1 *1 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)))) (|applyQuote| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|SetCategory|)))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Symbol|))) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2 *1 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| *1)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|ConvertibleTo| (|InputForm|))))) (|isTimes| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|SemiGroup|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isExpt| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|SemiGroup|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isPlus| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isMult| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| *1)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|numerator| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|isExpt| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *4)))) (|isExpt| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *4)))) (|isPower| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |val| *1) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|isDomain| *4 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|isDomain| *4 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *1 *1)) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|Ring|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|denominator| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|IntegralDomain|)))) (/ (*1 *1 *2 *2) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| *3))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Fraction| *3)))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|univariate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| *1))))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SemiGroup|)))))
+(|Join| (|ExpressionSpace|) (|RetractableTo| (|Symbol|)) (|Patternable| |t#1|) (|FullyPatternMatchable| |t#1|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |ground| (|t#1| $)) (SIGNATURE |variables| ((|List| (|Symbol|)) $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $ $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) (|List| $))) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (PROGN (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) (SIGNATURE |eval| ($ $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)))) (SIGNATURE |eval| ($ $)) (SIGNATURE |eval| ($ $ (|BasicOperator|) $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)))) |%noBranch|) (IF (|has| |t#1| (|SemiGroup|)) (PROGN (ATTRIBUTE (|Monoid|)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |isTimes| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (|Group|)) (ATTRIBUTE (|Group|)) |%noBranch|) (IF (|has| |t#1| (|AbelianSemiGroup|)) (PROGN (ATTRIBUTE (|AbelianMonoid|)) (SIGNATURE |isPlus| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isMult| ((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |%noBranch|) (IF (|has| |t#1| (|Ring|)) (PROGN (ATTRIBUTE (|Ring|)) (ATTRIBUTE (|RetractableTo| (|Polynomial| |t#1|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|FullyLinearlyExplicitRingOver| |t#1|)) (SIGNATURE |coerce| ($ (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)))) (SIGNATURE |numer| ((|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) $)) (SIGNATURE |numerator| ($ $)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|))) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|))) (SIGNATURE |isPower| ((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $)) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (ATTRIBUTE (|Field|)) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Polynomial| |t#1|)))) (SIGNATURE |convert| ($ (|Factored| $))) (SIGNATURE |denom| ((|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) $)) (SIGNATURE |denominator| ($ $)) (SIGNATURE / ($ (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)))) (SIGNATURE |coerce| ($ (|Fraction| |t#1|))) (SIGNATURE |coerce| ($ (|Polynomial| (|Fraction| |t#1|)))) (SIGNATURE |coerce| ($ (|Fraction| (|Polynomial| (|Fraction| |t#1|))))) (SIGNATURE |univariate| ((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $))) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|)))) |%noBranch|)) |%noBranch|)))
+(((|AbelianGroup|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianGroup|))) ((|AbelianMonoid|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|AbelianGroup|))) ((|AbelianSemiGroup|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|AbelianGroup|))) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|IntegralDomain|)) ((|BiModule| |#1| |#1|) |has| |#1| (|CommutativeRing|)) ((|BiModule| $ $) |has| |#1| (|IntegralDomain|)) ((|CancellationAbelianMonoid|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianGroup|))) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|IntegralDomain|))) ((|CoercibleFrom| #2=(|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) ((|CoercibleFrom| (|Integer|)) OR (|has| |#1| (|Ring|)) (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CoercibleFrom| #3=(|Kernel| $)) . T) ((|CoercibleFrom| #4=(|Polynomial| |#1|)) |has| |#1| (|Ring|)) ((|CoercibleFrom| #5=(|Symbol|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) |has| |#1| (|IntegralDomain|)) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DivisionRing|) |has| |#1| (|IntegralDomain|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|EuclideanDomain|) |has| |#1| (|IntegralDomain|)) ((|Evalable| $) . T) ((|ExpressionSpace|) . T) ((|Field|) |has| |#1| (|IntegralDomain|)) ((|FullyLinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|FullyPatternMatchable| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|GcdDomain|) |has| |#1| (|IntegralDomain|)) ((|Group|) |has| |#1| (|Group|)) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|IntegralDomain|)) ((|LeftLinearSet| (|Integer|)) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianGroup|))) ((|LeftLinearSet| |#1|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|CommutativeRing|))) ((|LeftLinearSet| $) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|LeftModule| #1#) |has| |#1| (|IntegralDomain|)) ((|LeftModule| #6=(|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LeftModule| |#1|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|CommutativeRing|))) ((|LeftModule| $) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|LinearSet| #1#) |has| |#1| (|IntegralDomain|)) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|LinearlyExplicitRingOver| #6#) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|Module| #1#) |has| |#1| (|IntegralDomain|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) OR (|has| |#1| (|SemiGroup|)) (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Group|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|PartialDifferentialDomain| $ #7=(|Symbol|)) |has| |#1| (|Ring|)) ((|PartialDifferentialRing| #7#) |has| |#1| (|Ring|)) ((|PartialDifferentialSpace| #7#) |has| |#1| (|Ring|)) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PrincipalIdealDomain|) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|))))) ((|RetractableTo| #2#) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| #3#) . T) ((|RetractableTo| #4#) |has| |#1| (|Ring|)) ((|RetractableTo| #5#) . T) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) |has| |#1| (|IntegralDomain|)) ((|RightLinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightLinearSet| $) |has| |#1| (|IntegralDomain|)) ((|RightModule| #1#) |has| |#1| (|IntegralDomain|)) ((|RightModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightModule| $) |has| |#1| (|IntegralDomain|)) ((|Ring|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|Rng|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|SemiGroup|) OR (|has| |#1| (|SemiGroup|)) (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Group|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|SemiRing|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|IntegralDomain|)))
+((|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 11 T ELT)))
+(((|FunctionSpaceFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|))) #1=(|Ring|) (|FunctionSpace| |#1|) #1# (|FunctionSpace| |#3|)) (T |FunctionSpaceFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|FunctionSpace| *6)) (|isDomain| *1 (|FunctionSpaceFunctions2| *5 *4 *6 *2)) (|ofCategory| *4 (|FunctionSpace| *5)))))
+((|localAbs| ((|#2| |#2|) 182 T ELT)) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| #1=(|String|)) (|:| |prob| #1#)))) |#2| (|Boolean|)) 60 T ELT)))
+(((|FunctionSpaceToExponentialExpansion| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |exprToXXP| ((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| #1=(|String|)) (|:| |prob| #1#)))) |#2| (|Boolean|))) (SIGNATURE |localAbs| (|#2| |#2|))) (|Join| (|GcdDomain|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |FunctionSpaceToExponentialExpansion|))
+((|localAbs| (*1 *2 *2) (AND (|ofCategory| *3 #1=(|Join| (|GcdDomain|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#))) (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *3 *2 *4 *5)) (|ofCategory| *2 (|Join| #3=(|AlgebraicallyClosedField|) #4=(|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *4 #5=(|Symbol|)) (|ofType| *5 *2))) (|exprToXXP| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 #1#) (|isDomain| *2 (|Union| (|:| |%expansion| (|ExponentialExpansion| *5 *3 *6 *7)) (|:| |%problem| (|Record| (|:| |func| #6=(|String|)) (|:| |prob| #6#))))) (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *5 *3 *6 *7)) (|ofCategory| *3 (|Join| #3# #4# (|FunctionSpace| *5))) (|ofType| *6 #5#) (|ofType| *7 *3))))
+((|localAbs| ((|#2| |#2|) 105 T ELT)) (|exprToUPS| (#1=((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| #2=(|String|)) (|:| |prob| #2#)))) |#2| (|Boolean|) #2#) 52 T ELT)) (|exprToGenUPS| (#1# 169 T ELT)))
+(((|FunctionSpaceToUnivariatePowerSeries| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |exprToUPS| #1=((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| #2=(|String|)) (|:| |prob| #2#)))) |#2| (|Boolean|) #2#)) (SIGNATURE |exprToGenUPS| #1#) (SIGNATURE |localAbs| (|#2| |#2|))) (|Join| (|GcdDomain|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#)) (|Join| (|AlgebraicallyClosedField|) #4=(|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#3|)))) (|OrderedRing|) (|Join| (|UnivariatePowerSeriesCategory| |#2| |#3|) (|Field|) #4# (CATEGORY |domain| (SIGNATURE |differentiate| #5=($ $)) (SIGNATURE |integrate| #5#))) (|PartialTranscendentalFunctions| |#4|) (|Symbol|)) (T |FunctionSpaceToUnivariatePowerSeries|))
+((|localAbs| (*1 *2 *2) (AND (|ofCategory| *3 #1=(|Join| (|GcdDomain|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#))) (|ofCategory| *2 (|Join| #3=(|AlgebraicallyClosedField|) #4=(|TranscendentalFunctionCategory|) (|FunctionSpace| *3) (CATEGORY |domain| (SIGNATURE |coerce| ($ *4))))) (|ofCategory| *4 #5=(|OrderedRing|)) (|ofCategory| *5 (|Join| (|UnivariatePowerSeriesCategory| *2 *4) #6=(|Field|) #4# #7=(CATEGORY |domain| (SIGNATURE |differentiate| #8=($ $)) (SIGNATURE |integrate| #8#)))) (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *3 *2 *4 *5 *6 *7)) (|ofCategory| *6 (|PartialTranscendentalFunctions| *5)) (|ofType| *7 #9=(|Symbol|)))) (|exprToGenUPS| #10=(*1 *2 *3 *4 *5) #11=(AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *6 #1#) (|ofCategory| *3 (|Join| #3# #4# (|FunctionSpace| *6) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))))) (|ofCategory| *7 #5#) (|ofCategory| *8 (|Join| (|UnivariatePowerSeriesCategory| *3 *7) #6# #4# #7#)) (|isDomain| *2 (|Union| (|:| |%series| *8) (|:| |%problem| (|Record| (|:| |func| #12=(|String|)) (|:| |prob| #12#))))) (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *6 *3 *7 *8 *9 *10)) (|isDomain| *5 #12#) (|ofCategory| *9 (|PartialTranscendentalFunctions| *8)) (|ofType| *10 #9#))) (|exprToUPS| #10# #11#))
+((|universe| (#1=($) 51 T ELT)) (|union| (($ |#2| $) NIL T ELT) #2=(($ $ |#2|) NIL T ELT) (#3=($ $ $) 47 T ELT)) (|symmetricDifference| (#3# 46 T ELT)) (|subset?| (#4=(#5=(|Boolean|) $ $) 35 T ELT)) (|size| ((#6=(|NonNegativeInteger|)) 55 T ELT)) (|set| (#7=($ (|List| |#2|)) 23 T ELT) #8=(#1# NIL T ELT)) (|random| (#1# 66 T ELT)) (|part?| (#4# 15 T ELT)) (|min| (#9=(|#2| $) 77 T ELT)) (|max| (#9# 75 T ELT)) (|lookup| ((#10=(|PositiveInteger|) $) 70 T ELT)) (|intersect| (#3# 42 T ELT)) (|index| (($ #10#) 60 T ELT)) (|difference| #2# (#3# 45 T ELT)) (|count| ((#6# |#2| $) 31 T ELT) ((#6# (|Mapping| #5# |#2|) $) NIL T ELT)) (|construct| (#7# 27 T ELT)) (|complement| (($ $) 53 T ELT)) (|coerce| (((|OutputForm|) $) 40 T ELT)) (|cardinality| ((#6# $) 24 T ELT)) (|brace| (#7# 22 T ELT) #8#) (= (#4# 19 T ELT)))
+(((|FiniteSetAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |size| (#1=(|NonNegativeInteger|))) (SIGNATURE |index| (|#1| #2=(|PositiveInteger|))) (SIGNATURE |lookup| (#2# |#1|)) (SIGNATURE |random| #3=(|#1|)) (SIGNATURE |min| #4=(|#2| |#1|)) (SIGNATURE |max| #4#) (SIGNATURE |universe| #3#) (SIGNATURE |complement| (|#1| |#1|)) (SIGNATURE |cardinality| (#1# |#1|)) (SIGNATURE |count| (#1# (|Mapping| #5=(|Boolean|) |#2|) |#1|)) (SIGNATURE |count| (#1# |#2| |#1|)) (SIGNATURE = #6=(#5# |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |part?| #6#) (SIGNATURE |brace| #3#) (SIGNATURE |brace| #7=(|#1| (|List| |#2|))) (SIGNATURE |set| #3#) (SIGNATURE |set| #7#) (SIGNATURE |intersect| #8=(|#1| |#1| |#1|)) (SIGNATURE |difference| #8#) (SIGNATURE |difference| #9=(|#1| |#1| |#2|)) (SIGNATURE |symmetricDifference| #8#) (SIGNATURE |subset?| #6#) (SIGNATURE |union| #8#) (SIGNATURE |union| #9#) (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |construct| #7#)) (|FiniteSetAggregate| |#2|) (|SetCategory|)) (T |FiniteSetAggregate&|))
+((|size| (*1 *2) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FiniteSetAggregate&| *3 *4)) (|ofCategory| *3 (|FiniteSetAggregate| *4)))))
+((~= (#1=((|Boolean|) $ $) 18 T ELT)) (|universe| (($) 61 (|has| |#1| (|Finite|)) ELT)) (|union| (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (#2=($ $ $) 85 T ELT)) (|symmetricDifference| (#2# 83 T ELT)) (|subset?| (#3=((|Boolean|) $ $) 84 T ELT)) (|size| (((|NonNegativeInteger|)) 55 (|has| |#1| . #4=((|Finite|))) ELT)) (|set| (($ (|List| |#1|)) 79 T ELT) (#5=($) 78 T ELT)) (|select!| (($ (|Mapping| #6=(|Boolean|) |#1|) . #7=($)) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #8=(|Boolean|) |#1|) . #9=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#10=($) 6 T CONST)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #11=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| #6# |#1|) . #7#) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #11#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #8# |#1|) . #9#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| . #12=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 70 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 69 T ELT)) (|random| (($) 58 (|has| |#1| . #4#) ELT)) (|part?| (#3# 75 T ELT)) (|min| ((|#1| $) 59 (|has| |#1| (|OrderedSet|)) ELT)) (|members| (((|List| |#1|) $) 68 T ELT)) (|member?| ((#13=(|Boolean|) |#1| $) 73 (|has| |#1| . #12#) ELT)) (|max| ((|#1| $) 60 (|has| |#1| (|OrderedSet|)) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|lookup| ((#14=(|PositiveInteger|) $) 57 (|has| |#1| . #4#) ELT)) (|latex| (((|String|) $) 21 T ELT)) (|intersect| (#2# 80 T ELT)) (|inspect| ((|#1| . #15=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|index| (($ #14#) 56 (|has| |#1| . #4#) ELT)) (|hash| (((|SingleInteger|) $) 20 T ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #13# |#1|) $) 71 T ELT)) (|extract!| ((|#1| . #15#) 37 T ELT)) (|every?| ((#13# (|Mapping| #13# |#1|) . #16=($)) 66 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17=((|SetCategory|)))) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT)) (|eq?| ((#18=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#18# $) 7 T ELT)) (|empty| (#10# 8 T ELT)) (|difference| (($ $ |#1|) 82 T ELT) (#2# 81 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|count| ((#19=(|NonNegativeInteger|) |#1| $) 72 (|has| |#1| . #12#) ELT) ((#19# (|Mapping| #13# |#1|) $) 67 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#20=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #20#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|complement| (($ $) 62 (|has| |#1| (|Finite|)) ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)) (|cardinality| (((|NonNegativeInteger|) $) 63 T ELT)) (|brace| (($ (|List| |#1|)) 77 T ELT) (#5# 76 T ELT)) (|before?| (#1# 19 T ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|any?| ((#13# (|Mapping| #13# |#1|) . #16#) 65 T ELT)) (= (#1# 17 T ELT)) (|#| ((#19# $) 64 T ELT)))
+(((|FiniteSetAggregate| |#1|) (|Category|) (|SetCategory|)) (T |FiniteSetAggregate|))
+((|cardinality| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteSetAggregate| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|complement| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteSetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Finite|)))) (|universe| (*1 *1) (AND (|ofCategory| *1 (|FiniteSetAggregate| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|SetCategory|)))) (|max| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteSetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|min| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteSetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))))
+(|Join| (|Dictionary| |t#1|) (|SetAggregate| |t#1|) (|FiniteAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |cardinality| ((|NonNegativeInteger|) $)) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|Finite|)) (SIGNATURE |complement| ($ $)) (SIGNATURE |universe| ($))) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (SIGNATURE |max| (|t#1| $)) (SIGNATURE |min| (|t#1| $))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Dictionary| |#1|) . T) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Finite|) |has| |#1| (|Finite|)) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetAggregate| |#1|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|scan| ((|#4| #1=(|Mapping| |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (|reduce| ((|#3| #1# |#2| |#3|) 20 T ELT)) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 17 T ELT)))
+(((|FiniteSetAggregateFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| #1=(|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| #1# |#2| |#3|))) #2=(|SetCategory|) (|FiniteSetAggregate| |#1|) #2# (|FiniteSetAggregate| |#3|)) (T |FiniteSetAggregateFunctions2|))
+((|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) #1=(|ofCategory| *6 #2=(|SetCategory|)) #3=(|ofCategory| *5 #2#) (|ofCategory| *2 #4=(|FiniteSetAggregate| *5)) (|isDomain| *1 (|FiniteSetAggregateFunctions2| *6 *4 *5 *2)) (|ofCategory| *4 #5=(|FiniteSetAggregate| *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #3# (|ofCategory| *2 #2#) (|isDomain| *1 (|FiniteSetAggregateFunctions2| *5 *4 *2 *6)) #6=(|ofCategory| *4 #4#) (|ofCategory| *6 (|FiniteSetAggregate| *2)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #3# #1# (|ofCategory| *2 #5#) (|isDomain| *1 (|FiniteSetAggregateFunctions2| *5 *4 *6 *2)) #6#)))
+((|internalIntegrate0| (#1=((|IntegrationResult| |#2|) |#2| #2=(|Symbol|)) 36 T ELT)) (|internalIntegrate| (#1# 21 T ELT)) (|complexIntegrate| ((|#2| |#2| #2#) 26 T ELT)))
+(((|FunctionSpaceComplexIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |internalIntegrate| #1=((|IntegrationResult| |#2|) |#2| #2=(|Symbol|))) (SIGNATURE |internalIntegrate0| #1#) (SIGNATURE |complexIntegrate| (|#2| |#2| #2#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#)) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |FunctionSpaceComplexIntegration|))
+((|complexIntegrate| (*1 *2 *2 *3) (AND (|isDomain| *3 #1=(|Symbol|)) (|ofCategory| *4 #2=(|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#))) (|isDomain| *1 (|FunctionSpaceComplexIntegration| *4 *2)) (|ofCategory| *2 (|Join| #4=(|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4))))) (|internalIntegrate0| #5=(*1 *2 *3 *4) #6=(AND (|isDomain| *4 #1#) (|ofCategory| *5 #2#) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|FunctionSpaceComplexIntegration| *5 *3)) (|ofCategory| *3 (|Join| #4# (|AlgebraicallyClosedFunctionSpace| *5))))) (|internalIntegrate| #5# #6#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| ((#4=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|recip| ((#4# $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|makeSin| (#6=($ |#2| |#1|) 37 T ELT)) (|makeCos| (#6# 35 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #7=(|Integer|)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (|FourierComponent| |#2|)) 25 T ELT)) (|characteristic| ((#8=(|NonNegativeInteger|)) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#5# 10 T CONST)) (|One| (#5# 16 T CONST)) (= #1#) (- (($ $) NIL T ELT) (#9=($ $ $) NIL T ELT)) (+ (#9# 36 T ELT)) (** (($ $ #10=(|PositiveInteger|)) NIL T ELT) (($ $ #8#) NIL T ELT)) (* (($ #10# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #7# . #11=($)) NIL T ELT) (#9# 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| . #11#) NIL T ELT)))
+(((|FourierSeries| |#1| |#2|) (|Join| (|Algebra| |#1|) (CATEGORY |domain| (IF (|has| |#2| #1=(ATTRIBUTE |canonical|)) (IF (|has| |#1| #1#) #1# |%noBranch|) |%noBranch|) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |coerce| ($ (|FourierComponent| |#2|))) (SIGNATURE |makeSin| #2=($ |#2| |#1|)) (SIGNATURE |makeCos| #2#))) (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|)))) (|Join| (|OrderedSet|) (|AbelianGroup|))) (T |FourierSeries|))
+((|coerce| #1=(*1 *1 *2) (AND (|isDomain| *1 (|FourierSeries| *2 *3)) (|ofCategory| *2 #2=(|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 #3=(|Join| (|OrderedSet|) (|AbelianGroup|))))) (|coerce| #1# (AND (|isDomain| *2 (|FourierComponent| *4)) (|ofCategory| *4 #3#) (|isDomain| *1 (|FourierSeries| *3 *4)) #4=(|ofCategory| *3 #2#))) (|makeSin| #5=(*1 *1 *2 *3) #6=(AND (|isDomain| *1 (|FourierSeries| *3 *2)) #4# (|ofCategory| *2 #3#))) (|makeCos| #5# #6#))
+((|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) 115 T ELT)))
+(((|FunctionSpaceIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integrate| ((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#)) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |FunctionSpaceIntegration|))
+((|integrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#))) (|isDomain| *2 (|Union| *3 (|List| *3))) (|isDomain| *1 (|FunctionSpaceIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5))))))
+((|polygamma| (#1=(|#2| |#2| |#2|) 31 T ELT)) (|operator| ((#2=(|BasicOperator|) #2#) 43 T ELT)) (|iiabs| (#3=(|#2| |#2|) 63 T ELT)) (|iiGamma| (#3# 66 T ELT)) (|digamma| (#3# 30 T ELT)) (|besselY| (#1# 33 T ELT)) (|besselK| (#1# 35 T ELT)) (|besselJ| (#1# 32 T ELT)) (|besselI| (#1# 34 T ELT)) (|belong?| (((|Boolean|) #2#) 41 T ELT)) (|airyBi| (#3# 37 T ELT)) (|airyAi| (#3# 36 T ELT)) (|abs| (#3# 25 T ELT)) (|Gamma| (#1# 28 T ELT) (#3# 26 T ELT)) (|Beta| (#1# 29 T ELT)))
+(((|FunctionalSpecialFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |belong?| ((|Boolean|) #1=(|BasicOperator|))) (SIGNATURE |operator| (#1# #1#)) (SIGNATURE |abs| #2=(|#2| |#2|)) (SIGNATURE |Gamma| #2#) (SIGNATURE |Gamma| #3=(|#2| |#2| |#2|)) (SIGNATURE |Beta| #3#) (SIGNATURE |digamma| #2#) (SIGNATURE |polygamma| #3#) (SIGNATURE |besselJ| #3#) (SIGNATURE |besselY| #3#) (SIGNATURE |besselI| #3#) (SIGNATURE |besselK| #3#) (SIGNATURE |airyAi| #2#) (SIGNATURE |airyBi| #2#) (SIGNATURE |iiGamma| #2#) (SIGNATURE |iiabs| #2#)) (|IntegralDomain|) (|FunctionSpace| |#1|)) (T |FunctionalSpecialFunction|))
+((|iiabs| #1=(*1 *2 *2) #2=(AND #3=(|ofCategory| *3 #4=(|IntegralDomain|)) (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2)) (|ofCategory| *2 #5=(|FunctionSpace| *3)))) (|iiGamma| #1# #2#) (|airyBi| #1# #2#) (|airyAi| #1# #2#) (|besselK| #6=(*1 *2 *2 *2) #2#) (|besselI| #6# #2#) (|besselY| #6# #2#) (|besselJ| #6# #2#) (|polygamma| #6# #2#) (|digamma| #1# #2#) (|Beta| #6# #2#) (|Gamma| #6# #2#) (|Gamma| #1# #2#) (|abs| #1# #2#) (|operator| #1# (AND (|isDomain| *2 #7=(|BasicOperator|)) #3# (|isDomain| *1 (|FunctionalSpecialFunction| *3 *4)) (|ofCategory| *4 #5#))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 #7#) (|ofCategory| *4 #4#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FunctionalSpecialFunction| *4 *5)) (|ofCategory| *5 (|FunctionSpace| *4)))))
+((|primitiveElement| (((|Record| #1=(|:| |primelt| |#2|) (|:| |pol1| #2=(|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| #2#) #3=(|:| |prim| #2#)) |#2| |#2|) 103 (|has| |#2| (|AlgebraicallyClosedField|)) ELT) (((|Record| #1# (|:| |poly| (|List| #2#)) #3#) (|List| |#2|)) 65 T ELT)))
+(((|FunctionSpacePrimitiveElement| |#1| |#2|) (CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| #1=(|:| |primelt| |#2|) (|:| |poly| (|List| #2=(|SparseUnivariatePolynomial| |#2|))) #3=(|:| |prim| #2#)) (|List| |#2|))) (IF (|has| |#2| (|AlgebraicallyClosedField|)) (SIGNATURE |primitiveElement| ((|Record| #1# (|:| |pol1| #2#) (|:| |pol2| #2#) #3#) |#2| |#2|)) |%noBranch|)) (|Join| (|IntegralDomain|) (|CharacteristicZero|)) (|FunctionSpace| |#1|)) (T |FunctionSpacePrimitiveElement|))
+((|primitiveElement| (*1 *2 *3 *3) (AND #1=(|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |primelt| *3) (|:| |pol1| #2=(|SparseUnivariatePolynomial| *3)) (|:| |pol2| #2#) (|:| |prim| #2#))) (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *3)) (|ofCategory| *3 (|AlgebraicallyClosedField|)) (|ofCategory| *3 #3=(|FunctionSpace| *4)))) (|primitiveElement| (*1 *2 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 #3#) #1# (|isDomain| *2 (|Record| (|:| |primelt| *5) (|:| |poly| (|List| #4=(|SparseUnivariatePolynomial| *5))) (|:| |prim| #4#))) (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *5)))))
+((|newReduc| (((|Void|)) 18 T ELT)) (|bringDown| (((|SparseUnivariatePolynomial| #1=(|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) 40 T ELT) ((#1# |#2|) 27 T ELT)))
+(((|FunctionSpaceReduce| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bringDown| (#1=(|Fraction| #2=(|Integer|)) |#2|)) (SIGNATURE |bringDown| ((|SparseUnivariatePolynomial| #1#) |#2| (|Kernel| |#2|))) (SIGNATURE |newReduc| ((|Void|)))) (|Join| (|IntegralDomain|) (|RetractableTo| #2#)) (|FunctionSpace| |#1|)) (T |FunctionSpaceReduce|))
+((|newReduc| (*1 *2) (AND (|ofCategory| *3 #1=(|Join| (|IntegralDomain|) (|RetractableTo| #2=(|Integer|)))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|FunctionSpaceReduce| *3 *4)) (|ofCategory| *4 (|FunctionSpace| *3)))) (|bringDown| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|FunctionSpace| *5)) (|ofCategory| *5 #1#) (|isDomain| *2 (|SparseUnivariatePolynomial| #3=(|Fraction| #2#))) (|isDomain| *1 (|FunctionSpaceReduce| *5 *3)))) (|bringDown| (*1 *2 *3) (AND (|ofCategory| *4 #1#) (|isDomain| *2 #3#) (|isDomain| *1 (|FunctionSpaceReduce| *4 *3)) (|ofCategory| *3 (|FunctionSpace| *4)))))
+((|real?| (#1=(#2=(|Boolean|) $) 33 T ELT)) (|logical?| (#1# 35 T ELT)) (|integer?| (#1# 36 T ELT)) (|doubleComplex?| (#1# 39 T ELT)) (|double?| (#1# 34 T ELT)) (|complex?| (#1# 38 T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ (|String|)) 32 T ELT) (($ #3=(|Symbol|)) 30 T ELT) ((#3# $) 24 T ELT) (((|SExpression|) $) 23 T ELT)) (|character?| (#1# 37 T ELT)) (= ((#2# $ $) 17 T ELT)))
+(((|FortranScalarType|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|String|))) (SIGNATURE |coerce| ($ #1=(|Symbol|))) (SIGNATURE |coerce| (#1# $)) (SIGNATURE |coerce| ((|SExpression|) $)) (SIGNATURE |real?| #2=(#3=(|Boolean|) $)) (SIGNATURE |double?| #2#) (SIGNATURE |integer?| #2#) (SIGNATURE |complex?| #2#) (SIGNATURE |doubleComplex?| #2#) (SIGNATURE |character?| #2#) (SIGNATURE |logical?| #2#) (SIGNATURE = (#3# $ $))))) (T |FortranScalarType|))
+((|coerce| #1=(*1 *1 *2) (AND (|isDomain| *2 (|String|)) #2=(|isDomain| *1 (|FortranScalarType|)))) (|coerce| #1# #3=(AND (|isDomain| *2 (|Symbol|)) #2#)) (|coerce| #4=(*1 *2 *1) #3#) (|coerce| #4# (AND (|isDomain| *2 (|SExpression|)) #2#)) (|real?| #4# #5=(AND (|isDomain| *2 (|Boolean|)) #2#)) (|double?| #4# #5#) (|integer?| #4# #5#) (|complex?| #4# #5#) (|doubleComplex?| #4# #5#) (|character?| #4# #5#) (|logical?| #4# #5#) (= (*1 *2 *1 *1) #5#))
+((|qfactor| (((|Union| (|Factored| #1=(|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) #2="failed") |#3|) 71 T ELT)) (|ffactor| (((|Factored| |#3|) |#3|) 34 T ELT)) (|anfactor| (((|Union| (|Factored| #3=(|SparseUnivariatePolynomial| #4=(|AlgebraicNumber|))) #2#) |#3|) 29 (|has| |#2| (|RetractableTo| #4#)) ELT)) (|UP2ifCan| (((|Union| (|:| |overq| #1#) (|:| |overan| #3#) (|:| |failed| (|Boolean|))) |#3|) 37 T ELT)))
+(((|FunctionSpaceUnivariatePolynomialFactor| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |ffactor| ((|Factored| |#3|) |#3|)) (SIGNATURE |qfactor| ((|Union| (|Factored| #1=(|SparseUnivariatePolynomial| (|Fraction| #2=(|Integer|)))) #3="failed") |#3|)) (SIGNATURE |UP2ifCan| ((|Union| (|:| |overq| #1#) (|:| |overan| #4=(|SparseUnivariatePolynomial| #5=(|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|)) (IF (|has| |#2| (|RetractableTo| #5#)) (SIGNATURE |anfactor| ((|Union| (|Factored| #4#) #3#) |#3|)) |%noBranch|)) (|Join| (|IntegralDomain|) (|RetractableTo| #2#)) (|FunctionSpace| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |FunctionSpaceUnivariatePolynomialFactor|))
+((|anfactor| #1=(*1 *2 *3) (|partial| AND (|ofCategory| *5 (|RetractableTo| #2=(|AlgebraicNumber|))) #3=(|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| #4=(|Integer|)))) #5=(|ofCategory| *5 (|FunctionSpace| *4)) (|isDomain| *2 (|Factored| #6=(|SparseUnivariatePolynomial| #2#))) #7=(|isDomain| *1 (|FunctionSpaceUnivariatePolynomialFactor| *4 *5 *3)) #8=(|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|UP2ifCan| #1# (AND #3# #5# (|isDomain| *2 (|Union| (|:| |overq| #9=(|SparseUnivariatePolynomial| (|Fraction| #4#))) (|:| |overan| #6#) (|:| |failed| (|Boolean|)))) #7# #8#)) (|qfactor| #1# (|partial| AND #3# #5# (|isDomain| *2 (|Factored| #9#)) #7# #8#)) (|ffactor| #1# (AND #3# #5# (|isDomain| *2 (|Factored| *3)) #7# #8#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|scalarTypeOf| ((#3=(|Union| (|:| |fst| #4=(|FortranScalarType|)) (|:| |void| "void")) $) 11 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fortranReal| (#5=($) 35 T ELT)) (|fortranLogical| (#5# 41 T ELT)) (|fortranInteger| (#5# 37 T ELT)) (|fortranDoubleComplex| (#5# 39 T ELT)) (|fortranDouble| (#5# 36 T ELT)) (|fortranComplex| (#5# 38 T ELT)) (|fortranCharacter| (#5# 40 T ELT)) (|external?| ((#2# $) 8 T ELT)) (|dimensionsOf| ((#6=(|List| (|Polynomial| (|Integer|))) $) 19 T ELT)) (|construct| (($ #3# (|List| (|Symbol|)) #2#) 29 T ELT) (($ #3# #6# #2#) 30 T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #4#) 32 T ELT)) (|before?| #1#) (= #1#))
+(((|FortranType|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1=(|FortranScalarType|))) (SIGNATURE |scalarTypeOf| (#2=(|Union| (|:| |fst| #1#) (|:| |void| "void")) $)) (SIGNATURE |dimensionsOf| (#3=(|List| (|Polynomial| (|Integer|))) $)) (SIGNATURE |external?| (#4=(|Boolean|) $)) (SIGNATURE |construct| ($ #2# (|List| (|Symbol|)) #4#)) (SIGNATURE |construct| ($ #2# #3# #4#)) (SIGNATURE |fortranReal| #5=($)) (SIGNATURE |fortranDouble| #5#) (SIGNATURE |fortranInteger| #5#) (SIGNATURE |fortranLogical| #5#) (SIGNATURE |fortranComplex| #5#) (SIGNATURE |fortranDoubleComplex| #5#) (SIGNATURE |fortranCharacter| #5#)))) (T |FortranType|))
+((|coerce| (*1 *1 *2) (AND (|isDomain| *2 #1=(|FortranScalarType|)) #2=(|isDomain| *1 (|FortranType|)))) (|scalarTypeOf| #3=(*1 *2 *1) (AND #4=(|isDomain| *2 (|Union| (|:| |fst| #1#) (|:| |void| "void"))) #2#)) (|dimensionsOf| #3# (AND (|isDomain| *2 #5=(|List| (|Polynomial| (|Integer|)))) #2#)) (|external?| #3# (AND (|isDomain| *2 #6=(|Boolean|)) #2#)) (|construct| #7=(*1 *1 *2 *3 *4) (AND #4# (|isDomain| *3 (|List| (|Symbol|))) #8=(|isDomain| *4 #6#) #2#)) (|construct| #7# (AND #4# (|isDomain| *3 #5#) #8# #2#)) (|fortranReal| #9=(*1 *1) #2#) (|fortranDouble| #9# #2#) (|fortranInteger| #9# #2#) (|fortranLogical| #9# #2#) (|fortranComplex| #9# #2#) (|fortranDoubleComplex| #9# #2#) (|fortranCharacter| #9# #2#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|name| (((|Symbol|) $) 8 T ELT)) (|latex| (((|String|) $) 17 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT)) (|before?| #1#) (= (#2# 14 T ELT)))
+(((|FunctionCalled| |#1|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |name| (#1=(|Symbol|) $)))) #1#) (T |FunctionCalled|))
+((|name| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FunctionCalled| *3)) (|ofType| *3 *2))))
+((|map| (($ (|Mapping| |#1| |#1|) $) 6 T ELT)))
+(((|Functorial| |#1|) (|Category|) (|Type|)) (T |Functorial|))
+((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|Functorial| *3)) (|ofCategory| *3 (|Type|)))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $))))
+(((|Join|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|signature| (((|Signature|) $) 7 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| #1#) (= (#2# 9 T ELT)))
+(((|FunctionDescriptor|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |signature| ((|Signature|) $))))) (T |FunctionDescriptor|))
+((|signature| (*1 *2 *1) (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|FunctionDescriptor|)))))
+((|useSingleFactorBound?| (#1=(#2=(|Boolean|)) 18 T ELT)) (|useSingleFactorBound| (#3=(#2# #2#) 19 T ELT)) (|useEisensteinCriterion?| (#1# 14 T ELT)) (|useEisensteinCriterion| (#3# 15 T ELT)) (|tryFunctionalDecomposition?| (#1# 16 T ELT)) (|tryFunctionalDecomposition| (#3# 17 T ELT)) (|stopMusserTrials| (#4=(#5=(|PositiveInteger|) #5#) 22 T ELT) (#6=(#5#) 21 T ELT)) (|numberOfFactors| ((#7=(|NonNegativeInteger|) #8=(|List| (|Record| (|:| |factor| |#1|) (|:| |degree| #9=(|Integer|))))) 52 T ELT)) (|musserTrials| (#4# 24 T ELT) (#6# 23 T ELT)) (|modularFactor| (((|Record| (|:| |prime| #9#) (|:| |factors| (|List| |#1|))) |#1|) 94 T ELT)) (|makeFR| ((#10=(|Factored| |#1|) #11=(|Record| (|:| |contp| #9#) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| #9#)))))) 176 T ELT)) (|henselFact| ((#11# |#1| #2#) 209 T ELT)) (|factorSquareFree| (#12=(#10# |#1| #7# #7#) 224 T ELT) (#13=(#10# |#1| #14=(|List| #7#) #7#) 221 T ELT) (#15=(#10# |#1| #14#) 223 T ELT) (#16=(#10# |#1| #7#) 222 T ELT) (#17=(#10# |#1|) 220 T ELT)) (|factorOfDegree| ((#18=(|Union| |#1| "failed") #5# |#1| #14# #7# #2#) 226 T ELT) ((#18# #5# |#1| #14# #7#) 227 T ELT) ((#18# #5# |#1| #14#) 229 T ELT) ((#18# #5# |#1| #7#) 228 T ELT) ((#18# #5# |#1|) 230 T ELT)) (|factor| (#12# 219 T ELT) (#13# 215 T ELT) (#15# 217 T ELT) (#16# 216 T ELT) (#17# 214 T ELT)) (|eisensteinIrreducible?| ((#2# |#1|) 43 T ELT)) (|degreePartition| (((|Multiset| #7#) #8#) 99 T ELT)) (|btwFact| ((#11# |#1| #2# (|Set| #7#) #7#) 213 T ELT)))
+(((|GaloisGroupFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |makeFR| (#1=(|Factored| |#1|) #2=(|Record| (|:| |contp| #3=(|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| #3#))))))) (SIGNATURE |degreePartition| ((|Multiset| #4=(|NonNegativeInteger|)) #5=(|List| (|Record| (|:| |factor| |#1|) (|:| |degree| #3#))))) (SIGNATURE |musserTrials| #6=(#7=(|PositiveInteger|))) (SIGNATURE |musserTrials| #8=(#7# #7#)) (SIGNATURE |stopMusserTrials| #6#) (SIGNATURE |stopMusserTrials| #8#) (SIGNATURE |numberOfFactors| (#4# #5#)) (SIGNATURE |modularFactor| ((|Record| (|:| |prime| #3#) (|:| |factors| (|List| |#1|))) |#1|)) (SIGNATURE |useSingleFactorBound?| #9=(#10=(|Boolean|))) (SIGNATURE |useSingleFactorBound| #11=(#10# #10#)) (SIGNATURE |useEisensteinCriterion?| #9#) (SIGNATURE |useEisensteinCriterion| #11#) (SIGNATURE |eisensteinIrreducible?| (#10# |#1|)) (SIGNATURE |tryFunctionalDecomposition?| #9#) (SIGNATURE |tryFunctionalDecomposition| #11#) (SIGNATURE |factor| #12=(#1# |#1|)) (SIGNATURE |factor| #13=(#1# |#1| #4#)) (SIGNATURE |factor| #14=(#1# |#1| #15=(|List| #4#))) (SIGNATURE |factor| #16=(#1# |#1| #15# #4#)) (SIGNATURE |factor| #17=(#1# |#1| #4# #4#)) (SIGNATURE |factorSquareFree| #12#) (SIGNATURE |factorSquareFree| #13#) (SIGNATURE |factorSquareFree| #14#) (SIGNATURE |factorSquareFree| #16#) (SIGNATURE |factorSquareFree| #17#) (SIGNATURE |factorOfDegree| (#18=(|Union| |#1| "failed") #7# |#1|)) (SIGNATURE |factorOfDegree| (#18# #7# |#1| #4#)) (SIGNATURE |factorOfDegree| (#18# #7# |#1| #15#)) (SIGNATURE |factorOfDegree| (#18# #7# |#1| #15# #4#)) (SIGNATURE |factorOfDegree| (#18# #7# |#1| #15# #4# #10#)) (SIGNATURE |henselFact| (#2# |#1| #10#)) (SIGNATURE |btwFact| (#2# |#1| #10# (|Set| #4#) #4#))) (|UnivariatePolynomialCategory| #3#)) (T |GaloisGroupFactorizer|))
+((|btwFact| (*1 *2 *3 *4 *5 *6) (AND #1=(|isDomain| *4 #2=(|Boolean|)) (|isDomain| *5 (|Set| #3=(|NonNegativeInteger|))) (|isDomain| *6 #3#) #4=(|isDomain| *2 (|Record| #5=(|:| |contp| #6=(|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *3) #7=(|:| |pow| #6#)))))) #8=(|isDomain| *1 (|GaloisGroupFactorizer| *3)) #9=(|ofCategory| *3 #10=(|UnivariatePolynomialCategory| #6#)))) (|henselFact| #11=(*1 *2 *3 *4) (AND #1# #4# #8# #9#)) (|factorOfDegree| (*1 *2 *3 *2 *4 *5 *6) (|partial| AND #12=(|isDomain| *3 #13=(|PositiveInteger|)) #14=(|isDomain| *4 (|List| #3#)) #15=(|isDomain| *5 #3#) (|isDomain| *6 #2#) #16=(|isDomain| *1 (|GaloisGroupFactorizer| *2)) #17=(|ofCategory| *2 #10#))) (|factorOfDegree| (*1 *2 *3 *2 *4 *5) (|partial| AND #12# #14# #15# #16# #17#)) (|factorOfDegree| #18=(*1 *2 *3 *2 *4) (|partial| AND #12# #14# #16# #17#)) (|factorOfDegree| #18# (|partial| AND #12# #19=(|isDomain| *4 #3#) #16# #17#)) (|factorOfDegree| (*1 *2 *3 *2) (|partial| AND #12# #16# #17#)) (|factorSquareFree| #20=(*1 *2 *3 *4 *4) #21=(AND #19# #22=(|isDomain| *2 (|Factored| *3)) #8# #9#)) (|factorSquareFree| #23=(*1 *2 *3 *4 *5) #24=(AND #14# #15# #22# #8# #9#)) (|factorSquareFree| #11# #25=(AND #14# #22# #8# #9#)) (|factorSquareFree| #11# #21#) (|factorSquareFree| #26=(*1 *2 *3) #27=(AND #22# #8# #9#)) (|factor| #20# #21#) (|factor| #23# #24#) (|factor| #11# #25#) (|factor| #11# #21#) (|factor| #26# #27#) (|tryFunctionalDecomposition| #28=(*1 *2 *2) #29=(AND (|isDomain| *2 #2#) #8# #9#)) (|tryFunctionalDecomposition?| #30=(*1 *2) #29#) (|eisensteinIrreducible?| #26# #29#) (|useEisensteinCriterion| #28# #29#) (|useEisensteinCriterion?| #30# #29#) (|useSingleFactorBound| #28# #29#) (|useSingleFactorBound?| #30# #29#) (|modularFactor| #26# (AND (|isDomain| *2 (|Record| (|:| |prime| #6#) (|:| |factors| (|List| *3)))) #8# #9#)) (|numberOfFactors| #26# (AND #31=(|isDomain| *3 (|List| (|Record| (|:| |factor| *4) (|:| |degree| #6#)))) #32=(|ofCategory| *4 #10#) (|isDomain| *2 #3#) #33=(|isDomain| *1 (|GaloisGroupFactorizer| *4)))) (|stopMusserTrials| #28# #34=(AND (|isDomain| *2 #13#) #8# #9#)) (|stopMusserTrials| #30# #34#) (|musserTrials| #28# #34#) (|musserTrials| #30# #34#) (|degreePartition| #26# (AND #31# #32# (|isDomain| *2 (|Multiset| #3#)) #33#)) (|makeFR| #26# (AND (|isDomain| *3 (|Record| #5# (|:| |factors| (|List| (|Record| (|:| |irr| *4) #7#))))) #32# (|isDomain| *2 (|Factored| *4)) #33#)))
+((|singleFactorBound| (#1=(#2=(|Integer|) |#2|) 52 T ELT) ((#2# |#2| (|NonNegativeInteger|)) 51 T ELT)) (|rootBound| (#1# 64 T ELT)) (|quadraticNorm| (#3=(|#3| |#2|) 26 T ELT)) (|norm| (#4=(|#3| |#2| (|PositiveInteger|)) 15 T ELT)) (|length| (#3# 16 T ELT)) (|infinityNorm| (#3# 9 T ELT)) (|height| (#3# 10 T ELT)) (|bombieriNorm| (#4# 71 T ELT) (#3# 34 T ELT)) (|beauzamyBound| (#1# 66 T ELT)))
+(((|GaloisGroupFactorizationUtilities| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |beauzamyBound| #1=(#2=(|Integer|) |#2|)) (SIGNATURE |bombieriNorm| #3=(|#3| |#2|)) (SIGNATURE |bombieriNorm| #4=(|#3| |#2| (|PositiveInteger|))) (SIGNATURE |rootBound| #1#) (SIGNATURE |singleFactorBound| (#2# |#2| (|NonNegativeInteger|))) (SIGNATURE |singleFactorBound| #1#) (SIGNATURE |norm| #4#) (SIGNATURE |quadraticNorm| #3#) (SIGNATURE |infinityNorm| #3#) (SIGNATURE |height| #3#) (SIGNATURE |length| #3#)) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|Join| (|FloatingPointSystem|) (|RetractableTo| |#1|) (|Field|) (|TranscendentalFunctionCategory|) (|ElementaryFunctionCategory|))) (T |GaloisGroupFactorizationUtilities|))
+((|length| #1=(*1 *2 *3) #2=(AND #3=(|ofCategory| *4 #4=(|Ring|)) (|ofCategory| *2 #5=(|Join| #6=(|FloatingPointSystem|) (|RetractableTo| *4) #7=(|Field|) #8=(|TranscendentalFunctionCategory|) #9=(|ElementaryFunctionCategory|))) (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2)) #10=(|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|height| #1# #2#) (|infinityNorm| #1# #2#) (|quadraticNorm| #1# #2#) (|norm| #11=(*1 *2 *3 *4) #12=(AND (|isDomain| *4 (|PositiveInteger|)) #13=(|ofCategory| *5 #4#) (|ofCategory| *2 #14=(|Join| #6# (|RetractableTo| *5) #7# #8# #9#)) (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *5 *3 *2)) #15=(|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|singleFactorBound| #1# #16=(AND #3# #17=(|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *5)) #10# (|ofCategory| *5 #5#))) (|singleFactorBound| #11# (AND (|isDomain| *4 (|NonNegativeInteger|)) #13# #17# (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *5 *3 *6)) #15# (|ofCategory| *6 #14#))) (|rootBound| #1# #16#) (|bombieriNorm| #11# #12#) (|bombieriNorm| #1# #2#) (|beauzamyBound| #1# #16#))
+((|unvectorise| ((|#2| (|Vector| |#1|)) 42 T ELT)) (|shiftRoots| (#1=(|#2| |#2| |#1|) 58 T ELT)) (|scaleRoots| (#1# 49 T ELT)) (|reverse| ((|#2| |#2|) 44 T ELT)) (|monic?| (((|Boolean|) |#2|) 32 T ELT)) (|factorsOfDegree| (((|List| |#2|) #2=(|PositiveInteger|) #3=(|Factored| |#2|)) 21 T ELT)) (|factorOfDegree| ((|#2| #2# #3#) 25 T ELT)) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) #3#) 29 T ELT)))
+(((|GaloisGroupPolynomialUtilities| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monic?| ((|Boolean|) |#2|)) (SIGNATURE |unvectorise| (|#2| (|Vector| |#1|))) (SIGNATURE |reverse| (|#2| |#2|)) (SIGNATURE |scaleRoots| #1=(|#2| |#2| |#1|)) (SIGNATURE |shiftRoots| #1#) (SIGNATURE |degreePartition| ((|Multiset| (|NonNegativeInteger|)) #2=(|Factored| |#2|))) (SIGNATURE |factorOfDegree| (|#2| #3=(|PositiveInteger|) #2#)) (SIGNATURE |factorsOfDegree| ((|List| |#2|) #3# #2#))) (|Ring|) (|UnivariatePolynomialCategory| |#1|)) (T |GaloisGroupPolynomialUtilities|))
+((|factorsOfDegree| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Factored| *6)) (|ofCategory| *6 #3=(|UnivariatePolynomialCategory| *5)) #4=(|ofCategory| *5 #5=(|Ring|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *6)))) (|factorOfDegree| #1# (AND #2# (|isDomain| *4 (|Factored| *2)) (|ofCategory| *2 #3#) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *2)) #4#)) (|degreePartition| #6=(*1 *2 *3) (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 #7=(|UnivariatePolynomialCategory| *4)) #8=(|ofCategory| *4 #5#) (|isDomain| *2 (|Multiset| (|NonNegativeInteger|))) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *5)))) (|shiftRoots| #9=(*1 *2 *2 *3) #10=(AND (|ofCategory| *3 #5#) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|scaleRoots| #9# #10#) (|reverse| (*1 *2 *2) #10#) (|unvectorise| #6# (AND (|isDomain| *3 (|Vector| *4)) #8# (|ofCategory| *2 #7#) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *2)))) (|monic?| #6# (AND #8# (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *3)) (|ofCategory| *3 #7#))))
+((|sizePascalTriangle| (#1=(#2=(|NonNegativeInteger|)) 59 T ELT)) (|safetyMargin| (#1# 29 #3=(|has| |#1| (|FloatingPointSystem|)) ELT) (#4=(#2# #2#) 28 #3# ELT)) (|safeFloor| (#5=(#6=(|Integer|) |#1|) 25 #3# ELT)) (|safeCeiling| (#5# 27 #3# ELT)) (|rangePascalTriangle| (#1# 58 T ELT) (#4# 57 T ELT)) (|pascalTriangle| ((|#1| #2# #6#) 37 T ELT)) (|fillPascalTriangle| (((|Void|)) 61 T ELT)))
+(((|GaloisGroupUtilities| |#1|) (CATEGORY |package| (SIGNATURE |pascalTriangle| (|#1| #1=(|NonNegativeInteger|) #2=(|Integer|))) (SIGNATURE |rangePascalTriangle| #3=(#1# #1#)) (SIGNATURE |rangePascalTriangle| #4=(#1#)) (SIGNATURE |sizePascalTriangle| #4#) (SIGNATURE |fillPascalTriangle| ((|Void|))) (IF (|has| |#1| (|FloatingPointSystem|)) (PROGN (SIGNATURE |safeCeiling| #5=(#2# |#1|)) (SIGNATURE |safeFloor| #5#) (SIGNATURE |safetyMargin| #3#) (SIGNATURE |safetyMargin| #4#)) |%noBranch|)) (|Ring|)) (T |GaloisGroupUtilities|))
+((|safetyMargin| #1=(*1 *2) #2=(AND #3=(|isDomain| *2 #4=(|NonNegativeInteger|)) #5=(|isDomain| *1 (|GaloisGroupUtilities| *3)) #6=(|ofCategory| *3 (|FloatingPointSystem|)) #7=(|ofCategory| *3 #8=(|Ring|)))) (|safetyMargin| #9=(*1 *2 *2) #2#) (|safeFloor| #10=(*1 *2 *3) #11=(AND (|isDomain| *2 #12=(|Integer|)) #5# #6# #7#)) (|safeCeiling| #10# #11#) (|fillPascalTriangle| #1# (AND (|isDomain| *2 (|Void|)) #5# #7#)) (|sizePascalTriangle| #1# #13=(AND #3# #5# #7#)) (|rangePascalTriangle| #1# #13#) (|rangePascalTriangle| #9# #13#) (|pascalTriangle| (*1 *2 *3 *4) (AND (|isDomain| *3 #4#) (|isDomain| *4 #12#) (|isDomain| *1 (|GaloisGroupUtilities| *2)) (|ofCategory| *2 #8#))))
+((|sumSquares| (((|List| #1=(|Integer|)) #1#) 76 T ELT)) (|prime?| (((|Boolean|) #2=(|Complex| #1#)) 84 T ELT)) (|factor| (((|Factored| #2#) #2#) 75 T ELT)))
+(((|GaussianFactorizationPackage|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| #1=(|Complex| #2=(|Integer|))) #1#)) (SIGNATURE |sumSquares| ((|List| #2#) #2#)) (SIGNATURE |prime?| ((|Boolean|) #1#)))) (T |GaussianFactorizationPackage|))
+((|prime?| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|Complex| #4=(|Integer|))) (|isDomain| *2 (|Boolean|)) #5=(|isDomain| *1 (|GaussianFactorizationPackage|)))) (|sumSquares| #1# (AND (|isDomain| *2 (|List| #4#)) #5# (|isDomain| *3 #4#))) (|factor| #1# (AND (|isDomain| *2 (|Factored| #3#)) #5# #2#)))
+((|normalForm| ((|#4| |#4| #1=(|List| |#4|)) 20 (|has| |#1| (|Field|)) ELT)) (|groebner| ((#1# #1# #2=(|String|) #2#) 46 T ELT) ((#1# #1# #2#) 45 T ELT) ((#1# #1#) 34 T ELT)))
+(((|GroebnerPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |groebner| (#1=(|List| |#4|) #1#)) (SIGNATURE |groebner| (#1# #1# #2=(|String|))) (SIGNATURE |groebner| (#1# #1# #2# #2#)) (IF (|has| |#1| (|Field|)) (SIGNATURE |normalForm| (|#4| |#4| #1#)) |%noBranch|)) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |GroebnerPackage|))
+((|normalForm| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 #2=(|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Field|)) #3=(|ofCategory| *4 #4=(|GcdDomain|)) #5=(|ofCategory| *5 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *6 #8=(|OrderedSet|)) (|isDomain| *1 (|GroebnerPackage| *4 *5 *6 *2)))) (|groebner| (*1 *2 *2 *3 *3) #9=(AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|)) (|ofCategory| *7 #2#) #3# #5# #7# (|isDomain| *1 (|GroebnerPackage| *4 *5 *6 *7)))) (|groebner| #1# #9#) (|groebner| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 #4#) (|ofCategory| *4 #6#) (|ofCategory| *5 #8#) (|isDomain| *1 (|GroebnerPackage| *3 *4 *5 *6)))))
+((|euclideanNormalForm| ((|#4| |#4| #1=(|List| |#4|)) 82 T ELT)) (|euclideanGroebner| ((#1# #1# #2=(|String|) #2#) 22 T ELT) ((#1# #1# #2#) 21 T ELT) ((#1# #1#) 13 T ELT)))
+(((|EuclideanGroebnerBasisPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |euclideanNormalForm| (|#4| |#4| #1=(|List| |#4|))) (SIGNATURE |euclideanGroebner| (#1# #1#)) (SIGNATURE |euclideanGroebner| (#1# #1# #2=(|String|))) (SIGNATURE |euclideanGroebner| (#1# #1# #2# #2#))) (|EuclideanDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |EuclideanGroebnerBasisPackage|))
+((|euclideanGroebner| (*1 *2 *2 *3 *3) #1=(AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|)) (|ofCategory| *7 #2=(|PolynomialCategory| *4 *5 *6)) #3=(|ofCategory| *4 #4=(|EuclideanDomain|)) #5=(|ofCategory| *5 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *6 #8=(|OrderedSet|)) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *7)))) (|euclideanGroebner| #9=(*1 *2 *2 *3) #1#) (|euclideanGroebner| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 #4#) (|ofCategory| *4 #6#) (|ofCategory| *5 #8#) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *3 *4 *5 *6)))) (|euclideanNormalForm| #9# (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 #2#) #3# #5# #7# (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *2)))))
+((|groebnerFactorize| (#1=(#2=(|List| #3=(|List| |#4|)) #3# #4=(|Boolean|)) 90 T ELT) (#5=(#2# #3#) 89 T ELT) ((#2# #3# #3# #4#) 83 T ELT) ((#2# #3# #3#) 84 T ELT)) (|factorGroebnerBasis| (#1# 56 T ELT) (#5# 78 T ELT)))
+(((|GroebnerFactorizationPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factorGroebnerBasis| #1=(#2=(|List| #3=(|List| |#4|)) #3#)) (SIGNATURE |factorGroebnerBasis| #4=(#2# #3# #5=(|Boolean|))) (SIGNATURE |groebnerFactorize| (#2# #3# #3#)) (SIGNATURE |groebnerFactorize| (#2# #3# #3# #5#)) (SIGNATURE |groebnerFactorize| #1#) (SIGNATURE |groebnerFactorize| #4#)) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |GroebnerFactorizationPackage|))
+((|groebnerFactorize| #1=(*1 *2 *3 *4) #2=(AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 #3=(|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 #4=(|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #5=(|OrderedSet|)) (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|List| #6=(|List| *8))) (|isDomain| *1 (|GroebnerFactorizationPackage| *5 *6 *7 *8)) (|isDomain| *3 #6#))) (|groebnerFactorize| #7=(*1 *2 *3) #8=(AND (|ofCategory| *4 #3#) (|ofCategory| *5 #4#) (|ofCategory| *6 #5#) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| #9=(|List| *7))) (|isDomain| *1 (|GroebnerFactorizationPackage| *4 *5 *6 *7)) (|isDomain| *3 #9#))) (|groebnerFactorize| (*1 *2 *3 *3 *4) #2#) (|groebnerFactorize| (*1 *2 *3 *3) #8#) (|factorGroebnerBasis| #1# #2#) (|factorGroebnerBasis| #7# #8#))
+((|virtualDegree| ((#1=(|NonNegativeInteger|) |#4|) 12 T ELT)) (|updatF| ((#2=(|List| #3=(|Record| #4=(|:| |totdeg| #1#) (|:| |pol| |#4|))) |#4| #1# #2#) 39 T ELT)) (|updatD| ((#5=(|List| #6=(|Record| (|:| |lcmfij| |#2|) #4# (|:| |poli| |#4|) (|:| |polj| |#4|))) #5# #5#) 49 T ELT)) (|sPol| ((|#4| #6#) 52 T ELT)) (|redPol| (#7=(|#4| |#4| #8=(|List| |#4|)) 54 T ELT)) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| #8#) 96 T ELT)) (|prinshINFO| ((#9=(|Void|) |#4|) 59 T ELT)) (|prinpolINFO| ((#9# #8#) 69 T ELT)) (|prindINFO| ((#10=(|Integer|) #6# |#4| |#4| #10# #10# #10#) 66 T ELT)) (|prinb| ((#9# #10#) 110 T ELT)) (|minGbasis| ((#8# #8#) 104 T ELT)) (|makeCrit| ((#6# #3# |#4| #1#) 31 T ELT)) (|lepol| ((#10# |#4|) 109 T ELT)) (|hMonic| ((|#4| |#4|) 37 T ELT)) (|gbasis| ((#8# #8# #10# #10#) 74 T ELT)) (|fprindINFO| ((#10# #6# |#4| |#4| #10# #10# #10# #10#) 123 T ELT)) (|critpOrder| ((#11=(|Boolean|) #6# #6#) 20 T ELT)) (|critT| ((#11# #6#) 78 T ELT)) (|critMonD1| ((#5# |#2| #5#) 76 T ELT)) (|critMTonD1| ((#5# #5#) 47 T ELT)) (|critM| ((#11# |#2| |#2|) 75 T ELT)) (|critBonD| ((#5# |#4| #5#) 48 T ELT)) (|critB| ((#11# |#2| |#2| |#2| |#2|) 80 T ELT)) (|credPol| (#7# 97 T ELT)))
+(((|GroebnerInternalPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |credPol| #1=(|#4| |#4| #2=(|List| |#4|))) (SIGNATURE |redPol| #1#) (SIGNATURE |gbasis| (#2# #2# #3=(|Integer|) #3#)) (SIGNATURE |critT| (#4=(|Boolean|) #5=(|Record| (|:| |lcmfij| |#2|) #6=(|:| |totdeg| #7=(|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |critM| (#4# |#2| |#2|)) (SIGNATURE |critB| (#4# |#2| |#2| |#2| |#2|)) (SIGNATURE |critBonD| (#8=(|List| #5#) |#4| #8#)) (SIGNATURE |critMTonD1| (#8# #8#)) (SIGNATURE |critMonD1| (#8# |#2| #8#)) (SIGNATURE |redPo| ((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| #2#)) (SIGNATURE |hMonic| (|#4| |#4|)) (SIGNATURE |updatF| (#9=(|List| #10=(|Record| #6# (|:| |pol| |#4|))) |#4| #7# #9#)) (SIGNATURE |sPol| (|#4| #5#)) (SIGNATURE |updatD| (#8# #8# #8#)) (SIGNATURE |minGbasis| (#2# #2#)) (SIGNATURE |lepol| (#3# |#4|)) (SIGNATURE |prinshINFO| (#11=(|Void|) |#4|)) (SIGNATURE |prindINFO| (#3# #5# |#4| |#4| #3# #3# #3#)) (SIGNATURE |fprindINFO| (#3# #5# |#4| |#4| #3# #3# #3# #3#)) (SIGNATURE |prinpolINFO| (#11# #2#)) (SIGNATURE |prinb| (#11# #3#)) (SIGNATURE |critpOrder| (#4# #5# #5#)) (SIGNATURE |makeCrit| (#5# #10# |#4| #7#)) (SIGNATURE |virtualDegree| (#7# |#4|))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |GroebnerInternalPackage|))
+((|virtualDegree| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|GcdDomain|)) #4=(|ofCategory| *5 #5=(|OrderedAbelianMonoidSup|)) #6=(|ofCategory| *6 #7=(|OrderedSet|)) (|isDomain| *2 #8=(|NonNegativeInteger|)) #9=(|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)) #10=(|ofCategory| *3 #11=(|PolynomialCategory| *4 *5 *6)))) (|makeCrit| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Record| #12=(|:| |totdeg| #8#) (|:| |pol| *4))) (|isDomain| *5 #8#) (|ofCategory| *4 (|PolynomialCategory| *6 *7 *8)) (|ofCategory| *6 #3#) (|ofCategory| *7 #5#) (|ofCategory| *8 #7#) (|isDomain| *2 (|Record| (|:| |lcmfij| *7) (|:| |totdeg| *5) #13=(|:| |poli| *4) #14=(|:| |polj| *4))) (|isDomain| *1 (|GroebnerInternalPackage| *6 *7 *8 *4)))) (|critpOrder| #15=(*1 *2 *3 *3) #16=(AND (|isDomain| *3 (|Record| #17=(|:| |lcmfij| *5) #12# (|:| |poli| *7) (|:| |polj| *7))) #4# #18=(|ofCategory| *7 #11#) #2# #6# #19=(|isDomain| *2 (|Boolean|)) #20=(|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))) (|prinb| #1# (AND #21=(|isDomain| *3 #22=(|Integer|)) #2# #4# #6# #23=(|isDomain| *2 (|Void|)) #20# #18#)) (|prinpolINFO| #1# (AND (|isDomain| *3 #24=(|List| *7)) #18# #2# #4# #6# #23# #20#)) (|fprindINFO| (*1 *2 *3 *4 *4 *2 *2 *2 *2) #25=(AND #26=(|isDomain| *2 #22#) (|isDomain| *3 (|Record| (|:| |lcmfij| *6) #12# #13# #14#)) #27=(|ofCategory| *6 #5#) (|ofCategory| *4 #28=(|PolynomialCategory| *5 *6 *7)) #29=(|ofCategory| *5 #3#) #30=(|ofCategory| *7 #7#) (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *4)))) (|prindINFO| (*1 *2 *3 *4 *4 *2 *2 *2) #25#) (|prinshINFO| #1# (AND #2# #4# #6# #23# #9# #10#)) (|lepol| #1# (AND #2# #4# #6# #26# #9# #10#)) (|minGbasis| #31=(*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) #32=(|ofCategory| *6 #33=(|PolynomialCategory| *3 *4 *5)) #34=(|ofCategory| *3 #3#) #35=(|ofCategory| *4 #5#) #36=(|ofCategory| *5 #7#) #37=(|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))) (|updatD| (*1 *2 *2 *2) #38=(AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *4) #12# #39=(|:| |poli| *6) #40=(|:| |polj| *6)))) #35# #32# #34# #36# #37#)) (|sPol| #1# (AND (|isDomain| *3 (|Record| #17# #12# (|:| |poli| *2) (|:| |polj| *2))) #4# #41=(|ofCategory| *2 #11#) #42=(|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2)) #2# #6#)) (|updatF| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|List| (|Record| #12# (|:| |pol| *3)))) (|isDomain| *4 #8#) #43=(|ofCategory| *3 #28#) #29# #27# #30# #44=(|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *3)))) (|hMonic| #31# (AND #34# #35# #36# (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *2)) (|ofCategory| *2 #33#))) (|redPo| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) #43# #29# #27# #30# (|isDomain| *2 (|Record| (|:| |poly| *3) (|:| |mult| *5))) #44#)) (|critMonD1| #45=(*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *3) #12# #39# #40#))) #46=(|ofCategory| *3 #5#) #47=(|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)) #2# #36# #48=(|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6)))) (|critMTonD1| #31# #38#) (|critBonD| #45# (AND (|isDomain| *2 (|List| (|Record| #17# #12# (|:| |poli| *3) (|:| |polj| *3)))) #4# #10# #2# #6# #9#)) (|critB| (*1 *2 *3 *3 *3 *3) #49=(AND #2# #46# #36# #19# #48# #47#)) (|critM| #15# #49#) (|critT| #1# #16#) (|gbasis| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 #24#) #21# #18# #2# #4# #6# #20#)) (|redPol| #50=(*1 *2 *2 *3) #51=(AND (|isDomain| *3 (|List| *2)) #41# #2# #4# #6# #42#)) (|credPol| #50# #51#))
+((|lcm| (#1=($ $ $) 14 T ELT) (#2=($ (|List| $)) 21 T ELT)) (|gcdPolynomial| ((#3=(|SparseUnivariatePolynomial| $) #3# #3#) 45 T ELT)) (|gcd| (#1# NIL T ELT) (#2# 22 T ELT)))
+(((|GcdDomain&| |#1|) (CATEGORY |package| (SIGNATURE |gcdPolynomial| (#1=(|SparseUnivariatePolynomial| |#1|) #1# #1#)) (SIGNATURE |lcm| #2=(|#1| (|List| |#1|))) (SIGNATURE |lcm| #3=(|#1| |#1| |#1|)) (SIGNATURE |gcd| #2#) (SIGNATURE |gcd| #3#)) (|GcdDomain|)) (T |GcdDomain&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#4=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|lcm| (($ $ $) 60 T ELT) (($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 58 T ELT)) (|gcd| (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|GcdDomain|) (|Category|)) (T |GcdDomain|))
+((|gcd| (*1 *1 *1 *1) (|ofCategory| *1 (|GcdDomain|))) (|gcd| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|GcdDomain|)))) (|lcm| (*1 *1 *1 *1) (|ofCategory| *1 (|GcdDomain|))) (|lcm| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|GcdDomain|)))) (|gcdPolynomial| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|GcdDomain|)))))
+(|Join| (|IntegralDomain|) (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)) (SIGNATURE |gcd| ($ (|List| $))) (SIGNATURE |lcm| ($ $ $)) (SIGNATURE |lcm| ($ (|List| $))) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|unit| #3=((#4=(|Union| $ #5="failed")) NIL #6=(|has| #7=(|Fraction| #8=(|Polynomial| |#1|)) #9=(|IntegralDomain|)) ELT)) (|subtractIfCan| ((#4# $ $) NIL T ELT)) (|structuralConstants| ((#10=(|Vector| #11=(|Matrix| #7#)) #12=(|Vector| $)) NIL T ELT) ((#10#) NIL T ELT)) (|someBasis| (#13=(#12#) NIL T ELT)) (|sample| #14=(#15=($) NIL T CONST)) (|rightUnits| #16=(((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #5#)) NIL T ELT)) (|rightUnit| #3#) (|rightTraceMatrix| #17=((#11# #12#) NIL T ELT) #18=((#11#) NIL T ELT)) (|rightTrace| #19=(#20=(#7# $) NIL T ELT)) (|rightRegularRepresentation| #21=((#11# $ #12#) NIL T ELT) #22=((#11# $) NIL T ELT)) (|rightRecip| #23=((#4# $) NIL #6# ELT)) (|rightRankPolynomial| #24=(((|SparseUnivariatePolynomial| #25=(|Polynomial| #7#))) NIL (|has| #7# (|Field|)) ELT) (#26=(#27=(|SparseUnivariatePolynomial| #7#)) 89 #28=(|has| |#1| #9#) ELT)) (|rightPower| #29=(($ $ #30=(|PositiveInteger|)) NIL T ELT)) (|rightNorm| #19#) (|rightMinimalPolynomial| (#31=(#27# $) 87 #6# ELT)) (|rightDiscriminant| #32=((#7# #12#) NIL T ELT) #33=(#34=(#7#) NIL T ELT)) (|rightCharacteristicPolynomial| #35=(#31# NIL T ELT)) (|rightAlternative?| #36=((#2#) NIL T ELT)) (|represents| (($ #37=(|Vector| #7#) #12#) 111 T ELT) #38=(#39=($ #37#) NIL T ELT)) (|recip| #23#) (|rank| ((#30#) NIL T ELT)) (|powerAssociative?| #36#) (|plenaryPower| #29#) (|opposite?| #1#) (|noncommutativeJordanAlgebra?| #36#) (|lieAlgebra?| #36#) (|lieAdmissible?| #36#) (|leftUnits| #16#) (|leftUnit| #3#) (|leftTraceMatrix| #17# #18#) (|leftTrace| #19#) (|leftRegularRepresentation| #21# #22#) (|leftRecip| #23#) (|leftRankPolynomial| #24# (#26# 88 #28# ELT)) (|leftPower| #29#) (|leftNorm| #19#) (|leftMinimalPolynomial| (#31# 84 #6# ELT)) (|leftDiscriminant| #32# #33#) (|leftCharacteristicPolynomial| #35#) (|leftAlternative?| #36#) (|latex| (((|String|) $) NIL T ELT)) (|jordanAlgebra?| #36#) (|jordanAdmissible?| #36#) (|jacobiIdentity?| #36#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|genericRightTraceForm| (#40=(#7# $ $) 75 #28# ELT)) (|genericRightTrace| (#20# 74 #28# ELT)) (|genericRightNorm| (#20# 101 #28# ELT)) (|genericRightMinimalPolynomial| (#31# 93 #28# ELT)) (|genericRightDiscriminant| (#34# 76 #28# ELT)) (|genericLeftTraceForm| (#40# 64 #28# ELT)) (|genericLeftTrace| (#20# 63 #28# ELT)) (|genericLeftNorm| (#20# 100 #28# ELT)) (|genericLeftMinimalPolynomial| (#31# 92 #28# ELT)) (|genericLeftDiscriminant| (#34# 73 #28# ELT)) (|generic| (#15# 107 T ELT) (($ #41=(|Symbol|)) 115 T ELT) (($ #42=(|Vector| #41#)) 114 T ELT) (($ #12#) 102 T ELT) (($ #41# #12#) 113 T ELT) (($ #42# #12#) 112 T ELT)) (|flexible?| #36#) (|elt| ((#7# $ #43=(|Integer|)) NIL T ELT)) (|coordinates| ((#37# $ #12#) 104 T ELT) ((#11# #12# #12#) NIL T ELT) (#44=(#37# $) 44 T ELT) #17#) (|convert| (#44# NIL T ELT) (#39# 41 T ELT)) (|conditionsForIdempotents| ((#45=(|List| #25#) #12#) NIL T ELT) ((#45#) NIL T ELT) ((#46=(|List| #8#) #12#) 105 #28# ELT) ((#46#) 106 #28# ELT)) (|commutator| #47=(#48=($ $ $) NIL T ELT)) (|commutative?| #36#) (|coerce| (((|OutputForm|) $) NIL T ELT) #38#) (|before?| #1#) (|basis| (#13# 66 T ELT)) (|associatorDependence| (((|List| #37#)) NIL #6# ELT)) (|associator| (($ $ $ $) NIL T ELT)) (|associative?| #36#) (|apply| (($ #11# $) NIL T ELT)) (|antiCommutator| #47#) (|antiCommutative?| #36#) (|antiAssociative?| #36#) (|alternative?| #36#) (|Zero| #14#) (= #1#) (- (($ $) NIL T ELT) (#48# 103 T ELT)) (+ #47#) (** #29#) (* (($ #30# $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #43# . #49=($)) NIL T ELT) (#48# 62 T ELT) (($ $ #7#) NIL T ELT) (($ #7# . #49#) NIL T ELT) (($ (|SquareMatrix| |#2| #7#) . #49#) NIL T ELT)))
+(((|GenericNonAssociativeAlgebra| |#1| |#2| |#3| |#4|) (|Join| (|FramedNonAssociativeAlgebra| #1=(|Fraction| #2=(|Polynomial| |#1|))) (|LeftModule| (|SquareMatrix| |#2| #1#)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| #1#))) (SIGNATURE |leftUnits| #3=((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed"))) (SIGNATURE |rightUnits| #3#) (SIGNATURE |generic| ($)) (SIGNATURE |generic| ($ #4=(|Symbol|))) (SIGNATURE |generic| ($ #5=(|Vector| #4#))) (SIGNATURE |generic| ($ #6=(|Vector| $))) (SIGNATURE |generic| ($ #4# #6#)) (SIGNATURE |generic| ($ #5# #6#)) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |leftRankPolynomial| #7=(#8=(|SparseUnivariatePolynomial| #1#))) (SIGNATURE |genericLeftMinimalPolynomial| #9=(#8# $)) (SIGNATURE |genericLeftTrace| #10=(#1# $)) (SIGNATURE |genericLeftNorm| #10#) (SIGNATURE |rightRankPolynomial| #7#) (SIGNATURE |genericRightMinimalPolynomial| #9#) (SIGNATURE |genericRightTrace| #10#) (SIGNATURE |genericRightNorm| #10#) (SIGNATURE |genericLeftTraceForm| #11=(#1# $ $)) (SIGNATURE |genericLeftDiscriminant| #12=(#1#)) (SIGNATURE |genericRightTraceForm| #11#) (SIGNATURE |genericRightDiscriminant| #12#) (SIGNATURE |conditionsForIdempotents| (#13=(|List| #2#) #6#)) (SIGNATURE |conditionsForIdempotents| (#13#))) |%noBranch|))) (|CommutativeRing|) (|PositiveInteger|) (|List| #4#) (|Vector| (|Matrix| |#1|))) (T |GenericNonAssociativeAlgebra|))
+((|coerce| #1=(*1 *1 *2) (AND (|isDomain| *2 (|Vector| #2=(|Fraction| #3=(|Polynomial| *3)))) #4=(|ofCategory| *3 #5=(|CommutativeRing|)) #6=(|ofType| *6 (|Vector| (|Matrix| *3))) #7=(|isDomain| *1 #8=(|GenericNonAssociativeAlgebra| *3 *4 *5 *6)) #9=(|ofType| *4 #10=(|PositiveInteger|)) #11=(|ofType| *5 #12=(|List| #13=(|Symbol|))))) (|leftUnits| #14=(*1 *2) #15=(|partial| AND (|isDomain| *2 (|Record| (|:| |particular| #8#) (|:| |basis| (|List| #8#)))) #7# #4# #9# #11# #6#)) (|rightUnits| #14# #15#) (|generic| (*1 *1) (AND (|isDomain| *1 (|GenericNonAssociativeAlgebra| *2 *3 *4 *5)) (|ofCategory| *2 #5#) (|ofType| *3 #10#) (|ofType| *4 #12#) (|ofType| *5 (|Vector| (|Matrix| *2))))) (|generic| #1# (AND #16=(|isDomain| *2 #13#) #7# #4# #9# (|ofType| *5 #17=(|List| *2)) #6#)) (|generic| #1# (AND #18=(|isDomain| *2 (|Vector| #13#)) #7# #4# #9# #11# #6#)) (|generic| #1# (AND (|isDomain| *2 (|Vector| #8#)) #7# #4# #9# #11# #6#)) (|generic| #19=(*1 *1 *2 *3) (AND #16# #20=(|isDomain| *3 (|Vector| #21=(|GenericNonAssociativeAlgebra| *4 *5 *6 *7))) #22=(|isDomain| *1 #21#) #23=(|ofCategory| *4 #5#) #24=(|ofType| *5 #10#) (|ofType| *6 #17#) #25=(|ofType| *7 (|Vector| (|Matrix| *4))))) (|generic| #19# (AND #18# #20# #22# #23# #24# #26=(|ofType| *6 #12#) #25#)) (|leftRankPolynomial| #14# #27=(AND (|isDomain| *2 (|SparseUnivariatePolynomial| #2#)) #7# #28=(|ofCategory| *3 #29=(|IntegralDomain|)) #4# #9# #11# #6#)) (|genericLeftMinimalPolynomial| #30=(*1 *2 *1) #27#) (|genericLeftTrace| #30# #31=(AND (|isDomain| *2 #2#) #7# #28# #4# #9# #11# #6#)) (|genericLeftNorm| #30# #31#) (|rightRankPolynomial| #14# #27#) (|genericRightMinimalPolynomial| #30# #27#) (|genericRightTrace| #30# #31#) (|genericRightNorm| #30# #31#) (|genericLeftTraceForm| #32=(*1 *2 *1 *1) #31#) (|genericLeftDiscriminant| #14# #31#) (|genericRightTraceForm| #32# #31#) (|genericRightDiscriminant| #14# #31#) (|conditionsForIdempotents| (*1 *2 *3) (AND #20# (|isDomain| *2 (|List| (|Polynomial| *4))) #22# (|ofCategory| *4 #29#) #23# #24# #26# #25#)) (|conditionsForIdempotents| #14# (AND (|isDomain| *2 (|List| #3#)) #7# #28# #4# #9# #11# #6#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 19 T ELT)) (|variables| ((#5=(|List| #6=(|OrderedVariableList| |#1|)) $) 88 T ELT)) (|univariate| ((#7=(|SparseUnivariatePolynomial| $) $ #6#) 53 T ELT) ((#8=(|SparseUnivariatePolynomial| |#2|) $) 140 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| |#2| (|IntegralDomain|)) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #9# ELT)) (|unit?| (#4# NIL #9# ELT)) (|totalDegree| (#12=(#13=(|NonNegativeInteger|) $) 28 T ELT) ((#13# $ #5#) NIL T ELT)) (|subtractIfCan| (#14=(#15=(|Union| $ #16="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #17=(((|Factored| #7#) #7#) NIL #18=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #19=(#11# NIL #20=(|has| |#2| (|GcdDomain|)) ELT)) (|squareFree| (#21=((|Factored| $) $) NIL #20# ELT)) (|solveLinearPolynomialEquation| (((|Union| #22=(|List| #7#) #16#) #22# #7#) NIL #18# ELT)) (|sample| (#23=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #24=(#16#)) $) 51 T ELT) (((|Union| #25=(|Fraction| #26=(|Integer|)) . #24#) . #27=($)) NIL #28=(|has| |#2| (|RetractableTo| #25#)) ELT) (((|Union| #26# . #24#) . #27#) NIL #29=(|has| |#2| (|RetractableTo| #26#)) ELT) (#30=((|Union| #6# . #24#) . #27#) NIL T ELT)) (|retract| (#31=(|#2| $) 49 T ELT) ((#25# . #32=($)) NIL #28# ELT) ((#26# . #32#) NIL #29# ELT) ((#6# . #32#) NIL T ELT)) (|resultant| (($ $ $ #6#) NIL #33=(|has| |#2| (|CommutativeRing|)) ELT)) (|reorder| (($ $ (|List| #26#)) 95 T ELT)) (|reductum| (#11# 81 T ELT)) (|reducedSystem| ((#34=(|Matrix| #26#) . #35=(#36=(|Matrix| $))) NIL #37=(|has| |#2| (|LinearlyExplicitRingOver| #26#)) ELT) ((#38=(|Record| (|:| |mat| #34#) (|:| |vec| (|Vector| #26#))) . #39=(#36# #40=(|Vector| $))) NIL #37# ELT) ((#41=(|Record| (|:| |mat| #42=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #39#) NIL T ELT) ((#42# . #35#) NIL T ELT)) (|recip| ((#15# $) NIL T ELT)) (|primitivePart| #19# #43=(#44=($ $ #6#) NIL #20# ELT)) (|primitiveMonomials| #45=((#46=(|List| $) $) NIL T ELT)) (|prime?| (#4# NIL #18# ELT)) (|pomopo!| (($ $ |#2| |#3| $) NIL T ELT)) (|patternMatch| ((#47=(|PatternMatchResult| #48=(|Float|) . #49=($)) $ #50=(|Pattern| #48#) #47#) NIL (AND (|has| #6# #51=(|PatternMatchable| #48#)) (|has| |#2| #51#)) ELT) ((#52=(|PatternMatchResult| #26# . #49#) $ #53=(|Pattern| #26#) #52#) NIL (AND (|has| #6# #54=(|PatternMatchable| #26#)) (|has| |#2| #54#)) ELT)) (|opposite?| #1#) (|one?| (#4# NIL T ELT)) (|numberOfMonomials| (#12# 66 T ELT)) (|multivariate| (($ #8# #6#) 145 T ELT) (($ #7# #6#) 59 T ELT)) (|monomials| #45#) (|monomial?| (#4# 69 T ELT)) (|monomial| (($ |#2| |#3|) 36 T ELT) (#55=($ $ #6# #13#) 38 T ELT) #56=(($ $ #5# #57=(|List| #13#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #6#) NIL T ELT)) (|minimumDegree| (#58=(|#3| $) NIL T ELT) (#59=(#13# $ #6#) 57 T ELT) (#60=(#57# $ #5#) 64 T ELT)) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) NIL T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|mainVariable| (#30# 46 T ELT)) (|leftReducedSystem| ((#34# . #61=(#40#)) NIL #37# ELT) ((#38# . #62=(#40# $)) NIL #37# ELT) ((#41# . #62#) NIL T ELT) ((#42# . #61#) NIL T ELT)) (|leadingMonomial| #63=(#11# NIL T ELT)) (|leadingCoefficient| (#31# 48 T ELT)) (|lcm| #64=(($ #46#) NIL #20# ELT) (#65=($ $ $) NIL #20# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #66=(((|Union| #46# #16#) $) NIL T ELT)) (|isPlus| #66#) (|isExpt| (((|Union| (|Record| (|:| |var| #6#) (|:| |exponent| #13#)) #16#) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| (#4# 47 T ELT)) (|ground| (#31# 138 T ELT)) (|gcdPolynomial| ((#7# #7# #7#) NIL #20# ELT)) (|gcd| #64# (#65# 151 #20# ELT)) (|factorSquareFreePolynomial| #17#) (|factorPolynomial| #17#) (|factor| (#21# NIL #18# ELT)) (|exquo| ((#15# $ |#2|) NIL #9# ELT) (#14# NIL #9# ELT)) (|eval| (($ $ (|List| #67=(|Equation| $))) NIL T ELT) (($ $ #67#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #46# #46#) NIL T ELT) (($ $ #6# |#2|) 102 T ELT) (($ $ #5# #68=(|List| |#2|)) 108 T ELT) (($ $ #6# $) 100 T ELT) (($ $ #5# #46#) 126 T ELT)) (|discriminant| (#44# NIL #33# ELT)) (|differentiate| #56# #69=(#55# NIL T ELT) #70=(($ $ #5#) NIL T ELT) (#44# 60 T ELT)) (|degree| (#58# 80 T ELT) (#59# 43 T ELT) (#60# 63 T ELT)) (|convert| ((#50# . #71=($)) NIL (AND (|has| #6# #72=(|ConvertibleTo| #50#)) (|has| |#2| #72#)) ELT) ((#53# . #71#) NIL (AND (|has| #6# #73=(|ConvertibleTo| #53#)) (|has| |#2| #73#)) ELT) ((#74=(|InputForm|) . #71#) NIL (AND (|has| #6# #75=(|ConvertibleTo| #74#)) (|has| |#2| #75#)) ELT)) (|content| (#31# 147 #20# ELT) #43#) (|conditionP| (((|Union| #40# #16#) #36#) NIL #76=(AND (|has| $ #77=(|CharacteristicNonZero|)) #18#) ELT)) (|coerce| (((|OutputForm|) $) 175 T ELT) (($ #26#) NIL T ELT) (($ |#2|) 101 T ELT) (($ #6#) 40 T ELT) (($ #25#) NIL (OR #78=(|has| |#2| (|Algebra| #25#)) #28#) ELT) #10#) (|coefficients| ((#68# $) NIL T ELT)) (|coefficient| ((|#2| $ |#3|) NIL T ELT) #69# #56#) (|charthRoot| (((|Maybe| $) $) NIL (OR #76# (|has| |#2| #77#)) ELT)) (|characteristic| ((#13#) NIL T CONST)) (|binomThmExpt| (($ $ $ #13#) NIL #33# ELT)) (|before?| #1#) (|associates?| (#2# NIL #9# ELT)) (|annihilate?| #1#) (|Zero| (#23# 24 T CONST)) (|One| (#23# 32 T CONST)) (D #56# #69# #70# (#44# NIL T ELT)) (= #1#) (/ (#79=($ $ |#2|) 77 (|has| |#2| (|Field|)) ELT)) (- #63# (#65# NIL T ELT)) (+ (#65# 133 T ELT)) (** (($ $ #80=(|PositiveInteger|)) NIL T ELT) (($ $ #13#) 131 T ELT)) (* (($ #80# $) NIL T ELT) (($ #13# $) NIL T ELT) (($ #26# . #81=($)) NIL T ELT) (#65# 37 T ELT) (($ $ #25#) NIL #78# ELT) (($ #25# . #81#) NIL #78# ELT) (($ |#2| . #81#) 76 T ELT) (#79# NIL T ELT)))
+(((|GeneralDistributedMultivariatePolynomial| |#1| |#2| |#3|) (|Join| (|PolynomialCategory| |#2| |#3| (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) (|List| (|Symbol|)) (|Ring|) (|DirectProductCategory| (|#| |#1|) (|NonNegativeInteger|))) (T |GeneralDistributedMultivariatePolynomial|))
+((|reorder| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|isDomain| *1 (|GeneralDistributedMultivariatePolynomial| *3 *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|))))))
+((|testModulus| (((|Boolean|) |#1| #1=(|List| |#2|)) 90 T ELT)) (|tablePow| (((|Union| #2=(|Vector| #1#) #3="failed") #4=(|NonNegativeInteger|) |#1| #1#) 99 T ELT)) (|solveid| (((|Union| #1# #3#) |#2| |#1| #2#) 101 T ELT)) (|reduction| ((|#2| |#2| |#1|) 35 T ELT)) (|compBound| ((#4# |#2| #1#) 26 T ELT)))
+(((|GenExEuclid| |#1| |#2|) (CATEGORY |package| (SIGNATURE |reduction| (|#2| |#2| |#1|)) (SIGNATURE |compBound| (#1=(|NonNegativeInteger|) |#2| #2=(|List| |#2|))) (SIGNATURE |tablePow| ((|Union| #3=(|Vector| #2#) #4="failed") #1# |#1| #2#)) (SIGNATURE |solveid| ((|Union| #2# #4#) |#2| |#1| #3#)) (SIGNATURE |testModulus| ((|Boolean|) |#1| #2#))) (|EuclideanDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |GenExEuclid|))
+((|testModulus| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *5)) (|ofCategory| *5 #2=(|UnivariatePolynomialCategory| *3)) #3=(|ofCategory| *3 #4=(|EuclideanDomain|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GenExEuclid| *3 *5)))) (|solveid| #5=(*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 (|Vector| #6=(|List| *3))) #7=(|ofCategory| *4 #4#) (|isDomain| *2 #6#) (|isDomain| *1 (|GenExEuclid| *4 *3)) (|ofCategory| *3 #8=(|UnivariatePolynomialCategory| *4)))) (|tablePow| #5# (|partial| AND (|isDomain| *3 #9=(|NonNegativeInteger|)) #7# (|ofCategory| *6 #8#) (|isDomain| *2 (|Vector| #10=(|List| *6))) (|isDomain| *1 (|GenExEuclid| *4 *6)) (|isDomain| *5 #10#))) (|compBound| #1# (AND (|isDomain| *4 #6#) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #4#) (|isDomain| *2 #9#) (|isDomain| *1 (|GenExEuclid| *5 *3)))) (|reduction| (*1 *2 *2 *3) (AND #3# (|isDomain| *1 (|GenExEuclid| *3 *2)) (|ofCategory| *2 #2#))))
+((|factor| (((|Factored| |#5|) |#5|) 24 T ELT)))
+(((|GeneralizedMultivariateFactorize| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#5|) |#5|))) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#1=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #1#)))) (|OrderedAbelianMonoidSup|) #2=(|IntegralDomain|) #2# (|PolynomialCategory| |#4| |#2| |#1|)) (T |GeneralizedMultivariateFactorize|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#1=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #1#))))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #2=(|IntegralDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GeneralizedMultivariateFactorize| *4 *5 *6 *7 *3)) (|ofCategory| *6 #2#) (|ofCategory| *3 (|PolynomialCategory| *7 *5 *4)))))
+((|randomR| ((|#3|) 43 T ELT)) (|gcdPolynomial| ((#1=(|SparseUnivariatePolynomial| |#4|) #1# #1#) 34 T ELT)))
+(((|GeneralPolynomialGcdPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gcdPolynomial| (#1=(|SparseUnivariatePolynomial| |#4|) #1# #1#)) (SIGNATURE |randomR| (|#3|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialFactorizationExplicit|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |GeneralPolynomialGcdPackage|))
+((|randomR| (*1 *2) (AND #1=(|ofCategory| *3 (|OrderedAbelianMonoidSup|)) #2=(|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 #3=(|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *2 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))) (|gcdPolynomial| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4)) #1# #2# (|ofCategory| *5 #3#) (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *5 *6)))))
+((|factor| (((|Factored| #1=(|SparseUnivariatePolynomial| |#1|)) #1#) 43 T ELT)))
+(((|GenUFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| #1=(|SparseUnivariatePolynomial| |#1|)) #1#))) (|EuclideanDomain|)) (T |GenUFactorize|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| #1=(|SparseUnivariatePolynomial| *4))) (|isDomain| *1 (|GenUFactorize| *4)) (|isDomain| *3 #1#))))
+((|taylor| ((#1=(|Any|) |#2| #2=(|Symbol|) #3=(|Equation| |#2|) #4=(|UniversalSegment| (|NonNegativeInteger|))) 44 T ELT) ((#1# #5=(|Mapping| |#2| #6=(|Integer|)) #3# #4#) 43 T ELT) (#7=(#1# |#2| #2# #3#) 36 T ELT) (#8=(#1# #5# #3#) 29 T ELT)) (|series| (#9=(#1# |#2| #2# #3# #10=(|UniversalSegment| #11=(|Fraction| #6#)) #11#) 88 T ELT) (#12=(#1# (|Mapping| |#2| #11#) #3# #10# #11#) 87 T ELT) (#13=(#1# |#2| #2# #3# #14=(|UniversalSegment| #6#)) 86 T ELT) (#15=(#1# #5# #3# #14#) 85 T ELT) (#7# 80 T ELT) (#8# 79 T ELT)) (|puiseux| (#9# 74 T ELT) (#12# 72 T ELT)) (|laurent| (#13# 51 T ELT) (#15# 50 T ELT)))
+(((|GenerateUnivariatePowerSeries| |#1| |#2|) (CATEGORY |package| (SIGNATURE |taylor| #1=(#2=(|Any|) #3=(|Mapping| |#2| #4=(|Integer|)) #5=(|Equation| |#2|))) (SIGNATURE |taylor| #6=(#2# |#2| #7=(|Symbol|) #5#)) (SIGNATURE |taylor| (#2# #3# #5# #8=(|UniversalSegment| (|NonNegativeInteger|)))) (SIGNATURE |taylor| (#2# |#2| #7# #5# #8#)) (SIGNATURE |laurent| #9=(#2# #3# #5# #10=(|UniversalSegment| #4#))) (SIGNATURE |laurent| #11=(#2# |#2| #7# #5# #10#)) (SIGNATURE |puiseux| #12=(#2# (|Mapping| |#2| #13=(|Fraction| #4#)) #5# #14=(|UniversalSegment| #13#) #13#)) (SIGNATURE |puiseux| #15=(#2# |#2| #7# #5# #14# #13#)) (SIGNATURE |series| #1#) (SIGNATURE |series| #6#) (SIGNATURE |series| #9#) (SIGNATURE |series| #11#) (SIGNATURE |series| #12#) (SIGNATURE |series| #15#)) (|Join| (|IntegralDomain|) (|RetractableTo| #4#) (|LinearlyExplicitRingOver| #4#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |GenerateUnivariatePowerSeries|))
+((|series| #1=(*1 *2 *3 *4 *5 *6 *7) #2=(AND #3=(|isDomain| *4 (|Symbol|)) #4=(|isDomain| *5 (|Equation| *3)) (|isDomain| *6 #5=(|UniversalSegment| #6=(|Fraction| #7=(|Integer|)))) (|isDomain| *7 #6#) (|ofCategory| *3 (|Join| #8=(|AlgebraicallyClosedField|) #9=(|TranscendentalFunctionCategory|) (|FunctionSpace| *8))) (|ofCategory| *8 #10=(|Join| (|IntegralDomain|) (|RetractableTo| #7#) (|LinearlyExplicitRingOver| #7#))) #11=(|isDomain| *2 (|Any|)) (|isDomain| *1 (|GenerateUnivariatePowerSeries| *8 *3)))) (|series| #12=(*1 *2 *3 *4 *5 *6) #13=(AND (|isDomain| *3 (|Mapping| *8 #6#)) (|isDomain| *4 (|Equation| *8)) (|isDomain| *5 #5#) (|isDomain| *6 #6#) (|ofCategory| *8 #14=(|Join| #8# #9# (|FunctionSpace| *7))) #15=(|ofCategory| *7 #10#) #11# (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *8)))) (|series| #12# #16=(AND #3# #4# (|isDomain| *6 #17=(|UniversalSegment| #7#)) #18=(|ofCategory| *3 #14#) #15# #11# #19=(|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *3)))) (|series| #20=(*1 *2 *3 *4 *5) #21=(AND #22=(|isDomain| *3 (|Mapping| *7 #7#)) #23=(|isDomain| *4 (|Equation| *7)) (|isDomain| *5 #17#) #24=(|ofCategory| *7 #25=(|Join| #8# #9# (|FunctionSpace| *6))) #26=(|ofCategory| *6 #10#) #11# #27=(|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *7)))) (|series| #20# #28=(AND #3# #4# (|ofCategory| *3 #25#) #26# #11# (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *3)))) (|series| #29=(*1 *2 *3 *4) #30=(AND (|isDomain| *3 (|Mapping| *6 #7#)) (|isDomain| *4 (|Equation| *6)) (|ofCategory| *6 (|Join| #8# #9# (|FunctionSpace| *5))) (|ofCategory| *5 #10#) #11# (|isDomain| *1 (|GenerateUnivariatePowerSeries| *5 *6)))) (|puiseux| #1# #2#) (|puiseux| #12# #13#) (|laurent| #12# #16#) (|laurent| #20# #21#) (|taylor| #12# (AND #3# #4# (|isDomain| *6 #31=(|UniversalSegment| (|NonNegativeInteger|))) #18# #15# #11# #19#)) (|taylor| #20# (AND #22# #23# (|isDomain| *5 #31#) #24# #26# #11# #27#)) (|taylor| #20# #28#) (|taylor| #29# #30#))
+((|reduction| ((|#2| |#2| |#1|) 15 T ELT)) (|completeHensel| ((#1=(|List| |#2|) |#2| #1# |#1| #2=(|PositiveInteger|)) 82 T ELT)) (|HenselLift| (((|Record| (|:| |plist| #1#) (|:| |modulo| |#1|)) |#2| #1# |#1| #2#) 71 T ELT)))
+(((|GeneralHenselPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |HenselLift| ((|Record| (|:| |plist| #1=(|List| |#2|)) (|:| |modulo| |#1|)) |#2| #1# |#1| #2=(|PositiveInteger|))) (SIGNATURE |completeHensel| (#1# |#2| #1# |#1| #2#)) (SIGNATURE |reduction| (|#2| |#2| |#1|))) (|EuclideanDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |GeneralHenselPackage|))
+((|reduction| (*1 *2 *2 *3) (AND (|ofCategory| *3 #1=(|EuclideanDomain|)) (|isDomain| *1 (|GeneralHenselPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|completeHensel| (*1 *2 *3 *2 *4 *5) (AND (|isDomain| *2 #2=(|List| *3)) (|isDomain| *5 #3=(|PositiveInteger|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 #1#) (|isDomain| *1 (|GeneralHenselPackage| *4 *3)))) (|HenselLift| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *6 #3#) (|ofCategory| *5 #1#) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|Record| (|:| |plist| #2#) (|:| |modulo| *5))) (|isDomain| *1 (|GeneralHenselPackage| *5 *3)) (|isDomain| *4 #2#))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) 28 T ELT)) (|unitVector| (($ |#3|) 25 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#3=($) NIL T CONST)) (|reductum| (#4=($ $) 32 T ELT)) (|opposite?| #1#) (|multMonom| (($ |#2| |#4| $) 33 T ELT)) (|monomial| (($ |#2| #5=(|ModuleMonomial| |#3| |#4| |#5|)) 24 T ELT)) (|leadingMonomial| ((#5# $) 15 T ELT)) (|leadingIndex| ((|#3| $) 19 T ELT)) (|leadingExponent| ((|#4| $) 17 T ELT)) (|leadingCoefficient| ((|#2| $) 29 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|build| (($ |#2| |#3| |#4|) 26 T ELT)) (|before?| #1#) (|Zero| (#3# 36 T CONST)) (= #1#) (- (#4# NIL T ELT) (#6=($ $ $) NIL T ELT)) (+ (#6# 34 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) . #7=($)) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| . #7#) NIL T ELT)))
+(((|GeneralModulePolynomial| |#1| |#2| |#3| |#4| |#5| |#6|) (|Join| (|Module| |#6|) (|Module| |#2|) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| (|#2| $)) (SIGNATURE |leadingMonomial| (#1=(|ModuleMonomial| |#3| |#4| |#5|) $)) (SIGNATURE |leadingExponent| (|#4| $)) (SIGNATURE |leadingIndex| (|#3| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |monomial| ($ |#2| #1#)) (SIGNATURE |unitVector| ($ |#3|)) (SIGNATURE |build| ($ |#2| |#3| |#4|)) (SIGNATURE |multMonom| ($ |#2| |#4| $)) (SIGNATURE * ($ |#6| $)))) (|List| (|Symbol|)) (|CommutativeRing|) (|OrderedSet|) (|DirectProductCategory| (|#| |#1|) (|NonNegativeInteger|)) (|Mapping| (|Boolean|) #2=(|Record| (|:| |index| |#3|) (|:| |exponent| |#4|)) #2#) (|PolynomialCategory| |#2| |#4| (|OrderedVariableList| |#1|))) (T |GeneralModulePolynomial|))
+((* (*1 *1 *2 *1) (AND #1=(|ofType| *3 #2=(|List| (|Symbol|))) #3=(|ofCategory| *4 #4=(|CommutativeRing|)) #5=(|ofCategory| *6 #6=(|DirectProductCategory| (|#| *3) #7=(|NonNegativeInteger|))) #8=(|ofType| *7 (|Mapping| #9=(|Boolean|) #10=(|Record| #11=(|:| |index| *5) (|:| |exponent| *6)) #10#)) (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *6 *7 *2)) #12=(|ofCategory| *5 #13=(|OrderedSet|)) (|ofCategory| *2 #14=(|PolynomialCategory| *4 *6 #15=(|OrderedVariableList| *3))))) (|leadingCoefficient| #16=(*1 *2 *1) (AND #1# #17=(|ofCategory| *5 #6#) #18=(|ofType| *6 (|Mapping| #9# #19=(|Record| (|:| |index| *4) #20=(|:| |exponent| *5)) #19#)) #21=(|ofCategory| *2 #4#) (|isDomain| *1 (|GeneralModulePolynomial| *3 *2 *4 *5 *6 *7)) #22=(|ofCategory| *4 #13#) (|ofCategory| *7 (|PolynomialCategory| *2 *5 #15#)))) (|leadingMonomial| #16# (AND #1# #3# #5# #8# (|isDomain| *2 #23=(|ModuleMonomial| *5 *6 *7)) (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *6 *7 *8)) #12# (|ofCategory| *8 #14#))) (|leadingExponent| #16# (AND #1# #3# (|ofType| *6 (|Mapping| #9# #24=(|Record| #11# (|:| |exponent| *2)) #24#)) (|ofCategory| *2 #6#) (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *2 *6 *7)) #12# (|ofCategory| *7 (|PolynomialCategory| *4 *2 #15#)))) (|leadingIndex| #16# (AND #1# #3# #17# #25=(|ofType| *6 (|Mapping| #9# #26=(|Record| (|:| |index| *2) #20#) #26#)) #27=(|ofCategory| *2 #13#) #28=(|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *2 *5 *6 *7)) #29=(|ofCategory| *7 (|PolynomialCategory| *4 *5 #15#)))) (|reductum| (*1 *1 *1) (AND (|ofType| *2 #2#) (|ofCategory| *3 #4#) (|ofCategory| *5 (|DirectProductCategory| (|#| *2) #7#)) #18# (|isDomain| *1 (|GeneralModulePolynomial| *2 *3 *4 *5 *6 *7)) #22# (|ofCategory| *7 (|PolynomialCategory| *3 *5 (|OrderedVariableList| *2))))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 #23#) #12# (|ofCategory| *6 #30=(|DirectProductCategory| (|#| *4) #7#)) #8# #31=(|ofType| *4 #2#) #21# (|isDomain| *1 (|GeneralModulePolynomial| *4 *2 *5 *6 *7 *8)) (|ofCategory| *8 (|PolynomialCategory| *2 *6 #32=(|OrderedVariableList| *4))))) (|unitVector| (*1 *1 *2) (AND #1# #3# #17# #25# #28# #27# #29#)) (|build| (*1 *1 *2 *3 *4) (AND (|ofType| *5 #2#) #21# (|ofCategory| *4 (|DirectProductCategory| (|#| *5) #7#)) (|ofType| *6 (|Mapping| #9# #33=(|Record| (|:| |index| *3) (|:| |exponent| *4)) #33#)) (|isDomain| *1 (|GeneralModulePolynomial| *5 *2 *3 *4 *6 *7)) (|ofCategory| *3 #13#) (|ofCategory| *7 (|PolynomialCategory| *2 *4 (|OrderedVariableList| *5))))) (|multMonom| (*1 *1 *2 *3 *1) (AND #31# #21# (|ofCategory| *3 #30#) (|ofType| *6 (|Mapping| #9# #34=(|Record| #11# (|:| |exponent| *3)) #34#)) (|isDomain| *1 (|GeneralModulePolynomial| *4 *2 *5 *3 *6 *7)) #12# (|ofCategory| *7 (|PolynomialCategory| *2 *3 #32#)))))
+((|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) 39 T ELT)))
+(((|GosperSummationMethod| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |GospersMethod| ((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|RetractableTo| (|Fraction| (|Integer|))) (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |numer| #1=(|#4| $)) (SIGNATURE |denom| #1#)))) (T |GosperSummationMethod|))
+((|GospersMethod| (*1 *2 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|PolynomialCategory| *6 *5 *3)) (|isDomain| *1 (|GosperSummationMethod| *5 *3 *6 *7 *2)) (|ofCategory| *2 (|Join| (|RetractableTo| (|Fraction| (|Integer|))) (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)) (SIGNATURE |numer| #1=(*7 $)) (SIGNATURE |denom| #1#)))))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|variables| (#4=((|List| |#3|) $) 40 T ELT)) (|trivialIdeal?| (#5=(#3# $) NIL T ELT)) (|triangular?| #6=(#5# NIL #7=(|has| |#1| (|IntegralDomain|)) ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (|select| #8=(($ #9=(|Mapping| #3# |#4|) $) NIL #10=(|has| $ (|FiniteAggregate| |#4|)) ELT)) (|sample| (#11=($) NIL T CONST)) (|roughUnitIdeal?| #6#) (|roughSubIdeal?| #12=(#2# NIL #7# ELT)) (|roughEqualIdeals?| #12#) (|roughBase?| #6#) (|rewriteIdealWithRemainder| #13=((#14=(|List| |#4|) #14# $) NIL #7# ELT)) (|rewriteIdealWithHeadRemainder| #13#) (|retractIfCan| (((|Union| $ #15="failed") #14#) 48 T ELT)) (|retract| (#16=($ #14#) NIL T ELT)) (|removeDuplicates| (#17=($ $) NIL #18=(AND #10# #19=(|has| |#4| (|BasicType|))) ELT)) (|remove| (($ |#4| $) NIL #18# ELT) #8#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) #20=(|:| |den| |#1|)) |#4| $) NIL #7# ELT)) (|reduce| ((|#4| #21=(|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) NIL #19# ELT) ((|#4| #21# $ |#4|) NIL T ELT) ((|#4| #21# $) NIL T ELT)) (|mvar| ((|#3| $) 46 T ELT)) (|members| (#22=(#14# $) 14 T ELT)) (|member?| ((#3# |#4| $) 25 #19# ELT)) (|map!| (#23=($ (|Mapping| |#4| |#4|) $) 22 T ELT)) (|map| (#23# 20 T ELT)) (|mainVariables| (#4# NIL T ELT)) (|mainVariable?| ((#3# |#3| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) #20#) |#4| $) NIL #7# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| (((|Union| |#4| #15#) #9# $) NIL T ELT)) (|every?| #24=((#3# #9# $) NIL T ELT)) (|eval| (($ $ #14# #14#) NIL #25=(AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ELT) (($ $ |#4| |#4|) NIL #25# ELT) (($ $ #26=(|Equation| |#4|)) NIL #25# ELT) (($ $ (|List| #26#)) NIL #25# ELT)) (|eq?| #1#) (|empty?| (#5# 38 T ELT)) (|empty| (#11# 17 T ELT)) (|count| ((#27=(|NonNegativeInteger|) |#4| $) NIL #19# ELT) ((#27# #9# $) NIL T ELT)) (|copy| (#17# 16 T ELT)) (|convert| ((#28=(|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| #28#)) ELT) (#16# 50 T ELT)) (|construct| (#16# 13 T ELT)) (|collectUpper| #29=(($ $ |#3|) NIL T ELT)) (|collectUnder| #29#) (|collect| #29#) (|coerce| (((|OutputForm|) $) 37 T ELT) (#22# 49 T ELT)) (|before?| #1#) (|any?| #24#) (= (#2# 29 T ELT)) (|#| ((#27# $) NIL T ELT)))
+(((|GeneralPolynomialSet| |#1| |#2| |#3| |#4|) (|Join| (|PolynomialSetCategory| |#1| |#2| |#3| |#4|) (|ShallowlyMutableAggregate| |#4|) (CATEGORY |domain| (SIGNATURE |convert| ($ (|List| |#4|))))) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |GeneralPolynomialSet|))
+((|convert| (*1 *1 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GeneralPolynomialSet| *3 *4 *5 *6)))))
+((|Zero| (#1=($) 11 T CONST)) (|One| (#1# 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
+(((|GradedAlgebra&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |One| #1=(|#1|) |constant|) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE |Zero| #1# |constant|)) (|GradedAlgebra| |#2| |#3|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedAlgebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) 30 T ELT)) (|retract| ((|#1| $) 31 T ELT)) (|product| (($ $ $) 27 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|degree| ((|#2| $) 23 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ |#1|) 29 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (($) 22 T CONST)) (|One| (($) 28 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 19 T ELT) (#2=($ $ $) 17 T ELT)) (+ (#2# 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+(((|GradedAlgebra| |#1| |#2|) (|Category|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedAlgebra|))
+((|One| (*1 *1) (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (|product| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))))
+(|Join| (|GradedModule| |t#1| |t#2|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |One| ($) |constant|) (SIGNATURE |product| ($ $ $))))
+(((|BasicType|) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|GradedModule| |#1| |#2|) . T) ((|Join|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|nextSubsetGray| ((#1=(|Vector| (|Vector| (|Integer|))) #1# #2=(|PositiveInteger|)) 26 T ELT)) (|firstSubsetGray| ((#1# #2#) 21 T ELT)))
+(((|GrayCode|) (CATEGORY |package| (SIGNATURE |nextSubsetGray| (#1=(|Vector| (|Vector| (|Integer|))) #1# #2=(|PositiveInteger|))) (SIGNATURE |firstSubsetGray| (#1# #2#)))) (T |GrayCode|))
+((|firstSubsetGray| (*1 *2 *3) (AND #1=(|isDomain| *3 (|PositiveInteger|)) #2=(|isDomain| *2 (|Vector| (|Vector| (|Integer|)))) #3=(|isDomain| *1 (|GrayCode|)))) (|nextSubsetGray| (*1 *2 *2 *3) (AND #2# #1# #3#)))
+((|screenResolution| (#1=(#2=(|Integer|) #2#) 32 T ELT) (#3=(#2#) 24 T ELT)) (|minPoints| (#1# 28 T ELT) (#3# 20 T ELT)) (|maxPoints| (#1# 30 T ELT) (#3# 22 T ELT)) (|drawToScale| (#4=(#5=(|Boolean|) #5#) 14 T ELT) (#6=(#5#) 12 T ELT)) (|clipPointsDefault| (#4# 13 T ELT) (#6# 11 T ELT)) (|adaptive| (#4# 26 T ELT) (#6# 17 T ELT)))
+(((|GraphicsDefaults|) (CATEGORY |package| (SIGNATURE |clipPointsDefault| #1=(#2=(|Boolean|))) (SIGNATURE |drawToScale| #1#) (SIGNATURE |clipPointsDefault| #3=(#2# #2#)) (SIGNATURE |drawToScale| #3#) (SIGNATURE |adaptive| #1#) (SIGNATURE |maxPoints| #4=(#5=(|Integer|))) (SIGNATURE |minPoints| #4#) (SIGNATURE |screenResolution| #4#) (SIGNATURE |adaptive| #3#) (SIGNATURE |maxPoints| #6=(#5# #5#)) (SIGNATURE |minPoints| #6#) (SIGNATURE |screenResolution| #6#))) (T |GraphicsDefaults|))
+((|screenResolution| #1=(*1 *2 *2) #2=(AND (|isDomain| *2 (|Integer|)) #3=(|isDomain| *1 (|GraphicsDefaults|)))) (|minPoints| #1# #2#) (|maxPoints| #1# #2#) (|adaptive| #1# #4=(AND (|isDomain| *2 (|Boolean|)) #3#)) (|screenResolution| #5=(*1 *2) #2#) (|minPoints| #5# #2#) (|maxPoints| #5# #2#) (|adaptive| #5# #4#) (|drawToScale| #1# #4#) (|clipPointsDefault| #1# #4#) (|drawToScale| #5# #4#) (|clipPointsDefault| #5# #4#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|units| ((#2=(|List| #3=(|Float|)) $) 34 T ELT) ((#2# $ #2#) 145 T ELT)) (|ranges| ((#4=(|List| (|Segment| #3#)) $) 16 T ELT) ((#4# $ #4#) 142 T ELT)) (|putColorInfo| ((#5=(|List| #6=(|List| #7=(|Point| #8=(|DoubleFloat|)))) #5# #9=(|List| #10=(|Palette|))) 58 T ELT)) (|pointLists| ((#5# $) 137 T ELT)) (|point| ((#11=(|Void|) $ #7# #10#) 162 T ELT)) (|makeGraphImage| (($ $) 136 T ELT) (#12=($ #5#) 148 T ELT) (($ #5# #9# #9# #13=(|List| #14=(|PositiveInteger|))) 147 T ELT) (($ #5# #9# #9# #13# (|List| (|DrawOption|))) 149 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|key| (((|Integer|) $) 110 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|graphImage| (($) 146 T ELT)) (|figureUnits| (((|List| #8#) #5#) 89 T ELT)) (|component| ((#11# $ #6# #10# #10# #14#) 154 T ELT) (#15=(#11# $ #7#) 156 T ELT) ((#11# $ #7# #10# #10# #14#) 155 T ELT)) (|coerce| (((|OutputForm|) $) 168 T ELT) (#12# 163 T ELT)) (|before?| #1#) (|appendPoint| (#15# 161 T ELT)) (= #1#))
+(((|GraphImage|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |graphImage| ($)) (SIGNATURE |makeGraphImage| ($ $)) (SIGNATURE |makeGraphImage| #1=($ #2=(|List| #3=(|List| #4=(|Point| #5=(|DoubleFloat|)))))) (SIGNATURE |makeGraphImage| ($ #2# #6=(|List| #7=(|Palette|)) #6# #8=(|List| #9=(|PositiveInteger|)))) (SIGNATURE |makeGraphImage| ($ #2# #6# #6# #8# (|List| (|DrawOption|)))) (SIGNATURE |pointLists| (#2# $)) (SIGNATURE |key| ((|Integer|) $)) (SIGNATURE |ranges| (#10=(|List| (|Segment| #11=(|Float|))) $)) (SIGNATURE |ranges| (#10# $ #10#)) (SIGNATURE |units| (#12=(|List| #11#) $)) (SIGNATURE |units| (#12# $ #12#)) (SIGNATURE |component| (#13=(|Void|) $ #3# #7# #7# #9#)) (SIGNATURE |component| #14=(#13# $ #4#)) (SIGNATURE |component| (#13# $ #4# #7# #7# #9#)) (SIGNATURE |appendPoint| #14#) (SIGNATURE |point| (#13# $ #4# #7#)) (SIGNATURE |coerce| #1#) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |putColorInfo| (#2# #2# #6#)) (SIGNATURE |figureUnits| ((|List| #5#) #2#))))) (T |GraphImage|))
+((|coerce| #1=(*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) #2=(|isDomain| *1 (|GraphImage|)))) (|graphImage| (*1 *1) #2#) (|makeGraphImage| (*1 *1 *1) #2#) (|makeGraphImage| #3=(*1 *1 *2) #4=(AND #5=(|isDomain| *2 #6=(|List| #7=(|List| #8=(|Point| #9=(|DoubleFloat|))))) #2#)) (|makeGraphImage| (*1 *1 *2 *3 *3 *4) (AND #5# #10=(|isDomain| *3 (|List| #11=(|Palette|))) #12=(|isDomain| *4 (|List| #13=(|PositiveInteger|))) #2#)) (|makeGraphImage| (*1 *1 *2 *3 *3 *4 *5) (AND #5# #10# #12# (|isDomain| *5 (|List| (|DrawOption|))) #2#)) (|pointLists| #1# #4#) (|key| #1# (AND (|isDomain| *2 (|Integer|)) #2#)) (|ranges| #1# #14=(AND (|isDomain| *2 (|List| (|Segment| #15=(|Float|)))) #2#)) (|ranges| #16=(*1 *2 *1 *2) #14#) (|units| #1# #17=(AND (|isDomain| *2 (|List| #15#)) #2#)) (|units| #16# #17#) (|component| #18=(*1 *2 *1 *3 *4 *4 *5) (AND (|isDomain| *3 #7#) #19=(|isDomain| *4 #11#) #20=(|isDomain| *5 #13#) #21=(|isDomain| *2 (|Void|)) #2#)) (|component| #22=(*1 *2 *1 *3) #23=(AND #24=(|isDomain| *3 #8#) #21# #2#)) (|component| #18# (AND #24# #19# #20# #21# #2#)) (|appendPoint| #22# #23#) (|point| (*1 *2 *1 *3 *4) (AND #24# #19# #21# #2#)) (|coerce| #3# #4#) (|putColorInfo| (*1 *2 *2 *3) (AND #5# #10# #2#)) (|figureUnits| (*1 *2 *3) (AND (|isDomain| *3 #6#) (|isDomain| *2 (|List| #9#)) #2#)))
+((- (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
+(((|GradedModule&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|))) (|GradedModule| |#2| |#3|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedModule&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|degree| ((|#2| $) 23 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (($) 22 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+(((|GradedModule| |#1| |#2|) (|Category|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedModule|))
+((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|GradedModule| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|AbelianMonoid|)))) (|Zero| (*1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |Zero| ($) |constant|) (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|)) (SIGNATURE - ($ $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|testDim| (((|Union| #1=(|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") #1# #2=(|List| (|OrderedVariableList| |#1|))) 135 T ELT)) (|groebSolve| (((|List| #3=(|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) #3# #2#) 132 T ELT)) (|genericPosition| (((|Record| (|:| |dpolys| #3#) (|:| |coords| (|List| (|Integer|)))) #3# #2#) 87 T ELT)))
+(((|GroebnerSolve| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |groebSolve| ((|List| #1=(|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) #1# #2=(|List| (|OrderedVariableList| |#1|)))) (SIGNATURE |testDim| ((|Union| #3=(|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") #3# #2#)) (SIGNATURE |genericPosition| ((|Record| (|:| |dpolys| #1#) (|:| |coords| (|List| (|Integer|)))) #1# #2#))) (|List| (|Symbol|)) #4=(|GcdDomain|) #4#) (T |GroebnerSolve|))
+((|genericPosition| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *4 (|List| (|OrderedVariableList| *5))) #3=(|ofType| *5 #4=(|List| (|Symbol|))) #5=(|ofCategory| *6 #6=(|GcdDomain|)) (|isDomain| *2 (|Record| (|:| |dpolys| #7=(|List| (|DistributedMultivariatePolynomial| *5 *6))) (|:| |coords| (|List| (|Integer|))))) #8=(|isDomain| *1 (|GroebnerSolve| *5 *6 *7)) #9=(|isDomain| *3 #7#) #10=(|ofCategory| *7 #6#))) (|testDim| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5))) (|isDomain| *3 (|List| (|OrderedVariableList| *4))) (|ofType| *4 #4#) (|ofCategory| *5 #6#) (|isDomain| *1 (|GroebnerSolve| *4 *5 *6)) #5#)) (|groebSolve| #1# (AND #2# #3# #5# (|isDomain| *2 (|List| #7#)) #8# #9# #10#)))
+((|recip| (((|Union| $ "failed") $) 11 T ELT)) (|conjugate| (#1=($ $ $) 22 T ELT)) (|commutator| (#1# 23 T ELT)) (/ (#1# 9 T ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ (|Integer|)) 21 T ELT)))
+(((|Group&| |#1|) (CATEGORY |package| (SIGNATURE |commutator| #1=(|#1| |#1| |#1|)) (SIGNATURE |conjugate| #1#) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE / #1#) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|Group|)) (T |Group&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|sample| (#2=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 20 T ELT)) (|one?| (((|Boolean|) $) 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 30 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|conjugate| (($ $ $) 27 T ELT)) (|commutator| (($ $ $) 26 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (#2# 24 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ $) 29 T ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT) (($ $ (|NonNegativeInteger|)) 21 T ELT) (($ $ (|Integer|)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((|Group|) (|Category|)) (T |Group|))
+((|inv| (*1 *1 *1) (|ofCategory| *1 (|Group|))) (/ (*1 *1 *1 *1) (|ofCategory| *1 (|Group|))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Group|)) (|isDomain| *2 (|Integer|)))) (|conjugate| (*1 *1 *1 *1) (|ofCategory| *1 (|Group|))) (|commutator| (*1 *1 *1 *1) (|ofCategory| *1 (|Group|))))
+(|Join| (|Monoid|) (CATEGORY |domain| (SIGNATURE |inv| ($ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ (|Integer|))) (ATTRIBUTE |unitsKnown|) (SIGNATURE |conjugate| ($ $ $)) (SIGNATURE |commutator| ($ $ $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monoid|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#8=(|Symbol|) $) 18 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #9# ELT)) (|unit?| (#5# NIL #9# ELT)) (|truncate| #12=(#13=($ $ #14=(|Fraction| #15=(|Integer|))) NIL T ELT) (($ $ #14# #14#) NIL T ELT)) (|terms| ((#16=(|Stream| (|Record| (|:| |k| #14#) (|:| |c| |#1|))) $) NIL T ELT)) (|tanh| #17=(#11# NIL #18=(|has| |#1| (|Algebra| #14#)) ELT)) (|tan| #17#) (|subtractIfCan| (#19=(#20=(|Union| $ #21="failed") $ $) NIL T ELT)) (|squareFreePart| #22=(#11# NIL #23=(|has| |#1| (|Field|)) ELT)) (|squareFree| #24=(((|Factored| $) $) NIL #23# ELT)) (|sqrt| #17#) (|sizeLess?| (#2# NIL #23# ELT)) (|sinh| #17#) (|sin| #17#) (|series| (($ #25=(|NonNegativeInteger|) #16#) NIL T ELT)) (|sech| #17#) (|sec| #17#) (|sample| #26=(#27=($) NIL T CONST)) (|rem| #28=(#29=($ $ $) NIL #23# ELT)) (|reductum| #30=(#11# NIL T ELT)) (|recip| ((#20# $) NIL T ELT)) (|quo| #28#) (|principalIdeal| (((|Record| (|:| |coef| #31=(|List| $)) #32=(|:| |generator| $)) #31#) NIL #23# ELT)) (|prime?| (#5# NIL #23# ELT)) (|pole?| #4#) (|pi| (#27# NIL #18# ELT)) (|order| #33=((#14# $) NIL T ELT) ((#14# $ #14#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (#34=($ $ #15#) NIL #18# ELT)) (|multiplyExponents| #35=(($ $ #36=(|PositiveInteger|)) NIL T ELT) #12#) (|multiEuclidean| (((|Union| #31# #21#) #31# $) NIL #23# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #14#) NIL T ELT) (($ $ #7# #14#) NIL T ELT) (($ $ #6# (|List| #14#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 25 T ELT)) (|log| #17#) (|leadingMonomial| #30#) (|leadingCoefficient| (#37=(|#1| $) NIL T ELT)) (|lcm| #38=(($ #31#) NIL #23# ELT) #28#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #22#) (|integrate| (#11# 29 #18# ELT) (#39=($ $ #8#) 35 (OR (AND #18# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #15#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #18# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #8#))) (|has| |#1| (SIGNATURE |variables| (#40=(|List| #8#) |#1|))))) ELT) (#41=($ $ #42=(|Variable| |#2|)) 30 #18# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#43=(|SparseUnivariatePolynomial| $) #43# #43#) NIL #23# ELT)) (|gcd| #38# #28#) (|factor| #24#) (|extendedEuclidean| (((|Union| (|Record| #44=(|:| |coef1| $) #45=(|:| |coef2| $)) #21#) $ $ $) NIL #23# ELT) (((|Record| #44# #45# #32#) $ $) NIL #23# ELT)) (|extend| #12#) (|exquo| (#19# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #31#) #31# $) NIL #23# ELT)) (|exp| #17#) (|eval| (((|Stream| |#1|) $ |#1|) NIL #46=(|has| |#1| (SIGNATURE ** (|#1| |#1| #14#))) ELT)) (|euclideanSize| ((#25# $) NIL #23# ELT)) (|elt| #47=(#48=(|#1| $ #14#) NIL T ELT) (#29# NIL (|has| #14# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #23# ELT)) (|differentiate| (#39# 28 #49=(AND (|has| |#1| (|PartialDifferentialRing| #8#)) #50=(|has| |#1| (SIGNATURE * (|#1| #14# |#1|)))) ELT) #51=(($ $ #40#) NIL #49# ELT) #52=(($ $ #8# #25#) NIL #49# ELT) #53=(($ $ #40# (|List| #25#)) NIL #49# ELT) (#11# 14 #50# ELT) #54=(#55=($ $ #25#) NIL #50# ELT) (#41# 16 T ELT)) (|degree| #33#) (|csch| #17#) (|csc| #17#) (|coth| #17#) (|cot| #17#) (|cosh| #17#) (|cos| #17#) (|complete| #30#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #42#) NIL T ELT) (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) 9 T ELT) (($ #14#) NIL #18# ELT) #10#) (|coefficient| #47#) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#25#) NIL T CONST)) (|center| (#37# 21 T ELT)) (|before?| #1#) (|atanh| #17#) (|atan| #17#) (|associates?| (#2# NIL #9# ELT)) (|asinh| #17#) (|asin| #17#) (|asech| #17#) (|asec| #17#) (|approximate| (#48# NIL (AND #46# (|has| |#1| (SIGNATURE |coerce| (|#1| #8#)))) ELT)) (|annihilate?| #1#) (|acsch| #17#) (|acsc| #17#) (|acoth| #17#) (|acot| #17#) (|acosh| #17#) (|acos| #17#) (|Zero| #26#) (|One| #26#) (D (#39# NIL #49# ELT) #51# #52# #53# (#11# NIL #50# ELT) #54# (#41# NIL T ELT)) (= #1#) (/ (#56=($ $ |#1|) NIL #23# ELT) #28#) (- #30# (#29# 27 T ELT)) (+ #57=(#29# NIL T ELT)) (** #35# (#55# NIL T ELT) (#34# NIL #23# ELT) (#29# NIL #18# ELT) #58=(#13# NIL #18# ELT)) (* (($ #36# $) NIL T ELT) (($ #25# $) NIL T ELT) (($ #15# . #59=($)) NIL T ELT) #57# (#56# NIL T ELT) (($ |#1| . #59#) 26 T ELT) (($ #14# . #59#) NIL #18# ELT) #58#))
+(((|GeneralUnivariatePowerSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesCategory| |#1|) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1#)) (SIGNATURE |coerce| ($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |GeneralUnivariatePowerSeries|))
+((|coerce| #1=(*1 *1 *2) (AND #2=(|isDomain| *2 (|Variable| *4)) #3=(|ofType| *4 (|Symbol|)) #4=(|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5)) #5=(|ofCategory| *3 (|Ring|)) #6=(|ofType| *5 *3))) (|coerce| #1# (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5)) #5# #3# #6# #4#)) (|integrate| (*1 *1 *1 *2) (AND #2# #3# #4# (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) #5# #6#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|table| #8=(#9=($) NIL T ELT) #10=(($ #11=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #12=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| (#13=(|#2| $ |#1| |#2|) 18 #12# ELT)) (|select!| #14=(($ #15=(|Mapping| #3# #5#) $) NIL #16=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #14#) (|search| (#17=((|Union| |#2| #18="failed") |#1| $) 19 T ELT)) (|sample| (#9# NIL T CONST)) (|removeDuplicates| (#19=($ $) NIL #20=(AND #16# #4#) ELT)) (|remove!| (#21=($ #5# $) NIL #16# ELT) #14# (#17# 16 T ELT)) (|remove| (#21# NIL #20# ELT) #14#) (|reduce| ((#5# #22=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #22# $ #5#) NIL T ELT) ((#5# #22# $) NIL T ELT)) (|qsetelt!| (#13# NIL #12# ELT)) (|qelt| (#23=(|#2| $ |#1|) NIL T ELT)) (|minIndex| #24=((|#1| $) NIL #25=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#11# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #24#) (|map!| #26=(($ (|Mapping| #5# #5#) . #27=($)) NIL T ELT) #28=(($ (|Mapping| |#2| |#2|) . #27#) NIL T ELT)) (|map| #26# #28# #26# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #29=(OR #30=(|has| #5# #31=(|SetCategory|)) #32=(|has| |#2| #31#)) ELT)) (|keys| #33=(((|List| |#1|) $) NIL T ELT)) (|key?| #34=((#3# |#1| $) NIL T ELT)) (|inspect| #35=((#5# $) NIL T ELT)) (|insert!| (#21# NIL T ELT)) (|indices| #33#) (|index?| #34#) (|hash| (((|SingleInteger|) $) NIL #29# ELT)) (|first| ((|#2| $) NIL #25# ELT)) (|find| (((|Union| #5# #18#) #15# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #12# ELT)) (|extract!| #35#) (|every?| #36=((#3# #15# $) NIL T ELT)) (|eval| #37=(($ $ (|List| #38=(|Equation| #5#))) NIL #39=(AND (|has| #5# (|Evalable| #5#)) #30#) ELT) #40=(($ $ #38#) NIL #39# ELT) #41=(($ $ #5# #5#) NIL #39# ELT) #42=(($ $ #11# #11#) NIL #39# ELT) (($ $ #43=(|List| |#2|) #43#) NIL #44=(AND (|has| |#2| (|Evalable| |#2|)) #32#) ELT) (($ $ |#2| |#2|) NIL #44# ELT) (($ $ #45=(|Equation| |#2|)) NIL #44# ELT) (($ $ (|List| #45#)) NIL #44# ELT) #42# #41# #40# #37#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT)) (|entries| ((#43# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #8#) (|elt| (#23# 13 T ELT) (#13# NIL T ELT)) (|dictionary| #8# #10#) (|count| ((#46=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#46# #15# $) NIL T ELT)) (|copy| (#19# NIL T ELT)) (|convert| ((#47=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #47#)) ELT)) (|construct| #10#) (|coerce| ((#48=(|OutputForm|) $) NIL (OR (|has| #5# #49=(|CoercibleTo| #48#)) (|has| |#2| #49#)) ELT)) (|before?| #1#) (|bag| #10#) (|any?| #36#) (= #1#) (|#| ((#46# $) NIL T ELT)))
+(((|GeneralSparseTable| |#1| |#2| |#3| |#4|) #1=(|TableAggregate| |#1| |#2|) #2=(|SetCategory|) #2# #1# |#2|) (T |GeneralSparseTable|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) #4=(|:| |open| #5=(|List| |#4|)))) #5#) NIL T ELT)) (|zeroSetSplit| (((|List| $) #5#) NIL T ELT)) (|variables| #6=(((|List| |#3|) $) NIL T ELT)) (|trivialIdeal?| #7=(#8=(#3# $) NIL T ELT)) (|triangular?| #9=(#8# NIL #10=(|has| |#1| (|IntegralDomain|)) ELT)) (|stronglyReduced?| #11=(#12=(#3# |#4| $) NIL T ELT) #7#) (|stronglyReduce| #13=((|#4| |#4| $) NIL T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (|select| #14=(($ #15=(|Mapping| #3# |#4|) $) NIL #16=(|has| $ (|FiniteAggregate| |#4|)) ELT) ((#17=(|Union| |#4| #18="failed") $ |#3|) NIL T ELT)) (|sample| (#19=($) NIL T CONST)) (|roughUnitIdeal?| (#8# 28 #10# ELT)) (|roughSubIdeal?| #20=(#2# NIL #10# ELT)) (|roughEqualIdeals?| #20#) (|roughBase?| #9#) (|rewriteSetWithReduction| ((#5# #5# $ #21=(|Mapping| |#4| |#4| |#4|) #22=(|Mapping| #3# |#4| |#4|)) NIL T ELT)) (|rewriteIdealWithRemainder| #23=((#5# #5# $) NIL #10# ELT)) (|rewriteIdealWithHeadRemainder| #23#) (|retractIfCan| ((#24=(|Union| $ #18#) #5#) NIL T ELT)) (|retract| (#25=($ #5#) NIL T ELT)) (|rest| ((#24# $) 44 T ELT)) (|removeZero| #13#) (|removeDuplicates| (#26=($ $) NIL #27=(AND #16# #28=(|has| |#4| (|BasicType|))) ELT)) (|remove| (($ |#4| $) NIL #27# ELT) #14#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) #29=(|:| |den| |#1|)) |#4| $) NIL #10# ELT)) (|reduced?| ((#3# |#4| $ #22#) NIL T ELT)) (|reduceByQuasiMonic| #13#) (|reduce| ((|#4| #21# $ |#4| |#4|) NIL #28# ELT) ((|#4| #21# $ |#4|) NIL T ELT) ((|#4| #21# $) NIL T ELT) ((|#4| |#4| $ #21# #22#) NIL T ELT)) (|quasiComponent| (((|Record| (|:| |close| #5#) #4#) $) NIL T ELT)) (|normalized?| #11# #7#) (|mvar| ((|#3| $) 37 T ELT)) (|members| (#30=(#5# $) 18 T ELT)) (|member?| (#12# 26 #28# ELT)) (|map!| (#31=($ (|Mapping| |#4| |#4|) $) 24 T ELT)) (|map| (#31# 22 T ELT)) (|mainVariables| #6#) (|mainVariable?| #32=((#3# |#3| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|last| (#33=(#17# $) 41 T ELT)) (|initials| (#30# NIL T ELT)) (|initiallyReduced?| #11# #7#) (|initiallyReduce| #13#) (|infRittWu?| #1#) (|headRemainder| (((|Record| (|:| |num| |#4|) #29#) |#4| $) NIL #10# ELT)) (|headReduced?| #11# #7#) (|headReduce| #13#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#33# 39 T ELT)) (|find| ((#17# #15# $) NIL T ELT)) (|extendIfCan| ((#24# $ |#4|) 54 T ELT)) (|extend| (($ $ |#4|) NIL T ELT)) (|every?| #34=((#3# #15# $) NIL T ELT)) (|eval| (($ $ #5# #5#) NIL #35=(AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ELT) (($ $ |#4| |#4|) NIL #35# ELT) (($ $ #36=(|Equation| |#4|)) NIL #35# ELT) (($ $ (|List| #36#)) NIL #35# ELT)) (|eq?| #1#) (|empty?| (#8# 17 T ELT)) (|empty| (#19# 14 T ELT)) (|degree| #37=(#38=(#39=(|NonNegativeInteger|) $) NIL T ELT)) (|count| ((#39# |#4| $) NIL #28# ELT) ((#39# #15# $) NIL T ELT)) (|copy| (#26# 13 T ELT)) (|convert| ((#40=(|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| #40#)) ELT)) (|construct| (#25# 21 T ELT)) (|collectUpper| (#41=($ $ |#3|) 48 T ELT)) (|collectUnder| (#41# 50 T ELT)) (|collectQuasiMonic| (#26# NIL T ELT)) (|collect| (#41# NIL T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT) (#30# 45 T ELT)) (|coHeight| (#38# NIL (|has| |#3| (|Finite|)) ELT)) (|before?| #1#) (|basicSet| ((#42=(|Union| (|Record| (|:| |bas| $) (|:| |top| #5#)) #18#) #5# #22#) NIL T ELT) ((#42# #5# #15# #22#) NIL T ELT)) (|autoReduced?| ((#3# $ (|Mapping| #3# |#4| #5#)) NIL T ELT)) (|any?| #34#) (|algebraicVariables| #6#) (|algebraic?| #32#) (= #1#) (|#| #37#))
+(((|GeneralTriangularSet| |#1| |#2| |#3| |#4|) (|TriangularSetCategory| |#1| |#2| |#3| |#4|) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |GeneralTriangularSet|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(($ $) NIL T ELT)) (|unit?| #3#) (|subtractIfCan| #5=((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|squareFreePart| #4#) (|squareFree| #8=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sample| (#9=($) NIL T CONST)) (|retractIfCan| (((|Union| #10=(|Integer|) . #11=(#7#)) . #12=($)) NIL T ELT) (((|Union| #13=(|Fraction| #10#) . #11#) . #12#) NIL T ELT)) (|retract| ((#10# . #14=($)) NIL T ELT) ((#13# . #14#) NIL T ELT)) (|rem| #15=(($ $ $) NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|quo| #15#) (|principalIdeal| (((|Record| (|:| |coef| #16=(|List| $)) #17=(|:| |generator| $)) #16#) NIL T ELT)) (|prime?| #3#) (|pi| (#9# 17 T ELT)) (|opposite?| #1#) (|one?| #3#) (|multiEuclidean| (((|Union| #16# #7#) #16# $) NIL T ELT)) (|lcm| #15# #18=(($ #16#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #4#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#19=(|SparseUnivariatePolynomial| $) #19# #19#) NIL T ELT)) (|gcd| #15# #18#) (|factor| #8#) (|extendedEuclidean| (((|Record| #20=(|:| |coef1| $) #21=(|:| |coef2| $) #17#) $ $) NIL T ELT) (((|Union| (|Record| #20# #21#) #7#) $ $ $) NIL T ELT)) (|exquo| #5#) (|expressIdealMember| (((|Maybe| #16#) #16# $) NIL T ELT)) (|euclideanSize| ((#22=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|convert| (#23=((|Float|) $) 21 T ELT) (#24=((|DoubleFloat|) $) 24 T ELT) (((|Fraction| (|SparseUnivariatePolynomial| #10#)) $) 18 T ELT) (((|InputForm|) $) 53 T ELT)) (|coerce| (((|OutputForm|) $) 51 T ELT) (($ #10#) NIL T ELT) #4# (($ #13#) NIL T ELT) (#24# 23 T ELT) (#23# 20 T ELT)) (|characteristic| ((#22#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#9# 37 T CONST)) (|One| (#9# 8 T CONST)) (= #1#) (/ #15#) (- #4# #15#) (+ #15#) (** (($ $ #25=(|PositiveInteger|)) NIL T ELT) (($ $ #22#) NIL T ELT) (($ $ #10#) NIL T ELT)) (* (($ #25# $) NIL T ELT) (($ #22# $) NIL T ELT) (($ #10# . #26=($)) NIL T ELT) #15# (($ $ #13#) NIL T ELT) (($ #13# . #26#) NIL T ELT)))
+(((|Pi|) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| (|Fraction| #1#)) (|RealConstant|) (|CoercibleTo| (|DoubleFloat|)) (|CoercibleTo| (|Float|)) (|ConvertibleTo| (|Fraction| (|SparseUnivariatePolynomial| #1#))) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE |pi| ($))))) (T |Pi|))
+((|pi| (*1 *1) (|isDomain| *1 (|Pi|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| (#2=((|SpadAst|) $) 12 T ELT)) (|lhs| (#2# 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|HasAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |lhs| #1=((|SpadAst|) $)) (SIGNATURE |rhs| #1#)))) (T |HasAst|))
+((|lhs| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|HasAst|)))) (|rhs| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(OR #5=(|has| #6=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #7=(|BasicType|)) #8=(|has| |#2| #7#)) ELT)) (|table| #9=(#10=($) NIL T ELT) #11=(($ #12=(|List| #6#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #13=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| (#14=(|#2| $ |#1| |#2|) 16 #13# ELT)) (|select!| #15=(($ #16=(|Mapping| #3# #6#) $) NIL #17=(|has| $ (|FiniteAggregate| #6#)) ELT)) (|select| #15#) (|search| (#18=((|Union| |#2| #19="failed") |#1| $) 20 T ELT)) (|sample| (#10# NIL T CONST)) (|removeDuplicates| (#20=($ $) NIL #21=(AND #17# #5#) ELT)) (|remove!| (#22=($ #6# $) NIL #17# ELT) #15# (#18# 18 T ELT)) (|remove| (#22# NIL #21# ELT) #15#) (|reduce| ((#6# #23=(|Mapping| #6# #6# #6#) $ #6# #6#) NIL #5# ELT) ((#6# #23# $ #6#) NIL T ELT) ((#6# #23# $) NIL T ELT)) (|qsetelt!| (#14# NIL #13# ELT)) (|qelt| #24=((|#2| $ |#1|) NIL T ELT)) (|minIndex| #25=((|#1| $) NIL #26=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#12# $) NIL T ELT)) (|member?| ((#3# #6# $) NIL #5# ELT)) (|maxIndex| #25#) (|map!| #27=(($ (|Mapping| #6# #6#) . #28=($)) NIL T ELT) #29=(($ (|Mapping| |#2| |#2|) . #28#) NIL T ELT)) (|map| #27# #29# #27# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #30=(OR #31=(|has| #6# #32=(|SetCategory|)) #33=(|has| |#2| #32#)) ELT)) (|keys| (#34=((|List| |#1|) $) 13 T ELT)) (|key?| #35=((#3# |#1| $) NIL T ELT)) (|inspect| #36=((#6# $) NIL T ELT)) (|insert!| (#22# NIL T ELT)) (|indices| (#34# NIL T ELT)) (|index?| #35#) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| ((|#2| $) NIL #26# ELT)) (|find| (((|Union| #6# #19#) #16# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #13# ELT)) (|extract!| #36#) (|every?| #37=((#3# #16# $) NIL T ELT)) (|eval| #38=(($ $ (|List| #39=(|Equation| #6#))) NIL #40=(AND (|has| #6# (|Evalable| #6#)) #31#) ELT) #41=(($ $ #39#) NIL #40# ELT) #42=(($ $ #6# #6#) NIL #40# ELT) #43=(($ $ #12# #12#) NIL #40# ELT) (($ $ #44=(|List| |#2|) #44#) NIL #45=(AND (|has| |#2| (|Evalable| |#2|)) #33#) ELT) (($ $ |#2| |#2|) NIL #45# ELT) (($ $ #46=(|Equation| |#2|)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT) #43# #42# #41# #38#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #8#) ELT)) (|entries| ((#44# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| (#10# 19 T ELT)) (|elt| #24# (#14# NIL T ELT)) (|dictionary| #9# #11#) (|count| ((#47=(|NonNegativeInteger|) #6# $) NIL #5# ELT) ((#47# #16# $) NIL T ELT)) (|copy| (#20# NIL T ELT)) (|convert| ((#48=(|InputForm|) $) NIL (|has| #6# (|ConvertibleTo| #48#)) ELT)) (|construct| #11#) (|coerce| ((#49=(|OutputForm|) $) NIL (OR (|has| #6# #50=(|CoercibleTo| #49#)) (|has| |#2| #50#)) ELT)) (|before?| #1#) (|bag| #11#) (|any?| #37#) (= (#2# 11 #4# ELT)) (|#| ((#47# $) 15 T ELT)))
+(((|HashTable| |#1| |#2| |#3|) (|TableAggregate| |#1| |#2|) #1=(|SetCategory|) #1# (|String|)) (T |HashTable|))
+NIL
+((|lfunc| ((#1=(|Integer|) #1# #1#) 19 T ELT)) (|inHallBasis?| (((|Boolean|) #1# #1# #1# #1#) 28 T ELT)) (|generate| (((|Vector| (|List| #1#)) #2=(|NonNegativeInteger|) #2#) 42 T ELT)))
+(((|HallBasis|) (CATEGORY |package| (SIGNATURE |lfunc| (#1=(|Integer|) #1# #1#)) (SIGNATURE |inHallBasis?| ((|Boolean|) #1# #1# #1# #1#)) (SIGNATURE |generate| ((|Vector| (|List| #1#)) #2=(|NonNegativeInteger|) #2#)))) (T |HallBasis|))
+((|generate| (*1 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Vector| (|List| #1=(|Integer|)))) #2=(|isDomain| *1 (|HallBasis|)))) (|inHallBasis?| (*1 *2 *3 *3 *3 *3) (AND (|isDomain| *3 #1#) (|isDomain| *2 (|Boolean|)) #2#)) (|lfunc| (*1 *2 *2 *2) (AND (|isDomain| *2 #1#) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|OrderedVariableList| |#1|)) $) NIL T ELT)) (|univariate| ((#8=(|SparseUnivariatePolynomial| $) $ #7#) NIL T ELT) ((#9=(|SparseUnivariatePolynomial| |#2|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #10=(|has| |#2| (|IntegralDomain|)) ELT)) (|unitCanonical| #11=(#12=($ $) NIL #10# ELT)) (|unit?| (#5# NIL #10# ELT)) (|totalDegree| #13=((#14=(|NonNegativeInteger|) $) NIL T ELT) ((#14# $ #6#) NIL T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #18=(((|Factored| #8#) #8#) NIL #19=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #20=(#12# NIL #21=(|has| |#2| (|GcdDomain|)) ELT)) (|squareFree| (#22=((|Factored| $) $) NIL #21# ELT)) (|solveLinearPolynomialEquation| (((|Union| #23=(|List| #8#) #17#) #23# #8#) NIL #19# ELT)) (|sample| #24=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #25=(#17#)) . #26=($)) NIL T ELT) (((|Union| #27=(|Fraction| #28=(|Integer|)) . #25#) . #26#) NIL #29=(|has| |#2| (|RetractableTo| #27#)) ELT) (((|Union| #28# . #25#) . #26#) NIL #30=(|has| |#2| (|RetractableTo| #28#)) ELT) #31=(((|Union| #7# . #25#) . #26#) NIL T ELT)) (|retract| #32=(#33=(|#2| . #34=($)) NIL T ELT) ((#27# . #34#) NIL #29# ELT) ((#28# . #34#) NIL #30# ELT) ((#7# . #34#) NIL T ELT)) (|resultant| (($ $ $ #7#) NIL #35=(|has| |#2| (|CommutativeRing|)) ELT)) (|reorder| (($ $ (|List| #28#)) NIL T ELT)) (|reductum| #36=(#12# NIL T ELT)) (|reducedSystem| ((#37=(|Matrix| #28#) . #38=(#39=(|Matrix| $))) NIL #40=(|has| |#2| (|LinearlyExplicitRingOver| #28#)) ELT) ((#41=(|Record| (|:| |mat| #37#) (|:| |vec| (|Vector| #28#))) . #42=(#39# #43=(|Vector| $))) NIL #40# ELT) ((#44=(|Record| (|:| |mat| #45=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #42#) NIL T ELT) ((#45# . #38#) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|primitivePart| #20# #46=(#47=($ $ #7#) NIL #21# ELT)) (|primitiveMonomials| #48=((#49=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #19# ELT)) (|pomopo!| (($ $ |#2| #50=(|HomogeneousDirectProduct| (|#| |#1|) #14#) $) NIL T ELT)) (|patternMatch| ((#51=(|PatternMatchResult| #52=(|Float|) . #53=($)) $ #54=(|Pattern| #52#) #51#) NIL (AND (|has| #7# #55=(|PatternMatchable| #52#)) (|has| |#2| #55#)) ELT) ((#56=(|PatternMatchResult| #28# . #53#) $ #57=(|Pattern| #28#) #56#) NIL (AND (|has| #7# #58=(|PatternMatchable| #28#)) (|has| |#2| #58#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #13#) (|multivariate| (($ #9# #7#) NIL T ELT) (($ #8# #7#) NIL T ELT)) (|monomials| #48#) (|monomial?| #4#) (|monomial| (($ |#2| #50#) NIL T ELT) #59=(($ $ #7# #14#) NIL T ELT) #60=(($ $ #6# #61=(|List| #14#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #7#) NIL T ELT)) (|minimumDegree| #62=((#50# $) NIL T ELT) #63=((#14# $ #7#) NIL T ELT) #64=((#61# $ #6#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #50# #50#) $) NIL T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|mainVariable| #31#) (|leftReducedSystem| ((#37# . #65=(#43#)) NIL #40# ELT) ((#41# . #66=(#43# $)) NIL #40# ELT) ((#44# . #66#) NIL T ELT) ((#45# . #65#) NIL T ELT)) (|leadingMonomial| #36#) (|leadingCoefficient| #32#) (|lcm| #67=(($ #49#) NIL #21# ELT) #68=(#69=($ $ $) NIL #21# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #70=(((|Union| #49# #17#) $) NIL T ELT)) (|isPlus| #70#) (|isExpt| (((|Union| (|Record| (|:| |var| #7#) (|:| |exponent| #14#)) #17#) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #32#) (|gcdPolynomial| ((#8# #8# #8#) NIL #21# ELT)) (|gcd| #67# #68#) (|factorSquareFreePolynomial| #18#) (|factorPolynomial| #18#) (|factor| (#22# NIL #19# ELT)) (|exquo| ((#16# $ |#2|) NIL #10# ELT) (#15# NIL #10# ELT)) (|eval| (($ $ (|List| #71=(|Equation| $))) NIL T ELT) (($ $ #71#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #49# #49#) NIL T ELT) (($ $ #7# |#2|) NIL T ELT) (($ $ #6# #72=(|List| |#2|)) NIL T ELT) (($ $ #7# $) NIL T ELT) (($ $ #6# #49#) NIL T ELT)) (|discriminant| (#47# NIL #35# ELT)) (|differentiate| #60# #59# #73=(($ $ #6#) NIL T ELT) #74=(#47# NIL T ELT)) (|degree| #62# #63# #64#) (|convert| ((#54# . #75=($)) NIL (AND (|has| #7# #76=(|ConvertibleTo| #54#)) (|has| |#2| #76#)) ELT) ((#57# . #75#) NIL (AND (|has| #7# #77=(|ConvertibleTo| #57#)) (|has| |#2| #77#)) ELT) ((#78=(|InputForm|) . #75#) NIL (AND (|has| #7# #79=(|ConvertibleTo| #78#)) (|has| |#2| #79#)) ELT)) (|content| (#33# NIL #21# ELT) #46#) (|conditionP| (((|Union| #43# #17#) #39#) NIL #80=(AND (|has| $ #81=(|CharacteristicNonZero|)) #19#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #28#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #7#) NIL T ELT) (($ #27#) NIL (OR #82=(|has| |#2| (|Algebra| #27#)) #29#) ELT) #11#) (|coefficients| ((#72# $) NIL T ELT)) (|coefficient| ((|#2| $ #50#) NIL T ELT) #59# #60#) (|charthRoot| (((|Maybe| $) $) NIL (OR #80# (|has| |#2| #81#)) ELT)) (|characteristic| ((#14#) NIL T CONST)) (|binomThmExpt| (($ $ $ #14#) NIL #35# ELT)) (|before?| #1#) (|associates?| (#2# NIL #10# ELT)) (|annihilate?| #1#) (|Zero| #24#) (|One| #24#) (D #60# #59# #73# #74#) (= #1#) (/ (#83=($ $ |#2|) NIL (|has| |#2| (|Field|)) ELT)) (- #36# #84=(#69# NIL T ELT)) (+ #84#) (** (($ $ #85=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #85# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #28# . #86=($)) NIL T ELT) #84# (($ $ #27#) NIL #82# ELT) (($ #27# . #86#) NIL #82# ELT) (($ |#2| . #86#) NIL T ELT) (#83# NIL T ELT)))
+(((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Join| (|PolynomialCategory| |#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) (|List| (|Symbol|)) (|Ring|)) (T |HomogeneousDistributedMultivariatePolynomial|))
+((|reorder| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|HomogeneousDistributedMultivariatePolynomial| *3 *4)) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Ring|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#2| (|BasicType|)) ELT)) (|zero?| (#5=(#3# $) NIL #6=(|has| |#2| (|AbelianMonoid|)) ELT)) (|unitVector| (#7=($ #8=(|PositiveInteger|)) NIL #9=(|has| |#2| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #10=(|Integer|) #10#) NIL #11=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sup| (#12=($ $ $) NIL #13=(|has| |#2| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#14=(|Union| $ #15="failed") $ $) NIL (|has| |#2| (|CancellationAbelianMonoid|)) ELT)) (|size| (#16=(#17=(|NonNegativeInteger|)) NIL #18=(|has| |#2| (|Finite|)) ELT)) (|setelt| #19=(#20=(|#2| $ #10# |#2|) NIL #11# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# . #22=(#15#)) . #23=($)) NIL #24=(AND (|has| |#2| (|RetractableTo| #10#)) #25=(|has| |#2| (|SetCategory|))) ELT) (((|Union| #26=(|Fraction| #10#) . #22#) . #23#) NIL #27=(AND (|has| |#2| (|RetractableTo| #26#)) #25#) ELT) ((#28=(|Union| |#2| . #22#) . #23#) NIL #25# ELT)) (|retract| (#29=(#10# . #30=($)) NIL #24# ELT) ((#26# . #30#) NIL #27# ELT) (#31=(|#2| . #30#) NIL #25# ELT)) (|reducedSystem| ((#32=(|Matrix| #10#) . #33=(#34=(|Matrix| $))) NIL #35=(AND (|has| |#2| (|LinearlyExplicitRingOver| #10#)) #9#) ELT) ((#36=(|Record| (|:| |mat| #32#) (|:| |vec| (|Vector| #10#))) . #37=(#34# #38=(|Vector| $))) NIL #35# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| |#2|)) (|:| |vec| #41=(|Vector| |#2|))) . #37#) NIL #9# ELT) ((#40# . #33#) NIL #9# ELT)) (|reduce| ((|#2| #42=(|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) NIL #4# ELT) ((|#2| #42# $ |#2|) NIL T ELT) ((|#2| #42# $) NIL T ELT)) (|recip| ((#14# $) NIL #9# ELT)) (|random| (#21# NIL #18# ELT)) (|qsetelt!| #19#) (|qelt| (#43=(|#2| $ #10#) 11 T ELT)) (|positive?| (#5# NIL #13# ELT)) (|opposite?| (#2# NIL #6# ELT)) (|one?| (#5# NIL #9# ELT)) (|minIndex| #44=(#29# NIL #45=(|has| #10# #46=(|OrderedSet|)) ELT)) (|min| #47=(#12# NIL #48=(|has| |#2| #46#) ELT)) (|members| #49=((#50=(|List| |#2|) $) NIL T ELT)) (|member?| (#51=(#3# |#2| $) NIL #4# ELT)) (|maxIndex| #44#) (|max| #47#) (|map| (($ #52=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|lookup| ((#8# $) NIL #18# ELT)) (|leftReducedSystem| ((#32# . #53=(#38#)) NIL #35# ELT) ((#36# . #54=(#38# $)) NIL #35# ELT) ((#39# . #54#) NIL #9# ELT) ((#40# . #53#) NIL #9# ELT)) (|latex| (((|String|) $) NIL #25# ELT)) (|indices| (((|List| #10#) $) NIL T ELT)) (|index?| ((#3# #10# $) NIL T ELT)) (|index| (#7# NIL #18# ELT)) (|hash| (((|SingleInteger|) $) NIL #25# ELT)) (|first| (#31# NIL #45# ELT)) (|find| ((#28# #55=(|Mapping| #3# |#2|) $) NIL T ELT)) (|fill!| (#56=($ $ |#2|) NIL #11# ELT)) (|every?| #57=((#3# #55# $) NIL T ELT)) (|eval| (($ $ (|List| #58=(|Equation| |#2|))) NIL #59=(AND (|has| |#2| (|Evalable| |#2|)) #25#) ELT) (($ $ #58#) NIL #59# ELT) (($ $ |#2| |#2|) NIL #59# ELT) (($ $ #50# #50#) NIL #59# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#51# NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #4#) ELT)) (|entries| #49#) (|empty?| (#5# NIL T ELT)) (|empty| (#21# NIL T ELT)) (|elt| (#20# NIL T ELT) (#43# NIL T ELT)) (|dot| ((|#2| $ $) NIL #9# ELT)) (|directProduct| (($ #41#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) NIL #60=(|has| |#2| (|Field|)) ELT)) (|differentiate| #61=(#62=($ $ #17#) NIL #63=(AND (|has| |#2| (|DifferentialSpace|)) #9#) ELT) #64=(#65=($ $) NIL #63# ELT) #66=(($ $ #67=(|List| #68=(|Symbol|)) (|List| #17#)) NIL #69=(AND (|has| |#2| (|PartialDifferentialSpace| #68#)) #9#) ELT) #70=(($ $ #68# #17#) NIL #69# ELT) #71=(($ $ #67#) NIL #69# ELT) #72=(($ $ #68#) NIL #69# ELT) #73=(($ $ #52#) NIL #9# ELT) #74=(($ $ #52# #17#) NIL #9# ELT)) (|count| ((#17# |#2| $) NIL #4# ELT) ((#17# #55# $) NIL T ELT)) (|copy| (#65# NIL T ELT)) (|coerce| ((#41# . #75=($)) NIL T ELT) (($ #10#) NIL (OR #24# #9#) ELT) (($ #26#) NIL #27# ELT) (($ |#2|) NIL #25# ELT) ((#76=(|OutputForm|) . #75#) NIL (|has| |#2| (|CoercibleTo| #76#)) ELT)) (|characteristic| (#16# NIL #9# CONST)) (|before?| #1#) (|any?| #57#) (|annihilate?| (#2# NIL #9# ELT)) (|Zero| (#21# NIL #6# CONST)) (|One| (#21# NIL #9# CONST)) (D #61# #64# #66# #70# #71# #72# #73# #74#) (>= #77=(#2# NIL #48# ELT)) (> #77#) (= #1#) (<= #77#) (< (#2# 17 #48# ELT)) (/ (#56# NIL #60# ELT)) (- (#12# NIL #78=(|has| |#2| (|AbelianGroup|)) ELT) (#65# NIL #78# ELT)) (+ (#12# NIL #79=(|has| |#2| (|AbelianSemiGroup|)) ELT)) (** (#62# NIL #9# ELT) (($ $ #8#) NIL #9# ELT)) (* (#12# NIL #9# ELT) (#56# NIL #80=(|has| |#2| (|Monoid|)) ELT) (($ |#2| . #81=($)) NIL #80# ELT) (($ #10# . #81#) NIL #78# ELT) (($ #17# $) NIL #6# ELT) (($ #8# $) NIL #79# ELT)) (|#| ((#17# $) NIL T ELT)))
+(((|HomogeneousDirectProduct| |#1| |#2|) (|DirectProductCategory| |#1| |#2|) (|NonNegativeInteger|) (|OrderedAbelianMonoidSup|)) (T |HomogeneousDirectProduct|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|parameters| ((#2=(|List| (|ParameterAst|)) $) 16 T ELT)) (|name| ((#3=(|Identifier|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|headAst| (($ #3# #2#) 12 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 23 T ELT) (($ #4=(|Syntax|)) NIL T ELT) ((#4# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|HeadAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |headAst| ($ #1=(|Identifier|) #2=(|List| (|ParameterAst|)))) (SIGNATURE |name| (#1# $)) (SIGNATURE |parameters| (#2# $))))) (T |HeadAst|))
+((|headAst| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|Identifier|)) (|isDomain| *3 #2=(|List| (|ParameterAst|))) #3=(|isDomain| *1 (|HeadAst|)))) (|name| #4=(*1 *2 *1) (AND #1# #3#)) (|parameters| #4# (AND (|isDomain| *2 #2#) #3#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|sample| (#5=($) NIL T CONST)) (|reduce| ((|#1| #6=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #6# $ |#1|) NIL T ELT) ((|#1| #6# $) NIL T ELT)) (|merge!| (#7=($ $ $) 48 T ELT)) (|merge| (#7# 47 T ELT)) (|members| ((#8=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|max| (#9=(|#1| $) 40 T ELT)) (|map!| #10=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #10#) (|latex| (((|String|) $) NIL #11=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| (#9# 41 T ELT)) (|insert!| (($ |#1| $) 18 T ELT)) (|heap| (#12=($ #8#) 19 T ELT)) (|hash| (((|SingleInteger|) $) NIL #11# ELT)) (|find| (((|Union| |#1| "failed") #13=(|Mapping| #3# |#1|) $) NIL T ELT)) (|extract!| (#9# 34 T ELT)) (|every?| #14=((#3# #13# $) NIL T ELT)) (|eval| (($ $ (|List| #15=(|Equation| |#1|))) NIL #16=(AND (|has| |#1| (|Evalable| |#1|)) #11#) ELT) (($ $ #15#) NIL #16# ELT) (($ $ |#1| |#1|) NIL #16# ELT) (($ $ #8# #8#) NIL #16# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| (#5# 11 T ELT)) (|count| ((#17=(|NonNegativeInteger|) |#1| $) NIL #4# ELT) ((#17# #13# $) NIL T ELT)) (|copy| (($ $) NIL T ELT)) (|coerce| ((#18=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #18#)) ELT)) (|before?| #1#) (|bag| (#12# 45 T ELT)) (|any?| #14#) (= #1#) (|#| ((#17# $) 29 T ELT)))
+(((|Heap| |#1|) (|Join| (|PriorityQueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |heap| ($ (|List| |#1|))))) (|OrderedSet|)) (T |Heap|))
+((|heap| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|Heap| *3)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ #5="failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|reduce| (#7=($ $) 71 T ELT)) (|principal?| #4#) (|opposite?| #1#) (|latex| (((|String|) $) NIL T ELT)) (|ideal| ((#8=(|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) 45 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (((|Union| |#4| #5#) $) 117 T ELT)) (|divisor| (($ #8#) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| #9=(|Integer|)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (|decompose| (((|Record| (|:| |id| #8#) (|:| |principalPart| |#4|)) $) 47 T ELT)) (|coerce| (((|OutputForm|) $) 110 T ELT)) (|before?| #1#) (|Zero| (#6# 32 T CONST)) (= (#2# 121 T ELT)) (- (#7# 76 T ELT) (#10=($ $ $) NIL T ELT)) (+ (#10# 72 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #9# $) 77 T ELT)))
+(((|HyperellipticFiniteDivisor| |#1| |#2| |#3| |#4|) (|FiniteDivisorCategory| |#1| |#2| |#3| |#4|) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |HyperellipticFiniteDivisor|))
+NIL
+((|lintgcd| ((#1=(|Integer|) #2=(|List| #1#)) 53 T ELT)) (|gcdprim| (#3=(|#1| #4=(|List| |#1|)) 94 T ELT)) (|gcdcofactprim| (#5=(#4# #4#) 95 T ELT)) (|gcdcofact| (#5# 97 T ELT)) (|gcd| (#3# 96 T ELT)) (|content| ((#2# #4#) 56 T ELT)))
+(((|HeuGcd| |#1|) (CATEGORY |package| (SIGNATURE |gcd| #1=(|#1| #2=(|List| |#1|))) (SIGNATURE |gcdprim| #1#) (SIGNATURE |gcdcofact| #3=(#2# #2#)) (SIGNATURE |gcdcofactprim| #3#) (SIGNATURE |content| (#4=(|List| #5=(|Integer|)) #2#)) (SIGNATURE |lintgcd| (#5# #4#))) (|UnivariatePolynomialCategory| #5#)) (T |HeuGcd|))
+((|lintgcd| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|List| #3=(|Integer|))) (|isDomain| *2 #3#) #4=(|isDomain| *1 (|HeuGcd| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)))) (|content| #1# (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 #5=(|UnivariatePolynomialCategory| #3#)) (|isDomain| *2 #2#) #4#)) (|gcdcofactprim| #6=(*1 *2 *2) #7=(AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 #5#) (|isDomain| *1 (|HeuGcd| *3)))) (|gcdcofact| #6# #7#) (|gcdprim| #1# #8=(AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|HeuGcd| *2)) (|ofCategory| *2 #5#))) (|gcd| #1# #8#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|Integer|) $) NIL #8=(|has| #7# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #9=(#10=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #7# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #9#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#6# NIL #19=(|has| #7# (|OrderedIntegralDomain|)) ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (#22=((|Union| #7# . #23=(#13#)) . #24=($)) NIL T ELT) (((|Union| #25=(|Symbol|) . #23#) . #24#) NIL #26=(|has| #7# (|RetractableTo| #25#)) ELT) (((|Union| #27=(|Fraction| #7#) . #23#) . #24#) NIL #28=(|has| #7# (|RetractableTo| #7#)) ELT) (#22# NIL #28# ELT)) (|retract| #29=(#6# NIL T ELT) ((#25# $) NIL #26# ELT) (#30=(#27# $) NIL #28# ELT) (#6# NIL #28# ELT)) (|rem| #31=(#32=($ $ $) NIL T ELT)) (|reducedSystem| (#33=(#34=(|Matrix| #7#) #35=(|Matrix| $)) NIL #36=(|has| #7# (|LinearlyExplicitRingOver| #7#)) ELT) (#37=(#38=(|Record| (|:| |mat| #34#) (|:| |vec| (|Vector| #7#))) #35# #39=(|Vector| $)) NIL #36# ELT) (#37# NIL T ELT) (#33# NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#21# NIL #40=(|has| #7# (|IntegerNumberSystem|)) ELT)) (|quo| #31#) (|principalIdeal| (((|Record| (|:| |coef| #41=(|List| $)) #42=(|:| |generator| $)) #41#) NIL T ELT)) (|prime?| #4#) (|positive?| #43=(#5# NIL #19# ELT)) (|patternMatch| ((#44=(|PatternMatchResult| #7# . #45=($)) $ #46=(|Pattern| #7#) #44#) NIL (|has| #7# (|PatternMatchable| #7#)) ELT) ((#47=(|PatternMatchResult| #48=(|Float|) . #45#) $ #49=(|Pattern| #48#) #47#) NIL (|has| #7# (|PatternMatchable| #48#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #9#) (|numer| #29#) (|nextItem| (#50=((|Maybe| $) $) NIL #51=(|has| #7# (|StepThrough|)) ELT)) (|negative?| #43#) (|multiEuclidean| (((|Union| #41# #13#) #41# $) NIL T ELT)) (|min| #52=(#32# NIL #53=(|has| #7# (|OrderedSet|)) ELT)) (|max| #52#) (|map| (($ #54=(|Mapping| #7# #7#) $) NIL T ELT)) (|leftReducedSystem| (#55=(#34# #39#) NIL #36# ELT) (#56=(#38# #39# $) NIL #36# ELT) (#56# NIL T ELT) (#55# NIL T ELT)) (|lcm| #31# #57=(($ #41#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #9#) (|init| (#21# NIL #51# CONST)) (|hex| (#58=($ #27#) 9 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #31# #57#) (|fractionPart| (#10# NIL #8# ELT) #59=(#30# NIL T ELT)) (|floor| #60=(#6# NIL #40# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #61=(|:| |coef1| $) #62=(|:| |coef2| $) #42#) $ $) NIL T ELT) (((|Union| (|Record| #61# #62#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #41#) #41# $) NIL T ELT)) (|eval| (($ $ #63=(|List| #7#) #63#) NIL #64=(|has| #7# (|Evalable| #7#)) ELT) (($ $ #7# #7#) NIL #64# ELT) (($ $ #65=(|Equation| #7#)) NIL #64# ELT) (($ $ (|List| #65#)) NIL #64# ELT) (($ $ #66=(|List| #25#) #63#) NIL #67=(|has| #7# (|InnerEvalable| #25# #7#)) ELT) (($ $ #25# #7#) NIL #67# ELT)) (|euclideanSize| ((#68=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#69=($ $ #7#) NIL (|has| #7# (|Eltable| #7# #7#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #70=(($ $ #54#) NIL T ELT) #71=(($ $ #54# #68#) NIL T ELT) #72=(($ $ #25#) NIL #73=(|has| #7# (|PartialDifferentialSpace| #25#)) ELT) #74=(($ $ #66#) NIL #73# ELT) #75=(($ $ #25# #68#) NIL #73# ELT) #76=(($ $ #66# (|List| #68#)) NIL #73# ELT) #77=(#10# NIL #78=(|has| #7# (|DifferentialSpace|)) ELT) #79=(#80=($ $ #68#) NIL #78# ELT)) (|denominator| #9#) (|denom| #29#) (|convert| ((#46# . #81=($)) NIL (|has| #7# (|ConvertibleTo| #46#)) ELT) ((#49# . #81#) NIL (|has| #7# (|ConvertibleTo| #49#)) ELT) ((#82=(|InputForm|) . #81#) NIL (|has| #7# (|ConvertibleTo| #82#)) ELT) ((#48# . #81#) NIL #83=(|has| #7# (|RealConstant|)) ELT) (((|DoubleFloat|) . #81#) NIL #83# ELT)) (|conditionP| (((|Union| #39# #13#) #35#) NIL #84=(AND (|has| $ #85=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) #86=(($ #7#) NIL T ELT) #9# (#58# 8 T ELT) #86# (($ #25#) NIL #26# ELT) #59# (((|RadixExpansion| 16) $) 10 T ELT)) (|charthRoot| (#50# NIL (OR #84# (|has| #7# #85#)) ELT)) (|characteristic| ((#68#) NIL T CONST)) (|ceiling| #60#) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#10# NIL #19# ELT)) (|Zero| #20#) (|One| #20#) (D #70# #71# #72# #74# #75# #76# #77# #79#) (>= #87=(#2# NIL #53# ELT)) (> #87#) (= #1#) (<= #87#) (< #87#) (/ #31# (($ #7# #7#) NIL T ELT)) (- #9# #31#) (+ #31#) (** (($ $ #88=(|PositiveInteger|)) NIL T ELT) (#80# NIL T ELT) #89=(#69# NIL T ELT)) (* (($ #88# $) NIL T ELT) (($ #68# $) NIL T ELT) #90=(($ #7# . #91=($)) NIL T ELT) #31# (($ $ #27#) NIL T ELT) (($ #27# . #91#) NIL T ELT) #90# #89#))
+(((|HexadecimalExpansion|) (|Join| (|QuotientFieldCategory| #1=(|Integer|)) (|CoercibleTo| #2=(|Fraction| #1#)) (|CoercibleTo| (|RadixExpansion| 16)) (CATEGORY |domain| (SIGNATURE |fractionPart| (#2# $)) (SIGNATURE |hex| ($ #2#))))) (T |HexadecimalExpansion|))
+((|fractionPart| (*1 *2 *1) #1=(AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|HexadecimalExpansion|)))) (|hex| (*1 *1 *2) #1#))
+((|eval| (($ $ (|List| #1=(|Equation| |#2|))) 13 T ELT) (($ $ #1#) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ #2=(|List| |#2|) #2#) NIL T ELT)))
+(((|HomogeneousAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |eval| (|#1| |#1| #1=(|List| |#2|) #1#)) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| #2=(|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| #2#)))) (|HomogeneousAggregate| |#2|) (|Type|)) (T |HomogeneousAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|sample| (#3=($) 6 T CONST)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #4=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #4#) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #5=((|SetCategory|)))) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #5#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #5#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #5#)) ELT)) (|eq?| ((#6=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#6# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|HomogeneousAggregate| |#1|) (|Category|) (|Type|)) (T |HomogeneousAggregate|))
+NIL
+(|Join| (|Aggregate|) (|Functorial| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|CoercibleTo| (|OutputForm|))) (ATTRIBUTE (|CoercibleTo| (|OutputForm|))) |%noBranch|) (IF (|has| |t#1| (|BasicType|)) (ATTRIBUTE (|BasicType|)) |%noBranch|) (IF (|has| |t#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |%noBranch|) (IF (|has| |t#1| (|SetCategory|)) (IF (|has| |t#1| (|Evalable| |t#1|)) (ATTRIBUTE (|Evalable| |t#1|)) |%noBranch|) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((|coerce| ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
+(((|HomotopicTo| |#1|) (|Category|) (|Type|)) (T |HomotopicTo|))
+NIL
+(|Join| (|CoercibleTo| |t#1|) (|CoercibleFrom| |t#1|))
+(((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| |#1|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (#3=(#4=(|String|) $) NIL T ELT)) (|host| (($ #4#) 8 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 15 T ELT) (#3# 12 T ELT)) (|before?| #1#) (= (#2# 11 T ELT)))
+(((|Hostname|) (|Join| (|SetCategory|) (|CoercibleTo| #1=(|String|)) (CATEGORY |domain| (SIGNATURE |host| ($ #1#))))) (T |Hostname|))
+((|host| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Hostname|)))))
+((|tanh| (#1=($ $) 15 T ELT)) (|sinh| (#1# 24 T ELT)) (|sech| (#1# 12 T ELT)) (|csch| (#1# 10 T ELT)) (|coth| (#1# 17 T ELT)) (|cosh| (#1# 22 T ELT)))
+(((|HyperbolicFunctionCategory&| |#1|) (CATEGORY |package| (SIGNATURE |cosh| #1=(|#1| |#1|)) (SIGNATURE |coth| #1#) (SIGNATURE |csch| #1#) (SIGNATURE |sech| #1#) (SIGNATURE |sinh| #1#) (SIGNATURE |tanh| #1#)) (|HyperbolicFunctionCategory|)) (T |HyperbolicFunctionCategory&|))
+NIL
+((|tanh| (($ $) 11 T ELT)) (|sinh| (($ $) 10 T ELT)) (|sech| (($ $) 9 T ELT)) (|csch| (($ $) 8 T ELT)) (|coth| (($ $) 7 T ELT)) (|cosh| (($ $) 6 T ELT)))
+(((|HyperbolicFunctionCategory|) (|Category|)) (T |HyperbolicFunctionCategory|))
+((|tanh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sinh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sech| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|csch| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|coth| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|cosh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |cosh| ($ $)) (SIGNATURE |coth| ($ $)) (SIGNATURE |csch| ($ $)) (SIGNATURE |sech| ($ $)) (SIGNATURE |sinh| ($ $)) (SIGNATURE |tanh| ($ $))))
+((|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) 54 T ELT)))
+(((|InnerAlgFactor| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)))) #1=(|Field|) (|UnivariatePolynomialCategory| |#1|) (|Join| #1# (|CharacteristicZero|) (|MonogenicAlgebra| |#1| |#2|)) (|UnivariatePolynomialCategory| |#3|)) (T |InnerAlgFactor|))
+((|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|Factored| *6) *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #1=(|Field|)) (|ofCategory| *7 (|Join| #1# (|CharacteristicZero|) (|MonogenicAlgebra| *5 *6))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|InnerAlgFactor| *5 *6 *7 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *7)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zerosOf| #4=((#5=(|List| $) #6=(|SparseUnivariatePolynomial| $) #7=(|Symbol|)) NIL T ELT) #8=((#5# #6#) NIL T ELT) #9=((#5# #10=(|Polynomial| $)) NIL T ELT)) (|zeroOf| #11=(($ #6# #7#) NIL T ELT) #12=(($ #6#) NIL T ELT) #13=(($ #10#) NIL T ELT)) (|zero?| (#14=(#3# $) 39 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #15=(#16=($ $) NIL T ELT)) (|unit?| #17=(#14# NIL T ELT)) (|trueEqual| (#2# 72 T ELT)) (|tower| (#18=(#19=(|List| #20=(|Kernel| $)) $) 49 T ELT)) (|subtractIfCan| #21=((#22=(|Union| $ #23="failed") $ $) NIL T ELT)) (|subst| #24=(($ $ #25=(|Equation| $)) NIL T ELT) #26=(($ $ (|List| #25#)) NIL T ELT) #27=(($ $ #19# #5#) NIL T ELT)) (|squareFreePart| #15#) (|squareFree| #28=(((|Factored| $) $) NIL T ELT)) (|sqrt| #15#) (|sizeLess?| #1#) (|sample| (#29=($) NIL T CONST)) (|rootsOf| #4# #8# #9#) (|rootOf| #11# #12# #13#) (|retractIfCan| #30=(((|Union| #20# . #31=(#23#)) . #32=($)) NIL T ELT) (((|Union| #33=(|Integer|) . #31#) . #32#) NIL T ELT) (((|Union| #34=(|Fraction| #33#) . #31#) . #32#) NIL T ELT)) (|retract| ((#20# . #35=($)) NIL T ELT) ((#33# . #35#) NIL T ELT) ((#34# . #35#) 54 T ELT)) (|rem| #36=(#37=($ $ $) NIL T ELT)) (|reducedSystem| ((#38=(|Record| (|:| |mat| #39=(|Matrix| #33#)) (|:| |vec| (|Vector| #33#))) . #40=(#41=(|Matrix| $) #42=(|Vector| $))) NIL T ELT) ((#39# . #43=(#41#)) NIL T ELT) ((#44=(|Record| (|:| |mat| #45=(|Matrix| #34#)) (|:| |vec| (|Vector| #34#))) . #40#) NIL T ELT) ((#45# . #43#) NIL T ELT)) (|reduce| #15#) (|recip| ((#22# $) NIL T ELT)) (|quo| #36#) (|principalIdeal| (((|Record| (|:| |coef| #5#) #46=(|:| |generator| $)) #5#) NIL T ELT)) (|prime?| #17#) (|paren| #15# #47=(($ #5#) NIL T ELT)) (|opposite?| #1#) (|operators| ((#48=(|List| #49=(|BasicOperator|)) $) NIL T ELT)) (|operator| ((#49# #49#) NIL T ELT)) (|one?| (#14# 42 T ELT)) (|odd?| #50=(#14# NIL (|has| $ (|RetractableTo| #33#)) ELT)) (|numer| (#51=(#52=(|SparseMultivariatePolynomial| #33# #20#) $) 37 T ELT)) (|nthRoot| (#53=($ $ #33#) NIL T ELT)) (|norm| ((#6# #6# #20#) 86 T ELT) ((#6# #6# #19#) 61 T ELT) (($ $ #20#) 75 T ELT) (($ $ #19#) 76 T ELT)) (|multiEuclidean| (((|Union| #5# #23#) #5# $) NIL T ELT)) (|minPoly| ((#6# #20#) 73 #54=(|has| $ (|Ring|)) ELT)) (|map| (($ #55=(|Mapping| $ $) #20#) NIL T ELT)) (|mainKernel| #30#) (|leftReducedSystem| ((#38# . #56=(#42# $)) NIL T ELT) ((#39# . #57=(#42#)) NIL T ELT) ((#44# . #56#) NIL T ELT) ((#45# . #57#) NIL T ELT)) (|lcm| #47# #36#) (|latex| (((|String|) $) NIL T ELT)) (|kernels| (#18# NIL T ELT)) (|kernel| #58=(($ #49# $) NIL T ELT) #59=(($ #49# #5#) NIL T ELT)) (|is?| ((#3# $ #49#) NIL T ELT) #60=((#3# $ #7#) NIL T ELT)) (|inv| #15#) (|height| #61=((#62=(|NonNegativeInteger|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#6# #6# #6#) NIL T ELT)) (|gcd| #47# #36#) (|freeOf?| #1# #60#) (|factor| #28#) (|extendedEuclidean| (((|Union| (|Record| #63=(|:| |coef1| $) #64=(|:| |coef2| $)) #23#) $ $ $) NIL T ELT) (((|Record| #63# #64# #46#) $ $) NIL T ELT)) (|exquo| #21#) (|expressIdealMember| (((|Maybe| #5#) #5# $) NIL T ELT)) (|even?| #50#) (|eval| (($ $ #20# $) NIL T ELT) #27# #26# #24# (($ $ $ $) NIL T ELT) (($ $ #5# #5#) NIL T ELT) (($ $ #65=(|List| #7#) #66=(|List| #55#)) NIL T ELT) (($ $ #65# #67=(|List| #68=(|Mapping| $ #5#))) NIL T ELT) (($ $ #7# #68#) NIL T ELT) (($ $ #7# #55#) NIL T ELT) (($ $ #48# #66#) NIL T ELT) (($ $ #48# #67#) NIL T ELT) (($ $ #49# #68#) NIL T ELT) (($ $ #49# #55#) NIL T ELT)) (|euclideanSize| #61#) (|elt| #58# (($ #49# $ $) NIL T ELT) (($ #49# $ $ $) NIL T ELT) (($ #49# $ $ $ $) NIL T ELT) #59#) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|distribute| #15# #36#) (|differentiate| (#16# 36 T ELT) #69=(($ $ #62#) NIL T ELT)) (|denom| (#51# 20 T ELT)) (|definingPolynomial| (#16# NIL #54# ELT)) (|convert| ((#70=(|Float|) $) 100 T ELT) (((|DoubleFloat|) $) 108 T ELT) (((|Complex| #70#) $) 116 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) (($ #34#) NIL T ELT) #15# (($ #33#) NIL T ELT) (($ #52#) 21 T ELT)) (|characteristic| ((#62#) NIL T CONST)) (|box| #15# #47#) (|belong?| ((#3# #49#) 92 T ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#29# 10 T CONST)) (|One| (#29# 22 T CONST)) (D #15# #69#) (= (#2# 24 T ELT)) (/ (#37# 44 T ELT)) (- #36# #15#) (+ #36#) (** #71=(($ $ #34#) NIL T ELT) (#53# 47 T ELT) #69# (($ $ #72=(|PositiveInteger|)) NIL T ELT)) (* (($ #34# . #73=($)) NIL T ELT) #71# (#37# 27 T ELT) (($ #33# . #73#) NIL T ELT) (($ #62# $) NIL T ELT) (($ #72# $) NIL T ELT)))
+(((|InnerAlgebraicNumber|) (|Join| (|ExpressionSpace|) (|AlgebraicallyClosedField|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| #2=(|Fraction| #1#)) (|LinearlyExplicitRingOver| #1#) (|RealConstant|) (|LinearlyExplicitRingOver| #2#) (|CharacteristicZero|) (|ConvertibleTo| (|Complex| (|Float|))) (|DifferentialRing|) (|CoercibleFrom| #3=(|SparseMultivariatePolynomial| #1# #4=(|Kernel| $))) (CATEGORY |domain| (SIGNATURE |numer| #5=(#3# $)) (SIGNATURE |denom| #5#) (SIGNATURE |reduce| ($ $)) (SIGNATURE |trueEqual| ((|Boolean|) $ $)) (SIGNATURE |norm| (#6=(|SparseUnivariatePolynomial| $) #6# #4#)) (SIGNATURE |norm| (#6# #6# #7=(|List| #4#))) (SIGNATURE |norm| ($ $ #4#)) (SIGNATURE |norm| ($ $ #7#))))) (T |InnerAlgebraicNumber|))
+((|numer| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SparseMultivariatePolynomial| (|Integer|) #3=(|Kernel| #4=(|InnerAlgebraicNumber|)))) #5=(|isDomain| *1 #4#))) (|denom| #1# #2#) (|reduce| (*1 *1 *1) #5#) (|trueEqual| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) #5#)) (|norm| #6=(*1 *2 *2 *3) (AND #7=(|isDomain| *2 (|SparseUnivariatePolynomial| #4#)) (|isDomain| *3 #3#) #5#)) (|norm| #6# (AND #7# (|isDomain| *3 #8=(|List| #3#)) #5#)) (|norm| #9=(*1 *1 *1 *2) (AND (|isDomain| *2 #3#) #5#)) (|norm| #9# (AND (|isDomain| *2 #8#) #5#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) NIL #6=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #7=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#8=(#3# $) NIL #9=(|has| |#1| #10=(|OrderedSet|)) ELT)) (|sort!| (#11=($ #7# $) NIL #6# ELT) (#12=($ $) NIL (AND #6# #9#) ELT)) (|sort| (#11# NIL T ELT) (#12# NIL #9# ELT)) (|setelt| (#13=(|#1| $ #5# |#1|) 19 #6# ELT) ((|#1| $ #14=(|UniversalSegment| #5#) |#1|) NIL #6# ELT)) (|select| #15=(($ #16=(|Mapping| #3# |#1|) $) NIL #17=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#18=($) NIL T CONST)) (|reverse!| (#12# NIL #6# ELT)) (|reverse| #19=(#12# NIL T ELT)) (|removeDuplicates| (#12# NIL #20=(AND #17# #4#) ELT)) (|remove| (#21=($ |#1| $) NIL #20# ELT) #15#) (|reduce| ((|#1| #22=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #22# $ |#1|) NIL T ELT) ((|#1| #22# $) NIL T ELT)) (|qsetelt!| (#13# 14 #6# ELT)) (|qelt| (#23=(|#1| $ #5#) 13 T ELT)) (|position| ((#5# #16# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT) ((#5# |#1| $ #5#) NIL #4# ELT)) (|new| (($ #24=(|NonNegativeInteger|) |#1|) NIL T ELT)) (|minIndex| (#25=(#5# $) 9 #26=(|has| #5# #10#) ELT)) (|min| #27=(#28=($ $ $) NIL #9# ELT)) (|merge| (($ #7# $ $) NIL T ELT) #27#) (|members| #29=((#30=(|List| |#1|) $) NIL T ELT)) (|member?| (#31=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| (#25# 16 #26# ELT)) (|max| #27#) (|map!| #32=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #32# (($ #22# $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #33=(|has| |#1| (|SetCategory|)) ELT)) (|insert| (($ |#1| $ #5#) NIL T ELT) (#34=($ $ $ #5#) NIL T ELT)) (|indices| (((|List| #5#) $) NIL T ELT)) (|index?| ((#3# #5# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #33# ELT)) (|first| ((|#1| $) NIL #26# ELT)) (|find| (((|Union| |#1| "failed") #16# $) NIL T ELT)) (|fill!| (#35=($ $ |#1|) NIL #6# ELT)) (|every?| #36=((#3# #16# $) NIL T ELT)) (|eval| (($ $ (|List| #37=(|Equation| |#1|))) NIL #38=(AND (|has| |#1| (|Evalable| |#1|)) #33#) ELT) (($ $ #37#) NIL #38# ELT) (($ $ |#1| |#1|) NIL #38# ELT) (($ $ #30# #30#) NIL #38# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#31# NIL #20# ELT)) (|entries| #29#) (|empty?| (#8# NIL T ELT)) (|empty| (#18# NIL T ELT)) (|elt| (#13# NIL T ELT) (#23# 18 T ELT) #39=(($ $ #14#) NIL T ELT)) (|delete| (($ $ #5#) NIL T ELT) #39#) (|count| ((#24# |#1| $) NIL #4# ELT) ((#24# #16# $) NIL T ELT)) (|copyInto!| (#34# NIL #6# ELT)) (|copy| #19#) (|convert| ((#40=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #40#)) ELT)) (|construct| (($ #30#) NIL T ELT)) (|concat| (#35# NIL T ELT) (#21# NIL T ELT) (#28# NIL T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#41=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #41#)) ELT)) (|before?| #1#) (|any?| #36#) (>= #42=(#2# NIL #9# ELT)) (> #42#) (= #1#) (<= #42#) (< #42#) (|#| ((#24# $) NIL T ELT)))
+(((|IndexedOneDimensionalArray| |#1| |#2|) (|OneDimensionalArrayAggregate| |#1|) (|Type|) (|Integer|)) (T |IndexedOneDimensionalArray|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|setelt| (#5=(|#1| $ #6=(|Integer|) #6# |#1|) 44 T ELT)) (|setRow!| (($ $ #6# |#2|) NIL T ELT)) (|setColumn!| (($ $ #6# |#3|) NIL T ELT)) (|sample| (#7=($) NIL T CONST)) (|row| ((|#2| $ #6#) 53 T ELT)) (|reduce| ((|#1| #8=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #8# $ |#1|) NIL T ELT) ((|#1| #8# $ |#1| |#1|) NIL #4# ELT)) (|qsetelt!| (#5# 43 T ELT)) (|qelt| (#9=(|#1| $ #6# #6#) 38 T ELT)) (|nrows| (#10=(#11=(|NonNegativeInteger|) $) 28 T ELT)) (|new| (($ #11# #11# |#1|) 24 T ELT)) (|ncols| (#10# 30 T ELT)) (|minRowIndex| (#12=(#6# $) 26 T ELT)) (|minColIndex| (#12# 27 T ELT)) (|members| ((#13=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|maxRowIndex| (#12# 29 T ELT)) (|maxColIndex| (#12# 31 T ELT)) (|map!| (#14=($ (|Mapping| |#1| |#1|) $) 66 T ELT)) (|map| (#14# 64 T ELT) (($ #8# $ $) 70 T ELT) (($ #8# $ $ |#1|) 74 T ELT)) (|latex| (((|String|) $) 48 #15=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #15# ELT)) (|find| (((|Union| |#1| "failed") #16=(|Mapping| #3# |#1|) $) NIL T ELT)) (|fill!| (($ $ |#1|) 61 T ELT)) (|every?| #17=((#3# #16# $) NIL T ELT)) (|eval| (($ $ (|List| #18=(|Equation| |#1|))) NIL #19=(AND (|has| |#1| (|Evalable| |#1|)) #15#) ELT) (($ $ #18#) NIL #19# ELT) (($ $ |#1| |#1|) NIL #19# ELT) (($ $ #13# #13#) NIL #19# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| ((#3# $) 33 T ELT)) (|empty| (#7# NIL T ELT)) (|elt| (#9# 41 T ELT) (#5# 72 T ELT)) (|count| ((#11# #16# $) NIL T ELT) ((#11# |#1| $) NIL #4# ELT)) (|copy| (($ $) 59 T ELT)) (|column| ((|#3| $ #6#) 55 T ELT)) (|coerce| ((#20=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #20#)) ELT)) (|before?| #1#) (|any?| #17#) (= #1#) (|#| (#10# NIL T ELT)))
+(((|InnerTwoDimensionalArray| |#1| |#2| |#3|) (|TwoDimensionalArrayCategory| |#1| |#2| |#3|) (|Type|) #1=(|FiniteLinearAggregate| |#1|) #1#) (T |InnerTwoDimensionalArray|))
+NIL
+((|listConjugateBases| ((#1=(|List| #2=(|Record| (|:| |basis| #3=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #3#))) #2# #4=(|NonNegativeInteger|) #4#) 32 T ELT)) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| #4# #4# #4#) 43 T ELT)) (|chineseRemainder| ((#2# (|List| |#3|) #1# #4#) 107 T ELT)))
+(((|ChineseRemainderToolsForIntegralBases| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |factorList| ((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| #1=(|NonNegativeInteger|) #1# #1#)) (SIGNATURE |listConjugateBases| (#2=(|List| #3=(|Record| (|:| |basis| #4=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #4#))) #3# #1# #1#)) (SIGNATURE |chineseRemainder| (#3# (|List| |#3|) #2# #1#))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |ChineseRemainderToolsForIntegralBases|))
+((|chineseRemainder| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| #1=(|Record| (|:| |basis| #2=(|Matrix| *7)) (|:| |basisDen| *7) (|:| |basisInv| #2#)))) (|isDomain| *5 #3=(|NonNegativeInteger|)) (|ofCategory| *8 (|UnivariatePolynomialCategory| *7)) #4=(|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 #5=(|FiniteFieldCategory|)) (|isDomain| *2 #1#) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *6 *7 *8)))) (|listConjugateBases| (*1 *2 *3 *4 *4) (AND #6=(|isDomain| *4 #3#) (|ofCategory| *5 #5#) #7=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| #8=(|Record| (|:| |basis| #9=(|Matrix| *6)) (|:| |basisDen| *6) (|:| |basisInv| #9#)))) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *5 *6 *7)) (|isDomain| *3 #8#) #4#)) (|factorList| (*1 *2 *3 *4 *4 *4) (AND #6# (|ofCategory| *3 #5#) (|ofCategory| *5 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *3))) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *3 *5 *6)) #7#)))
+((|moduleSum| ((#1=(|Record| (|:| |basis| #2=(|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| #2#)) #1# #1#) 70 T ELT)) (|matrixGcd| ((|#1| #2# |#1| #3=(|NonNegativeInteger|)) 24 T ELT)) (|leastPower| ((#3# #3# #3#) 34 T ELT)) (|idealiserMatrix| (#4=(#2# #2# #2#) 50 T ELT)) (|idealiser| ((#2# #2# #2# |#1|) 58 T ELT) (#4# 55 T ELT)) (|divideIfCan!| ((|#1| #2# #2# |#1| (|Integer|)) 28 T ELT)) (|diagonalProduct| ((|#1| #2#) 18 T ELT)))
+(((|IntegralBasisTools| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |diagonalProduct| (|#1| #1=(|Matrix| |#1|))) (SIGNATURE |matrixGcd| (|#1| #1# |#1| #2=(|NonNegativeInteger|))) (SIGNATURE |divideIfCan!| (|#1| #1# #1# |#1| (|Integer|))) (SIGNATURE |leastPower| (#2# #2# #2#)) (SIGNATURE |idealiser| #3=(#1# #1# #1#)) (SIGNATURE |idealiser| (#1# #1# #1# |#1|)) (SIGNATURE |idealiserMatrix| #3#) (SIGNATURE |moduleSum| (#4=(|Record| (|:| |basis| #1#) (|:| |basisDen| |#1|) (|:| |basisInv| #1#)) #4# #4#))) (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $)))) (|UnivariatePolynomialCategory| |#1|) (|FramedAlgebra| |#1| |#2|)) (T |IntegralBasisTools|))
+((|moduleSum| #1=(*1 *2 *2 *2) (AND (|isDomain| *2 (|Record| (|:| |basis| #2=(|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| #2#))) #3=(|ofCategory| *3 #4=(|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) #5=(|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) #6=(|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) #7=(|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|idealiserMatrix| #1# #8=(AND (|isDomain| *2 #2#) #3# #5# #6# #7#)) (|idealiser| (*1 *2 *2 *2 *3) #8#) (|idealiser| #1# #8#) (|leastPower| #1# (AND (|isDomain| *2 #9=(|NonNegativeInteger|)) #3# #5# #6# #7#)) (|divideIfCan!| (*1 *2 *3 *3 *2 *4) (AND #10=(|isDomain| *3 (|Matrix| *2)) (|isDomain| *4 (|Integer|)) #11=(|ofCategory| *2 #4#) #12=(|ofCategory| *5 #13=(|UnivariatePolynomialCategory| *2)) #14=(|isDomain| *1 (|IntegralBasisTools| *2 *5 *6)) #15=(|ofCategory| *6 (|FramedAlgebra| *2 *5)))) (|matrixGcd| (*1 *2 *3 *2 *4) (AND #10# (|isDomain| *4 #9#) #11# #12# #14# #15#)) (|diagonalProduct| (*1 *2 *3) (AND #10# (|ofCategory| *4 #13#) #11# (|isDomain| *1 (|IntegralBasisTools| *2 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *2 *4)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (~ (#4=($ $) 53 T ELT)) (|xor| (#5=($ $ $) 51 T ELT)) (|swap!| (((|Void|) $ #6=(|Integer|) #6#) NIL #7=(|has| $ (|ShallowlyMutableAggregate| #3#)) ELT)) (|sorted?| (#8=(#3# $) NIL #9=(|has| #3# #10=(|OrderedSet|)) ELT) #11=((#3# #12=(|Mapping| #3# #3# #3#) $) NIL T ELT)) (|sort!| (#4# NIL (AND #7# #9#) ELT) (#13=($ #12# $) NIL #7# ELT)) (|sort| (#4# NIL #9# ELT) (#13# NIL T ELT)) (|setelt| ((#3# $ #14=(|UniversalSegment| #6#) #3#) NIL #7# ELT) (#15=(#3# $ #6# #3#) 52 #7# ELT)) (|select| #16=(#17=($ #18=(|Mapping| #3# #3#) $) NIL #19=(|has| $ (|FiniteAggregate| #3#)) ELT)) (|sample| (#20=($) NIL T CONST)) (|reverse!| (#4# NIL #7# ELT)) (|reverse| #21=(#4# NIL T ELT)) (|removeDuplicates| (#4# NIL #22=(AND #19# #23=(|has| #3# (|BasicType|))) ELT)) (|remove| #16# (#24=($ #3# $) NIL #22# ELT)) (|reduce| #11# ((#3# #12# $ #3#) NIL T ELT) ((#3# #12# $ #3# #3#) NIL #23# ELT)) (|qsetelt!| (#15# NIL #7# ELT)) (|qelt| (#25=(#3# $ #6#) NIL T ELT)) (|position| ((#6# #3# $ #6#) NIL #23# ELT) ((#6# #3# $) NIL #23# ELT) ((#6# #18# $) NIL T ELT)) (|or| (#5# 49 T ELT)) (|not| #21#) (|nor| #26=(#5# NIL T ELT)) (|new| (($ #27=(|NonNegativeInteger|) #3#) 27 T ELT)) (|nand| #26#) (|minIndex| (#28=(#6# $) 8 #29=(|has| #6# #10#) ELT)) (|min| #26#) (|merge| (#5# NIL #9# ELT) (#30=($ #12# $ $) NIL T ELT)) (|members| #31=((#32=(|List| #3#) $) NIL T ELT)) (|member?| (#33=(#3# #3# $) NIL #23# ELT)) (|maxIndex| (#28# NIL #29# ELT)) (|max| #26#) (|map!| #34=(#17# NIL T ELT)) (|map| (#30# 47 T ELT) #34#) (|latex| (((|String|) $) NIL T ELT)) (|insert| (#35=($ $ $ #6#) NIL T ELT) (($ #3# $ #6#) NIL T ELT)) (|indices| (((|List| #6#) $) NIL T ELT)) (|index?| ((#3# #6# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#8# NIL #29# ELT)) (|find| (((|Union| #3# "failed") #18# $) NIL T ELT)) (|fill!| (#36=($ $ #3#) NIL #7# ELT)) (|every?| #37=((#3# #18# $) NIL T ELT)) (|eval| (($ $ #32# #32#) NIL #38=(AND (|has| #3# (|Evalable| #3#)) (|has| #3# (|SetCategory|))) ELT) (($ $ #3# #3#) NIL #38# ELT) (($ $ #39=(|Equation| #3#)) NIL #38# ELT) (($ $ (|List| #39#)) NIL #38# ELT)) (|eq?| #1#) (|entry?| (#33# NIL #22# ELT)) (|entries| #31#) (|empty?| (#8# NIL T ELT)) (|empty| (#20# 29 T ELT)) (|elt| #40=(($ $ #14#) NIL T ELT) (#25# 22 T ELT) (#15# NIL T ELT)) (|delete| #40# (($ $ #6#) NIL T ELT)) (|count| ((#27# #18# $) NIL T ELT) ((#27# #3# $) NIL #23# ELT)) (|copyInto!| (#35# NIL #7# ELT)) (|copy| (#4# 30 T ELT)) (|convert| ((#41=(|InputForm|) $) NIL (|has| #3# (|ConvertibleTo| #41#)) ELT)) (|construct| (($ #32#) NIL T ELT)) (|concat| (($ (|List| $)) NIL T ELT) #26# (#24# NIL T ELT) (#36# NIL T ELT)) (|coerce| (((|OutputForm|) $) 26 T ELT)) (|before?| #1#) (|any?| #37#) (|and| (#5# 48 T ELT)) (|\\/| (#5# 55 T ELT)) (>= #1#) (> #1#) (= (#2# 31 T ELT)) (<= #1#) (< (#2# 43 T ELT)) (|/\\| (#5# 54 T ELT)) (|#| ((#27# $) 13 T ELT)))
+(((|IndexedBits| |#1|) (|BitAggregate|) (|Integer|)) (T |IndexedBits|))
+NIL
+((|mapUnivariateIfCan| (((|Union| |#2| #1="failed") #2=(|Mapping| (|Union| |#1| #1#) |#4|) #3=(|SparseUnivariatePolynomial| |#4|)) 35 T ELT)) (|mapUnivariate| ((#3# #4=(|Mapping| |#4| |#1|) |#2|) 31 T ELT) ((|#2| (|Mapping| |#1| |#4|) #3#) 22 T ELT)) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) #1#) #2# (|Matrix| #3#)) 46 T ELT)) (|mapBivariate| (((|SparseUnivariatePolynomial| #3#) #4# |#3|) 55 T ELT)))
+(((|IntegralBasisPolynomialTools| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |mapUnivariate| (|#2| (|Mapping| |#1| |#4|) #1=(|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |mapUnivariate| (#1# #2=(|Mapping| |#4| |#1|) |#2|)) (SIGNATURE |mapUnivariateIfCan| ((|Union| |#2| #3="failed") #4=(|Mapping| (|Union| |#1| #3#) |#4|) #1#)) (SIGNATURE |mapMatrixIfCan| ((|Union| (|Matrix| |#2|) #3#) #4# (|Matrix| #1#))) (SIGNATURE |mapBivariate| ((|SparseUnivariatePolynomial| #1#) #2# |#3|))) #5=(|Ring|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) #5#) (T |IntegralBasisPolynomialTools|))
+((|mapBivariate| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Mapping| *7 *5)) #3=(|ofCategory| *5 #4=(|Ring|)) #5=(|ofCategory| *7 #4#) #6=(|ofCategory| *6 #7=(|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|SparseUnivariatePolynomial| #8=(|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *6 *4 *7)) (|ofCategory| *4 #9=(|UnivariatePolynomialCategory| *6)))) (|mapMatrixIfCan| #1# (|partial| AND (|isDomain| *3 (|Mapping| #10=(|Union| *5 "failed") *8)) (|isDomain| *4 (|Matrix| (|SparseUnivariatePolynomial| *8))) #3# (|ofCategory| *8 #4#) #6# (|isDomain| *2 (|Matrix| *6)) (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *6 *7 *8)) (|ofCategory| *7 #9#))) (|mapUnivariateIfCan| #1# (|partial| AND (|isDomain| *3 (|Mapping| #10# *7)) #11=(|isDomain| *4 #8#) #3# #5# #12=(|ofCategory| *2 #7#) #13=(|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *2 *6 *7)) #14=(|ofCategory| *6 (|UnivariatePolynomialCategory| *2)))) (|mapUnivariate| #1# (AND #2# #3# #5# (|ofCategory| *4 #7#) (|isDomain| *2 #8#) (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *4 *6 *7)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *4)))) (|mapUnivariate| #1# (AND (|isDomain| *3 (|Mapping| *5 *7)) #11# #3# #5# #12# #13# #14#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT)) (|max| #3#) (|latex| ((#4=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fullDisplay| (#5=((|Void|) $) 25 T ELT)) (|elt| ((#4# $ (|Symbol|)) 30 T ELT)) (|display| (#5# 20 T ELT)) (|coerce| (((|OutputForm|) $) 27 T ELT) (($ #4#) 26 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= (#2# 12 T ELT)) (<= #1#) (< (#2# 10 T ELT)))
+(((|IndexCard|) (|Join| (|OrderedSet|) (|CoercibleFrom| #1=(|String|)) (CATEGORY |domain| (SIGNATURE |elt| (#1# $ (|Symbol|))) (SIGNATURE |display| #2=((|Void|) $)) (SIGNATURE |fullDisplay| #2#)))) (T |IndexCard|))
+((|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|String|)) #1=(|isDomain| *1 (|IndexCard|)))) (|display| #2=(*1 *2 *1) #3=(AND (|isDomain| *2 (|Void|)) #1#)) (|fullDisplay| #2# #3#))
+((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (|commonDenominator| ((|#1| |#4|) 10 T ELT)) (|clearDenominator| ((|#3| |#4|) 17 T ELT)))
+(((|InnerCommonDenominator| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#4|)) (SIGNATURE |clearDenominator| (|#3| |#4|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#2|)) (T |InnerCommonDenominator|))
+((|splitDenominator| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|IntegralDomain|)) #4=(|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *6) (|:| |den| *4))) (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *6 *3)) (|ofCategory| *6 #5=(|FiniteLinearAggregate| *4)) #6=(|ofCategory| *3 (|FiniteLinearAggregate| *5)))) (|clearDenominator| #1# (AND #2# #4# (|ofCategory| *2 #5#) (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *2 *3)) #6#)) (|commonDenominator| #1# (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 #3#) (|isDomain| *1 (|InnerCommonDenominator| *2 *4 *5 *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *3 #5#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroDim?| ((#3# $ #4=(|List| |#3|)) 127 T ELT) (#5=(#3# $) 128 T ELT)) (|zero?| (#5# 178 T ELT)) (|saturate| (#6=($ $ |#4|) 117 T ELT) (($ $ |#4| #4#) 122 T ELT)) (|relationsIdeal| (((|SuchThat| (|List| #7=(|Polynomial| |#1|)) (|List| (|Equation| #7#))) #8=(|List| |#4|)) 171 (|has| |#3| (|ConvertibleTo| (|Symbol|))) ELT)) (|quotient| (#9=($ $ $) 107 T ELT) (#6# 105 T ELT)) (|one?| (#5# 177 T ELT)) (|leadingIdeal| (#10=($ $) 132 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|intersect| (#9# 99 T ELT) (($ (|List| $)) 101 T ELT)) (|inRadical?| (#11=(#3# |#4| $) 130 T ELT)) (|in?| (#2# 82 T ELT)) (|ideal| (#12=($ #8#) 106 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|groebnerIdeal| (#12# 175 T ELT)) (|groebner?| (#5# 176 T ELT)) (|groebner| (#10# 85 T ELT)) (|generators| ((#8# $) 73 T ELT)) (|generalPosition| ((#13=(|Record| (|:| |mval| #14=(|Matrix| |#1|)) (|:| |invmval| #14#) (|:| |genIdeal| $)) $ #4#) NIL T ELT)) (|element?| (#11# 89 T ELT)) (|dimension| ((#15=(|Integer|) $ #4#) 134 T ELT) ((#15# $) 135 T ELT)) (|coerce| (((|OutputForm|) $) 174 T ELT) (#12# 102 T ELT)) (|before?| #1#) (|backOldPos| (($ #13#) NIL T ELT)) (= (#2# 84 T ELT)) (+ (#9# 109 T ELT)) (** (($ $ (|NonNegativeInteger|)) 115 T ELT)) (* (#9# 113 T ELT)))
+(((|PolynomialIdeals| |#1| |#2| |#3| |#4|) (|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE * #1=($ $ $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE + #1#) (SIGNATURE |one?| #2=(#3=(|Boolean|) $)) (SIGNATURE |zero?| #2#) (SIGNATURE |element?| #4=(#3# |#4| $)) (SIGNATURE |in?| (#3# $ $)) (SIGNATURE |inRadical?| #4#) (SIGNATURE |zeroDim?| (#3# $ #5=(|List| |#3|))) (SIGNATURE |zeroDim?| #2#) (SIGNATURE |intersect| #1#) (SIGNATURE |intersect| ($ (|List| $))) (SIGNATURE |quotient| #1#) (SIGNATURE |quotient| #6=($ $ |#4|)) (SIGNATURE |groebner| #7=($ $)) (SIGNATURE |generalPosition| (#8=(|Record| (|:| |mval| #9=(|Matrix| |#1|)) (|:| |invmval| #9#) (|:| |genIdeal| $)) $ #5#)) (SIGNATURE |backOldPos| ($ #8#)) (SIGNATURE |dimension| (#10=(|Integer|) $ #5#)) (SIGNATURE |dimension| (#10# $)) (SIGNATURE |leadingIdeal| #7#) (SIGNATURE |ideal| #11=($ #12=(|List| |#4|))) (SIGNATURE |groebnerIdeal| #11#) (SIGNATURE |groebner?| #2#) (SIGNATURE |generators| (#12# $)) (SIGNATURE |coerce| #11#) (SIGNATURE |saturate| #6#) (SIGNATURE |saturate| ($ $ |#4| #5#)) (IF (|has| |#3| (|ConvertibleTo| (|Symbol|))) (SIGNATURE |relationsIdeal| ((|SuchThat| (|List| #13=(|Polynomial| |#1|)) (|List| (|Equation| #13#))) #12#)) |%noBranch|))) (|Field|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |PolynomialIdeals|))
+((* #1=(*1 *1 *1 *1) #2=(AND (|ofCategory| *2 #3=(|Field|)) (|ofCategory| *3 #4=(|OrderedAbelianMonoidSup|)) (|ofCategory| *4 #5=(|OrderedSet|)) (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))) (** #6=(*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) #7=(|ofCategory| *3 #3#) #8=(|ofCategory| *4 #4#) #9=(|ofCategory| *5 #5#) #10=(|isDomain| *1 #11=(|PolynomialIdeals| *3 *4 *5 *6)) #12=(|ofCategory| *6 #13=(|PolynomialCategory| *3 *4 *5)))) (+ #1# #2#) (|one?| #14=(*1 *2 *1) #15=(AND #7# #8# #9# #16=(|isDomain| *2 (|Boolean|)) #10# #12#)) (|zero?| #14# #15#) (|element?| #17=(*1 *2 *3 *1) #18=(AND #19=(|ofCategory| *4 #3#) #20=(|ofCategory| *5 #4#) #21=(|ofCategory| *6 #5#) #16# (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *3)) (|ofCategory| *3 #22=(|PolynomialCategory| *4 *5 *6)))) (|in?| (*1 *2 *1 *1) #15#) (|inRadical?| #17# #18#) (|zeroDim?| #23=(*1 *2 *1 *3) (AND #24=(|isDomain| *3 #25=(|List| *6)) #21# #19# #20# #16# #26=(|isDomain| *1 #27=(|PolynomialIdeals| *4 *5 *6 *7)) #28=(|ofCategory| *7 #22#))) (|zeroDim?| #14# #15#) (|intersect| #1# #2#) (|intersect| #29=(*1 *1 *2) (AND (|isDomain| *2 (|List| #11#)) #7# #8# #9# #10# #12#)) (|quotient| #1# #2#) (|quotient| #6# #30=(AND #7# #8# #9# (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *2)) (|ofCategory| *2 #13#))) (|groebner| #31=(*1 *1 *1) #2#) (|generalPosition| #23# (AND #24# #21# #19# #20# (|isDomain| *2 (|Record| (|:| |mval| #32=(|Matrix| *4)) (|:| |invmval| #32#) (|:| |genIdeal| #27#))) #26# #28#)) (|backOldPos| #29# (AND (|isDomain| *2 (|Record| (|:| |mval| #33=(|Matrix| *3)) (|:| |invmval| #33#) (|:| |genIdeal| #11#))) #7# #8# #9# #10# #12#)) (|dimension| #23# (AND #24# #21# #19# #20# #34=(|isDomain| *2 (|Integer|)) #26# #28#)) (|dimension| #14# (AND #7# #8# #9# #34# #10# #12#)) (|leadingIdeal| #31# #2#) (|ideal| #29# #35=(AND #36=(|isDomain| *2 #25#) #12# #7# #8# #9# #10#)) (|groebnerIdeal| #29# #35#) (|groebner?| #14# #15#) (|generators| #14# (AND #7# #8# #9# #36# #10# #12#)) (|coerce| #29# #35#) (|saturate| #6# #30#) (|saturate| (*1 *1 *1 *2 *3) (AND #24# #21# #19# #20# (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *2)) (|ofCategory| *2 #22#))) (|relationsIdeal| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) #28# (|ofCategory| *6 (|ConvertibleTo| (|Symbol|))) #19# #20# #21# (|isDomain| *2 (|SuchThat| (|List| #37=(|Polynomial| *4)) (|List| (|Equation| #37#)))) #26#)))
+((|zeroDimPrime?| (#1=((|Boolean|) #2=(|PolynomialIdeals| #3=(|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) #4=(|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| #3#))) 178 T ELT)) (|zeroDimPrimary?| (#1# 179 T ELT)) (|radical| ((#2# #2#) 129 T ELT)) (|prime?| (#1# NIL T ELT)) (|primaryDecomp| (((|List| #2#) #2#) 181 T ELT)) (|contract| ((#2# #2# (|List| #4#)) 197 T ELT)))
+(((|IdealDecompositionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |zeroDimPrime?| #1=((|Boolean|) #2=(|PolynomialIdeals| #3=(|Fraction| (|Integer|)) (|DirectProduct| |#2| #4=(|NonNegativeInteger|)) #5=(|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| #3#)))) (SIGNATURE |zeroDimPrimary?| #1#) (SIGNATURE |prime?| #1#) (SIGNATURE |radical| (#2# #2#)) (SIGNATURE |primaryDecomp| ((|List| #2#) #2#)) (SIGNATURE |contract| (#2# #2# (|List| #5#)))) (|List| (|Symbol|)) #4#) (T |IdealDecompositionPackage|))
+((|contract| (*1 *2 *2 *3) (AND (|isDomain| *2 #1=(|PolynomialIdeals| #2=(|Fraction| (|Integer|)) (|DirectProduct| *5 #3=(|NonNegativeInteger|)) #4=(|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 #2#))) (|isDomain| *3 (|List| #4#)) #5=(|ofType| *4 #6=(|List| (|Symbol|))) #7=(|ofType| *5 #3#) #8=(|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))) (|primaryDecomp| #9=(*1 *2 *3) (AND #5# #7# (|isDomain| *2 (|List| #1#)) #8# #10=(|isDomain| *3 #1#))) (|radical| (*1 *2 *2) (AND (|isDomain| *2 (|PolynomialIdeals| #2# (|DirectProduct| *4 #3#) (|OrderedVariableList| *3) (|DistributedMultivariatePolynomial| *3 #2#))) (|ofType| *3 #6#) (|ofType| *4 #3#) (|isDomain| *1 (|IdealDecompositionPackage| *3 *4)))) (|prime?| #9# #11=(AND #10# #5# #7# (|isDomain| *2 (|Boolean|)) #8#)) (|zeroDimPrimary?| #9# #11#) (|zeroDimPrime?| #9# #11#))
+((|elt| ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((|IdempotentOperatorCategory| |#1|) (|Category|) (|BasicType|)) (T |IdempotentOperatorCategory|))
+NIL
+(|Join| (|BinaryOperatorCategory| |t#1|) (CATEGORY |domain| (ATTRIBUTE (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (= (|f| |x| |x|) |x|))))))
+(((|BinaryOperatorCategory| |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gensym| (($) 6 T ELT)) (|coerce| (((|OutputForm|) $) 10 T ELT)) (|before?| #1#) (= (#2# 8 T ELT)))
+(((|Identifier|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |gensym| ($))))) (T |Identifier|))
+((|gensym| (*1 *1) (|isDomain| *1 (|Identifier|))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|terms| ((#3=(|List| (|IndexedProductTerm| |#1| |#2|)) $) 10 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#4=($) NIL T CONST)) (|reductum| (#5=($ $) NIL T ELT)) (|opposite?| #1#) (|monomial| (($ |#1| |#2|) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingSupport| ((|#2| $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #3#) 15 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| (#4# 20 T CONST)) (= #1#) (- (#5# 16 T ELT) (#6=($ $ $) 36 T ELT)) (+ (#6# NIL T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) $) 25 T ELT)))
+(((|IndexedDirectProductAbelianGroup| |#1| |#2|) (|Join| #1=(|AbelianGroup|) (|IndexedDirectProductCategory| |#1| |#2|)) #1# (|OrderedType|)) (T |IndexedDirectProductAbelianGroup|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#3# $) 16 T ELT)) (|terms| ((#4=(|List| (|IndexedProductTerm| |#1| |#2|)) $) 13 T ELT)) (|sample| (#5=($) NIL T CONST)) (|reductum| (($ $) 39 T ELT)) (|opposite?| (#2# 44 T ELT)) (|monomial| (($ |#1| |#2|) 36 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 38 T ELT)) (|leadingSupport| ((|#2| $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) 41 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #4#) 11 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| (#5# 12 T CONST)) (= #1#) (+ (($ $ $) 30 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) 35 T ELT)))
+(((|IndexedDirectProductAbelianMonoid| |#1| |#2|) (|Join| #1=(|AbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) #1# (|OrderedType|)) (T |IndexedDirectProductAbelianMonoid|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) 17 T ELT)) (|reductum| (($ $) 18 T ELT)) (|monomial| (($ |#1| |#2|) 21 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 23 T ELT)) (|leadingSupport| ((|#2| $) 19 T ELT)) (|leadingCoefficient| ((|#1| $) 20 T ELT)) (|latex| (((|String|) $) 16 (AND (|has| |#2| . #2=((|SetCategory|))) (|has| |#1| . #3=((|SetCategory|)))) ELT)) (|hash| (((|SingleInteger|) $) 15 (AND (|has| |#2| . #2#) (|has| |#1| . #3#)) ELT)) (|convert| (($ (|List| (|IndexedProductTerm| |#1| |#2|))) 22 T ELT)) (|coerce| (((|OutputForm|) $) 14 (AND (|has| |#2| . #2#) (|has| |#1| . #3#)) ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|IndexedDirectProductCategory| |#1| |#2|) (|Category|) (|BasicType|) (|OrderedType|)) (T |IndexedDirectProductCategory|))
+((|monomial| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *2 (|BasicType|)) (|ofCategory| *3 (|OrderedType|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *3 (|OrderedType|)) (|ofCategory| *2 (|BasicType|)))) (|leadingSupport| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|OrderedType|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *2 (|BasicType|)) (|ofCategory| *3 (|OrderedType|)))) (|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *4)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|OrderedType|)) (|isDomain| *2 (|List| (|IndexedProductTerm| *3 *4))))))
+(|Join| (|BasicType|) (|Functorial| |t#1|) (|ConvertibleFrom| (|List| (|IndexedProductTerm| |t#1| |t#2|))) (CATEGORY |domain| (IF (|has| |t#1| (|SetCategory|)) (IF (|has| |t#2| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |%noBranch|) |%noBranch|) (SIGNATURE |monomial| ($ |t#1| |t#2|)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingSupport| (|t#2| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |terms| ((|List| (|IndexedProductTerm| |t#1| |t#2|)) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|))) ((|ConvertibleFrom| (|List| (|IndexedProductTerm| |#1| |#2|))) . T) ((|Functorial| |#1|) . T) ((|Join|) . T) ((|SetCategory|) AND (|has| |#1| (|SetCategory|)) (|has| |#2| (|SetCategory|))) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|terms| ((#4=(|List| (|IndexedProductTerm| |#1| |#2|)) $) 33 T ELT)) (|reductum| (($ $) 28 T ELT)) (|monomial| (($ |#1| |#2|) 24 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|leadingSupport| ((|#2| $) 32 T ELT)) (|leadingCoefficient| ((|#1| $) 31 T ELT)) (|latex| (((|String|) $) NIL #5=(AND (|has| |#1| #6=(|SetCategory|)) (|has| |#2| #6#)) ELT)) (|hash| (((|SingleInteger|) $) NIL #5# ELT)) (|convert| (($ #4#) 34 T ELT)) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| #3# |#1| |#1|)) 44 T ELT)) (|coerce| (((|OutputForm|) $) 18 #5# ELT)) (|before?| #1#) (= (#2# 22 T ELT)))
+(((|IndexedDirectProductObject| |#1| |#2|) (|Join| (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |combineWithIf| ($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|))))) (|BasicType|) (|OrderedType|)) (T |IndexedDirectProductObject|))
+((|combineWithIf| (*1 *1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4 *4)) (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|BasicType|)) (|isDomain| *1 (|IndexedDirectProductObject| *4 *5)) (|ofCategory| *5 (|OrderedType|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|terms| ((#5=(|List| (|IndexedProductTerm| |#1| |#2|)) $) 10 T ELT)) (|sample| #6=(($) NIL T CONST)) (|reductum| (($ $) NIL T ELT)) (|positive?| #4#) (|opposite?| #1#) (|monomial| (($ |#1| |#2|) NIL T ELT)) (|min| #7=(($ $ $) NIL T ELT)) (|max| #7#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingSupport| ((|#2| $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #5#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| #6#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 21 T ELT)) (+ #7#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT)))
+(((|IndexedDirectProductOrderedAbelianMonoid| |#1| |#2|) (|Join| #1=(|OrderedAbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) #1# (|OrderedType|)) (T |IndexedDirectProductOrderedAbelianMonoid|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|terms| ((#4=(|List| (|IndexedProductTerm| |#1| |#2|)) $) NIL T ELT)) (|sup| (#5=($ $ $) 24 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 20 T ELT)) (|sample| #6=(($) NIL T CONST)) (|reductum| (($ $) NIL T ELT)) (|positive?| #3#) (|opposite?| #1#) (|monomial| (($ |#1| |#2|) NIL T ELT)) (|min| #7=(#5# NIL T ELT)) (|max| #7#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingSupport| ((|#2| $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #4#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| #6#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (+ #7#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT)))
+(((|IndexedDirectProductOrderedAbelianMonoidSup| |#1| |#2|) (|Join| #1=(|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| |#1| |#2|)) #1# (|OrderedSet|)) (T |IndexedDirectProductOrderedAbelianMonoidSup|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|term| (($ |#2| |#1|) 9 T ELT)) (|index| ((|#2| $) 11 T ELT)) (|coerce| (((|Pair| |#2| |#1|) $) 14 T ELT)) (|coefficient| ((|#1| $) 13 T ELT)) (|before?| #1#) (= #1#))
+(((|IndexedProductTerm| |#1| |#2|) (|Join| #1=(|BasicType|) (|CoercibleTo| (|Pair| |#2| |#1|)) (CATEGORY |domain| (SIGNATURE |term| ($ |#2| |#1|)) (SIGNATURE |index| (|#2| $)) (SIGNATURE |coefficient| (|#1| $)))) #1# (|OrderedType|)) (T |IndexedProductTerm|))
+((|term| (*1 *1 *2 *3) (AND #1=(|isDomain| *1 (|IndexedProductTerm| *3 *2)) #2=(|ofCategory| *3 #3=(|BasicType|)) #4=(|ofCategory| *2 #5=(|OrderedType|)))) (|index| #6=(*1 *2 *1) (AND #4# #1# #2#)) (|coefficient| #6# (AND (|ofCategory| *2 #3#) (|isDomain| *1 (|IndexedProductTerm| *2 *3)) (|ofCategory| *3 #5#))))
+((|eval| (($ $ (|List| |#2|) (|List| |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
+(((|InnerEvalable&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |eval| (|#1| |#1| |#2| |#3|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#3|)))) (|InnerEvalable| |#2| |#3|) (|SetCategory|) (|Type|)) (T |InnerEvalable&|))
+NIL
+((|eval| (($ $ (|List| |#1|) (|List| |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
+(((|InnerEvalable| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |InnerEvalable|))
+((|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|InnerEvalable| *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|InnerEvalable| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|Type|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |eval| ($ $ |t#1| |t#2|)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| |t#2|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#3# $) 17 T ELT)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) 19 T ELT)) (|subtractIfCan| (((|Union| $ #4="failed") $ $) NIL T ELT)) (|size| ((#5=(|NonNegativeInteger|) $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #4#) $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|opposite?| #1#) (|nthFactor| ((|#1| $ #7=(|Integer|)) 24 T ELT)) (|nthCoef| ((|#2| $ #7#) 22 T ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 48 T ELT)) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) 45 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|highCommonTerms| (#8=($ $ $) 55 (|has| |#2| (|OrderedAbelianMonoid|)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 44 T ELT) (($ |#1|) NIL T ELT)) (|coefficient| ((|#2| |#1| $) 51 T ELT)) (|before?| #1#) (|Zero| (#6# 11 T CONST)) (= (#2# 30 T ELT)) (+ (#8# 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #5# $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
+(((|InnerFreeAbelianMonoid| |#1| |#2| |#3|) (|FreeAbelianMonoidCategory| |#1| |#2|) (|SetCategory|) (|CancellationAbelianMonoid|) |#2|) (T |InnerFreeAbelianMonoid|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) NIL #6=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #7=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#8=(#3# $) NIL #9=(|has| |#1| #10=(|OrderedSet|)) ELT)) (|sort!| (#11=($ #7# $) NIL #6# ELT) (#12=($ $) NIL (AND #6# #9#) ELT)) (|sort| (#11# NIL T ELT) (#12# NIL #9# ELT)) (|shrinkable| ((#3# #3#) 32 T ELT)) (|setelt| (#13=(|#1| $ #5# |#1|) 42 #6# ELT) ((|#1| $ #14=(|UniversalSegment| #5#) |#1|) NIL #6# ELT)) (|select!| (#15=($ #16=(|Mapping| #3# |#1|) $) 79 T ELT)) (|select| #17=(#15# NIL #18=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#19=($) NIL T CONST)) (|reverse!| (#12# NIL #6# ELT)) (|reverse| (#12# NIL T ELT)) (|removeDuplicates!| (#12# 83 #4# ELT)) (|removeDuplicates| (#12# NIL #20=(AND #18# #4#) ELT)) (|remove!| (#21=($ |#1| $) NIL #4# ELT) (#15# 66 T ELT)) (|remove| (#21# NIL #20# ELT) #17#) (|reduce| ((|#1| #22=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #22# $ |#1|) NIL T ELT) ((|#1| #22# $) NIL T ELT)) (|qsetelt!| (#13# NIL #6# ELT)) (|qelt| (#23=(|#1| $ #5#) NIL T ELT)) (|position| ((#5# #16# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT) ((#5# |#1| $ #5#) NIL #4# ELT)) (|physicalLength!| (#24=($ $ #5#) 19 T ELT)) (|physicalLength| (#25=(#26=(|NonNegativeInteger|) $) 13 T ELT)) (|new| (($ #26# |#1|) 31 T ELT)) (|minIndex| (#27=(#5# $) 29 #28=(|has| #5# #10#) ELT)) (|min| #29=(#30=($ $ $) NIL #9# ELT)) (|merge!| #29# (#31=($ #7# $ $) 57 T ELT)) (|merge| (#31# 58 T ELT) #29#) (|members| #32=((#33=(|List| |#1|) $) NIL T ELT)) (|member?| (#34=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| (#27# 28 #28# ELT)) (|max| #29#) (|map!| #35=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #35# (($ #22# $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #36=(|has| |#1| (|SetCategory|)) ELT)) (|insert!| (#37=($ $ $ #5#) 75 T ELT) (#38=($ |#1| $ #5#) 59 T ELT)) (|insert| (#38# NIL T ELT) (#37# NIL T ELT)) (|indices| (((|List| #5#) $) NIL T ELT)) (|index?| ((#3# #5# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #36# ELT)) (|flexibleArray| (#39=($ #33#) 43 T ELT)) (|first| ((|#1| $) NIL #28# ELT)) (|find| (((|Union| |#1| "failed") #16# $) NIL T ELT)) (|fill!| (#40=($ $ |#1|) 24 #6# ELT)) (|every?| #41=((#3# #16# $) NIL T ELT)) (|eval| (($ $ (|List| #42=(|Equation| |#1|))) NIL #43=(AND (|has| |#1| (|Evalable| |#1|)) #36#) ELT) (($ $ #42#) NIL #43# ELT) (($ $ |#1| |#1|) NIL #43# ELT) (($ $ #33# #33#) NIL #43# ELT)) (|eq?| (#2# 62 T ELT)) (|entry?| (#34# NIL #20# ELT)) (|entries| #32#) (|empty?| (#8# NIL T ELT)) (|empty| (#19# 21 T ELT)) (|elt| (#13# NIL T ELT) (#23# 55 T ELT) #44=(#45=($ $ #14#) NIL T ELT)) (|delete!| (#45# 73 T ELT) (#24# 67 T ELT)) (|delete| (#24# NIL T ELT) #44#) (|count| ((#26# |#1| $) NIL #4# ELT) ((#26# #16# $) NIL T ELT)) (|copyInto!| (#37# 63 #6# ELT)) (|copy| (#12# 53 T ELT)) (|convert| ((#46=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #46#)) ELT)) (|construct| (#39# NIL T ELT)) (|concat!| (#30# 64 T ELT) (#40# 61 T ELT)) (|concat| (#40# NIL T ELT) (#21# 60 T ELT) (#30# NIL T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#47=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #47#)) ELT)) (|before?| #1#) (|any?| #41#) (>= #48=(#2# NIL #9# ELT)) (> #48#) (= #1#) (<= #48#) (< #48#) (|#| (#25# 22 T ELT)))
+(((|IndexedFlexibleArray| |#1| |#2|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ #1=(|Integer|))) (SIGNATURE |shrinkable| (#2=(|Boolean|) #2#)))) (|Type|) #1#) (T |IndexedFlexibleArray|))
+((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 (|Type|)) #2=(|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) #3=(|ofType| *4 #4=(|Integer|)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) #2# #1# #3#)) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 #4#) #2# #1# (|ofType| *4 *2))) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) #2# #1# #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|thenBranch| (#2=((|SpadAst|) $) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elseBranch| (#2# 14 T ELT)) (|condition| (#2# 10 T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|IfAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |condition| #1=((|SpadAst|) $)) (SIGNATURE |thenBranch| #1#) (SIGNATURE |elseBranch| #1#)))) (T |IfAst|))
+((|condition| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IfAst|)))) (|thenBranch| #1# #2#) (|elseBranch| #1# #2#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| (#7=(#8=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #9=((#10=(|InnerPrimeField| |#1|) $) NIL T ELT) #11=(#12=($ $ #13=(|PositiveInteger|)) NIL #14=(|has| #10# (|Finite|)) ELT)) (|tableForDiscreteLogarithm| (((|Table| #13# #8#) #15=(|Integer|)) NIL #14# ELT)) (|subtractIfCan| #16=((#17=(|Union| $ #18="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#7# NIL #14# ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# #18#) $) NIL T ELT)) (|retract| #9#) (|represents| (($ #22=(|Vector| #10#)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #14# ELT)) (|rem| #23=(($ $ $) NIL T ELT)) (|recip| ((#17# $) NIL T ELT)) (|random| #24=(#21# NIL #14# ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| #24#) (|primitive?| #27=(#4# NIL #14# ELT)) (|primeFrobenius| (#28=($ $ #8#) NIL #29=(OR (|has| #10# (|CharacteristicNonZero|)) #14#) ELT) (#6# NIL #29# ELT)) (|prime?| #3#) (|order| #30=(#31=(#13# $) NIL #14# ELT) (#32=(#33=(|OnePointCompletion| #13#) $) NIL #29# ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #24#) (|normal?| #27#) (|norm| #9# #11#) (|nextItem| (#34=((|Maybe| $) $) NIL #14# ELT)) (|multiEuclidean| (((|Union| #25# #18#) #25# $) NIL T ELT)) (|minimalPolynomial| (#35=(#36=(|SparseUnivariatePolynomial| #10#) $) NIL T ELT) ((#37=(|SparseUnivariatePolynomial| $) $ #13#) NIL #14# ELT)) (|lookup| #30#) (|linearAssociatedOrder| #38=(#35# NIL #14# ELT)) (|linearAssociatedLog| #38# (((|Union| #36# #18#) $ $) NIL #14# ELT)) (|linearAssociatedExp| (($ $ #36#) NIL #14# ELT)) (|lcm| #23# #39=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| (#21# NIL #14# CONST)) (|index| (($ #13#) NIL #14# ELT)) (|inGroundField?| #3#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| #24#) (|gcdPolynomial| ((#37# #37# #37#) NIL T ELT)) (|gcd| #23# #39#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #15#) (|:| |exponent| #15#)))) NIL #14# ELT)) (|factor| #19#) (|extensionDegree| ((#33#) NIL T ELT) ((#13#) NIL T ELT)) (|extendedEuclidean| (((|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #40# #41#) #18#) $ $ $) NIL T ELT)) (|exquo| #16#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| (#42=(#8# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (#42# NIL #14# ELT) (((|Union| #8# #18#) $ $) NIL #29# ELT)) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #43=(#28# NIL #14# ELT) #44=(#6# NIL #14# ELT)) (|degree| (#32# NIL T ELT) (#31# NIL T ELT)) (|definingPolynomial| ((#36#) NIL T ELT)) (|createPrimitiveElement| #24#) (|createNormalElement| #24#) (|coordinates| ((#22# $) NIL T ELT) (((|Matrix| #10#) #45=(|Vector| $)) NIL T ELT)) (|conditionP| (((|Union| #45# #18#) (|Matrix| $)) NIL #14# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) #5# (($ #46=(|Fraction| #15#)) NIL T ELT) (($ #10#) NIL T ELT)) (|charthRoot| #44# (#34# NIL #29# ELT)) (|characteristic| (#7# NIL T CONST)) (|before?| #1#) (|basis| ((#45#) NIL T ELT) ((#45# #13#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #20#) (|One| #20#) (|Frobenius| #44# #43#) (D #43# #44#) (= #1#) (/ #23# #47=(($ $ #10#) NIL T ELT)) (- #5# #23#) (+ #23#) (** (#12# NIL T ELT) (#28# NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #15# . #48=($)) NIL T ELT) #23# (($ $ #46#) NIL T ELT) (($ #46# . #48#) NIL T ELT) #47# (($ #10# . #48#) NIL T ELT)))
+(((|InnerFiniteField| |#1| |#2|) (|FiniteAlgebraicExtensionField| (|InnerPrimeField| |#1|)) #1=(|PositiveInteger|) #1#) (T |InnerFiniteField|))
+NIL
+((|rowEchelon| (#1=(|#4| |#4|) 38 T ELT)) (|rank| (#2=((|NonNegativeInteger|) |#4|) 45 T ELT)) (|nullity| (#2# 46 T ELT)) (|nullSpace| (((|List| |#3|) |#4|) 57 (|has| |#3| (|ShallowlyMutableAggregate| |#1|)) ELT)) (|inverse| (((|Union| |#4| "failed") |#4|) 69 T ELT)) (|generalizedInverse| (#1# 61 T ELT)) (|determinant| ((|#1| |#4|) 60 T ELT)))
+(((|InnerMatrixLinearAlgebraFunctions| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |rowEchelon| #1=(|#4| |#4|)) (SIGNATURE |rank| #2=((|NonNegativeInteger|) |#4|)) (SIGNATURE |nullity| #2#) (IF (|has| |#3| (|ShallowlyMutableAggregate| |#1|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |%noBranch|) (SIGNATURE |determinant| (|#1| |#4|)) (SIGNATURE |generalizedInverse| #1#) (SIGNATURE |inverse| ((|Union| |#4| "failed") |#4|))) (|Field|) #3=(|FiniteLinearAggregate| |#1|) #3# (|MatrixCategory| |#1| |#2| |#3|)) (T |InnerMatrixLinearAlgebraFunctions|))
+((|inverse| #1=(*1 *2 *2) (|partial| AND #2=(|ofCategory| *3 #3=(|Field|)) #4=(|ofCategory| *4 #5=(|FiniteLinearAggregate| *3)) #6=(|ofCategory| *5 #5#) #7=(|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2)) #8=(|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|generalizedInverse| #1# #9=(AND #2# #4# #6# #7# #8#)) (|determinant| #10=(*1 *2 *3) (AND (|ofCategory| *4 #11=(|FiniteLinearAggregate| *2)) (|ofCategory| *5 #11#) (|ofCategory| *2 #3#) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *2 *4 *5 *3)) (|ofCategory| *3 (|MatrixCategory| *2 *4 *5)))) (|nullSpace| #10# (AND (|ofCategory| *6 (|ShallowlyMutableAggregate| *4)) #12=(|ofCategory| *4 #3#) #13=(|ofCategory| *5 #14=(|FiniteLinearAggregate| *4)) #15=(|ofCategory| *6 #14#) (|isDomain| *2 (|List| *6)) #16=(|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3)) #17=(|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))) (|nullity| #10# #18=(AND #12# #13# #15# (|isDomain| *2 (|NonNegativeInteger|)) #16# #17#)) (|rank| #10# #18#) (|rowEchelon| #1# #9#))
+((|rowEchelon| ((|#8| |#4|) 20 T ELT)) (|nullSpace| (((|List| |#3|) |#4|) 29 (|has| |#7| (|ShallowlyMutableAggregate| |#5|)) ELT)) (|inverse| (((|Union| |#8| "failed") |#4|) 23 T ELT)))
+(((|InnerMatrixQuotientFieldFunctions| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |rowEchelon| (|#8| |#4|)) (SIGNATURE |inverse| ((|Union| |#8| "failed") |#4|)) (IF (|has| |#7| (|ShallowlyMutableAggregate| |#5|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |%noBranch|)) (|IntegralDomain|) #1=(|FiniteLinearAggregate| |#1|) #1# (|MatrixCategory| |#1| |#2| |#3|) (|QuotientFieldCategory| |#1|) #2=(|FiniteLinearAggregate| |#5|) #2# (|MatrixCategory| |#5| |#6| |#7|)) (T |InnerMatrixQuotientFieldFunctions|))
+((|nullSpace| #1=(*1 *2 *3) (AND (|ofCategory| *9 (|ShallowlyMutableAggregate| *7)) #2=(|ofCategory| *4 (|IntegralDomain|)) #3=(|ofCategory| *5 #4=(|FiniteLinearAggregate| *4)) #5=(|ofCategory| *6 #4#) #6=(|ofCategory| *7 (|QuotientFieldCategory| *4)) #7=(|ofCategory| *8 #8=(|FiniteLinearAggregate| *7)) #9=(|ofCategory| *9 #8#) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *10)) #10=(|ofCategory| *3 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *10 #11=(|MatrixCategory| *7 *8 *9)))) (|inverse| #1# (|partial| AND #2# #3# #5# #6# #12=(|ofCategory| *2 #11#) #13=(|isDomain| *1 (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *2)) #10# #7# #9#)) (|rowEchelon| #1# (AND #2# #3# #5# #6# #12# #13# #10# #7# #9#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|imports| ((#2=(|List| (|TypeAst|)) $) 14 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT) (($ #2#) 12 T ELT)) (|before?| #1#) (= #1#))
+(((|ImportAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1=(|List| (|TypeAst|)))) (SIGNATURE |imports| (#1# $))))) (T |ImportAst|))
+((|coerce| (*1 *1 *2) #1=(AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|ImportAst|)))) (|imports| (*1 *2 *1) #1#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|sequence| (((|SpadAst|) $) 15 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|iterationVar| (((|Identifier|) $) 12 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 22 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|InAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |iterationVar| ((|Identifier|) $)) (SIGNATURE |sequence| ((|SpadAst|) $))))) (T |InAst|))
+((|iterationVar| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) #2=(|isDomain| *1 (|InAst|)))) (|sequence| #1# (AND (|isDomain| *2 (|SpadAst|)) #2#)))
+((|readUInt8!| (((|Maybe| (|UInt8|)) $) 15 T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) 38 T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) 29 T ELT)) (|readInt8!| (((|Maybe| (|Int8|)) $) 12 T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) 42 T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) 33 T ELT)) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 54 T ELT)))
+(((|InputByteConduit&| |#1|) (CATEGORY |package| (SIGNATURE |readBytes!| ((|NonNegativeInteger|) |#1| (|ByteBuffer|))) (SIGNATURE |readUInt32!| ((|Maybe| (|UInt32|)) |#1|)) (SIGNATURE |readInt32!| ((|Maybe| (|Int32|)) |#1|)) (SIGNATURE |readUInt16!| ((|Maybe| (|UInt16|)) |#1|)) (SIGNATURE |readInt16!| ((|Maybe| (|Int16|)) |#1|)) (SIGNATURE |readUInt8!| ((|Maybe| (|UInt8|)) |#1|)) (SIGNATURE |readInt8!| ((|Maybe| (|Int8|)) |#1|))) (|InputByteConduit|)) (T |InputByteConduit&|))
+NIL
+((|readUInt8!| (((|Maybe| (|UInt8|)) $) 12 T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) 8 T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) 10 T ELT)) (|readInt8!| (((|Maybe| (|Int8|)) $) 13 T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) 9 T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) 11 T ELT)) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 7 T ELT)) (|readByte!| (((|Maybe| (|Byte|)) $) 14 T ELT)) (|close!| (($ $) 6 T ELT)))
+(((|InputByteConduit|) (|Category|)) (T |InputByteConduit|))
+((|readByte!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|Byte|))))) (|readInt8!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|Int8|))))) (|readUInt8!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|UInt8|))))) (|readInt16!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|Int16|))))) (|readUInt16!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|UInt16|))))) (|readInt32!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|Int32|))))) (|readUInt32!| (*1 *2 *1) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *2 (|Maybe| (|UInt32|))))) (|readBytes!| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *3 (|ByteBuffer|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|Conduit|) (CATEGORY |domain| (SIGNATURE |readByte!| ((|Maybe| (|Byte|)) $)) (SIGNATURE |readInt8!| ((|Maybe| (|Int8|)) $)) (SIGNATURE |readUInt8!| ((|Maybe| (|UInt8|)) $)) (SIGNATURE |readInt16!| ((|Maybe| (|Int16|)) $)) (SIGNATURE |readUInt16!| ((|Maybe| (|UInt16|)) $)) (SIGNATURE |readInt32!| ((|Maybe| (|Int32|)) $)) (SIGNATURE |readUInt32!| ((|Maybe| (|UInt32|)) $)) (SIGNATURE |readBytes!| ((|NonNegativeInteger|) $ (|ByteBuffer|)))))
+(((|Conduit|) . T))
+((|xn| ((#1=(|SparseUnivariatePolynomial| |#1|) #2=(|NonNegativeInteger|)) 114 T ELT)) (|trace| (#3=(#4=(|Vector| |#1|) #4# #5=(|PositiveInteger|)) 107 T ELT)) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #6=(|SingleInteger|))))) |#1|) 122 T ELT)) (|repSq| ((#4# #4# #2#) 53 T ELT)) (|random| (#7=(#4# #5#) 109 T ELT)) (|qPot| (#8=(#4# #4# (|Integer|)) 30 T ELT)) (|pol| (#9=(#1# #4#) 115 T ELT)) (|normalElement| (#7# 136 T ELT)) (|normal?| (((|Boolean|) #4#) 119 T ELT)) (|norm| (#3# 99 T ELT)) (|minimalPolynomial| (#9# 130 T ELT)) (|lookup| ((#5# #4#) 95 T ELT)) (|inv| ((#4# #4#) 38 T ELT)) (|index| ((#4# #5# #5#) 139 T ELT)) (|expPot| ((#4# #4# #6# #6#) 29 T ELT)) (|dAndcExp| ((#4# #4# #2# #6#) 54 T ELT)) (|basis| (((|Vector| #4#) #5#) 135 T ELT)) (/ (#10=(#4# #4# #4#) 120 T ELT)) (** (#8# 67 T ELT)) (* (#10# 31 T ELT)))
+(((|InnerNormalBasisFieldFunctions| |#1|) (CATEGORY |package| (SIGNATURE |setFieldInfo| ((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| #1=(|SingleInteger|))))) |#1|)) (SIGNATURE |random| #2=(#3=(|Vector| |#1|) #4=(|PositiveInteger|))) (SIGNATURE |index| (#3# #4# #4#)) (SIGNATURE |pol| #5=(#6=(|SparseUnivariatePolynomial| |#1|) #3#)) (SIGNATURE |xn| (#6# #7=(|NonNegativeInteger|))) (SIGNATURE |dAndcExp| (#3# #3# #7# #1#)) (SIGNATURE |repSq| (#3# #3# #7#)) (SIGNATURE |expPot| (#3# #3# #1# #1#)) (SIGNATURE |qPot| #8=(#3# #3# (|Integer|))) (SIGNATURE ** #8#) (SIGNATURE * #9=(#3# #3# #3#)) (SIGNATURE / #9#) (SIGNATURE |norm| #10=(#3# #3# #4#)) (SIGNATURE |trace| #10#) (SIGNATURE |inv| (#3# #3#)) (SIGNATURE |lookup| (#4# #3#)) (SIGNATURE |normal?| ((|Boolean|) #3#)) (SIGNATURE |basis| ((|Vector| #3#) #4#)) (SIGNATURE |normalElement| #2#) (SIGNATURE |minimalPolynomial| #5#)) (|FiniteFieldCategory|)) (T |InnerNormalBasisFieldFunctions|))
+((|minimalPolynomial| #1=(*1 *2 *3) #2=(AND #3=(|isDomain| *3 #4=(|Vector| *4)) #5=(|ofCategory| *4 #6=(|FiniteFieldCategory|)) #7=(|isDomain| *2 (|SparseUnivariatePolynomial| *4)) #8=(|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))) (|normalElement| #1# #9=(AND #10=(|isDomain| *3 #11=(|PositiveInteger|)) #12=(|isDomain| *2 #4#) #8# #5#)) (|basis| #1# (AND #10# (|isDomain| *2 (|Vector| #4#)) #8# #5#)) (|normal?| #1# (AND #3# #5# (|isDomain| *2 (|Boolean|)) #8#)) (|lookup| #1# (AND #3# #5# (|isDomain| *2 #11#) #8#)) (|inv| (*1 *2 *2) #13=(AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 #6#) (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *3)))) (|trace| #14=(*1 *2 *2 *3) #15=(AND #12# #10# #5# #8#)) (|norm| #14# #15#) (/ #16=(*1 *2 *2 *2) #13#) (* #16# #13#) (** #14# #17=(AND #12# (|isDomain| *3 (|Integer|)) #5# #8#)) (|qPot| #14# #17#) (|expPot| (*1 *2 *2 *3 *3) (AND #12# (|isDomain| *3 #18=(|SingleInteger|)) #5# #8#)) (|repSq| #14# (AND #12# #19=(|isDomain| *3 (|NonNegativeInteger|)) #5# #8#)) (|dAndcExp| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|Vector| *5)) #19# (|isDomain| *4 #18#) (|ofCategory| *5 #6#) (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *5)))) (|xn| #1# (AND #19# #7# #8# #5#)) (|pol| #1# #2#) (|index| (*1 *2 *3 *3) #9#) (|random| #1# #9#) (|setFieldInfo| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| #18#))))) #5# (|isDomain| *2 (|Void|)) #8#)))
+((|readUInt8!| (((|Maybe| (|UInt8|)) $) NIL T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) NIL T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) NIL T ELT)) (|readInt8!| (((|Maybe| (|Int8|)) $) NIL T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) NIL T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) NIL T ELT)) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) NIL T ELT)) (|readByte!| (((|Maybe| (|Byte|)) $) 26 T ELT)) (|position!| ((#1=(|SingleInteger|) $ #1#) 31 T ELT)) (|position| ((#1# $) 30 T ELT)) (|isOpen?| (#2=((|Boolean|) $) 20 T ELT)) (|inputBinaryFile| (($ (|FileName|)) 14 T ELT) (($ (|String|)) 16 T ELT)) (|eof?| (#2# 27 T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT)) (|close!| (($ $) 28 T ELT)))
+(((|InputBinaryFile|) (|Join| (|InputByteConduit|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |inputBinaryFile| ($ (|FileName|))) (SIGNATURE |inputBinaryFile| ($ (|String|))) (SIGNATURE |eof?| #1=((|Boolean|) $)) (SIGNATURE |isOpen?| #1#) (SIGNATURE |position| (#2=(|SingleInteger|) $)) (SIGNATURE |position!| (#2# $ #2#))))) (T |InputBinaryFile|))
+((|inputBinaryFile| #1=(*1 *1 *2) (AND (|isDomain| *2 (|FileName|)) #2=(|isDomain| *1 (|InputBinaryFile|)))) (|inputBinaryFile| #1# (AND (|isDomain| *2 (|String|)) #2#)) (|eof?| #3=(*1 *2 *1) #4=(AND (|isDomain| *2 (|Boolean|)) #2#)) (|isOpen?| #3# #4#) (|position| #3# #5=(AND (|isDomain| *2 (|SingleInteger|)) #2#)) (|position!| (*1 *2 *1 *2) #5#))
+((|incrementBy| ((#1=(|Mapping| |#1| |#1|) |#1|) 11 T ELT)) (|increment| ((#1#) 10 T ELT)))
+(((|IncrementingMaps| |#1|) (CATEGORY |package| (SIGNATURE |increment| (#1=(|Mapping| |#1| |#1|))) (SIGNATURE |incrementBy| (#1# |#1|))) (|Join| (|Monoid|) (|AbelianSemiGroup|))) (T |IncrementingMaps|))
+((|incrementBy| (*1 *2 *3) #1=(AND (|isDomain| *2 (|Mapping| *3 *3)) (|isDomain| *1 (|IncrementingMaps| *3)) (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|))))) (|increment| (*1 *2) #1#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|terms| ((#4=(|List| (|IndexedProductTerm| #5=(|NonNegativeInteger|) |#1|)) $) NIL T ELT)) (|sup| #6=(($ $ $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| #7=(($) NIL T CONST)) (|reductum| (($ $) NIL T ELT)) (|positive?| #3#) (|opposite?| #1#) (|monomial| (($ #5# |#1|) NIL T ELT)) (|min| #6#) (|max| #6#) (|map| (($ (|Mapping| #5# #5#) $) NIL T ELT)) (|leadingSupport| ((|#1| $) NIL T ELT)) (|leadingCoefficient| ((#5# $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| (($ #4#) NIL T ELT)) (|coerce| (((|OutputForm|) $) 28 T ELT)) (|before?| #1#) (|Zero| #7#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (+ #6#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #5# $) NIL T ELT)))
+(((|IndexedExponents| |#1|) (|Join| (|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| (|NonNegativeInteger|) |#1|)) (|OrderedSet|)) (T |IndexedExponents|))
+NIL
+((|solve1| (((|List| |#2|) #1=(|SparseUnivariatePolynomial| |#1|) |#3|) 98 T ELT)) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) #2=(|Matrix| |#1|) |#3| (|Mapping| (|Factored| #1#) #1#)) 114 T ELT)) (|charpol| ((#1# #2#) 110 T ELT)))
+(((|InnerNumericEigenPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |charpol| (#1=(|SparseUnivariatePolynomial| |#1|) #2=(|Matrix| |#1|))) (SIGNATURE |solve1| ((|List| |#2|) #1# |#3|)) (SIGNATURE |innerEigenvectors| ((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) #2# |#3| (|Mapping| (|Factored| #1#) #1#)))) #3=(|Field|) #3# (|Join| #3# (|OrderedRing|))) (T |InnerNumericEigenPackage|))
+((|innerEigenvectors| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *6)) (|isDomain| *5 (|Mapping| (|Factored| #1=(|SparseUnivariatePolynomial| *6)) #1#)) #2=(|ofCategory| *6 #3=(|Field|)) (|isDomain| *2 (|List| (|Record| (|:| |outval| *7) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| *7)))))) (|isDomain| *1 (|InnerNumericEigenPackage| *6 *7 *4)) (|ofCategory| *7 #3#) #4=(|ofCategory| *4 #5=(|Join| #3# (|OrderedRing|))))) (|solve1| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *5)) #6=(|ofCategory| *5 #3#) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|InnerNumericEigenPackage| *5 *6 *4)) #2# #4#)) (|charpol| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 #3#) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|InnerNumericEigenPackage| *4 *5 *6)) #6# (|ofCategory| *6 #5#))))
+((|writeUInt8!| ((#1=(|Maybe| #2=(|UInt8|)) $ #2#) NIL T ELT)) (|writeInt8!| ((#3=(|Maybe| #4=(|Int8|)) $ #4#) NIL T ELT)) (|writeBytes!| (#5=((|NonNegativeInteger|) $ (|ByteBuffer|)) 39 T ELT)) (|writeByte!| ((#6=(|Maybe| #7=(|Byte|)) $ #7#) 40 T ELT)) (|readUInt8!| ((#1# $) NIL T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) NIL T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) NIL T ELT)) (|readInt8!| ((#3# $) NIL T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) NIL T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) NIL T ELT)) (|readBytes!| (#5# 35 T ELT)) (|readByte!| ((#6# $) 37 T ELT)) (|isConnected?| (((|Boolean|) $) 27 T ELT)) (|connectTo| ((#8=(|Maybe| $) (|IP4Address|) #9=(|PortNumber|)) 18 T ELT) ((#8# (|Hostname|) #9#) 24 T ELT)) (|coerce| (((|OutputForm|) $) 48 T ELT)) (|close!| (($ $) 42 T ELT)))
+(((|InetClientStreamSocket|) (|Join| (|NetworkClientSocket| (|IP4Address|)) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |connectTo| ((|Maybe| $) (|Hostname|) (|PortNumber|)))))) (T |InetClientStreamSocket|))
+((|connectTo| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Hostname|)) (|isDomain| *4 (|PortNumber|)) (|isDomain| *2 (|Maybe| #1=(|InetClientStreamSocket|))) (|isDomain| *1 #1#))))
+((|plusInfinity| (#1=((|OrderedCompletion| #2=(|Integer|))) 12 T ELT)) (|minusInfinity| (#1# 14 T ELT)) (|infinity| (((|OnePointCompletion| #2#)) 9 T ELT)))
+(((|Infinity|) (CATEGORY |package| (SIGNATURE |infinity| ((|OnePointCompletion| #1=(|Integer|)))) (SIGNATURE |plusInfinity| #2=((|OrderedCompletion| #1#))) (SIGNATURE |minusInfinity| #2#))) (T |Infinity|))
+((|minusInfinity| #1=(*1 *2) #2=(AND (|isDomain| *2 (|OrderedCompletion| #3=(|Integer|))) #4=(|isDomain| *1 (|Infinity|)))) (|plusInfinity| #1# #2#) (|infinity| #1# (AND (|isDomain| *2 (|OnePointCompletion| #3#)) #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|unparse| (#4=(#5=(|String|) $) 55 T ELT)) (|symbol?| (#6=(#3# $) 51 T ELT)) (|symbol| ((#7=(|Symbol|) $) 52 T ELT)) (|string?| (#6# 49 T ELT)) (|string| (#4# 50 T ELT)) (|parseString| (#8=($ #5#) 56 T ELT)) (|pair?| #9=(#6# NIL T ELT)) (|null?| #9#) (|list?| #9#) (|latex| (#4# NIL T ELT)) (|lambda| (($ $ #10=(|List| #7#)) 21 T ELT)) (|interpret| (((|Any|) $) 23 T ELT)) (|integer?| #9#) (|integer| #11=((#12=(|Integer|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|function| (($ $ #10# #7#) 73 T ELT)) (|float?| #9#) (|float| ((#13=(|DoubleFloat|) $) NIL T ELT)) (|flatten| (#14=($ $) 44 T ELT)) (|expr| (#15=(#16=(|OutputForm|) $) NIL T ELT)) (|eq| #1#) (|elt| (#17=($ $ #12#) NIL T ELT) (($ $ (|List| #12#)) NIL T ELT)) (|destruct| ((#18=(|List| $) $) 30 T ELT)) (|declare| ((#7# #18#) 57 T ELT)) (|convert| (#8# NIL T ELT) (($ #7#) 19 T ELT) (($ #12#) 8 T ELT) (($ #13#) 28 T ELT) (($ #16#) NIL T ELT) (($ #18#) 65 T ELT) ((#19=(|SExpression|) $) 12 T ELT) (($ #19#) 13 T ELT)) (|compile| ((#7# #7# #18#) 60 T ELT)) (|coerce| (#15# 54 T ELT)) (|cdr| (#14# 59 T ELT)) (|car| (#14# 58 T ELT)) (|binary| (($ $ #18#) 66 T ELT)) (|before?| #1#) (|atom?| (#6# 29 T ELT)) (|Zero| (#20=($) 9 T CONST)) (|One| (#20# 11 T CONST)) (= (#2# 74 T ELT)) (/ (#21=($ $ $) 82 T ELT)) (+ (#21# 75 T ELT)) (** (($ $ (|NonNegativeInteger|)) 81 T ELT) (#17# 80 T ELT)) (* (#21# 76 T ELT)) (|#| #11#))
+(((|InputForm|) (|Join| (|SExpressionCategory| #1=(|String|) #2=(|Symbol|) #3=(|Integer|) (|DoubleFloat|) (|OutputForm|)) (|ConvertibleTo| #4=(|SExpression|)) (CATEGORY |domain| (SIGNATURE |interpret| ((|Any|) $)) (SIGNATURE |convert| ($ #4#)) (SIGNATURE |binary| ($ $ #5=(|List| $))) (SIGNATURE |function| ($ $ #6=(|List| #2#) #2#)) (SIGNATURE |lambda| ($ $ #6#)) (SIGNATURE + #7=($ $ $)) (SIGNATURE * #7#) (SIGNATURE / #7#) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ #3#)) (SIGNATURE |Zero| #8=($) |constant|) (SIGNATURE |One| #8# |constant|) (SIGNATURE |flatten| ($ $)) (SIGNATURE |unparse| (#1# $)) (SIGNATURE |parseString| ($ #1#)) (SIGNATURE |declare| (#2# #5#)) (SIGNATURE |compile| (#2# #2# #5#))))) (T |InputForm|))
+((|interpret| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Any|)) #2=(|isDomain| *1 #3=(|InputForm|)))) (|convert| #4=(*1 *1 *2) (AND (|isDomain| *2 (|SExpression|)) #2#)) (|binary| #5=(*1 *1 *1 *2) (AND (|isDomain| *2 #6=(|List| #3#)) #2#)) (|function| (*1 *1 *1 *2 *3) (AND #7=(|isDomain| *2 (|List| #8=(|Symbol|))) (|isDomain| *3 #8#) #2#)) (|lambda| #5# (AND #7# #2#)) (+ #9=(*1 *1 *1 *1) #2#) (* #9# #2#) (/ #9# #2#) (** #5# (AND (|isDomain| *2 (|NonNegativeInteger|)) #2#)) (** #5# (AND (|isDomain| *2 (|Integer|)) #2#)) (|Zero| #10=(*1 *1) #2#) (|One| #10# #2#) (|flatten| (*1 *1 *1) #2#) (|unparse| #1# #11=(AND (|isDomain| *2 (|String|)) #2#)) (|parseString| #4# #11#) (|declare| (*1 *2 *3) (AND #12=(|isDomain| *3 #6#) #13=(|isDomain| *2 #8#) #2#)) (|compile| (*1 *2 *2 *3) (AND #13# #12# #2#)))
+((|packageCall| ((#1=(|InputForm|) (|Symbol|)) 15 T ELT)) (|interpret| ((|#1| #1#) 20 T ELT)))
+(((|InputFormFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |packageCall| (#1=(|InputForm|) (|Symbol|))) (SIGNATURE |interpret| (|#1| #1#))) (|Type|)) (T |InputFormFunctions1|))
+((|interpret| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|InputForm|)) (|isDomain| *1 (|InputFormFunctions1| *2)) (|ofCategory| *2 #3=(|Type|)))) (|packageCall| #1# (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 #2#) (|isDomain| *1 (|InputFormFunctions1| *4)) (|ofCategory| *4 #3#))))
+((|oddInfiniteProduct| (#1=(|#2| |#2|) 17 T ELT)) (|infiniteProduct| (#1# 13 T ELT)) (|generalInfiniteProduct| ((|#2| |#2| #2=(|Integer|) #2#) 20 T ELT)) (|evenInfiniteProduct| (#1# 15 T ELT)))
+(((|InfiniteProductCharacteristicZero| |#1| |#2|) (CATEGORY |package| (SIGNATURE |infiniteProduct| #1=(|#2| |#2|)) (SIGNATURE |evenInfiniteProduct| #1#) (SIGNATURE |oddInfiniteProduct| #1#) (SIGNATURE |generalInfiniteProduct| (|#2| |#2| #2=(|Integer|) #2#))) (|Join| (|IntegralDomain|) (|CharacteristicZero|)) (|UnivariateTaylorSeriesCategory| |#1|)) (T |InfiniteProductCharacteristicZero|))
+((|generalInfiniteProduct| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 #1=(|Join| (|IntegralDomain|) (|CharacteristicZero|))) (|isDomain| *1 (|InfiniteProductCharacteristicZero| *4 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4)))) (|oddInfiniteProduct| #2=(*1 *2 *2) #3=(AND (|ofCategory| *3 #1#) (|isDomain| *1 (|InfiniteProductCharacteristicZero| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|evenInfiniteProduct| #2# #3#) (|infiniteProduct| #2# #3#))
+((|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) #1=(|List| |#2|) #2=(|List| (|Symbol|))) 32 T ELT)) (|innerSolve1| ((#1# #3=(|Polynomial| |#1|) |#3|) 54 T ELT) ((#1# (|SparseUnivariatePolynomial| |#1|) |#3|) 53 T ELT)) (|innerSolve| (((|List| #1#) #4=(|List| #3#) #4# #2# |#3|) 106 T ELT)))
+(((|InnerNumericFloatSolvePackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |innerSolve1| (#1=(|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|)) (SIGNATURE |innerSolve1| (#1# #2=(|Polynomial| |#1|) |#3|)) (SIGNATURE |innerSolve| ((|List| #1#) #3=(|List| #2#) #3# #4=(|List| (|Symbol|)) |#3|)) (SIGNATURE |makeEq| ((|List| (|Equation| (|Polynomial| |#2|))) #1# #4#))) (|GcdDomain|) #5=(|Field|) (|Join| #5# (|OrderedRing|))) (T |InnerNumericFloatSolvePackage|))
+((|makeEq| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 #2=(|List| *6)) #3=(|isDomain| *4 (|List| (|Symbol|))) #4=(|ofCategory| *6 #5=(|Field|)) (|isDomain| *2 (|List| (|Equation| #6=(|Polynomial| *6)))) (|isDomain| *1 (|InnerNumericFloatSolvePackage| *5 *6 *7)) #7=(|ofCategory| *5 #8=(|GcdDomain|)) (|ofCategory| *7 #9=(|Join| #5# (|OrderedRing|))))) (|innerSolve| (*1 *2 *3 *3 *4 *5) (AND (|isDomain| *3 (|List| #6#)) #3# (|ofCategory| *6 #8#) (|isDomain| *2 (|List| (|List| *7))) (|isDomain| *1 (|InnerNumericFloatSolvePackage| *6 *7 *5)) (|ofCategory| *7 #5#) (|ofCategory| *5 #9#))) (|innerSolve1| #1# (AND (|isDomain| *3 (|Polynomial| *5)) #7# #10=(|isDomain| *2 #2#) #11=(|isDomain| *1 (|InnerNumericFloatSolvePackage| *5 *6 *4)) #4# #12=(|ofCategory| *4 #9#))) (|innerSolve1| #1# (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *5)) #7# #10# #11# #4# #12#)))
+((|reduction| ((|#2| |#2| |#1|) 17 T ELT)) (|modularGcdPrimitive| (#1=(|#2| (|List| |#2|)) 30 T ELT)) (|modularGcd| (#1# 51 T ELT)))
+(((|InnerModularGcd| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |modularGcdPrimitive| #1=(|#2| (|List| |#2|))) (SIGNATURE |modularGcd| #1#) (SIGNATURE |reduction| (|#2| |#2| |#1|))) (|EuclideanDomain|) (|UnivariatePolynomialCategory| |#1|) |#1| (|Mapping| |#1| |#1| (|NonNegativeInteger|))) (T |InnerModularGcd|))
+((|reduction| (*1 *2 *2 *3) (AND (|ofCategory| *3 #1=(|EuclideanDomain|)) (|ofType| *4 *3) (|ofType| *5 (|Mapping| *3 *3 #2=(|NonNegativeInteger|))) (|isDomain| *1 (|InnerModularGcd| *3 *2 *4 *5)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|modularGcd| #3=(*1 *2 *3) #4=(AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|InnerModularGcd| *4 *2 *5 *6)) (|ofCategory| *4 #1#) (|ofType| *5 *4) (|ofType| *6 (|Mapping| *4 *4 #2#)))) (|modularGcdPrimitive| #3# #4#))
+((|factor| (((|Factored| #1=(|SparseUnivariatePolynomial| |#4|)) #1# #2=(|Mapping| (|Factored| #3=(|SparseUnivariatePolynomial| |#3|)) #3#)) 90 T ELT) (((|Factored| |#4|) |#4| #2#) 213 T ELT)))
+(((|InnerMultFact| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4| #1=(|Mapping| (|Factored| #2=(|SparseUnivariatePolynomial| |#3|)) #2#))) (SIGNATURE |factor| ((|Factored| #3=(|SparseUnivariatePolynomial| |#4|)) #3# #1#))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|PolynomialCategory| |#3| |#2| |#1|)) (T |InnerMultFact|))
+((|factor| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *4 (|Mapping| (|Factored| #3=(|SparseUnivariatePolynomial| *7)) #3#)) #4=(|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) #5=(|ofCategory| *5 (|OrderedSet|)) #6=(|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 #7=(|PolynomialCategory| *7 *6 *5)) (|isDomain| *2 (|Factored| #8=(|SparseUnivariatePolynomial| *8))) (|isDomain| *1 (|InnerMultFact| *5 *6 *7 *8)) (|isDomain| *3 #8#))) (|factor| #1# (AND #2# #4# #5# #6# (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|InnerMultFact| *5 *6 *7 *3)) (|ofCategory| *3 #7#))))
+((|oddInfiniteProduct| (#1=(|#4| |#4|) 74 T ELT)) (|infiniteProduct| (#1# 70 T ELT)) (|generalInfiniteProduct| ((|#4| |#4| #2=(|Integer|) #2#) 76 T ELT)) (|evenInfiniteProduct| (#1# 72 T ELT)))
+(((|InfiniteProductFiniteField| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |infiniteProduct| #1=(|#4| |#4|)) (SIGNATURE |evenInfiniteProduct| #1#) (SIGNATURE |oddInfiniteProduct| #1#) (SIGNATURE |generalInfiniteProduct| (|#4| |#4| #2=(|Integer|) #2#))) (|Join| (|Field|) (|Finite|) (|ConvertibleTo| #2#)) (|UnivariatePolynomialCategory| |#1|) (|MonogenicAlgebra| |#1| |#2|) (|UnivariateTaylorSeriesCategory| |#3|)) (T |InfiniteProductFiniteField|))
+((|generalInfiniteProduct| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 #1=(|Integer|)) (|ofCategory| *4 (|Join| #2=(|Field|) #3=(|Finite|) (|ConvertibleTo| *3))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|MonogenicAlgebra| *4 *5)) (|isDomain| *1 (|InfiniteProductFiniteField| *4 *5 *6 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *6)))) (|oddInfiniteProduct| #4=(*1 *2 *2) #5=(AND (|ofCategory| *3 (|Join| #2# #3# (|ConvertibleTo| #1#))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|MonogenicAlgebra| *3 *4)) (|isDomain| *1 (|InfiniteProductFiniteField| *3 *4 *5 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5)))) (|evenInfiniteProduct| #4# #5#) (|infiniteProduct| #4# #5#))
+((|oddInfiniteProduct| (#1=(|#2| |#2|) 27 T ELT)) (|infiniteProduct| (#1# 23 T ELT)) (|generalInfiniteProduct| ((|#2| |#2| #2=(|Integer|) #2#) 29 T ELT)) (|evenInfiniteProduct| (#1# 25 T ELT)))
+(((|InfiniteProductPrimeField| |#1| |#2|) (CATEGORY |package| (SIGNATURE |infiniteProduct| #1=(|#2| |#2|)) (SIGNATURE |evenInfiniteProduct| #1#) (SIGNATURE |oddInfiniteProduct| #1#) (SIGNATURE |generalInfiniteProduct| (|#2| |#2| #2=(|Integer|) #2#))) (|Join| (|Field|) (|Finite|) (|ConvertibleTo| #2#)) (|UnivariateTaylorSeriesCategory| |#1|)) (T |InfiniteProductPrimeField|))
+((|generalInfiniteProduct| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 #1=(|Integer|)) (|ofCategory| *4 (|Join| #2=(|Field|) #3=(|Finite|) (|ConvertibleTo| *3))) (|isDomain| *1 (|InfiniteProductPrimeField| *4 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4)))) (|oddInfiniteProduct| #4=(*1 *2 *2) #5=(AND (|ofCategory| *3 (|Join| #2# #3# (|ConvertibleTo| #1#))) (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|evenInfiniteProduct| #4# #5#) (|infiniteProduct| #4# #5#))
+((|signAround| ((#1=(|Union| #2=(|Integer|) "failed") |#2| |#1| #3=(|Mapping| #1# |#1|)) 18 T ELT) ((#1# |#2| |#1| #2# #3#) 14 T ELT) ((#1# |#2| #2# #3#) 30 T ELT)))
+(((|InnerPolySign| |#1| |#2|) (CATEGORY |package| (SIGNATURE |signAround| (#1=(|Union| #2=(|Integer|) "failed") |#2| #2# #3=(|Mapping| #1# |#1|))) (SIGNATURE |signAround| (#1# |#2| |#1| #2# #3#)) (SIGNATURE |signAround| (#1# |#2| |#1| #3#))) (|Ring|) (|UnivariatePolynomialCategory| |#1|)) (T |InnerPolySign|))
+((|signAround| (*1 *2 *3 *4 *5) #1=(|partial| AND (|isDomain| *5 (|Mapping| #2=(|Union| #3=(|Integer|) "failed") *4)) (|ofCategory| *4 #4=(|Ring|)) #5=(|isDomain| *2 #3#) (|isDomain| *1 (|InnerPolySign| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|signAround| (*1 *2 *3 *4 *2 *5) #1#) (|signAround| (*1 *2 *3 *2 *4) (|partial| AND (|isDomain| *4 (|Mapping| #2# *5)) (|ofCategory| *5 #4#) #5# (|isDomain| *1 (|InnerPolySign| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+((|symmetricRemainder| (#1=($ $ $) 87 T ELT)) (|squareFree| (#2=((|Factored| $) $) 50 T ELT)) (|retractIfCan| (((|Union| #3=(|Integer|) #4="failed") $) 62 T ELT)) (|retract| (#5=(#3# $) 40 T ELT)) (|rationalIfCan| (((|Union| #6=(|Fraction| #3#) #4#) $) 80 T ELT)) (|rational?| (#7=(#8=(|Boolean|) $) 24 T ELT)) (|rational| ((#6# $) 78 T ELT)) (|prime?| (#7# 53 T ELT)) (|powmod| (($ $ $ $) 94 T ELT)) (|permutation| (#1# 60 T ELT)) (|patternMatch| ((#9=(|PatternMatchResult| #3# $) $ #10=(|Pattern| #3#) #9#) 75 T ELT)) (|nextItem| (((|Maybe| $) $) 70 T ELT)) (|mask| (#11=($ $) 22 T ELT)) (|invmod| (#1# 92 T ELT)) (|init| (($) 63 T CONST)) (|factorial| (#11# 56 T ELT)) (|factor| (#2# 48 T ELT)) (|even?| (#7# 15 T ELT)) (|euclideanSize| ((#12=(|NonNegativeInteger|) $) 30 T ELT)) (|differentiate| (#11# 11 T ELT) (($ $ #12#) NIL T ELT)) (|copy| (#11# 16 T ELT)) (|convert| (#5# NIL T ELT) (((|InputForm|) $) 39 T ELT) ((#10# $) 43 T ELT) (((|Float|) $) 33 T ELT) (((|DoubleFloat|) $) 36 T ELT)) (|characteristic| ((#12#) 9 T CONST)) (|bit?| ((#8# $ $) 19 T ELT)) (|binomial| (#1# 58 T ELT)))
+(((|IntegerNumberSystem&| |#1|) (CATEGORY |package| (SIGNATURE |invmod| #1=(|#1| |#1| |#1|)) (SIGNATURE |powmod| (|#1| |#1| |#1| |#1|)) (SIGNATURE |mask| #2=(|#1| |#1|)) (SIGNATURE |copy| #2#) (SIGNATURE |rationalIfCan| ((|Union| #3=(|Fraction| #4=(|Integer|)) #5="failed") |#1|)) (SIGNATURE |rational| (#3# |#1|)) (SIGNATURE |rational?| #6=(#7=(|Boolean|) |#1|)) (SIGNATURE |symmetricRemainder| #1#) (SIGNATURE |bit?| (#7# |#1| |#1|)) (SIGNATURE |even?| #6#) (SIGNATURE |init| (|#1|) |constant|) (SIGNATURE |nextItem| ((|Maybe| |#1|) |#1|)) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| ((|Float|) |#1|)) (SIGNATURE |permutation| #1#) (SIGNATURE |factorial| #2#) (SIGNATURE |binomial| #1#) (SIGNATURE |patternMatch| (#8=(|PatternMatchResult| #4# |#1|) |#1| #9=(|Pattern| #4#) #8#)) (SIGNATURE |convert| (#9# |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #4# #5#) |#1|)) (SIGNATURE |retract| #10=(#4# |#1|)) (SIGNATURE |convert| #10#) (SIGNATURE |differentiate| (|#1| |#1| #11=(|NonNegativeInteger|))) (SIGNATURE |differentiate| #2#) (SIGNATURE |euclideanSize| (#11# |#1|)) (SIGNATURE |factor| #12=((|Factored| |#1|) |#1|)) (SIGNATURE |squareFree| #12#) (SIGNATURE |prime?| #6#) (SIGNATURE |characteristic| (#11#) |constant|)) (|IntegerNumberSystem|)) (T |IntegerNumberSystem&|))
+((|characteristic| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|IntegerNumberSystem&| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|symmetricRemainder| (($ $ $) 102 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|submod| (($ $ $ $) 91 T ELT)) (|squareFreePart| (($ $) 66 T ELT)) (|squareFree| (#4=((|Factored| $) $) 67 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 145 T ELT)) (|sign| (((|Integer|) $) 134 T ELT)) (|shift| (($ $ $) 105 T ELT)) (|sample| (#5=($) 23 T CONST)) (|retractIfCan| (((|Union| #6=(|Integer|) "failed") $) 126 T ELT)) (|retract| ((#6# $) 127 T ELT)) (|rem| (#7=($ $ $) 149 T ELT)) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| #8=(|Integer|))) (|:| |vec| (|Vector| #8#))) #9=(|Matrix| $) #10=(|Vector| $)) 124 T ELT) (((|Matrix| #8#) #9#) 123 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 99 T ELT)) (|rational?| (((|Boolean|) $) 101 T ELT)) (|rational| (((|Fraction| (|Integer|)) $) 100 T ELT)) (|random| (($) 98 T ELT) (($ $) 97 T ELT)) (|quo| (#7# 148 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #11=(|List| $)) (|:| |generator| $)) #11#) 143 T ELT)) (|prime?| (((|Boolean|) $) 68 T ELT)) (|powmod| (($ $ $ $) 89 T ELT)) (|positiveRemainder| (($ $ $) 103 T ELT)) (|positive?| (((|Boolean|) $) 136 T ELT)) (|permutation| (#12=($ $ $) 114 T ELT)) (|patternMatch| (((|PatternMatchResult| #13=(|Integer|) . #14=($)) $ (|Pattern| #13#) (|PatternMatchResult| #13# . #14#)) 117 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|odd?| (((|Boolean|) $) 109 T ELT)) (|nextItem| (((|Maybe| $) $) 111 T ELT)) (|negative?| (((|Boolean|) $) 135 T ELT)) (|multiEuclidean| (((|Union| #15=(|List| $) #16="failed") #15# $) 152 T ELT)) (|mulmod| (($ $ $ $) 90 T ELT)) (|min| (#17=($ $ $) 142 T ELT)) (|max| (#17# 141 T ELT)) (|mask| (($ $) 93 T ELT)) (|length| (($ $) 106 T ELT)) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| #8#)) (|:| |vec| (|Vector| #8#))) #10# $) 122 T ELT) (((|Matrix| #8#) #10#) 121 T ELT)) (|lcm| (#18=($ $ $) 60 T ELT) (#19=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|invmod| (($ $ $) 88 T ELT)) (|init| (($) 110 T CONST)) (|inc| (($ $) 95 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#20=(|SparseUnivariatePolynomial| $) #20# #20#) 58 T ELT)) (|gcd| (#18# 62 T ELT) (#19# 61 T ELT)) (|factorial| (($ $) 115 T ELT)) (|factor| (#4# 65 T ELT)) (|extendedEuclidean| (((|Union| (|Record| #21=(|:| |coef1| $) #22=(|:| |coef2| $)) #16#) $ $ $) 151 T ELT) (((|Record| #21# #22# (|:| |generator| $)) $ $) 150 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #11#) #11# $) 144 T ELT)) (|even?| (((|Boolean|) $) 108 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 146 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 147 T ELT)) (|differentiate| (($ . #23=($)) 132 T ELT) (#24=($ $ (|NonNegativeInteger|)) 130 T ELT)) (|dec| (($ $) 94 T ELT)) (|copy| (($ $) 96 T ELT)) (|convert| (((|Integer|) . #25=($)) 128 T ELT) (((|InputForm|) . #25#) 119 T ELT) (((|Pattern| (|Integer|)) . #25#) 118 T ELT) (((|Float|) . #25#) 113 T ELT) (((|DoubleFloat|) . #25#) 112 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #6#) 125 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|bit?| (((|Boolean|) $ $) 104 T ELT)) (|binomial| (#12# 116 T ELT)) (|before?| (#1# 6 T ELT)) (|base| (($) 107 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|addmod| (($ $ $ $) 92 T ELT)) (|abs| (($ $) 133 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ . #23#) 131 T ELT) (#24# 129 T ELT)) (>= (#26=((|Boolean|) $ $) 140 T ELT)) (> (#26# 138 T ELT)) (= (#1# 8 T ELT)) (<= (#26# 139 T ELT)) (< (#26# 137 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #27=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ #8# . #27#) 120 T ELT)))
+(((|IntegerNumberSystem|) (|Category|)) (T |IntegerNumberSystem|))
+((|odd?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|even?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|base| (*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|length| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|shift| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|bit?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|positiveRemainder| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|symmetricRemainder| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|random| (*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|random| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|copy| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|inc| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|dec| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|mask| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|addmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|submod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|mulmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|powmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|invmod| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(|Join| (|UniqueFactorizationDomain|) (|EuclideanDomain|) (|OrderedIntegralDomain|) (|DifferentialRing|) (|ConvertibleTo| #1=(|Integer|)) (|RetractableTo| #1#) (|LinearlyExplicitRingOver| #1#) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| (|Pattern| #1#)) (|PatternMatchable| #1#) (|CombinatorialFunctionCategory|) (|RealConstant|) (|CharacteristicZero|) (|StepThrough|) (CATEGORY |domain| (SIGNATURE |odd?| #2=(#3=(|Boolean|) $)) (SIGNATURE |even?| #2#) (ATTRIBUTE |multiplicativeValuation|) (SIGNATURE |base| #4=($)) (SIGNATURE |length| #5=($ $)) (SIGNATURE |shift| #6=($ $ $)) (SIGNATURE |bit?| (#3# $ $)) (SIGNATURE |positiveRemainder| #6#) (SIGNATURE |symmetricRemainder| #6#) (SIGNATURE |rational?| #2#) (SIGNATURE |rational| (#7=(|Fraction| #1#) $)) (SIGNATURE |rationalIfCan| ((|Union| #7# "failed") $)) (SIGNATURE |random| #4#) (SIGNATURE |random| #5#) (SIGNATURE |copy| #5#) (SIGNATURE |inc| #5#) (SIGNATURE |dec| #5#) (SIGNATURE |mask| #5#) (SIGNATURE |addmod| #8=($ $ $ $)) (SIGNATURE |submod| #8#) (SIGNATURE |mulmod| #8#) (SIGNATURE |powmod| #8#) (SIGNATURE |invmod| #6#) (ATTRIBUTE |canonicalUnitNormal|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CombinatorialFunctionCategory|) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|InputForm|)) . T) ((|ConvertibleTo| #1=(|Integer|)) . T) ((|ConvertibleTo| (|Pattern| #1#)) . T) ((|DifferentialDomain| $) . T) ((|DifferentialRing|) . T) ((|DifferentialSpace|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|LinearlyExplicitRingOver| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedIntegralDomain|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|PatternMatchable| #1#) . T) ((|PrincipalIdealDomain|) . T) ((|RealConstant|) . T) ((|RetractableTo| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 8 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 77 T ELT)) (|unitCanonical| (#5=($ $) 78 T ELT)) (|unit?| #6=(#4# NIL T ELT)) (|symmetricRemainder| #7=(#8=($ $ $) NIL T ELT)) (|subtractIfCan| (#9=(#10=(|Union| $ #11="failed") $ $) NIL T ELT)) (|submod| (#12=($ $ $ $) 31 T ELT)) (|squareFreePart| #13=(#5# NIL T ELT)) (|squareFree| (#14=((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sign| #15=(#16=(#17=(|Integer|) $) NIL T ELT)) (|shift| (#8# 71 T ELT)) (|sample| #18=(#19=($) NIL T CONST)) (|retractIfCan| (((|Union| #17# #11#) $) NIL T ELT)) (|retract| #15#) (|rem| (#8# 45 T ELT)) (|reducedSystem| ((#20=(|Record| (|:| |mat| #21=(|Matrix| #17#)) (|:| |vec| (|Vector| #17#))) #22=(|Matrix| $) #23=(|Vector| $)) 53 T ELT) ((#21# #22#) 49 T ELT)) (|recip| ((#10# $) 74 T ELT)) (|rationalIfCan| (((|Union| #24=(|Fraction| #17#) #11#) $) NIL T ELT)) (|rational?| #6#) (|rational| ((#24# $) NIL T ELT)) (|random| (#19# 55 T ELT) (#5# 56 T ELT)) (|quo| (#8# 70 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|prime?| #6#) (|powmod| (#12# NIL T ELT)) (|positiveRemainder| (#8# 46 T ELT)) (|positive?| (#4# 22 T ELT)) (|permutation| #7#) (|patternMatch| ((#27=(|PatternMatchResult| #17# $) $ #28=(|Pattern| #17#) #27#) NIL T ELT)) (|opposite?| (#2# 110 T ELT)) (|one?| (#4# 9 T ELT)) (|odd?| (#4# 64 T ELT)) (|nextItem| (((|Maybe| $) $) NIL T ELT)) (|negative?| (#4# 21 T ELT)) (|multiEuclidean| (((|Union| #25# #11#) #25# $) NIL T ELT)) (|mulmod| (#12# 32 T ELT)) (|min| (#8# 67 T ELT)) (|max| (#8# 66 T ELT)) (|mask| #13#) (|length| (#5# 29 T ELT)) (|leftReducedSystem| ((#20# #23# $) NIL T ELT) ((#21# #23#) NIL T ELT)) (|lcm| #7# #29=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) 44 T ELT)) (|invmod| #7#) (|init| #18#) (|inc| (#5# 15 T ELT)) (|hash| (((|SingleInteger|) $) 19 T ELT)) (|gcdPolynomial| ((#30=(|SparseUnivariatePolynomial| $) #30# #30#) 109 T ELT)) (|gcd| (#8# 75 T ELT) #29#) (|factorial| #13#) (|factor| (#14# 95 T ELT)) (|extendedEuclidean| (((|Union| (|Record| #31=(|:| |coef1| $) #32=(|:| |coef2| $)) #11#) $ $ $) NIL T ELT) (((|Record| #31# #32# #26#) $ $) NIL T ELT)) (|exquo| (#9# 93 T ELT)) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|even?| (#4# 65 T ELT)) (|euclideanSize| ((#33=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 69 T ELT)) (|differentiate| #13# #34=(#35=($ $ #33#) NIL T ELT)) (|dec| (#5# 17 T ELT)) (|copy| (#5# 13 T ELT)) (|convert| (#16# 28 T ELT) (((|InputForm|) $) 41 T ELT) ((#28# $) NIL T ELT) (((|Float|) $) 35 T ELT) (((|DoubleFloat|) $) 38 T ELT)) (|coerce| (((|OutputForm|) $) 26 T ELT) #36=(($ #17#) 27 T ELT) #13# #36#) (|characteristic| ((#33#) NIL T CONST)) (|bit?| #1#) (|binomial| #7#) (|before?| #1#) (|base| (#19# 12 T ELT)) (|associates?| #1#) (|annihilate?| (#2# 112 T ELT)) (|addmod| (#12# 30 T ELT)) (|abs| (#5# 54 T ELT)) (|Zero| (#19# 10 T CONST)) (|One| (#19# 11 T CONST)) (D #13# #34#) (>= (#2# 59 T ELT)) (> (#2# 57 T ELT)) (= (#2# 7 T ELT)) (<= (#2# 58 T ELT)) (< (#2# 20 T ELT)) (- (#5# 42 T ELT) (#8# 16 T ELT)) (+ (#8# 14 T ELT)) (** (($ $ #37=(|PositiveInteger|)) NIL T ELT) (#35# 63 T ELT)) (* (($ #37# $) NIL T ELT) (($ #33# $) NIL T ELT) #38=(($ #17# $) 61 T ELT) (#8# 60 T ELT) #38#))
+(((|Integer|) (|Join| (|IntegerNumberSystem|) (CATEGORY |package| (ATTRIBUTE |canonical|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |noetherian|)))) (T |Integer|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|Int16|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |sample| ($) |constant|)))) (T |Int16|))
+((|sample| (*1 *1) (|isDomain| *1 (|Int16|))))
+((|Integer|) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|Int32|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |sample| ($) |constant|)))) (T |Int32|))
+((|sample| (*1 *1) (|isDomain| *1 (|Int32|))))
+((|Integer|) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|Int64|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |sample| ($) |constant|)))) (T |Int64|))
+((|sample| (*1 *1) (|isDomain| *1 (|Int64|))))
+((|Integer|) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|Int8|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |sample| ($) |constant|)))) (T |Int8|))
+((|sample| (*1 *1) (|isDomain| *1 (|Int8|))))
+((|Integer|) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|table| #8=(#9=($) NIL T ELT) #10=(($ #11=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #12=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| #13=(#14=(|#2| $ |#1| |#2|) NIL #12# ELT)) (|select!| #15=(($ #16=(|Mapping| #3# #5#) $) NIL #17=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #15#) (|search| #18=(((|Union| |#2| #19="failed") |#1| $) NIL T ELT)) (|sample| (#9# NIL T CONST)) (|removeDuplicates| (#20=($ $) NIL #21=(AND #17# #4#) ELT)) (|remove!| (#22=($ #5# $) NIL #17# ELT) #15# #18#) (|remove| (#22# NIL #21# ELT) #15#) (|reduce| ((#5# #23=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #23# $ #5#) NIL T ELT) ((#5# #23# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #24=((|#2| $ |#1|) NIL T ELT)) (|minIndex| #25=((|#1| $) NIL #26=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#11# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #25#) (|map!| #27=(($ (|Mapping| #5# #5#) . #28=($)) NIL T ELT) #29=(($ (|Mapping| |#2| |#2|) . #28#) NIL T ELT)) (|map| #27# #29# #27# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #30=(OR #31=(|has| #5# #32=(|SetCategory|)) #33=(|has| |#2| #32#)) ELT)) (|keys| #34=(((|List| |#1|) $) NIL T ELT)) (|key?| #35=((#3# |#1| $) NIL T ELT)) (|inspect| #36=((#5# $) NIL T ELT)) (|insert!| (#22# NIL T ELT)) (|indices| #34#) (|index?| #35#) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| ((|#2| $) NIL #26# ELT)) (|find| (((|Union| #5# #19#) #16# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #12# ELT)) (|extract!| #36#) (|every?| #37=((#3# #16# $) NIL T ELT)) (|eval| #38=(($ $ (|List| #39=(|Equation| #5#))) NIL #40=(AND (|has| #5# (|Evalable| #5#)) #31#) ELT) #41=(($ $ #39#) NIL #40# ELT) #42=(($ $ #5# #5#) NIL #40# ELT) #43=(($ $ #11# #11#) NIL #40# ELT) (($ $ #44=(|List| |#2|) #44#) NIL #45=(AND (|has| |#2| (|Evalable| |#2|)) #33#) ELT) (($ $ |#2| |#2|) NIL #45# ELT) (($ $ #46=(|Equation| |#2|)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT) #43# #42# #41# #38#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT)) (|entries| ((#44# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #8#) (|elt| #24# (#14# NIL T ELT)) (|dictionary| #8# #10#) (|count| ((#47=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#47# #16# $) NIL T ELT)) (|copy| (#20# NIL T ELT)) (|convert| ((#48=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #48#)) ELT)) (|construct| #10#) (|coerce| ((#49=(|OutputForm|) $) NIL (OR (|has| #5# #50=(|CoercibleTo| #49#)) (|has| |#2| #50#)) ELT)) (|before?| #1#) (|bag| #10#) (|any?| #37#) (= #1#) (|#| ((#47# $) NIL T ELT)))
+(((|InnerTable| |#1| |#2| |#3|) #1=(|TableAggregate| |#1| |#2|) #2=(|SetCategory|) #2# #1#) (T |InnerTable|))
+NIL
+((|algint| (((|IntegrationResult| |#2|) |#2| #1=(|Kernel| |#2|) #1# (|Mapping| #2=(|SparseUnivariatePolynomial| |#2|) #2#)) 50 T ELT)))
+(((|AlgebraicIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |algint| ((|IntegrationResult| |#2|) |#2| #1=(|Kernel| |#2|) #1# (|Mapping| #2=(|SparseUnivariatePolynomial| |#2|) #2#)))) (|IntegralDomain|) (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|))) (T |AlgebraicIntegration|))
+((|algint| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|Mapping| #1=(|SparseUnivariatePolynomial| *3) #1#)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| *6))) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|AlgebraicIntegration| *6 *3)))))
+((|palgintegrate| (#1=((|IntegrationResult| |#5|) |#5| #2=(|Mapping| |#3| |#3|)) 217 T ELT)) (|palginfieldint| (((|Union| |#5| "failed") |#5| #2#) 213 T ELT)) (|algintegrate| (#1# 221 T ELT)))
+(((|AlgebraicIntegrate| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |algintegrate| #1=((|IntegrationResult| |#5|) |#5| #2=(|Mapping| |#3| |#3|))) (SIGNATURE |palgintegrate| #1#) (SIGNATURE |palginfieldint| ((|Union| |#5| "failed") |#5| #2#))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|)) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| (|Fraction| |#3|)) (|FunctionFieldCategory| |#2| |#3| |#4|)) (T |AlgebraicIntegrate|))
+((|palginfieldint| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Join| #1=(|AlgebraicallyClosedField|) (|FunctionSpace| *4))) (|ofCategory| *4 #2=(|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *1 (|AlgebraicIntegrate| *4 *5 *6 *7 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *5 *6 *7)))) (|palgintegrate| #3=(*1 *2 *3 *4) #4=(AND (|isDomain| *4 (|Mapping| *7 *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| #1# (|FunctionSpace| *5))) (|ofCategory| *5 #2#) (|ofCategory| *8 (|UnivariatePolynomialCategory| (|Fraction| *7))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|AlgebraicIntegrate| *5 *6 *7 *8 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *6 *7 *8)))) (|algintegrate| #3# #4#))
+((|bitTruth| (((|Boolean|) #1=(|Integer|) #1#) 12 T ELT)) (|bitLength| ((#1# #1#) 7 T ELT)) (|bitCoef| ((#1# #1# #1#) 10 T ELT)))
+(((|IntegerBits|) (CATEGORY |package| (SIGNATURE |bitLength| (#1=(|Integer|) #1#)) (SIGNATURE |bitCoef| (#1# #1# #1#)) (SIGNATURE |bitTruth| ((|Boolean|) #1# #1#)))) (T |IntegerBits|))
+((|bitTruth| (*1 *2 *3 *3) (AND (|isDomain| *3 #1=(|Integer|)) (|isDomain| *2 (|Boolean|)) #2=(|isDomain| *1 (|IntegerBits|)))) (|bitCoef| (*1 *2 *2 *2) #3=(AND (|isDomain| *2 #1#) #2#)) (|bitLength| (*1 *2 *2) #3#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|width| ((|#1| $) 77 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|tanh| (#4=($ $) 107 T ELT)) (|tan| (#5=($ $) 90 T ELT)) (|sup| ((|#1| $) 78 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sqrt| (($ $) 89 T ELT)) (|sinh| (#4# 106 T ELT)) (|sin| (#5# 91 T ELT)) (|sech| (#4# 105 T ELT)) (|sec| (#5# 92 T ELT)) (|sample| (#6=($) 23 T CONST)) (|retractIfCan| (((|Union| #7=(|Integer|) "failed") $) 85 T ELT)) (|retract| ((#7# $) 86 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|qinterval| (($ |#1| |#1|) 82 T ELT)) (|positive?| (((|Boolean|) $) 76 T ELT)) (|pi| (($) 117 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #8=(|Integer|)) 88 T ELT)) (|negative?| (((|Boolean|) $) 75 T ELT)) (|min| (#9=($ $ $) 118 T ELT)) (|max| (#9# 119 T ELT)) (|log| (#10=($ $) 114 T ELT)) (|lcm| (#11=($ $ $) 60 T ELT) (#12=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|interval| (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (|Fraction| (|Integer|))) 80 T ELT)) (|inf| ((|#1| $) 79 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#13=(|SparseUnivariatePolynomial| $) #13# #13#) 58 T ELT)) (|gcd| (#11# 62 T ELT) (#12# 61 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|exp| (#10# 115 T ELT)) (|csch| (#4# 104 T ELT)) (|csc| (#5# 93 T ELT)) (|coth| (#4# 103 T ELT)) (|cot| (#5# 94 T ELT)) (|cosh| (#4# 102 T ELT)) (|cos| (#5# 95 T ELT)) (|contains?| (((|Boolean|) $ |#1|) 74 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #7#) 84 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|atanh| (#14=($ $) 113 T ELT)) (|atan| (#15=($ $) 101 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|asinh| (#14# 112 T ELT)) (|asin| (#15# 100 T ELT)) (|asech| (#14# 111 T ELT)) (|asec| (#15# 99 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#14# 110 T ELT)) (|acsc| (#15# 98 T ELT)) (|acoth| (#14# 109 T ELT)) (|acot| (#15# 97 T ELT)) (|acosh| (#14# 108 T ELT)) (|acos| (#15# 96 T ELT)) (|Zero| (#6# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#16=((|Boolean|) $ $) 120 T ELT)) (> (#16# 122 T ELT)) (= (#1# 8 T ELT)) (<= (#16# 121 T ELT)) (< (#16# 123 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (|Fraction| #8#)) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|IntervalCategory| |#1|) (|Category|) (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (T |IntervalCategory|))
+((|interval| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|qinterval| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|interval| (*1 *1 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|interval| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|inf| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|sup| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|width| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|positive?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|)))) (|negative?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|)))) (|contains?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|GcdDomain|) (|OrderedSet|) (|TranscendentalFunctionCategory|) (|RadicalCategory|) (|RetractableTo| (|Integer|)) (CATEGORY |domain| (ATTRIBUTE |approximate|) (SIGNATURE |interval| ($ |t#1| |t#1|)) (SIGNATURE |qinterval| ($ |t#1| |t#1|)) (SIGNATURE |interval| ($ |t#1|)) (SIGNATURE |interval| ($ (|Fraction| (|Integer|)))) (SIGNATURE |inf| (|t#1| $)) (SIGNATURE |sup| (|t#1| $)) (SIGNATURE |width| (|t#1| $)) (SIGNATURE |positive?| ((|Boolean|) $)) (SIGNATURE |negative?| ((|Boolean|) $)) (SIGNATURE |contains?| ((|Boolean|) $ |t#1|))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ElementaryFunctionCategory|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|HyperbolicFunctionCategory|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T) ((|Type|) . T))
+((|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 9 T ELT)) (|unitCanonical| (($ $) 11 T ELT)) (|unit?| ((#1=(|Boolean|) $) 20 T ELT)) (|recip| (((|Union| $ "failed") $) 16 T ELT)) (|associates?| ((#1# $ $) 22 T ELT)))
+(((|IntegralDomain&| |#1|) (CATEGORY |package| (SIGNATURE |unit?| (#1=(|Boolean|) |#1|)) (SIGNATURE |associates?| (#1# |#1| |#1|)) (SIGNATURE |unitCanonical| (|#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|))) (|IntegralDomain|)) (T |IntegralDomain&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| (((|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| (((|Boolean|) $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|IntegralDomain|) (|Category|)) (T |IntegralDomain|))
+((|exquo| (*1 *1 *1 *1) (|partial| |ofCategory| *1 (|IntegralDomain|))) (|unitNormal| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |unit| *1) (|:| |canonical| *1) (|:| |associate| *1))) (|ofCategory| *1 (|IntegralDomain|)))) (|unitCanonical| (*1 *1 *1) (|ofCategory| *1 (|IntegralDomain|))) (|associates?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|unit?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|CommutativeRing|) (|Algebra| $) (|EntireRing|) (CATEGORY |domain| (SIGNATURE |exquo| ((|Union| $ "failed") $ $)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $)) (SIGNATURE |unitCanonical| ($ $)) (SIGNATURE |associates?| ((|Boolean|) $ $)) (SIGNATURE |unit?| ((|Boolean|) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| #3=(|Symbol|) (|List| |#2|)) 38 T ELT)) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| #3#) 63 T ELT)) (|lfinfieldint| (((|Union| |#2| #2#) |#2| #3#) 156 T ELT)) (|lfextlimint| ((#4=(|Union| (|Record| (|:| |ratpart| |#2|) #1#) #2#) |#2| #3# #5=(|Kernel| |#2|) (|List| #5#)) 159 T ELT)) (|lfextendedint| ((#4# |#2| #3# |#2|) 41 T ELT)))
+(((|ElementaryIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |lfextendedint| (#1=(|Union| (|Record| (|:| |ratpart| |#2|) #2=(|:| |coeff| |#2|)) #3="failed") |#2| #4=(|Symbol|) |#2|)) (SIGNATURE |lflimitedint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #2# (|:| |logand| |#2|))))) #3#) |#2| #4# (|List| |#2|))) (SIGNATURE |lfinfieldint| ((|Union| |#2| #3#) |#2| #4#)) (SIGNATURE |lfintegrate| ((|IntegrationResult| |#2|) |#2| #4#)) (SIGNATURE |lfextlimint| (#1# |#2| #4# #5=(|Kernel| |#2|) (|List| #5#)))) (|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| #6=(|Integer|)) (|LinearlyExplicitRingOver| #6#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ElementaryIntegration|))
+((|lfextlimint| (*1 *2 *3 *4 *5 *6) (|partial| AND #1=(|isDomain| *4 #2=(|Symbol|)) (|isDomain| *6 (|List| #3=(|Kernel| *3))) (|isDomain| *5 #3#) (|ofCategory| *3 (|Join| #4=(|AlgebraicallyClosedField|) #5=(|TranscendentalFunctionCategory|) (|FunctionSpace| *7))) (|ofCategory| *7 #6=(|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| #7=(|Integer|)) (|LinearlyExplicitRingOver| #7#))) #8=(|isDomain| *2 (|Record| (|:| |ratpart| *3) #9=(|:| |coeff| *3))) (|isDomain| *1 (|ElementaryIntegration| *7 *3)))) (|lfintegrate| (*1 *2 *3 *4) (AND #1# #10=(|ofCategory| *5 #6#) (|isDomain| *2 (|IntegrationResult| *3)) #11=(|isDomain| *1 (|ElementaryIntegration| *5 *3)) #12=(|ofCategory| *3 (|Join| #4# #5# (|FunctionSpace| *5))))) (|lfinfieldint| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 #2#) (|ofCategory| *4 #6#) (|isDomain| *1 (|ElementaryIntegration| *4 *2)) (|ofCategory| *2 (|Join| #4# #5# (|FunctionSpace| *4))))) (|lflimitedint| (*1 *2 *3 *4 *5) (|partial| AND #1# (|isDomain| *5 (|List| *3)) (|ofCategory| *3 (|Join| #4# #5# (|FunctionSpace| *6))) (|ofCategory| *6 #6#) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| #9# (|:| |logand| *3)))))) (|isDomain| *1 (|ElementaryIntegration| *6 *3)))) (|lfextendedint| (*1 *2 *3 *4 *3) (|partial| AND #1# #10# #8# #11# #12#)))
+((|squareFree| (#1=((|Factored| |#1|) |#1|) 17 T ELT)) (|factor| (#1# 32 T ELT)) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) 48 T ELT)) (|BasicMethod| (#1# 59 T ELT)))
+(((|IntegerFactorizationPackage| |#1|) (CATEGORY |package| (SIGNATURE |factor| #1=((|Factored| |#1|) |#1|)) (SIGNATURE |squareFree| #1#) (SIGNATURE |BasicMethod| #1#) (SIGNATURE |PollardSmallFactor| ((|Union| |#1| "failed") |#1|))) (|IntegerNumberSystem|)) (T |IntegerFactorizationPackage|))
+((|PollardSmallFactor| (*1 *2 *2) (|partial| AND (|isDomain| *1 (|IntegerFactorizationPackage| *2)) (|ofCategory| *2 #1=(|IntegerNumberSystem|)))) (|BasicMethod| #2=(*1 *2 *3) #3=(AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|IntegerFactorizationPackage| *3)) (|ofCategory| *3 #1#))) (|squareFree| #2# #3#) (|factor| #2# #3#))
+((|univariate| ((#1=(|SparseUnivariatePolynomial| #2=(|Fraction| #3=(|SparseUnivariatePolynomial| |#2|))) |#2| #4=(|Kernel| |#2|) #4# #3#) 35 T ELT)) (|palglimint0| ((#5=(|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #6=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #7="failed") |#2| #4# #4# #8=(|List| |#2|) #4# |#2| #2#) 105 T ELT) ((#5# |#2| #4# #4# #8# |#2| #3#) 115 T ELT)) (|palgint0| ((#9=(|IntegrationResult| |#2|) |#2| #4# #4# #4# |#2| #2#) 85 T ELT) ((#9# |#2| #4# #4# |#2| #3#) 55 T ELT)) (|palgextint0| ((#10=(|Union| (|Record| (|:| |ratpart| |#2|) #6#) #7#) |#2| #4# #4# |#2| #4# |#2| #2#) 92 T ELT) ((#10# |#2| #4# #4# |#2| |#2| #3#) 114 T ELT)) (|palgRDE0| ((#11=(|Union| |#2| #7#) |#2| |#2| #4# #4# #12=(|Mapping| #11# |#2| |#2| (|Symbol|)) #4# |#2| #2#) 110 T ELT) ((#11# |#2| |#2| #4# #4# #12# |#2| #3#) 116 T ELT)) (|palgLODE0| ((#13=(|Record| (|:| |particular| #11#) (|:| |basis| #8#)) |#3| |#2| #4# #4# #4# |#2| #2#) 133 #14=(|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) ELT) ((#13# |#3| |#2| #4# #4# |#2| #3#) 132 #14# ELT)) (|multivariate| ((|#2| #1# #4# |#2|) 53 T ELT)) (|lift| ((#1# #3# #4#) 34 T ELT)))
+(((|GenusZeroIntegration| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |palgint0| (#1=(|IntegrationResult| |#2|) |#2| #2=(|Kernel| |#2|) #2# |#2| #3=(|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgint0| (#1# |#2| #2# #2# #2# |#2| #4=(|Fraction| #3#))) (SIGNATURE |palgextint0| (#5=(|Union| (|Record| (|:| |ratpart| |#2|) #6=(|:| |coeff| |#2|)) #7="failed") |#2| #2# #2# |#2| |#2| #3#)) (SIGNATURE |palgextint0| (#5# |#2| #2# #2# |#2| #2# |#2| #4#)) (SIGNATURE |palglimint0| (#8=(|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #6# (|:| |logand| |#2|))))) #7#) |#2| #2# #2# #9=(|List| |#2|) |#2| #3#)) (SIGNATURE |palglimint0| (#8# |#2| #2# #2# #9# #2# |#2| #4#)) (SIGNATURE |palgRDE0| (#10=(|Union| |#2| #7#) |#2| |#2| #2# #2# #11=(|Mapping| #10# |#2| |#2| (|Symbol|)) |#2| #3#)) (SIGNATURE |palgRDE0| (#10# |#2| |#2| #2# #2# #11# #2# |#2| #4#)) (SIGNATURE |univariate| (#12=(|SparseUnivariatePolynomial| #4#) |#2| #2# #2# #3#)) (SIGNATURE |multivariate| (|#2| #12# #2# |#2|)) (SIGNATURE |lift| (#12# #3# #2#)) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (PROGN (SIGNATURE |palgLODE0| (#13=(|Record| (|:| |particular| #10#) (|:| |basis| #9#)) |#3| |#2| #2# #2# |#2| #3#)) (SIGNATURE |palgLODE0| (#13# |#3| |#2| #2# #2# #2# |#2| #4#))) |%noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| #14=(|Integer|)) (|CharacteristicZero|) (|LinearlyExplicitRingOver| #14#)) (|Join| (|FunctionSpace| |#1|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|)) (|SetCategory|)) (T |GenusZeroIntegration|))
+((|palgLODE0| (*1 *2 *3 *4 *5 *5 *5 *4 *6) (AND #1=(|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 (|Fraction| #2=(|SparseUnivariatePolynomial| *4))) #3=(|ofCategory| *4 #4=(|Join| (|FunctionSpace| *7) #5=(|AlgebraicallyClosedField|) #6=(|TranscendentalFunctionCategory|))) #7=(|ofCategory| *7 #8=(|Join| (|GcdDomain|) (|RetractableTo| #9=(|Integer|)) (|CharacteristicZero|) (|LinearlyExplicitRingOver| #9#))) #10=(|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 #11="failed")) (|:| |basis| (|List| *4)))) #12=(|isDomain| *1 (|GenusZeroIntegration| *7 *4 *3)) #13=(|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)) #14=(|ofCategory| *3 #15=(|SetCategory|)))) (|palgLODE0| (*1 *2 *3 *4 *5 *5 *4 *6) (AND #1# (|isDomain| *6 #2#) #3# #7# #10# #12# #13# #14#)) (|lift| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Kernel| *6)) (|ofCategory| *6 #16=(|Join| (|FunctionSpace| *5) #5# #6#)) #17=(|ofCategory| *5 #8#) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| #18=(|SparseUnivariatePolynomial| *6)))) (|isDomain| *1 (|GenusZeroIntegration| *5 *6 *7)) (|isDomain| *3 #18#) #19=(|ofCategory| *7 #15#))) (|multivariate| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| #20=(|Fraction| #21=(|SparseUnivariatePolynomial| *2)))) (|isDomain| *4 #22=(|Kernel| *2)) (|ofCategory| *2 #16#) #17# (|isDomain| *1 (|GenusZeroIntegration| *5 *2 *6)) (|ofCategory| *6 #15#))) (|univariate| (*1 *2 *3 *4 *4 *5) (AND #23=(|isDomain| *4 (|Kernel| *3)) #24=(|ofCategory| *3 #25=(|Join| (|FunctionSpace| *6) #5# #6#)) #26=(|ofCategory| *6 #8#) (|isDomain| *2 (|SparseUnivariatePolynomial| #27=(|Fraction| #28=(|SparseUnivariatePolynomial| *3)))) #29=(|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) #30=(|isDomain| *5 #28#) #19#)) (|palgRDE0| (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| AND #31=(|isDomain| *3 #22#) #32=(|isDomain| *4 (|Mapping| (|Union| *2 #11#) *2 *2 (|Symbol|))) (|isDomain| *5 #20#) #33=(|ofCategory| *2 #25#) #26# #34=(|isDomain| *1 (|GenusZeroIntegration| *6 *2 *7)) #19#)) (|palgRDE0| (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| AND #31# #32# (|isDomain| *5 #21#) #33# #26# #34# #19#)) (|palglimint0| (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| AND #23# #35=(|isDomain| *5 (|List| *3)) (|isDomain| *6 #27#) #36=(|ofCategory| *3 #4#) #7# #37=(|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| #38=(|:| |coeff| *3) (|:| |logand| *3)))))) #39=(|isDomain| *1 (|GenusZeroIntegration| *7 *3 *8)) #40=(|ofCategory| *8 #15#))) (|palglimint0| (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| AND #23# #35# (|isDomain| *6 #28#) #36# #7# #37# #39# #40#)) (|palgextint0| (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| AND #23# #41=(|isDomain| *5 #27#) #24# #26# #42=(|isDomain| *2 (|Record| (|:| |ratpart| *3) #38#)) #29# #19#)) (|palgextint0| (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| AND #23# #30# #24# #26# #42# #29# #19#)) (|palgint0| (*1 *2 *3 *4 *4 *4 *3 *5) (AND #23# #41# #24# #26# #43=(|isDomain| *2 (|IntegrationResult| *3)) #29# #19#)) (|palgint0| (*1 *2 *3 *4 *4 *3 *5) (AND #23# #30# #24# #26# #43# #29# #19#)))
+((|sumOfKthPowerDivisors| ((#1=(|Integer|) #1# (|NonNegativeInteger|)) 87 T ELT)) (|sumOfDivisors| (#2=(#1# #1#) 85 T ELT)) (|numberOfDivisors| (#2# 82 T ELT)) (|moebiusMu| (#2# 89 T ELT)) (|legendre| (#3=(#1# #1# #1#) 67 T ELT)) (|jacobi| (#3# 64 T ELT)) (|harmonic| (#4=((|Fraction| #1#) #1#) 29 T ELT)) (|fibonacci| (#2# 34 T ELT)) (|eulerPhi| (#2# 76 T ELT)) (|euler| (#2# 47 T ELT)) (|divisors| (((|List| #1#) #1#) 81 T ELT)) (|chineseRemainder| ((#1# #1# #1# #1# #1#) 60 T ELT)) (|bernoulli| (#4# 56 T ELT)))
+(((|IntegerNumberTheoryFunctions|) (CATEGORY |package| (SIGNATURE |bernoulli| #1=((|Fraction| #2=(|Integer|)) #2#)) (SIGNATURE |chineseRemainder| (#2# #2# #2# #2# #2#)) (SIGNATURE |divisors| ((|List| #2#) #2#)) (SIGNATURE |euler| #3=(#2# #2#)) (SIGNATURE |eulerPhi| #3#) (SIGNATURE |fibonacci| #3#) (SIGNATURE |harmonic| #1#) (SIGNATURE |jacobi| #4=(#2# #2# #2#)) (SIGNATURE |legendre| #4#) (SIGNATURE |moebiusMu| #3#) (SIGNATURE |numberOfDivisors| #3#) (SIGNATURE |sumOfDivisors| #3#) (SIGNATURE |sumOfKthPowerDivisors| (#2# #2# (|NonNegativeInteger|))))) (T |IntegerNumberTheoryFunctions|))
+((|sumOfKthPowerDivisors| (*1 *2 *2 *3) (AND #1=(|isDomain| *2 #2=(|Integer|)) (|isDomain| *3 (|NonNegativeInteger|)) #3=(|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|sumOfDivisors| #4=(*1 *2 *2) #5=(AND #1# #3#)) (|numberOfDivisors| #4# #5#) (|moebiusMu| #4# #5#) (|legendre| #6=(*1 *2 *2 *2) #5#) (|jacobi| #6# #5#) (|harmonic| #7=(*1 *2 *3) #8=(AND (|isDomain| *2 (|Fraction| #2#)) #3# #9=(|isDomain| *3 #2#))) (|fibonacci| #4# #5#) (|eulerPhi| #4# #5#) (|euler| #4# #5#) (|divisors| #7# (AND (|isDomain| *2 (|List| #2#)) #3# #9#)) (|chineseRemainder| (*1 *2 *2 *2 *2 *2) #5#) (|bernoulli| #7# #8#))
+((|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) 56 T ELT)))
+(((|AlgebraicHermiteIntegration| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |HermiteIntegrate| ((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |AlgebraicHermiteIntegration|))
+((|HermiteIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *2 (|Record| (|:| |answer| *3) (|:| |logpart| *3))) (|isDomain| *1 (|AlgebraicHermiteIntegration| *5 *6 *7 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *5 *6 *7)))))
+((|HermiteIntegrate| (((|Record| (|:| |answer| #1=(|Fraction| |#2|)) (|:| |logpart| #1#) (|:| |specpart| #1#) (|:| |polypart| |#2|)) #1# (|Mapping| |#2| |#2|)) 18 T ELT)))
+(((|TranscendentalHermiteIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |HermiteIntegrate| ((|Record| (|:| |answer| #1=(|Fraction| |#2|)) (|:| |logpart| #1#) (|:| |specpart| #1#) (|:| |polypart| |#2|)) #1# (|Mapping| |#2| |#2|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |TranscendentalHermiteIntegration|))
+((|HermiteIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |answer| #1=(|Fraction| *6)) (|:| |logpart| #1#) (|:| |specpart| #1#) (|:| |polypart| *6))) (|isDomain| *1 (|TranscendentalHermiteIntegration| *5 *6)) (|isDomain| *3 #1#))))
+((|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| #3=(|Kernel| |#2|) #3# #4=(|List| |#2|)) 195 T ELT)) (|palgint| (((|IntegrationResult| |#2|) |#2| #3# #3#) 97 T ELT)) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) #1#) #2#) |#2| #3# #3# |#2|) 191 T ELT)) (|palgRDE| ((#5=(|Union| |#2| #2#) |#2| |#2| |#2| #3# #3# (|Mapping| #5# |#2| |#2| #6=(|Symbol|))) 200 T ELT)) (|palgLODE| (((|Record| (|:| |particular| #5#) (|:| |basis| #4#)) |#3| |#2| #3# #3# #6#) 209 (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) ELT)))
+(((|PureAlgebraicIntegration| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |palgint| ((|IntegrationResult| |#2|) |#2| #1=(|Kernel| |#2|) #1#)) (SIGNATURE |palgextint| ((|Union| (|Record| (|:| |ratpart| |#2|) #2=(|:| |coeff| |#2|)) #3="failed") |#2| #1# #1# |#2|)) (SIGNATURE |palglimint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #2# (|:| |logand| |#2|))))) #3#) |#2| #1# #1# #4=(|List| |#2|))) (SIGNATURE |palgRDE| (#5=(|Union| |#2| #3#) |#2| |#2| |#2| #1# #1# (|Mapping| #5# |#2| |#2| #6=(|Symbol|)))) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (SIGNATURE |palgLODE| ((|Record| (|:| |particular| #5#) (|:| |basis| #4#)) |#3| |#2| #1# #1# #6#)) |%noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| #7=(|Integer|)) (|CharacteristicZero|) (|LinearlyExplicitRingOver| #7#)) (|Join| (|FunctionSpace| |#1|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|)) (|SetCategory|)) (T |PureAlgebraicIntegration|))
+((|palgLODE| (*1 *2 *3 *4 *5 *5 *6) (AND (|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 #1=(|Symbol|)) (|ofCategory| *4 (|Join| (|FunctionSpace| *7) #2=(|AlgebraicallyClosedField|) #3=(|TranscendentalFunctionCategory|))) (|ofCategory| *7 #4=(|Join| (|GcdDomain|) (|RetractableTo| #5=(|Integer|)) (|CharacteristicZero|) (|LinearlyExplicitRingOver| #5#))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 #6="failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|PureAlgebraicIntegration| *7 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)) (|ofCategory| *3 #7=(|SetCategory|)))) (|palgRDE| (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| AND (|isDomain| *3 (|Kernel| *2)) (|isDomain| *4 (|Mapping| (|Union| *2 #6#) *2 *2 #1#)) (|ofCategory| *2 #8=(|Join| (|FunctionSpace| *5) #2# #3#)) #9=(|ofCategory| *5 #4#) (|isDomain| *1 (|PureAlgebraicIntegration| *5 *2 *6)) #10=(|ofCategory| *6 #7#))) (|palglimint| (*1 *2 *3 *4 *4 *5) (|partial| AND #11=(|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) #2# #3#)) (|ofCategory| *6 #4#) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| #12=(|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|PureAlgebraicIntegration| *6 *3 *7)) (|ofCategory| *7 #7#))) (|palgextint| (*1 *2 *3 *4 *4 *3) (|partial| AND #11# #13=(|ofCategory| *3 #8#) #9# (|isDomain| *2 (|Record| (|:| |ratpart| *3) #12#)) #14=(|isDomain| *1 (|PureAlgebraicIntegration| *5 *3 *6)) #10#)) (|palgint| (*1 *2 *3 *4 *4) (AND #11# #13# #9# (|isDomain| *2 (|IntegrationResult| *3)) #14# #10#)))
+((|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| #1=(|Symbol|)) 64 T ELT)) (|pmintegrate| (((|Union| |#2| #2="failed") |#2| #1# #3=(|OrderedCompletion| |#2|) #3#) 174 (AND (|has| |#2| (|SpecialFunctionCategory|)) #4=(|has| |#1| (|ConvertibleTo| (|Pattern| #5=(|Integer|)))) #6=(|has| |#1| (|PatternMatchable| #5#))) ELT) (#7=((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) #2#) |#2| #1#) 145 #8=(AND (|has| |#2| (|LiouvillianFunctionCategory|)) #4# #6#) ELT)) (|pmComplexintegrate| (#7# 156 #8# ELT)))
+(((|PatternMatchIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |splitConstant| ((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| #1=(|Symbol|))) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| #2=(|Integer|)))) (IF (|has| |#1| (|PatternMatchable| #2#)) (PROGN (IF (|has| |#2| (|LiouvillianFunctionCategory|)) (PROGN (SIGNATURE |pmComplexintegrate| #3=((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) #4="failed") |#2| #1#)) (SIGNATURE |pmintegrate| #3#)) |%noBranch|) (IF (|has| |#2| (|SpecialFunctionCategory|)) (SIGNATURE |pmintegrate| ((|Union| |#2| #4#) |#2| #1# #5=(|OrderedCompletion| |#2|) #5#)) |%noBranch|)) |%noBranch|) |%noBranch|)) (|Join| (|RetractableTo| #2#) (|GcdDomain|) (|LinearlyExplicitRingOver| #2#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |PatternMatchIntegration|))
+((|pmintegrate| (*1 *2 *2 *3 *4 *4) (|partial| AND (|isDomain| *3 #1=(|Symbol|)) (|isDomain| *4 (|OrderedCompletion| *2)) (|ofCategory| *2 (|SpecialFunctionCategory|)) (|ofCategory| *2 #2=(|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))) #3=(|ofCategory| *5 (|ConvertibleTo| (|Pattern| #4=(|Integer|)))) #5=(|ofCategory| *5 (|PatternMatchable| #4#)) #6=(|ofCategory| *5 (|Join| (|RetractableTo| #4#) (|GcdDomain|) (|LinearlyExplicitRingOver| #4#))) (|isDomain| *1 (|PatternMatchIntegration| *5 *2)))) (|pmintegrate| #7=(*1 *2 *3 *4) #8=(|partial| AND #9=(|isDomain| *4 #1#) #3# #5# #6# (|isDomain| *2 (|Record| (|:| |special| *3) (|:| |integrand| *3))) #10=(|isDomain| *1 (|PatternMatchIntegration| *5 *3)) (|ofCategory| *3 (|LiouvillianFunctionCategory|)) #11=(|ofCategory| *3 #2#))) (|pmComplexintegrate| #7# #8#) (|splitConstant| #7# (AND #9# #6# (|isDomain| *2 (|Record| (|:| |const| *3) (|:| |nconst| *3))) #10# #11#)))
+((|limitedint| (((|Union| (|Record| (|:| |mainpart| #1=(|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| #2=(|:| |coeff| #1#) (|:| |logand| #1#))))) #3="failed") #1# (|List| #1#)) 41 T ELT)) (|integrate| (((|IntegrationResult| #1#) #1#) 28 T ELT)) (|infieldint| (((|Union| #1# #3#) #1#) 17 T ELT)) (|extendedint| (((|Union| (|Record| (|:| |ratpart| #1#) #2#) #3#) #1# #1#) 48 T ELT)))
+(((|RationalIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integrate| ((|IntegrationResult| #1=(|Fraction| |#2|)) #1#)) (SIGNATURE |infieldint| ((|Union| #1# #2="failed") #1#)) (SIGNATURE |extendedint| ((|Union| (|Record| (|:| |ratpart| #1#) #3=(|:| |coeff| #1#)) #2#) #1# #1#)) (SIGNATURE |limitedint| ((|Union| (|Record| (|:| |mainpart| #1#) (|:| |limitedlogs| (|List| (|Record| #3# (|:| |logand| #1#))))) #2#) #1# (|List| #1#)))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|))) (|UnivariatePolynomialCategory| |#1|)) (T |RationalIntegration|))
+((|limitedint| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|List| #1=(|Fraction| *6))) (|isDomain| *3 #1#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #2=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|RationalIntegration| *5 *6)))) (|extendedint| (*1 *2 *3 *3) (|partial| AND #3=(|ofCategory| *4 #2#) #4=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Record| (|:| |ratpart| #5=(|Fraction| *5)) (|:| |coeff| #5#))) #6=(|isDomain| *1 (|RationalIntegration| *4 *5)) #7=(|isDomain| *3 #5#))) (|infieldint| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|Fraction| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 #2#) (|isDomain| *1 (|RationalIntegration| *3 *4)))) (|integrate| (*1 *2 *3) (AND #3# #4# (|isDomain| *2 (|IntegrationResult| #5#)) #6# #7#)))
+((|integerIfCan| (((|Union| #1=(|Integer|) "failed") |#1|) 14 T ELT)) (|integer?| (((|Boolean|) |#1|) 13 T ELT)) (|integer| ((#1# |#1|) 9 T ELT)))
+(((|IntegerRetractions| |#1|) (CATEGORY |package| (SIGNATURE |integer| (#1=(|Integer|) |#1|)) (SIGNATURE |integer?| ((|Boolean|) |#1|)) (SIGNATURE |integerIfCan| ((|Union| #1# "failed") |#1|))) (|RetractableTo| #1#)) (T |IntegerRetractions|))
+((|integerIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *2 #3=(|Integer|)) #4=(|isDomain| *1 (|IntegerRetractions| *3)) #5=(|ofCategory| *3 (|RetractableTo| *2)))) (|integer?| #1# (AND (|isDomain| *2 (|Boolean|)) #4# (|ofCategory| *3 (|RetractableTo| #3#)))) (|integer| #1# (AND #2# #4# #5#)))
+((|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| #1=(|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| #2=(|:| |coeff| #1#) (|:| |logand| #1#))))) #3="failed") #1# #4=(|Symbol|) (|List| #1#)) 48 T ELT)) (|internalIntegrate| (((|IntegrationResult| #1#) #1# #4#) 28 T ELT)) (|infieldIntegrate| (((|Union| #1# #3#) #1# #4#) 23 T ELT)) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| #1#) #2#) #3#) #1# #4# #1#) 35 T ELT)))
+(((|RationalFunctionIntegration| |#1|) (CATEGORY |package| (SIGNATURE |internalIntegrate| ((|IntegrationResult| #1=(|Fraction| (|Polynomial| |#1|))) #1# #2=(|Symbol|))) (SIGNATURE |infieldIntegrate| ((|Union| #1# #3="failed") #1# #2#)) (SIGNATURE |limitedIntegrate| ((|Union| (|Record| (|:| |mainpart| #1#) (|:| |limitedlogs| (|List| (|Record| #4=(|:| |coeff| #1#) (|:| |logand| #1#))))) #3#) #1# #2# (|List| #1#))) (SIGNATURE |extendedIntegrate| ((|Union| (|Record| (|:| |ratpart| #1#) #4#) #3#) #1# #2# #1#))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (T |RationalFunctionIntegration|))
+((|extendedIntegrate| (*1 *2 *3 *4 *3) (|partial| AND #1=(|isDomain| *4 #2=(|Symbol|)) #3=(|ofCategory| *5 #4=(|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |ratpart| #5=(|Fraction| (|Polynomial| *5))) (|:| |coeff| #5#))) #6=(|isDomain| *1 (|RationalFunctionIntegration| *5)) #7=(|isDomain| *3 #5#))) (|limitedIntegrate| (*1 *2 *3 *4 *5) (|partial| AND #1# (|isDomain| *5 (|List| #8=(|Fraction| (|Polynomial| *6)))) (|isDomain| *3 #8#) (|ofCategory| *6 #4#) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|RationalFunctionIntegration| *6)))) (|infieldIntegrate| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|isDomain| *3 #2#) (|ofCategory| *4 #4#) (|isDomain| *1 (|RationalFunctionIntegration| *4)))) (|internalIntegrate| (*1 *2 *3 *4) (AND #1# #3# (|isDomain| *2 (|IntegrationResult| #5#)) #6# #7#)))
+((~= (#1=(#2=(|Boolean|) $ $) 77 T ELT)) (|zero?| (#3=(#2# $) 49 T ELT)) (|width| (#4=(|#1| $) 39 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| (#3# 81 T ELT)) (|tanh| (#6# 142 T ELT)) (|tan| (#6# 120 T ELT)) (|sup| (#4# 37 T ELT)) (|subtractIfCan| (#7=(#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|sqrt| #5#) (|sinh| (#6# 144 T ELT)) (|sin| (#6# 116 T ELT)) (|sech| (#6# 146 T ELT)) (|sec| (#6# 124 T ELT)) (|sample| (#10=($) NIL T CONST)) (|retractIfCan| (((|Union| #11=(|Integer|) #9#) $) 95 T ELT)) (|retract| ((#11# $) 97 T ELT)) (|recip| ((#8# $) 80 T ELT)) (|qinterval| (#12=($ |#1| |#1|) 35 T ELT)) (|positive?| (#3# 44 T ELT)) (|pi| (#10# 106 T ELT)) (|opposite?| #13=(#1# NIL T ELT)) (|one?| (#3# 56 T ELT)) (|nthRoot| (($ $ #11#) NIL T ELT)) (|negative?| (#3# 46 T ELT)) (|min| #14=(#15=($ $ $) NIL T ELT)) (|max| #14#) (|log| (#6# 108 T ELT)) (|lcm| #14# #16=(($ (|List| $)) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|interval| (#12# 29 T ELT) (($ |#1|) 34 T ELT) (($ #17=(|Fraction| #11#)) 94 T ELT)) (|inf| (#4# 36 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#18=(|SparseUnivariatePolynomial| $) #18# #18#) NIL T ELT)) (|gcd| (#15# 83 T ELT) #16#) (|exquo| (#7# 82 T ELT)) (|exp| (#6# 110 T ELT)) (|csch| (#6# 150 T ELT)) (|csc| (#6# 122 T ELT)) (|coth| (#6# 152 T ELT)) (|cot| (#6# 126 T ELT)) (|cosh| (#6# 148 T ELT)) (|cos| (#6# 118 T ELT)) (|contains?| ((#2# $ |#1|) 42 T ELT)) (|coerce| (((|OutputForm|) $) 102 T ELT) #19=(($ #11#) 85 T ELT) #5# #19#) (|characteristic| ((#20=(|NonNegativeInteger|)) 104 T CONST)) (|before?| #13#) (|atanh| (#6# 164 T ELT)) (|atan| (#6# 132 T ELT)) (|associates?| #13#) (|asinh| (#6# 162 T ELT)) (|asin| (#6# 128 T ELT)) (|asech| (#6# 160 T ELT)) (|asec| (#6# 140 T ELT)) (|annihilate?| #13#) (|acsch| (#6# 158 T ELT)) (|acsc| (#6# 138 T ELT)) (|acoth| (#6# 156 T ELT)) (|acot| (#6# 134 T ELT)) (|acosh| (#6# 154 T ELT)) (|acos| (#6# 130 T ELT)) (|Zero| (#10# 30 T CONST)) (|One| (#10# 10 T CONST)) (>= #13#) (> #13#) (= (#1# 50 T ELT)) (<= #13#) (< (#1# 48 T ELT)) (- (#6# 54 T ELT) (#15# 55 T ELT)) (+ (#15# 53 T ELT)) (** (($ $ #21=(|PositiveInteger|)) 73 T ELT) (($ $ #20#) NIL T ELT) (#15# 112 T ELT) (($ $ #17#) 166 T ELT)) (* (($ #21# $) 67 T ELT) (($ #20# $) NIL T ELT) (($ #11# $) 66 T ELT) (#15# 62 T ELT)))
+(((|Interval| |#1|) (|IntervalCategory| |#1|) (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (T |Interval|))
+NIL
+((|solveLinearPolynomialEquation| (((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| (|Integer|))) "failed") #1# #2#) 27 T ELT)))
+(((|IntegerSolveLinearPolynomialEquation|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| (|Integer|))) "failed") #1# #2#)))) (T |IntegerSolveLinearPolynomialEquation|))
+((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| #1=(|SparseUnivariatePolynomial| (|Integer|)))) (|isDomain| *3 #1#) (|isDomain| *1 (|IntegerSolveLinearPolynomialEquation|)))))
+((|varselect| ((#1=(|List| #2=(|Kernel| |#2|)) #1# #3=(|Symbol|)) 19 T ELT)) (|vark| ((#1# (|List| |#2|) #3#) 23 T ELT)) (|union| ((#1# #1# #1#) 11 T ELT)) (|removeConstantTerm| (#4=(|#2| |#2| #3#) 59 (|has| |#1| (|IntegralDomain|)) ELT)) (|mkPrim| (#4# 87 (AND #5=(|has| |#2| (|ElementaryFunctionCategory|)) #6=(|has| |#1| (|GcdDomain|))) ELT)) (|ksec| ((#2# #2# #1# #3#) 25 T ELT)) (|kmax| ((#2# #1#) 24 T ELT)) (|intPatternMatch| ((#7=(|IntegrationResult| |#2|) |#2| #3# (|Mapping| #7# |#2| #3#) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| #3#)) 115 (AND #5# (|has| |#2| (|LiouvillianFunctionCategory|)) (|has| |#2| (|RetractableTo| #3#)) (|has| |#1| (|ConvertibleTo| (|Pattern| #8=(|Integer|)))) #6# (|has| |#1| (|PatternMatchable| #8#))) ELT)))
+(((|IntegrationTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |varselect| (#1=(|List| #2=(|Kernel| |#2|)) #1# #3=(|Symbol|))) (SIGNATURE |kmax| (#2# #1#)) (SIGNATURE |ksec| (#2# #2# #1# #3#)) (SIGNATURE |union| (#1# #1# #1#)) (SIGNATURE |vark| (#1# (|List| |#2|) #3#)) (IF (|has| |#1| (|IntegralDomain|)) (SIGNATURE |removeConstantTerm| #4=(|#2| |#2| #3#)) |%noBranch|) (IF (|has| |#1| (|GcdDomain|)) (IF (|has| |#2| (|ElementaryFunctionCategory|)) (PROGN (SIGNATURE |mkPrim| #4#) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| #5=(|Integer|)))) (IF (|has| |#1| (|PatternMatchable| #5#)) (IF (|has| |#2| (|LiouvillianFunctionCategory|)) (IF (|has| |#2| (|RetractableTo| #3#)) (SIGNATURE |intPatternMatch| (#6=(|IntegrationResult| |#2|) |#2| #3# (|Mapping| #6# |#2| #3#) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| #3#))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (|SetCategory|) (|FunctionSpace| |#1|)) (T |IntegrationTools|))
+((|intPatternMatch| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *5 (|Mapping| #1=(|IntegrationResult| *3) *3 #2=(|Symbol|))) (|isDomain| *6 (|Mapping| (|Union| (|Record| (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 #2#)) (|ofCategory| *3 #3=(|ElementaryFunctionCategory|)) (|ofCategory| *3 (|LiouvillianFunctionCategory|)) (|ofCategory| *3 (|RetractableTo| *4)) (|ofCategory| *3 (|FunctionSpace| *7)) #4=(|isDomain| *4 #2#) (|ofCategory| *7 (|ConvertibleTo| (|Pattern| #5=(|Integer|)))) (|ofCategory| *7 #6=(|GcdDomain|)) (|ofCategory| *7 (|PatternMatchable| #5#)) (|ofCategory| *7 #7=(|SetCategory|)) (|isDomain| *2 #1#) (|isDomain| *1 (|IntegrationTools| *7 *3)))) (|mkPrim| #8=(*1 *2 *2 *3) (AND #9=(|isDomain| *3 #2#) (|ofCategory| *4 #6#) #10=(|ofCategory| *4 #7#) #11=(|isDomain| *1 (|IntegrationTools| *4 *2)) (|ofCategory| *2 #3#) #12=(|ofCategory| *2 #13=(|FunctionSpace| *4)))) (|removeConstantTerm| #8# (AND #9# (|ofCategory| *4 (|IntegralDomain|)) #10# #11# #12#)) (|vark| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) #4# #14=(|ofCategory| *6 (|FunctionSpace| *5)) #15=(|ofCategory| *5 #7#) (|isDomain| *2 #16=(|List| #17=(|Kernel| *6))) #18=(|isDomain| *1 (|IntegrationTools| *5 *6)))) (|union| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| (|Kernel| *4))) (|ofCategory| *4 (|FunctionSpace| *3)) (|ofCategory| *3 #7#) (|isDomain| *1 (|IntegrationTools| *3 *4)))) (|ksec| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 #16#) #4# (|isDomain| *2 #17#) #14# #15# #18#)) (|kmax| (*1 *2 *3) (AND (|isDomain| *3 #19=(|List| #20=(|Kernel| *5))) #10# (|isDomain| *2 #20#) #21=(|isDomain| *1 (|IntegrationTools| *4 *5)) #22=(|ofCategory| *5 #13#))) (|varselect| #8# (AND (|isDomain| *2 #19#) #9# #22# #10# #21#)))
+((|tanintegrate| ((#1=(|Record| (|:| |answer| #2=(|IntegrationResult| #3=(|Fraction| |#2|))) #4=(|:| |a0| |#1|)) #3# #5=(|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) #6="failed") #7=(|Integer|) |#1| |#1|)) 199 T ELT)) (|primlimitedint| ((#8=(|Union| (|Record| (|:| |answer| #9=(|Record| (|:| |mainpart| #3#) (|:| |limitedlogs| (|List| (|Record| #10=(|:| |coeff| #3#) (|:| |logand| #3#)))))) #4#) #6#) #3# #5# #11=(|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #6#) |#1|) #12=(|List| #3#)) 174 T ELT)) (|primlimintfrac| (((|Union| #9# #6#) #3# #5# #12#) 171 T ELT)) (|primintfldpoly| (((|Union| |#2| #6#) |#2| #11# |#1|) 162 T ELT)) (|primintegrate| ((#1# #3# #5# #11#) 185 T ELT)) (|primextintfrac| (((|Union| #13=(|Record| (|:| |ratpart| #3#) #10#) #6#) #3# #5# #3#) 202 T ELT)) (|primextendedint| ((#14=(|Union| (|Record| (|:| |answer| #3#) #4#) #13# #6#) #3# #5# #11# #3#) 205 T ELT)) (|monomialIntegrate| (((|Record| (|:| |ir| #2#) (|:| |specpart| #3#) #15=(|:| |polypart| |#2|)) #3# #5#) 88 T ELT)) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) #15#) |#2| #5#) 100 T ELT)) (|explimitedint| ((#8# #3# #5# #16=(|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) #7# |#1|) #12#) 178 T ELT)) (|expintfldpoly| (((|Union| #17=(|LaurentPolynomial| |#1| |#2|) #6#) #17# #16#) 166 T ELT)) (|expintegrate| ((#1# #3# #5# #16#) 189 T ELT)) (|expextendedint| ((#14# #3# #5# #16# #3#) 210 T ELT)))
+(((|TranscendentalIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |primintegrate| (#1=(|Record| (|:| |answer| #2=(|IntegrationResult| #3=(|Fraction| |#2|))) #4=(|:| |a0| |#1|)) #3# #5=(|Mapping| |#2| |#2|) #6=(|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #7="failed") |#1|))) (SIGNATURE |expintegrate| (#1# #3# #5# #8=(|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) #9=(|Integer|) |#1|))) (SIGNATURE |tanintegrate| (#1# #3# #5# (|Mapping| (|Union| (|List| |#1|) #7#) #9# |#1| |#1|))) (SIGNATURE |primextendedint| (#10=(|Union| (|Record| (|:| |answer| #3#) #4#) #11=(|Record| (|:| |ratpart| #3#) #12=(|:| |coeff| #3#)) #7#) #3# #5# #6# #3#)) (SIGNATURE |expextendedint| (#10# #3# #5# #8# #3#)) (SIGNATURE |primlimitedint| (#13=(|Union| (|Record| (|:| |answer| #14=(|Record| (|:| |mainpart| #3#) (|:| |limitedlogs| (|List| (|Record| #12# (|:| |logand| #3#)))))) #4#) #7#) #3# #5# #6# #15=(|List| #3#))) (SIGNATURE |explimitedint| (#13# #3# #5# #8# #15#)) (SIGNATURE |primextintfrac| ((|Union| #11# #7#) #3# #5# #3#)) (SIGNATURE |primlimintfrac| ((|Union| #14# #7#) #3# #5# #15#)) (SIGNATURE |primintfldpoly| ((|Union| |#2| #7#) |#2| #6# |#1|)) (SIGNATURE |expintfldpoly| ((|Union| #16=(|LaurentPolynomial| |#1| |#2|) #7#) #16# #8#)) (SIGNATURE |monomialIntegrate| ((|Record| (|:| |ir| #2#) (|:| |specpart| #3#) #17=(|:| |polypart| |#2|)) #3# #5#)) (SIGNATURE |monomialIntPoly| ((|Record| (|:| |answer| |#2|) #17#) |#2| #5#))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |TranscendentalIntegration|))
+((|monomialIntPoly| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *3 *3)) (|ofCategory| *3 #2=(|UnivariatePolynomialCategory| *5)) #3=(|ofCategory| *5 #4=(|Field|)) (|isDomain| *2 (|Record| (|:| |answer| *3) (|:| |polypart| *3))) (|isDomain| *1 (|TranscendentalIntegration| *5 *3)))) (|monomialIntegrate| #1# (AND #5=(|isDomain| *4 (|Mapping| *6 *6)) #6=(|ofCategory| *6 #2#) #3# (|isDomain| *2 (|Record| (|:| |ir| (|IntegrationResult| #7=(|Fraction| *6))) (|:| |specpart| #7#) (|:| |polypart| *6))) #8=(|isDomain| *1 (|TranscendentalIntegration| *5 *6)) #9=(|isDomain| *3 #7#))) (|expintfldpoly| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|LaurentPolynomial| *4 *5)) (|isDomain| *3 (|Mapping| (|Record| (|:| |ans| *4) (|:| |right| *4) #10=(|:| |sol?| (|Boolean|))) #11=(|Integer|) *4)) #12=(|ofCategory| *4 #4#) (|ofCategory| *5 #13=(|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|TranscendentalIntegration| *4 *5)))) (|primintfldpoly| (*1 *2 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| (|Union| (|Record| (|:| |ratpart| *4) (|:| |coeff| *4)) #14="failed") *4)) #12# (|isDomain| *1 (|TranscendentalIntegration| *4 *2)) (|ofCategory| *2 #13#))) (|primlimintfrac| #15=(*1 *2 *3 *4 *5) (|partial| AND #16=(|isDomain| *4 (|Mapping| *7 *7)) (|isDomain| *5 (|List| #17=(|Fraction| *7))) #18=(|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) #19=(|isDomain| *3 #17#) #20=(|ofCategory| *6 #4#) (|isDomain| *2 #21=(|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) #22=(|isDomain| *1 (|TranscendentalIntegration| *6 *7)))) (|primextintfrac| (*1 *2 *3 *4 *3) (|partial| AND #5# #6# #3# (|isDomain| *2 (|Record| (|:| |ratpart| #7#) (|:| |coeff| #7#))) #8# #9#)) (|explimitedint| #23=(*1 *2 *3 *4 *5 *6) (|partial| AND #24=(|isDomain| *4 (|Mapping| *8 *8)) (|isDomain| *5 (|Mapping| (|Record| (|:| |ans| *7) (|:| |right| *7) #10#) #11# *7)) #25=(|isDomain| *6 (|List| #26=(|Fraction| *8))) #27=(|ofCategory| *7 #4#) #28=(|ofCategory| *8 (|UnivariatePolynomialCategory| *7)) #29=(|isDomain| *3 #26#) #30=(|isDomain| *2 (|Record| (|:| |answer| #21#) (|:| |a0| *7))) #31=(|isDomain| *1 (|TranscendentalIntegration| *7 *8)))) (|primlimitedint| #23# (|partial| AND #24# (|isDomain| *5 (|Mapping| (|Union| (|Record| (|:| |ratpart| *7) (|:| |coeff| *7)) #14#) *7)) #25# #27# #28# #29# #30# #31#)) (|expextendedint| #32=(*1 *2 *3 *4 *5 *3) (AND #16# #33=(|isDomain| *5 (|Mapping| (|Record| (|:| |ans| *6) (|:| |right| *6) #10#) #11# *6)) #20# #18# #34=(|isDomain| *2 (|Union| (|Record| (|:| |answer| #17#) #35=(|:| |a0| *6)) (|Record| (|:| |ratpart| #17#) (|:| |coeff| #17#)) #14#)) #22# #19#)) (|primextendedint| #32# (AND #16# #36=(|isDomain| *5 (|Mapping| (|Union| (|Record| (|:| |ratpart| *6) (|:| |coeff| *6)) #14#) *6)) #20# #18# #34# #22# #19#)) (|tanintegrate| #15# (AND #16# (|isDomain| *5 (|Mapping| (|Union| (|List| *6) #14#) #11# *6 *6)) #20# #18# #37=(|isDomain| *2 (|Record| (|:| |answer| (|IntegrationResult| #17#)) #35#)) #22# #19#)) (|expintegrate| #15# (AND #16# #33# #20# #18# #37# #22# #19#)) (|primintegrate| #15# (AND #16# #36# #20# #18# #37# #22# #19#)))
+((|inverseLaplace| (((|Union| |#2| "failed") |#2| #1=(|Symbol|) #1#) 10 T ELT)))
+(((|InverseLaplaceTransform| |#1| |#2|) (CATEGORY |package| (SIGNATURE |inverseLaplace| ((|Union| |#2| "failed") |#2| #1=(|Symbol|) #1#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#)) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|SpecialFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |InverseLaplaceTransform|))
+((|inverseLaplace| (*1 *2 *2 *3 *3) (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#))) (|isDomain| *1 (|InverseLaplaceTransform| *4 *2)) (|ofCategory| *2 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|SpecialFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4))))))
+((|writeUInt8!| (((|Maybe| #1=(|UInt8|)) $ #1#) 27 T ELT)) (|writeInt8!| (((|Maybe| #2=(|Int8|)) $ #2#) 26 T ELT)) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 28 T ELT)) (|writeByte!| (((|Maybe| #3=(|Byte|)) $ #3#) 25 T ELT)) (|readUInt8!| (((|Maybe| (|UInt8|)) $) 12 T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) 8 T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) 10 T ELT)) (|readInt8!| (((|Maybe| (|Int8|)) $) 13 T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) 9 T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) 11 T ELT)) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 7 T ELT)) (|readByte!| (((|Maybe| (|Byte|)) $) 14 T ELT)) (|close!| (($ $) 6 T ELT)))
+(((|InputOutputByteConduit|) (|Category|)) (T |InputOutputByteConduit|))
+NIL
+(|Join| (|InputByteConduit|) (|OutputByteConduit|))
+(((|Conduit|) . T) ((|InputByteConduit|) . T) ((|OutputByteConduit|) . T))
+((|writeUInt8!| ((#1=(|Maybe| #2=(|UInt8|)) $ #2#) NIL T ELT)) (|writeInt8!| ((#3=(|Maybe| #4=(|Int8|)) $ #4#) NIL T ELT)) (|writeBytes!| #5=(((|NonNegativeInteger|) $ (|ByteBuffer|)) NIL T ELT)) (|writeByte!| ((#6=(|Maybe| #7=(|Byte|)) $ #7#) NIL T ELT)) (|readUInt8!| ((#1# $) NIL T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) NIL T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) NIL T ELT)) (|readInt8!| ((#3# $) NIL T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) NIL T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) NIL T ELT)) (|readBytes!| #5#) (|readByte!| ((#6# $) NIL T ELT)) (|isOpen?| (((|Boolean|) $) NIL T ELT)) (|inputOutputBinaryFile| (($ (|FileName|)) 14 T ELT) (($ (|String|)) 16 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|close!| (($ $) NIL T ELT)))
+(((|InputOutputBinaryFile|) (|Join| (|InputOutputByteConduit|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |inputOutputBinaryFile| ($ (|FileName|))) (SIGNATURE |inputOutputBinaryFile| ($ (|String|))) (SIGNATURE |isOpen?| ((|Boolean|) $))))) (T |InputOutputBinaryFile|))
+((|inputOutputBinaryFile| #1=(*1 *1 *2) (AND (|isDomain| *2 (|FileName|)) #2=(|isDomain| *1 (|InputOutputBinaryFile|)))) (|inputOutputBinaryFile| #1# (AND (|isDomain| *2 (|String|)) #2#)) (|isOpen?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #2#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|output| (#3=($) 7 T CONST)) (|latex| (((|String|) $) NIL T ELT)) (|input| (#3# 6 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 15 T ELT)) (|closed| (#3# 9 T CONST)) (|bothWays| (#3# 8 T CONST)) (|before?| #1#) (= (#2# 11 T ELT)))
+(((|IOMode|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |input| #1=($) |constant|) (SIGNATURE |output| #1# |constant|) (SIGNATURE |bothWays| #1# |constant|) (SIGNATURE |closed| #1# |constant|)))) (T |IOMode|))
+((|input| #1=(*1 *1) #2=(|isDomain| *1 (|IOMode|))) (|output| #1# #2#) (|bothWays| #1# #2#) (|closed| #1# #2#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|resolve| (((|Maybe| $) (|Hostname|)) 23 T ELT)) (|latex| ((#3=(|String|) $) NIL T ELT)) (|ip4Address| (($ #3#) 16 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 33 T ELT)) (|bytes| (((|DataArray| 4 (|Byte|)) $) 24 T ELT)) (|before?| #1#) (= (#2# 26 T ELT)))
+(((|IP4Address|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |ip4Address| ($ (|String|))) (SIGNATURE |bytes| ((|DataArray| 4 (|Byte|)) $)) (SIGNATURE |resolve| ((|Maybe| $) (|Hostname|)))))) (T |IP4Address|))
+((|ip4Address| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) #1=(|isDomain| *1 #2=(|IP4Address|)))) (|bytes| (*1 *2 *1) (AND (|isDomain| *2 (|DataArray| 4 (|Byte|))) #1#)) (|resolve| (*1 *2 *3) (AND (|isDomain| *3 (|Hostname|)) (|isDomain| *2 (|Maybe| #2#)) #1#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| (#7=(#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|sqrt| (#10=($ $ #11=(|Integer|)) 73 T ELT)) (|sizeLess?| #1#) (|sample| (#12=($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| #11#) #11#) 79 T ELT)) (|rem| #13=(#14=($ $ $) NIL T ELT)) (|recip| ((#8# $) 64 T ELT)) (|quotientByP| (#6# 43 T ELT)) (|quo| #13#) (|principalIdeal| (((|Record| (|:| |coef| #15=(|List| $)) #16=(|:| |generator| $)) #15#) NIL T ELT)) (|order| (#17=(#18=(|NonNegativeInteger|) $) 16 T ELT)) (|opposite?| #1#) (|one?| #4#) (|multiEuclidean| (((|Union| #15# #9#) #15# $) NIL T ELT)) (|modulus| ((#11#) 37 T ELT)) (|moduloP| ((#11# $) 41 T ELT)) (|lcm| #13# #19=(($ #15#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#20=(|SparseUnivariatePolynomial| $) #20# #20#) NIL T ELT)) (|gcd| #13# #19#) (|extendedEuclidean| (((|Record| #21=(|:| |coef1| $) #22=(|:| |coef2| $) #16#) $ $) NIL T ELT) (((|Union| (|Record| #21# #22#) #9#) $ $ $) NIL T ELT)) (|extend| (#10# 24 T ELT)) (|exquo| (#7# 70 T ELT)) (|expressIdealMember| (((|Maybe| #15#) #15# $) NIL T ELT)) (|euclideanSize| (#17# 17 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 71 T ELT)) (|digits| (((|Stream| #11#) $) 19 T ELT)) (|complete| (#6# 26 T ELT)) (|coerce| (((|OutputForm|) $) 100 T ELT) (($ #11#) 59 T ELT) #5#) (|characteristic| ((#18#) 15 T CONST)) (|before?| #1#) (|associates?| #1#) (|approximate| ((#11# $ #11#) 46 T ELT)) (|annihilate?| #1#) (|Zero| (#12# 44 T CONST)) (|One| (#12# 21 T CONST)) (= (#2# 51 T ELT)) (- (#6# 58 T ELT) (#14# 48 T ELT)) (+ (#14# 57 T ELT)) (** (($ $ #23=(|PositiveInteger|)) NIL T ELT) (($ $ #18#) NIL T ELT)) (* (($ #23# $) NIL T ELT) (($ #18# $) NIL T ELT) (($ #11# $) 60 T ELT) (#14# 61 T ELT)))
+(((|InnerPAdicInteger| |#1| |#2|) (|PAdicIntegerCategory| |#1|) (|Integer|) (|Boolean|)) (T |InnerPAdicInteger|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 30 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #7=(#4# NIL T ELT)) (|transcendent?| #7#) (|transcendenceDegree| #8=(#9=(#10=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #11=(#12=($ $ #13=(|PositiveInteger|)) NIL #14=(|has| $ (|Finite|)) ELT) #5#) (|tableForDiscreteLogarithm| (((|Table| #13# #10#) #15=(|Integer|)) 59 T ELT)) (|subtractIfCan| #16=((#17=(|Union| $ #18="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| #8#) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (#22=(#17# $) 95 T ELT)) (|retract| (#6# 94 T ELT)) (|represents| (($ #23=(|Vector| $)) 93 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (|rem| #24=(#25=($ $ $) NIL T ELT)) (|recip| (#22# 47 T ELT)) (|random| (#21# NIL T ELT)) (|quo| #24#) (|principalIdeal| (((|Record| (|:| |coef| #26=(|List| $)) #27=(|:| |generator| $)) #26#) NIL T ELT)) (|primitiveElement| (#21# 61 T ELT)) (|primitive?| #7#) (|primeFrobenius| #5# #28=(#29=($ $ #10#) NIL T ELT)) (|prime?| #7#) (|order| #30=((#31=(|OnePointCompletion| #13#) $) NIL T ELT) (#32=(#13# $) NIL T ELT)) (|opposite?| #1#) (|one?| #7#) (|normalElement| (#21# 49 #14# ELT)) (|normal?| (#4# NIL #14# ELT)) (|norm| #11# #5#) (|nextItem| #33=(((|Maybe| $) $) NIL T ELT)) (|multiEuclidean| (((|Union| #26# #18#) #26# $) NIL T ELT)) (|minimalPolynomial| ((#34=(|SparseUnivariatePolynomial| $) $ #13#) NIL #14# ELT) (#35=(#34# $) 104 T ELT)) (|lookup| (#32# 67 T ELT)) (|linearAssociatedOrder| #36=(#35# NIL #14# ELT)) (|linearAssociatedLog| (((|Union| #34# #18#) $ $) NIL #14# ELT) #36#) (|linearAssociatedExp| (($ $ #34#) NIL #14# ELT)) (|lcm| #24# #37=(($ #26#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| #20#) (|index| (($ #13#) 60 T ELT)) (|inGroundField?| (#4# 87 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (#21# 28 #14# ELT)) (|gcdPolynomial| ((#34# #34# #34#) NIL T ELT)) (|gcd| #24# #37#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #15#) (|:| |exponent| #15#)))) 54 T ELT)) (|factor| #19#) (|extensionDegree| ((#13#) 86 T ELT) ((#31#) NIL T ELT)) (|extendedEuclidean| (((|Record| #38=(|:| |coef1| $) #39=(|:| |coef2| $) #27#) $ $) NIL T ELT) (((|Union| (|Record| #38# #39#) #18#) $ $ $) NIL T ELT)) (|exquo| #16#) (|expressIdealMember| (((|Maybe| #26#) #26# $) NIL T ELT)) (|euclideanSize| #40=((#10# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (((|Union| #10# #18#) $ $) NIL T ELT) #40#) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #5# #28#) (|degree| (#32# 85 T ELT) #30#) (|definingPolynomial| ((#34#) 102 T ELT)) (|createPrimitiveElement| (#21# 66 T ELT)) (|createNormalElement| (#21# 50 #14# ELT)) (|coordinates| ((#41=(|Matrix| $) #23#) NIL T ELT) ((#23# $) 91 T ELT)) (|convert| ((#15# $) 42 T ELT)) (|conditionP| (((|Union| #23# #18#) #41#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) 45 T ELT) #5# (($ #42=(|Fraction| #15#)) NIL T ELT)) (|charthRoot| #33# (#6# 105 T ELT)) (|characteristic| (#9# 51 T CONST)) (|before?| (#2# 107 T ELT)) (|basis| ((#23# #13#) 97 T ELT) ((#23#) 96 T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #7#) (|Zero| (#21# 31 T CONST)) (|One| (#21# 27 T CONST)) (|Frobenius| (#29# NIL #14# ELT) (#6# NIL #14# ELT)) (D #5# #28#) (= #1#) (/ #24#) (- #5# #24#) (+ #24#) (** (#12# NIL T ELT) #28# (($ $ #15#) 34 T ELT)) (* (($ #13# $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #15# . #43=($)) NIL T ELT) (#25# 81 T ELT) (($ $ #42#) NIL T ELT) (($ #42# . #43#) NIL T ELT)))
+(((|InnerPrimeField| |#1|) (|Join| (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| $) (|ConvertibleTo| (|Integer|))) (|PositiveInteger|)) (T |InnerPrimeField|))
+NIL
+((|iprint| (((|Void|) (|String|)) 10 T ELT)))
+(((|InternalPrintPackage|) (CATEGORY |package| (SIGNATURE |iprint| ((|Void|) (|String|))))) (T |InternalPrintPackage|))
+((|iprint| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|InternalPrintPackage|)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ #4="failed") $ $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| #4#) $) 77 T ELT)) (|retract| (#6=(|#1| $) NIL T ELT)) (|ratpart| (#6# 30 T ELT)) (|opposite?| #1#) (|notelem| ((#7=(|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (|mkAnswer| (($ |#1| #8=(|List| (|Record| (|:| |scalar| #9=(|Fraction| #10=(|Integer|))) (|:| |coeff| #11=(|SparseUnivariatePolynomial| |#1|)) (|:| |logand| #11#))) #7#) 28 T ELT)) (|logpart| ((#8# $) 31 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integral| (($ |#1| |#1|) 38 T ELT) (($ |#1| #12=(|Symbol|)) 49 (|has| |#1| (|RetractableTo| #12#)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elem?| (#3# 35 T ELT)) (|differentiate| ((|#1| $ (|Mapping| |#1| |#1|)) 89 T ELT) ((|#1| $ #12#) 90 (|has| |#1| (|PartialDifferentialRing| #12#)) ELT)) (|coerce| (((|OutputForm|) $) 113 T ELT) (($ |#1|) 29 T ELT)) (|before?| #1#) (|Zero| (#5# 18 T CONST)) (= #1#) (- (($ $) 17 T ELT) (#13=($ $ $) NIL T ELT)) (+ (#13# 86 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #10# $) 16 T ELT) (($ #9# $) 41 T ELT) (($ $ #9#) NIL T ELT)))
+(((|IntegrationResult| |#1|) (|Join| (|Module| #1=(|Fraction| (|Integer|))) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |mkAnswer| ($ |#1| #2=(|List| (|Record| (|:| |scalar| #1#) (|:| |coeff| #3=(|SparseUnivariatePolynomial| |#1|)) (|:| |logand| #3#))) #4=(|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (SIGNATURE |ratpart| (|#1| $)) (SIGNATURE |logpart| (#2# $)) (SIGNATURE |notelem| (#4# $)) (SIGNATURE |elem?| ((|Boolean|) $)) (SIGNATURE |integral| ($ |#1| |#1|)) (SIGNATURE |differentiate| (|#1| $ (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|PartialDifferentialRing| #5=(|Symbol|))) (SIGNATURE |differentiate| (|#1| $ #5#)) |%noBranch|) (IF (|has| |#1| (|RetractableTo| #5#)) (SIGNATURE |integral| ($ |#1| #5#)) |%noBranch|))) (|Field|)) (T |IntegrationResult|))
+((|mkAnswer| (*1 *1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| #1=(|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| #2=(|SparseUnivariatePolynomial| *2)) (|:| |logand| #2#)))) (|isDomain| *4 (|List| (|Record| (|:| |integrand| *2) (|:| |intvar| *2)))) #3=(|ofCategory| *2 #4=(|Field|)) #5=(|isDomain| *1 (|IntegrationResult| *2)))) (|ratpart| #6=(*1 *2 *1) #7=(AND #5# #3#)) (|logpart| #6# (AND (|isDomain| *2 (|List| (|Record| #1# (|:| |coeff| #8=(|SparseUnivariatePolynomial| *3)) (|:| |logand| #8#)))) #9=(|isDomain| *1 (|IntegrationResult| *3)) #10=(|ofCategory| *3 #4#))) (|notelem| #6# (AND (|isDomain| *2 (|List| (|Record| (|:| |integrand| *3) (|:| |intvar| *3)))) #9# #10#)) (|elem?| #6# (AND (|isDomain| *2 (|Boolean|)) #9# #10#)) (|integral| (*1 *1 *2 *2) #7#) (|differentiate| #11=(*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| *2 *2)) #5# #3#)) (|differentiate| #11# (AND #3# (|ofCategory| *2 (|PartialDifferentialRing| *3)) #5# #12=(|isDomain| *3 (|Symbol|)))) (|integral| (*1 *1 *2 *3) (AND #12# #5# (|ofCategory| *2 (|RetractableTo| *3)) #3#)))
+((|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") #3=(|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| #4=(|:| |coeff| |#1|) (|:| |logand| |#1|))))) #2#)) 44 T ELT) (((|Union| |#2| #2#) #3# (|Union| |#1| #2#)) 11 T ELT) (((|Union| (|Record| (|:| |ratpart| |#2|) #1#) #2#) #3# (|Union| (|Record| (|:| |ratpart| |#1|) #4#) #2#)) 35 T ELT) (((|IntegrationResult| |#2|) #3# (|IntegrationResult| |#1|)) 30 T ELT)))
+(((|IntegrationResultFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|IntegrationResult| |#2|) #1=(|Mapping| |#2| |#1|) (|IntegrationResult| |#1|))) (SIGNATURE |map| ((|Union| (|Record| (|:| |ratpart| |#2|) #2=(|:| |coeff| |#2|)) #3="failed") #1# (|Union| (|Record| (|:| |ratpart| |#1|) #4=(|:| |coeff| |#1|)) #3#))) (SIGNATURE |map| ((|Union| |#2| #3#) #1# (|Union| |#1| #3#))) (SIGNATURE |map| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #2# (|:| |logand| |#2|))))) #3#) #1# (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| #4# (|:| |logand| |#1|))))) #3#)))) #5=(|Field|) #5#) (T |IntegrationResultFunctions2|))
+((|map| #1=(*1 *2 *3 *4) (|partial| AND #2=(|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Union| (|Record| (|:| |mainpart| *5) (|:| |limitedlogs| (|List| (|Record| #3=(|:| |coeff| *5) (|:| |logand| *5))))) #4="failed")) #5=(|ofCategory| *5 #6=(|Field|)) #7=(|ofCategory| *6 #6#) (|isDomain| *2 (|Record| (|:| |mainpart| *6) (|:| |limitedlogs| (|List| (|Record| #8=(|:| |coeff| *6) (|:| |logand| *6)))))) #9=(|isDomain| *1 (|IntegrationResultFunctions2| *5 *6)))) (|map| #1# (|partial| AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Union| *5 #4#)) #5# (|ofCategory| *2 #6#) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *2)))) (|map| #1# (|partial| AND #2# (|isDomain| *4 (|Union| (|Record| (|:| |ratpart| *5) #3#) #4#)) #5# #7# (|isDomain| *2 (|Record| (|:| |ratpart| *6) #8#)) #9#)) (|map| #1# (AND #2# (|isDomain| *4 (|IntegrationResult| *5)) #5# #7# (|isDomain| *2 (|IntegrationResult| *6)) #9#)))
+((|split| ((#1=(|IntegrationResult| |#2|) #1#) 42 T ELT)) (|expand| (((|List| |#2|) #1#) 44 T ELT)) (|complexExpand| ((|#2| #1#) 50 T ELT)))
+(((|IntegrationResultToFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |split| (#1=(|IntegrationResult| |#2|) #1#)) (SIGNATURE |expand| ((|List| |#2|) #1#)) (SIGNATURE |complexExpand| (|#2| #1#))) (|Join| (|GcdDomain|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|))) (T |IntegrationResultToFunction|))
+((|complexExpand| #1=(*1 *2 *3) (AND (|isDomain| *3 (|IntegrationResult| *2)) (|ofCategory| *2 #2=(|Join| (|AlgebraicallyClosedFunctionSpace| *4) #3=(|TranscendentalFunctionCategory|))) (|isDomain| *1 (|IntegrationResultToFunction| *4 *2)) #4=(|ofCategory| *4 #5=(|Join| (|GcdDomain|) (|RetractableTo| #6=(|Integer|)) (|LinearlyExplicitRingOver| #6#))))) (|expand| #1# (AND (|isDomain| *3 (|IntegrationResult| *5)) (|ofCategory| *5 #2#) #4# (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|IntegrationResultToFunction| *4 *5)))) (|split| (*1 *2 *2) (AND (|isDomain| *2 (|IntegrationResult| *4)) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedFunctionSpace| *3) #3#)) (|ofCategory| *3 #5#) (|isDomain| *1 (|IntegrationResultToFunction| *3 *4)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|irVar| (#2=($ #3=(|Identifier|) #4=(|InternalTypeForm|)) 14 T ELT)) (|irDef| (($ #3# #4# $) 16 T ELT)) (|irCtor| (#2# 15 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #5=(|Syntax|)) 7 T ELT) ((#5# $) 6 T ELT)) (|before?| #1#) (= #1#))
+(((|InternalRepresentationForm|) (|Join| (|SetCategory|) (|HomotopicTo| (|Syntax|)) (CATEGORY |domain| (SIGNATURE |irVar| #1=($ #2=(|Identifier|) #3=(|InternalTypeForm|))) (SIGNATURE |irCtor| #1#) (SIGNATURE |irDef| ($ #2# #3# $))))) (T |InternalRepresentationForm|))
+((|irVar| #1=(*1 *1 *2 *3) #2=(AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|InternalTypeForm|)) (|isDomain| *1 (|InternalRepresentationForm|)))) (|irCtor| #1# #2#) (|irDef| (*1 *1 *2 *3 *1) #2#))
+((|perfectSquare?| ((#1=(|Boolean|) |#1|) 16 T ELT)) (|perfectSqrt| ((#2=(|Union| |#1| "failed") |#1|) 14 T ELT)) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| #3=(|NonNegativeInteger|))) |#1|) 37 T ELT) ((#2# |#1| #3#) 18 T ELT)) (|perfectNthPower?| ((#1# |#1| #3#) 19 T ELT)) (|approxSqrt| ((|#1| |#1|) 41 T ELT)) (|approxNthRoot| ((|#1| |#1| #3#) 44 T ELT)))
+(((|IntegerRoots| |#1|) (CATEGORY |package| (SIGNATURE |perfectNthPower?| (#1=(|Boolean|) |#1| #2=(|NonNegativeInteger|))) (SIGNATURE |perfectNthRoot| (#3=(|Union| |#1| "failed") |#1| #2#)) (SIGNATURE |perfectNthRoot| ((|Record| (|:| |base| |#1|) (|:| |exponent| #2#)) |#1|)) (SIGNATURE |approxNthRoot| (|#1| |#1| #2#)) (SIGNATURE |perfectSquare?| (#1# |#1|)) (SIGNATURE |perfectSqrt| (#3# |#1|)) (SIGNATURE |approxSqrt| (|#1| |#1|))) (|IntegerNumberSystem|)) (T |IntegerRoots|))
+((|approxSqrt| #1=(*1 *2 *2) (AND #2=(|isDomain| *1 (|IntegerRoots| *2)) #3=(|ofCategory| *2 #4=(|IntegerNumberSystem|)))) (|perfectSqrt| #1# (|partial| AND #2# #3#)) (|perfectSquare?| #5=(*1 *2 *3) (AND #6=(|isDomain| *2 (|Boolean|)) #7=(|isDomain| *1 (|IntegerRoots| *3)) #8=(|ofCategory| *3 #4#))) (|approxNthRoot| #9=(*1 *2 *2 *3) (AND #10=(|isDomain| *3 #11=(|NonNegativeInteger|)) #2# #3#)) (|perfectNthRoot| #5# (AND (|isDomain| *2 (|Record| (|:| |base| *3) (|:| |exponent| #11#))) #7# #8#)) (|perfectNthRoot| #9# (|partial| AND #10# #2# #3#)) (|perfectNthPower?| (*1 *2 *3 *4) (AND (|isDomain| *4 #11#) #6# #7# #8#)))
+((|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 44 T ELT)))
+(((|IrredPolyOverFiniteField| |#1|) (CATEGORY |package| (SIGNATURE |generateIrredPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)))) (|FiniteFieldCategory|)) (T |IrredPolyOverFiniteField|))
+((|generateIrredPoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|IrredPolyOverFiniteField| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))))
+((|split| ((#1=(|IntegrationResult| #2=(|Fraction| (|Polynomial| |#1|))) #1#) 27 T ELT)) (|integrate| (((|Union| #3=(|Expression| |#1|) #4=(|List| #3#)) #2# #5=(|Symbol|)) 33 #6=(|has| |#1| (|CharacteristicZero|)) ELT)) (|expand| ((#4# #1#) 19 T ELT)) (|complexIntegrate| ((#3# #2# #5#) 31 #6# ELT)) (|complexExpand| ((#3# #1#) 21 T ELT)))
+(((|IntegrationResultRFToFunction| |#1|) (CATEGORY |package| (SIGNATURE |split| (#1=(|IntegrationResult| #2=(|Fraction| (|Polynomial| |#1|))) #1#)) (SIGNATURE |expand| (#3=(|List| #4=(|Expression| |#1|)) #1#)) (SIGNATURE |complexExpand| (#4# #1#)) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |integrate| ((|Union| #4# #3#) #2# #5=(|Symbol|))) (SIGNATURE |complexIntegrate| (#4# #2# #5#))) |%noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| #6=(|Integer|)) (|LinearlyExplicitRingOver| #6#))) (T |IntegrationResultRFToFunction|))
+((|complexIntegrate| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Fraction| (|Polynomial| *5))) #3=(|isDomain| *4 (|Symbol|)) #4=(|ofCategory| *5 (|CharacteristicZero|)) #5=(|ofCategory| *5 #6=(|Join| (|GcdDomain|) (|RetractableTo| #7=(|Integer|)) (|LinearlyExplicitRingOver| #7#))) (|isDomain| *2 #8=(|Expression| *5)) #9=(|isDomain| *1 (|IntegrationResultRFToFunction| *5)))) (|integrate| #1# (AND #2# #3# #4# #5# (|isDomain| *2 (|Union| #8# (|List| #8#))) #9#)) (|complexExpand| #10=(*1 *2 *3) (AND #11=(|isDomain| *3 (|IntegrationResult| (|Fraction| (|Polynomial| *4)))) #12=(|ofCategory| *4 #6#) (|isDomain| *2 #13=(|Expression| *4)) #14=(|isDomain| *1 (|IntegrationResultRFToFunction| *4)))) (|expand| #10# (AND #11# #12# (|isDomain| *2 (|List| #13#)) #14#)) (|split| (*1 *2 *2) (AND (|isDomain| *2 (|IntegrationResult| (|Fraction| (|Polynomial| *3)))) (|ofCategory| *3 #6#) (|isDomain| *1 (|IntegrationResultRFToFunction| *3)))))
+((|irreducibleRepresentation| ((#1=(|List| #2=(|Matrix| #3=(|Integer|))) #4=(|List| (|PositiveInteger|)) (|List| #5=(|Permutation| #3#))) 80 T ELT) ((#1# #4#) 81 T ELT) ((#2# #4# #5#) 74 T ELT)) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) #4#) 71 T ELT)))
+(((|IrrRepSymNatPackage|) (CATEGORY |package| (SIGNATURE |dimensionOfIrreducibleRepresentation| ((|NonNegativeInteger|) #1=(|List| (|PositiveInteger|)))) (SIGNATURE |irreducibleRepresentation| (#2=(|Matrix| #3=(|Integer|)) #1# #4=(|Permutation| #3#))) (SIGNATURE |irreducibleRepresentation| (#5=(|List| #2#) #1#)) (SIGNATURE |irreducibleRepresentation| (#5# #1# (|List| #4#))))) (T |IrrRepSymNatPackage|))
+((|irreducibleRepresentation| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *4 (|List| #3=(|Permutation| #4=(|Integer|)))) #5=(|isDomain| *2 (|List| #6=(|Matrix| #4#))) #7=(|isDomain| *1 (|IrrRepSymNatPackage|)))) (|irreducibleRepresentation| #8=(*1 *2 *3) (AND #2# #5# #7#)) (|irreducibleRepresentation| #1# (AND #2# (|isDomain| *4 #3#) (|isDomain| *2 #6#) #7#)) (|dimensionOfIrreducibleRepresentation| #8# (AND #2# (|isDomain| *2 (|NonNegativeInteger|)) #7#)))
+((|rur| ((#1=(|List| |#5|) |#5| #2=(|Boolean|)) 97 T ELT)) (|checkRur| ((#2# |#5| #1#) 34 T ELT)))
+(((|InternalRationalUnivariateRepresentationPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |rur| (#1=(|List| |#5|) |#5| #2=(|Boolean|))) (SIGNATURE |checkRur| (#2# |#5| #1#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |InternalRationalUnivariateRepresentationPackage|))
+((|checkRur| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 #2=(|List| *3)) #3=(|ofCategory| *3 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) #4=(|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) #5=(|ofCategory| *6 (|OrderedAbelianMonoidSup|)) #6=(|ofCategory| *7 (|OrderedSet|)) #7=(|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 #8=(|Boolean|)) #9=(|isDomain| *1 (|InternalRationalUnivariateRepresentationPackage| *5 *6 *7 *8 *3)))) (|rur| #1# (AND (|isDomain| *4 #8#) #4# #5# #6# #7# (|isDomain| *2 #2#) #9# #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| (#2=((|SpadAst|) $) 12 T ELT)) (|lhs| (#2# 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|IsAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |lhs| #1=((|SpadAst|) $)) (SIGNATURE |rhs| #1#)))) (T |IsAst|))
+((|lhs| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IsAst|)))) (|rhs| #1# #2#))
+((|sum| ((#1=(|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) 23 T ELT) ((#1# |#4| |#2| (|Segment| |#4|)) 32 T ELT)))
+(((|InnerPolySum| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |sum| (#1=(|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|))) (SIGNATURE |sum| (#1# |#4| |#2|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |InnerPolySum|))
+((|sum| (*1 *2 *3 *4) (AND (|ofCategory| *5 #1=(|OrderedAbelianMonoidSup|)) #2=(|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 #3=(|IntegralDomain|)) #4=(|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| (|Integer|)))) (|isDomain| *1 (|InnerPolySum| *5 *4 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))) (|sum| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Segment| *3)) (|ofCategory| *3 (|PolynomialCategory| *7 *6 *4)) (|ofCategory| *6 #1#) #2# (|ofCategory| *7 #3#) #4# (|isDomain| *1 (|InnerPolySum| *6 *4 *7 *3)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 71 T ELT)) (|variables| ((#5=(|List| #6=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#7=(|Symbol|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #8=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #9=(#10=($ $) NIL #8# ELT)) (|unit?| (#4# NIL #8# ELT)) (|truncate| (#11=($ $ #12=(|Integer|)) 58 T ELT) (($ $ #12# #12#) 59 T ELT)) (|terms| (#13=(#14=(|Stream| (|Record| (|:| |k| #12#) (|:| |c| |#1|))) $) 65 T ELT)) (|taylorQuoByVar| (#10# 109 T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ "failed") $ $) NIL T ELT)) (|seriesToOutputForm| ((#17=(|OutputForm|) #14# #18=(|Reference| (|OrderedCompletion| #12#)) #7# |#1| #19=(|Fraction| #12#)) 232 T ELT)) (|series| (($ #14#) 36 T ELT)) (|sample| (#20=($) NIL T CONST)) (|reductum| #21=(#10# NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|pole?| #22=(#4# NIL T ELT)) (|order| (#23=(#12# $) 63 T ELT) ((#12# $ #12#) 64 T ELT)) (|opposite?| #1#) (|one?| #22#) (|multiplyExponents| (#24=($ $ #25=(|PositiveInteger|)) 83 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #12#) $) 80 T ELT)) (|monomial?| (#4# 26 T ELT)) (|monomial| (($ |#1| #12#) 22 T ELT) (($ $ #6# #12#) NIL T ELT) (($ $ #5# (|List| #12#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 75 T ELT)) (|makeSeries| (($ #18# #14#) 13 T ELT)) (|leadingMonomial| #21#) (|leadingCoefficient| #26=((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integrate| (#10# 120 #27=(|has| |#1| (|Algebra| #19#)) ELT)) (|iExquo| ((#16# $ $ #3#) 108 T ELT)) (|iCompose| (#28=($ $ $) 116 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|getStream| (#13# 15 T ELT)) (|getRef| ((#18# $) 14 T ELT)) (|extend| (#11# 47 T ELT)) (|exquo| (#15# NIL #8# ELT)) (|eval| (((|Stream| |#1|) $ |#1|) NIL #29=(|has| |#1| (SIGNATURE ** (|#1| |#1| #12#))) ELT)) (|elt| (#30=(|#1| $ #12#) 62 T ELT) (#28# NIL (|has| #12# (|SemiGroup|)) ELT)) (|differentiate| #31=(($ $ #7#) NIL #32=(AND (|has| |#1| (|PartialDifferentialRing| #7#)) #33=(|has| |#1| (SIGNATURE * (|#1| #12# |#1|)))) ELT) #34=(($ $ #35=(|List| #7#)) NIL #32# ELT) #36=(($ $ #7# #37=(|NonNegativeInteger|)) NIL #32# ELT) #38=(($ $ #35# (|List| #37#)) NIL #32# ELT) (#10# 77 #33# ELT) #39=(#40=($ $ #37#) NIL #33# ELT)) (|degree| (#23# NIL T ELT)) (|complete| (#10# 48 T ELT)) (|coerce| ((#17# $) NIL T ELT) (($ #12#) 29 T ELT) (($ #19#) NIL #27# ELT) #9# (($ |#1|) 28 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficient| (#30# 61 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#37#) 39 T CONST)) (|center| #26#) (|cTanh| (#10# 192 #27# ELT)) (|cTan| (#10# 167 #27# ELT)) (|cSinh| (#10# 189 #27# ELT)) (|cSin| (#10# 164 #27# ELT)) (|cSech| (#10# 194 #27# ELT)) (|cSec| (#10# 170 #27# ELT)) (|cRationalPower| (#41=($ $ #19#) 157 #27# ELT)) (|cPower| (#42=($ $ |#1|) 128 #27# ELT)) (|cLog| (#10# 161 #27# ELT)) (|cExp| (#10# 159 #27# ELT)) (|cCsch| (#10# 195 #27# ELT)) (|cCsc| (#10# 171 #27# ELT)) (|cCoth| (#10# 193 #27# ELT)) (|cCot| (#10# 169 #27# ELT)) (|cCosh| (#10# 190 #27# ELT)) (|cCos| (#10# 165 #27# ELT)) (|cAtanh| (#10# 200 #27# ELT)) (|cAtan| (#10# 180 #27# ELT)) (|cAsinh| (#10# 197 #27# ELT)) (|cAsin| (#10# 176 #27# ELT)) (|cAsech| (#10# 204 #27# ELT)) (|cAsec| (#10# 184 #27# ELT)) (|cAcsch| (#10# 206 #27# ELT)) (|cAcsc| (#10# 186 #27# ELT)) (|cAcoth| (#10# 202 #27# ELT)) (|cAcot| (#10# 182 #27# ELT)) (|cAcosh| (#10# 199 #27# ELT)) (|cAcos| (#10# 178 #27# ELT)) (|before?| #1#) (|associates?| (#2# NIL #8# ELT)) (|approximate| (#30# NIL (AND #29# (|has| |#1| (SIGNATURE |coerce| (|#1| #7#)))) ELT)) (|annihilate?| #1#) (|Zero| (#20# 30 T CONST)) (|One| (#20# 40 T CONST)) (D #31# #34# #36# #38# (#10# NIL #33# ELT) #39#) (= (#2# 73 T ELT)) (/ (#42# NIL (|has| |#1| (|Field|)) ELT)) (- (#10# 91 T ELT) (#28# 72 T ELT)) (+ (#28# 88 T ELT)) (** (#24# NIL T ELT) (#40# 111 T ELT)) (* (($ #25# $) 98 T ELT) (($ #37# $) 96 T ELT) (($ #12# $) 93 T ELT) (#28# 104 T ELT) (#42# NIL T ELT) (($ |#1| . #43=($)) 123 T ELT) (($ #19# . #43#) NIL #27# ELT) (#41# NIL #27# ELT)))
+(((|InnerSparseUnivariatePowerSeries| |#1|) (|Join| (|UnivariatePowerSeriesCategory| |#1| #1=(|Integer|)) (CATEGORY |domain| (SIGNATURE |makeSeries| ($ #2=(|Reference| (|OrderedCompletion| #1#)) #3=(|Stream| (|Record| (|:| |k| #1#) (|:| |c| |#1|))))) (SIGNATURE |getRef| (#2# $)) (SIGNATURE |getStream| (#3# $)) (SIGNATURE |series| ($ #3#)) (SIGNATURE |monomial?| (#4=(|Boolean|) $)) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |#1| #1#) $)) (SIGNATURE |iExquo| ((|Union| $ "failed") $ $ #4#)) (SIGNATURE |taylorQuoByVar| #5=($ $)) (SIGNATURE |iCompose| ($ $ $)) (SIGNATURE |seriesToOutputForm| ((|OutputForm|) #3# #2# (|Symbol|) |#1| #6=(|Fraction| #1#))) (IF (|has| |#1| (|Algebra| #6#)) (PROGN (SIGNATURE |integrate| #5#) (SIGNATURE |cPower| ($ $ |#1|)) (SIGNATURE |cRationalPower| ($ $ #6#)) (SIGNATURE |cExp| #5#) (SIGNATURE |cLog| #5#) (SIGNATURE |cSin| #5#) (SIGNATURE |cCos| #5#) (SIGNATURE |cTan| #5#) (SIGNATURE |cCot| #5#) (SIGNATURE |cSec| #5#) (SIGNATURE |cCsc| #5#) (SIGNATURE |cAsin| #5#) (SIGNATURE |cAcos| #5#) (SIGNATURE |cAtan| #5#) (SIGNATURE |cAcot| #5#) (SIGNATURE |cAsec| #5#) (SIGNATURE |cAcsc| #5#) (SIGNATURE |cSinh| #5#) (SIGNATURE |cCosh| #5#) (SIGNATURE |cTanh| #5#) (SIGNATURE |cCoth| #5#) (SIGNATURE |cSech| #5#) (SIGNATURE |cCsch| #5#) (SIGNATURE |cAsinh| #5#) (SIGNATURE |cAcosh| #5#) (SIGNATURE |cAtanh| #5#) (SIGNATURE |cAcoth| #5#) (SIGNATURE |cAsech| #5#) (SIGNATURE |cAcsch| #5#)) |%noBranch|))) (|Ring|)) (T |InnerSparseUnivariatePowerSeries|))
+((|monomial?| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Boolean|)) #3=(|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) #4=(|ofCategory| *3 #5=(|Ring|)))) (|makeSeries| (*1 *1 *2 *3) (AND #6=(|isDomain| *2 #7=(|Reference| (|OrderedCompletion| #8=(|Integer|)))) (|isDomain| *3 (|Stream| (|Record| #9=(|:| |k| #8#) (|:| |c| *4)))) (|ofCategory| *4 #5#) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *4)))) (|getRef| #1# (AND #6# #3# #4#)) (|getStream| #1# (AND #10=(|isDomain| *2 (|Stream| (|Record| #9# (|:| |c| *3)))) #3# #4#)) (|series| (*1 *1 *2) (AND #10# #4# #3#)) (|multiplyCoefficients| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 #8#)) #4# #3#)) (|iExquo| (*1 *1 *1 *1 *2) (|partial| AND #2# #3# #4#)) (|taylorQuoByVar| #11=(*1 *1 *1) #12=(AND #13=(|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) #14=(|ofCategory| *2 #5#))) (|iCompose| (*1 *1 *1 *1) #12#) (|seriesToOutputForm| (*1 *2 *3 *4 *5 *6 *7) (AND (|isDomain| *3 (|Stream| (|Record| #9# (|:| |c| *6)))) (|isDomain| *4 #7#) (|isDomain| *5 (|Symbol|)) (|isDomain| *7 #15=(|Fraction| #8#)) (|ofCategory| *6 #5#) (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *6)))) (|integrate| #11# #16=(AND #13# (|ofCategory| *2 (|Algebra| #15#)) #14#)) (|cPower| #17=(*1 *1 *1 *2) #16#) (|cRationalPower| #17# (AND (|isDomain| *2 #15#) #3# (|ofCategory| *3 (|Algebra| *2)) #4#)) (|cExp| #11# #16#) (|cLog| #11# #16#) (|cSin| #11# #16#) (|cCos| #11# #16#) (|cTan| #11# #16#) (|cCot| #11# #16#) (|cSec| #11# #16#) (|cCsc| #11# #16#) (|cAsin| #11# #16#) (|cAcos| #11# #16#) (|cAtan| #11# #16#) (|cAcot| #11# #16#) (|cAsec| #11# #16#) (|cAcsc| #11# #16#) (|cSinh| #11# #16#) (|cCosh| #11# #16#) (|cTanh| #11# #16#) (|cCoth| #11# #16#) (|cSech| #11# #16#) (|cCsch| #11# #16#) (|cAsinh| #11# #16#) (|cAcosh| #11# #16#) (|cAtanh| #11# #16#) (|cAcoth| #11# #16#) (|cAsech| #11# #16#) (|cAcsch| #11# #16#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 62 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #5=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #6=(#7=($ $) NIL #5# ELT)) (|unit?| (#4# NIL #5# ELT)) (|subtractIfCan| (#8=(#9=(|Union| $ "failed") $ $) NIL T ELT)) (|series| (($ #10=(|Stream| |#1|)) 9 T ELT)) (|sample| (#11=($) NIL T CONST)) (|recip| ((#9# $) 44 T ELT)) (|pole?| (#4# 56 T ELT)) (|order| ((#12=(|NonNegativeInteger|) $) 61 T ELT) ((#12# $ #12#) 60 T ELT)) (|opposite?| #1#) (|one?| (#4# NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| (#8# 46 #5# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #13=(|Integer|)) NIL T ELT) #6#) (|coefficients| ((#10# $) 25 T ELT)) (|characteristic| ((#12#) 55 T CONST)) (|before?| #1#) (|associates?| (#2# NIL #5# ELT)) (|annihilate?| #1#) (|Zero| (#11# 10 T CONST)) (|One| (#11# 14 T CONST)) (= (#2# 24 T ELT)) (- (#7# 32 T ELT) (#14=($ $ $) 16 T ELT)) (+ (#14# 27 T ELT)) (** (($ $ #15=(|PositiveInteger|)) NIL T ELT) (($ $ #12#) 53 T ELT)) (* (($ #15# $) NIL T ELT) (($ #12# $) NIL T ELT) (($ #13# $) 36 T ELT) (#14# 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ #13#) 38 T ELT)))
+(((|InnerTaylorSeries| |#1|) (|Join| #1=(|Ring|) (|BiModule| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |coefficients| (#2=(|Stream| |#1|) $)) (SIGNATURE |series| ($ #2#)) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |order| (#3=(|NonNegativeInteger|) $)) (SIGNATURE |order| (#3# $ #3#)) (SIGNATURE * ($ $ (|Integer|))) (IF (|has| |#1| #4=(|IntegralDomain|)) (ATTRIBUTE #4#) |%noBranch|))) #1#) (T |InnerTaylorSeries|))
+((|coefficients| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Stream| *3)) #3=(|isDomain| *1 (|InnerTaylorSeries| *3)) #4=(|ofCategory| *3 (|Ring|)))) (|series| (*1 *1 *2) (AND #2# #4# #3#)) (|pole?| #1# (AND (|isDomain| *2 (|Boolean|)) #3# #4#)) (|order| #1# #5=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3# #4#)) (|order| (*1 *2 *1 *2) #5#) (* (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #3# #4#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|voidMode| (#2=($) 8 T CONST)) (|noValueMode| (#2# 7 T CONST)) (|mappingMode| (($ $ (|List| $)) 16 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jokerMode| (#2# 6 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) . #3=($)) NIL T ELT) (($ #4=(|Syntax|)) 15 T ELT) ((#4# . #3#) 10 T ELT)) (|categoryMode| (#2# NIL T CONST)) (|before?| #1#) (= #1#))
+(((|InternalTypeForm|) (|Join| (|SetCategory|) (|HomotopicTo| (|Syntax|)) (CATEGORY |domain| (SIGNATURE |jokerMode| #1=($) |constant|) (SIGNATURE |noValueMode| #1# |constant|) (SIGNATURE |voidMode| #1# |constant|) (SIGNATURE |categoryMode| #1# |constant|) (SIGNATURE |mappingMode| ($ $ (|List| $)))))) (T |InternalTypeForm|))
+((|jokerMode| #1=(*1 *1) #2=(|isDomain| *1 #3=(|InternalTypeForm|))) (|noValueMode| #1# #2#) (|voidMode| #1# #2#) (|categoryMode| #1# #2#) (|mappingMode| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| #3#)) #2#)))
+((|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) 15 T ELT)))
+(((|InfiniteTupleFunctions2| |#1| |#2|) (|Join| #1=(|Type|) (CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|))))) #1# #1#) (T |InfiniteTupleFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|InfiniteTuple| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|InfiniteTuple| *6)) (|isDomain| *1 (|InfiniteTupleFunctions2| *5 *6)))))
+((|map| ((#1=(|Stream| |#3|) #2=(|Mapping| |#3| |#1| |#2|) #3=(|InfiniteTuple| |#1|) (|Stream| |#2|)) 20 T ELT) ((#1# #2# (|Stream| |#1|) #4=(|InfiniteTuple| |#2|)) 19 T ELT) (((|InfiniteTuple| |#3|) #2# #3# #4#) 18 T ELT)))
+(((|InfiniteTupleFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#3|) #1=(|Mapping| |#3| |#1| |#2|) #2=(|InfiniteTuple| |#1|) #3=(|InfiniteTuple| |#2|))) (SIGNATURE |map| (#4=(|Stream| |#3|) #1# (|Stream| |#1|) #3#)) (SIGNATURE |map| (#4# #1# #2# (|Stream| |#2|)))) #5=(|Type|) #5# #5#) (T |InfiniteTupleFunctions3|))
+((|map| #1=(*1 *2 *3 *4 *5) (AND #2=(|isDomain| *3 (|Mapping| *8 *6 *7)) #3=(|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|Stream| *7)) #4=(|ofCategory| *6 #5=(|Type|)) #6=(|ofCategory| *7 #5#) #7=(|ofCategory| *8 #5#) #8=(|isDomain| *2 (|Stream| *8)) #9=(|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8)))) (|map| #1# (AND #2# (|isDomain| *4 (|Stream| *6)) #10=(|isDomain| *5 (|InfiniteTuple| *7)) #4# #6# #7# #8# #9#)) (|map| #1# (AND #2# #3# #10# #4# #6# #7# (|isDomain| *2 (|InfiniteTuple| *8)) #9#)))
+((|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) 57 T ELT)) (|explogs2trigs| ((#1=(|Complex| |#2|) |#3|) 122 T ELT)) (GF2FG ((|#3| #1#) 46 T ELT)) (FG2F ((|#2| |#3|) 21 T ELT)) (F2FG ((|#3| |#2|) 35 T ELT)))
+(((|InnerTrigonometricManipulations| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE GF2FG (|#3| #1=(|Complex| |#2|))) (SIGNATURE FG2F (|#2| |#3|)) (SIGNATURE F2FG (|#3| |#2|)) (SIGNATURE |explogs2trigs| (#1# |#3|)) (SIGNATURE |trigs2explogs| (|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))))) (|IntegralDomain|) (|Join| (|FunctionSpace| |#1|) #2=(|RadicalCategory|) #3=(|TranscendentalFunctionCategory|)) (|Join| (|FunctionSpace| (|Complex| |#1|)) #2# #3#)) (T |InnerTrigonometricManipulations|))
+((|trigs2explogs| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Kernel| *2))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *2 (|Join| (|FunctionSpace| #1=(|Complex| *5)) #2=(|RadicalCategory|) #3=(|TranscendentalFunctionCategory|))) (|ofCategory| *5 #4=(|IntegralDomain|)) (|isDomain| *1 (|InnerTrigonometricManipulations| *5 *6 *2)) (|ofCategory| *6 (|Join| (|FunctionSpace| *5) #2# #3#)))) (|explogs2trigs| #5=(*1 *2 *3) (AND #6=(|ofCategory| *4 #4#) (|isDomain| *2 #1#) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *3)) #7=(|ofCategory| *5 #8=(|Join| (|FunctionSpace| *4) #2# #3#)) #9=(|ofCategory| *3 #10=(|Join| (|FunctionSpace| (|Complex| *4)) #2# #3#)))) (F2FG #5# (AND #6# #11=(|ofCategory| *2 #10#) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *3 *2)) (|ofCategory| *3 #8#))) (FG2F #5# (AND #6# (|ofCategory| *2 #8#) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *2 *3)) #9#)) (GF2FG #5# (AND (|isDomain| *3 #1#) #7# #6# #11# (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *2)))))
+((|select| (#1=($ (|Mapping| (|Boolean|) |#1|) $) 19 T ELT)) (|map| (($ #2=(|Mapping| |#1| |#1|) $) 22 T ELT)) (|generate| (($ #2# |#1|) 11 T ELT)) (|filterWhile| (#1# 15 T ELT)) (|filterUntil| (#1# 17 T ELT)) (|construct| (((|Stream| |#1|) $) 20 T ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT)))
+(((|InfiniteTuple| |#1|) (|Join| (|Functorial| |#1|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |filterWhile| #1=($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| #1#) (SIGNATURE |select| #1#) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |construct| ((|Stream| |#1|) $)))) (|Type|)) (T |InfiniteTuple|))
+((|filterWhile| #1=(*1 *1 *2 *1) #2=(AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) #3=(|ofCategory| *3 (|Type|)) #4=(|isDomain| *1 (|InfiniteTuple| *3)))) (|filterUntil| #1# #2#) (|select| #1# #2#) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) #3# #4#)) (|construct| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) #4# #3#)))
+((|swap!| (((|Void|) $ |#2| |#2|) 34 T ELT)) (|minIndex| (#1=(|#2| $) 23 T ELT)) (|maxIndex| (#1# 21 T ELT)) (|map| (($ (|Mapping| |#3| |#3|) $) 30 T ELT)) (|first| ((|#3| $) 26 T ELT)) (|fill!| (($ $ |#3|) 32 T ELT)) (|entry?| (((|Boolean|) |#3| $) 17 T ELT)) (|entries| (((|List| |#3|) $) 15 T ELT)) (|elt| ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
+(((|IndexedAggregate&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |swap!| ((|Void|) |#1| |#2| |#2|)) (SIGNATURE |fill!| (|#1| |#1| |#3|)) (SIGNATURE |first| (|#3| |#1|)) (SIGNATURE |minIndex| #1=(|#2| |#1|)) (SIGNATURE |maxIndex| #1#) (SIGNATURE |entry?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|))) (|IndexedAggregate| |#2| |#3|) (|BasicType|) (|Type|)) (T |IndexedAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#2| . #2=((|BasicType|))) ELT)) (|swap!| (((|Void|) $ |#1| |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| ((|#2| $ |#1| |#2|) 47 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sample| (#3=($) 6 T CONST)) (|qsetelt!| ((|#2| $ |#1| |#2|) 48 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qelt| ((|#2| $ |#1|) 46 T ELT)) (|minIndex| ((|#1| $) 38 (|has| |#1| (|OrderedSet|)) ELT)) (|maxIndex| ((|#1| $) 39 (|has| |#1| (|OrderedSet|)) ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#2| . #4=((|SetCategory|))) ELT)) (|indices| (((|List| |#1|) $) 41 T ELT)) (|index?| (((|Boolean|) |#1| $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#2| . #4#) ELT)) (|first| ((|#2| $) 37 (|has| |#1| (|OrderedSet|)) ELT)) (|fill!| (($ $ |#2|) 36 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|eval| (($ $ (|List| (|Equation| |#2|))) 25 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #4#)) ELT) (($ $ (|Equation| |#2|)) 24 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #4#)) ELT) (($ $ |#2| |#2|) 23 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #4#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 22 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #4#)) ELT)) (|eq?| ((#5=(|Boolean|) $ $) 10 T ELT)) (|entry?| (((|Boolean|) |#2| $) 40 (AND (|has| $ (|FiniteAggregate| |#2|)) (|has| |#2| (|BasicType|))) ELT)) (|entries| (((|List| |#2|) $) 43 T ELT)) (|empty?| ((#5# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|elt| ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#2| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#2| . #2#) ELT)) (= (#1# 17 (|has| |#2| . #2#) ELT)))
+(((|IndexedAggregate| |#1| |#2|) (|Category|) (|BasicType|) (|Type|)) (T |IndexedAggregate|))
+((|entries| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *4)))) (|index?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|indices| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *3)))) (|entry?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *1 (|IndexedAggregate| *4 *3)) (|ofCategory| *4 (|BasicType|)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|maxIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|BasicType|)) (|ofCategory| *2 (|OrderedSet|)))) (|minIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|BasicType|)) (|ofCategory| *2 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Type|)))) (|fill!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))) (|swap!| (*1 *2 *1 *3 *3) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *4)) (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Void|)))))
+(|Join| (|HomogeneousAggregate| |t#2|) (|EltableAggregate| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |entries| ((|List| |t#2|) $)) (SIGNATURE |index?| ((|Boolean|) |t#1| $)) (SIGNATURE |indices| ((|List| |t#1|) $)) (IF (|has| |t#2| (|BasicType|)) (IF (|has| $ (|FiniteAggregate| |t#2|)) (SIGNATURE |entry?| ((|Boolean|) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (SIGNATURE |maxIndex| (|t#1| $)) (SIGNATURE |minIndex| (|t#1| $)) (SIGNATURE |first| (|t#2| $))) |%noBranch|) (IF (|has| $ (|ShallowlyMutableAggregate| |t#2|)) (PROGN (SIGNATURE |fill!| ($ $ |t#2|)) (SIGNATURE |swap!| ((|Void|) $ |t#1| |t#1|))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|CoercibleTo| (|OutputForm|)))) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#2| (|SetCategory|)) ((|Type|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) . #2=($)) NIL T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# . #2#) NIL T ELT) ((#4=(|TypeAst|) $) 15 T ELT) (($ #5=(|List| #4#)) 14 T ELT)) (|categories| ((#5# $) 12 T ELT)) (|before?| #1#) (= #1#))
+(((|JoinAst|) (|Join| (|SpadSyntaxCategory|) (|CoercibleTo| #1=(|TypeAst|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #2=(|List| #1#))) (SIGNATURE |categories| (#2# $))))) (T |JoinAst|))
+((|coerce| (*1 *1 *2) #1=(AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|JoinAst|)))) (|categories| (*1 *2 *1) #1#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|unit| #3=((#4=(|Union| $ #5="failed")) NIL #6=(OR (AND #7=(|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) #8=(|has| |#1| (|IntegralDomain|))) (AND #9=(|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) #8#)) ELT)) (|subtractIfCan| ((#4# $ $) NIL T ELT)) (|structuralConstants| ((#10=(|Vector| #11=(|Matrix| |#1|))) NIL #9# ELT) ((#10# #12=(|Vector| $)) NIL #7# ELT)) (|someBasis| (#13=(#12#) NIL #7# ELT)) (|sample| #14=(($) NIL T CONST)) (|rightUnits| #15=(((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #5#)) NIL #6# ELT)) (|rightUnit| #3#) (|rightTraceMatrix| #16=((#11#) NIL #9# ELT) #17=(#18=(#11# #12#) NIL #7# ELT)) (|rightTrace| #19=((|#1| $) NIL #7# ELT)) (|rightRegularRepresentation| #20=((#11# $) NIL #9# ELT) #21=((#11# $ #12#) NIL #7# ELT)) (|rightRecip| #22=((#4# $) NIL #6# ELT)) (|rightRankPolynomial| #23=(((|SparseUnivariatePolynomial| #24=(|Polynomial| |#1|))) NIL (AND #9# (|has| |#1| (|Field|))) ELT)) (|rightPower| #25=(#26=($ $ #27=(|PositiveInteger|)) NIL T ELT)) (|rightNorm| #19#) (|rightMinimalPolynomial| #28=(#29=((|SparseUnivariatePolynomial| |#1|) $) NIL #6# ELT)) (|rightDiscriminant| #30=((|#1|) NIL #9# ELT) #31=((|#1| #12#) NIL #7# ELT)) (|rightCharacteristicPolynomial| #32=(#29# NIL #7# ELT)) (|rightAlternative?| #33=((#2#) NIL #7# ELT)) (|represents| #34=(($ #35=(|Vector| |#1|)) NIL #9# ELT) (($ #35# #12#) NIL #7# ELT)) (|recip| #22#) (|rank| ((#27#) NIL #7# ELT)) (|powerAssociative?| #33#) (|plenaryPower| #25#) (|opposite?| #1#) (|noncommutativeJordanAlgebra?| #33#) (|lieAlgebra?| #33#) (|lieAdmissible?| #33#) (|leftUnits| #15#) (|leftUnit| #3#) (|leftTraceMatrix| #16# #17#) (|leftTrace| #19#) (|leftRegularRepresentation| #20# #21#) (|leftRecip| #22#) (|leftRankPolynomial| #23#) (|leftPower| #25#) (|leftNorm| #19#) (|leftMinimalPolynomial| #28#) (|leftDiscriminant| #30# #31#) (|leftCharacteristicPolynomial| #32#) (|leftAlternative?| #33#) (|latex| (((|String|) $) NIL T ELT)) (|jordanAlgebra?| #33#) (|jordanAdmissible?| #33#) (|jacobiIdentity?| #33#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|flexible?| #33#) (|elt| ((|#1| $ #36=(|Integer|)) NIL #9# ELT)) (|coordinates| (#18# NIL #9# ELT) #37=((#35# $) NIL #9# ELT) ((#11# #12# #12#) NIL #7# ELT) ((#35# $ #12#) NIL #7# ELT)) (|convert| #34# #37#) (|conditionsForIdempotents| ((#38=(|List| #24#)) NIL #9# ELT) ((#38# #12#) NIL #7# ELT)) (|commutator| #39=(#40=($ $ $) NIL T ELT)) (|commutative?| #33#) (|coerce| (((|OutputForm|) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (|before?| #1#) (|basis| (#13# NIL #9# ELT)) (|associatorDependence| (((|List| #35#)) NIL #6# ELT)) (|associator| (($ $ $ $) NIL T ELT)) (|associative?| #33#) (|apply| (($ #11# $) NIL #9# ELT)) (|antiCommutator| #39#) (|antiCommutative?| #33#) (|antiAssociative?| #33#) (|alternative?| #33#) (|Zero| #14#) (= #1#) (- (($ $) NIL T ELT) #39#) (+ #39#) (** (#26# 24 T ELT)) (* (($ #27# $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #36# . #41=($)) NIL T ELT) (#40# 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| . #41#) NIL T ELT)))
+(((|AssociatedJordanAlgebra| |#1| |#2|) (|Join| #1=(|NonAssociativeAlgebra| |#1|) (|CoercibleTo| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#2|)) (IF (|has| |#2| #2=(|FramedNonAssociativeAlgebra| |#1|)) (ATTRIBUTE #2#) |%noBranch|) (IF (|has| |#2| #3=(|FiniteRankNonAssociativeAlgebra| |#1|)) (ATTRIBUTE #3#) |%noBranch|))) (|CommutativeRing|) #1#) (T |AssociatedJordanAlgebra|))
+((|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *1 (|AssociatedJordanAlgebra| *3 *2)) (|ofCategory| *2 (|NonAssociativeAlgebra| *3)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #2=(|Byte|)) 6 T ELT) ((#2# $) 7 T ELT)) (|before?| #1#) (= #1#))
+(((|JVMBytecode|) (|Join| (|SetCategory|) (|HomotopicTo| (|Byte|)))) (T |JVMBytecode|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jvmSuper| (#2=($) 10 T CONST)) (|jvmPublic| (#2# 8 T CONST)) (|jvmInterface| (#2# 11 T CONST)) (|jvmFinal| (#2# 9 T CONST)) (|jvmAbstract| (#2# 12 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|\\/| #3=(($ $ $) NIL T ELT)) (= #1#) (|/\\| #3#))
+(((|JVMClassFileAccess|) (|Join| (|SetCategory|) (|Logic|) (CATEGORY |domain| (SIGNATURE |jvmPublic| #1=($) |constant|) (SIGNATURE |jvmFinal| #1# |constant|) (SIGNATURE |jvmSuper| #1# |constant|) (SIGNATURE |jvmInterface| #1# |constant|) (SIGNATURE |jvmAbstract| #1# |constant|)))) (T |JVMClassFileAccess|))
+((|jvmPublic| #1=(*1 *1) #2=(|isDomain| *1 (|JVMClassFileAccess|))) (|jvmFinal| #1# #2#) (|jvmSuper| #1# #2#) (|jvmInterface| #1# #2#) (|jvmAbstract| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jvmUTF8ConstantTag| (#2=($) 11 T CONST)) (|jvmStringConstantTag| (#2# 17 T CONST)) (|jvmNameAndTypeConstantTag| (#2# 21 T CONST)) (|jvmMethodrefConstantTag| (#2# 19 T CONST)) (|jvmLongConstantTag| (#2# 14 T CONST)) (|jvmInterfaceMethodConstantTag| (#2# 20 T CONST)) (|jvmIntegerConstantTag| (#2# 12 T CONST)) (|jvmFloatConstantTag| (#2# 13 T CONST)) (|jvmFieldrefConstantTag| (#2# 18 T CONST)) (|jvmDoubleConstantTag| (#2# 15 T CONST)) (|jvmClassConstantTag| (#2# 16 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) . #3=($)) NIL T ELT) (((|Byte|) . #3#) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|JVMConstantTag|) (|Join| (|SetCategory|) (|CoercibleTo| (|Byte|)) (CATEGORY |domain| (SIGNATURE |jvmUTF8ConstantTag| #1=($) |constant|) (SIGNATURE |jvmIntegerConstantTag| #1# |constant|) (SIGNATURE |jvmFloatConstantTag| #1# |constant|) (SIGNATURE |jvmLongConstantTag| #1# |constant|) (SIGNATURE |jvmDoubleConstantTag| #1# |constant|) (SIGNATURE |jvmClassConstantTag| #1# |constant|) (SIGNATURE |jvmStringConstantTag| #1# |constant|) (SIGNATURE |jvmFieldrefConstantTag| #1# |constant|) (SIGNATURE |jvmMethodrefConstantTag| #1# |constant|) (SIGNATURE |jvmInterfaceMethodConstantTag| #1# |constant|) (SIGNATURE |jvmNameAndTypeConstantTag| #1# |constant|)))) (T |JVMConstantTag|))
+((|jvmUTF8ConstantTag| #1=(*1 *1) #2=(|isDomain| *1 (|JVMConstantTag|))) (|jvmIntegerConstantTag| #1# #2#) (|jvmFloatConstantTag| #1# #2#) (|jvmLongConstantTag| #1# #2#) (|jvmDoubleConstantTag| #1# #2#) (|jvmClassConstantTag| #1# #2#) (|jvmStringConstantTag| #1# #2#) (|jvmFieldrefConstantTag| #1# #2#) (|jvmMethodrefConstantTag| #1# #2#) (|jvmInterfaceMethodConstantTag| #1# #2#) (|jvmNameAndTypeConstantTag| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jvmVolatile| (#2=($) 13 T CONST)) (|jvmTransient| (#2# 14 T CONST)) (|jvmStatic| (#2# 11 T CONST)) (|jvmPublic| (#2# 8 T CONST)) (|jvmProtected| (#2# 10 T CONST)) (|jvmPrivate| (#2# 9 T CONST)) (|jvmFinal| (#2# 12 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|\\/| #3=(($ $ $) NIL T ELT)) (= #1#) (|/\\| #3#))
+(((|JVMFieldAccess|) (|Join| (|SetCategory|) (|Logic|) (CATEGORY |domain| (SIGNATURE |jvmPublic| #1=($) |constant|) (SIGNATURE |jvmPrivate| #1# |constant|) (SIGNATURE |jvmProtected| #1# |constant|) (SIGNATURE |jvmStatic| #1# |constant|) (SIGNATURE |jvmFinal| #1# |constant|) (SIGNATURE |jvmVolatile| #1# |constant|) (SIGNATURE |jvmTransient| #1# |constant|)))) (T |JVMFieldAccess|))
+((|jvmPublic| #1=(*1 *1) #2=(|isDomain| *1 (|JVMFieldAccess|))) (|jvmPrivate| #1# #2#) (|jvmProtected| #1# #2#) (|jvmStatic| #1# #2#) (|jvmFinal| #1# #2#) (|jvmVolatile| #1# #2#) (|jvmTransient| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|jvmSynchronized| (#2=($) 13 T CONST)) (|jvmStrict| (#2# 16 T CONST)) (|jvmStatic| (#2# 11 T CONST)) (|jvmPublic| (#2# 8 T CONST)) (|jvmProtected| (#2# 10 T CONST)) (|jvmPrivate| (#2# 9 T CONST)) (|jvmNative| (#2# 14 T CONST)) (|jvmFinal| (#2# 12 T CONST)) (|jvmAbstract| (#2# 15 T CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|\\/| #3=(($ $ $) NIL T ELT)) (= #1#) (|/\\| #3#))
+(((|JVMMethodAccess|) (|Join| (|SetCategory|) (|Logic|) (CATEGORY |domain| (SIGNATURE |jvmPublic| #1=($) |constant|) (SIGNATURE |jvmPrivate| #1# |constant|) (SIGNATURE |jvmProtected| #1# |constant|) (SIGNATURE |jvmStatic| #1# |constant|) (SIGNATURE |jvmFinal| #1# |constant|) (SIGNATURE |jvmSynchronized| #1# |constant|) (SIGNATURE |jvmNative| #1# |constant|) (SIGNATURE |jvmAbstract| #1# |constant|) (SIGNATURE |jvmStrict| #1# |constant|)))) (T |JVMMethodAccess|))
+((|jvmPublic| #1=(*1 *1) #2=(|isDomain| *1 (|JVMMethodAccess|))) (|jvmPrivate| #1# #2#) (|jvmProtected| #1# #2#) (|jvmStatic| #1# #2#) (|jvmFinal| #1# #2#) (|jvmSynchronized| #1# #2#) (|jvmNative| #1# #2#) (|jvmAbstract| #1# #2#) (|jvmStrict| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 19 T ELT) (($ #2=(|JVMBytecode|)) 12 T ELT) ((#2# $) 11 T ELT) (($ #3=(|Byte|)) NIL T ELT) ((#3# $) 14 T ELT)) (|before?| #1#) (= #1#))
+(((|JVMOpcode|) (|Join| (|SetCategory|) (|HomotopicTo| (|JVMBytecode|)) (|HomotopicTo| (|Byte|)))) (T |JVMOpcode|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|write!| ((#4=(|Record| (|:| |key| #5=(|String|)) (|:| |entry| |#1|)) $ #4#) 40 T ELT)) (|table| #6=(($ #7=(|List| #4#)) NIL T ELT) #8=(#9=($) NIL T ELT)) (|swap!| (((|Void|) $ #5# #5#) NIL #10=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| (#11=(|#1| $ #5# |#1|) 50 #10# ELT)) (|select!| #12=(($ #13=(|Mapping| #3# #4#) $) NIL #14=(|has| $ (|FiniteAggregate| #4#)) ELT)) (|select| #12#) (|search| (#15=((|Union| |#1| #16="failed") #5# $) 53 T ELT)) (|sample| (#9# NIL T CONST)) (|reopen!| (($ $ #5#) 25 T ELT)) (|removeDuplicates| (#17=($ $) NIL #18=(AND #14# #19=(|has| #4# #20=(|BasicType|))) ELT)) (|remove!| (#15# 54 T ELT) #12# (#21=($ #4# $) NIL #14# ELT)) (|remove| #12# (#21# NIL #18# ELT)) (|reduce| ((#4# #22=(|Mapping| #4# #4# #4#) $) NIL T ELT) ((#4# #22# $ #4#) NIL T ELT) ((#4# #22# $ #4# #4#) NIL #19# ELT)) (|read!| (#23=(#4# $) 39 T ELT)) (|qsetelt!| (#11# NIL #10# ELT)) (|qelt| (#24=(|#1| $ #5#) NIL T ELT)) (|pack!| (#17# 55 T ELT)) (|open| (($ #25=(|FileName|)) 23 T ELT) (($ #25# #5#) 22 T ELT)) (|name| ((#25# $) 41 T ELT)) (|minIndex| #26=(#27=(#5# $) NIL #28=(|has| #5# (|OrderedSet|)) ELT)) (|members| ((#7# $) NIL T ELT)) (|member?| ((#3# #4# $) NIL #19# ELT)) (|maxIndex| #26#) (|map!| #29=(($ (|Mapping| |#1| |#1|) . #30=($)) NIL T ELT) #31=(($ (|Mapping| #4# #4#) . #30#) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL T ELT) #29# #31#) (|latex| (#27# NIL T ELT)) (|keys| (#32=((|List| #5#) $) 46 T ELT)) (|key?| #33=((#3# #5# $) NIL T ELT)) (|iomode| (#27# 42 T ELT)) (|inspect| #34=(#23# NIL T ELT)) (|insert!| (#21# NIL T ELT)) (|indices| (#32# NIL T ELT)) (|index?| #33#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| ((|#1| $) NIL #28# ELT)) (|find| (((|Union| #4# #16#) #13# $) NIL T ELT)) (|fill!| (($ $ |#1|) NIL #10# ELT)) (|extract!| #34#) (|every?| #35=((#3# #13# $) NIL T ELT)) (|eval| (($ $ (|List| #36=(|Equation| |#1|))) NIL #37=(AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| #38=(|SetCategory|))) ELT) (($ $ #36#) NIL #37# ELT) (($ $ |#1| |#1|) NIL #37# ELT) (($ $ #39=(|List| |#1|) #39#) NIL #37# ELT) (($ $ #7# #7#) NIL #40=(AND (|has| #4# (|Evalable| #4#)) (|has| #4# #38#)) ELT) (($ $ #4# #4#) NIL #40# ELT) (($ $ #41=(|Equation| #4#)) NIL #40# ELT) (($ $ (|List| #41#)) NIL #40# ELT)) (|eq?| #1#) (|entry?| ((#3# |#1| $) NIL (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| #20#)) ELT)) (|entries| ((#39# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| (#9# 44 T ELT)) (|elt| (#11# NIL T ELT) (#24# 49 T ELT)) (|dictionary| #6# #8#) (|count| ((#42=(|NonNegativeInteger|) #13# $) NIL T ELT) ((#42# #4# $) NIL #19# ELT)) (|copy| (#17# NIL T ELT)) (|convert| ((#43=(|InputForm|) $) NIL (|has| #4# (|ConvertibleTo| #43#)) ELT)) (|construct| #6#) (|coerce| (((|OutputForm|) $) 21 T ELT)) (|close!| (#17# 26 T ELT)) (|before?| #1#) (|bag| #6#) (|any?| #35#) (= (#2# 20 T ELT)) (|#| ((#42# $) 48 T ELT)))
+(((|KeyedAccessFile| |#1|) (|Join| (|FileCategory| (|FileName|) (|Record| (|:| |key| #1=(|String|)) (|:| |entry| |#1|))) (|TableAggregate| #1# |#1|) (CATEGORY |domain| (SIGNATURE |pack!| ($ $)))) (|SetCategory|)) (T |KeyedAccessFile|))
+((|pack!| (*1 *1 *1) (AND (|isDomain| *1 (|KeyedAccessFile| *2)) (|ofCategory| *2 (|SetCategory|)))))
+((|keys| (((|List| |#2|) $) 19 T ELT)) (|key?| (((|Boolean|) |#2| $) 12 T ELT)) (|elt| ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT)))
+(((|KeyedDictionary&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |keys| ((|List| |#2|) |#1|)) (SIGNATURE |key?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |elt| (|#3| |#1| |#2|))) (|KeyedDictionary| |#2| |#3|) #1=(|SetCategory|) #1#) (T |KeyedDictionary&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (OR (|has| |#2| . #2=((|BasicType|))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|swap!| (((|Void|) $ |#1| |#1|) 82 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| ((|#2| $ |#1| |#2|) 70 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|select!| (($ (|Mapping| #3=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #4=($)) 42 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #6=($)) 49 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|search| (((|Union| |#2| "failed") |#1| $) 59 T ELT)) (|sample| (#7=($) 6 T CONST)) (|removeDuplicates| (($ $) 51 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8=((|BasicType|))) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT)) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Mapping| #3# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #4#) 43 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Union| |#2| "failed") |#1| $) 60 T ELT)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 50 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #8#) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT) (($ (|Mapping| #5# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #6#) 48 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|qsetelt!| ((|#2| $ |#1| |#2|) 69 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qelt| ((|#2| $ |#1|) 71 T ELT)) (|minIndex| ((|#1| . #9=($)) 79 (|has| |#1| . #10=((|OrderedSet|))) ELT)) (|maxIndex| ((|#1| . #9#) 78 (|has| |#1| . #10#) ELT)) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #11=($)) 39 T ELT) (($ (|Mapping| |#2| |#2|) . #11#) 63 T ELT)) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #12=($)) 26 T ELT) (($ (|Mapping| |#2| |#2|) . #12#) 64 T ELT)) (|latex| (((|String|) $) 21 (OR (|has| |#2| . #13=((|SetCategory|))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT)) (|keys| (((|List| |#1|) $) 61 T ELT)) (|key?| (((|Boolean|) |#1| $) 62 T ELT)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #14=($)) 35 T ELT)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (|indices| (((|List| |#1|) $) 76 T ELT)) (|index?| ((#15=(|Boolean|) |#1| $) 75 T ELT)) (|hash| (((|SingleInteger|) $) 20 (OR (|has| |#2| . #13#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT)) (|first| ((|#2| $) 80 (|has| |#1| . #10#) ELT)) (|fill!| (($ $ |#2|) 81 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #14#) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 25 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 24 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 23 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 22 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #13#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 68 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #13#)) ELT) (($ $ |#2| |#2|) 67 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #13#)) ELT) (($ $ (|Equation| |#2|)) 66 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #13#)) ELT) (($ $ (|List| (|Equation| |#2|))) 65 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #13#)) ELT)) (|eq?| ((#16=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#15# |#2| $) 77 (AND (|has| $ (|FiniteAggregate| |#2|)) (|has| |#2| (|BasicType|))) ELT)) (|entries| (((|List| |#2|) $) 74 T ELT)) (|empty?| ((#16# $) 7 T ELT)) (|empty| (#7# 8 T ELT)) (|elt| ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#17=(|InputForm|) $) 52 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| #17#)) ELT)) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (|coerce| ((#18=(|OutputForm|) $) 16 (OR (|has| |#2| . #19=((|CoercibleTo| #18#))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #19#)) ELT)) (|before?| (#1# 19 (OR (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (= (#1# 17 (OR (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)))
+(((|KeyedDictionary| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |KeyedDictionary|))
+((|key?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|KeyedDictionary| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|keys| (*1 *2 *1) (AND (|ofCategory| *1 (|KeyedDictionary| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|remove!| (*1 *2 *3 *1) (|partial| AND (|ofCategory| *1 (|KeyedDictionary| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|search| (*1 *2 *3 *1) (|partial| AND (|ofCategory| *1 (|KeyedDictionary| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(|Join| (|Dictionary| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))) (|IndexedAggregate| |t#1| |t#2|) (|ShallowlyMutableAggregate| |t#2|) (CATEGORY |domain| (SIGNATURE |key?| ((|Boolean|) |t#1| $)) (SIGNATURE |keys| ((|List| |t#1|) $)) (SIGNATURE |remove!| ((|Union| |t#2| "failed") |t#1| $)) (SIGNATURE |search| ((|Union| |t#2| "failed") |t#1| $))))
+(((|Aggregate|) . T) ((|BagAggregate| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|BasicType|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|BasicType|)) (|has| |#2| (|SetCategory|)) (|has| |#2| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|SetCategory|)) (|has| |#2| (|CoercibleTo| (|OutputForm|)))) ((|Collection| #1#) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) ((|Dictionary| #1#) . T) ((|DictionaryOperations| #1#) . T) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| #1#) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Functorial| #1#) . T) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| #1#) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| |#1| |#2|) . T) ((|InnerEvalable| #1# #1#) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))) ((|ShallowlyMutableAggregate| #1#) . T) ((|ShallowlyMutableAggregate| |#2|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|symbolIfCan| (((|Union| #4=(|Symbol|) "failed") $) 46 T ELT)) (|setPosition| (((|Void|) $ #5=(|NonNegativeInteger|)) 22 T ELT)) (|position| (#6=(#5# $) 20 T ELT)) (|operator| ((#7=(|BasicOperator|) $) 9 T ELT)) (|min| #8=(($ $ $) NIL T ELT)) (|max| #8#) (|latex| (((|String|) $) NIL T ELT)) (|kernel| (($ #7# #9=(|List| |#1|) #5#) 32 T ELT) (($ #4#) 33 T ELT)) (|is?| ((#3# $ #7#) 15 T ELT) ((#3# $ #4#) 13 T ELT)) (|height| (#6# 17 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| ((#10=(|Pattern| (|Integer|)) $) 99 (|has| |#1| (|ConvertibleTo| #10#)) ELT) ((#11=(|Pattern| (|Float|)) $) 106 (|has| |#1| (|ConvertibleTo| #11#)) ELT) ((#12=(|InputForm|) $) 92 (|has| |#1| (|ConvertibleTo| #12#)) ELT)) (|coerce| (((|OutputForm|) $) 74 T ELT)) (|before?| #1#) (|argument| ((#9# $) 19 T ELT)) (>= #1#) (> #1#) (= (#2# 51 T ELT)) (<= #1#) (< (#2# 53 T ELT)))
+(((|Kernel| |#1|) (|Join| (|CachableSet|) (|OrderedSet|) (|Patternable| |#1|) (CATEGORY |domain| (SIGNATURE |operator| (#1=(|BasicOperator|) $)) (SIGNATURE |argument| (#2=(|List| |#1|) $)) (SIGNATURE |height| (#3=(|NonNegativeInteger|) $)) (SIGNATURE |kernel| ($ #1# #2# #3#)) (SIGNATURE |kernel| ($ #4=(|Symbol|))) (SIGNATURE |symbolIfCan| ((|Union| #4# "failed") $)) (SIGNATURE |is?| (#5=(|Boolean|) $ #1#)) (SIGNATURE |is?| (#5# $ #4#)) (IF (|has| |#1| #6=(|ConvertibleTo| (|InputForm|))) (ATTRIBUTE #6#) |%noBranch|))) (|SetCategory|)) (T |Kernel|))
+((|operator| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 #3=(|BasicOperator|)) #4=(|isDomain| *1 (|Kernel| *3)) #5=(|ofCategory| *3 #6=(|SetCategory|)))) (|argument| #1# (AND (|isDomain| *2 (|List| *3)) #4# #5#)) (|height| #1# (AND (|isDomain| *2 #7=(|NonNegativeInteger|)) #4# #5#)) (|kernel| (*1 *1 *2 *3 *4) (AND #2# (|isDomain| *3 (|List| *5)) (|isDomain| *4 #7#) (|ofCategory| *5 #6#) (|isDomain| *1 (|Kernel| *5)))) (|kernel| (*1 *1 *2) (AND #8=(|isDomain| *2 #9=(|Symbol|)) #4# #5#)) (|symbolIfCan| #1# (|partial| AND #8# #4# #5#)) (|is?| #10=(*1 *2 *1 *3) (AND (|isDomain| *3 #3#) #11=(|isDomain| *2 (|Boolean|)) #12=(|isDomain| *1 (|Kernel| *4)) #13=(|ofCategory| *4 #6#))) (|is?| #10# (AND (|isDomain| *3 #9#) #11# #12# #13#)))
+((|constantKernel| ((#1=(|Kernel| |#2|) |#1|) 17 T ELT)) (|constantIfCan| (((|Union| |#1| "failed") #1#) 21 T ELT)))
+(((|KernelFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |constantKernel| (#1=(|Kernel| |#2|) |#1|)) (SIGNATURE |constantIfCan| ((|Union| |#1| "failed") #1#))) #2=(|SetCategory|) #2#) (T |KernelFunctions2|))
+((|constantIfCan| #1=(*1 *2 *3) (|partial| AND (|isDomain| *3 #2=(|Kernel| *4)) #3=(|ofCategory| *4 #4=(|SetCategory|)) (|ofCategory| *2 #4#) (|isDomain| *1 (|KernelFunctions2| *2 *4)))) (|constantKernel| #1# (AND (|isDomain| *2 #2#) (|isDomain| *1 (|KernelFunctions2| *3 *4)) (|ofCategory| *3 #4#) #3#)))
+((|coerce| ((|#1| $) 6 T ELT)))
+(((|CoercibleTo| |#1|) (|Category|) (|Type|)) (T |CoercibleTo|))
+((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|CoercibleTo| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |coerce| (|t#1| $))))
+((|convert| ((|#1| $) 6 T ELT)))
+(((|ConvertibleTo| |#1|) (|Category|) (|Type|)) (T |ConvertibleTo|))
+((|convert| (*1 *2 *1) (AND (|ofCategory| *1 (|ConvertibleTo| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |convert| (|t#1| $))))
+((|kovacic| ((#1=(|Union| (|SparseUnivariatePolynomial| #2=(|Fraction| |#2|)) "failed") #2# #2# #2# (|Mapping| (|Factored| |#2|) |#2|)) 15 T ELT) ((#1# #2# #2# #2#) 16 T ELT)))
+(((|Kovacic| |#1| |#2|) (CATEGORY |package| (SIGNATURE |kovacic| (#1=(|Union| (|SparseUnivariatePolynomial| #2=(|Fraction| |#2|)) "failed") #2# #2# #2#)) (SIGNATURE |kovacic| (#1# #2# #2# #2# (|Mapping| (|Factored| |#2|) |#2|)))) (|Join| (|CharacteristicZero|) (|AlgebraicallyClosedField|) (|RetractableTo| #3=(|Integer|)) (|RetractableTo| (|Fraction| #3#))) (|UnivariatePolynomialCategory| |#1|)) (T |Kovacic|))
+((|kovacic| (*1 *2 *3 *3 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| (|Factored| *6) *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #1=(|Join| (|CharacteristicZero|) (|AlgebraicallyClosedField|) (|RetractableTo| #2=(|Integer|)) (|RetractableTo| (|Fraction| #2#)))) (|isDomain| *2 (|SparseUnivariatePolynomial| #3=(|Fraction| *6))) (|isDomain| *1 (|Kovacic| *5 *6)) (|isDomain| *3 #3#))) (|kovacic| (*1 *2 *3 *3 *3) (|partial| AND (|ofCategory| *4 #1#) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|SparseUnivariatePolynomial| #4=(|Fraction| *5))) (|isDomain| *1 (|Kovacic| *4 *5)) (|isDomain| *3 #4#))))
+((|coerce| (($ |#1|) 6 T ELT)))
+(((|CoercibleFrom| |#1|) (|Category|) (|Type|)) (T |CoercibleFrom|))
+((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|CoercibleFrom| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (~ (#4=($ $) NIL T ELT)) (|unknown| (#5=($) 11 T CONST)) (|true| (#5# 13 T CONST)) (|size| (((|NonNegativeInteger|)) 36 T ELT)) (|random| (#5# NIL T ELT)) (|or| (#6=($ $ $) 25 T ELT)) (|not| (#4# 23 T ELT)) (|lookup| ((#7=(|PositiveInteger|) $) 43 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #7#) 42 T ELT)) (|implies| (#6# 26 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|false| (#5# 9 T CONST)) (|equiv| (#6# 27 T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT)) (|case| ((#3# $ (|[\|\|]| |false|)) 20 T ELT) ((#3# $ (|[\|\|]| |unknown|)) 22 T ELT) ((#3# $ (|[\|\|]| |true|)) 18 T ELT)) (|before?| #1#) (|and| (#6# 24 T ELT)) (|\\/| #8=(#6# NIL T ELT)) (= (#2# 16 T ELT)) (|/\\| #8#))
+(((|KleeneTrivalentLogic|) (|Join| (|PropositionalLogic|) (|Finite|) (CATEGORY |domain| (SIGNATURE |unknown| ($) |constant|) (SIGNATURE |case| (#1=(|Boolean|) $ (|[\|\|]| |false|))) (SIGNATURE |case| (#1# $ (|[\|\|]| |unknown|))) (SIGNATURE |case| (#1# $ (|[\|\|]| |true|)))))) (T |KleeneTrivalentLogic|))
+((|unknown| (*1 *1) #1=(|isDomain| *1 (|KleeneTrivalentLogic|))) (|case| #2=(*1 *2 *1 *3) (AND (|isDomain| *3 (|[\|\|]| |false|)) #3=(|isDomain| *2 (|Boolean|)) #1#)) (|case| #2# (AND (|isDomain| *3 (|[\|\|]| |unknown|)) #3# #1#)) (|case| #2# (AND (|isDomain| *3 (|[\|\|]| |true|)) #3# #1#)))
+((|convert| (($ |#1|) 6 T ELT)))
+(((|ConvertibleFrom| |#1|) (|Category|) (|Type|)) (T |ConvertibleFrom|))
+((|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|ConvertibleFrom| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |convert| ($ |t#1|))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|subtractIfCan| ((#6=(|Union| $ "failed") $ $) NIL T ELT)) (|sign| ((#7=(|Integer|) $) NIL #8=(|has| |#1| (|OrderedRing|)) ELT)) (|sample| #9=(#10=($) NIL T CONST)) (|recip| ((#6# $) NIL T ELT)) (|positive?| #11=(#5# NIL #8# ELT)) (|opposite?| #1#) (|one?| #4#) (|numer| ((|#1| $) 13 T ELT)) (|negative?| #11#) (|min| #12=(#13=($ $ $) NIL #8# ELT)) (|max| #12#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|denom| ((|#3| $) 15 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #7#) NIL T ELT) (($ |#2|) NIL T ELT)) (|characteristic| ((#14=(|NonNegativeInteger|)) 20 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|abs| (#15=($ $) NIL #8# ELT)) (|Zero| #9#) (|One| (#10# 12 T CONST)) (>= #16=(#2# NIL #8# ELT)) (> #16#) (= #1#) (<= #16#) (< #16#) (/ (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (- (#15# NIL T ELT) #17=(#13# NIL T ELT)) (+ #17#) (** (($ $ #18=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #18# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #7# . #19=($)) NIL T ELT) (#13# 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| . #19#) NIL T ELT)))
+(((|LocalAlgebra| |#1| |#2| |#3|) (|Join| #1=(|Algebra| |#2|) (CATEGORY |domain| (IF (|has| |#1| #2=(|OrderedRing|)) (ATTRIBUTE #2#) |%noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) #1# (|CommutativeRing|) (|SubsetCategory| (|Monoid|) |#2|)) (T |LocalAlgebra|))
+((/ (*1 *1 *1 *2) (AND #1=(|ofCategory| *4 #2=(|CommutativeRing|)) #3=(|isDomain| *1 (|LocalAlgebra| *3 *4 *2)) #4=(|ofCategory| *3 #5=(|Algebra| *4)) #6=(|ofCategory| *2 #7=(|SubsetCategory| #8=(|Monoid|) *4)))) (/ (*1 *1 *2 *3) (AND #1# (|isDomain| *1 (|LocalAlgebra| *2 *4 *3)) (|ofCategory| *2 #5#) (|ofCategory| *3 #7#))) (|numer| #9=(*1 *2 *1) (AND (|ofCategory| *3 #2#) (|ofCategory| *2 (|Algebra| *3)) (|isDomain| *1 (|LocalAlgebra| *2 *3 *4)) (|ofCategory| *4 (|SubsetCategory| #8# *3)))) (|denom| #9# (AND #1# #6# #3# #4#)))
+((|coerce| (((|OutputForm|) $) NIL T ELT) (($ (|Integer|)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((|LeftAlgebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|LeftAlgebra| |#2|) (|Ring|)) (T |LeftAlgebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 49 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| . #4#) 50 T ELT)))
+(((|LeftAlgebra| |#1|) (|Category|) (|Ring|)) (T |LeftAlgebra|))
+((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|LeftAlgebra| *2)) (|ofCategory| *2 (|Ring|)))))
+(|Join| (|Ring|) (|LeftModule| |t#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|laplace| ((|#2| |#2| #1=(|Symbol|) #1#) 16 T ELT)))
+(((|LaplaceTransform| |#1| |#2|) (CATEGORY |package| (SIGNATURE |laplace| (|#2| |#2| #1=(|Symbol|) #1#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #2=(|Integer|)) (|LinearlyExplicitRingOver| #2#)) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |LaplaceTransform|))
+((|laplace| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#))) (|isDomain| *1 (|LaplaceTransform| *4 *2)) (|ofCategory| *2 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4))))))
+((~= (#1=(#2=(|Boolean|) $ $) 64 T ELT)) (|zero?| (#3=(#2# $) 58 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(#5=($ $) NIL T ELT)) (|unit?| #6=(#3# NIL T ELT)) (|trailingCoefficient| (#7=(|#1| $) 55 T ELT)) (|subtractIfCan| (#8=(#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|sizeLess?| (#1# NIL #11=(|has| |#1| (|Field|)) ELT)) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| #12=(|Fraction| |#2|))) #12#) 111 #11# ELT)) (|sample| (#13=($) NIL T CONST)) (|retractIfCan| (((|Union| #14=(|Integer|) . #15=(#10#)) . #16=($)) NIL #17=(|has| |#1| (|RetractableTo| #14#)) ELT) (((|Union| #18=(|Fraction| #14#) . #15#) . #16#) NIL #19=(|has| |#1| (|RetractableTo| #18#)) ELT) (((|Union| |#1| . #15#) $) 99 T ELT) (((|Union| |#2| . #15#) $) 95 T ELT)) (|retract| (#20=(#14# $) NIL #17# ELT) ((#18# . #21=($)) NIL #19# ELT) (#7# NIL T ELT) ((|#2| . #21#) NIL T ELT)) (|rem| #22=(#23=($ $ $) NIL #11# ELT)) (|reductum| (#5# 27 T ELT)) (|recip| ((#9# $) 88 T ELT)) (|quo| #22#) (|principalIdeal| (((|Record| (|:| |coef| #24=(|List| $)) #25=(|:| |generator| $)) #24#) NIL #11# ELT)) (|order| (#20# 22 T ELT)) (|opposite?| #26=(#1# NIL T ELT)) (|one?| #6#) (|multiEuclidean| (((|Union| #24# #10#) #24# $) NIL #11# ELT)) (|monomial?| (#3# 40 T ELT)) (|monomial| (($ |#1| #14#) 24 T ELT)) (|leadingCoefficient| (#7# 57 T ELT)) (|lcm| #27=(($ #24#) NIL #11# ELT) #22#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#28=(|SparseUnivariatePolynomial| $) #28# #28#) NIL #11# ELT)) (|gcd| #27# (#23# 101 #11# ELT)) (|extendedEuclidean| (((|Union| (|Record| #29=(|:| |coef1| $) #30=(|:| |coef2| $)) #10#) $ $ $) 116 #11# ELT) (((|Record| #29# #30# #25#) $ $) NIL #11# ELT)) (|exquo| (#8# 93 T ELT)) (|expressIdealMember| (((|Maybe| #24#) #24# $) NIL #11# ELT)) (|euclideanSize| ((#31=(|NonNegativeInteger|) $) 115 #11# ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 114 #11# ELT)) (|differentiate| #32=(($ $ #33=(|Mapping| |#2| |#2|) #31#) NIL T ELT) (#34=($ $ #33#) 75 T ELT) #35=(#5# NIL #36=(|has| |#2| (|DifferentialSpace|)) ELT) #37=(#38=($ $ #31#) NIL #36# ELT) #39=(($ $ #40=(|Symbol|)) NIL #41=(|has| |#2| (|PartialDifferentialSpace| #40#)) ELT) #42=(($ $ #43=(|List| #40#)) NIL #41# ELT) #44=(($ $ #40# #31#) NIL #41# ELT) #45=(($ $ #43# (|List| #31#)) NIL #41# ELT)) (|degree| (#20# 38 T ELT)) (|convert| ((#12# $) 47 T ELT)) (|coerce| (((|OutputForm|) $) 69 T ELT) (($ #14#) 35 T ELT) #4# (($ #18#) NIL #19# ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (|coefficient| ((|#1| $ #14#) 72 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#31#) 32 T CONST)) (|before?| #26#) (|associates?| #26#) (|annihilate?| #26#) (|Zero| (#13# 9 T CONST)) (|One| (#13# 14 T CONST)) (D #32# (#34# NIL T ELT) #35# #37# #39# #42# #44# #45#) (= (#1# 21 T ELT)) (- (#5# 51 T ELT) (#23# NIL T ELT)) (+ (#23# 90 T ELT)) (** (($ $ #46=(|PositiveInteger|)) NIL T ELT) (#38# NIL T ELT)) (* (($ #46# $) NIL T ELT) (($ #31# $) NIL T ELT) (($ #14# $) 29 T ELT) (#23# 49 T ELT)))
+(((|LaurentPolynomial| |#1| |#2|) (|Join| (|DifferentialExtension| |#2|) #1=(|IntegralDomain|) (|ConvertibleTo| #2=(|Fraction| |#2|)) (|FullyRetractableTo| |#1|) (|RetractableTo| |#2|) (CATEGORY |domain| (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |degree| #3=(#4=(|Integer|) $)) (SIGNATURE |order| #3#) (SIGNATURE |reductum| ($ $)) (SIGNATURE |leadingCoefficient| #5=(|#1| $)) (SIGNATURE |trailingCoefficient| #5#) (SIGNATURE |coefficient| (|#1| $ #4#)) (SIGNATURE |monomial| ($ |#1| #4#)) (IF (|has| |#1| #6=(|CharacteristicZero|)) (ATTRIBUTE #6#) |%noBranch|) (IF (|has| |#1| #7=(|CharacteristicNonZero|)) (ATTRIBUTE #7#) |%noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (ATTRIBUTE (|EuclideanDomain|)) (SIGNATURE |separate| ((|Record| (|:| |polyPart| $) (|:| |fracPart| #2#)) #2#))) |%noBranch|))) #1# (|UnivariatePolynomialCategory| |#1|)) (T |LaurentPolynomial|))
+((|monomial?| #1=(*1 *2 *1) (AND #2=(|ofCategory| *3 #3=(|IntegralDomain|)) (|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 (|LaurentPolynomial| *3 *4)) #5=(|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (|degree| #1# #6=(AND #2# (|isDomain| *2 #7=(|Integer|)) #4# #5#)) (|order| #1# #6#) (|reductum| (*1 *1 *1) #8=(AND #9=(|ofCategory| *2 #3#) (|isDomain| *1 (|LaurentPolynomial| *2 *3)) (|ofCategory| *3 #10=(|UnivariatePolynomialCategory| *2)))) (|leadingCoefficient| #1# #8#) (|trailingCoefficient| #1# #8#) (|coefficient| (*1 *2 *1 *3) #11=(AND (|isDomain| *3 #7#) #9# (|isDomain| *1 (|LaurentPolynomial| *2 *4)) (|ofCategory| *4 #10#))) (|monomial| (*1 *1 *2 *3) #11#) (|separate| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *4 #3#) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Record| (|:| |polyPart| #12=(|LaurentPolynomial| *4 *5)) (|:| |fracPart| #13=(|Fraction| *5)))) (|isDomain| *1 #12#) (|isDomain| *3 #13#))))
+((|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) 54 T ELT)) (|normalizeIfCan| ((|#6| |#6|) 48 T ELT)))
+(((|LazardSetSolvingPackage| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |normalizeIfCan| (|#6| |#6|)) (SIGNATURE |zeroSetSplit| ((|List| |#6|) (|List| |#4|) (|Boolean|)))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |LazardSetSolvingPackage|))
+((|zeroSetSplit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 #1=(|GcdDomain|)) (|ofCategory| *6 #2=(|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #3=(|OrderedSet|)) (|isDomain| *2 (|List| *10)) (|isDomain| *1 (|LazardSetSolvingPackage| *5 *6 *7 *8 *9 *10)) (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *10 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)))) (|normalizeIfCan| (*1 *2 *2) (AND (|ofCategory| *3 #1#) (|ofCategory| *4 #2#) (|ofCategory| *5 #3#) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *1 (|LazardSetSolvingPackage| *3 *4 *5 *6 *7 *2)) (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *2 (|SquareFreeRegularTriangularSetCategory| *3 *4 *5 *6)))))
+((|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) #1=(|List| |#3|)) 30 T ELT)) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| #2=(|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| #2# (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) #1# (|List| |#1|) #1#) 68 T ELT)))
+(((|LeadingCoefDetermination| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |polCase| ((|Boolean|) |#3| (|NonNegativeInteger|) #1=(|List| |#3|))) (SIGNATURE |distFact| ((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| #2=(|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| #2# (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) #1# (|List| |#1|) #1#))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#2| |#1|)) (T |LeadingCoefDetermination|))
+((|distFact| (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| AND (|isDomain| *5 (|Record| (|:| |contp| *3) (|:| |factors| (|List| (|Record| (|:| |irr| *10) (|:| |pow| (|Integer|))))))) (|isDomain| *6 #1=(|List| *3)) (|isDomain| *7 (|List| *8)) (|ofCategory| *8 #2=(|OrderedSet|)) #3=(|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *10 (|PolynomialCategory| *3 *9 *8)) (|ofCategory| *9 #4=(|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |polfac| (|List| *10)) (|:| |correct| *3) (|:| |corrfact| #5=(|List| (|SparseUnivariatePolynomial| *3))))) (|isDomain| *1 (|LeadingCoefDetermination| *8 *9 *3 *10)) (|isDomain| *4 #5#))) (|polCase| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *5 #1#) #3# (|ofCategory| *6 #2#) (|ofCategory| *7 #4#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LeadingCoefDetermination| *6 *7 *3 *8)) (|ofCategory| *8 (|PolynomialCategory| *3 *7 *6)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| (#2=((|SpadAst|) $) 12 T ELT)) (|lhs| (#2# 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|LetAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |lhs| #1=((|SpadAst|) $)) (SIGNATURE |rhs| #1#)))) (T |LetAst|))
+((|lhs| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|LetAst|)))) (|rhs| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|varList| ((#4=(|List| |#1|) $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|one?| ((#3# $) NIL T ELT)) (|mirror| (#6=($ $) 77 T ELT)) (|log| ((#7=(|LiePolynomial| |#1| |#2|) $) 60 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#6# 81 T ELT)) (|identification| (((|List| (|Equation| |#2|)) $ $) 42 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exp| (($ #7#) 56 T ELT)) (|conjugate| #8=(#9=($ $ $) NIL T ELT)) (|commutator| #8#) (|coerce| (((|OutputForm|) $) 66 T ELT) (((|XDistributedPolynomial| |#1| |#2|) $) NIL T ELT) (((|XPBWPolynomial| |#1| |#2|) $) 74 T ELT)) (|before?| #1#) (|One| (#5# 61 T CONST)) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) #10=(|:| |c| |#2|))) $) 41 T ELT)) (|LyndonBasis| (((|List| #7#) #4#) 73 T ELT)) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) #10#)) $) 46 T ELT)) (= (#2# 62 T ELT)) (/ #8#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ (|Integer|)) NIL T ELT)) (* (#9# 52 T ELT)))
+(((|LieExponentials| |#1| |#2| |#3|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |exp| ($ #1=(|LiePolynomial| |#1| |#2|))) (SIGNATURE |log| (#1# $)) (SIGNATURE |ListOfTerms| ((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) #2=(|:| |c| |#2|))) $)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XPBWPolynomial| |#1| |#2|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |varList| (#3=(|List| |#1|) $)) (SIGNATURE |LyndonBasis| ((|List| #1#) #3#)) (SIGNATURE |LyndonCoordinates| ((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) #2#)) $)) (SIGNATURE |identification| ((|List| (|Equation| |#2|)) $ $)))) (|OrderedSet|) (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|)))) (|PositiveInteger|)) (T |LieExponentials|))
+((|exp| (*1 *1 *2) (AND #1=(|isDomain| *2 (|LiePolynomial| *3 *4)) #2=(|ofCategory| *3 #3=(|OrderedSet|)) #4=(|ofCategory| *4 #5=(|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) #6=(|isDomain| *1 (|LieExponentials| *3 *4 *5)) #7=(|ofType| *5 #8=(|PositiveInteger|)))) (|log| #9=(*1 *2 *1) (AND #1# #6# #2# #4# #7#)) (|ListOfTerms| #9# (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| *3)) #10=(|:| |c| *4)))) #6# #2# #4# #7#)) (|coerce| #9# (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) #6# #2# #4# #7#)) (|coerce| #9# (AND (|isDomain| *2 (|XPBWPolynomial| *3 *4)) #6# #2# #4# #7#)) (|mirror| (*1 *1 *1) (AND (|isDomain| *1 (|LieExponentials| *2 *3 *4)) (|ofCategory| *2 #3#) (|ofCategory| *3 #5#) (|ofType| *4 #8#))) (|varList| #9# (AND (|isDomain| *2 (|List| *3)) #6# #2# #4# #7#)) (|LyndonBasis| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 #3#) (|isDomain| *2 (|List| (|LiePolynomial| *4 *5))) (|isDomain| *1 (|LieExponentials| *4 *5 *6)) (|ofCategory| *5 #5#) (|ofType| *6 #8#))) (|LyndonCoordinates| #9# (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|LyndonWord| *3)) #10#))) #6# #2# #4# #7#)) (|identification| (*1 *2 *1 *1) (AND (|isDomain| *2 (|List| (|Equation| *4))) #6# #2# #4# #7#)))
+((|zeroSetSplit| (#1=((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| #2=(|OrderedVariableList| |#2|)) #2# #3=(|NewSparseMultivariatePolynomial| |#1| #2#))) #4=(|List| #3#) #5=(|Boolean|)) 103 T ELT) (#6=((|List| (|RegularChain| |#1| |#2|)) #4# #5#) 77 T ELT)) (|zeroDimensional?| ((#5# #4#) 26 T ELT)) (|squareFreeLexTriangular| (#1# 102 T ELT)) (|lexTriangular| (#6# 76 T ELT)) (|groebner| ((#4# #4#) 30 T ELT)) (|fglmIfCan| (((|Union| #4# "failed") #4#) 29 T ELT)))
+(((|LexTriangularPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |zeroDimensional?| (#1=(|Boolean|) #2=(|List| #3=(|NewSparseMultivariatePolynomial| |#1| #4=(|OrderedVariableList| |#2|))))) (SIGNATURE |fglmIfCan| ((|Union| #2# "failed") #2#)) (SIGNATURE |groebner| (#2# #2#)) (SIGNATURE |lexTriangular| #5=((|List| (|RegularChain| |#1| |#2|)) #2# #1#)) (SIGNATURE |squareFreeLexTriangular| #6=((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| #4#) #4# #3#)) #2# #1#)) (SIGNATURE |zeroSetSplit| #5#) (SIGNATURE |zeroSetSplit| #6#)) (|GcdDomain|) (|List| (|Symbol|))) (T |LexTriangularPackage|))
+((|zeroSetSplit| #1=(*1 *2 *3 *4) #2=(AND #3=(|isDomain| *3 (|List| #4=(|NewSparseMultivariatePolynomial| *5 #5=(|OrderedVariableList| *6)))) #6=(|isDomain| *4 #7=(|Boolean|)) #8=(|ofCategory| *5 #9=(|GcdDomain|)) #10=(|ofType| *6 #11=(|List| (|Symbol|))) (|isDomain| *2 (|List| (|SquareFreeRegularTriangularSet| *5 (|IndexedExponents| #5#) #5# #4#))) #12=(|isDomain| *1 (|LexTriangularPackage| *5 *6)))) (|zeroSetSplit| #1# #13=(AND #3# #6# #8# #10# (|isDomain| *2 (|List| (|RegularChain| *5 *6))) #12#)) (|squareFreeLexTriangular| #1# #2#) (|lexTriangular| #1# #13#) (|groebner| #14=(*1 *2 *2) (AND #15=(|isDomain| *2 (|List| (|NewSparseMultivariatePolynomial| *3 (|OrderedVariableList| *4)))) #16=(|ofCategory| *3 #9#) #17=(|ofType| *4 #11#) #18=(|isDomain| *1 (|LexTriangularPackage| *3 *4)))) (|fglmIfCan| #14# (|partial| AND #15# #16# #17# #18#)) (|zeroDimensional?| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *5)))) (|ofCategory| *4 #9#) (|ofType| *5 #11#) (|isDomain| *2 #7#) (|isDomain| *1 (|LexTriangularPackage| *4 *5)))))
+((|operator| ((#1=(|BasicOperator|) #1#) 88 T ELT)) (|li| (#2=(|#2| |#2|) 28 T ELT)) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) 84 T ELT) ((|#2| |#2| (|Symbol|)) 50 T ELT)) (|erf| (#2# 27 T ELT)) (|dilog| (#2# 29 T ELT)) (|belong?| (((|Boolean|) #1#) 33 T ELT)) (|Si| (#2# 24 T ELT)) (|Ei| (#2# 26 T ELT)) (|Ci| (#2# 25 T ELT)))
+(((|LiouvillianFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |belong?| ((|Boolean|) #1=(|BasicOperator|))) (SIGNATURE |operator| (#1# #1#)) (SIGNATURE |Ei| #2=(|#2| |#2|)) (SIGNATURE |Si| #2#) (SIGNATURE |Ci| #2#) (SIGNATURE |li| #2#) (SIGNATURE |erf| #2#) (SIGNATURE |dilog| #2#) (SIGNATURE |integral| (|#2| |#2| (|Symbol|))) (SIGNATURE |integral| (|#2| |#2| (|SegmentBinding| |#2|)))) (|IntegralDomain|) (|Join| (|FunctionSpace| |#1|) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (T |LiouvillianFunction|))
+((|integral| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 (|SegmentBinding| *2)) #2=(|ofCategory| *2 #3=(|Join| (|FunctionSpace| *4) #4=(|RadicalCategory|) #5=(|TranscendentalFunctionCategory|))) #6=(|ofCategory| *4 #7=(|IntegralDomain|)) #8=(|isDomain| *1 (|LiouvillianFunction| *4 *2)))) (|integral| #1# (AND (|isDomain| *3 (|Symbol|)) #6# #8# #2#)) (|dilog| #9=(*1 *2 *2) #10=(AND #11=(|ofCategory| *3 #7#) (|isDomain| *1 (|LiouvillianFunction| *3 *2)) (|ofCategory| *2 #12=(|Join| (|FunctionSpace| *3) #4# #5#)))) (|erf| #9# #10#) (|li| #9# #10#) (|Ci| #9# #10#) (|Si| #9# #10#) (|Ei| #9# #10#) (|operator| #9# (AND (|isDomain| *2 #13=(|BasicOperator|)) #11# (|isDomain| *1 (|LiouvillianFunction| *3 *4)) (|ofCategory| *4 #12#))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 #13#) #6# (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LiouvillianFunction| *4 *5)) (|ofCategory| *5 #3#))))
+((|tanh| (#1=($ $) 38 T ELT)) (|tan| (#2=($ $) 21 T ELT)) (|sinh| (#1# 37 T ELT)) (|sin| (#2# 22 T ELT)) (|sech| (#1# 36 T ELT)) (|sec| (#2# 23 T ELT)) (|pi| (($) 48 T ELT)) (|log| (#3=($ $) 45 T ELT)) (|li| (($ $) 17 T ELT)) (|integral| (($ $ (|SegmentBinding| $)) 7 T ELT) (($ $ (|Symbol|)) 6 T ELT)) (|exp| (#3# 46 T ELT)) (|erf| (($ $) 15 T ELT)) (|dilog| (($ $) 16 T ELT)) (|csch| (#1# 35 T ELT)) (|csc| (#2# 24 T ELT)) (|coth| (#1# 34 T ELT)) (|cot| (#2# 25 T ELT)) (|cosh| (#1# 33 T ELT)) (|cos| (#2# 26 T ELT)) (|atanh| (#4=($ $) 44 T ELT)) (|atan| (#5=($ $) 32 T ELT)) (|asinh| (#4# 43 T ELT)) (|asin| (#5# 31 T ELT)) (|asech| (#4# 42 T ELT)) (|asec| (#5# 30 T ELT)) (|acsch| (#4# 41 T ELT)) (|acsc| (#5# 29 T ELT)) (|acoth| (#4# 40 T ELT)) (|acot| (#5# 28 T ELT)) (|acosh| (#4# 39 T ELT)) (|acos| (#5# 27 T ELT)) (|Si| (($ $) 19 T ELT)) (|Ei| (($ $) 20 T ELT)) (|Ci| (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
+(((|LiouvillianFunctionCategory|) (|Category|)) (T |LiouvillianFunctionCategory|))
+((|Ei| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|Si| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|Ci| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|li| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|dilog| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|erf| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
+(|Join| (|PrimitiveFunctionCategory|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |Ei| ($ $)) (SIGNATURE |Si| ($ $)) (SIGNATURE |Ci| ($ $)) (SIGNATURE |li| ($ $)) (SIGNATURE |dilog| ($ $)) (SIGNATURE |erf| ($ $))))
+(((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|ElementaryFunctionCategory|) . T) ((|HyperbolicFunctionCategory|) . T) ((|PrimitiveFunctionCategory|) . T) ((|TranscendentalFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T))
+((|transform| ((#1=(|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) #2=(|DistributedMultivariatePolynomial| |#1| |#2|)) 65 T ELT)) (|totolex| ((#3=(|List| #2#) #4=(|List| #1#)) 90 T ELT)) (|minPol| ((#1# #4# #5=(|OrderedVariableList| |#1|)) 92 T ELT) ((#1# #4# #4# #5#) 91 T ELT)) (|linGenPos| (((|Record| (|:| |gblist| #3#) (|:| |gvlist| #6=(|List| (|Integer|)))) #4#) 136 T ELT)) (|intcompBasis| ((#4# #5# #4# #4#) 105 T ELT)) (|groebgen| (((|Record| (|:| |glbase| #3#) (|:| |glval| #6#)) #3#) 147 T ELT)) (|coord| (((|Vector| |#2|) #1# #4#) 70 T ELT)) (|computeBasis| ((#4# #4#) 47 T ELT)) (|choosemon| ((#2# #2# #3#) 61 T ELT)) (|anticoord| ((#2# (|List| |#2|) #2# #3#) 113 T ELT)))
+(((|LinGroebnerPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |linGenPos| ((|Record| (|:| |gblist| #1=(|List| #2=(|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| #3=(|List| (|Integer|)))) #4=(|List| #5=(|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |groebgen| ((|Record| (|:| |glbase| #1#) (|:| |glval| #3#)) #1#)) (SIGNATURE |totolex| (#1# #4#)) (SIGNATURE |minPol| (#5# #4# #4# #6=(|OrderedVariableList| |#1|))) (SIGNATURE |minPol| (#5# #4# #6#)) (SIGNATURE |computeBasis| (#4# #4#)) (SIGNATURE |coord| ((|Vector| |#2|) #5# #4#)) (SIGNATURE |anticoord| (#2# (|List| |#2|) #2# #1#)) (SIGNATURE |intcompBasis| (#4# #6# #4# #4#)) (SIGNATURE |choosemon| (#2# #2# #1#)) (SIGNATURE |transform| (#5# #2#))) (|List| (|Symbol|)) (|GcdDomain|)) (T |LinGroebnerPackage|))
+((|transform| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|DistributedMultivariatePolynomial| *4 *5)) #3=(|ofType| *4 #4=(|List| (|Symbol|))) #5=(|ofCategory| *5 #6=(|GcdDomain|)) (|isDomain| *2 #7=(|HomogeneousDistributedMultivariatePolynomial| *4 *5)) #8=(|isDomain| *1 (|LinGroebnerPackage| *4 *5)))) (|choosemon| (*1 *2 *2 *3) (AND #9=(|isDomain| *3 #10=(|List| #2#)) (|isDomain| *2 #2#) #3# #5# #8#)) (|intcompBasis| (*1 *2 *3 *2 *2) (AND (|isDomain| *2 #11=(|List| #7#)) (|isDomain| *3 (|OrderedVariableList| *4)) #3# #5# #8#)) (|anticoord| (*1 *2 *3 *2 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| #12=(|DistributedMultivariatePolynomial| *5 *6))) #13=(|ofCategory| *6 #6#) (|isDomain| *2 #12#) #14=(|ofType| *5 #4#) #15=(|isDomain| *1 (|LinGroebnerPackage| *5 *6)))) (|coord| #16=(*1 *2 *3 *4) (AND (|isDomain| *4 #17=(|List| #18=(|HomogeneousDistributedMultivariatePolynomial| *5 *6))) (|isDomain| *3 #18#) #14# #13# (|isDomain| *2 (|Vector| *6)) #15#)) (|computeBasis| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|HomogeneousDistributedMultivariatePolynomial| *3 *4))) (|ofType| *3 #4#) (|ofCategory| *4 #6#) (|isDomain| *1 (|LinGroebnerPackage| *3 *4)))) (|minPol| #16# #19=(AND (|isDomain| *3 #17#) (|isDomain| *4 (|OrderedVariableList| *5)) #14# (|isDomain| *2 #18#) #15# #13#)) (|minPol| (*1 *2 *3 *3 *4) #19#) (|totolex| #1# (AND #20=(|isDomain| *3 #11#) #3# #5# (|isDomain| *2 #10#) #8#)) (|groebgen| #1# (AND #3# #5# (|isDomain| *2 (|Record| (|:| |glbase| #10#) (|:| |glval| #21=(|List| (|Integer|))))) #8# #9#)) (|linGenPos| #1# (AND #20# #3# #5# (|isDomain| *2 (|Record| (|:| |gblist| #10#) (|:| |gvlist| #21#))) #8#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Any|) #6=(|BasicType|)) #7=(|has| #8=(|Record| (|:| |key| #9=(|String|)) (|:| |entry| #5#)) #6#)) ELT)) (|table| #10=(#11=($) NIL T ELT) #12=(($ #13=(|List| #8#)) NIL T ELT)) (|swap!| (((|Void|) $ #9# #9#) NIL #14=(|has| $ (|ShallowlyMutableAggregate| #5#)) ELT)) (|setelt| #15=(#16=(#5# $ #9# #5#) NIL #14# ELT) ((#5# $ #17=(|Symbol|) #5#) 16 T ELT)) (|select!| #18=(($ #19=(|Mapping| #3# #8#) $) NIL #20=(|has| $ (|FiniteAggregate| #8#)) ELT)) (|select| #18#) (|search| #21=(((|Union| #5# #22="failed") #9# $) NIL T ELT)) (|sample| (#11# NIL T CONST)) (|removeDuplicates| (#23=($ $) NIL #24=(AND #20# #7#) ELT)) (|remove!| (#25=($ #8# $) NIL #20# ELT) #18# #21#) (|remove| (#25# NIL #24# ELT) #18#) (|reduce| ((#8# #26=(|Mapping| #8# #8# #8#) $ #8# #8#) NIL #7# ELT) ((#8# #26# $ #8#) NIL T ELT) ((#8# #26# $) NIL T ELT)) (|qsetelt!| #15#) (|qelt| #27=((#5# $ #9#) NIL T ELT)) (|pack!| #28=(#23# NIL T ELT)) (|minIndex| #29=(#30=(#9# $) NIL #31=(|has| #9# (|OrderedSet|)) ELT)) (|members| ((#13# $) NIL T ELT)) (|member?| ((#3# #8# $) NIL #7# ELT)) (|maxIndex| #29#) (|map!| #32=(($ (|Mapping| #8# #8#) . #33=($)) NIL T ELT) #34=(($ (|Mapping| #5# #5#) . #33#) NIL T ELT)) (|map| #32# #34# #32# (($ (|Mapping| #5# #5# #5#) $ $) NIL T ELT)) (|library| (($ (|FileName|)) 8 T ELT)) (|latex| (#30# NIL #35=(OR #36=(|has| #5# #37=(|SetCategory|)) #38=(|has| #8# #37#)) ELT)) (|keys| #39=(((|List| #9#) $) NIL T ELT)) (|key?| #40=((#3# #9# $) NIL T ELT)) (|inspect| #41=((#8# $) NIL T ELT)) (|insert!| (#25# NIL T ELT)) (|indices| #39#) (|index?| #40#) (|hash| (((|SingleInteger|) $) NIL #35# ELT)) (|first| ((#5# $) NIL #31# ELT)) (|find| (((|Union| #8# #22#) #19# $) NIL T ELT)) (|fill!| (($ $ #5#) NIL #14# ELT)) (|extract!| #41#) (|every?| #42=((#3# #19# $) NIL T ELT)) (|eval| #43=(($ $ (|List| #44=(|Equation| #8#))) NIL #45=(AND (|has| #8# (|Evalable| #8#)) #38#) ELT) #46=(($ $ #44#) NIL #45# ELT) #47=(($ $ #8# #8#) NIL #45# ELT) #48=(($ $ #13# #13#) NIL #45# ELT) (($ $ #49=(|List| #5#) #49#) NIL #50=(AND (|has| #5# (|Evalable| #5#)) #36#) ELT) (($ $ #5# #5#) NIL #50# ELT) (($ $ #51=(|Equation| #5#)) NIL #50# ELT) (($ $ (|List| #51#)) NIL #50# ELT) #48# #47# #46# #43#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# #5# $) NIL (AND (|has| $ (|FiniteAggregate| #5#)) #4#) ELT)) (|entries| ((#49# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #10#) (|elt| #27# (#16# NIL T ELT) ((#5# $ #17#) 14 T ELT)) (|dictionary| #10# #12#) (|count| ((#52=(|NonNegativeInteger|) #8# $) NIL #7# ELT) ((#52# #19# $) NIL T ELT)) (|copy| #28#) (|convert| ((#53=(|InputForm|) $) NIL (|has| #8# (|ConvertibleTo| #53#)) ELT)) (|construct| #12#) (|coerce| ((#54=(|OutputForm|) $) NIL (OR (|has| #8# #55=(|CoercibleTo| #54#)) (|has| #5# #55#)) ELT)) (|before?| #1#) (|bag| #12#) (|any?| #42#) (= #1#) (|#| ((#52# $) NIL T ELT)))
+(((|Library|) (|Join| (|TableAggregate| (|String|) #1=(|Any|)) (|Eltable| #2=(|Symbol|) #1#) (CATEGORY |domain| (SIGNATURE |library| ($ (|FileName|))) (SIGNATURE |pack!| ($ $)) (SIGNATURE |setelt| (#1# $ #2# #1#))))) (T |Library|))
+((|library| (*1 *1 *2) (AND (|isDomain| *2 (|FileName|)) #1=(|isDomain| *1 (|Library|)))) (|pack!| (*1 *1 *1) #1#) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|Any|)) (|isDomain| *3 (|Symbol|)) #1#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|unit| #3=((#4=(|Union| $ #5="failed")) NIL #6=(OR (AND #7=(|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) #8=(|has| |#1| (|IntegralDomain|))) (AND #9=(|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) #8#)) ELT)) (|subtractIfCan| ((#4# $ $) NIL T ELT)) (|structuralConstants| ((#10=(|Vector| #11=(|Matrix| |#1|))) NIL #9# ELT) ((#10# #12=(|Vector| $)) NIL #7# ELT)) (|someBasis| (#13=(#12#) NIL #7# ELT)) (|sample| (#14=($) NIL T CONST)) (|rightUnits| #15=(((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #5#)) NIL #6# ELT)) (|rightUnit| #3#) (|rightTraceMatrix| #16=((#11#) NIL #9# ELT) #17=(#18=(#11# #12#) NIL #7# ELT)) (|rightTrace| #19=((|#1| $) NIL #7# ELT)) (|rightRegularRepresentation| #20=((#11# $) NIL #9# ELT) #21=((#11# $ #12#) NIL #7# ELT)) (|rightRecip| #22=((#4# $) NIL #6# ELT)) (|rightRankPolynomial| #23=(((|SparseUnivariatePolynomial| #24=(|Polynomial| |#1|))) NIL (AND #9# (|has| |#1| (|Field|))) ELT)) (|rightPower| #25=(#26=($ $ #27=(|PositiveInteger|)) NIL T ELT)) (|rightNorm| #19#) (|rightMinimalPolynomial| #28=(#29=((|SparseUnivariatePolynomial| |#1|) $) NIL #6# ELT)) (|rightDiscriminant| #30=((|#1|) NIL #9# ELT) #31=((|#1| #12#) NIL #7# ELT)) (|rightCharacteristicPolynomial| #32=(#29# NIL #7# ELT)) (|rightAlternative?| #33=((#2#) NIL #7# ELT)) (|represents| #34=(($ #35=(|Vector| |#1|)) NIL #9# ELT) (($ #35# #12#) NIL #7# ELT)) (|recip| #22#) (|rank| ((#27#) NIL #7# ELT)) (|powerAssociative?| #33#) (|plenaryPower| #25#) (|opposite?| #1#) (|noncommutativeJordanAlgebra?| #33#) (|lieAlgebra?| #33#) (|lieAdmissible?| #33#) (|leftUnits| #15#) (|leftUnit| #3#) (|leftTraceMatrix| #16# #17#) (|leftTrace| #19#) (|leftRegularRepresentation| #20# #21#) (|leftRecip| #22#) (|leftRankPolynomial| #23#) (|leftPower| #25#) (|leftNorm| #19#) (|leftMinimalPolynomial| #28#) (|leftDiscriminant| #30# #31#) (|leftCharacteristicPolynomial| #32#) (|leftAlternative?| #33#) (|latex| (((|String|) $) NIL T ELT)) (|jordanAlgebra?| #33#) (|jordanAdmissible?| #33#) (|jacobiIdentity?| #33#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|flexible?| #33#) (|elt| ((|#1| $ #36=(|Integer|)) NIL #9# ELT)) (|coordinates| (#18# NIL #9# ELT) #37=((#35# $) NIL #9# ELT) ((#11# #12# #12#) NIL #7# ELT) ((#35# $ #12#) NIL #7# ELT)) (|convert| #34# #37#) (|conditionsForIdempotents| ((#38=(|List| #24#)) NIL #9# ELT) ((#38# #12#) NIL #7# ELT)) (|commutator| #39=(#40=($ $ $) NIL T ELT)) (|commutative?| #33#) (|coerce| (((|OutputForm|) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (|before?| #1#) (|basis| (#13# NIL #9# ELT)) (|associatorDependence| (((|List| #35#)) NIL #6# ELT)) (|associator| (($ $ $ $) NIL T ELT)) (|associative?| #33#) (|apply| (($ #11# $) NIL #9# ELT)) (|antiCommutator| #39#) (|antiCommutative?| #33#) (|antiAssociative?| #33#) (|alternative?| #33#) (|Zero| (#14# 18 T CONST)) (= #1#) (- (($ $) NIL T ELT) #39#) (+ #39#) (** (#26# 19 T ELT)) (* (($ #27# $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #36# . #41=($)) NIL T ELT) (#40# 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| . #41#) NIL T ELT)))
+(((|AssociatedLieAlgebra| |#1| |#2|) (|Join| #1=(|NonAssociativeAlgebra| |#1|) (|CoercibleTo| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#2|)) (IF (|has| |#2| #2=(|FramedNonAssociativeAlgebra| |#1|)) (ATTRIBUTE #2#) |%noBranch|) (IF (|has| |#2| #3=(|FiniteRankNonAssociativeAlgebra| |#1|)) (ATTRIBUTE #3#) |%noBranch|))) (|CommutativeRing|) #1#) (T |AssociatedLieAlgebra|))
+((|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *1 (|AssociatedLieAlgebra| *3 *2)) (|ofCategory| *2 (|NonAssociativeAlgebra| *3)))))
+((/ (($ $ |#2|) 10 T ELT)))
+(((|LieAlgebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE / (|#1| |#1| |#2|))) (|LieAlgebra| |#2|) (|CommutativeRing|)) (T |LieAlgebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|construct| (($ $ $) 40 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 39 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|LieAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |LieAlgebra|))
+((|construct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|)))))
+(|Join| (|Module| |t#1|) (CATEGORY |domain| (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (SIGNATURE |construct| ($ $ $)) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|limit| ((#1=(|Union| #2=(|OrderedCompletion| |#2|) #3="failed") |#2| (|Equation| |#2|) (|String|)) 105 T ELT) (((|Union| #2# (|Record| (|:| |leftHandLimit| #1#) (|:| |rightHandLimit| #1#)) #3#) |#2| (|Equation| #2#)) 130 T ELT)) (|complexLimit| (((|Union| #4=(|OnePointCompletion| |#2|) #3#) |#2| (|Equation| #4#)) 135 T ELT)))
+(((|PowerSeriesLimitPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |limit| ((|Union| #1=(|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| #2=(|Union| #1# #3="failed")) (|:| |rightHandLimit| #2#)) #3#) |#2| (|Equation| #1#))) (SIGNATURE |complexLimit| ((|Union| #4=(|OnePointCompletion| |#2|) #3#) |#2| (|Equation| #4#))) (SIGNATURE |limit| (#2# |#2| (|Equation| |#2|) (|String|)))) (|Join| (|GcdDomain|) (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |PowerSeriesLimitPackage|))
+((|limit| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|String|)) (|ofCategory| *3 (|Join| #1=(|AlgebraicallyClosedField|) #2=(|TranscendentalFunctionCategory|) (|FunctionSpace| *6))) (|ofCategory| *6 #3=(|Join| (|GcdDomain|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#))) (|isDomain| *2 #5=(|OrderedCompletion| *3)) (|isDomain| *1 (|PowerSeriesLimitPackage| *6 *3)))) (|complexLimit| #6=(*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Equation| #7=(|OnePointCompletion| *3))) #8=(|ofCategory| *5 #3#) (|isDomain| *2 #7#) #9=(|isDomain| *1 (|PowerSeriesLimitPackage| *5 *3)) #10=(|ofCategory| *3 (|Join| #1# #2# (|FunctionSpace| *5))))) (|limit| #6# (AND (|isDomain| *4 (|Equation| #5#)) #10# #8# (|isDomain| *2 (|Union| #5# (|Record| (|:| |leftHandLimit| #11=(|Union| #5# #12="failed")) (|:| |rightHandLimit| #11#)) #12#)) #9#)))
+((|limit| ((#1=(|Union| #2=(|OrderedCompletion| #3=(|Fraction| #4=(|Polynomial| |#1|))) #5="failed") #3# #6=(|Equation| #3#) (|String|)) 86 T ELT) ((#7=(|Union| #2# (|Record| (|:| |leftHandLimit| #1#) (|:| |rightHandLimit| #1#)) #5#) #3# #6#) 20 T ELT) ((#7# #3# (|Equation| (|OrderedCompletion| #4#))) 35 T ELT)) (|complexLimit| ((#8=(|OnePointCompletion| #3#) #3# #6#) 23 T ELT) ((#8# #3# (|Equation| (|OnePointCompletion| #4#))) 43 T ELT)))
+(((|RationalFunctionLimitPackage| |#1|) (CATEGORY |package| (SIGNATURE |limit| (#1=(|Union| #2=(|OrderedCompletion| #3=(|Fraction| #4=(|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| #5=(|Union| #2# #6="failed")) (|:| |rightHandLimit| #5#)) #6#) #3# (|Equation| (|OrderedCompletion| #4#)))) (SIGNATURE |limit| (#1# #3# #7=(|Equation| #3#))) (SIGNATURE |complexLimit| (#8=(|OnePointCompletion| #3#) #3# (|Equation| (|OnePointCompletion| #4#)))) (SIGNATURE |complexLimit| (#8# #3# #7#)) (SIGNATURE |limit| (#5# #3# #7# (|String|)))) (|GcdDomain|)) (T |RationalFunctionLimitPackage|))
+((|limit| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Equation| #1=(|Fraction| (|Polynomial| *6)))) (|isDomain| *5 (|String|)) (|isDomain| *3 #1#) (|ofCategory| *6 #2=(|GcdDomain|)) (|isDomain| *2 #3=(|OrderedCompletion| *3)) (|isDomain| *1 (|RationalFunctionLimitPackage| *6)))) (|complexLimit| #4=(*1 *2 *3 *4) (AND #5=(|isDomain| *4 (|Equation| #6=(|Fraction| #7=(|Polynomial| *5)))) #8=(|isDomain| *3 #6#) #9=(|ofCategory| *5 #2#) (|isDomain| *2 (|OnePointCompletion| *3)) #10=(|isDomain| *1 (|RationalFunctionLimitPackage| *5)))) (|complexLimit| #4# (AND (|isDomain| *4 (|Equation| (|OnePointCompletion| #7#))) #9# (|isDomain| *2 (|OnePointCompletion| #6#)) #10# #8#)) (|limit| #4# (AND #5# #8# #9# (|isDomain| *2 (|Union| #3# (|Record| (|:| |leftHandLimit| #11=(|Union| #3# #12="failed")) (|:| |rightHandLimit| #11#)) #12#)) #10#)) (|limit| #4# (AND (|isDomain| *4 (|Equation| (|OrderedCompletion| #7#))) #9# (|isDomain| *2 (|Union| #13=(|OrderedCompletion| #6#) (|Record| (|:| |leftHandLimit| #14=(|Union| #13# #12#)) (|:| |rightHandLimit| #14#)) #12#)) #10# #8#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|random| (#2=($) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT) #4=(#2# NIL T CONST)) (|max| #3# #4#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) 11 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dual| (($ (|DualBasis| |#1|)) 12 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ (|OrderedVariableList| |#1|)) 7 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|LinearBasis| |#1|) (|Join| (|OrderedFinite|) (|CoercibleFrom| (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |dual| ($ (|DualBasis| |#1|))))) (|List| (|Symbol|))) (T |LinearBasis|))
+((|dual| (*1 *1 *2) (AND (|isDomain| *2 (|DualBasis| *3)) (|ofType| *3 (|List| (|Symbol|))) (|isDomain| *1 (|LinearBasis| *3)))))
+((|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) #1="failed") #2=(|Vector| |#2|) |#2|) 64 (|not| #3=(|has| |#1| (|Field|))) ELT) ((#4=(|Union| (|Vector| |#1|) #1#) #2# |#2|) 49 #3# ELT)) (|linearlyDependent?| (((|Boolean|) #2#) 33 T ELT)) (|linearDependence| ((#4# #2#) 40 T ELT)))
+(((|LinearDependence| |#1| |#2|) (CATEGORY |package| (SIGNATURE |linearlyDependent?| ((|Boolean|) #1=(|Vector| |#2|))) (SIGNATURE |linearDependence| (#2=(|Union| (|Vector| |#1|) #3="failed") #1#)) (IF (|has| |#1| (|Field|)) (SIGNATURE |solveLinear| (#2# #1# |#2|)) (SIGNATURE |solveLinear| ((|Union| (|Vector| (|Fraction| |#1|)) #3#) #1# |#2|)))) (|IntegralDomain|) (|Join| (|Ring|) (|LinearlyExplicitRingOver| |#1|))) (T |LinearDependence|))
+((|solveLinear| #1=(*1 *2 *3 *4) (|partial| AND #2=(|isDomain| *3 #3=(|Vector| *4)) #4=(|ofCategory| *4 (|Join| #5=(|Ring|) (|LinearlyExplicitRingOver| *5))) (|not| #6=(|ofCategory| *5 (|Field|))) #7=(|ofCategory| *5 #8=(|IntegralDomain|)) (|isDomain| *2 (|Vector| (|Fraction| *5))) #9=(|isDomain| *1 (|LinearDependence| *5 *4)))) (|solveLinear| #1# (|partial| AND #2# #4# #6# #7# (|isDomain| *2 #10=(|Vector| *5)) #9#)) (|linearDependence| #11=(*1 *2 *3) (|partial| AND #12=(|isDomain| *3 #10#) #13=(|ofCategory| *5 (|Join| #5# (|LinearlyExplicitRingOver| *4))) #14=(|ofCategory| *4 #8#) (|isDomain| *2 #3#) #15=(|isDomain| *1 (|LinearDependence| *4 *5)))) (|linearlyDependent?| #11# (AND #12# #13# #14# (|isDomain| *2 (|Boolean|)) #15#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|terms| ((#3=(|List| (|IndexedProductTerm| |#1| #4=(|LinearBasis| |#2|))) $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#5=($) NIL T CONST)) (|reductum| #6=(($ $) NIL T ELT)) (|opposite?| #1#) (|monomial| (($ |#1| #4#) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|linearElement| (($ (|List| |#1|)) 25 T ELT)) (|leadingSupport| ((#4# $) NIL T ELT)) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dimension| (((|CardinalNumber|)) 16 T ELT)) (|coordinates| (((|Vector| |#1|) $) 44 T ELT)) (|convert| (($ #3#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #4#) 11 T ELT)) (|before?| #1#) (|Zero| (#5# 20 T CONST)) (= #1#) (/ #7=(($ $ |#1|) NIL T ELT)) (- #6# (#8=($ $ $) NIL T ELT)) (+ (#8# 17 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) . #9=($)) NIL T ELT) (($ |#1| . #9#) NIL T ELT) #7#))
+(((|LinearElement| |#1| |#2|) (|Join| (|VectorSpace| |#1|) (|CoercibleFrom| #1=(|LinearBasis| |#2|)) (|IndexedDirectProductCategory| |#1| #1#) (CATEGORY |domain| (SIGNATURE |linearElement| ($ (|List| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#1|) $)))) (|Field|) (|List| (|Symbol|))) (T |LinearElement|))
+((|linearElement| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 (|Field|)) #2=(|isDomain| *1 (|LinearElement| *3 *4)) #3=(|ofType| *4 (|List| (|Symbol|))))) (|coordinates| (*1 *2 *1) (AND (|isDomain| *2 (|Vector| *3)) #2# #1# #3#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|reducedSystem| (((|Matrix| |#1|) (|Matrix| $)) 36 T ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 35 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|leftReducedSystem| (((|Matrix| |#1|) (|Vector| $)) 38 T ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT)))
+(((|LinearlyExplicitRingOver| |#1|) (|Category|) (|Ring|)) (T |LinearlyExplicitRingOver|))
+((|leftReducedSystem| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))) (|leftReducedSystem| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *4)) (|:| |vec| (|Vector| *4)))))) (|reducedSystem| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))) (|reducedSystem| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *1)) (|isDomain| *4 (|Vector| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| *5)))))))
+(|Join| (|LeftModule| |t#1|) (CATEGORY |domain| (SIGNATURE |leftReducedSystem| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |leftReducedSystem| ((|Record| (|:| |mat| (|Matrix| |t#1|)) (|:| |vec| (|Vector| |t#1|))) (|Vector| $) $)) (SIGNATURE |reducedSystem| ((|Matrix| |t#1|) (|Matrix| $))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |t#1|)) (|:| |vec| (|Vector| |t#1|))) (|Matrix| $) (|Vector| $)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#3=($) NIL T CONST)) (|opposite?| #1#) (|linearForm| (($ (|List| |#1|)) 23 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#1| $ (|LinearElement| |#1| |#2|)) 46 T ELT)) (|dimension| (((|CardinalNumber|)) 13 T ELT)) (|coordinates| (((|Vector| |#1|) $) 42 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| (#3# 18 T CONST)) (= #1#) (/ #4=(($ $ |#1|) NIL T ELT)) (- (($ $) NIL T ELT) (#5=($ $ $) NIL T ELT)) (+ (#5# 14 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) . #6=($)) NIL T ELT) (($ |#1| . #6#) NIL T ELT) #4#))
+(((|LinearForm| |#1| |#2|) (|Join| (|VectorSpace| |#1|) (|Eltable| (|LinearElement| |#1| |#2|) |#1|) (CATEGORY |domain| (SIGNATURE |linearForm| ($ (|List| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#1|) $)))) (|Field|) (|List| (|Symbol|))) (T |LinearForm|))
+((|linearForm| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #1=(|ofCategory| *3 (|Field|)) #2=(|isDomain| *1 (|LinearForm| *3 *4)) #3=(|ofType| *4 (|List| (|Symbol|))))) (|coordinates| (*1 *2 *1) (AND (|isDomain| *2 (|Vector| *3)) #2# #1# #3#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
+(((|LinearSet| |#1|) (|Category|) (|SemiGroup|)) (T |LinearSet|))
+NIL
+(|Join| (|LeftLinearSet| |t#1|) (|RightLinearSet| |t#1|))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| #5=(#6=(|#1| $) NIL T ELT)) (|third| #5#) (|tail| #7=(#8=($ $) NIL T ELT)) (|swap!| (((|Void|) $ #9=(|Integer|) #9#) NIL #10=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (#11=($ $ #9#) 68 #10# ELT)) (|sorted?| (#12=(#3# $) NIL #13=(|has| |#1| #14=(|OrderedSet|)) ELT) ((#3# #15=(|Mapping| #3# |#1| |#1|) $) NIL T ELT)) (|sort!| (#8# NIL (AND #10# #13#) ELT) (#16=($ #15# $) 65 #10# ELT)) (|sort| (#8# NIL #13# ELT) (#16# NIL T ELT)) (|size?| #17=((#3# $ #18=(|NonNegativeInteger|)) NIL T ELT)) (|setvalue!| #19=(#20=(|#1| $ |#1|) NIL #10# ELT)) (|setrest!| (#21=($ $ $) 26 #10# ELT)) (|setlast!| #19#) (|setfirst!| (#20# 24 #10# ELT)) (|setelt| ((|#1| $ #22="value" |#1|) NIL #10# ELT) ((|#1| $ #23="first" |#1|) 25 #10# ELT) (($ $ #24="rest" $) 27 #10# ELT) ((|#1| $ #25="last" |#1|) NIL #10# ELT) ((|#1| $ #26=(|UniversalSegment| #9#) |#1|) NIL #10# ELT) #27=(#28=(|#1| $ #9# |#1|) NIL #10# ELT)) (|setchildren!| (($ $ #29=(|List| $)) NIL #10# ELT)) (|setUnion| (#21# 74 #30=(|has| |#1| (|SetCategory|)) ELT)) (|setIntersection| (#21# 75 #30# ELT)) (|setDifference| (#21# 79 #30# ELT)) (|select!| #31=(#32=($ #33=(|Mapping| #3# |#1|) $) NIL T ELT)) (|select| #34=(#32# NIL #35=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|second| #5#) (|sample| (#36=($) NIL T CONST)) (|reverse!| (#8# 31 #10# ELT)) (|reverse| (#8# 32 T ELT)) (|rest| (#8# 21 T ELT) (#37=($ $ #18#) 35 T ELT)) (|removeDuplicates!| (#8# 63 #4# ELT)) (|removeDuplicates| (#8# 73 #38=(AND #35# #4#) ELT)) (|remove!| (#39=($ |#1| $) NIL #4# ELT) #31#) (|remove| #34# (#39# NIL #38# ELT)) (|reduce| ((|#1| #40=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #40# $ |#1|) NIL T ELT) ((|#1| #40# $ |#1| |#1|) NIL #4# ELT)) (|qsetelt!| #27#) (|qelt| (#41=(|#1| $ #9#) NIL T ELT)) (|possiblyInfinite?| #42=(#12# NIL T ELT)) (|position| ((#9# |#1| $ #9#) NIL #4# ELT) ((#9# |#1| $) NIL #4# ELT) ((#9# #33# $) NIL T ELT)) (|null| (#12# 9 T ELT)) (|nodes| #43=((#29# $) NIL T ELT)) (|node?| #1#) (|nil| (#36# 7 T CONST)) (|new| (($ #18# |#1|) NIL T ELT)) (|more?| #17#) (|minIndex| (#44=(#9# $) 34 #45=(|has| #9# #14#) ELT)) (|min| #46=(#21# NIL #13# ELT)) (|merge!| #46# (#47=($ #15# $ $) 66 T ELT)) (|merge| #46# (#47# NIL T ELT)) (|members| (#48=(#49=(|List| |#1|) $) 30 T ELT)) (|member?| (#50=(#3# |#1| $) 61 #4# ELT)) (|maxIndex| (#44# NIL #45# ELT)) (|max| #46#) (|map!| (#51=($ (|Mapping| |#1| |#1|) $) 92 T ELT)) (|map| (#51# NIL T ELT) (($ #40# $ $) NIL T ELT)) (|list| (($ |#1|) NIL T ELT)) (|less?| #17#) (|leaves| #52=(#48# NIL T ELT)) (|leaf?| #42#) (|latex| (((|String|) $) 59 #30# ELT)) (|last| #5# #53=(#37# NIL T ELT)) (|insert!| #54=(#55=($ $ $ #9#) NIL T ELT) #56=(($ |#1| $ #9#) NIL T ELT)) (|insert| #54# #56#) (|indices| (((|List| #9#) $) NIL T ELT)) (|index?| ((#3# #9# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| (#6# 16 T ELT) #53#) (|find| (((|Union| |#1| "failed") #33# $) NIL T ELT)) (|fill!| (#57=($ $ |#1|) NIL #10# ELT)) (|explicitlyFinite?| #42#) (|every?| #58=((#3# #33# $) NIL T ELT)) (|eval| (($ $ (|List| #59=(|Equation| |#1|))) NIL #60=(AND (|has| |#1| (|Evalable| |#1|)) #30#) ELT) (($ $ #59#) NIL #60# ELT) (($ $ |#1| |#1|) NIL #60# ELT) (($ $ #49# #49#) NIL #60# ELT)) (|eq?| (#2# 15 T ELT)) (|entry?| (#50# NIL #38# ELT)) (|entries| #52#) (|empty?| (#12# 20 T ELT)) (|empty| (#36# 19 T ELT)) (|elt| ((|#1| $ #22#) NIL T ELT) ((|#1| $ #23#) 18 T ELT) (($ $ #24#) 23 T ELT) ((|#1| $ #25#) NIL T ELT) #61=(($ $ #26#) NIL T ELT) (#41# 78 T ELT) (#28# NIL T ELT)) (|distance| ((#9# $ $) NIL T ELT)) (|delete!| #61# #62=(#11# NIL T ELT)) (|delete| #61# #62#) (|cyclic?| #42#) (|cycleTail| #7#) (|cycleSplit!| (#8# NIL #10# ELT)) (|cycleLength| (#63=(#18# $) NIL T ELT)) (|cycleEntry| (#8# 40 T ELT)) (|count| ((#18# #33# $) NIL T ELT) ((#18# |#1| $) NIL #4# ELT)) (|copyInto!| (#55# NIL #10# ELT)) (|copy| (#8# 36 T ELT)) (|convert| ((#64=(|InputForm|) $) 87 (|has| |#1| (|ConvertibleTo| #64#)) ELT)) (|construct| (($ #49#) 29 T ELT)) (|cons| (#39# 10 T ELT)) (|concat!| (#21# 62 T ELT) #65=(#57# NIL T ELT)) (|concat| (#21# 72 T ELT) (#39# 14 T ELT) (($ #29#) NIL T ELT) #65#) (|coerce| ((#66=(|OutputForm|) $) 51 (|has| |#1| (|CoercibleTo| #66#)) ELT)) (|children| #43#) (|child?| #1#) (|before?| #1#) (|append| (#21# 11 T ELT)) (|any?| #58#) (>= #67=(#2# NIL #13# ELT)) (> #67#) (= (#2# 55 #4# ELT)) (<= #67#) (< #67#) (|#| (#63# 13 T ELT)))
+(((|List| |#1|) (|Join| (|ListAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |nil| ($) |constant|) (SIGNATURE |null| ((|Boolean|) $)) (SIGNATURE |cons| ($ |#1| $)) (SIGNATURE |append| #1=($ $ $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |setUnion| #1#) (SIGNATURE |setIntersection| #1#) (SIGNATURE |setDifference| #1#)) |%noBranch|))) (|Type|)) (T |List|))
+((|nil| (*1 *1) #1=(AND #2=(|isDomain| *1 (|List| *2)) #3=(|ofCategory| *2 #4=(|Type|)))) (|null| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|List| *3)) (|ofCategory| *3 #4#))) (|cons| (*1 *1 *2 *1) #1#) (|append| #5=(*1 *1 *1 *1) #1#) (|setUnion| #5# #6=(AND #2# (|ofCategory| *2 (|SetCategory|)) #3#)) (|setIntersection| #5# #6#) (|setDifference| #5# #6#))
+((|scan| ((#1=(|List| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|List| |#1|) |#2|) 16 T ELT)) (|reduce| ((|#2| #2# #3# |#2|) 18 T ELT)) (|map| ((#1# (|Mapping| |#2| |#1|) #3#) 13 T ELT)))
+(((|ListFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| (#1=(|List| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|List| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| #2# #3# |#2|)) (SIGNATURE |map| (#1# (|Mapping| |#2| |#1|) #3#))) #4=(|Type|) #4#) (T |ListFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #1=(|isDomain| *4 #2=(|List| *5)) #3=(|ofCategory| *5 #4=(|Type|)) #5=(|ofCategory| *6 #4#) (|isDomain| *2 #6=(|List| *6)) (|isDomain| *1 (|ListFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #1# #3# (|ofCategory| *2 #4#) (|isDomain| *1 (|ListFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 #6#) #5# #3# (|isDomain| *2 #2#) (|isDomain| *1 (|ListFunctions2| *6 *5)))))
+((|match| ((|#2| #1=(|List| |#1|) #2=(|List| |#2|) |#1| #3=(|Mapping| |#2| |#1|)) 18 T ELT) ((#3# #1# #2# #3#) 19 T ELT) ((|#2| #1# #2# |#1| |#2|) 16 T ELT) ((#3# #1# #2# |#2|) 17 T ELT) ((|#2| #1# #2# |#1|) 10 T ELT) ((#3# #1# #2#) 12 T ELT)))
+(((|ListToMap| |#1| |#2|) (CATEGORY |package| (SIGNATURE |match| (#1=(|Mapping| |#2| |#1|) #2=(|List| |#1|) #3=(|List| |#2|))) (SIGNATURE |match| (|#2| #2# #3# |#1|)) (SIGNATURE |match| (#1# #2# #3# |#2|)) (SIGNATURE |match| (|#2| #2# #3# |#1| |#2|)) (SIGNATURE |match| (#1# #2# #3# #1#)) (SIGNATURE |match| (|#2| #2# #3# |#1| #1#))) (|SetCategory|) (|Type|)) (T |ListToMap|))
+((|match| (*1 *2 *3 *4 *5 *6) (AND #1=(|isDomain| *3 #2=(|List| *5)) #3=(|isDomain| *4 (|List| *2)) (|isDomain| *6 (|Mapping| *2 *5)) #4=(|ofCategory| *5 #5=(|SetCategory|)) #6=(|ofCategory| *2 #7=(|Type|)) #8=(|isDomain| *1 (|ListToMap| *5 *2)))) (|match| (*1 *2 *3 *4 *2) (AND #9=(|isDomain| *2 (|Mapping| *6 *5)) #1# #10=(|isDomain| *4 #11=(|List| *6)) #4# #12=(|ofCategory| *6 #7#) #13=(|isDomain| *1 (|ListToMap| *5 *6)))) (|match| (*1 *2 *3 *4 *5 *2) #14=(AND #1# #3# #4# #6# #8#)) (|match| #15=(*1 *2 *3 *4 *5) (AND (|isDomain| *3 #11#) (|isDomain| *4 #2#) (|ofCategory| *6 #5#) (|ofCategory| *5 #7#) (|isDomain| *2 (|Mapping| *5 *6)) (|isDomain| *1 (|ListToMap| *6 *5)))) (|match| #15# #14#) (|match| (*1 *2 *3 *4) (AND #1# #10# #4# #12# #9# #13#)))
+((|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) 21 T ELT)))
+(((|ListFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)))) #1=(|Type|) #1# #1#) (T |ListFunctions3|))
+((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *7)) (|ofCategory| *6 #1=(|Type|)) (|ofCategory| *7 #1#) (|ofCategory| *8 #1#) (|isDomain| *2 (|List| *8)) (|isDomain| *1 (|ListFunctions3| *6 *7 *8)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT) ((|#1| $) 8 T ELT)) (|before?| #1#) (= #1#))
+(((|Literal| |#1|) (|Join| (|SpadSyntaxCategory|) (|CoercibleTo| |#1|)) (|SetCategory|)) (T |Literal|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
+(((|LeftLinearSet| |#1|) (|Category|) (|SemiGroup|)) (T |LeftLinearSet|))
+((* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|LeftLinearSet| *2)) (|ofCategory| *2 (|SemiGroup|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|substitute| (($ |#1| |#1| $) 45 T ELT)) (|select!| (#5=($ #6=(|Mapping| #3# |#1|) $) 61 #7=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| #8=(#5# NIL #7# ELT)) (|sample| (#9=($) NIL T CONST)) (|removeDuplicates!| (#10=($ $) 47 T ELT)) (|removeDuplicates| (#10# NIL #11=(AND #7# #4#) ELT)) (|remove!| (#12=($ |#1| $) 58 #7# ELT) (#5# 60 #7# ELT)) (|remove| (#12# NIL #11# ELT) #8#) (|reduce| ((|#1| #13=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #13# $ |#1|) NIL T ELT) ((|#1| #13# $) NIL T ELT)) (|members| ((#14=(|List| |#1|) $) 9 T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| (#15=($ (|Mapping| |#1| |#1|) $) 41 T ELT)) (|map| (#15# 39 T ELT)) (|latex| (((|String|) $) NIL #16=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| (#17=(|#1| $) 49 T ELT)) (|insert!| (#12# 30 T ELT) (($ |#1| $ #18=(|NonNegativeInteger|)) 44 T ELT)) (|hash| (((|SingleInteger|) $) NIL #16# ELT)) (|find| (((|Union| |#1| "failed") #6# $) NIL T ELT)) (|extract!| (#17# 52 T ELT)) (|every?| #19=((#3# #6# $) NIL T ELT)) (|eval| (($ $ (|List| #20=(|Equation| |#1|))) NIL #21=(AND (|has| |#1| (|Evalable| |#1|)) #16#) ELT) (($ $ #20#) NIL #21# ELT) (($ $ |#1| |#1|) NIL #21# ELT) (($ $ #14# #14#) NIL #21# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| (#22=(#3# $) 23 T ELT)) (|empty| (#9# 29 T ELT)) (|duplicates?| (#22# 56 T ELT)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| #18#))) $) 69 T ELT)) (|dictionary| (#9# 26 T ELT) (#23=($ #14#) 19 T ELT)) (|count| ((#18# |#1| $) 65 #4# ELT) ((#18# #6# $) NIL T ELT)) (|copy| (#10# 20 T ELT)) (|convert| ((#24=(|InputForm|) $) 36 (|has| |#1| (|ConvertibleTo| #24#)) ELT)) (|construct| (#23# NIL T ELT)) (|coerce| ((#25=(|OutputForm|) $) 14 (|has| |#1| (|CoercibleTo| #25#)) ELT)) (|before?| #1#) (|bag| (#23# 24 T ELT)) (|any?| #19#) (= (#2# 71 #4# ELT)) (|#| ((#18# $) 17 T ELT)))
+(((|ListMultiDictionary| |#1|) (|Join| (|MultiDictionary| |#1|) (|FiniteAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |duplicates?| ((|Boolean|) $)) (SIGNATURE |substitute| ($ |#1| |#1| $)))) (|SetCategory|)) (T |ListMultiDictionary|))
+((|duplicates?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ListMultiDictionary| *3)) (|ofCategory| *3 #1=(|SetCategory|)))) (|substitute| (*1 *1 *2 *2 *1) (AND (|isDomain| *1 (|ListMultiDictionary| *2)) (|ofCategory| *2 #1#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT)))
+(((|LeftModule| |#1|) (|Category|) (|Rng|)) (T |LeftModule|))
+NIL
+(|Join| (|AbelianGroup|) (|LeftLinearSet| |t#1|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|) $) 17 T ELT)) (|rightMult| (($ $ |#1|) 68 T ELT)) (|reverse!| (#3=($ $) 39 T ELT)) (|reverse| (#3# 37 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) 60 T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|plus| (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (|outputForm| ((#4=(|OutputForm|) $ #5=(|Mapping| #4# #4# #4#) #5# #6=(|Integer|)) 55 T ELT)) (|nthFactor| ((|#1| $ #6#) 35 T ELT)) (|nthExpon| ((|#2| $ #6#) 34 T ELT)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 41 T ELT)) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) 46 T ELT)) (|makeUnit| (($) 13 T ELT)) (|makeTerm| (($ |#1| |#2|) 24 T ELT)) (|makeMulti| (($ #7=(|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) 25 T ELT)) (|listOfMonoms| ((#7# $) 14 T ELT)) (|leftMult| (($ |#1| $) 69 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|commutativeEquality| (#2# 74 T ELT)) (|coerce| ((#4# $) 21 T ELT) (($ |#1|) 18 T ELT)) (|before?| #1#) (= (#2# 27 T ELT)))
+(((|ListMonoidOps| |#1| |#2| |#3|) (|Join| #1=(|SetCategory|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| (#2=(|OutputForm|) $ #3=(|Mapping| #2# #2# #2#) #3# #4=(|Integer|))) (SIGNATURE |listOfMonoms| (#5=(|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $)) (SIGNATURE |makeTerm| ($ |#1| |#2|)) (SIGNATURE |makeMulti| ($ #5#)) (SIGNATURE |nthExpon| (|#2| $ #4#)) (SIGNATURE |nthFactor| (|#1| $ #4#)) (SIGNATURE |reverse| #6=($ $)) (SIGNATURE |reverse!| #6#) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |makeUnit| ($)) (SIGNATURE |rightMult| ($ $ |#1|)) (SIGNATURE |leftMult| ($ |#1| $)) (SIGNATURE |plus| ($ |#1| |#2| $)) (SIGNATURE |plus| ($ $ $)) (SIGNATURE |commutativeEquality| ((|Boolean|) $ $)) (SIGNATURE |mapExpon| ($ (|Mapping| |#2| |#2|) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)))) #1# (|AbelianMonoid|) |#2|) (T |ListMonoidOps|))
+((|outputForm| (*1 *2 *1 *3 *3 *4) (AND (|isDomain| *3 (|Mapping| #1=(|OutputForm|) #1# #1#)) (|isDomain| *4 #2=(|Integer|)) (|isDomain| *2 #1#) (|isDomain| *1 (|ListMonoidOps| *5 *6 *7)) (|ofCategory| *5 #3=(|SetCategory|)) (|ofCategory| *6 #4=(|AbelianMonoid|)) (|ofType| *7 *6))) (|listOfMonoms| #5=(*1 *2 *1) (AND #6=(|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4)))) #7=(|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) #8=(|ofCategory| *3 #3#) #9=(|ofCategory| *4 #4#) #10=(|ofType| *5 *4))) (|makeTerm| (*1 *1 *2 *3) #11=(AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) #12=(|ofCategory| *2 #3#) (|ofCategory| *3 #4#) (|ofType| *4 *3))) (|makeMulti| (*1 *1 *2) (AND #6# #8# #9# #10# #7#)) (|nthExpon| #13=(*1 *2 *1 *3) (AND #14=(|isDomain| *3 #2#) (|ofCategory| *2 #4#) (|isDomain| *1 (|ListMonoidOps| *4 *2 *5)) (|ofCategory| *4 #3#) (|ofType| *5 *2))) (|nthFactor| #13# (AND #14# #12# (|isDomain| *1 (|ListMonoidOps| *2 *4 *5)) #9# #10#)) (|reverse| #15=(*1 *1 *1) #11#) (|reverse!| #15# #11#) (|size| #5# (AND (|isDomain| *2 (|NonNegativeInteger|)) #7# #8# #9# #10#)) (|makeUnit| (*1 *1) #11#) (|rightMult| (*1 *1 *1 *2) #11#) (|leftMult| #16=(*1 *1 *2 *1) #11#) (|plus| (*1 *1 *2 *3 *1) #11#) (|plus| (*1 *1 *1 *1) #11#) (|commutativeEquality| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) #7# #8# #9# #10#)) (|mapExpon| #16# (AND (|isDomain| *2 (|Mapping| *4 *4)) #9# #10# #7# #8#)) (|mapGen| #16# (AND (|isDomain| *2 (|Mapping| *3 *3)) #8# #7# #9# #10#)))
+((|maxIndex| ((#1=(|Integer|) $) 30 T ELT)) (|insert| (($ |#2| $ #1#) 26 T ELT) (($ $ $ #1#) NIL T ELT)) (|indices| (((|List| #1#) $) 12 T ELT)) (|index?| (((|Boolean|) #1# $) 17 T ELT)) (|concat| (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (|List| $)) NIL T ELT)))
+(((|LinearAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |insert| (|#1| |#1| |#1| #1=(|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| #1#)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |maxIndex| (#1# |#1|)) (SIGNATURE |indices| ((|List| #1#) |#1|)) (SIGNATURE |index?| ((|Boolean|) #1# |#1|))) (|LinearAggregate| |#2|) (|Type|)) (T |LinearAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #4=(|Boolean|) |#1|) . #5=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#6=($) 6 T CONST)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #7=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #7#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #4# |#1|) . #5#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #8=($)) 38 (|has| #3# . #9=((|OrderedSet|))) ELT)) (|maxIndex| ((#3# . #8#) 39 (|has| #3# . #9#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #10=((|SetCategory|))) ELT)) (|insert| (($ |#1| $ (|Integer|)) 57 T ELT) (($ $ $ (|Integer|)) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#11=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #10#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #9#) ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #10#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #10#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #10#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #10#)) ELT)) (|eq?| ((#12=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#11# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#12# $) 7 T ELT)) (|empty| (#6# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ (|UniversalSegment| (|Integer|))) 66 T ELT)) (|delete| (($ $ (|Integer|)) 59 T ELT) (($ $ (|UniversalSegment| (|Integer|))) 58 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#13=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #13#)) ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|LinearAggregate| |#1|) (|Category|) (|Type|)) (T |LinearAggregate|))
+((|new| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|concat| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|delete| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|delete| (*1 *1 *1 *2) (AND (|isDomain| *2 (|UniversalSegment| (|Integer|))) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|insert| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 (|UniversalSegment| (|Integer|))) (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|IndexedAggregate| (|Integer|) |t#1|) (|Collection| |t#1|) (|Eltable| (|UniversalSegment| (|Integer|)) $) (CATEGORY |domain| (SIGNATURE |new| ($ (|NonNegativeInteger|) |t#1|)) (SIGNATURE |concat| ($ $ |t#1|)) (SIGNATURE |concat| ($ |t#1| $)) (SIGNATURE |concat| ($ $ $)) (SIGNATURE |concat| ($ (|List| $))) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $)) (SIGNATURE |delete| ($ $ (|Integer|))) (SIGNATURE |delete| ($ $ (|UniversalSegment| (|Integer|)))) (SIGNATURE |insert| ($ |t#1| $ (|Integer|))) (SIGNATURE |insert| ($ $ $ (|Integer|))) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (SIGNATURE |setelt| (|t#1| $ (|UniversalSegment| (|Integer|)) |t#1|)) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 15 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sign| ((#5=(|Integer|) $) NIL #6=(|has| |#1| (|OrderedAbelianGroup|)) ELT)) (|sample| (#7=($) NIL T CONST)) (|positive?| #8=(#4# NIL #6# ELT)) (|opposite?| #1#) (|numer| ((|#1| $) 23 T ELT)) (|negative?| #8#) (|min| #9=(#10=($ $ $) NIL #6# ELT)) (|max| #9#) (|latex| (((|String|) $) 48 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|denom| ((|#3| $) 24 T ELT)) (|coerce| (((|OutputForm|) $) 43 T ELT)) (|before?| (#2# 22 T ELT)) (|abs| (#11=($ $) NIL #6# ELT)) (|Zero| (#7# 10 T CONST)) (>= #12=(#2# NIL #6# ELT)) (> #12#) (= (#2# 20 T ELT)) (<= #12#) (< (#2# 26 #6# ELT)) (/ (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (- (#11# 17 T ELT) (#10# NIL T ELT)) (+ (#10# 29 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #5# $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
+(((|Localize| |#1| |#2| |#3|) (|Join| #1=(|Module| |#2|) (CATEGORY |domain| (IF (|has| |#1| #2=(|OrderedAbelianGroup|)) (ATTRIBUTE #2#) |%noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) #1# (|CommutativeRing|) (|SubsetCategory| (|Monoid|) |#2|)) (T |Localize|))
+((/ (*1 *1 *1 *2) (AND #1=(|ofCategory| *4 #2=(|CommutativeRing|)) #3=(|isDomain| *1 (|Localize| *3 *4 *2)) #4=(|ofCategory| *3 #5=(|Module| *4)) #6=(|ofCategory| *2 #7=(|SubsetCategory| #8=(|Monoid|) *4)))) (/ (*1 *1 *2 *3) (AND #1# (|isDomain| *1 (|Localize| *2 *4 *3)) (|ofCategory| *2 #5#) (|ofCategory| *3 #7#))) (|numer| #9=(*1 *2 *1) (AND (|ofCategory| *3 #2#) (|ofCategory| *2 (|Module| *3)) (|isDomain| *1 (|Localize| *2 *3 *4)) (|ofCategory| *4 (|SubsetCategory| #8# *3)))) (|denom| #9# (AND #1# #6# #3# #4#)))
+((|solve| (((|Union| |#2| #1="failed") |#3| |#2| #2=(|Symbol|) |#2| #3=(|List| |#2|)) 174 T ELT) (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| #3#)) #1#) |#3| |#2| #2#) 44 T ELT)))
+(((|ElementaryFunctionLODESolver| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |solve| ((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| #1=(|List| |#2|))) #2="failed") |#3| |#2| #3=(|Symbol|))) (SIGNATURE |solve| ((|Union| |#2| #2#) |#3| |#2| #3# |#2| #1#))) (|Join| (|EuclideanDomain|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|)) (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (T |ElementaryFunctionLODESolver|))
+((|solve| (*1 *2 *3 *2 *4 *2 *5) (|partial| AND (|isDomain| *4 #1=(|Symbol|)) (|isDomain| *5 (|List| *2)) (|ofCategory| *2 #2=(|Join| (|AlgebraicallyClosedFunctionSpace| *6) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) #3=(|ofCategory| *6 (|Join| (|EuclideanDomain|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#) (|CharacteristicZero|))) (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *2 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)))) (|solve| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 #1#) #3# (|ofCategory| *4 #2#) (|isDomain| *2 (|Record| (|:| |particular| *4) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|symmetricSquare| (#4=($ $) NIL #5=(|has| |#1| (|Field|)) ELT)) (|symmetricProduct| (#6=($ $ $) 28 #5# ELT)) (|symmetricPower| (#7=($ $ #8=(|NonNegativeInteger|)) 31 #5# ELT)) (|subtractIfCan| (#9=(#10=(|Union| $ #11="failed") $ $) NIL T ELT)) (|sample| (#12=($) NIL T CONST)) (|rightRemainder| #13=(#6# NIL #5# ELT)) (|rightQuotient| #13#) (|rightLcm| #13#) (|rightGcd| #13#) (|rightExtendedGcd| #14=(((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL #5# ELT)) (|rightExactQuotient| #15=(#9# NIL #5# ELT)) (|rightDivide| #16=(#17=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #5# ELT)) (|retractIfCan| (((|Union| #18=(|Integer|) . #19=(#11#)) . #20=($)) NIL #21=(|has| |#1| (|RetractableTo| #18#)) ELT) (((|Union| #22=(|Fraction| #18#) . #19#) . #20#) NIL #23=(|has| |#1| (|RetractableTo| #22#)) ELT) (((|Union| |#1| . #19#) . #20#) NIL T ELT)) (|retract| ((#18# . #24=($)) NIL #21# ELT) ((#22# . #24#) NIL #23# ELT) #25=(#26=(|#1| . #24#) NIL T ELT)) (|reductum| #27=(#4# NIL T ELT)) (|recip| ((#10# $) NIL T ELT)) (|primitivePart| (#4# NIL #28=(|has| |#1| (|GcdDomain|)) ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial| (($ |#1| #8#) NIL T ELT)) (|monicRightDivide| #29=(#17# NIL #30=(|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| #29#) (|minimumDegree| #31=((#8# $) NIL T ELT)) (|leftRemainder| #13#) (|leftQuotient| #13#) (|leftLcm| #13#) (|leftGcd| #13#) (|leftExtendedGcd| #14#) (|leftExactQuotient| #15#) (|leftDivide| #16#) (|leadingCoefficient| #25#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| ((#10# $ |#1|) NIL #30# ELT)) (|elt| ((|#1| $ |#1|) 24 T ELT)) (|directSum| (#6# 33 #5# ELT)) (|degree| #31#) (|content| (#26# NIL #28# ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #18#) NIL T ELT) (($ #22#) NIL #23# ELT) (($ |#1|) NIL T ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ #8#) NIL T ELT)) (|characteristic| ((#8#) NIL T CONST)) (|before?| #1#) (|apply| ((|#1| $ |#1| |#1|) 23 T ELT)) (|annihilate?| #1#) (|adjoint| #27#) (|Zero| (#12# 21 T CONST)) (|One| (#12# 8 T CONST)) (D (#12# NIL T ELT)) (= #1#) (- #27# #32=(#6# NIL T ELT)) (+ #32#) (** (($ $ #33=(|PositiveInteger|)) NIL T ELT) (#7# NIL T ELT)) (* (($ #33# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #18# . #34=($)) NIL T ELT) #32# (($ $ |#1|) NIL T ELT) (($ |#1| . #34#) NIL T ELT)))
+(((|LinearOrdinaryDifferentialOperator| |#1| |#2|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Ring|) (|Mapping| |#1| |#1|)) (T |LinearOrdinaryDifferentialOperator|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|symmetricSquare| (#4=($ $) NIL #5=(|has| |#1| (|Field|)) ELT)) (|symmetricProduct| #6=(#7=($ $ $) NIL #5# ELT)) (|symmetricPower| (#8=($ $ #9=(|NonNegativeInteger|)) NIL #5# ELT)) (|subtractIfCan| (#10=(#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|sample| #13=(#14=($) NIL T CONST)) (|rightRemainder| #6#) (|rightQuotient| #6#) (|rightLcm| #6#) (|rightGcd| #6#) (|rightExtendedGcd| #15=(((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL #5# ELT)) (|rightExactQuotient| #16=(#10# NIL #5# ELT)) (|rightDivide| #17=(#18=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #5# ELT)) (|retractIfCan| (((|Union| #19=(|Integer|) . #20=(#12#)) . #21=($)) NIL #22=(|has| |#1| (|RetractableTo| #19#)) ELT) (((|Union| #23=(|Fraction| #19#) . #20#) . #21#) NIL #24=(|has| |#1| (|RetractableTo| #23#)) ELT) (((|Union| |#1| . #20#) . #21#) NIL T ELT)) (|retract| ((#19# . #25=($)) NIL #22# ELT) ((#23# . #25#) NIL #24# ELT) #26=(#27=(|#1| . #25#) NIL T ELT)) (|reductum| #28=(#4# NIL T ELT)) (|recip| ((#11# $) NIL T ELT)) (|primitivePart| (#4# NIL #29=(|has| |#1| (|GcdDomain|)) ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial| (($ |#1| #9#) NIL T ELT)) (|monicRightDivide| #30=(#18# NIL #31=(|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| #30#) (|minimumDegree| #32=((#9# $) NIL T ELT)) (|leftRemainder| #6#) (|leftQuotient| #6#) (|leftLcm| #6#) (|leftGcd| #6#) (|leftExtendedGcd| #15#) (|leftExactQuotient| #16#) (|leftDivide| #17#) (|leadingCoefficient| #26#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| ((#11# $ |#1|) NIL #31# ELT)) (|elt| ((|#1| $ |#1|) NIL T ELT)) (|directSum| #6#) (|degree| #32#) (|content| (#27# NIL #29# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #19#) NIL T ELT) (($ #23#) NIL #24# ELT) (($ |#1|) NIL T ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ #9#) NIL T ELT)) (|characteristic| ((#9#) NIL T CONST)) (|before?| #1#) (|apply| ((|#1| $ |#1| |#1|) NIL T ELT)) (|annihilate?| #1#) (|adjoint| #28#) (|Zero| #13#) (|One| #13#) (D (#14# NIL T ELT)) (= #1#) (- #28# #33=(#7# NIL T ELT)) (+ #33#) (** (($ $ #34=(|PositiveInteger|)) NIL T ELT) (#8# NIL T ELT)) (* (($ #34# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #19# . #35=($)) NIL T ELT) #33# (($ $ |#1|) NIL T ELT) (($ |#1| . #35#) NIL T ELT)))
+(((|LinearOrdinaryDifferentialOperator1| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|DifferentialRing|)) (T |LinearOrdinaryDifferentialOperator1|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|symmetricSquare| (#4=($ $) NIL #5=(|has| |#1| (|Field|)) ELT)) (|symmetricProduct| #6=(#7=($ $ $) NIL #5# ELT)) (|symmetricPower| (#8=($ $ #9=(|NonNegativeInteger|)) NIL #5# ELT)) (|subtractIfCan| (#10=(#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|sample| #13=(#14=($) NIL T CONST)) (|rightRemainder| #6#) (|rightQuotient| #6#) (|rightLcm| #6#) (|rightGcd| #6#) (|rightExtendedGcd| #15=(((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL #5# ELT)) (|rightExactQuotient| #16=(#10# NIL #5# ELT)) (|rightDivide| #17=(#18=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #5# ELT)) (|retractIfCan| (((|Union| #19=(|Integer|) . #20=(#12#)) . #21=($)) NIL #22=(|has| |#1| (|RetractableTo| #19#)) ELT) (((|Union| #23=(|Fraction| #19#) . #20#) . #21#) NIL #24=(|has| |#1| (|RetractableTo| #23#)) ELT) (((|Union| |#1| . #20#) . #21#) NIL T ELT)) (|retract| ((#19# . #25=($)) NIL #22# ELT) ((#23# . #25#) NIL #24# ELT) #26=(#27=(|#1| . #25#) NIL T ELT)) (|reductum| #28=(#4# NIL T ELT)) (|recip| ((#11# $) NIL T ELT)) (|primitivePart| (#4# NIL #29=(|has| |#1| (|GcdDomain|)) ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial| (($ |#1| #9#) NIL T ELT)) (|monicRightDivide| #30=(#18# NIL #31=(|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| #30#) (|minimumDegree| #32=((#9# $) NIL T ELT)) (|leftRemainder| #6#) (|leftQuotient| #6#) (|leftLcm| #6#) (|leftGcd| #6#) (|leftExtendedGcd| #15#) (|leftExactQuotient| #16#) (|leftDivide| #17#) (|leadingCoefficient| #26#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| ((#11# $ |#1|) NIL #31# ELT)) (|elt| ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (|directSum| #6#) (|degree| #32#) (|content| (#27# NIL #29# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #19#) NIL T ELT) (($ #23#) NIL #24# ELT) (($ |#1|) NIL T ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ #9#) NIL T ELT)) (|characteristic| ((#9#) NIL T CONST)) (|before?| #1#) (|apply| ((|#1| $ |#1| |#1|) NIL T ELT)) (|annihilate?| #1#) (|adjoint| #28#) (|Zero| #13#) (|One| #13#) (D (#14# NIL T ELT)) (= #1#) (- #28# #33=(#7# NIL T ELT)) (+ #33#) (** (($ $ #34=(|PositiveInteger|)) NIL T ELT) (#8# NIL T ELT)) (* (($ #34# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #19# . #35=($)) NIL T ELT) #33# (($ $ |#1|) NIL T ELT) (($ |#1| . #35#) NIL T ELT)))
+(((|LinearOrdinaryDifferentialOperator2| |#1| |#2|) (|Join| (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Eltable| |#2| |#2|)) (|DifferentialRing|) (|Join| (|LeftModule| |#1|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $))))) (T |LinearOrdinaryDifferentialOperator2|))
+NIL
+((|symmetricSquare| (#1=($ $) 29 T ELT)) (|adjoint| (#1# 27 T ELT)) (D (($) 13 T ELT)))
+(((|LinearOrdinaryDifferentialOperatorCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |symmetricSquare| #1=(|#1| |#1|)) (SIGNATURE |adjoint| #1#) (SIGNATURE D (|#1|))) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|symmetricSquare| (($ $) 96 (|has| |#1| (|Field|)) ELT)) (|symmetricProduct| (($ $ $) 98 (|has| |#1| (|Field|)) ELT)) (|symmetricPower| (($ $ (|NonNegativeInteger|)) 97 (|has| |#1| (|Field|)) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightRemainder| (#4=($ $ $) 58 (|has| |#1| . #5=((|Field|))) ELT)) (|rightQuotient| (#4# 59 (|has| |#1| . #5#) ELT)) (|rightLcm| (#4# 61 (|has| |#1| . #5#) ELT)) (|rightGcd| (#4# 56 (|has| |#1| . #5#) ELT)) (|rightExtendedGcd| (#6=((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 55 (|has| |#1| . #5#) ELT)) (|rightExactQuotient| (#7=(#8=(|Union| $ "failed") $ $) 57 (|has| |#1| . #5#) ELT)) (|rightDivide| (#9=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 60 (|has| |#1| . #5#) ELT)) (|retractIfCan| (((|Union| #10=(|Integer|) . #11=("failed")) . #12=($)) 88 (|has| |#1| . #13=((|RetractableTo| #10#))) ELT) (((|Union| #14=(|Fraction| #10#) . #11#) . #12#) 85 (|has| |#1| . #15=((|RetractableTo| #14#))) ELT) (((|Union| |#1| . #11#) . #12#) 82 T ELT)) (|retract| ((#10# . #16=($)) 87 (|has| |#1| . #13#) ELT) ((#14# . #16#) 84 (|has| |#1| . #15#) ELT) ((|#1| . #16#) 83 T ELT)) (|reductum| (#17=($ $) 77 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|primitivePart| (#17# 68 (|has| |#1| . #18=((|GcdDomain|))) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial| (($ |#1| #19=(|NonNegativeInteger|)) 75 T ELT)) (|monicRightDivide| (#9# 70 (|has| |#1| . #20=((|IntegralDomain|))) ELT)) (|monicLeftDivide| (#9# 71 (|has| |#1| . #20#) ELT)) (|minimumDegree| (#21=(#19# $) 79 T ELT)) (|leftRemainder| (#4# 65 (|has| |#1| . #5#) ELT)) (|leftQuotient| (#4# 66 (|has| |#1| . #5#) ELT)) (|leftLcm| (#4# 54 (|has| |#1| . #5#) ELT)) (|leftGcd| (#4# 63 (|has| |#1| . #5#) ELT)) (|leftExtendedGcd| (#6# 62 (|has| |#1| . #5#) ELT)) (|leftExactQuotient| (#7# 64 (|has| |#1| . #5#) ELT)) (|leftDivide| (#9# 67 (|has| |#1| . #5#) ELT)) (|leadingCoefficient| ((|#1| . #22=($)) 78 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| ((#8# $ |#1|) 72 (|has| |#1| . #20#) ELT)) (|elt| ((|#1| $ |#1|) 101 T ELT)) (|directSum| (($ $ $) 95 (|has| |#1| (|Field|)) ELT)) (|degree| (#21# 80 T ELT)) (|content| ((|#1| . #22#) 69 (|has| |#1| . #18#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #14#) 86 (|has| |#1| . #15#) ELT) (($ |#1|) 81 T ELT)) (|coefficients| (((|List| |#1|) $) 74 T ELT)) (|coefficient| ((|#1| $ #19#) 76 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|apply| ((|#1| $ |#1| |#1|) 73 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|adjoint| (($ $) 99 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($) 100 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #23=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| . #23#) 89 T ELT)))
+(((|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Category|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory|))
+((D (*1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|adjoint| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|symmetricProduct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|symmetricPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|Field|)))) (|symmetricSquare| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|directSum| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(|Join| (|UnivariateSkewPolynomialCategory| |t#1|) (|Eltable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE D ($)) (SIGNATURE |adjoint| ($ $)) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |symmetricProduct| ($ $ $)) (SIGNATURE |symmetricPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |symmetricSquare| ($ $)) (SIGNATURE |directSum| ($ $ $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1=(|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Eltable| |#1| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| #1#) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UnivariateSkewPolynomialCategory| |#1|) . T))
+((|factor1| (#1=(#2=(|List| #3=(|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) #3#) 86 #4=(|has| |#1| (|AlgebraicallyClosedField|)) ELT)) (|factor| (#1# 85 #4# ELT) ((#2# #3# (|Mapping| (|List| |#1|) |#2|)) 19 T ELT)))
+(((|LinearOrdinaryDifferentialOperatorFactorizer| |#1| |#2|) (CATEGORY |package| (SIGNATURE |factor| (#1=(|List| #2=(|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) #2# (|Mapping| (|List| |#1|) |#2|))) (IF (|has| |#1| (|AlgebraicallyClosedField|)) (PROGN (SIGNATURE |factor| #3=(#1# #2#)) (SIGNATURE |factor1| #3#)) |%noBranch|)) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #4=(|Integer|)) (|RetractableTo| (|Fraction| #4#))) (|UnivariatePolynomialCategory| |#1|)) (T |LinearOrdinaryDifferentialOperatorFactorizer|))
+((|factor1| #1=(*1 *2 *3) #2=(AND (|ofCategory| *4 (|AlgebraicallyClosedField|)) (|ofCategory| *4 #3=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #4=(|Integer|)) (|RetractableTo| (|Fraction| #4#)))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| #5=(|LinearOrdinaryDifferentialOperator1| (|Fraction| *5)))) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorFactorizer| *4 *5)) (|isDomain| *3 #5#))) (|factor| #1# #2#) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|List| *5) *6)) (|ofCategory| *5 #3#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| #6=(|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorFactorizer| *5 *6)) (|isDomain| *3 #6#))))
+((|symmetricProduct| (#1=(|#2| |#2| |#2| #2=(|Mapping| |#1| |#1|)) 65 T ELT)) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) #2#) 45 T ELT)) (|directSum| (#1# 67 T ELT)))
+(((|LinearOrdinaryDifferentialOperatorsOps| |#1| |#2|) (CATEGORY |package| (SIGNATURE |symmetricProduct| #1=(|#2| |#2| |#2| #2=(|Mapping| |#1| |#1|))) (SIGNATURE |symmetricPower| (|#2| |#2| (|NonNegativeInteger|) #2#)) (SIGNATURE |directSum| #1#)) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |LinearOrdinaryDifferentialOperatorsOps|))
+((|directSum| #1=(*1 *2 *2 *2 *3) #2=(AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *4 #3=(|Field|)) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *4 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|symmetricPower| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 #3#) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *5 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|symmetricProduct| #1# #2#))
+((|\\/| (($ $ $) 9 T ELT)))
+(((|Logic&| |#1|) (CATEGORY |package| (SIGNATURE |\\/| (|#1| |#1| |#1|))) (|Logic|)) (T |Logic&|))
+NIL
+((~ (($ $) 8 T ELT)) (|\\/| (($ $ $) 6 T ELT)) (|/\\| (($ $ $) 7 T ELT)))
+(((|Logic|) (|Category|)) (T |Logic|))
+((~ (*1 *1 *1) (|ofCategory| *1 (|Logic|))) (|/\\| (*1 *1 *1 *1) (|ofCategory| *1 (|Logic|))) (|\\/| (*1 *1 *1 *1) (|ofCategory| *1 (|Logic|))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE ~ ($ $)) (SIGNATURE |/\\| ($ $ $)) (SIGNATURE |\\/| ($ $ $))))
+(((|Join|) . T) ((|Type|) . T))
+((|solveLinearPolynomialEquationByFractions| (((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#1|)) "failed") #1# #2#) 33 T ELT)))
+(((|LinearPolynomialEquationByFractions| |#1|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByFractions| ((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#1|)) "failed") #1# #2#))) (|PolynomialFactorizationExplicit|)) (T |LinearPolynomialEquationByFractions|))
+((|solveLinearPolynomialEquationByFractions| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| #1=(|SparseUnivariatePolynomial| *4))) (|isDomain| *3 #1#) (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|LinearPolynomialEquationByFractions| *4)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|varList| ((#5=(|List| |#1|) $) 85 T ELT)) (|trunc| (($ $ #6=(|NonNegativeInteger|)) 95 T ELT)) (|subtractIfCan| ((#7=(|Union| $ #8="failed") $ $) NIL T ELT)) (|sample| (#9=($) NIL T CONST)) (|rquo| (#10=(#11=(|XRecursivePolynomial| |#1| |#2|) #11# $) 50 T ELT)) (|retractIfCan| (((|Union| #12=(|LyndonWord| |#1|) #8#) $) NIL T ELT)) (|retract| #13=((#12# $) NIL T ELT)) (|reductum| (#14=($ $) 94 T ELT)) (|opposite?| #1#) (|numberOfMonomials| (#15=(#6# $) NIL T ELT)) (|monomials| ((#16=(|List| $) $) NIL T ELT)) (|monomial?| #4#) (|monom| (($ #12# |#2|) 70 T ELT)) (|mirror| (#14# 90 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|lquo| (#10# 49 T ELT)) (|leadingTerm| ((#17=(|Record| (|:| |k| #12#) (|:| |c| |#2|)) $) NIL T ELT)) (|leadingMonomial| #13#) (|leadingCoefficient| ((|#2| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|eval| (($ $ |#1| $) 32 T ELT) (($ $ #5# #16#) 34 T ELT)) (|degree| (#15# 92 T ELT)) (|construct| (#18=($ $ $) 20 T ELT) (($ #12# #12#) 79 T ELT) (($ #12# $) 77 T ELT) (($ $ #12#) 78 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) 76 T ELT) ((#19=(|XDistributedPolynomial| |#1| |#2|) $) 60 T ELT) ((#11# $) 43 T ELT) (#20=($ #12#) 27 T ELT)) (|coefficients| (((|List| |#2|) $) NIL T ELT)) (|coefficient| ((|#2| $ #12#) NIL T ELT)) (|coef| ((|#2| #11# $) 45 T ELT)) (|before?| #1#) (|Zero| (#9# 23 T CONST)) (|ListOfTerms| (((|List| #17#) $) NIL T ELT)) (|LiePolyIfCan| ((#7# #19#) 62 T ELT)) (|LiePoly| (#20# 14 T ELT)) (= (#2# 46 T ELT)) (/ (#21=($ $ |#2|) NIL (|has| |#2| (|Field|)) ELT)) (- (#14# 68 T ELT) (#18# NIL T ELT)) (+ (#18# 31 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #6# $) NIL T ELT) (($ (|Integer|) . #22=($)) NIL T ELT) (($ |#2| . #22#) 30 T ELT) (#21# NIL T ELT) (($ |#2| #12#) NIL T ELT)))
+(((|LiePolynomial| |#1| |#2|) (|Join| (|FreeLieAlgebra| |#1| |#2|) (|FreeModuleCat| |#2| #1=(|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE |LiePolyIfCan| ((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |construct| ($ #1# #1#)) (SIGNATURE |construct| ($ #1# $)) (SIGNATURE |construct| ($ $ #1#)))) (|OrderedSet|) (|CommutativeRing|)) (T |LiePolynomial|))
+((|LiePolyIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) #1=(|ofCategory| *3 (|OrderedSet|)) #2=(|ofCategory| *4 (|CommutativeRing|)) #3=(|isDomain| *1 (|LiePolynomial| *3 *4)))) (|construct| (*1 *1 *2 *2) #4=(AND (|isDomain| *2 (|LyndonWord| *3)) #1# #3# #2#)) (|construct| (*1 *1 *2 *1) #4#) (|construct| (*1 *1 *1 *2) #4#))
+((|sorted?| ((#1=(|Boolean|) $) NIL T ELT) ((#1# #2=(|Mapping| #1# |#2| |#2|) $) 59 T ELT)) (|sort!| (#3=($ $) NIL T ELT) (($ #2# $) 12 T ELT)) (|select!| (#4=($ #5=(|Mapping| #1# |#2|) $) 29 T ELT)) (|reverse!| (#3# 65 T ELT)) (|removeDuplicates!| (#3# 74 T ELT)) (|remove!| (($ |#2| $) NIL T ELT) (#4# 43 T ELT)) (|reduce| ((|#2| #6=(|Mapping| |#2| |#2| |#2|) $) 21 T ELT) ((|#2| #6# $ |#2|) 60 T ELT) ((|#2| #6# $ |#2| |#2|) 62 T ELT)) (|position| ((#7=(|Integer|) |#2| $ #7#) 71 T ELT) ((#7# |#2| $) NIL T ELT) ((#7# #5# $) 54 T ELT)) (|new| (($ (|NonNegativeInteger|) |#2|) 63 T ELT)) (|merge!| #8=(($ $ $) NIL T ELT) (#9=($ #2# $ $) 31 T ELT)) (|merge| #8# (#9# 24 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT) (($ #6# $ $) 64 T ELT)) (|list| (($ |#2|) 15 T ELT)) (|insert!| (#10=($ $ $ #7#) 42 T ELT) (($ |#2| $ #7#) 40 T ELT)) (|find| (((|Union| |#2| "failed") #5# $) 53 T ELT)) (|delete!| (($ $ (|UniversalSegment| #7#)) 51 T ELT) (($ $ #7#) 44 T ELT)) (|copyInto!| (#10# 70 T ELT)) (|copy| (#3# 68 T ELT)) (< ((#1# $ $) 76 T ELT)))
+(((|ListAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |list| (|#1| |#2|)) (SIGNATURE |delete!| (|#1| |#1| #1=(|Integer|))) (SIGNATURE |delete!| (|#1| |#1| (|UniversalSegment| #1#))) (SIGNATURE |remove!| #2=(|#1| #3=(|Mapping| #4=(|Boolean|) |#2|) |#1|)) (SIGNATURE |insert!| (|#1| |#2| |#1| #1#)) (SIGNATURE |insert!| #5=(|#1| |#1| |#1| #1#)) (SIGNATURE |merge!| #6=(|#1| #7=(|Mapping| #4# |#2| |#2|) |#1| |#1|)) (SIGNATURE |select!| #2#) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |removeDuplicates!| #8=(|#1| |#1|)) (SIGNATURE |merge!| #9=(|#1| |#1| |#1|)) (SIGNATURE |reduce| (|#2| #10=(|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |find| ((|Union| |#2| "failed") #3# |#1|)) (SIGNATURE |reduce| (|#2| #10# |#1| |#2|)) (SIGNATURE |reduce| (|#2| #10# |#1|)) (SIGNATURE |merge| #6#) (SIGNATURE |sorted?| (#4# #7# |#1|)) (SIGNATURE |position| (#1# #3# |#1|)) (SIGNATURE |position| (#1# |#2| |#1|)) (SIGNATURE |position| (#1# |#2| |#1| #1#)) (SIGNATURE |merge| #9#) (SIGNATURE |sorted?| (#4# |#1|)) (SIGNATURE |copyInto!| #5#) (SIGNATURE |reverse!| #8#) (SIGNATURE |sort!| (|#1| #7# |#1|)) (SIGNATURE |sort!| #8#) (SIGNATURE < (#4# |#1| |#1|)) (SIGNATURE |new| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |map| (|#1| #10# |#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| #8#)) (|ListAggregate| |#2|) (|Type|)) (T |ListAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|third| ((|#1| . #3=($)) 62 T ELT)) (|tail| (#4=($ $) 64 T ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) 99 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (($ $ (|Integer|)) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#6=(|Boolean|) $) 155 (|has| |#1| . #7=((|OrderedSet|))) ELT) ((#6# (|Mapping| #6# |#1| |#1|) $) 149 T ELT)) (|sort!| (#8=($ $) 159 (AND (|has| |#1| . #7#) (|has| $ (|ShallowlyMutableAggregate| |#1|))) ELT) (($ (|Mapping| #6# |#1| |#1|) . #9=($)) 158 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sort| (#8# 154 (|has| |#1| . #7#) ELT) (($ (|Mapping| #6# |#1| |#1|) . #9#) 148 T ELT)) (|size?| (#10=(#11=(|Boolean|) $ (|NonNegativeInteger|)) 82 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setrest!| (#12=($ $ $) 53 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #13="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #14="first" |#1|) 54 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ #15="rest" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #16="last" |#1|) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #17=(|UniversalSegment| #5#) |#1|) 115 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #5# |#1|) 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #18=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select!| (($ (|Mapping| #19=(|Boolean|) |#1|) . #20=($)) 131 T ELT)) (|select| (($ (|Mapping| #21=(|Boolean|) |#1|) . #22=($)) 103 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|second| ((|#1| . #3#) 63 T ELT)) (|sample| (#23=($) 6 T CONST)) (|reverse!| (#8# 157 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|reverse| (#8# 147 T ELT)) (|rest| (#4# 70 T ELT) (#24=($ $ #25=(|NonNegativeInteger|)) 68 T ELT)) (|removeDuplicates!| (($ $) 133 (|has| |#1| . #26=((|BasicType|))) ELT)) (|removeDuplicates| (($ $) 101 (AND (|has| |#1| . #27=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 132 (|has| |#1| . #26#) ELT) (($ (|Mapping| #19# |#1|) . #20#) 127 T ELT)) (|remove| (($ (|Mapping| #21# |#1|) . #22#) 104 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ |#1| $) 102 (AND (|has| |#1| . #27#) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 140 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 139 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| . #28=((|BasicType|))) ELT)) (|qsetelt!| ((|#1| $ #5# |#1|) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #5#) 89 T ELT)) (|possiblyInfinite?| (#29=(#11# $) 85 T ELT)) (|position| ((#30=(|Integer|) |#1| $ #30#) 152 (|has| |#1| . #31=((|BasicType|))) ELT) ((#30# |#1| $) 151 (|has| |#1| . #31#) ELT) ((#30# (|Mapping| #6# |#1|) $) 150 T ELT)) (|nodes| (#32=(#18# $) 45 T ELT)) (|node?| (#33=(#34=(|Boolean|) $ $) 37 (|has| |#1| . #35=((|BasicType|))) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 107 T ELT)) (|more?| (#10# 83 T ELT)) (|minIndex| ((#5# . #36=($)) 97 (|has| #5# . #37=((|OrderedSet|))) ELT)) (|min| (#38=($ $ $) 165 (|has| |#1| . #7#) ELT)) (|merge!| (#39=($ $ $) 134 (|has| |#1| (|OrderedSet|)) ELT) (($ (|Mapping| #19# |#1| |#1|) $ $) 130 T ELT)) (|merge| (($ $ $) 153 (|has| |#1| . #7#) ELT) (($ (|Mapping| #6# |#1| |#1|) $ $) 146 T ELT)) (|members| (((|List| |#1|) $) 141 T ELT)) (|member?| ((#40=(|Boolean|) |#1| $) 136 (|has| |#1| . #28#) ELT)) (|maxIndex| ((#5# . #36#) 96 (|has| #5# . #37#) ELT)) (|max| (#38# 164 (|has| |#1| . #7#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 124 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 110 T ELT)) (|list| (($ |#1|) 123 T ELT)) (|less?| (#10# 84 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#41=(#34# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #42=((|SetCategory|))) ELT)) (|last| ((|#1| . #3#) 67 T ELT) (#24# 65 T ELT)) (|insert!| (($ $ $ #43=(|Integer|)) 129 T ELT) (($ |#1| $ #43#) 128 T ELT)) (|insert| (($ $ $ #5#) 114 T ELT) (($ |#1| $ #5#) 113 T ELT)) (|indices| (((|List| #5#) $) 94 T ELT)) (|index?| ((#44=(|Boolean|) #5# $) 93 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #42#) ELT)) (|first| ((|#1| . #3#) 73 T ELT) (#24# 71 T ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #40# |#1|) $) 138 T ELT)) (|fill!| (($ $ |#1|) 98 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|explicitlyFinite?| (#29# 86 T ELT)) (|every?| ((#40# (|Mapping| #40# |#1|) . #45=($)) 143 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #42#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #42#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #42#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #42#)) ELT)) (|eq?| ((#46=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#44# |#1| $) 95 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 92 T ELT)) (|empty?| ((#46# $) 7 T ELT)) (|empty| (#23# 8 T ELT)) (|elt| ((|#1| $ #13#) 42 T ELT) ((|#1| $ #14#) 72 T ELT) (($ $ #15#) 69 T ELT) ((|#1| $ #16#) 66 T ELT) (($ $ #17#) 106 T ELT) ((|#1| $ #5#) 91 T ELT) ((|#1| $ #5# |#1|) 90 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|delete!| (($ $ (|UniversalSegment| #43#)) 126 T ELT) (($ $ #43#) 125 T ELT)) (|delete| (($ $ #17#) 112 T ELT) (($ $ #5#) 111 T ELT)) (|cyclic?| (#41# 41 T ELT)) (|cycleTail| (#4# 59 T ELT)) (|cycleSplit!| (#4# 56 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|cycleLength| ((#25# $) 60 T ELT)) (|cycleEntry| (#4# 61 T ELT)) (|count| ((#47=(|NonNegativeInteger|) (|Mapping| #40# |#1|) $) 142 T ELT) ((#47# |#1| $) 137 (|has| |#1| . #28#) ELT)) (|copyInto!| (($ $ $ #30#) 156 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#48=(|InputForm|) $) 100 (|has| |#1| (|ConvertibleTo| #48#)) ELT)) (|construct| (($ (|List| |#1|)) 105 T ELT)) (|concat!| (#39# 58 T ELT) (($ $ |#1|) 57 T ELT)) (|concat| (#12# 75 T ELT) (($ |#1| $) 74 T ELT) (($ (|List| $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#32# 46 T ELT)) (|child?| (#33# 38 (|has| |#1| . #35#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#40# (|Mapping| #40# |#1|) . #45#) 144 T ELT)) (>= (#49=((|Boolean|) $ $) 163 (|has| |#1| . #7#) ELT)) (> (#49# 161 (|has| |#1| . #7#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (<= (#49# 162 (|has| |#1| . #7#) ELT)) (< (#49# 160 (|has| |#1| . #7#) ELT)) (|#| ((#47# $) 145 T ELT)))
+(((|ListAggregate| |#1|) (|Category|) (|Type|)) (T |ListAggregate|))
+((|list| (*1 *1 *2) (AND (|ofCategory| *1 (|ListAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|StreamAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|) (|ExtensibleLinearAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |list| ($ |t#1|))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|ExtensibleLinearAggregate| |#1|) . T) ((|FiniteAggregate| |#1|) . T) ((|FiniteLinearAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|ShallowlyMutableAggregate| |#1|) . T) ((|StreamAggregate| |#1|) . T) ((|Type|) . T) ((|UnaryRecursiveAggregate| |#1|) . T))
+((|solve| (((|List| #1=(|Record| (|:| |particular| #2=(|Union| |#3| "failed")) (|:| |basis| #3=(|List| |#3|)))) |#4| #3#) 66 T ELT) ((#1# |#4| |#3|) 60 T ELT)) (|rank| (((|NonNegativeInteger|) |#4| |#3|) 18 T ELT)) (|particularSolution| ((#2# |#4| |#3|) 21 T ELT)) (|hasSolution?| (((|Boolean|) |#4| |#3|) 14 T ELT)))
+(((|LinearSystemMatrixPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|Record| (|:| |particular| #2=(|Union| |#3| "failed")) (|:| |basis| #3=(|List| |#3|))) |#4| |#3|)) (SIGNATURE |solve| ((|List| #1#) |#4| #3#)) (SIGNATURE |particularSolution| (#2# |#4| |#3|)) (SIGNATURE |hasSolution?| ((|Boolean|) |#4| |#3|)) (SIGNATURE |rank| ((|NonNegativeInteger|) |#4| |#3|))) (|Field|) #4=(|Join| (|FiniteLinearAggregate| |#1|) (|ShallowlyMutableAggregate| |#1|)) #4# (|MatrixCategory| |#1| |#2| |#3|)) (T |LinearSystemMatrixPackage|))
+((|rank| #1=(*1 *2 *3 *4) (AND #2=(|ofCategory| *5 #3=(|Field|)) #4=(|ofCategory| *6 #5=(|Join| (|FiniteLinearAggregate| *5) (|ShallowlyMutableAggregate| *5))) #6=(|ofCategory| *4 #5#) (|isDomain| *2 (|NonNegativeInteger|)) #7=(|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3)) #8=(|ofCategory| *3 (|MatrixCategory| *5 *6 *4)))) (|hasSolution?| #1# (AND #2# #4# #6# (|isDomain| *2 (|Boolean|)) #7# #8#)) (|particularSolution| (*1 *2 *3 *2) (|partial| AND (|ofCategory| *4 #3#) (|ofCategory| *5 #9=(|Join| (|FiniteLinearAggregate| *4) (|ShallowlyMutableAggregate| *4))) (|ofCategory| *2 #9#) (|isDomain| *1 (|LinearSystemMatrixPackage| *4 *5 *2 *3)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *2)))) (|solve| #1# (AND #2# #4# (|ofCategory| *7 #5#) (|isDomain| *2 (|List| (|Record| (|:| |particular| (|Union| *7 #10="failed")) (|:| |basis| #11=(|List| *7))))) (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *7 *3)) (|isDomain| *4 #11#) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|solve| #1# (AND #2# #4# #6# (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 #10#)) (|:| |basis| (|List| *4)))) #7# #8#)))
+((|solve| ((#1=(|List| #2=(|Record| (|:| |particular| #3=(|Union| #4=(|Vector| |#1|) "failed")) (|:| |basis| #5=(|List| #4#)))) #6=(|List| (|List| |#1|)) #5#) 22 T ELT) ((#1# #7=(|Matrix| |#1|) #5#) 21 T ELT) ((#2# #6# #4#) 18 T ELT) ((#2# #7# #4#) 14 T ELT)) (|rank| (((|NonNegativeInteger|) #7# #4#) 30 T ELT)) (|particularSolution| ((#3# #7# #4#) 24 T ELT)) (|hasSolution?| (((|Boolean|) #7# #4#) 27 T ELT)))
+(((|LinearSystemMatrixPackage1| |#1|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|Record| (|:| |particular| #2=(|Union| #3=(|Vector| |#1|) "failed")) (|:| |basis| #4=(|List| #3#))) #5=(|Matrix| |#1|) #3#)) (SIGNATURE |solve| (#1# #6=(|List| (|List| |#1|)) #3#)) (SIGNATURE |solve| (#7=(|List| #1#) #5# #4#)) (SIGNATURE |solve| (#7# #6# #4#)) (SIGNATURE |particularSolution| (#2# #5# #3#)) (SIGNATURE |hasSolution?| ((|Boolean|) #5# #3#)) (SIGNATURE |rank| ((|NonNegativeInteger|) #5# #3#))) (|Field|)) (T |LinearSystemMatrixPackage1|))
+((|rank| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Matrix| *5)) #3=(|isDomain| *4 #4=(|Vector| *5)) #5=(|ofCategory| *5 #6=(|Field|)) (|isDomain| *2 (|NonNegativeInteger|)) #7=(|isDomain| *1 (|LinearSystemMatrixPackage1| *5)))) (|hasSolution?| #1# (AND #2# #3# #5# (|isDomain| *2 (|Boolean|)) #7#)) (|particularSolution| (*1 *2 *3 *2) (|partial| AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 #6#) (|isDomain| *1 (|LinearSystemMatrixPackage1| *4)))) (|solve| #1# (AND #8=(|isDomain| *3 (|List| (|List| *5))) #5# #9=(|isDomain| *2 (|List| #10=(|Record| (|:| |particular| (|Union| #4# "failed")) (|:| |basis| #11=(|List| #4#))))) #7# #12=(|isDomain| *4 #11#))) (|solve| #1# (AND #2# #5# #9# #7# #12#)) (|solve| #1# (AND #8# #5# #13=(|isDomain| *2 #10#) #7# #3#)) (|solve| #1# (AND #2# #5# #13# #7# #3#)))
+((|linSolve| (((|Record| (|:| |particular| (|Union| #1=(|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| #1#))) (|List| |#4|) (|List| |#3|)) 51 T ELT)))
+(((|LinearSystemPolynomialPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |linSolve| ((|Record| (|:| |particular| (|Union| #1=(|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| #1#))) (|List| |#4|) (|List| |#3|)))) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |LinearSystemPolynomialPackage|))
+((|linSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *7)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |particular| (|Union| #1=(|Vector| (|Fraction| *8)) "failed")) (|:| |basis| (|List| #1#)))) (|isDomain| *1 (|LinearSystemPolynomialPackage| *5 *6 *7 *8)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unit| #4=((#5=(|Union| $ #6="failed")) NIL #7=(|has| |#2| (|IntegralDomain|)) ELT)) (|trace| #8=(#9=(|#2| $) NIL T ELT)) (|symmetric?| #3#) (|subtractIfCan| ((#5# $ $) NIL T ELT)) (|structuralConstants| ((#10=(|Vector| #11=(|Matrix| |#2|))) NIL T ELT) ((#10# #12=(|Vector| $)) NIL T ELT)) (|square?| #3#) (|someBasis| (#13=(#12#) 41 T ELT)) (|scalarMatrix| #14=(($ |#2|) NIL T ELT)) (|sample| #15=(#16=($) NIL T CONST)) (|rowEchelon| (#17=($ $) NIL (|has| |#2| (|EuclideanDomain|)) ELT)) (|row| #18=((#19=(|DirectProduct| |#1| |#2|) $ #20=(|Integer|)) NIL T ELT)) (|rightUnits| #21=(((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) #6#)) NIL #7# ELT)) (|rightUnit| #4#) (|rightTraceMatrix| #22=((#11#) NIL T ELT) #23=((#11# #12#) NIL T ELT)) (|rightTrace| #8#) (|rightRegularRepresentation| #24=((#11# $) NIL T ELT) #25=((#11# $ #12#) NIL T ELT)) (|rightRecip| #26=(#27=(#5# $) NIL #7# ELT)) (|rightRankPolynomial| #28=(((|SparseUnivariatePolynomial| #29=(|Polynomial| |#2|))) NIL #30=(|has| |#2| (|Field|)) ELT)) (|rightPower| #31=(($ $ #32=(|PositiveInteger|)) NIL T ELT)) (|rightNorm| #8#) (|rightMinimalPolynomial| #33=(#34=((|SparseUnivariatePolynomial| |#2|) $) NIL #7# ELT)) (|rightDiscriminant| #35=((|#2|) NIL T ELT) #36=((|#2| #12#) NIL T ELT)) (|rightCharacteristicPolynomial| #37=(#34# NIL T ELT)) (|rightAlternative?| #38=((#2#) NIL T ELT)) (|retractIfCan| (((|Union| #20# . #39=(#6#)) . #40=($)) NIL #41=(|has| |#2| (|RetractableTo| #20#)) ELT) (((|Union| #42=(|Fraction| #20#) . #39#) . #40#) NIL #43=(|has| |#2| (|RetractableTo| #42#)) ELT) ((#44=(|Union| |#2| . #39#) . #40#) NIL T ELT)) (|retract| (#45=(#20# . #46=($)) NIL #41# ELT) ((#42# . #46#) NIL #43# ELT) #8#) (|represents| #47=(($ #48=(|Vector| |#2|)) NIL T ELT) (($ #48# #12#) NIL T ELT)) (|reducedSystem| ((#49=(|Matrix| #20#) . #50=(#51=(|Matrix| $))) NIL #52=(|has| |#2| (|LinearlyExplicitRingOver| #20#)) ELT) ((#53=(|Record| (|:| |mat| #49#) (|:| |vec| (|Vector| #20#))) . #54=(#51# #12#)) NIL #52# ELT) ((#55=(|Record| (|:| |mat| #11#) (|:| |vec| #48#)) . #54#) NIL T ELT) ((#11# . #50#) NIL T ELT)) (|reduce| ((|#2| #56=(|Mapping| |#2| |#2| |#2|) $) NIL T ELT) ((|#2| #56# $ |#2|) NIL T ELT) ((|#2| #56# $ |#2| |#2|) NIL #57=(|has| |#2| (|BasicType|)) ELT)) (|recip| (#27# NIL T ELT)) (|rank| #58=(#59=(#60=(|NonNegativeInteger|) $) NIL #7# ELT) ((#32#) 42 T ELT)) (|qelt| (#61=(|#2| $ #20# #20#) NIL T ELT)) (|powerAssociative?| #38#) (|plenaryPower| #31#) (|opposite?| #1#) (|one?| #3#) (|nullity| #58#) (|nullSpace| (((|List| #19#) $) NIL #7# ELT)) (|nrows| #62=(#59# NIL T ELT)) (|noncommutativeJordanAlgebra?| #38#) (|ncols| #62#) (|minordet| #63=(#9# NIL (|has| |#2| (ATTRIBUTE (|commutative| "*"))) ELT)) (|minRowIndex| #64=(#45# NIL T ELT)) (|minColIndex| #64#) (|members| ((#65=(|List| |#2|) $) NIL T ELT)) (|member?| ((#2# |#2| $) NIL #57# ELT)) (|maxRowIndex| #64#) (|maxColIndex| #64#) (|matrix| (($ #66=(|List| #65#)) NIL T ELT)) (|map| (($ #56# $ $) NIL T ELT) (($ #67=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|listOfLists| ((#66# $) NIL T ELT)) (|lieAlgebra?| #38#) (|lieAdmissible?| #38#) (|leftUnits| #21#) (|leftUnit| #4#) (|leftTraceMatrix| #22# #23#) (|leftTrace| #8#) (|leftRegularRepresentation| #24# #25#) (|leftReducedSystem| ((#49# #12#) NIL #52# ELT) ((#53# . #68=(#12# $)) NIL #52# ELT) ((#55# . #68#) NIL T ELT) #23#) (|leftRecip| #26#) (|leftRankPolynomial| #28#) (|leftPower| #31#) (|leftNorm| #8#) (|leftMinimalPolynomial| #33#) (|leftDiscriminant| #35# #36#) (|leftCharacteristicPolynomial| #37#) (|leftAlternative?| #38#) (|latex| (((|String|) $) NIL T ELT)) (|jordanAlgebra?| #38#) (|jordanAdmissible?| #38#) (|jacobiIdentity?| #38#) (|inverse| (#27# NIL #30# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|flexible?| #38#) (|find| ((#44# #69=(|Mapping| #2# |#2|) $) NIL T ELT)) (|exquo| ((#5# $ |#2|) NIL #7# ELT)) (|every?| #70=((#2# #69# $) NIL T ELT)) (|eval| (($ $ (|List| #71=(|Equation| |#2|))) NIL #72=(AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ELT) (($ $ #71#) NIL #72# ELT) (($ $ |#2| |#2|) NIL #72# ELT) (($ $ #65# #65#) NIL #72# ELT)) (|eq?| #1#) (|empty?| #3#) (|empty| (#16# NIL T ELT)) (|elt| ((|#2| $ #20# #20# |#2|) NIL T ELT) (#61# 27 T ELT) ((|#2| $ #20#) NIL T ELT)) (|differentiate| #73=(($ $ #67# #60#) NIL T ELT) #74=(($ $ #67#) NIL T ELT) #75=(#17# NIL #76=(|has| |#2| (|DifferentialSpace|)) ELT) #77=(#78=($ $ #60#) NIL #76# ELT) #79=(($ $ #80=(|Symbol|)) NIL #81=(|has| |#2| (|PartialDifferentialSpace| #80#)) ELT) #82=(($ $ #83=(|List| #80#)) NIL #81# ELT) #84=(($ $ #80# #60#) NIL #81# ELT) #85=(($ $ #83# (|List| #60#)) NIL #81# ELT)) (|diagonalProduct| #8#) (|diagonalMatrix| (($ #65#) NIL T ELT)) (|diagonal?| #3#) (|diagonal| ((#19# $) NIL T ELT)) (|determinant| #63#) (|count| ((#60# #69# $) NIL T ELT) ((#60# |#2| $) NIL #57# ELT)) (|copy| #86=(#17# NIL T ELT)) (|coordinates| #23# #87=((#48# $) NIL T ELT) ((#11# #12# #12#) NIL T ELT) ((#48# $ #12#) 30 T ELT)) (|convert| #47# #87#) (|conditionsForIdempotents| ((#88=(|List| #29#)) NIL T ELT) ((#88# #12#) NIL T ELT)) (|commutator| #89=(($ $ $) NIL T ELT)) (|commutative?| #38#) (|column| #18#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) (($ #42#) NIL #43# ELT) #14# #24#) (|characteristic| ((#60#) NIL T CONST)) (|before?| #1#) (|basis| (#13# 40 T ELT)) (|associatorDependence| (((|List| #48#)) NIL #7# ELT)) (|associator| (($ $ $ $) NIL T ELT)) (|associative?| #38#) (|apply| (($ #11# $) NIL T ELT)) (|any?| #70#) (|antisymmetric?| #3#) (|antiCommutator| #89#) (|antiCommutative?| #38#) (|antiAssociative?| #38#) (|annihilate?| #1#) (|alternative?| #38#) (|Zero| #15#) (|One| #15#) (D #73# #74# #75# #77# #79# #82# #84# #85#) (= #1#) (/ (#90=($ $ |#2|) NIL #30# ELT)) (- #86# #89#) (+ #89#) (** #31# (#78# NIL T ELT) (($ $ #20#) NIL #30# ELT)) (* (($ #32# $) NIL T ELT) (($ #60# $) NIL T ELT) (($ #20# . #91=($)) NIL T ELT) #89# (#90# NIL T ELT) (($ |#2| . #91#) NIL T ELT) ((#19# $ #19#) NIL T ELT) ((#19# #19# $) NIL T ELT)) (|#| #62#))
+(((|LieSquareMatrix| |#1| |#2|) (|Join| (|SquareMatrixCategory| |#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) (|CoercibleTo| (|Matrix| |#2|)) (|FramedNonAssociativeAlgebra| |#2|)) (|PositiveInteger|) (|CommutativeRing|)) (T |LieSquareMatrix|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elements| (((|List| (|SpadAst|)) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|ConstructAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |elements| ((|List| (|SpadAst|)) $))))) (T |ConstructAst|))
+((|elements| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|ConstructAst|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|varList| ((#4=(|List| |#1|) $) NIL T ELT)) (|right| (#5=($ $) 62 T ELT)) (|retractable?| ((#3# $) NIL T ELT)) (|retractIfCan| (((|Union| |#1| #6="failed") $) NIL T ELT)) (|retract| ((|#1| $) NIL T ELT)) (|min| #7=(($ $ $) NIL T ELT)) (|max| #7#) (|lyndonIfCan| (((|Union| $ #6#) #8=(|OrderedFreeMonoid| |#1|)) 28 T ELT)) (|lyndon?| ((#3# #8#) 18 T ELT)) (|lyndon| (($ #8#) 29 T ELT)) (|lexico| (#2# 36 T ELT)) (|length| ((#9=(|PositiveInteger|) $) 43 T ELT)) (|left| (#5# NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|factor| ((#10=(|List| $) #8#) 20 T ELT)) (|coerce| (((|OutputForm|) $) 51 T ELT) (($ |#1|) 40 T ELT) ((#8# $) 47 T ELT) (((|Magma| |#1|) $) 52 T ELT)) (|before?| #1#) (|LyndonWordsList1| (((|OneDimensionalArray| #10#) #4# #9#) 67 T ELT)) (|LyndonWordsList| ((#10# #4# #9#) 70 T ELT)) (>= #1#) (> #1#) (= (#2# 63 T ELT)) (<= #1#) (< (#2# 46 T ELT)))
+(((|LyndonWord| |#1|) (|Join| #1=(|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |retractable?| (#2=(|Boolean|) $)) (SIGNATURE |left| #3=($ $)) (SIGNATURE |right| #3#) (SIGNATURE |length| (#4=(|PositiveInteger|) $)) (SIGNATURE |lexico| (#2# $ $)) (SIGNATURE |coerce| (#5=(|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ((|Magma| |#1|) $)) (SIGNATURE |factor| (#6=(|List| $) #5#)) (SIGNATURE |lyndon?| (#2# #5#)) (SIGNATURE |lyndon| ($ #5#)) (SIGNATURE |lyndonIfCan| ((|Union| $ "failed") #5#)) (SIGNATURE |varList| (#7=(|List| |#1|) $)) (SIGNATURE |LyndonWordsList1| ((|OneDimensionalArray| #6#) #7# #4#)) (SIGNATURE |LyndonWordsList| (#6# #7# #4#)))) #1#) (T |LyndonWord|))
+((|retractable?| #1=(*1 *2 *1) #2=(AND #3=(|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 (|LyndonWord| *3)) #5=(|ofCategory| *3 #6=(|OrderedSet|)))) (|left| #7=(*1 *1 *1) #8=(AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 #6#))) (|right| #7# #8#) (|length| #1# (AND (|isDomain| *2 #9=(|PositiveInteger|)) #4# #5#)) (|lexico| (*1 *2 *1 *1) #2#) (|coerce| #1# (AND #10=(|isDomain| *2 (|OrderedFreeMonoid| *3)) #4# #5#)) (|coerce| #1# (AND (|isDomain| *2 (|Magma| *3)) #4# #5#)) (|factor| #11=(*1 *2 *3) (AND #12=(|isDomain| *3 (|OrderedFreeMonoid| *4)) #13=(|ofCategory| *4 #6#) (|isDomain| *2 (|List| #14=(|LyndonWord| *4))) #15=(|isDomain| *1 #14#))) (|lyndon?| #11# (AND #12# #13# #3# #15#)) (|lyndon| #16=(*1 *1 *2) (AND #10# #5# #4#)) (|lyndonIfCan| #16# (|partial| AND #10# #5# #4#)) (|varList| #1# (AND (|isDomain| *2 (|List| *3)) #4# #5#)) (|LyndonWordsList1| #17=(*1 *2 *3 *4) (AND #18=(|isDomain| *3 (|List| *5)) #19=(|isDomain| *4 #9#) #20=(|ofCategory| *5 #6#) (|isDomain| *2 (|OneDimensionalArray| #21=(|List| #22=(|LyndonWord| *5)))) #23=(|isDomain| *1 #22#))) (|LyndonWordsList| #17# (AND #18# #19# #20# (|isDomain| *2 #21#) #23#)))
+((|value| (#1=(|#2| $) 96 T ELT)) (|tail| (#2=($ $) 117 T ELT)) (|size?| (#3=(#4=(|Boolean|) $ #5=(|NonNegativeInteger|)) 35 T ELT)) (|rest| (#2# 105 T ELT) (#6=($ $ #5#) 108 T ELT)) (|possiblyInfinite?| (#7=(#4# $) 118 T ELT)) (|nodes| (#8=((|List| $) $) 92 T ELT)) (|node?| (#9=(#4# $ $) 88 T ELT)) (|more?| (#3# 33 T ELT)) (|minIndex| (#10=(#11=(|Integer|) $) 62 T ELT)) (|maxIndex| (#10# 61 T ELT)) (|less?| (#3# 31 T ELT)) (|leaf?| (#7# 94 T ELT)) (|last| (#1# 109 T ELT) (#6# 113 T ELT)) (|insert| (($ $ $ #11#) 79 T ELT) (($ |#2| $ #11#) 78 T ELT)) (|indices| (((|List| #11#) $) 60 T ELT)) (|index?| ((#4# #11# $) 55 T ELT)) (|first| (#1# NIL T ELT) (#6# 104 T ELT)) (|extend| (#12=($ $ #11#) 121 T ELT)) (|explicitlyFinite?| (#7# 120 T ELT)) (|entries| ((#13=(|List| |#2|) $) 42 T ELT)) (|elt| ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (#14=($ $ (|UniversalSegment| #11#)) 75 T ELT) ((|#2| $ #11#) 53 T ELT) ((|#2| $ #11# |#2|) 54 T ELT)) (|distance| ((#11# $ $) 87 T ELT)) (|delete| (#14# 74 T ELT) (#12# 68 T ELT)) (|cyclic?| (#7# 83 T ELT)) (|cycleTail| (#2# 101 T ELT)) (|cycleLength| ((#5# $) 100 T ELT)) (|cycleEntry| (#2# 99 T ELT)) (|construct| (($ #13#) 49 T ELT)) (|complete| (#2# 122 T ELT)) (|children| (#8# 86 T ELT)) (|child?| (#9# 85 T ELT)) (= (#9# 20 T ELT)))
+(((|LazyStreamAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = #1=(#2=(|Boolean|) |#1| |#1|)) (SIGNATURE |complete| #3=(|#1| |#1|)) (SIGNATURE |extend| #4=(|#1| |#1| #5=(|Integer|))) (SIGNATURE |size?| #6=(#2# |#1| #7=(|NonNegativeInteger|))) (SIGNATURE |more?| #6#) (SIGNATURE |less?| #6#) (SIGNATURE |possiblyInfinite?| #8=(#2# |#1|)) (SIGNATURE |explicitlyFinite?| #8#) (SIGNATURE |elt| (|#2| |#1| #5# |#2|)) (SIGNATURE |elt| (|#2| |#1| #5#)) (SIGNATURE |entries| (#9=(|List| |#2|) |#1|)) (SIGNATURE |index?| (#2# #5# |#1|)) (SIGNATURE |indices| ((|List| #5#) |#1|)) (SIGNATURE |maxIndex| #10=(#5# |#1|)) (SIGNATURE |minIndex| #10#) (SIGNATURE |construct| (|#1| #9#)) (SIGNATURE |elt| #11=(|#1| |#1| (|UniversalSegment| #5#))) (SIGNATURE |delete| #4#) (SIGNATURE |delete| #11#) (SIGNATURE |insert| (|#1| |#2| |#1| #5#)) (SIGNATURE |insert| (|#1| |#1| |#1| #5#)) (SIGNATURE |cycleTail| #3#) (SIGNATURE |cycleLength| (#7# |#1|)) (SIGNATURE |cycleEntry| #3#) (SIGNATURE |tail| #3#) (SIGNATURE |last| #12=(|#1| |#1| #7#)) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| #13=(|#2| |#1|)) (SIGNATURE |rest| #12#) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| #3#) (SIGNATURE |first| #12#) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| #13#) (SIGNATURE |node?| #1#) (SIGNATURE |child?| #1#) (SIGNATURE |distance| (#5# |#1| |#1|)) (SIGNATURE |cyclic?| #8#) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| #13#) (SIGNATURE |leaf?| #8#) (SIGNATURE |nodes| #14=((|List| |#1|) |#1|)) (SIGNATURE |children| #14#)) (|LazyStreamAggregate| |#2|) (|Type|)) (T |LazyStreamAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|third| ((|#1| . #3=($)) 62 T ELT)) (|tail| (#4=($ $) 64 T ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) 99 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (($ $ (|Integer|)) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|size?| (#6=(#7=(|Boolean|) $ (|NonNegativeInteger|)) 82 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setrest!| (#8=($ $ $) 53 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #9="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #10="first" |#1|) 54 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ #11="rest" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #12="last" |#1|) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #13=(|UniversalSegment| #5#) |#1|) 115 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #5# |#1|) 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #14=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 103 T ELT)) (|second| ((|#1| . #3#) 63 T ELT)) (|sample| (#15=($) 6 T CONST)) (|rst| (($ $) 123 T ELT)) (|rest| (#4# 70 T ELT) (#16=($ $ #17=(|NonNegativeInteger|)) 68 T ELT)) (|removeDuplicates| (($ $) 101 (AND (|has| |#1| . #18=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 102 (AND (|has| |#1| . #18#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| (|Boolean|) |#1|) $) 104 T ELT)) (|qsetelt!| ((|#1| $ #5# |#1|) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #5#) 89 T ELT)) (|possiblyInfinite?| (#19=(#7# $) 85 T ELT)) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) 122 T ELT)) (|nodes| (#20=(#14# $) 45 T ELT)) (|node?| (#21=(#22=(|Boolean|) $ $) 37 (|has| |#1| . #23=((|BasicType|))) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 107 T ELT)) (|more?| (#6# 83 T ELT)) (|minIndex| ((#5# . #24=($)) 97 (|has| #5# . #25=((|OrderedSet|))) ELT)) (|maxIndex| ((#5# . #24#) 96 (|has| #5# . #25#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 110 T ELT)) (|less?| (#6# 84 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#26=(#22# $) 44 T ELT)) (|lazyEvaluate| (($ $) 125 T ELT)) (|lazy?| (((|Boolean|) $) 126 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #27=((|SetCategory|))) ELT)) (|last| ((|#1| . #3#) 67 T ELT) (#16# 65 T ELT)) (|insert| (($ $ $ #5#) 114 T ELT) (($ |#1| $ #5#) 113 T ELT)) (|indices| (((|List| #5#) $) 94 T ELT)) (|index?| ((#28=(|Boolean|) #5# $) 93 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #27#) ELT)) (|frst| ((|#1| $) 124 T ELT)) (|first| ((|#1| . #3#) 73 T ELT) (#16# 71 T ELT)) (|fill!| (($ $ |#1|) 98 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|extend| (($ $ (|Integer|)) 121 T ELT)) (|explicitlyFinite?| (#19# 86 T ELT)) (|explicitlyEmpty?| (((|Boolean|) $) 127 T ELT)) (|explicitEntries?| (((|Boolean|) $) 128 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #27#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #27#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #27#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #27#)) ELT)) (|eq?| ((#29=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#28# |#1| $) 95 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 92 T ELT)) (|empty?| ((#29# $) 7 T ELT)) (|empty| (#15# 8 T ELT)) (|elt| ((|#1| $ #9#) 42 T ELT) ((|#1| $ #10#) 72 T ELT) (($ $ #11#) 69 T ELT) ((|#1| $ #12#) 66 T ELT) (($ $ #13#) 106 T ELT) ((|#1| $ #5#) 91 T ELT) ((|#1| $ #5# |#1|) 90 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|delete| (($ $ #13#) 112 T ELT) (($ $ #5#) 111 T ELT)) (|cyclic?| (#26# 41 T ELT)) (|cycleTail| (#4# 59 T ELT)) (|cycleSplit!| (#4# 56 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|cycleLength| ((#17# $) 60 T ELT)) (|cycleEntry| (#4# 61 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#30=(|InputForm|) $) 100 (|has| |#1| (|ConvertibleTo| #30#)) ELT)) (|construct| (($ (|List| |#1|)) 105 T ELT)) (|concat!| (#8# 58 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|concat| (#8# 75 T ELT) (($ |#1| $) 74 T ELT) (($ (|List| $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (|complete| (($ $) 120 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#20# 46 T ELT)) (|child?| (#21# 38 (|has| |#1| . #23#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|LazyStreamAggregate| |#1|) (|Category|) (|Type|)) (T |LazyStreamAggregate|))
+((|remove| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|select| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|explicitEntries?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|explicitlyEmpty?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|lazy?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|lazyEvaluate| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|frst| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|rst| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|numberOfComputedEntries| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|complete| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|StreamAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |remove| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |explicitEntries?| ((|Boolean|) $)) (SIGNATURE |explicitlyEmpty?| ((|Boolean|) $)) (SIGNATURE |lazy?| ((|Boolean|) $)) (SIGNATURE |lazyEvaluate| ($ $)) (SIGNATURE |frst| (|t#1| $)) (SIGNATURE |rst| ($ $)) (SIGNATURE |numberOfComputedEntries| ((|NonNegativeInteger|) $)) (SIGNATURE |extend| ($ $ (|Integer|))) (SIGNATURE |complete| ($ $))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|StreamAggregate| |#1|) . T) ((|Type|) . T) ((|UnaryRecursiveAggregate| |#1|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|head| (((|HeadAst|) $) 15 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|body| (((|SpadAst|) $) 17 T ELT)) (|before?| #1#) (= #1#))
+(((|MacroAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |head| ((|HeadAst|) $)) (SIGNATURE |body| ((|SpadAst|) $))))) (T |MacroAst|))
+((|head| #1=(*1 *2 *1) (AND (|isDomain| *2 (|HeadAst|)) #2=(|isDomain| *1 (|MacroAst|)))) (|body| #1# (AND (|isDomain| *2 (|SpadAst|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|varList| (((|List| |#1|) $) 15 T ELT)) (|right| (#4=($ $) 19 T ELT)) (|retractable?| ((#3# $) 20 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) 23 T ELT)) (|retract| (#5=(|#1| $) 21 T ELT)) (|rest| (#4# 37 T ELT)) (|mirror| (#4# 25 T ELT)) (|min| #6=(#7=($ $ $) NIL T ELT)) (|max| #6#) (|lexico| (#2# 46 T ELT)) (|length| (((|PositiveInteger|) $) 40 T ELT)) (|left| (#4# 18 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#5# 36 T ELT)) (|coerce| (((|OutputForm|) $) 32 T ELT) (($ |#1|) 24 T ELT) (((|OrderedFreeMonoid| |#1|) $) 28 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= (#2# 13 T ELT)) (<= #1#) (< (#2# 44 T ELT)) (* (#7# 35 T ELT)))
+(((|Magma| |#1|) (|Join| #1=(|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |first| (|#1| $)) (SIGNATURE |left| #2=($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| (#3=(|Boolean|) $ $)) (SIGNATURE |mirror| #2#) (SIGNATURE |rest| #2#) (SIGNATURE |retractable?| (#3# $)) (SIGNATURE |right| #2#) (SIGNATURE |varList| ((|List| |#1|) $)))) #1#) (T |Magma|))
+((* (*1 *1 *1 *1) #1=(AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 #2=(|OrderedSet|)))) (|coerce| #3=(*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) #4=(|isDomain| *1 (|Magma| *3)) #5=(|ofCategory| *3 #2#))) (|first| #3# #1#) (|left| #6=(*1 *1 *1) #1#) (|length| #3# (AND (|isDomain| *2 (|PositiveInteger|)) #4# #5#)) (|lexico| (*1 *2 *1 *1) #7=(AND (|isDomain| *2 (|Boolean|)) #4# #5#)) (|mirror| #6# #1#) (|rest| #6# #1#) (|retractable?| #3# #7#) (|right| #6# #1#) (|varList| #3# (AND (|isDomain| *2 (|List| *3)) #4# #5#)))
+((|recur| ((|#1| (|Mapping| |#1| #1=(|NonNegativeInteger|) |#1|) #1# |#1|) 11 T ELT)) (|iter| ((|#1| (|Mapping| |#1| |#1|) #1# |#1|) 9 T ELT)))
+(((|MappingPackageInternalHacks1| |#1|) (CATEGORY |package| (SIGNATURE |iter| (|#1| (|Mapping| |#1| |#1|) #1=(|NonNegativeInteger|) |#1|)) (SIGNATURE |recur| (|#1| (|Mapping| |#1| #1# |#1|) #1# |#1|))) (|SetCategory|)) (T |MappingPackageInternalHacks1|))
+((|recur| #1=(*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 #2=(|NonNegativeInteger|) *2)) #3=(|isDomain| *4 #2#) #4=(|ofCategory| *2 (|SetCategory|)) #5=(|isDomain| *1 (|MappingPackageInternalHacks1| *2)))) (|iter| #1# (AND (|isDomain| *3 (|Mapping| *2 *2)) #3# #4# #5#)))
+((|arg2| ((|#2| |#1| |#2|) 9 T ELT)) (|arg1| ((|#1| |#1| |#2|) 8 T ELT)))
+(((|MappingPackageInternalHacks2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |arg1| (|#1| |#1| |#2|)) (SIGNATURE |arg2| (|#2| |#1| |#2|))) #1=(|SetCategory|) #1#) (T |MappingPackageInternalHacks2|))
+((|arg2| (*1 *2 *3 *2) (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *3 *2)) #1=(|ofCategory| *3 #2=(|SetCategory|)) #3=(|ofCategory| *2 #2#))) (|arg1| (*1 *2 *2 *3) (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *2 *3)) #3# #1#)))
+((|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) 11 T ELT)))
+(((|MappingPackageInternalHacks3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |comp| (|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|))) #1=(|SetCategory|) #1# #1#) (T |MappingPackageInternalHacks3|))
+((|comp| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 #1#) (|ofCategory| *2 #1#) (|isDomain| *1 (|MappingPackageInternalHacks3| *5 *6 *2)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|target| (#2=(#3=(|TypeAst|) $) 22 T ELT)) (|source| ((#4=(|List| #3#) $) 20 T ELT)) (|mappingAst| (($ #4# #3#) 15 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 30 T ELT) (($ #5=(|Syntax|)) NIL T ELT) ((#5# $) NIL T ELT) (#2# 23 T ELT) (($ (|Signature|)) 11 T ELT)) (|before?| #1#) (= #1#))
+(((|MappingAst|) (|Join| (|SpadSyntaxCategory|) (|CoercibleTo| #1=(|TypeAst|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Signature|))) (SIGNATURE |mappingAst| ($ #2=(|List| #1#) #1#)) (SIGNATURE |source| (#2# $)) (SIGNATURE |target| (#1# $))))) (T |MappingAst|))
+((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Signature|)) #1=(|isDomain| *1 (|MappingAst|)))) (|mappingAst| (*1 *1 *2 *3) (AND #2=(|isDomain| *2 (|List| #3=(|TypeAst|))) (|isDomain| *3 #3#) #1#)) (|source| #4=(*1 *2 *1) (AND #2# #1#)) (|target| #4# (AND (|isDomain| *2 #3#) #1#)))
+((|recur| ((#1=(|Mapping| |#1| #2=(|NonNegativeInteger|) |#1|) #1#) 26 T ELT)) (|nullary| (#3=((|Mapping| |#1|) |#1|) 8 T ELT)) (|id| ((|#1| |#1|) 19 T ELT)) (|fixedPoint| ((#4=(|List| |#1|) (|Mapping| #4# #4#) (|Integer|)) 18 T ELT) ((|#1| #5=(|Mapping| |#1| |#1|)) 11 T ELT)) (|coerce| (#3# 9 T ELT)) (** ((#5# #5# #2#) 23 T ELT)))
+(((|MappingPackage1| |#1|) (CATEGORY |package| (SIGNATURE |nullary| #1=((|Mapping| |#1|) |#1|)) (SIGNATURE |coerce| #1#) (SIGNATURE |fixedPoint| (|#1| #2=(|Mapping| |#1| |#1|))) (SIGNATURE |fixedPoint| (#3=(|List| |#1|) (|Mapping| #3# #3#) (|Integer|))) (SIGNATURE |id| (|#1| |#1|)) (SIGNATURE ** (#2# #2# #4=(|NonNegativeInteger|))) (SIGNATURE |recur| (#5=(|Mapping| |#1| #4# |#1|) #5#))) (|SetCategory|)) (T |MappingPackage1|))
+((|recur| #1=(*1 *2 *2) (AND (|isDomain| *2 (|Mapping| *3 #2=(|NonNegativeInteger|) *3)) #3=(|ofCategory| *3 #4=(|SetCategory|)) #5=(|isDomain| *1 (|MappingPackage1| *3)))) (** (*1 *2 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 #2#) (|ofCategory| *4 #4#) (|isDomain| *1 (|MappingPackage1| *4)))) (|id| #1# (AND #6=(|isDomain| *1 (|MappingPackage1| *2)) #7=(|ofCategory| *2 #4#))) (|fixedPoint| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| #8=(|List| *5) #8#)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 #8#) (|isDomain| *1 (|MappingPackage1| *5)) (|ofCategory| *5 #4#))) (|fixedPoint| #9=(*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *2 *2)) #6# #7#)) (|coerce| #9# #10=(AND (|isDomain| *2 (|Mapping| *3)) #5# #3#)) (|nullary| #9# #10#))
+((|diag| ((#1=(|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) 16 T ELT)) (|curry| ((#2=(|Mapping| |#2|) #1# |#1|) 13 T ELT)) (|constant| ((#1# #2#) 14 T ELT)) (|const| ((#1# |#2|) 11 T ELT)))
+(((|MappingPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |const| (#1=(|Mapping| |#2| |#1|) |#2|)) (SIGNATURE |curry| (#2=(|Mapping| |#2|) #1# |#1|)) (SIGNATURE |constant| (#1# #2#)) (SIGNATURE |diag| (#1# (|Mapping| |#2| |#1| |#1|)))) #3=(|SetCategory|) #3#) (T |MappingPackage2|))
+((|diag| #1=(*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5 *4 *4)) #2=(|ofCategory| *4 #3=(|SetCategory|)) #4=(|ofCategory| *5 #3#) #5=(|isDomain| *2 #6=(|Mapping| *5 *4)) #7=(|isDomain| *1 (|MappingPackage2| *4 *5)))) (|constant| #1# (AND (|isDomain| *3 #8=(|Mapping| *5)) #4# #5# #7# #2#)) (|curry| (*1 *2 *3 *4) (AND (|isDomain| *3 #6#) #2# #4# (|isDomain| *2 #8#) #7#)) (|const| #1# (AND (|isDomain| *2 (|Mapping| *3 *4)) (|isDomain| *1 (|MappingPackage2| *4 *3)) #2# (|ofCategory| *3 #3#))))
+((|twist| (((|Mapping| |#3| |#2| |#1|) #1=(|Mapping| |#3| |#1| |#2|)) 17 T ELT)) (|curryRight| ((#2=(|Mapping| |#3| |#1|) #1# |#2|) 11 T ELT)) (|curryLeft| ((#3=(|Mapping| |#3| |#2|) #1# |#1|) 13 T ELT)) (|constantRight| ((#1# #2#) 14 T ELT)) (|constantLeft| ((#1# #3#) 15 T ELT)) (* ((#2# #3# (|Mapping| |#2| |#1|)) 21 T ELT)))
+(((|MappingPackage3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |curryRight| (#1=(|Mapping| |#3| |#1|) #2=(|Mapping| |#3| |#1| |#2|) |#2|)) (SIGNATURE |curryLeft| (#3=(|Mapping| |#3| |#2|) #2# |#1|)) (SIGNATURE |constantRight| (#2# #1#)) (SIGNATURE |constantLeft| (#2# #3#)) (SIGNATURE |twist| ((|Mapping| |#3| |#2| |#1|) #2#)) (SIGNATURE * (#1# #3# (|Mapping| |#2| |#1|)))) #4=(|SetCategory|) #4# #4#) (T |MappingPackage3|))
+((* #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 #2=(|Mapping| *6 *5)) #3=(|ofCategory| *5 #4=(|SetCategory|)) #5=(|ofCategory| *6 #4#) (|ofCategory| *7 #4#) (|isDomain| *2 (|Mapping| *7 *5)) (|isDomain| *1 (|MappingPackage3| *5 *6 *7)))) (|twist| #6=(*1 *2 *3) (AND #7=(|isDomain| *3 #8=(|Mapping| *6 *4 *5)) #9=(|ofCategory| *4 #4#) #3# #5# (|isDomain| *2 #10=(|Mapping| *6 *5 *4)) #11=(|isDomain| *1 (|MappingPackage3| *4 *5 *6)))) (|constantLeft| #6# (AND (|isDomain| *3 #2#) #3# #5# #12=(|isDomain| *2 #8#) #11# #9#)) (|constantRight| #6# (AND (|isDomain| *3 (|Mapping| *6 *4)) #9# #5# #12# #11# #3#)) (|curryLeft| #1# (AND #7# #9# #3# #5# #13=(|isDomain| *2 #2#) #11#)) (|curryRight| #1# (AND (|isDomain| *3 #10#) #3# #9# #5# #13# (|isDomain| *1 (|MappingPackage3| *5 *4 *6)))))
+((|zero| (($ #1=(|NonNegativeInteger|) #1#) 42 T ELT)) (|vertConcat| (#2=($ $ $) 73 T ELT)) (|transpose| (($ |#3|) 68 T ELT) (#3=($ $) 69 T ELT)) (|symmetric?| (#4=((|Boolean|) $) 36 T ELT)) (|swapRows!| (#5=($ $ #6=(|Integer|) #6#) 84 T ELT)) (|swapColumns!| (#5# 85 T ELT)) (|subMatrix| (($ $ #6# #6# #6# #6#) 90 T ELT)) (|squareTop| (#3# 71 T ELT)) (|square?| (#4# 15 T ELT)) (|setsubMatrix!| (($ $ #6# #6# $) 91 T ELT)) (|setelt| #7=((|#2| $ #6# #6# |#2|) NIL T ELT) (($ $ #8=(|List| #6#) #8# $) 89 T ELT)) (|scalarMatrix| (($ #1# |#2|) 55 T ELT)) (|matrix| (($ #9=(|List| #10=(|List| |#2|))) 51 T ELT) (($ #1# #1# (|Mapping| |#2| #6# #6#)) 53 T ELT)) (|listOfLists| ((#9# $) 80 T ELT)) (|horizConcat| (#2# 72 T ELT)) (|exquo| (((|Union| $ "failed") $ |#2|) 122 T ELT)) (|elt| ((|#2| $ #6# #6#) NIL T ELT) #7# (($ $ #8# #8#) 88 T ELT)) (|diagonalMatrix| (($ #10#) 56 T ELT) (($ (|List| $)) 58 T ELT)) (|diagonal?| (#4# 28 T ELT)) (|coerce| (($ |#4|) 63 T ELT) (((|OutputForm|) $) NIL T ELT)) (|antisymmetric?| (#4# 38 T ELT)) (/ (#11=($ $ |#2|) 124 T ELT)) (- (#2# 95 T ELT) (#3# 98 T ELT)) (+ (#2# 93 T ELT)) (** (($ $ #1#) 111 T ELT) (($ $ #6#) 128 T ELT)) (* (#2# 104 T ELT) (($ |#2| $) 100 T ELT) (#11# 101 T ELT) (($ #6# $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
+(((|MatrixCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE ** (|#1| |#1| #1=(|Integer|))) (SIGNATURE / #2=(|#1| |#1| |#2|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE ** (|#1| |#1| #3=(|NonNegativeInteger|))) (SIGNATURE * (|#3| |#3| |#1|)) (SIGNATURE * (|#4| |#1| |#4|)) (SIGNATURE * (|#1| #1# |#1|)) (SIGNATURE * #2#) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * #4=(|#1| |#1| |#1|)) (SIGNATURE - #5=(|#1| |#1|)) (SIGNATURE - #4#) (SIGNATURE + #4#) (SIGNATURE |setsubMatrix!| (|#1| |#1| #1# #1# |#1|)) (SIGNATURE |subMatrix| (|#1| |#1| #1# #1# #1# #1#)) (SIGNATURE |swapColumns!| #6=(|#1| |#1| #1# #1#)) (SIGNATURE |swapRows!| #6#) (SIGNATURE |setelt| (|#1| |#1| #7=(|List| #1#) #7# |#1|)) (SIGNATURE |elt| (|#1| |#1| #7# #7#)) (SIGNATURE |listOfLists| (#8=(|List| #9=(|List| |#2|)) |#1|)) (SIGNATURE |vertConcat| #4#) (SIGNATURE |horizConcat| #4#) (SIGNATURE |squareTop| #5#) (SIGNATURE |transpose| #5#) (SIGNATURE |transpose| (|#1| |#3|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#1|))) (SIGNATURE |diagonalMatrix| (|#1| #9#)) (SIGNATURE |scalarMatrix| (|#1| #3# |#2|)) (SIGNATURE |matrix| (|#1| #3# #3# (|Mapping| |#2| #1# #1#))) (SIGNATURE |matrix| (|#1| #8#)) (SIGNATURE |zero| (|#1| #3# #3#)) (SIGNATURE |antisymmetric?| #10=((|Boolean|) |#1|)) (SIGNATURE |symmetric?| #10#) (SIGNATURE |diagonal?| #10#) (SIGNATURE |square?| #10#) (SIGNATURE |setelt| #11=(|#2| |#1| #1# #1# |#2|)) (SIGNATURE |elt| #11#) (SIGNATURE |elt| (|#2| |#1| #1# #1#))) (|MatrixCategory| |#2| |#3| |#4|) (|Ring|) #12=(|FiniteLinearAggregate| |#2|) #12#) (T |MatrixCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) 108 T ELT)) (|vertConcat| (($ $ $) 97 T ELT)) (|transpose| (($ |#2|) 101 T ELT) (($ $) 100 T ELT)) (|symmetric?| (((|Boolean|) $) 110 T ELT)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 93 T ELT)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) 92 T ELT)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 91 T ELT)) (|squareTop| (($ $) 99 T ELT)) (|square?| (((|Boolean|) $) 112 T ELT)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) 90 T ELT)) (|setelt| ((|#1| $ #3=(|Integer|) #3# |#1|) 52 T ELT) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) 94 T ELT)) (|setRow!| (($ $ #3# |#2|) 50 T ELT)) (|setColumn!| (($ $ #3# |#3|) 49 T ELT)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) 105 T ELT)) (|sample| (#4=($) 6 T CONST)) (|rowEchelon| (($ $) 77 (|has| |#1| (|EuclideanDomain|)) ELT)) (|row| ((|#2| $ #3#) 54 T ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 39 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 38 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| . #5=((|BasicType|))) ELT)) (|rank| (((|NonNegativeInteger|) $) 76 (|has| |#1| (|IntegralDomain|)) ELT)) (|qsetelt!| ((|#1| $ #3# #3# |#1|) 51 T ELT)) (|qelt| ((|#1| . #6=($ #3# #3#)) 56 T ELT)) (|nullity| (((|NonNegativeInteger|) $) 75 (|has| |#1| (|IntegralDomain|)) ELT)) (|nullSpace| (((|List| |#3|) $) 74 (|has| |#1| (|IntegralDomain|)) ELT)) (|nrows| (#7=(#8=(|NonNegativeInteger|) $) 59 T ELT)) (|new| (($ #8# #8# |#1|) 65 T ELT)) (|ncols| (#7# 58 T ELT)) (|minordet| ((|#1| $) 72 (|has| |#1| (ATTRIBUTE (|commutative| #9="*"))) ELT)) (|minRowIndex| (#10=(#3# $) 63 T ELT)) (|minColIndex| (#10# 61 T ELT)) (|members| (((|List| |#1|) $) 40 T ELT)) (|member?| ((#11=(|Boolean|) |#1| $) 35 (|has| |#1| . #5#) ELT)) (|maxRowIndex| (#10# 62 T ELT)) (|maxColIndex| (#10# 60 T ELT)) (|matrix| (($ (|List| (|List| |#1|))) 107 T ELT) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) 106 T ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 66 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 48 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) 47 T ELT)) (|listOfLists| (((|List| (|List| |#1|)) $) 96 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #12=((|SetCategory|))) ELT)) (|inverse| (((|Union| $ "failed") $) 71 (|has| |#1| (|Field|)) ELT)) (|horizConcat| (($ $ $) 98 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #12#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #11# |#1|) $) 37 T ELT)) (|fill!| (($ $ |#1|) 64 T ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 79 (|has| |#1| (|IntegralDomain|)) ELT)) (|every?| ((#11# (|Mapping| #11# |#1|) . #13=($)) 42 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #12#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #12#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #12#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #12#)) ELT)) (|eq?| ((#14=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#14# $) 7 T ELT)) (|empty| (#4# 8 T ELT)) (|elt| ((|#1| . #6#) 57 T ELT) ((|#1| $ #3# #3# |#1|) 55 T ELT) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) 95 T ELT)) (|diagonalMatrix| (($ (|List| |#1|)) 104 T ELT) (($ (|List| $)) 103 T ELT)) (|diagonal?| (((|Boolean|) $) 111 T ELT)) (|determinant| ((|#1| $) 73 (|has| |#1| (ATTRIBUTE (|commutative| #9#))) ELT)) (|count| ((#15=(|NonNegativeInteger|) (|Mapping| #11# |#1|) $) 41 T ELT) ((#15# |#1| $) 36 (|has| |#1| . #5#) ELT)) (|copy| (($ $) 9 T ELT)) (|column| ((|#3| $ #3#) 53 T ELT)) (|coerce| (($ |#3|) 102 T ELT) (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#11# (|Mapping| #11# |#1|) . #13#) 43 T ELT)) (|antisymmetric?| (((|Boolean|) $) 109 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (/ (($ $ |#1|) 78 (|has| |#1| (|Field|)) ELT)) (- (($ $ $) 88 T ELT) (($ $) 87 T ELT)) (+ (($ $ $) 89 T ELT)) (** (($ $ (|NonNegativeInteger|)) 80 T ELT) (($ $ (|Integer|)) 70 (|has| |#1| (|Field|)) ELT)) (* (($ $ $) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ (|Integer|) $) 83 T ELT) ((|#3| $ |#3|) 82 T ELT) ((|#2| |#2| $) 81 T ELT)) (|#| ((#15# $) 44 T ELT)))
+(((|MatrixCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|FiniteLinearAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|)) (T |MatrixCategory|))
+((|square?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|diagonal?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|symmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|antisymmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|zero| (*1 *1 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|matrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|matrix| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Mapping| *4 (|Integer|) (|Integer|))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|scalarMatrix| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)))) (|transpose| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *2 *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)))) (|transpose| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|squareTop| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|horizConcat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|vertConcat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|listOfLists| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|List| (|List| *3))))) (|elt| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|setelt| (*1 *1 *1 *2 *2 *1) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|swapRows!| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|swapColumns!| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|subMatrix| (*1 *1 *1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|setsubMatrix!| (*1 *1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (* (*1 *2 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)))) (* (*1 *2 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|)))) (|rowEchelon| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|rank| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullity| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullSpace| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *5)))) (|determinant| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|has| *2 (ATTRIBUTE (|commutative| #1="*"))) (|ofCategory| *2 (|Ring|)))) (|minordet| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|has| *2 (ATTRIBUTE (|commutative| #1#))) (|ofCategory| *2 (|Ring|)))) (|inverse| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Field|)))))
+(|Join| (|TwoDimensionalArrayCategory| |t#1| |t#2| |t#3|) (CATEGORY |domain| (SIGNATURE |square?| ((|Boolean|) $)) (SIGNATURE |diagonal?| ((|Boolean|) $)) (SIGNATURE |symmetric?| ((|Boolean|) $)) (SIGNATURE |antisymmetric?| ((|Boolean|) $)) (SIGNATURE |zero| ($ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |matrix| ($ (|List| (|List| |t#1|)))) (SIGNATURE |matrix| ($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |t#1| (|Integer|) (|Integer|)))) (SIGNATURE |scalarMatrix| ($ (|NonNegativeInteger|) |t#1|)) (SIGNATURE |diagonalMatrix| ($ (|List| |t#1|))) (SIGNATURE |diagonalMatrix| ($ (|List| $))) (SIGNATURE |coerce| ($ |t#3|)) (SIGNATURE |transpose| ($ |t#2|)) (SIGNATURE |transpose| ($ $)) (SIGNATURE |squareTop| ($ $)) (SIGNATURE |horizConcat| ($ $ $)) (SIGNATURE |vertConcat| ($ $ $)) (SIGNATURE |listOfLists| ((|List| (|List| |t#1|)) $)) (SIGNATURE |elt| ($ $ (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |setelt| ($ $ (|List| (|Integer|)) (|List| (|Integer|)) $)) (SIGNATURE |swapRows!| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |subMatrix| ($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |setsubMatrix!| ($ $ (|Integer|) (|Integer|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $)) (SIGNATURE - ($ $)) (SIGNATURE * ($ $ $)) (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|)) (SIGNATURE * ($ (|Integer|) $)) (SIGNATURE * (|t#3| $ |t#3|)) (SIGNATURE * (|t#2| |t#2| $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (IF (|has| |t#1| (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (|EuclideanDomain|)) (SIGNATURE |rowEchelon| ($ $)) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |rank| ((|NonNegativeInteger|) $)) (SIGNATURE |nullity| ((|NonNegativeInteger|) $)) (SIGNATURE |nullSpace| ((|List| |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (ATTRIBUTE (|commutative| "*"))) (PROGN (SIGNATURE |determinant| (|t#1| $)) (SIGNATURE |minordet| (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |inverse| ((|Union| $ "failed") $)) (SIGNATURE ** ($ $ (|Integer|)))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|TwoDimensionalArrayCategory| |#1| |#2| |#3|) . T) ((|Type|) . T))
+((|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (|map| (((|Union| |#8| #1="failed") (|Mapping| (|Union| |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (|Mapping| |#5| |#1|) |#4|) 31 T ELT)))
+(((|MatrixCategoryFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| (|#8| (|Mapping| |#5| |#1|) |#4|)) (SIGNATURE |map| ((|Union| |#8| #1="failed") (|Mapping| (|Union| |#5| #1#) |#1|) |#4|)) (SIGNATURE |reduce| (|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|))) #2=(|Ring|) #3=(|FiniteLinearAggregate| |#1|) #3# (|MatrixCategory| |#1| |#2| |#3|) #2# #4=(|FiniteLinearAggregate| |#5|) #4# (|MatrixCategory| |#5| |#6| |#7|)) (T |MatrixCategoryFunctions2|))
+((|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #1=(|ofCategory| *5 #2=(|Ring|)) (|ofCategory| *2 #2#) #3=(|ofCategory| *6 #4=(|FiniteLinearAggregate| *5)) #5=(|ofCategory| *7 #4#) (|ofCategory| *8 #6=(|FiniteLinearAggregate| *2)) (|ofCategory| *9 #6#) (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *2 *8 *9 *10)) #7=(|ofCategory| *4 (|MatrixCategory| *5 *6 *7)) (|ofCategory| *10 (|MatrixCategory| *2 *8 *9)))) (|map| #8=(*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *8 "failed") *5)) #1# #9=(|ofCategory| *8 #2#) #3# #5# #10=(|ofCategory| *2 (|MatrixCategory| *8 *9 *10)) #11=(|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2)) #7# #12=(|ofCategory| *9 #13=(|FiniteLinearAggregate| *8)) #14=(|ofCategory| *10 #13#))) (|map| #8# (AND (|isDomain| *3 (|Mapping| *8 *5)) #1# #9# #3# #5# #10# #11# #7# #12# #14#)))
+((|rowEchelon| (#1=(|#4| |#4|) 90 #2=(|has| |#1| (|EuclideanDomain|)) ELT)) (|rank| (#3=((|NonNegativeInteger|) |#4|) 92 #4=(|has| |#1| (|IntegralDomain|)) ELT)) (|nullity| (#3# 94 #4# ELT)) (|nullSpace| (((|List| |#3|) |#4|) 101 #4# ELT)) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) 124 #2# ELT)) (|minordet| (#5=(|#1| |#4|) 52 T ELT)) (|invertIfCan| (#6=((|Union| |#4| "failed") |#4|) 84 #4# ELT)) (|inverse| (#6# 98 (|has| |#1| (|Field|)) ELT)) (|fractionFreeGauss!| (#1# 76 #4# ELT)) (|elRow2!| (#7=(|#4| |#4| |#1| #8=(|Integer|) #8#) 60 T ELT)) (|elRow1!| ((|#4| |#4| #8# #8#) 55 T ELT)) (|elColumn2!| (#7# 65 T ELT)) (|determinant| (#5# 96 T ELT)) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 #4# ELT)))
+(((|MatrixLinearAlgebraFunctions| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |determinant| #1=(|#1| |#4|)) (SIGNATURE |minordet| #1#) (SIGNATURE |elRow1!| (|#4| |#4| #2=(|Integer|) #2#)) (SIGNATURE |elRow2!| #3=(|#4| |#4| |#1| #2# #2#)) (SIGNATURE |elColumn2!| #3#) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |rank| #4=((|NonNegativeInteger|) |#4|)) (SIGNATURE |nullity| #4#) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) (SIGNATURE |fractionFreeGauss!| #5=(|#4| |#4|)) (SIGNATURE |invertIfCan| #6=((|Union| |#4| "failed") |#4|)) (SIGNATURE |adjoint| ((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (|EuclideanDomain|)) (PROGN (SIGNATURE |rowEchelon| #5#) (SIGNATURE |normalizedDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (|Field|)) (SIGNATURE |inverse| #6#) |%noBranch|)) (|CommutativeRing|) #7=(|FiniteLinearAggregate| |#1|) #7# (|MatrixCategory| |#1| |#2| |#3|)) (T |MatrixLinearAlgebraFunctions|))
+((|inverse| #1=(*1 *2 *2) (|partial| AND (|ofCategory| *3 (|Field|)) #2=(|ofCategory| *3 #3=(|CommutativeRing|)) #4=(|ofCategory| *4 #5=(|FiniteLinearAggregate| *3)) #6=(|ofCategory| *5 #5#) #7=(|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *2)) #8=(|ofCategory| *2 #9=(|MatrixCategory| *3 *4 *5)))) (|normalizedDivide| (*1 *2 *3 *3) (AND #10=(|ofCategory| *3 (|EuclideanDomain|)) #2# #4# #6# (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *6)) (|ofCategory| *6 #9#))) (|rowEchelon| #1# (AND #10# #2# #4# #6# #7# #8#)) (|adjoint| #11=(*1 *2 *3) (AND #12=(|ofCategory| *4 #13=(|IntegralDomain|)) #14=(|ofCategory| *4 #3#) #15=(|ofCategory| *5 #16=(|FiniteLinearAggregate| *4)) #17=(|ofCategory| *6 #16#) (|isDomain| *2 (|Record| (|:| |adjMat| *3) (|:| |detMat| *4))) #18=(|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *3)) #19=(|ofCategory| *3 #20=(|MatrixCategory| *4 *5 *6)))) (|invertIfCan| #1# (|partial| AND #21=(|ofCategory| *3 #13#) #2# #4# #6# #7# #8#)) (|fractionFreeGauss!| #1# (AND #21# #2# #4# #6# #7# #8#)) (|nullSpace| #11# (AND #12# #14# #15# #17# (|isDomain| *2 (|List| *6)) #18# #19#)) (|nullity| #11# #22=(AND #12# #14# #15# #17# (|isDomain| *2 (|NonNegativeInteger|)) #18# #19#)) (|rank| #11# #22#) (|elColumn2!| #23=(*1 *2 *2 *3 *4 *4) #24=(AND (|isDomain| *4 #25=(|Integer|)) #2# #6# (|ofCategory| *6 #5#) (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *5 *6)))) (|elRow2!| #23# #24#) (|elRow1!| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 #25#) #14# #15# #17# (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *2)) (|ofCategory| *2 #20#))) (|minordet| #11# #26=(AND (|ofCategory| *4 #27=(|FiniteLinearAggregate| *2)) (|ofCategory| *5 #27#) (|ofCategory| *2 #3#) (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *2 *4 *5 *3)) (|ofCategory| *3 (|MatrixCategory| *2 *4 *5)))) (|determinant| #11# #26#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|zero| (($ #5=(|NonNegativeInteger|) #5#) 63 T ELT)) (|vertConcat| #6=(#7=($ $ $) NIL T ELT)) (|transpose| #8=(#9=($ #10=(|Vector| |#1|)) NIL T ELT) #11=(#12=($ $) NIL T ELT)) (|symmetric?| #13=((#3# $) NIL T ELT)) (|swapRows!| (#14=($ $ #15=(|Integer|) #15#) 21 T ELT)) (|swapColumns!| (#14# NIL T ELT)) (|subMatrix| (($ $ #15# #15# #15# #15#) NIL T ELT)) (|squareTop| #11#) (|square?| #13#) (|setsubMatrix!| (($ $ #15# #15# $) NIL T ELT)) (|setelt| #16=(#17=(|#1| $ #15# #15# |#1|) NIL T ELT) (($ $ #18=(|List| #15#) #18# $) NIL T ELT)) (|setRow!| #19=(($ $ #15# #10#) NIL T ELT)) (|setColumn!| #19#) (|scalarMatrix| (($ #5# |#1|) 37 T ELT)) (|sample| (#20=($) NIL T CONST)) (|rowEchelon| (#12# 46 (|has| |#1| (|EuclideanDomain|)) ELT)) (|row| #21=((#10# $ #15#) NIL T ELT)) (|reduce| ((|#1| #22=(|Mapping| |#1| |#1| |#1|) $) NIL T ELT) ((|#1| #22# $ |#1|) NIL T ELT) ((|#1| #22# $ |#1| |#1|) NIL #4# ELT)) (|rank| (#23=(#5# $) 48 #24=(|has| |#1| (|IntegralDomain|)) ELT)) (|qsetelt!| (#17# 68 T ELT)) (|qelt| #25=((|#1| $ #15# #15#) NIL T ELT)) (|nullity| (#23# 50 #24# ELT)) (|nullSpace| (((|List| #10#) $) 53 #24# ELT)) (|nrows| (#23# 31 T ELT)) (|new| (($ #5# #5# |#1|) 27 T ELT)) (|ncols| (#23# 32 T ELT)) (|minordet| (#26=(|#1| $) 44 #27=(|has| |#1| (ATTRIBUTE (|commutative| "*"))) ELT)) (|minRowIndex| (#28=(#15# $) 9 T ELT)) (|minColIndex| (#28# 10 T ELT)) (|members| ((#29=(|List| |#1|) $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|maxRowIndex| (#28# 13 T ELT)) (|maxColIndex| (#28# 64 T ELT)) (|matrix| (($ #30=(|List| #29#)) NIL T ELT) (($ #5# #5# (|Mapping| |#1| #15# #15#)) NIL T ELT)) (|map!| #31=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #31# (($ #22# $ $) NIL T ELT) (($ #22# $ $ |#1|) NIL T ELT)) (|listOfLists| ((#30# $) 75 T ELT)) (|latex| (((|String|) $) NIL #32=(|has| |#1| (|SetCategory|)) ELT)) (|inverse| ((#33=(|Union| $ #34="failed") $) 57 #35=(|has| |#1| (|Field|)) ELT)) (|horizConcat| #6#) (|hash| (((|SingleInteger|) $) NIL #32# ELT)) (|find| (((|Union| |#1| #34#) #36=(|Mapping| #3# |#1|) $) NIL T ELT)) (|fill!| #37=(#38=($ $ |#1|) NIL T ELT)) (|exquo| ((#33# $ |#1|) NIL #24# ELT)) (|every?| #39=((#3# #36# $) NIL T ELT)) (|eval| (($ $ (|List| #40=(|Equation| |#1|))) NIL #41=(AND (|has| |#1| (|Evalable| |#1|)) #32#) ELT) (($ $ #40#) NIL #41# ELT) (($ $ |#1| |#1|) NIL #41# ELT) (($ $ #29# #29#) NIL #41# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| #13#) (|empty| (#20# NIL T ELT)) (|elt| #25# #16# (($ $ #18# #18#) NIL T ELT)) (|diagonalMatrix| (($ #29#) NIL T ELT) (($ (|List| $)) NIL T ELT) (#9# 69 T ELT)) (|diagonal?| #13#) (|determinant| (#26# 42 #27# ELT)) (|count| ((#5# #36# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT)) (|copy| #11#) (|convert| ((#42=(|InputForm|) $) 79 (|has| |#1| (|ConvertibleTo| #42#)) ELT)) (|column| #21#) (|coerce| #8# ((#43=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #43#)) ELT)) (|before?| #1#) (|any?| #39#) (|antisymmetric?| #13#) (= #1#) (/ (#38# NIL #35# ELT)) (- #6# #11#) (+ #6#) (** (($ $ #5#) 38 T ELT) (($ $ #15#) 61 #35# ELT)) (* (#7# 23 T ELT) (($ |#1| $) NIL T ELT) #37# (($ #15# $) NIL T ELT) ((#10# $ #10#) NIL T ELT) ((#10# #10# $) NIL T ELT)) (|#| (#23# NIL T ELT)))
+(((|Matrix| |#1|) (|Join| (|MatrixCategory| |#1| #1=(|Vector| |#1|) #1#) (CATEGORY |domain| (SIGNATURE |diagonalMatrix| ($ #1#)) (IF (|has| |#1| #2=(|ConvertibleTo| (|InputForm|))) (ATTRIBUTE #2#) |%noBranch|) (IF (|has| |#1| (|Field|)) (SIGNATURE |inverse| ((|Union| $ "failed") $)) |%noBranch|))) (|Ring|)) (T |Matrix|))
+((|inverse| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|Matrix| *2)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 #1=(|Ring|)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 #1#) (|isDomain| *1 (|Matrix| *3)))))
+((|times!| (#1=(#2=(|Matrix| |#1|) #2# #2# #2#) 37 T ELT)) (|rightScalarTimes!| ((#2# #2# #2# |#1|) 32 T ELT)) (|power!| ((#2# #2# #2# #2# #2# #3=(|NonNegativeInteger|)) 43 T ELT)) (|plus!| (#1# 25 T ELT)) (|minus!| (#1# 29 T ELT) (#4=(#2# #2# #2#) 27 T ELT)) (|leftScalarTimes!| ((#2# #2# |#1| #2#) 31 T ELT)) (|copy!| (#4# 23 T ELT)) (** ((#2# #2# #3#) 46 T ELT)))
+(((|StorageEfficientMatrixOperations| |#1|) (CATEGORY |package| (SIGNATURE |copy!| #1=(#2=(|Matrix| |#1|) #2# #2#)) (SIGNATURE |plus!| #3=(#2# #2# #2# #2#)) (SIGNATURE |minus!| #1#) (SIGNATURE |minus!| #3#) (SIGNATURE |leftScalarTimes!| (#2# #2# |#1| #2#)) (SIGNATURE |rightScalarTimes!| (#2# #2# #2# |#1|)) (SIGNATURE |times!| #3#) (SIGNATURE |power!| (#2# #2# #2# #2# #2# #4=(|NonNegativeInteger|))) (SIGNATURE ** (#2# #2# #4#))) (|Ring|)) (T |StorageEfficientMatrixOperations|))
+((** (*1 *2 *2 *3) #1=(AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 #2=(|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))) (|power!| (*1 *2 *2 *2 *2 *2 *3) #1#) (|times!| #3=(*1 *2 *2 *2 *2) #4=(AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 #2#) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|rightScalarTimes!| (*1 *2 *2 *2 *3) #4#) (|leftScalarTimes!| (*1 *2 *2 *3 *2) #4#) (|minus!| #3# #4#) (|minus!| #5=(*1 *2 *2 *2) #4#) (|plus!| #3# #4#) (|copy!| #5# #4#))
+((|retractIfCan| (((|Union| |#1| "failed") $) 18 T ELT)) (|retract| (#1=(|#1| $) NIL T ELT)) (|nothing| (($) 7 T CONST)) (|just| (#2=($ |#1|) 8 T ELT)) (|coerce| (#2# 16 T ELT) (((|OutputForm|) $) 23 T ELT)) (|case| ((#3=(|Boolean|) $ (|[\|\|]| |#1|)) 14 T ELT) ((#3# $ (|[\|\|]| |nothing|)) 11 T ELT)) (|autoCoerce| (#1# 15 T ELT)))
+(((|Maybe| |#1|) (|Join| (|UnionType|) (|RetractableTo| |#1|) #1=(|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |just| ($ |#1|)) (SIGNATURE |case| (#2=(|Boolean|) $ (|[\|\|]| |#1|))) (SIGNATURE |case| (#2# $ (|[\|\|]| |nothing|))) (SIGNATURE |autoCoerce| (|#1| $)) (SIGNATURE |nothing| ($) |constant|))) #1#) (T |Maybe|))
+((|just| (*1 *1 *2) #1=(AND (|isDomain| *1 (|Maybe| *2)) (|ofCategory| *2 #2=(|CoercibleTo| (|OutputForm|))))) (|case| #3=(*1 *2 *1 *3) (AND (|isDomain| *3 (|[\|\|]| *4)) #4=(|ofCategory| *4 #2#) #5=(|isDomain| *2 (|Boolean|)) #6=(|isDomain| *1 (|Maybe| *4)))) (|case| #3# (AND (|isDomain| *3 (|[\|\|]| |nothing|)) #5# #6# #4#)) (|autoCoerce| (*1 *2 *1) #1#) (|nothing| (*1 *1) #1#))
+((|splitDenominator| (((|Record| (|:| |num| #1=(|Matrix| |#1|)) (|:| |den| |#1|)) #2=(|Matrix| |#2|)) 20 T ELT)) (|commonDenominator| ((|#1| #2#) 9 T ELT)) (|clearDenominator| ((#1# #2#) 18 T ELT)))
+(((|MatrixCommonDenominator| |#1| |#2|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| #1=(|Matrix| |#2|))) (SIGNATURE |clearDenominator| (#2=(|Matrix| |#1|) #1#)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| #2#) (|:| |den| |#1|)) #1#))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|)) (T |MatrixCommonDenominator|))
+((|splitDenominator| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 (|Matrix| *5)) #3=(|ofCategory| *5 (|QuotientFieldCategory| *4)) #4=(|ofCategory| *4 #5=(|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| #6=(|Matrix| *4)) (|:| |den| *4))) #7=(|isDomain| *1 (|MatrixCommonDenominator| *4 *5)))) (|clearDenominator| #1# (AND #2# #3# #4# (|isDomain| *2 #6#) #7#)) (|commonDenominator| #1# (AND (|isDomain| *3 #6#) (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 #5#) (|isDomain| *1 (|MatrixCommonDenominator| *2 *4)))))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|select!| (($ (|Mapping| #3=(|Boolean|) |#1|) . #4=($)) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#7=($) 6 T CONST)) (|removeDuplicates!| (($ $) 55 T ELT)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #8=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| #3# |#1|) . #4#) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #8#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #5# |#1|) . #6#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #9=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #10=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT) (($ |#1| $ (|NonNegativeInteger|)) 56 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #9#) ELT)) (|extract!| ((|#1| . #10#) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #9#)) ELT)) (|eq?| ((#11=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#11# $) 7 T ELT)) (|empty| (#7# 8 T ELT)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) 54 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#12=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #12#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|MultiDictionary| |#1|) (|Category|) (|SetCategory|)) (T |MultiDictionary|))
+((|insert!| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultiDictionary| *2)) (|ofCategory| *2 (|SetCategory|)))) (|removeDuplicates!| (*1 *1 *1) (AND (|ofCategory| *1 (|MultiDictionary| *2)) (|ofCategory| *2 (|SetCategory|)))) (|duplicates| (*1 *2 *1) (AND (|ofCategory| *1 (|MultiDictionary| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |entry| *3) (|:| |count| (|NonNegativeInteger|))))))))
+(|Join| (|DictionaryOperations| |t#1|) (CATEGORY |domain| (SIGNATURE |insert!| ($ |t#1| $ (|NonNegativeInteger|))) (SIGNATURE |removeDuplicates!| ($ $)) (SIGNATURE |duplicates| ((|List| (|Record| (|:| |entry| |t#1|) (|:| |count| (|NonNegativeInteger|)))) $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|separateFactors| ((#1=(|List| |#1|) #2=(|List| (|Record| (|:| |factor| |#1|) (|:| |degree| #3=(|Integer|)))) #3#) 66 T ELT)) (|linears| ((|#1| |#1| #3#) 63 T ELT)) (|gcd| ((|#1| |#1| |#1| #3#) 46 T ELT)) (|factor| ((#1# |#1| #3#) 49 T ELT)) (|exptMod| ((|#1| |#1| #3# |#1| #3#) 40 T ELT)) (|ddFact| ((#2# |#1| #3#) 62 T ELT)))
+(((|ModularDistinctDegreeFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |gcd| (|#1| |#1| |#1| #1=(|Integer|))) (SIGNATURE |linears| (|#1| |#1| #1#)) (SIGNATURE |factor| (#2=(|List| |#1|) |#1| #1#)) (SIGNATURE |ddFact| (#3=(|List| (|Record| (|:| |factor| |#1|) (|:| |degree| #1#))) |#1| #1#)) (SIGNATURE |separateFactors| (#2# #3# #1#)) (SIGNATURE |exptMod| (|#1| |#1| #1# |#1| #1#))) (|UnivariatePolynomialCategory| #1#)) (T |ModularDistinctDegreeFactorizer|))
+((|exptMod| (*1 *2 *2 *3 *2 *3) #1=(AND (|isDomain| *3 #2=(|Integer|)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|separateFactors| #3=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| *5) (|:| |degree| #2#)))) #4=(|isDomain| *4 #2#) (|ofCategory| *5 #5=(|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *5)))) (|ddFact| #3# (AND #4# (|isDomain| *2 (|List| (|Record| (|:| |factor| *3) (|:| |degree| *4)))) #6=(|isDomain| *1 (|ModularDistinctDegreeFactorizer| *3)) #7=(|ofCategory| *3 #5#))) (|factor| #3# (AND #4# (|isDomain| *2 (|List| *3)) #6# #7#)) (|linears| (*1 *2 *2 *3) #1#) (|gcd| (*1 *2 *2 *2 *3) #1#))
+((|ptFunc| ((#1=(|Mapping| (|Point| #2=(|DoubleFloat|)) #2# #2#) #3=(|Mapping| #2# #2# #2#) #3# #3# #4=(|Mapping| #2# #2# #2# #2#)) 17 T ELT)) (|meshPar2Var| ((#5=(|ThreeSpace| #2#) #5# #1# #6=(|Segment| #2#) #6# #7=(|List| (|DrawOption|))) 53 T ELT) ((#5# #1# #6# #6# #7#) 55 T ELT) ((#5# #3# #3# #3# #8=(|Union| #4# "undefined") #6# #6# #7#) 57 T ELT)) (|meshPar1Var| ((#5# #9=(|Expression| (|Integer|)) #9# #9# (|Mapping| #2# #2#) #6# #7#) NIL T ELT)) (|meshFun2Var| ((#5# #3# #8# #6# #6# #7#) 58 T ELT)))
+(((|MeshCreationRoutinesForThreeDimensions|) (CATEGORY |package| (SIGNATURE |meshPar2Var| (#1=(|ThreeSpace| #2=(|DoubleFloat|)) #3=(|Mapping| #2# #2# #2#) #3# #3# #4=(|Union| #5=(|Mapping| #2# #2# #2# #2#) "undefined") #6=(|Segment| #2#) #6# #7=(|List| (|DrawOption|)))) (SIGNATURE |meshPar2Var| (#1# #8=(|Mapping| (|Point| #2#) #2# #2#) #6# #6# #7#)) (SIGNATURE |meshPar2Var| (#1# #1# #8# #6# #6# #7#)) (SIGNATURE |meshFun2Var| (#1# #3# #4# #6# #6# #7#)) (SIGNATURE |meshPar1Var| (#1# #9=(|Expression| (|Integer|)) #9# #9# (|Mapping| #2# #2#) #6# #7#)) (SIGNATURE |ptFunc| (#8# #3# #3# #3# #5#)))) (T |MeshCreationRoutinesForThreeDimensions|))
+((|ptFunc| (*1 *2 *3 *3 *3 *4) (AND #1=(|isDomain| *3 (|Mapping| #2=(|DoubleFloat|) #2# #2#)) (|isDomain| *4 #3=(|Mapping| #2# #2# #2# #2#)) (|isDomain| *2 #4=(|Mapping| (|Point| #2#) #2# #2#)) #5=(|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshPar1Var| (*1 *2 *3 *3 *3 *4 *5 *6) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| #2# #2#)) #6=(|isDomain| *5 #7=(|Segment| #2#)) #8=(|isDomain| *6 #9=(|List| (|DrawOption|))) #10=(|isDomain| *2 (|ThreeSpace| #2#)) #5#)) (|meshFun2Var| (*1 *2 *3 *4 *5 *5 *6) #11=(AND #1# (|isDomain| *4 (|Union| #3# "undefined")) #6# #8# #10# #5#)) (|meshPar2Var| (*1 *2 *2 *3 *4 *4 *5) (AND #10# #12=(|isDomain| *3 #4#) #13=(|isDomain| *4 #7#) #14=(|isDomain| *5 #9#) #5#)) (|meshPar2Var| (*1 *2 *3 *4 *4 *5) (AND #12# #13# #14# #10# #5#)) (|meshPar2Var| (*1 *2 *3 *3 *3 *4 *5 *5 *6) #11#))
+((|factor| (((|Factored| #1=(|SparseUnivariatePolynomial| |#4|)) #1#) 87 T ELT) (((|Factored| |#4|) |#4|) 270 T ELT)))
+(((|MultFiniteFactorize| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|)) (SIGNATURE |factor| ((|Factored| #1=(|SparseUnivariatePolynomial| |#4|)) #1#))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|FiniteFieldCategory|) (|PolynomialCategory| |#3| |#2| |#1|)) (T |MultFiniteFactorize|))
+((|factor| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 (|OrderedSet|)) #3=(|ofCategory| *5 (|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *6 (|FiniteFieldCategory|)) (|ofCategory| *7 #5=(|PolynomialCategory| *6 *5 *4)) (|isDomain| *2 (|Factored| #6=(|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *7)) (|isDomain| *3 #6#))) (|factor| #1# (AND #2# #3# #4# (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *3)) (|ofCategory| *3 #5#))))
+((|rowEchelonLocal| ((#1=(|Matrix| |#1|) #1# |#1| |#1|) 85 T ELT)) (|rowEchelon| (#2=(#1# #1# |#1|) 66 T ELT)) (|rowEchLocal| (#2# 86 T ELT)) (|rowEch| ((#1# #1#) 67 T ELT)) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) 84 T ELT)))
+(((|ModularHermitianRowReduction| |#1|) (CATEGORY |package| (SIGNATURE |rowEch| (#1=(|Matrix| |#1|) #1#)) (SIGNATURE |rowEchelon| #2=(#1# #1# |#1|)) (SIGNATURE |rowEchLocal| #2#) (SIGNATURE |rowEchelonLocal| (#1# #1# |#1| |#1|)) (SIGNATURE |normalizedDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|))) (|EuclideanDomain|)) (T |ModularHermitianRowReduction|))
+((|normalizedDivide| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) #1=(|isDomain| *1 (|ModularHermitianRowReduction| *3)) #2=(|ofCategory| *3 (|EuclideanDomain|)))) (|rowEchelonLocal| (*1 *2 *2 *3 *3) #3=(AND (|isDomain| *2 (|Matrix| *3)) #2# #1#)) (|rowEchLocal| #4=(*1 *2 *2 *3) #3#) (|rowEchelon| #4# #3#) (|rowEch| (*1 *2 *2) #3#))
+((|compiledFunction| ((#1=(|Mapping| |#4| |#2| |#3|) |#1| #2=(|Symbol|) #2#) 19 T ELT)) (|binaryFunction| ((#1# #2#) 12 T ELT)))
+(((|MakeBinaryCompiledFunction| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |binaryFunction| (#1=(|Mapping| |#4| |#2| |#3|) #2=(|Symbol|))) (SIGNATURE |compiledFunction| (#1# |#1| #2# #2#))) (|ConvertibleTo| (|InputForm|)) #3=(|Type|) #3# #3#) (T |MakeBinaryCompiledFunction|))
+((|compiledFunction| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 #1=(|Symbol|)) #2=(|isDomain| *2 (|Mapping| *7 *5 *6)) (|isDomain| *1 (|MakeBinaryCompiledFunction| *3 *5 *6 *7)) (|ofCategory| *3 #3=(|ConvertibleTo| (|InputForm|))) #4=(|ofCategory| *5 #5=(|Type|)) #6=(|ofCategory| *6 #5#) #7=(|ofCategory| *7 #5#))) (|binaryFunction| (*1 *2 *3) (AND (|isDomain| *3 #1#) #2# (|isDomain| *1 (|MakeBinaryCompiledFunction| *4 *5 *6 *7)) (|ofCategory| *4 #3#) #4# #6# #7#)))
+((|makeFloatFunction| (((|Mapping| #1=(|DoubleFloat|) #1# #1#) |#1| #2=(|Symbol|) #2#) 43 T ELT) (((|Mapping| #1# #1#) |#1| #2#) 48 T ELT)))
+(((|MakeFloatCompiledFunction| |#1|) (CATEGORY |package| (SIGNATURE |makeFloatFunction| ((|Mapping| #1=(|DoubleFloat|) #1#) |#1| #2=(|Symbol|))) (SIGNATURE |makeFloatFunction| ((|Mapping| #1# #1# #1#) |#1| #2# #2#))) (|ConvertibleTo| (|InputForm|))) (T |MakeFloatCompiledFunction|))
+((|makeFloatFunction| (*1 *2 *3 *4 *4) (AND #1=(|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| #2=(|DoubleFloat|) #2# #2#)) #3=(|isDomain| *1 (|MakeFloatCompiledFunction| *3)) #4=(|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|makeFloatFunction| (*1 *2 *3 *4) (AND #1# (|isDomain| *2 (|Mapping| #2# #2#)) #3# #4#)))
+((|function| ((#1=(|Symbol|) |#1| #1# (|List| #1#)) 10 T ELT) ((#1# |#1| #1# #1# #1#) 13 T ELT) ((#1# |#1| #1# #1#) 12 T ELT) ((#1# |#1| #1#) 11 T ELT)))
+(((|MakeFunction| |#1|) (CATEGORY |package| (SIGNATURE |function| (#1=(|Symbol|) |#1| #1#)) (SIGNATURE |function| (#1# |#1| #1# #1#)) (SIGNATURE |function| (#1# |#1| #1# #1# #1#)) (SIGNATURE |function| (#1# |#1| #1# (|List| #1#)))) (|ConvertibleTo| (|InputForm|))) (T |MakeFunction|))
+((|function| (*1 *2 *3 *2 *4) (AND (|isDomain| *4 (|List| #1=(|Symbol|))) #2=(|isDomain| *2 #1#) #3=(|isDomain| *1 (|MakeFunction| *3)) #4=(|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2 *2 *2) #5=(AND #2# #3# #4#)) (|function| (*1 *2 *3 *2 *2) #5#) (|function| (*1 *2 *3 *2) #5#))
+((|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
+(((|MakeRecord| |#1| |#2|) (CATEGORY |package| (SIGNATURE |makeRecord| ((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) #1=(|Type|) #1#) (T |MakeRecord|))
+((|makeRecord| (*1 *2 *3 *4) (AND (|isDomain| *2 (|Record| (|:| |part1| *3) (|:| |part2| *4))) (|isDomain| *1 (|MakeRecord| *3 *4)) (|ofCategory| *3 #1=(|Type|)) (|ofCategory| *4 #1#))))
+((|unaryFunction| ((#1=(|Mapping| |#3| |#2|) #2=(|Symbol|)) 11 T ELT)) (|compiledFunction| ((#1# |#1| #2#) 21 T ELT)))
+(((|MakeUnaryCompiledFunction| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |unaryFunction| (#1=(|Mapping| |#3| |#2|) #2=(|Symbol|))) (SIGNATURE |compiledFunction| (#1# |#1| #2#))) (|ConvertibleTo| (|InputForm|)) #3=(|Type|) #3#) (T |MakeUnaryCompiledFunction|))
+((|compiledFunction| (*1 *2 *3 *4) (AND (|isDomain| *4 #1=(|Symbol|)) #2=(|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MakeUnaryCompiledFunction| *3 *5 *6)) (|ofCategory| *3 #3=(|ConvertibleTo| (|InputForm|))) #4=(|ofCategory| *5 #5=(|Type|)) #6=(|ofCategory| *6 #5#))) (|unaryFunction| (*1 *2 *3) (AND (|isDomain| *3 #1#) #2# (|isDomain| *1 (|MakeUnaryCompiledFunction| *4 *5 *6)) (|ofCategory| *4 #3#) #4# #6#)))
+((|lifting1| ((#1=(|Union| #2=(|List| #3=(|SparseUnivariatePolynomial| |#4|)) "failed") #3# #4=(|List| |#2|) #2# #5=(|List| |#3|) #6=(|List| |#4|) (|List| (|List| (|Record| (|:| |expt| #7=(|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) #8=(|List| #7#) #9=(|Vector| #10=(|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) 92 T ELT)) (|lifting| ((#1# #3# #4# #10# #5# #6# #8# |#3|) 110 T ELT)) (|corrPoly| ((#1# #3# #4# #5# #8# #2# #9# |#3|) 48 T ELT)))
+(((|MultivariateLifting| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |corrPoly| (#1=(|Union| #2=(|List| #3=(|SparseUnivariatePolynomial| |#4|)) "failed") #3# #4=(|List| |#2|) #5=(|List| |#3|) #6=(|List| #7=(|NonNegativeInteger|)) #2# #8=(|Vector| #9=(|List| (|SparseUnivariatePolynomial| |#3|))) |#3|)) (SIGNATURE |lifting| (#1# #3# #4# #9# #5# #10=(|List| |#4|) #6# |#3|)) (SIGNATURE |lifting1| (#1# #3# #4# #2# #5# #10# (|List| (|List| (|Record| (|:| |expt| #7#) (|:| |pcoef| |#4|)))) #6# #8# |#3|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |MultivariateLifting|))
+((|lifting1| (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| AND (|isDomain| *2 (|List| #1=(|SparseUnivariatePolynomial| *13))) (|isDomain| *3 #1#) (|isDomain| *4 #2=(|List| *12)) (|isDomain| *5 #3=(|List| *10)) (|isDomain| *6 (|List| *13)) (|isDomain| *7 (|List| (|List| (|Record| (|:| |expt| #4=(|NonNegativeInteger|)) (|:| |pcoef| *13))))) #5=(|isDomain| *8 #6=(|List| #4#)) (|isDomain| *9 (|Vector| (|List| (|SparseUnivariatePolynomial| *10)))) (|ofCategory| *12 #7=(|OrderedSet|)) (|ofCategory| *10 #8=(|EuclideanDomain|)) (|ofCategory| *13 (|PolynomialCategory| *10 *11 *12)) (|ofCategory| *11 #9=(|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|MultivariateLifting| *11 *12 *10 *13)))) (|lifting| (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| AND (|isDomain| *4 (|List| *11)) (|isDomain| *5 (|List| (|SparseUnivariatePolynomial| *9))) (|isDomain| *6 (|List| *9)) (|isDomain| *7 #2#) #5# (|ofCategory| *11 #7#) (|ofCategory| *9 #8#) (|ofCategory| *12 (|PolynomialCategory| *9 *10 *11)) (|ofCategory| *10 #9#) (|isDomain| *2 (|List| #10=(|SparseUnivariatePolynomial| *12))) (|isDomain| *1 (|MultivariateLifting| *10 *11 *9 *12)) (|isDomain| *3 #10#))) (|corrPoly| (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| AND (|isDomain| *2 (|List| #11=(|SparseUnivariatePolynomial| *11))) (|isDomain| *3 #11#) (|isDomain| *4 #3#) (|isDomain| *5 (|List| *8)) (|isDomain| *6 #6#) (|isDomain| *7 (|Vector| (|List| (|SparseUnivariatePolynomial| *8)))) (|ofCategory| *10 #7#) (|ofCategory| *8 #8#) (|ofCategory| *11 (|PolynomialCategory| *8 *9 *10)) (|ofCategory| *9 #9#) (|isDomain| *1 (|MultivariateLifting| *9 *10 *8 *11)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|reductum| (($ $) 56 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 54 T ELT)) (|minimumDegree| (((|NonNegativeInteger|) $) 58 T ELT)) (|leadingCoefficient| ((|#1| $) 57 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|degree| (((|NonNegativeInteger|) $) 59 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 55 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| . #4#) 60 T ELT)))
+(((|MonogenicLinearOperator| |#1|) (|Category|) (|Ring|)) (T |MonogenicLinearOperator|))
+((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))))
+(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |%noBranch|) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ |t#1| (|NonNegativeInteger|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) 23 T ELT)))
+(((|MultipleMap| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| (|#6| (|Mapping| |#4| |#1|) |#3|))) #1=(|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) #1# (|UnivariatePolynomialCategory| |#4|) (|UnivariatePolynomialCategory| (|Fraction| |#5|))) (T |MultipleMap|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *5)) (|ofCategory| *5 #1=(|IntegralDomain|)) (|ofCategory| *7 #1#) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Fraction| *8))) (|isDomain| *1 (|MultipleMap| *5 *6 *4 *7 *8 *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|ofCategory| *8 (|UnivariatePolynomialCategory| *7)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| ((#2=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exprex| (#3=(#2# #4=(|OutputForm|)) 36 T ELT)) (|display| (((|Void|) #2#) 29 T ELT)) (|coerceS| (#3# 26 T ELT)) (|coerceL| (#3# 27 T ELT)) (|coerce| ((#4# $) NIL T ELT) (#3# 25 T ELT)) (|before?| #1#) (= #1#))
+(((|MathMLFormat|) (|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |coerce| #1=(#2=(|String|) (|OutputForm|))) (SIGNATURE |coerceS| #1#) (SIGNATURE |coerceL| #1#) (SIGNATURE |exprex| #1#) (SIGNATURE |display| ((|Void|) #2#))))) (T |MathMLFormat|))
+((|coerce| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 #3=(|String|)) #4=(|isDomain| *1 (|MathMLFormat|)))) (|coerceS| #1# #2#) (|coerceL| #1# #2#) (|exprex| #1# #2#) (|display| #1# (AND (|isDomain| *3 #3#) (|isDomain| *2 (|Void|)) #4#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(($ $) NIL T ELT)) (|unit?| #3#) (|subtractIfCan| #5=((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|squareFreePart| #4#) (|squareFree| #8=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sample| #9=(($) NIL T CONST)) (|rem| #10=(($ $ $) NIL T ELT)) (|reduce| (($ |#1| |#2|) NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|quo| #10#) (|principalIdeal| (((|Record| (|:| |coef| #11=(|List| $)) #12=(|:| |generator| $)) #11#) NIL T ELT)) (|prime?| #3#) (|opposite?| #1#) (|one?| #3#) (|multiEuclidean| (((|Union| #11# #7#) #11# $) NIL T ELT)) (|modulus| ((|#2| $) NIL T ELT)) (|lcm| #10# #13=(($ #11#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #4#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#14=(|SparseUnivariatePolynomial| $) #14# #14#) NIL T ELT)) (|gcd| #10# #13#) (|factor| #8#) (|extendedEuclidean| (((|Record| #15=(|:| |coef1| $) #16=(|:| |coef2| $) #12#) $ $) NIL T ELT) (((|Union| (|Record| #15# #16#) #7#) $ $ $) NIL T ELT)) (|exquo| #5#) (|expressIdealMember| (((|Maybe| #11#) #11# $) NIL T ELT)) (|exQuo| #5#) (|euclideanSize| ((#17=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #18=(|Integer|)) NIL T ELT) #4# (($ #19=(|Fraction| #18#)) NIL T ELT) ((|#1| $) NIL T ELT)) (|characteristic| ((#17#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| #9#) (|One| #9#) (= #1#) (/ #10#) (- #4# #10#) (+ #10#) (** (($ $ #20=(|PositiveInteger|)) NIL T ELT) (($ $ #17#) NIL T ELT) (($ $ #18#) NIL T ELT)) (* (($ #20# $) NIL T ELT) (($ #17# $) NIL T ELT) (($ #18# . #21=($)) NIL T ELT) #10# (($ $ #19#) NIL T ELT) (($ #19# . #21#) NIL T ELT)))
+(((|ModularField| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ #1="failed") $ $)))) (|CommutativeRing|) (|AbelianMonoid|) (|Mapping| |#1| |#1| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2|) (|Mapping| (|Union| |#1| #1#) |#1| |#1| |#2|)) (T |ModularField|))
+((|modulus| #1=(*1 *2 *1) (AND (|ofCategory| *2 #2=(|AbelianMonoid|)) (|isDomain| *1 (|ModularField| *3 *2 *4 *5 *6)) (|ofCategory| *3 #3=(|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2)) (|ofType| *5 (|Mapping| #4=(|Union| *2 #5="failed") *2 *2)) (|ofType| *6 (|Mapping| #6=(|Union| *3 #5#) *3 *3 *2)))) (|coerce| #1# (AND #7=(|ofCategory| *2 #3#) #8=(|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6)) #9=(|ofCategory| *3 #2#) #10=(|ofType| *4 (|Mapping| *2 *2 *3)) #11=(|ofType| *5 (|Mapping| #6# *3 *3)) #12=(|ofType| *6 (|Mapping| #4# *2 *2 *3)))) (|reduce| (*1 *1 *2 *3) (AND #8# #7# #9# #10# #11# #12#)) (|exQuo| (*1 *1 *1 *1) (|partial| AND #8# #7# #9# #10# #11# #12#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 37 T ELT)) (|vectorise| ((#5=(|Vector| |#1|) $ #6=(|NonNegativeInteger|)) NIL T ELT)) (|variables| ((#7=(|List| #8=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|unmakeSUP| (($ #9=(|SparseUnivariatePolynomial| |#1|)) NIL T ELT)) (|univariate| ((#10=(|SparseUnivariatePolynomial| $) $ #8#) NIL T ELT) #11=((#9# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #12=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #13=(#14=($ $) NIL #12# ELT)) (|unit?| (#4# NIL #12# ELT)) (|totalDegree| #15=(#16=(#6# $) NIL T ELT) ((#6# $ #7#) NIL T ELT)) (|subtractIfCan| (#17=(#18=(|Union| $ #19="failed") $ $) NIL T ELT)) (|subResultantGcd| #20=(#21=($ $ $) NIL #12# ELT)) (|squareFreePolynomial| #22=(((|Factored| #10#) #10#) NIL #23=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #24=(#14# NIL #25=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#26=((|Factored| $) $) NIL #25# ELT)) (|solveLinearPolynomialEquation| (((|Union| #27=(|List| #10#) #19#) #27# #10#) NIL #23# ELT)) (|sizeLess?| (#2# NIL #28=(|has| |#1| (|Field|)) ELT)) (|size| (#29=(#6#) 55 #30=(|has| |#1| (|Finite|)) ELT)) (|shiftRight| #31=(#32=($ $ #6#) NIL T ELT)) (|shiftLeft| #31#) (|setPoly| ((|#2| |#2|) 51 T ELT)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL #25# ELT)) (|sample| (#33=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #34=(#19#)) . #35=($)) NIL T ELT) (((|Union| #36=(|Fraction| #37=(|Integer|)) . #34#) . #35#) NIL #38=(|has| |#1| (|RetractableTo| #36#)) ELT) (((|Union| #37# . #34#) . #35#) NIL #39=(|has| |#1| (|RetractableTo| #37#)) ELT) #40=(((|Union| #8# . #34#) . #35#) NIL T ELT)) (|retract| #41=(#42=(|#1| . #43=($)) NIL T ELT) ((#36# . #43#) NIL #38# ELT) ((#37# . #43#) NIL #39# ELT) ((#8# . #43#) NIL T ELT)) (|resultant| (($ $ $ #8#) NIL #44=(|has| |#1| (|CommutativeRing|)) ELT) ((|#1| $ $) NIL #44# ELT)) (|rem| #45=(#21# NIL #28# ELT)) (|reductum| (#14# 72 T ELT)) (|reducedSystem| ((#46=(|Matrix| #37#) . #47=(#48=(|Matrix| $))) NIL #49=(|has| |#1| (|LinearlyExplicitRingOver| #37#)) ELT) ((#50=(|Record| (|:| |mat| #46#) (|:| |vec| (|Vector| #37#))) . #51=(#48# #52=(|Vector| $))) NIL #49# ELT) ((#53=(|Record| (|:| |mat| #54=(|Matrix| |#1|)) (|:| |vec| #5#)) . #51#) NIL T ELT) ((#54# . #47#) NIL T ELT)) (|reduce| (#55=($ |#2|) 49 T ELT)) (|recip| ((#18# $) 98 T ELT)) (|random| (#33# 59 #30# ELT)) (|quo| #45#) (|pseudoRemainder| #56=(#21# NIL T ELT)) (|pseudoQuotient| #20#) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) #57=(|:| |quotient| $) #58=(|:| |remainder| $)) $ $) NIL #12# ELT)) (|principalIdeal| (((|Record| (|:| |coef| #59=(|List| $)) #60=(|:| |generator| $)) #59#) NIL #28# ELT)) (|primitivePart| #24# #61=(#62=($ $ #8#) NIL #25# ELT)) (|primitiveMonomials| #63=((#59# $) NIL T ELT)) (|prime?| (#4# NIL #23# ELT)) (|pow| (#64=((|PrimitiveArray| $)) 89 T ELT)) (|pomopo!| (($ $ |#1| #6# $) NIL T ELT)) (|patternMatch| ((#65=(|PatternMatchResult| #66=(|Float|) . #67=($)) $ #68=(|Pattern| #66#) #65#) NIL (AND (|has| #8# #69=(|PatternMatchable| #66#)) (|has| |#1| #69#)) ELT) ((#70=(|PatternMatchResult| #37# . #67#) $ #71=(|Pattern| #37#) #70#) NIL (AND (|has| #8# #72=(|PatternMatchable| #37#)) (|has| |#1| #72#)) ELT)) (|order| ((#6# $ $) NIL #12# ELT)) (|opposite?| #1#) (|one?| #73=(#4# NIL T ELT)) (|numberOfMonomials| #15#) (|nextItem| (#74=((|Maybe| $) $) NIL #75=(|has| |#1| (|StepThrough|)) ELT)) (|multivariate| (($ #9# #8#) NIL T ELT) (($ #10# #8#) NIL T ELT)) (|multiplyExponents| #31#) (|multiEuclidean| ((#76=(|Union| #59# #19#) #59# $) NIL #28# ELT)) (|monomials| #63#) (|monomial?| #73#) (|monomial| (($ |#1| #6#) 86 T ELT) #77=(($ $ #8# #6#) NIL T ELT) #78=(($ $ #7# #79=(|List| #6#)) NIL T ELT)) (|monicDivide| ((#80=(|Record| #57# #58#) $ $ #8#) NIL T ELT) (#81=(#80# $ $) NIL T ELT)) (|modulus| ((|#2|) 52 T ELT)) (|minimumDegree| #15# #82=((#6# $ #8#) NIL T ELT) #83=((#79# $ #7#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #6# #6#) $) NIL T ELT)) (|map| (($ #84=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeSUP| #11#) (|mainVariable| #40#) (|lookup| ((#85=(|PositiveInteger|) $) NIL #30# ELT)) (|lift| ((|#2| $) 48 T ELT)) (|leftReducedSystem| ((#46# . #86=(#52#)) NIL #49# ELT) ((#50# . #87=(#52# $)) NIL #49# ELT) ((#53# . #87#) NIL T ELT) ((#54# . #86#) NIL T ELT)) (|leadingMonomial| #88=(#14# NIL T ELT)) (|leadingCoefficient| (#42# 35 T ELT)) (|lcm| #89=(($ #59#) NIL #25# ELT) #90=(#21# NIL #25# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|karatsubaDivide| ((#80# $ #6#) NIL T ELT)) (|isTimes| #91=((#76# $) NIL T ELT)) (|isPlus| #91#) (|isExpt| (((|Union| (|Record| (|:| |var| #8#) (|:| |exponent| #6#)) #19#) $) NIL T ELT)) (|integrate| (#14# NIL #92=(|has| |#1| (|Algebra| #36#)) ELT)) (|init| (#33# NIL #75# CONST)) (|index| (($ #85#) NIL #30# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #73#) (|ground| #41#) (|gcdPolynomial| ((#10# #10# #10#) NIL #25# ELT)) (|gcd| #89# #90#) (|frobenius| (#14# 88 (|has| |#1| (|FiniteFieldCategory|)) ELT)) (|factorSquareFreePolynomial| #22#) (|factorPolynomial| #22#) (|factor| (#26# NIL #23# ELT)) (|extendedEuclidean| (((|Union| (|Record| #93=(|:| |coef1| $) #94=(|:| |coef2| $)) #19#) $ $ $) NIL #28# ELT) (((|Record| #93# #94# #60#) $ $) NIL #28# ELT)) (|exquo| ((#18# $ |#1|) NIL #12# ELT) (#17# 97 #12# ELT)) (|expressIdealMember| (((|Maybe| #59#) #59# $) NIL #28# ELT)) (|eval| (($ $ (|List| #95=(|Equation| $))) NIL T ELT) (($ $ #95#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #59# #59#) NIL T ELT) (($ $ #8# |#1|) NIL T ELT) (($ $ #7# #96=(|List| |#1|)) NIL T ELT) (($ $ #8# $) NIL T ELT) (($ $ #7# #59#) NIL T ELT)) (|euclideanSize| (#16# NIL #28# ELT)) (|elt| ((|#1| $ |#1|) NIL T ELT) #56# ((#97=(|Fraction| $) #97# #97#) NIL #12# ELT) ((|#1| #97# |#1|) NIL #28# ELT) ((#97# $ #97#) NIL #12# ELT)) (|divideExponents| ((#18# $ #6#) NIL T ELT)) (|divide| (#81# 99 #28# ELT)) (|discriminant| (#62# NIL #44# ELT) (#42# NIL #44# ELT)) (|differentiate| #78# #77# #98=(($ $ #7#) NIL T ELT) #99=(#62# NIL T ELT) #88# #31# #100=(($ $ #84#) NIL T ELT) #101=(($ $ #84# #6#) NIL T ELT) (($ $ #84# $) NIL T ELT) #102=(($ $ #103=(|Symbol|)) NIL #104=(|has| |#1| (|PartialDifferentialSpace| #103#)) ELT) #105=(($ $ #106=(|List| #103#)) NIL #104# ELT) #107=(($ $ #103# #6#) NIL #104# ELT) #108=(($ $ #106# #79#) NIL #104# ELT)) (|degree| (#16# 39 T ELT) #82# #83#) (|convert| ((#68# . #109=($)) NIL (AND (|has| #8# #110=(|ConvertibleTo| #68#)) (|has| |#1| #110#)) ELT) ((#71# . #109#) NIL (AND (|has| #8# #111=(|ConvertibleTo| #71#)) (|has| |#1| #111#)) ELT) ((#112=(|InputForm|) . #109#) NIL (AND (|has| #8# #113=(|ConvertibleTo| #112#)) (|has| |#1| #113#)) ELT)) (|content| (#42# NIL #25# ELT) #61#) (|conditionP| (((|Union| #52# #19#) #48#) NIL #114=(AND (|has| $ #115=(|CharacteristicNonZero|)) #23#) ELT)) (|computePowers| (#64# 43 T ELT)) (|composite| (#17# NIL #12# ELT) (((|Union| #97# #19#) #97# $) NIL #12# ELT)) (|coerce| (((|OutputForm|) $) 69 T ELT) (($ #37#) NIL T ELT) (($ |#1|) 66 T ELT) (($ #8#) NIL T ELT) (#55# 76 T ELT) (($ #36#) NIL (OR #92# #38#) ELT) #13#) (|coefficients| ((#96# $) NIL T ELT)) (|coefficient| ((|#1| $ #6#) 71 T ELT) #77# #78#) (|charthRoot| (#74# NIL (OR #114# (|has| |#1| #115#)) ELT)) (|characteristic| (#29# NIL T CONST)) (|binomThmExpt| (($ $ $ #6#) NIL #44# ELT)) (|before?| #1#) (|associates?| (#2# NIL #12# ELT)) (|annihilate?| #1#) (|Zero| (#33# 26 T CONST)) (|Vectorise| (#116=(#5# $) 84 T ELT)) (|UnVectorise| (($ #5#) 58 T ELT)) (|One| (#33# 9 T CONST)) (D #78# #77# #98# #99# #88# #31# #100# #101# #102# #105# #107# #108#) (|An| (#116# NIL T ELT)) (= (#2# 77 T ELT)) (/ (#117=($ $ |#1|) NIL #28# ELT)) (- (#14# 80 T ELT) #56#) (+ (#21# 40 T ELT)) (** (($ $ #85#) NIL T ELT) (#32# 93 T ELT)) (* (($ #85# $) NIL T ELT) (($ #6# $) NIL T ELT) (($ #37# $) 65 T ELT) (#21# 83 T ELT) (($ $ #36#) NIL #92# ELT) (($ #36# $) NIL #92# ELT) (($ |#1| $) 63 T ELT) (#117# NIL T ELT)))
+(((|ModMonic| |#1| |#2|) (|Join| #1=(|UnivariatePolynomialCategory| |#1|) (|CoercibleFrom| |#2|) (CATEGORY |domain| (SIGNATURE |setPoly| (|#2| |#2|)) (SIGNATURE |modulus| (|#2|)) (SIGNATURE |reduce| ($ |#2|)) (SIGNATURE |lift| (|#2| $)) (SIGNATURE |Vectorise| #2=(#3=(|Vector| |#1|) $)) (SIGNATURE |UnVectorise| ($ #3#)) (SIGNATURE |An| #2#) (SIGNATURE |pow| #4=((|PrimitiveArray| $))) (SIGNATURE |computePowers| #4#) (IF (|has| |#1| (|FiniteFieldCategory|)) (SIGNATURE |frobenius| ($ $)) |%noBranch|) (IF (|has| |#1| #5=(|Finite|)) (ATTRIBUTE #5#) |%noBranch|))) (|Ring|) #1#) (T |ModMonic|))
+((|setPoly| (*1 *2 *2) #1=(AND #2=(|ofCategory| *3 #3=(|Ring|)) #4=(|isDomain| *1 (|ModMonic| *3 *2)) #5=(|ofCategory| *2 #6=(|UnivariatePolynomialCategory| *3)))) (|modulus| #7=(*1 *2) #8=(AND #5# #4# #2#)) (|reduce| #9=(*1 *1 *2) #1#) (|lift| #10=(*1 *2 *1) #8#) (|Vectorise| #10# #11=(AND #2# #12=(|isDomain| *2 (|Vector| *3)) #13=(|isDomain| *1 #14=(|ModMonic| *3 *4)) #15=(|ofCategory| *4 #6#))) (|UnVectorise| #9# (AND #12# #2# #13# #15#)) (|An| #10# #11#) (|pow| #7# #16=(AND #2# (|isDomain| *2 (|PrimitiveArray| #14#)) #13# #15#)) (|computePowers| #7# #16#) (|frobenius| (*1 *1 *1) (AND (|ofCategory| *2 (|FiniteFieldCategory|)) (|ofCategory| *2 #3#) (|isDomain| *1 (|ModMonic| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT)) (|max| #3#) (|latex| (((|String|) $) NIL T ELT)) (|index| ((|#1| $) 13 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exponent| ((|#2| $) 12 T ELT)) (|construct| (($ |#1| |#2|) 16 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #4=(|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) 15 T ELT) ((#4# $) 14 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 11 T ELT)))
+(((|ModuleMonomial| |#1| |#2| |#3|) (|Join| #1=(|OrderedSet|) (|HomotopicTo| #2=(|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) (CATEGORY |domain| (SIGNATURE |exponent| (|#2| $)) (SIGNATURE |index| (|#1| $)) (SIGNATURE |construct| ($ |#1| |#2|)))) #1# (|SetCategory|) (|Mapping| (|Boolean|) #2# #2#)) (T |ModuleMonomial|))
+((|exponent| #1=(*1 *2 *1) (AND (|ofCategory| *2 #2=(|SetCategory|)) (|isDomain| *1 (|ModuleMonomial| *3 *2 *4)) (|ofCategory| *3 #3=(|OrderedSet|)) (|ofType| *4 (|Mapping| #4=(|Boolean|) #5=(|Record| (|:| |index| *3) (|:| |exponent| *2)) #5#)))) (|index| #1# (AND #6=(|ofCategory| *2 #3#) #7=(|isDomain| *1 (|ModuleMonomial| *2 *3 *4)) #8=(|ofCategory| *3 #2#) #9=(|ofType| *4 (|Mapping| #4# #10=(|Record| (|:| |index| *2) (|:| |exponent| *3)) #10#)))) (|construct| (*1 *1 *2 *3) (AND #7# #6# #8# #9#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) 66 T ELT)) (|subtractIfCan| ((#4=(|Union| $ #5="failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #7=(#5#)) $) 101 T ELT) (((|Union| #8=(|BasicOperator|) . #7#) $) 107 T ELT)) (|retract| ((|#1| . #9=($)) NIL T ELT) ((#8# . #9#) 39 T ELT)) (|recip| ((#4# $) 102 T ELT)) (|opposite?| #1#) (|opeval| ((|#2| #8# |#2|) 93 T ELT)) (|one?| (#3# NIL T ELT)) (|makeop| (($ |#1| (|FreeGroup| #8#)) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|evaluateInverse| (#10=($ $ (|Mapping| |#2| |#2|)) 65 T ELT)) (|evaluate| (#10# 44 T ELT)) (|elt| ((|#2| $ |#2|) 33 T ELT)) (|conjug| ((|#1| |#1|) 112 #11=(|has| |#1| (|CommutativeRing|)) ELT)) (|coerce| (((|OutputForm|) $) 73 T ELT) (($ #12=(|Integer|)) 18 T ELT) (($ |#1|) 17 T ELT) (($ #8#) 23 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#13=(|NonNegativeInteger|)) 37 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|adjoint| (#14=($ $) 111 #11# ELT) (#15=($ $ $) 115 #11# ELT)) (|Zero| (#6# 21 T CONST)) (|One| (#6# 9 T CONST)) (= #1#) (- (#14# 48 T ELT) (#15# NIL T ELT)) (+ (#15# 83 T ELT)) (** (($ $ #16=(|PositiveInteger|)) NIL T ELT) (($ $ #13#) NIL T ELT) (($ #8# #12#) NIL T ELT) (($ $ #12#) 64 T ELT)) (* (($ #16# $) NIL T ELT) (($ #13# $) NIL T ELT) (($ #12# $) 110 T ELT) (#15# 53 T ELT) (($ |#1| $) 108 #11# ELT) (($ $ |#1|) 109 #11# ELT)))
+(((|ModuleOperator| |#1| |#2|) (|Join| #1=(|Ring|) (|RetractableTo| |#1|) (|RetractableTo| #2=(|BasicOperator|)) (|Eltable| |#2| |#2|) (CATEGORY |domain| (IF (|has| |#1| #3=(|CharacteristicZero|)) (ATTRIBUTE #3#) |%noBranch|) (IF (|has| |#1| #4=(|CharacteristicNonZero|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |%noBranch|) (SIGNATURE |evaluate| #5=($ $ (|Mapping| |#2| |#2|))) (SIGNATURE |evaluateInverse| #5#) (SIGNATURE ** ($ #2# #6=(|Integer|))) (SIGNATURE ** ($ $ #6#)) (SIGNATURE |opeval| (|#2| #2# |#2|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| #2#))))) #1# (|LeftModule| |#1|)) (T |ModuleOperator|))
+((|adjoint| (*1 *1 *1) #1=(AND (|ofCategory| *2 (|CommutativeRing|)) #2=(|ofCategory| *2 #3=(|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *3)) (|ofCategory| *3 #4=(|LeftModule| *2)))) (|adjoint| (*1 *1 *1 *1) #1#) (|conjug| (*1 *2 *2) #1#) (|evaluate| #5=(*1 *1 *1 *2) #6=(AND (|isDomain| *2 (|Mapping| *4 *4)) #7=(|ofCategory| *4 (|LeftModule| *3)) #8=(|ofCategory| *3 #3#) #9=(|isDomain| *1 (|ModuleOperator| *3 *4)))) (|evaluateInverse| #5# #6#) (** #10=(*1 *1 *2 *3) (AND (|isDomain| *2 #11=(|BasicOperator|)) (|isDomain| *3 #12=(|Integer|)) #13=(|ofCategory| *4 #3#) (|isDomain| *1 (|ModuleOperator| *4 *5)) (|ofCategory| *5 #14=(|LeftModule| *4)))) (** #5# (AND (|isDomain| *2 #12#) #8# #9# #7#)) (|opeval| (*1 *2 *3 *2) (AND (|isDomain| *3 #11#) #13# (|isDomain| *1 (|ModuleOperator| *4 *2)) (|ofCategory| *2 #14#))) (|makeop| #10# (AND (|isDomain| *3 (|FreeGroup| #11#)) #2# (|isDomain| *1 (|ModuleOperator| *2 *4)) (|ofCategory| *4 #4#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 33 T ELT)) (|subtractIfCan| (#5=(#6=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#7=($) NIL T CONST)) (|reduce| (($ |#1| |#2|) 25 T ELT)) (|recip| ((#6# $) 51 T ELT)) (|opposite?| #1#) (|one?| (#4# 35 T ELT)) (|modulus| ((|#2| $) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#8=($ $) 52 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exQuo| (#5# 50 T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #9=(|Integer|)) 19 T ELT) ((|#1| $) 13 T ELT)) (|characteristic| ((#10=(|NonNegativeInteger|)) 28 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#7# 16 T CONST)) (|One| (#7# 30 T CONST)) (= (#2# 41 T ELT)) (- (#8# 46 T ELT) (#11=($ $ $) 40 T ELT)) (+ (#11# 43 T ELT)) (** (($ $ #12=(|PositiveInteger|)) NIL T ELT) (($ $ #10#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #9# $) 21 T ELT) (#11# 20 T ELT)))
+(((|ModularRing| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| (#1=(|Union| $ #2="failed") $ $)) (SIGNATURE |recip| (#1# $)) (SIGNATURE |inv| ($ $)))) (|CommutativeRing|) (|AbelianMonoid|) (|Mapping| |#1| |#1| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2|) (|Mapping| (|Union| |#1| #2#) |#1| |#1| |#2|)) (T |ModularRing|))
+((|recip| #1=(*1 *1 *1) #2=(|partial| AND #3=(|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) #4=(|ofCategory| *2 #5=(|CommutativeRing|)) #6=(|ofCategory| *3 #7=(|AbelianMonoid|)) #8=(|ofType| *4 (|Mapping| *2 *2 *3)) #9=(|ofType| *5 (|Mapping| #10=(|Union| *3 #11="failed") *3 *3)) #12=(|ofType| *6 (|Mapping| #13=(|Union| *2 #11#) *2 *2 *3)))) (|modulus| #14=(*1 *2 *1) (AND (|ofCategory| *2 #7#) (|isDomain| *1 (|ModularRing| *3 *2 *4 *5 *6)) (|ofCategory| *3 #5#) (|ofType| *4 (|Mapping| *3 *3 *2)) (|ofType| *5 (|Mapping| #13# *2 *2)) (|ofType| *6 (|Mapping| #10# *3 *3 *2)))) (|coerce| #14# (AND #4# #3# #6# #8# #9# #12#)) (|reduce| (*1 *1 *2 *3) #15=(AND #3# #4# #6# #8# #9# #12#)) (|exQuo| (*1 *1 *1 *1) #2#) (|inv| #1# #15#))
+((* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
+(((|Module&| |#1| |#2|) (CATEGORY |package| (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|Module| |#2|) (|CommutativeRing|)) (T |Module&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|Module| |#1|) (|Category|) (|CommutativeRing|)) (T |Module|))
+NIL
+(|Join| (|BiModule| |t#1| |t#1|) (|LinearSet| |t#1|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|shift| (#4=($ |#1|) 17 T ELT) (#5=($ $ |#1|) 20 T ELT)) (|scale| (#4# 18 T ELT) (#5# 21 T ELT)) (|sample| (#6=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT) (#6# 19 T ELT) (#7=($ $) 22 T ELT)) (|one?| ((#3# $) NIL T ELT)) (|moebius| (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#7# 16 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|eval| ((|#1| $ |#1|) 24 T ELT) ((#8=(|OnePointCompletion| |#1|) $ #8#) 32 T ELT)) (|conjugate| #9=(#10=($ $ $) NIL T ELT)) (|commutator| #9#) (|coerce| (((|OutputForm|) $) 39 T ELT)) (|before?| #1#) (|One| (#6# 9 T CONST)) (= (#2# 48 T ELT)) (/ #9#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ (|Integer|)) NIL T ELT)) (* (#10# 14 T ELT)))
+(((|MoebiusTransform| |#1|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |moebius| ($ |#1| |#1| |#1| |#1|)) (SIGNATURE |shift| #1=($ |#1|)) (SIGNATURE |scale| #1#) (SIGNATURE |recip| ($)) (SIGNATURE |shift| #2=($ $ |#1|)) (SIGNATURE |scale| #2#) (SIGNATURE |recip| ($ $)) (SIGNATURE |eval| (|#1| $ |#1|)) (SIGNATURE |eval| (#3=(|OnePointCompletion| |#1|) $ #3#)))) (|Field|)) (T |MoebiusTransform|))
+((|moebius| (*1 *1 *2 *2 *2 *2) #1=(AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 #2=(|Field|)))) (|shift| #3=(*1 *1 *2) #1#) (|scale| #3# #1#) (|recip| (*1 *1) #1#) (|shift| #4=(*1 *1 *1 *2) #1#) (|scale| #4# #1#) (|recip| (*1 *1 *1) #1#) (|eval| #5=(*1 *2 *1 *2) #1#) (|eval| #5# (AND (|isDomain| *2 (|OnePointCompletion| *3)) (|ofCategory| *3 #2#) (|isDomain| *1 (|MoebiusTransform| *3)))))
+((|rightPower| (#1=($ $ (|PositiveInteger|)) 19 T ELT)) (|leftPower| (#1# 20 T ELT)) (** (#1# 10 T ELT)))
+(((|Monad&| |#1|) (CATEGORY |package| (SIGNATURE ** #1=(|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| #1#) (SIGNATURE |rightPower| #1#)) (|Monad|)) (T |Monad&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|rightPower| (($ $ (|PositiveInteger|)) 19 T ELT)) (|leftPower| (($ $ (|PositiveInteger|)) 18 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
+(((|Monad|) (|Category|)) (T |Monad|))
+((* (*1 *1 *1 *1) (|ofCategory| *1 (|Monad|))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |rightPower| ($ $ (|PositiveInteger|))) (SIGNATURE |leftPower| ($ $ (|PositiveInteger|))) (SIGNATURE ** ($ $ (|PositiveInteger|)))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|rightPower| #1=(($ $ (|PositiveInteger|)) NIL T ELT) (#2=($ $ (|NonNegativeInteger|)) 18 T ELT)) (|one?| (((|Boolean|) $) 10 T ELT)) (|leftPower| #1# (#2# 19 T ELT)) (** #1# (#2# 16 T ELT)))
+(((|MonadWithUnit&| |#1|) (CATEGORY |package| (SIGNATURE ** #1=(|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |leftPower| #1#) (SIGNATURE |rightPower| #1#) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE ** #2=(|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| #2#) (SIGNATURE |rightPower| #2#)) (|MonadWithUnit|)) (T |MonadWithUnit&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|rightRecip| (((|Union| $ "failed") $) 22 T ELT)) (|rightPower| (#2=($ $ (|PositiveInteger|)) 19 T ELT) (($ $ (|NonNegativeInteger|)) 27 T ELT)) (|recip| (((|Union| $ "failed") $) 24 T ELT)) (|one?| (((|Boolean|) $) 28 T ELT)) (|leftRecip| (((|Union| $ "failed") $) 23 T ELT)) (|leftPower| (#2# 18 T ELT) (($ $ (|NonNegativeInteger|)) 26 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (($) 29 T CONST)) (= (#1# 8 T ELT)) (** (#2# 17 T ELT) (($ $ (|NonNegativeInteger|)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
+(((|MonadWithUnit|) (|Category|)) (T |MonadWithUnit|))
+((|One| (*1 *1) (|ofCategory| *1 (|MonadWithUnit|))) (|one?| (*1 *2 *1) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|Boolean|)))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|recip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|leftRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|rightRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))))
+(|Join| (|Monad|) (CATEGORY |domain| (SIGNATURE |One| ($) |constant|) (SIGNATURE |one?| ((|Boolean|) $)) (SIGNATURE |rightPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |leftPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |leftRecip| ((|Union| $ "failed") $)) (SIGNATURE |rightRecip| ((|Union| $ "failed") $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monad|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|size| ((#1=(|NonNegativeInteger|)) 39 T ELT)) (|retractIfCan| (((|Union| #2=(|Integer|) #3="failed") $) NIL T ELT) (((|Union| #4=(|Fraction| #2#) #3#) $) NIL T ELT) (((|Union| |#2| #3#) $) 26 T ELT)) (|retract| ((#2# $) NIL T ELT) ((#4# $) NIL T ELT) (#5=(|#2| $) 23 T ELT)) (|reduce| (#6=($ |#3|) NIL T ELT) ((#7=(|Union| $ #3#) (|Fraction| |#3|)) 49 T ELT)) (|recip| ((#7# $) 69 T ELT)) (|random| (#8=($) 43 T ELT)) (|norm| (#5# 21 T ELT)) (|generator| (#8# 18 T ELT)) (|differentiate| (($ $ #9=(|Mapping| |#2| |#2|)) 57 T ELT) (($ $ #9# #1#) NIL T ELT) (($ $ #10=(|List| #11=(|Symbol|)) (|List| #1#)) NIL T ELT) (($ $ #11# #1#) NIL T ELT) (($ $ #10#) NIL T ELT) (($ $ #11#) NIL T ELT) (($ $ #1#) NIL T ELT) (($ $) NIL T ELT)) (|derivationCoordinates| (((|Matrix| |#2|) #12=(|Vector| $) #9#) 64 T ELT)) (|convert| ((#13=(|Vector| |#2|) $) NIL T ELT) (($ #13#) NIL T ELT) (#14=(|#3| $) 10 T ELT) (#6# 12 T ELT)) (|characteristicPolynomial| (#14# 36 T ELT)) (|basis| ((#12#) 33 T ELT)))
+(((|MonogenicAlgebra&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #1=(|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| #2=(|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| #3=(|List| #2#))) (SIGNATURE |differentiate| (|#1| |#1| #2# #1#)) (SIGNATURE |differentiate| (|#1| |#1| #3# (|List| #1#))) (SIGNATURE |random| #4=(|#1|)) (SIGNATURE |size| (#1#)) (SIGNATURE |differentiate| (|#1| |#1| #5=(|Mapping| |#2| |#2|) #1#)) (SIGNATURE |differentiate| (|#1| |#1| #5#)) (SIGNATURE |derivationCoordinates| ((|Matrix| |#2|) #6=(|Vector| |#1|) #5#)) (SIGNATURE |reduce| (#7=(|Union| |#1| #8="failed") (|Fraction| |#3|))) (SIGNATURE |convert| #9=(|#1| |#3|)) (SIGNATURE |reduce| #9#) (SIGNATURE |generator| #4#) (SIGNATURE |retractIfCan| ((|Union| |#2| #8#) |#1|)) (SIGNATURE |retract| #10=(|#2| |#1|)) (SIGNATURE |retract| (#11=(|Fraction| #12=(|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #11# #8#) |#1|)) (SIGNATURE |retract| (#12# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #12# #8#) |#1|)) (SIGNATURE |convert| #13=(|#3| |#1|)) (SIGNATURE |convert| (|#1| #14=(|Vector| |#2|))) (SIGNATURE |convert| (#14# |#1|)) (SIGNATURE |basis| (#6#)) (SIGNATURE |characteristicPolynomial| #13#) (SIGNATURE |norm| #10#) (SIGNATURE |recip| (#7# |#1|))) (|MonogenicAlgebra| |#2| |#3|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#2|)) (T |MonogenicAlgebra&|))
+((|size| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|MonogenicAlgebra&| *3 *4 *5)) (|ofCategory| *3 (|MonogenicAlgebra| *4 *5)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 114 (|has| |#1| . #3=((|Field|))) ELT)) (|unitCanonical| (($ $) 115 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 117 (|has| |#1| . #3#) ELT)) (|traceMatrix| (((|Matrix| |#1|) #5=(|Vector| $)) 61 T ELT) (((|Matrix| |#1|)) 77 T ELT)) (|trace| ((|#1| . #6=($)) 67 T ELT)) (|tableForDiscreteLogarithm| (((|Table| #7=(|PositiveInteger|) #8=(|NonNegativeInteger|)) #9=(|Integer|)) 167 (|has| |#1| . #10=((|FiniteFieldCategory|))) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 134 (|has| |#1| . #3#) ELT)) (|squareFree| (#11=((|Factored| $) $) 135 (|has| |#1| . #3#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 125 (|has| |#1| . #3#) ELT)) (|size| (((|NonNegativeInteger|)) 108 (|has| |#1| . #12=((|Finite|))) ELT)) (|sample| (#13=($) 23 T CONST)) (|retractIfCan| (((|Union| #14=(|Integer|) . #15=("failed")) . #16=($)) 194 (|has| |#1| . #17=((|RetractableTo| #14#))) ELT) (((|Union| #18=(|Fraction| #14#) . #15#) . #16#) 192 (|has| |#1| . #19=((|RetractableTo| #18#))) ELT) (((|Union| |#1| . #15#) . #16#) 189 T ELT)) (|retract| ((#14# . #20=($)) 193 (|has| |#1| . #17#) ELT) ((#18# . #20#) 191 (|has| |#1| . #19#) ELT) ((|#1| . #20#) 190 T ELT)) (|represents| (($ (|Vector| |#1|) #5#) 63 T ELT) (($ (|Vector| |#1|)) 80 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| . #10#) ELT)) (|rem| (#21=($ $ $) 129 (|has| |#1| . #3#) ELT)) (|regularRepresentation| (((|Matrix| |#1|) $ #5#) 68 T ELT) (((|Matrix| |#1|) $) 75 T ELT)) (|reducedSystem| (((|Matrix| #22=(|Integer|)) . #23=(#24=(|Matrix| $))) 186 (|has| |#1| . #25=((|LinearlyExplicitRingOver| #22#))) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #26=(#24# #27=(|Vector| $))) 185 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #26#) 184 T ELT) (((|Matrix| |#1|) . #23#) 183 T ELT)) (|reduce| (($ |#2|) 178 T ELT) (((|Union| $ "failed") (|Fraction| |#2|)) 175 (|has| |#1| (|Field|)) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rank| (((|PositiveInteger|)) 69 T ELT)) (|random| (($) 111 (|has| |#1| . #12#) ELT)) (|quo| (#21# 128 (|has| |#1| . #3#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #28=(|List| $)) (|:| |generator| $)) #28#) 123 (|has| |#1| . #3#) ELT)) (|primitiveElement| (#29=($) 169 (|has| |#1| . #10#) ELT)) (|primitive?| (((|Boolean|) $) 170 (|has| |#1| . #10#) ELT)) (|primeFrobenius| (($ $ #30=(|NonNegativeInteger|)) 161 (|has| |#1| . #10#) ELT) (($ $) 160 (|has| |#1| . #10#) ELT)) (|prime?| (((|Boolean|) $) 136 (|has| |#1| . #3#) ELT)) (|order| ((#7# $) 172 (|has| |#1| . #10#) ELT) (((|OnePointCompletion| (|PositiveInteger|)) $) 158 (|has| |#1| . #10#) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|norm| ((|#1| . #6#) 66 T ELT)) (|nextItem| (((|Maybe| $) $) 162 (|has| |#1| . #10#) ELT)) (|multiEuclidean| (((|Union| #31=(|List| $) #32="failed") #31# $) 132 (|has| |#1| . #3#) ELT)) (|minimalPolynomial| ((|#2| . #33=($)) 59 (|has| |#1| (|Field|)) ELT)) (|lookup| ((#34=(|PositiveInteger|) $) 110 (|has| |#1| . #12#) ELT)) (|lift| ((|#2| $) 176 T ELT)) (|leftReducedSystem| (((|Matrix| #22#) . #35=(#27#)) 188 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #36=(#27# $)) 187 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #36#) 182 T ELT) (((|Matrix| |#1|) . #35#) 181 T ELT)) (|lcm| (#37=($ (|List| $)) 121 (|has| |#1| . #3#) ELT) (#38=($ $ $) 120 (|has| |#1| . #3#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 137 (|has| |#1| . #3#) ELT)) (|init| (($) 163 (|has| |#1| . #10#) CONST)) (|index| (($ #34#) 109 (|has| |#1| . #12#) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|generator| (($) 180 T ELT)) (|gcdPolynomial| ((#39=(|SparseUnivariatePolynomial| $) #39# #39#) 122 (|has| |#1| . #3#) ELT)) (|gcd| (#37# 119 (|has| |#1| . #3#) ELT) (#38# 118 (|has| |#1| . #3#) ELT)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #9#) (|:| |exponent| #9#)))) 166 (|has| |#1| . #10#) ELT)) (|factor| (#11# 133 (|has| |#1| . #3#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $)) #32#) $ $ $) 131 (|has| |#1| . #3#) ELT) (((|Record| #40# #41# (|:| |generator| $)) $ $) 130 (|has| |#1| . #3#) ELT)) (|exquo| (((|Union| $ "failed") $ $) 113 (|has| |#1| . #3#) ELT)) (|expressIdealMember| (((|Maybe| #28#) #28# $) 124 (|has| |#1| . #3#) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 126 (|has| |#1| . #3#) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 127 (|has| |#1| . #3#) ELT)) (|discriminant| ((|#1| #5#) 62 T ELT) ((|#1|) 76 T ELT)) (|discreteLog| ((#8# $) 171 (|has| |#1| . #10#) ELT) (((|Union| #30# "failed") $ $) 159 (|has| |#1| . #10#) ELT)) (|differentiate| (#42=($ $ (|NonNegativeInteger|)) 156 (OR (|and| (|has| |#1| . #43=((|DifferentialSpace|))) (|has| |#1| . #44=((|Field|)))) (|has| |#1| . #10#)) ELT) (($ . #45=($)) 154 (OR (|and| (|has| |#1| . #43#) (|has| |#1| . #44#)) (|has| |#1| . #10#)) ELT) (($ $ (|List| #46=(|Symbol|)) . #47=((|List| #48=(|NonNegativeInteger|)))) 150 (|and| (|has| |#1| . #49=((|PartialDifferentialSpace| (|Symbol|)))) (|has| |#1| . #44#)) ELT) (($ $ #46# . #50=(#48#)) 149 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ (|List| #46#)) 148 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ #46#) 146 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ (|Mapping| |#1| |#1|)) 145 (|has| |#1| . #44#) ELT) (($ $ (|Mapping| |#1| |#1|) . #51=((|NonNegativeInteger|))) 144 (|has| |#1| . #44#) ELT)) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) 174 (|has| |#1| (|Field|)) ELT)) (|definingPolynomial| ((|#2|) 179 T ELT)) (|createPrimitiveElement| (#29# 168 (|has| |#1| . #10#) ELT)) (|coordinates| (((|Vector| |#1|) $ #5#) 65 T ELT) (((|Matrix| |#1|) #5# #5#) 64 T ELT) (((|Vector| |#1|) . #52=($)) 82 T ELT) (((|Matrix| |#1|) #53=(|Vector| $)) 81 T ELT)) (|convert| (((|Vector| |#1|) . #52#) 79 T ELT) (($ (|Vector| |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 165 (|has| |#1| . #10#) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| . #3#) ELT) (($ #18#) 107 (OR (|has| |#1| . #3#) (|has| |#1| . #19#)) ELT)) (|charthRoot| (($ $) 164 (|has| |#1| . #10#) ELT) (((|Maybe| $) $) 58 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| ((|#2| . #33#) 60 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|basis| ((#53#) 83 T ELT)) (|associates?| ((#4# $ $) 116 (|has| |#1| . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#13# 24 T CONST)) (|One| (($) 45 T CONST)) (D (#42# 157 (OR (|and| (|has| |#1| . #43#) (|has| |#1| . #44#)) (|has| |#1| . #10#)) ELT) (($ . #45#) 155 (OR (|and| (|has| |#1| . #43#) (|has| |#1| . #44#)) (|has| |#1| . #10#)) ELT) (($ $ (|List| #46#) . #47#) 153 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ #46# . #50#) 152 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ (|List| #46#)) 151 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ #46#) 147 (|and| (|has| |#1| . #49#) (|has| |#1| . #44#)) ELT) (($ $ (|Mapping| |#1| |#1|)) 143 (|has| |#1| . #44#) ELT) (($ $ (|Mapping| |#1| |#1|) . #51#) 142 (|has| |#1| . #44#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 141 (|has| |#1| . #3#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #54=(|Integer|)) 138 (|has| |#1| . #3#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #55=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #55#) 53 T ELT) (($ #56=(|Fraction| #54#) . #55#) 140 (|has| |#1| . #3#) ELT) (($ $ #56#) 139 (|has| |#1| . #3#) ELT)))
+(((|MonogenicAlgebra| |#1| |#2|) (|Category|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |t#1|)) (T |MonogenicAlgebra|))
+((|generator| (*1 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *1 (|MonogenicAlgebra| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|definingPolynomial| (*1 *2) (AND (|ofCategory| *1 (|MonogenicAlgebra| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|reduce| (*1 *1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|MonogenicAlgebra| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|MonogenicAlgebra| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|lift| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicAlgebra| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|reduce| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *1 (|MonogenicAlgebra| *3 *4)))) (|derivationCoordinates| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Vector| *1)) (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *1 (|MonogenicAlgebra| *5 *6)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|Matrix| *5)))))
+(|Join| (|FramedAlgebra| |t#1| |t#2|) (|CommutativeRing|) (|ConvertibleTo| |t#2|) (|FullyRetractableTo| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (CATEGORY |domain| (SIGNATURE |generator| ($)) (SIGNATURE |definingPolynomial| (|t#2|)) (SIGNATURE |reduce| ($ |t#2|)) (SIGNATURE |convert| ($ |t#2|)) (SIGNATURE |lift| (|t#2| $)) (IF (|has| |t#1| (|Finite|)) (ATTRIBUTE (|Finite|)) |%noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (ATTRIBUTE (|Field|)) (ATTRIBUTE (|DifferentialExtension| |t#1|)) (SIGNATURE |reduce| ((|Union| $ "failed") (|Fraction| |t#2|))) (SIGNATURE |derivationCoordinates| ((|Matrix| |t#1|) (|Vector| $) (|Mapping| |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (|FiniteFieldCategory|)) (ATTRIBUTE (|FiniteFieldCategory|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Algebra| |#1|) . T) ((|Algebra| $) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|BasicType|) . T) ((|BiModule| #1# #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| |#2|) . T) ((|DifferentialDomain| $) OR (|has| |#1| (|FiniteFieldCategory|)) (AND (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|Field|))) (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|)))) ((|DifferentialExtension| |#1|) |has| |#1| (|Field|)) ((|DifferentialRing|) OR (|has| |#1| (|FiniteFieldCategory|)) (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|)))) ((|DifferentialSpace|) OR (|has| |#1| (|FiniteFieldCategory|)) (AND (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|Field|))) (AND (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|Field|)))) ((|DifferentialSpaceExtension| |#1|) |has| |#1| (|Field|)) ((|DivisionRing|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|EntireRing|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Field|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|FieldOfPrimeCharacteristic|) |has| |#1| (|FiniteFieldCategory|)) ((|Finite|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Finite|))) ((|FiniteFieldCategory|) |has| |#1| (|FiniteFieldCategory|)) ((|FiniteRankAlgebra| |#1| |#2|) . T) ((|FramedAlgebra| |#1| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|IntegralDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LeftModule| #2=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LinearSet| |#1|) . T) ((|LinearSet| $) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|LinearlyExplicitRingOver| #2#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Module| |#1|) . T) ((|Module| $) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) OR (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialSpace| #3#) OR (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) ((|PrincipalIdealDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|FiniteFieldCategory|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Field|))))
+((|sample| (($) 11 T CONST)) (|recip| (((|Union| $ "failed") $) 14 T ELT)) (|one?| (((|Boolean|) $) 10 T ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) 20 T ELT)))
+(((|Monoid&| |#1|) (CATEGORY |package| (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE |sample| (|#1|) |constant|) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|Monoid|)) (T |Monoid&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|sample| (($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 20 T ELT)) (|one?| (((|Boolean|) $) 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (($) 24 T CONST)) (= (#1# 8 T ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT) (($ $ (|NonNegativeInteger|)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
+(((|Monoid|) (|Category|)) (T |Monoid|))
+((|One| (*1 *1) (|ofCategory| *1 (|Monoid|))) (|sample| (*1 *1) (|ofCategory| *1 (|Monoid|))) (|one?| (*1 *2 *1) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|Boolean|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|recip| (*1 *1 *1) (|partial| |ofCategory| *1 (|Monoid|))))
+(|Join| (|SemiGroup|) (CATEGORY |domain| (SIGNATURE |One| ($) |constant|) (SIGNATURE |sample| ($) |constant|) (SIGNATURE |one?| ((|Boolean|) $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| $ "failed") $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|neutralValue| ((|#1| $) 16 T ELT)) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) 11 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#1| $ |#1| |#1|) 14 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (((|SemiGroupOperation| |#1|) $) 17 T ELT)) (|before?| #1#) (= #1#))
+(((|MonoidOperation| |#1|) (|Join| (|MonoidOperatorCategory| |#1|) (|SetCategory|) (|CoercibleTo| (|SemiGroupOperation| |#1|)) (CATEGORY |domain| (SIGNATURE |monoidOperation| ($ (|Mapping| |#1| |#1| |#1|) |#1|)))) (|BasicType|)) (T |MonoidOperation|))
+((|monoidOperation| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *1 (|MonoidOperation| *3)))))
+((|neutralValue| ((|#1| $) 8 T ELT)) (|elt| ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((|MonoidOperatorCategory| |#1|) (|Category|) (|BasicType|)) (T |MonoidOperatorCategory|))
+((|neutralValue| (*1 *2 *1) (AND (|ofCategory| *1 (|MonoidOperatorCategory| *2)) (|ofCategory| *2 (|BasicType|)))))
+(|Join| (|SemiGroupOperatorCategory| |t#1|) (CATEGORY |domain| (SIGNATURE |neutralValue| (|t#1| $)) (ATTRIBUTE (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (= (|f| |x| (|neutralValue| |f|)) |x|) (|exit| 1 (= (|f| (|neutralValue| |f|) |x|) |x|))))))))
+(((|BinaryOperatorCategory| |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((|SemiGroupOperatorCategory| |#1|) . T) ((|Type|) . T))
+((|splitSquarefree| (((|Record| (|:| |normal| #1=(|Factored| |#2|)) (|:| |special| #1#)) |#2| #2=(|Mapping| |#2| |#2|)) 39 T ELT)) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| #2#) 12 T ELT)) (|normalDenom| ((|#2| #3=(|Fraction| |#2|) #2#) 13 T ELT)) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| #3#) (|:| |special| #3#)) #3# #2#) 48 T ELT)))
+(((|MonomialExtensionTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |split| ((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| #1=(|Mapping| |#2| |#2|))) (SIGNATURE |splitSquarefree| ((|Record| (|:| |normal| #2=(|Factored| |#2|)) (|:| |special| #2#)) |#2| #1#)) (SIGNATURE |normalDenom| (|#2| #3=(|Fraction| |#2|) #1#)) (SIGNATURE |decompose| ((|Record| (|:| |poly| |#2|) (|:| |normal| #3#) (|:| |special| #3#)) #3# #1#))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |MonomialExtensionTools|))
+((|decompose| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 #2=(|UnivariatePolynomialCategory| *5)) #3=(|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |poly| *6) (|:| |normal| #4=(|Fraction| *6)) (|:| |special| #4#))) (|isDomain| *1 (|MonomialExtensionTools| *5 *6)) (|isDomain| *3 #4#))) (|normalDenom| #1# (AND (|isDomain| *3 (|Fraction| *2)) (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 #2#) (|isDomain| *1 (|MonomialExtensionTools| *5 *2)) #3#)) (|splitSquarefree| #1# (AND #5=(|isDomain| *4 (|Mapping| *3 *3)) #6=(|ofCategory| *3 #2#) #3# (|isDomain| *2 (|Record| (|:| |normal| #7=(|Factored| *3)) (|:| |special| #7#))) #8=(|isDomain| *1 (|MonomialExtensionTools| *5 *3)))) (|split| #1# (AND #5# #6# #3# (|isDomain| *2 (|Record| (|:| |normal| *3) (|:| |special| *3))) #8#)))
+((|reshape| ((|#7| (|List| |#5|) |#6|) NIL T ELT)) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) 27 T ELT)))
+(((|MPolyCatFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (CATEGORY |package| (SIGNATURE |map| (|#7| (|Mapping| |#5| |#4|) |#6|)) (SIGNATURE |reshape| (|#7| (|List| |#5|) |#6|))) (|OrderedSet|) #1=(|OrderedAbelianMonoidSup|) #1# #2=(|Ring|) #2# (|PolynomialCategory| |#4| |#2| |#1|) (|PolynomialCategory| |#5| |#3| |#1|)) (T |MPolyCatFunctions2|))
+((|reshape| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *9)) #2=(|ofCategory| *9 #3=(|Ring|)) #4=(|ofCategory| *5 (|OrderedSet|)) #5=(|ofCategory| *6 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *8 #3#) #8=(|ofCategory| *2 (|PolynomialCategory| *9 *7 *5)) #9=(|isDomain| *1 (|MPolyCatFunctions2| *5 *6 *7 *8 *9 *4 *2)) #10=(|ofCategory| *7 #6#) #11=(|ofCategory| *4 (|PolynomialCategory| *8 *6 *5)))) (|map| #1# (AND (|isDomain| *3 (|Mapping| *9 *8)) #7# #2# #4# #5# #8# #9# #10# #11#)))
+((|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) 28 T ELT)))
+(((|MPolyCatFunctions3| |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (CATEGORY |package| (SIGNATURE |map| (|#7| (|Mapping| |#2| |#1|) |#6|))) #1=(|OrderedSet|) #1# #2=(|OrderedAbelianMonoidSup|) #2# (|Ring|) (|PolynomialCategory| |#5| |#3| |#1|) (|PolynomialCategory| |#5| |#4| |#2|)) (T |MPolyCatFunctions3|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|OrderedSet|)) (|ofCategory| *6 #1#) (|ofCategory| *7 #2=(|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|Ring|)) (|ofCategory| *2 (|PolynomialCategory| *9 *8 *6)) (|isDomain| *1 (|MPolyCatFunctions3| *5 *6 *7 *8 *9 *4 *2)) (|ofCategory| *8 #2#) (|ofCategory| *4 (|PolynomialCategory| *9 *7 *5)))))
+((|factor| (((|Factored| |#4|) |#4|) 42 T ELT)))
+(((|MPolyCatPolyFactorizer| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) (|OrderedAbelianMonoidSup|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#1=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #1#)))) (|EuclideanDomain|) (|PolynomialCategory| (|Polynomial| |#3|) |#1| |#2|)) (T |MPolyCatPolyFactorizer|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#1=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #1#))))) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MPolyCatPolyFactorizer| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| (|Polynomial| *6) *4 *5)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|OrderedVariableList| |#1|)) $) NIL T ELT)) (|univariate| ((#8=(|SparseUnivariatePolynomial| $) $ #7#) NIL T ELT) ((#9=(|SparseUnivariatePolynomial| |#2|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #10=(|has| |#2| (|IntegralDomain|)) ELT)) (|unitCanonical| #11=(#12=($ $) NIL #10# ELT)) (|unit?| (#5# NIL #10# ELT)) (|totalDegree| #13=((#14=(|NonNegativeInteger|) $) NIL T ELT) ((#14# $ #6#) NIL T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #18=(((|Factored| #8#) #8#) NIL #19=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #20=(#12# NIL #21=(|has| |#2| (|GcdDomain|)) ELT)) (|squareFree| (#22=((|Factored| $) $) NIL #21# ELT)) (|solveLinearPolynomialEquation| (((|Union| #23=(|List| #8#) #17#) #23# #8#) NIL #19# ELT)) (|sample| #24=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #25=(#17#)) . #26=($)) NIL T ELT) (((|Union| #27=(|Fraction| #28=(|Integer|)) . #25#) . #26#) NIL #29=(|has| |#2| (|RetractableTo| #27#)) ELT) (((|Union| #28# . #25#) . #26#) NIL #30=(|has| |#2| (|RetractableTo| #28#)) ELT) #31=(((|Union| #7# . #25#) . #26#) NIL T ELT)) (|retract| #32=(#33=(|#2| . #34=($)) NIL T ELT) ((#27# . #34#) NIL #29# ELT) ((#28# . #34#) NIL #30# ELT) ((#7# . #34#) NIL T ELT)) (|resultant| (($ $ $ #7#) NIL #35=(|has| |#2| (|CommutativeRing|)) ELT)) (|reductum| #36=(#12# NIL T ELT)) (|reducedSystem| ((#37=(|Matrix| #28#) . #38=(#39=(|Matrix| $))) NIL #40=(|has| |#2| (|LinearlyExplicitRingOver| #28#)) ELT) ((#41=(|Record| (|:| |mat| #37#) (|:| |vec| (|Vector| #28#))) . #42=(#39# #43=(|Vector| $))) NIL #40# ELT) ((#44=(|Record| (|:| |mat| #45=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #42#) NIL T ELT) ((#45# . #38#) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|primitivePart| #20# #46=(#47=($ $ #7#) NIL #21# ELT)) (|primitiveMonomials| #48=((#49=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #19# ELT)) (|pomopo!| (($ $ |#2| #50=(|IndexedExponents| #7#) $) NIL T ELT)) (|patternMatch| ((#51=(|PatternMatchResult| #52=(|Float|) . #53=($)) $ #54=(|Pattern| #52#) #51#) NIL (AND (|has| #7# #55=(|PatternMatchable| #52#)) (|has| |#2| #55#)) ELT) ((#56=(|PatternMatchResult| #28# . #53#) $ #57=(|Pattern| #28#) #56#) NIL (AND (|has| #7# #58=(|PatternMatchable| #28#)) (|has| |#2| #58#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #13#) (|multivariate| (($ #9# #7#) NIL T ELT) (($ #8# #7#) NIL T ELT)) (|monomials| #48#) (|monomial?| #4#) (|monomial| (($ |#2| #50#) NIL T ELT) #59=(($ $ #7# #14#) NIL T ELT) #60=(($ $ #6# #61=(|List| #14#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #7#) NIL T ELT)) (|minimumDegree| #62=((#50# $) NIL T ELT) #63=((#14# $ #7#) NIL T ELT) #64=((#61# $ #6#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #50# #50#) $) NIL T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|mainVariable| #31#) (|leftReducedSystem| ((#37# . #65=(#43#)) NIL #40# ELT) ((#41# . #66=(#43# $)) NIL #40# ELT) ((#44# . #66#) NIL T ELT) ((#45# . #65#) NIL T ELT)) (|leadingMonomial| #36#) (|leadingCoefficient| #32#) (|lcm| #67=(($ #49#) NIL #21# ELT) #68=(#69=($ $ $) NIL #21# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #70=(((|Union| #49# #17#) $) NIL T ELT)) (|isPlus| #70#) (|isExpt| (((|Union| (|Record| (|:| |var| #7#) (|:| |exponent| #14#)) #17#) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #32#) (|gcdPolynomial| ((#8# #8# #8#) NIL #21# ELT)) (|gcd| #67# #68#) (|factorSquareFreePolynomial| #18#) (|factorPolynomial| #18#) (|factor| (#22# NIL #19# ELT)) (|exquo| ((#16# $ |#2|) NIL #10# ELT) (#15# NIL #10# ELT)) (|eval| (($ $ (|List| #71=(|Equation| $))) NIL T ELT) (($ $ #71#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #49# #49#) NIL T ELT) (($ $ #7# |#2|) NIL T ELT) (($ $ #6# #72=(|List| |#2|)) NIL T ELT) (($ $ #7# $) NIL T ELT) (($ $ #6# #49#) NIL T ELT)) (|discriminant| (#47# NIL #35# ELT)) (|differentiate| #60# #59# #73=(($ $ #6#) NIL T ELT) #74=(#47# NIL T ELT)) (|degree| #62# #63# #64#) (|convert| ((#54# . #75=($)) NIL (AND (|has| #7# #76=(|ConvertibleTo| #54#)) (|has| |#2| #76#)) ELT) ((#57# . #75#) NIL (AND (|has| #7# #77=(|ConvertibleTo| #57#)) (|has| |#2| #77#)) ELT) ((#78=(|InputForm|) . #75#) NIL (AND (|has| #7# #79=(|ConvertibleTo| #78#)) (|has| |#2| #79#)) ELT)) (|content| (#33# NIL #21# ELT) #46#) (|conditionP| (((|Union| #43# #17#) #39#) NIL #80=(AND (|has| $ #81=(|CharacteristicNonZero|)) #19#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #28#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #7#) NIL T ELT) #11# (($ #27#) NIL (OR #82=(|has| |#2| (|Algebra| #27#)) #29#) ELT)) (|coefficients| ((#72# $) NIL T ELT)) (|coefficient| ((|#2| $ #50#) NIL T ELT) #59# #60#) (|charthRoot| (((|Maybe| $) $) NIL (OR #80# (|has| |#2| #81#)) ELT)) (|characteristic| ((#14#) NIL T CONST)) (|binomThmExpt| (($ $ $ #14#) NIL #35# ELT)) (|before?| #1#) (|associates?| (#2# NIL #10# ELT)) (|annihilate?| #1#) (|Zero| #24#) (|One| #24#) (D #60# #59# #73# #74#) (= #1#) (/ (#83=($ $ |#2|) NIL (|has| |#2| (|Field|)) ELT)) (- #36# #84=(#69# NIL T ELT)) (+ #84#) (** (($ $ #85=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #85# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #28# . #86=($)) NIL T ELT) #84# (($ $ #27#) NIL #82# ELT) (($ #27# . #86#) NIL #82# ELT) (($ |#2| . #86#) NIL T ELT) (#83# NIL T ELT)))
+(((|MultivariatePolynomial| |#1| |#2|) (|PolynomialCategory| |#2| (|IndexedExponents| #1=(|OrderedVariableList| |#1|)) #1#) (|List| (|Symbol|)) (|Ring|)) (T |MultivariatePolynomial|))
+NIL
+((|totalfract| (((|Record| (|:| |sup| #1=(|Polynomial| |#3|)) (|:| |inf| #1#)) |#4|) 14 T ELT)) (|pushup| (#2=(|#4| |#4| |#2|) 33 T ELT)) (|pushuconst| ((|#4| (|Fraction| #1#) |#2|) 62 T ELT)) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| #1#) |#2|) 74 T ELT)) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) 49 T ELT)) (|pushdown| (#2# 52 T ELT)) (|factor| (((|Factored| |#4|) |#4|) 40 T ELT)))
+(((|MPolyCatRationalFunctionFactorizer| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |totalfract| ((|Record| (|:| |sup| #1=(|Polynomial| |#3|)) (|:| |inf| #1#)) |#4|)) (SIGNATURE |pushdown| #2=(|#4| |#4| |#2|)) (SIGNATURE |pushdterm| (|#4| (|SparseUnivariatePolynomial| |#4|) |#2|)) (SIGNATURE |pushup| #2#) (SIGNATURE |pushucoef| (|#4| (|SparseUnivariatePolynomial| #1#) |#2|)) (SIGNATURE |pushuconst| (|#4| #3=(|Fraction| #1#) |#2|)) (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) (|OrderedAbelianMonoidSup|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)))) (|IntegralDomain|) (|PolynomialCategory| #3# |#1| |#2|)) (T |MPolyCatRationalFunctionFactorizer|))
+((|factor| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *5 #5=(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) #6=(|ofCategory| *6 #7=(|IntegralDomain|)) (|isDomain| *2 (|Factored| *3)) #8=(|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *5 *6 *3)) #9=(|ofCategory| *3 (|PolynomialCategory| #10=(|Fraction| #11=(|Polynomial| *6)) *4 *5)))) (|pushuconst| #12=(*1 *2 *3 *4) (AND #6# (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4)) #13=(|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2)) (|isDomain| *3 #10#) #14=(|ofCategory| *5 #3#) #15=(|ofCategory| *4 #5#))) (|pushucoef| #12# (AND (|isDomain| *3 (|SparseUnivariatePolynomial| #11#)) #6# #16=(|ofCategory| *2 (|PolynomialCategory| #10# *5 *4)) #13# #14# #15#)) (|pushup| #17=(*1 *2 *2 *3) #18=(AND #2# (|ofCategory| *3 #5#) (|ofCategory| *5 #7#) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *3 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Fraction| (|Polynomial| *5)) *4 *3)))) (|pushdterm| #12# (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *2)) #16# #13# #14# #15# #6#)) (|pushdown| #17# #18#) (|totalfract| #1# (AND #2# #4# #6# (|isDomain| *2 (|Record| (|:| |sup| #11#) (|:| |inf| #11#))) #8# #9#)))
+((|factor| (((|Factored| |#4|) |#4|) 54 T ELT)))
+(((|MRationalFactorize| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|PolynomialCategory| (|Fraction| |#3|) |#1| |#2|)) (T |MRationalFactorize|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MRationalFactorize| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| (|Fraction| *6) *4 *5)))))
+((|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) 18 T ELT)))
+(((|MonoidRingFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)))) #1=(|Ring|) #1# (|Monoid|)) (T |MonoidRingFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|MonoidRing| *5 *7)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofCategory| *7 (|Monoid|)) (|isDomain| *2 (|MonoidRing| *6 *7)) (|isDomain| *1 (|MonoidRingFunctions2| *5 *6 *7)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 36 T ELT)) (|terms| ((#5=(|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) 37 T ELT)) (|subtractIfCan| ((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|size| (#8=(#9=(|NonNegativeInteger|)) 22 #10=(AND (|has| |#2| #11=(|Finite|)) (|has| |#1| #11#)) ELT)) (|sample| (#12=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #13=(#7#)) $) 76 T ELT) (((|Union| |#1| . #13#) $) 79 T ELT)) (|retract| (#14=(|#2| $) NIL T ELT) (#15=(|#1| $) NIL T ELT)) (|reductum| (#16=($ $) 99 #17=(|has| |#2| (|OrderedSet|)) ELT)) (|recip| ((#6# $) 83 T ELT)) (|random| (#12# 48 #10# ELT)) (|opposite?| #1#) (|one?| #18=(#4# NIL T ELT)) (|numberOfMonomials| ((#9# $) 70 T ELT)) (|monomials| (((|List| $) $) 52 T ELT)) (|monomial?| #18#) (|monomial| (($ |#1| |#2|) 17 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 68 T ELT)) (|lookup| ((#19=(|PositiveInteger|) $) 43 #10# ELT)) (|leadingMonomial| (#14# 98 #17# ELT)) (|leadingCoefficient| (#15# 97 #17# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #19#) 35 #10# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 96 T ELT) (($ #20=(|Integer|)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ #5#) 11 T ELT)) (|coefficients| (((|List| |#1|) $) 54 T ELT)) (|coefficient| ((|#1| $ |#2|) 114 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (#8# NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#12# 12 T CONST)) (|One| (#12# 44 T CONST)) (= (#2# 104 T ELT)) (- (#16# 61 T ELT) (#21=($ $ $) NIL T ELT)) (+ (#21# 33 T ELT)) (** (($ $ #19#) NIL T ELT) (($ $ #9#) NIL T ELT)) (* (($ #19# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #20# $) 66 T ELT) (#21# 117 T ELT) (($ |#1| $) 63 #22=(|has| |#1| (|CommutativeRing|)) ELT) (($ $ |#1|) NIL #22# ELT)))
+(((|MonoidRing| |#1| |#2|) (|Join| #1=(|Ring|) (|RetractableTo| |#2|) (|RetractableTo| |#1|) (|Functorial| |#1|) (CATEGORY |domain| (SIGNATURE |monomial| ($ |#1| |#2|)) (SIGNATURE |coefficient| (|#1| $ |#2|)) (SIGNATURE |coerce| ($ #2=(|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))))) (SIGNATURE |terms| (#2# $)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |coefficients| ((|List| |#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (IF (|has| |#1| #3=(|CharacteristicZero|)) (ATTRIBUTE #3#) |%noBranch|) (IF (|has| |#1| #4=(|CharacteristicNonZero|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |%noBranch|) (IF (|has| |#1| #5=(|Finite|)) (IF (|has| |#2| #5#) (ATTRIBUTE #5#) |%noBranch|) |%noBranch|) (IF (|has| |#2| (|OrderedSet|)) (PROGN (SIGNATURE |leadingMonomial| (|#2| $)) (SIGNATURE |leadingCoefficient| (|#1| $)) (SIGNATURE |reductum| ($ $))) |%noBranch|))) #1# (|Monoid|)) (T |MonoidRing|))
+((|monomial| (*1 *1 *2 *3) (AND #1=(|isDomain| *1 (|MonoidRing| *2 *3)) #2=(|ofCategory| *2 #3=(|Ring|)) #4=(|ofCategory| *3 #5=(|Monoid|)))) (|coefficient| (*1 *2 *1 *3) (AND #2# #1# #4#)) (|coerce| (*1 *1 *2) (AND #6=(|isDomain| *2 (|List| (|Record| (|:| |coef| *3) (|:| |monom| *4)))) #7=(|ofCategory| *3 #3#) #8=(|ofCategory| *4 #5#) #9=(|isDomain| *1 #10=(|MonoidRing| *3 *4)))) (|terms| #11=(*1 *2 *1) (AND #6# #9# #7# #8#)) (|monomial?| #11# (AND (|isDomain| *2 (|Boolean|)) #9# #7# #8#)) (|coefficients| #11# (AND (|isDomain| *2 (|List| *3)) #9# #7# #8#)) (|monomials| #11# (AND (|isDomain| *2 (|List| #10#)) #9# #7# #8#)) (|numberOfMonomials| #11# (AND (|isDomain| *2 (|NonNegativeInteger|)) #9# #7# #8#)) (|leadingMonomial| #11# (AND (|ofCategory| *2 #5#) (|ofCategory| *2 #12=(|OrderedSet|)) (|isDomain| *1 (|MonoidRing| *3 *2)) #7#)) (|leadingCoefficient| #11# (AND #2# #1# #13=(|ofCategory| *3 #12#) #4#)) (|reductum| (*1 *1 *1) (AND #1# #13# #2# #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|unique| (#4=(#5=(|List| |#1|) $) 38 T ELT)) (|union| (#6=($ |#1| $) NIL T ELT) #7=(($ $ |#1|) NIL T ELT) (#8=($ $ $) 95 T ELT)) (|symmetricDifference| (#8# 99 T ELT)) (|subset?| (#2# 107 T ELT)) (|set| (#9=($ #5#) 26 T ELT) (#10=($) 17 T ELT)) (|select!| (#11=($ #12=(|Mapping| #3# |#1|) $) 86 #13=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| #14=(#11# NIL #13# ELT)) (|sample| (#10# NIL T CONST)) (|removeDuplicates!| (#15=($ $) 88 T ELT)) (|removeDuplicates| (#15# NIL #16=(AND #13# #17=(|has| |#1| (|BasicType|))) ELT)) (|remove!| (#6# 71 #13# ELT) (#11# 80 #13# ELT) (#18=($ |#1| $ #19=(|Integer|)) 78 T ELT) (#20=($ #12# $ #19#) 81 T ELT)) (|remove| (#6# NIL #16# ELT) #14# (#18# 83 T ELT) (#20# 84 T ELT)) (|reduce| ((|#1| #21=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #17# ELT) ((|#1| #21# $ |#1|) NIL T ELT) ((|#1| #21# $) NIL T ELT)) (|part?| (#2# 106 T ELT)) (|multiset| (#10# 15 T ELT) (($ |#1|) 28 T ELT) (#9# 23 T ELT)) (|members| (#4# 32 T ELT)) (|member?| ((#3# |#1| $) 66 #17# ELT)) (|map!| (#22=($ (|Mapping| |#1| |#1|) $) 91 T ELT)) (|map| (#22# 92 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|intersect| (#8# 97 T ELT)) (|inspect| (#23=(|#1| $) 63 T ELT)) (|insert!| (#6# 64 T ELT) (($ |#1| $ #24=(|NonNegativeInteger|)) 89 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| (((|Union| |#1| "failed") #12# $) NIL T ELT)) (|extract!| (#23# 62 T ELT)) (|every?| #25=((#3# #12# $) NIL T ELT)) (|eval| (($ $ (|List| #26=(|Equation| |#1|))) NIL #27=(AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ELT) (($ $ #26#) NIL #27# ELT) (($ $ |#1| |#1|) NIL #27# ELT) (($ $ #5# #5#) NIL #27# ELT)) (|eq?| #1#) (|empty?| ((#3# $) 57 T ELT)) (|empty| (#10# 14 T ELT)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| #24#))) $) 56 T ELT)) (|difference| #7# (#8# 98 T ELT)) (|dictionary| (#10# 16 T ELT) (#9# 25 T ELT)) (|count| ((#24# |#1| $) 69 #17# ELT) ((#24# #12# $) NIL T ELT)) (|copy| (#15# 82 T ELT)) (|convert| ((#28=(|InputForm|) $) 36 (|has| |#1| (|ConvertibleTo| #28#)) ELT)) (|construct| (#9# 22 T ELT)) (|coerce| (((|OutputForm|) $) 50 T ELT)) (|brace| (#9# 27 T ELT) (#10# 18 T ELT)) (|before?| #1#) (|bag| (#9# 24 T ELT)) (|any?| #25#) (= (#2# 103 T ELT)) (|#| ((#24# $) 68 T ELT)))
+(((|Multiset| |#1|) (|Join| (|MultisetAggregate| |#1|) (|FiniteAggregate| |#1|) (|ShallowlyMutableAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |multiset| ($)) (SIGNATURE |multiset| ($ |#1|)) (SIGNATURE |multiset| ($ #1=(|List| |#1|))) (SIGNATURE |unique| (#1# $)) (SIGNATURE |remove| #2=($ |#1| $ #3=(|Integer|))) (SIGNATURE |remove| #4=($ (|Mapping| (|Boolean|) |#1|) $ #3#)) (SIGNATURE |remove!| #2#) (SIGNATURE |remove!| #4#))) (|SetCategory|)) (T |Multiset|))
+((|multiset| (*1 *1) #1=(AND #2=(|isDomain| *1 (|Multiset| *2)) #3=(|ofCategory| *2 #4=(|SetCategory|)))) (|multiset| #5=(*1 *1 *2) #1#) (|multiset| #5# (AND #6=(|isDomain| *2 (|List| *3)) #7=(|ofCategory| *3 #4#) #8=(|isDomain| *1 (|Multiset| *3)))) (|unique| (*1 *2 *1) (AND #6# #8# #7#)) (|remove| #9=(*1 *1 *2 *1 *3) #10=(AND #11=(|isDomain| *3 (|Integer|)) #2# #3#)) (|remove| #9# #12=(AND (|isDomain| *2 (|Mapping| (|Boolean|) *4)) #11# (|ofCategory| *4 #4#) (|isDomain| *1 (|Multiset| *4)))) (|remove!| #9# #10#) (|remove!| #9# #12#))
+((~= (#1=((|Boolean|) $ $) 18 T ELT)) (|union| (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (#2=($ $ $) 69 T ELT)) (|symmetricDifference| (#2# 67 T ELT)) (|subset?| (#3=((|Boolean|) $ $) 68 T ELT)) (|set| (($ (|List| |#1|)) 63 T ELT) (#4=($) 62 T ELT)) (|select!| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #7=(|Boolean|) |#1|) . #8=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#9=($) 6 T CONST)) (|removeDuplicates!| (($ $) 55 T ELT)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #10=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| #5# |#1|) . #6#) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #10#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #7# |#1|) . #8#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|part?| (#3# 59 T ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 T ELT)) (|intersect| (#2# 64 T ELT)) (|inspect| ((|#1| . #11=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT) (($ |#1| $ #12=(|NonNegativeInteger|)) 56 T ELT)) (|hash| (((|SingleInteger|) $) 20 T ELT)) (|extract!| ((|#1| . #11#) 37 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #13=((|SetCategory|)))) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #13#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #13#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #13#)) ELT)) (|eq?| ((#14=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#14# $) 7 T ELT)) (|empty| (#9# 8 T ELT)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| #12#))) $) 54 T ELT)) (|difference| (($ $ |#1|) 66 T ELT) (#2# 65 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#15=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #15#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)) (|brace| (($ (|List| |#1|)) 61 T ELT) (#4# 60 T ELT)) (|before?| (#1# 19 T ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (= (#1# 17 T ELT)))
+(((|MultisetAggregate| |#1|) (|Category|) (|SetCategory|)) (T |MultisetAggregate|))
+NIL
+(|Join| (|MultiDictionary| |t#1|) (|SetAggregate| |t#1|))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|MultiDictionary| |#1|) . T) ((|SetAggregate| |#1|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|systemCommand| (((|Void|) (|String|)) 8 T ELT)))
+(((|MoreSystemCommands|) (CATEGORY |package| (SIGNATURE |systemCommand| ((|Void|) (|String|))))) (T |MoreSystemCommands|))
+((|systemCommand| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|MoreSystemCommands|)))))
+((|mergeDifference| ((#1=(|List| |#1|) #1# #1#) 15 T ELT)))
+(((|MergeThing| |#1|) (CATEGORY |package| (SIGNATURE |mergeDifference| (#1=(|List| |#1|) #1# #1#))) (|OrderedSet|)) (T |MergeThing|))
+((|mergeDifference| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|MergeThing| *3)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| |#2|) $) 160 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 153 (|has| |#1| . #3=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 152 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 150 (|has| |#1| . #3#) ELT)) (|tanh| (#5=($ $) 109 (|has| |#1| . #6=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|tan| (#7=($ $) 92 (|has| |#1| . #6#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sqrt| (($ $) 91 (|has| |#1| . #8=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|sinh| (#5# 108 (|has| |#1| . #6#) ELT)) (|sin| (#7# 93 (|has| |#1| . #6#) ELT)) (|sech| (#5# 107 (|has| |#1| . #6#) ELT)) (|sec| (#7# 94 (|has| |#1| . #6#) ELT)) (|sample| (#9=($) 23 T CONST)) (|reductum| (#10=($ $) 144 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 122 T ELT) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 121 T ELT)) (|pole?| (((|Boolean|) $) 161 T ELT)) (|pi| (($) 119 (|has| |#1| . #6#) ELT)) (|order| (((|NonNegativeInteger|) $ |#2|) 124 T ELT) (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) 123 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #11=(|Integer|)) 90 (|has| |#1| . #8#) ELT)) (|monomial?| (((|Boolean|) $) 142 T ELT)) (|monomial| (($ $ (|List| |#2|) (|List| (|IndexedExponents| |#2|))) 159 T ELT) (($ $ |#2| (|IndexedExponents| |#2|)) 158 T ELT) (($ |#1| (|IndexedExponents| |#2|)) 143 T ELT) (($ $ |#2| (|NonNegativeInteger|)) 126 T ELT) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 125 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 138 T ELT)) (|log| (#12=($ $) 116 (|has| |#1| . #6#) ELT)) (|leadingMonomial| (#10# 140 T ELT)) (|leadingCoefficient| ((|#1| $) 139 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|integrate| (($ $ |#2|) 120 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|extend| (($ $ (|NonNegativeInteger|)) 127 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 154 (|has| |#1| . #3#) ELT)) (|exp| (#12# 117 (|has| |#1| . #6#) ELT)) (|eval| (($ $ |#2| $) 135 T ELT) (($ $ (|List| |#2|) (|List| $)) 134 T ELT) (($ $ (|List| (|Equation| $))) 133 T ELT) (($ $ (|Equation| $)) 132 T ELT) (($ $ $ $) 131 T ELT) (($ $ (|List| $) (|List| $)) 130 T ELT)) (|differentiate| (($ $ (|List| |#2|) . #13=((|List| #14=(|NonNegativeInteger|)))) 52 T ELT) (($ $ |#2| . #15=(#14#)) 51 T ELT) (($ $ (|List| |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (|degree| (((|IndexedExponents| |#2|) $) 141 T ELT)) (|csch| (#5# 106 (|has| |#1| . #6#) ELT)) (|csc| (#7# 95 (|has| |#1| . #6#) ELT)) (|coth| (#5# 105 (|has| |#1| . #6#) ELT)) (|cot| (#7# 96 (|has| |#1| . #6#) ELT)) (|cosh| (#5# 104 (|has| |#1| . #6#) ELT)) (|cos| (#7# 97 (|has| |#1| . #6#) ELT)) (|complete| (($ $) 162 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 157 (|has| |#1| (|CommutativeRing|)) ELT) (($ $) 155 (|has| |#1| . #3#) ELT) (($ #16=(|Fraction| (|Integer|))) 147 (|has| |#1| . #17=((|Algebra| #16#))) ELT)) (|coefficient| ((|#1| $ (|IndexedExponents| |#2|)) 145 T ELT) (($ $ |#2| (|NonNegativeInteger|)) 129 T ELT) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 128 T ELT)) (|charthRoot| (((|Maybe| $) $) 156 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|atanh| (#18=($ $) 115 (|has| |#1| . #6#) ELT)) (|atan| (#19=($ $) 103 (|has| |#1| . #6#) ELT)) (|associates?| ((#4# $ $) 151 (|has| |#1| . #3#) ELT)) (|asinh| (#18# 114 (|has| |#1| . #6#) ELT)) (|asin| (#19# 102 (|has| |#1| . #6#) ELT)) (|asech| (#18# 113 (|has| |#1| . #6#) ELT)) (|asec| (#19# 101 (|has| |#1| . #6#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#18# 112 (|has| |#1| . #6#) ELT)) (|acsc| (#19# 100 (|has| |#1| . #6#) ELT)) (|acoth| (#18# 111 (|has| |#1| . #6#) ELT)) (|acot| (#19# 99 (|has| |#1| . #6#) ELT)) (|acosh| (#18# 110 (|has| |#1| . #6#) ELT)) (|acos| (#19# 98 (|has| |#1| . #6#) ELT)) (|Zero| (#9# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| |#2|) . #13#) 55 T ELT) (($ $ |#2| . #15#) 54 T ELT) (($ $ (|List| |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 146 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ $) 118 (|has| |#1| . #6#) ELT) (($ $ (|Fraction| #11#)) 89 (|has| |#1| . #8#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #20=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #16#) 149 (|has| |#1| . #17#) ELT) (($ #16# . #20#) 148 (|has| |#1| . #17#) ELT) (($ |#1| . #20#) 137 T ELT) (($ $ |#1|) 136 T ELT)))
+(((|MultivariateTaylorSeriesCategory| |#1| |#2|) (|Category|) (|Ring|) (|OrderedSet|)) (T |MultivariateTaylorSeriesCategory|))
+((|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)))) (|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *5)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *5)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)))) (|order| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|order| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)))) (|polynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Polynomial| *4)))) (|polynomial| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Polynomial| *4)))) (|integrate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))))
+(|Join| (|PartialDifferentialRing| |t#2|) (|PowerSeriesCategory| |t#1| (|IndexedExponents| |t#2|) |t#2|) (|InnerEvalable| |t#2| $) (|Evalable| $) (CATEGORY |domain| (SIGNATURE |coefficient| ($ $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |coefficient| ($ $ (|List| |t#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |extend| ($ $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ $ (|List| |t#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ |t#2|)) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|IndexedExponents| |#2|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Evalable| $) . T) ((|Functorial| |#1|) . T) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|InnerEvalable| |#2| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ |#2|) . T) ((|PartialDifferentialRing| |#2|) . T) ((|PartialDifferentialSpace| |#2|) . T) ((|PowerSeriesCategory| |#1| #1# |#2|) . T) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T))
+((|factor| (((|Factored| #1=(|SparseUnivariatePolynomial| |#4|)) #1#) 30 T ELT) (((|Factored| |#4|) |#4|) 26 T ELT)))
+(((|MultivariateFactorize| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|)) (SIGNATURE |factor| ((|Factored| #1=(|SparseUnivariatePolynomial| |#4|)) #1#))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|PolynomialCategory| |#3| |#2| |#1|)) (T |MultivariateFactorize|))
+((|factor| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 (|OrderedSet|)) #3=(|ofCategory| *5 (|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 #5=(|PolynomialCategory| *6 *5 *4)) (|isDomain| *2 (|Factored| #6=(|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|MultivariateFactorize| *4 *5 *6 *7)) (|isDomain| *3 #6#))) (|factor| #1# (AND #2# #3# #4# (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultivariateFactorize| *4 *5 *6 *3)) (|ofCategory| *3 #5#))))
+((|univcase| ((#1=(|Factored| |#4|) |#4| |#2|) 142 T ELT)) (|squareFreePrim| (#2=(#1# |#4|) NIL T ELT)) (|squareFree| (((|Factored| #3=(|SparseUnivariatePolynomial| |#4|)) #3#) 129 T ELT) (#2# 52 T ELT)) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| #3#) #4=(|:| |exponent| #5=(|Integer|)))))) #3# #6=(|List| |#2|) #7=(|List| #8=(|List| |#3|))) 81 T ELT)) (|normDeriv2| ((#9=(|SparseUnivariatePolynomial| |#3|) #9# #5#) 169 T ELT)) (|myDegree| ((#10=(|List| #11=(|NonNegativeInteger|)) #3# #6# #11#) 75 T ELT)) (|lift| (((|Union| (|List| #3#) "failed") #3# #9# #9# |#4| #6# #10# #8#) 79 T ELT)) (|intChoose| (((|Record| (|:| |upol| #9#) (|:| |Lval| #8#) (|:| |Lfact| #12=(|List| (|Record| (|:| |factor| #9#) #4#))) (|:| |ctpol| |#3|)) #3# #6# #7#) 27 T ELT)) (|consnewpol| (((|Record| (|:| |pol| #3#) (|:| |polval| #9#)) #3# #9# #5#) 72 T ELT)) (|compdegd| ((#5# #12#) 165 T ELT)) (|coefChoose| ((|#4| #5# #1#) 73 T ELT)) (|check| (((|Boolean|) #12# #12#) NIL T ELT)))
+(((|MultivariateSquareFree| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |squareFree| #1=(#2=(|Factored| |#4|) |#4|)) (SIGNATURE |squareFree| ((|Factored| #3=(|SparseUnivariatePolynomial| |#4|)) #3#)) (SIGNATURE |squareFreePrim| #1#) (SIGNATURE |compdegd| (#4=(|Integer|) #5=(|List| (|Record| (|:| |factor| #6=(|SparseUnivariatePolynomial| |#3|)) #7=(|:| |exponent| #4#))))) (SIGNATURE |univcase| (#2# |#4| |#2|)) (SIGNATURE |consnewpol| ((|Record| (|:| |pol| #3#) (|:| |polval| #6#)) #3# #6# #4#)) (SIGNATURE |nsqfree| ((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| #3#) #7#)))) #3# #8=(|List| |#2|) #9=(|List| #10=(|List| |#3|)))) (SIGNATURE |intChoose| ((|Record| (|:| |upol| #6#) (|:| |Lval| #10#) (|:| |Lfact| #5#) (|:| |ctpol| |#3|)) #3# #8# #9#)) (SIGNATURE |coefChoose| (|#4| #4# #2#)) (SIGNATURE |check| ((|Boolean|) #5# #5#)) (SIGNATURE |lift| ((|Union| (|List| #3#) "failed") #3# #6# #6# |#4| #8# #11=(|List| #12=(|NonNegativeInteger|)) #10#)) (SIGNATURE |myDegree| (#11# #3# #8# #12#)) (SIGNATURE |normDeriv2| (#6# #6# #4#))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |MultivariateSquareFree|))
+((|normDeriv2| (*1 *2 *2 *3) (AND (|isDomain| *2 #1=(|SparseUnivariatePolynomial| *6)) #2=(|isDomain| *3 #3=(|Integer|)) #4=(|ofCategory| *6 #5=(|EuclideanDomain|)) #6=(|ofCategory| *4 #7=(|OrderedAbelianMonoidSup|)) #8=(|ofCategory| *5 #9=(|OrderedSet|)) #10=(|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7)) #11=(|ofCategory| *7 #12=(|PolynomialCategory| *6 *4 *5)))) (|myDegree| #13=(*1 *2 *3 *4 *5) (AND #14=(|isDomain| *3 #15=(|SparseUnivariatePolynomial| *9)) #16=(|isDomain| *4 (|List| *7)) #17=(|ofCategory| *7 #9#) #18=(|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) #19=(|ofCategory| *6 #7#) #20=(|ofCategory| *8 #5#) (|isDomain| *2 #21=(|List| #22=(|NonNegativeInteger|))) #23=(|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)) (|isDomain| *5 #22#))) (|lift| (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| AND (|isDomain| *4 (|SparseUnivariatePolynomial| *11)) (|isDomain| *6 (|List| *10)) (|isDomain| *7 #21#) (|isDomain| *8 (|List| *11)) (|ofCategory| *10 #9#) (|ofCategory| *11 #5#) (|ofCategory| *9 #7#) (|ofCategory| *5 (|PolynomialCategory| *11 *9 *10)) (|isDomain| *2 (|List| #24=(|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|MultivariateSquareFree| *9 *10 *11 *5)) (|isDomain| *3 #24#))) (|check| (*1 *2 *3 *3) (AND #25=(|isDomain| *3 (|List| (|Record| (|:| |factor| #1#) #26=(|:| |exponent| #3#)))) #4# #6# #8# (|isDomain| *2 (|Boolean|)) #10# #11#)) (|coefChoose| #27=(*1 *2 *3 *4) (AND #2# (|isDomain| *4 (|Factored| *2)) (|ofCategory| *2 (|PolynomialCategory| *7 *5 *6)) (|isDomain| *1 (|MultivariateSquareFree| *5 *6 *7 *2)) #28=(|ofCategory| *5 #7#) (|ofCategory| *6 #9#) (|ofCategory| *7 #5#))) (|intChoose| #13# (AND #14# #16# #29=(|isDomain| *5 (|List| #30=(|List| *8))) #17# #20# #18# #19# (|isDomain| *2 (|Record| (|:| |upol| #31=(|SparseUnivariatePolynomial| *8)) (|:| |Lval| #30#) (|:| |Lfact| (|List| (|Record| (|:| |factor| #31#) #26#))) (|:| |ctpol| *8))) #23#)) (|nsqfree| #13# (AND #16# #29# #17# #20# #19# #18# (|isDomain| *2 (|Record| (|:| |unitPart| *9) (|:| |suPart| (|List| (|Record| (|:| |factor| #15#) #26#))))) #23# #14#)) (|consnewpol| #13# (AND (|isDomain| *5 #3#) #19# #17# #20# #18# (|isDomain| *2 (|Record| (|:| |pol| #15#) (|:| |polval| #31#))) #23# #14# (|isDomain| *4 #31#))) (|univcase| #27# (AND #28# (|ofCategory| *4 #9#) #4# #32=(|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultivariateSquareFree| *5 *4 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))) (|compdegd| #33=(*1 *2 *3) (AND #25# #4# #6# #8# (|isDomain| *2 #3#) #10# #11#)) (|squareFreePrim| #33# #34=(AND #6# #8# #4# #32# (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *3)) (|ofCategory| *3 #12#))) (|squareFree| #33# (AND #6# #8# #4# #11# (|isDomain| *2 (|Factored| #35=(|SparseUnivariatePolynomial| *7))) #10# (|isDomain| *3 #35#))) (|squareFree| #33# #34#))
+((|plenaryPower| (($ $ (|PositiveInteger|)) 17 T ELT)))
+(((|NonAssociativeAlgebra&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |plenaryPower| (|#1| |#1| (|PositiveInteger|)))) (|NonAssociativeAlgebra| |#2|) (|CommutativeRing|)) (T |NonAssociativeAlgebra&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightPower| (#4=($ $ (|PositiveInteger|)) 37 T ELT)) (|plenaryPower| (($ $ (|PositiveInteger|)) 44 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|leftPower| (#4# 38 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|commutator| (#5=($ $ $) 34 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|associator| (($ $ $ $) 35 T ELT)) (|antiCommutator| (#5# 33 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (#4# 39 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #6=($)) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| . #6#) 45 T ELT)))
+(((|NonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |NonAssociativeAlgebra|))
+((|plenaryPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|NonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)))))
+(|Join| (|NonAssociativeRng|) (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |plenaryPower| ($ $ (|PositiveInteger|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeRng|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|commutator| (#1=($ $ $) 10 T ELT)) (|associator| (($ $ $ $) 9 T ELT)) (|antiCommutator| (#1# 12 T ELT)))
+(((|NonAssociativeRng&| |#1|) (CATEGORY |package| (SIGNATURE |antiCommutator| #1=(|#1| |#1| |#1|)) (SIGNATURE |commutator| #1#) (SIGNATURE |associator| (|#1| |#1| |#1| |#1|))) (|NonAssociativeRng|)) (T |NonAssociativeRng&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightPower| (#4=($ $ (|PositiveInteger|)) 37 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|leftPower| (#4# 38 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|commutator| (($ $ $) 34 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|associator| (($ $ $ $) 35 T ELT)) (|antiCommutator| (($ $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (#4# 39 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((|NonAssociativeRng|) (|Category|)) (T |NonAssociativeRng|))
+((|associator| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|commutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|antiCommutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))))
+(|Join| (|AbelianGroup|) (|Monad|) (CATEGORY |domain| (SIGNATURE |associator| ($ $ $ $)) (SIGNATURE |commutator| ($ $ $)) (SIGNATURE |antiCommutator| ($ $ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|Monad|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|coerce| (((|OutputForm|) $) NIL T ELT) (($ (|Integer|)) 10 T ELT)))
+(((|NonAssociativeRing&| |#1|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|NonAssociativeRing|)) (T |NonAssociativeRing&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightRecip| (#4=((|Union| $ "failed") $) 49 T ELT)) (|rightPower| (#5=($ $ (|PositiveInteger|)) 37 T ELT) (#6=($ $ (|NonNegativeInteger|)) 44 T ELT)) (|recip| (#4# 47 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 43 T ELT)) (|leftRecip| (#4# 48 T ELT)) (|leftPower| (#5# 38 T ELT) (#6# 45 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|commutator| (#7=($ $ $) 34 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 40 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 41 T CONST)) (|before?| (#1# 6 T ELT)) (|associator| (($ $ $ $) 35 T ELT)) (|antiCommutator| (#7# 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 42 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (#5# 39 T ELT) (#6# 46 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((|NonAssociativeRing|) (|Category|)) (T |NonAssociativeRing|))
+((|characteristic| (*1 *2) (AND (|ofCategory| *1 (|NonAssociativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|NonAssociativeRing|)))))
+(|Join| (|NonAssociativeRng|) (|MonadWithUnit|) (CATEGORY |domain| (SIGNATURE |characteristic| ((|NonNegativeInteger|)) |constant|) (SIGNATURE |coerce| ($ (|Integer|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|Monad|) . T) ((|MonadWithUnit|) . T) ((|NonAssociativeRng|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|complexEigenvectors| (((|List| (|Record| (|:| |outval| #1=(|Complex| |#1|)) (|:| |outmult| #2=(|Integer|)) (|:| |outvect| (|List| (|Matrix| #1#))))) #3=(|Matrix| #4=(|Complex| (|Fraction| #2#))) |#1|) 33 T ELT)) (|complexEigenvalues| (((|List| #1#) #3# |#1|) 23 T ELT)) (|characteristicPolynomial| ((#5=(|Polynomial| #4#) #3# (|Symbol|)) 20 T ELT) ((#5# #3#) 19 T ELT)))
+(((|NumericComplexEigenPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (#1=(|Polynomial| #2=(|Complex| (|Fraction| #3=(|Integer|)))) #4=(|Matrix| #2#))) (SIGNATURE |characteristicPolynomial| (#1# #4# (|Symbol|))) (SIGNATURE |complexEigenvalues| ((|List| #5=(|Complex| |#1|)) #4# |#1|)) (SIGNATURE |complexEigenvectors| ((|List| (|Record| (|:| |outval| #5#) (|:| |outmult| #3#) (|:| |outvect| (|List| (|Matrix| #5#))))) #4# |#1|))) (|Join| (|Field|) (|OrderedRing|))) (T |NumericComplexEigenPackage|))
+((|complexEigenvectors| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Matrix| #3=(|Complex| (|Fraction| #4=(|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |outval| #5=(|Complex| *4)) (|:| |outmult| #4#) (|:| |outvect| (|List| (|Matrix| #5#)))))) #6=(|isDomain| *1 (|NumericComplexEigenPackage| *4)) #7=(|ofCategory| *4 #8=(|Join| (|Field|) (|OrderedRing|))))) (|complexEigenvalues| #1# (AND #2# (|isDomain| *2 (|List| #5#)) #6# #7#)) (|characteristicPolynomial| #1# (AND #2# (|isDomain| *4 (|Symbol|)) #9=(|isDomain| *2 (|Polynomial| #3#)) (|isDomain| *1 (|NumericComplexEigenPackage| *5)) (|ofCategory| *5 #8#))) (|characteristicPolynomial| (*1 *2 *3) (AND #2# #9# #6# #7#)))
+((|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) 27 T ELT)))
+(((|NumericContinuedFraction| |#1|) (CATEGORY |package| (SIGNATURE |continuedFraction| ((|ContinuedFraction| (|Integer|)) |#1|))) (|FloatingPointSystem|)) (T |NumericContinuedFraction|))
+((|continuedFraction| (*1 *2 *3) (AND (|isDomain| *2 (|ContinuedFraction| (|Integer|))) (|isDomain| *1 (|NumericContinuedFraction| *3)) (|ofCategory| *3 (|FloatingPointSystem|)))))
+((|leftRemainder| (#1=(|#1| |#1| |#1|) 28 T ELT)) (|leftQuotient| (#1# 27 T ELT)) (|leftLcm| (#1# 38 T ELT)) (|leftGcd| (#1# 33 T ELT)) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) 31 T ELT)) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) 26 T ELT)))
+(((|NonCommutativeOperatorDivision| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |leftQuotient| #1=(|#1| |#1| |#1|)) (SIGNATURE |leftRemainder| #1#) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftGcd| #1#) (SIGNATURE |leftLcm| #1#)) (|MonogenicLinearOperator| |#2|) (|Field|)) (T |NonCommutativeOperatorDivision|))
+((|leftLcm| #1=(*1 *2 *2 *2) #2=(AND #3=(|ofCategory| *3 #4=(|Field|)) #5=(|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) #6=(|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftGcd| #1# #2#) (|leftExactQuotient| #1# (|partial| AND #3# #5# #6#)) (|leftRemainder| #1# #2#) (|leftQuotient| #1# #2#) (|leftDivide| (*1 *2 *3 *3) (AND (|ofCategory| *4 #4#) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|NonCommutativeOperatorDivision| *3 *4)) (|ofCategory| *3 (|MonogenicLinearOperator| *4)))))
+((|writeUInt8!| (((|Maybe| #1=(|UInt8|)) $ #1#) 27 T ELT)) (|writeInt8!| (((|Maybe| #2=(|Int8|)) $ #2#) 26 T ELT)) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 28 T ELT)) (|writeByte!| (((|Maybe| #3=(|Byte|)) $ #3#) 25 T ELT)) (|readUInt8!| (((|Maybe| (|UInt8|)) $) 12 T ELT)) (|readUInt32!| (((|Maybe| (|UInt32|)) $) 8 T ELT)) (|readUInt16!| (((|Maybe| (|UInt16|)) $) 10 T ELT)) (|readInt8!| (((|Maybe| (|Int8|)) $) 13 T ELT)) (|readInt32!| (((|Maybe| (|Int32|)) $) 9 T ELT)) (|readInt16!| (((|Maybe| (|Int16|)) $) 11 T ELT)) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 7 T ELT)) (|readByte!| (((|Maybe| (|Byte|)) $) 14 T ELT)) (|isConnected?| (((|Boolean|) $) 32 T ELT)) (|connectTo| (((|Maybe| $) |#1| (|PortNumber|)) 33 T ELT)) (|close!| (($ $) 6 T ELT)))
+(((|NetworkClientSocket| |#1|) (|Category|) (|SetCategory|)) (T |NetworkClientSocket|))
+((|connectTo| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PortNumber|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|NetworkClientSocket| *3)))) (|isConnected?| (*1 *2 *1) (AND (|ofCategory| *1 (|NetworkClientSocket| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|InputOutputByteConduit|) (CATEGORY |domain| (SIGNATURE |connectTo| ((|Maybe| $) |t#1| (|PortNumber|))) (SIGNATURE |isConnected?| ((|Boolean|) $))))
+(((|Conduit|) . T) ((|InputByteConduit|) . T) ((|InputOutputByteConduit|) . T) ((|OutputByteConduit|) . T))
+((|localIntegralBasis| ((#1=(|Record| (|:| |basis| #2=(|Matrix| #3=(|Integer|))) (|:| |basisDen| #3#) (|:| |basisInv| #2#)) #3#) 72 T ELT)) (|integralBasis| ((#1#) 70 T ELT)) (|discriminant| ((#3#) 86 T ELT)))
+(((|NumberFieldIntegralBasis| |#1| |#2|) (CATEGORY |package| (SIGNATURE |discriminant| (#1=(|Integer|))) (SIGNATURE |integralBasis| (#2=(|Record| (|:| |basis| #3=(|Matrix| #1#)) (|:| |basisDen| #1#) (|:| |basisInv| #3#)))) (SIGNATURE |localIntegralBasis| (#2# #1#))) (|UnivariatePolynomialCategory| #1#) (|FramedAlgebra| #1# |#1|)) (T |NumberFieldIntegralBasis|))
+((|localIntegralBasis| (*1 *2 *3) (AND (|isDomain| *3 #1=(|Integer|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Record| (|:| |basis| #2=(|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| #2#))) (|isDomain| *1 (|NumberFieldIntegralBasis| *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|integralBasis| #3=(*1 *2) (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| #1#)) (|isDomain| *2 (|Record| (|:| |basis| #4=(|Matrix| #1#)) (|:| |basisDen| #1#) (|:| |basisInv| #4#))) #5=(|isDomain| *1 (|NumberFieldIntegralBasis| *3 *4)) (|ofCategory| *4 (|FramedAlgebra| #1# *3)))) (|discriminant| #3# (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|isDomain| *2 #1#) #5# (|ofCategory| *4 (|FramedAlgebra| *2 *3)))))
+((|solveInField| (#1=(#2=(|List| (|List| (|Equation| (|Fraction| #3=(|Polynomial| |#1|))))) #4=(|List| #3#)) 19 T ELT) (#5=(#2# #4# (|List| (|Symbol|))) 18 T ELT)) (|solve| (#1# 21 T ELT) (#5# 20 T ELT)))
+(((|NonLinearSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solveInField| #1=(#2=(|List| (|List| (|Equation| (|Fraction| #3=(|Polynomial| |#1|))))) #4=(|List| #3#) (|List| (|Symbol|)))) (SIGNATURE |solveInField| #5=(#2# #4#)) (SIGNATURE |solve| #1#) (SIGNATURE |solve| #5#)) (|IntegralDomain|)) (T |NonLinearSolvePackage|))
+((|solve| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|List| #3=(|Polynomial| *4))) (|ofCategory| *4 #4=(|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| #3#))))) (|isDomain| *1 (|NonLinearSolvePackage| *4)))) (|solve| #5=(*1 *2 *3 *4) #6=(AND (|isDomain| *3 (|List| #7=(|Polynomial| *5))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 #4#) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| #7#))))) (|isDomain| *1 (|NonLinearSolvePackage| *5)))) (|solveInField| #1# #2#) (|solveInField| #5# #6#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|sup| (#4=($ $ $) 10 T ELT)) (|subtractIfCan| (#5=(#6=(|Union| $ "failed") $ $) 15 T ELT)) (|shift| (($ $ (|Integer|)) 11 T ELT)) (|sample| #7=(#8=($) NIL T CONST)) (|rem| #9=(#4# NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|random| (($ $) NIL T ELT)) (|quo| #9#) (|positive?| #3#) (|opposite?| #1#) (|one?| #3#) (|min| #9#) (|max| #9#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcd| #9#) (|exquo| (#5# NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| (#8# 6 T CONST)) (|One| #7#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (+ #9#) (** (($ $ #10=(|NonNegativeInteger|)) NIL T ELT) (($ $ #11=(|PositiveInteger|)) NIL T ELT)) (* (($ #11# $) NIL T ELT) (($ #10# $) NIL T ELT) #9#))
+(((|NonNegativeInteger|) (|Join| (|OrderedAbelianMonoidSup|) (|Monoid|) (CATEGORY |domain| (SIGNATURE |quo| #1=($ $ $)) (SIGNATURE |rem| #1#) (SIGNATURE |gcd| #1#) (SIGNATURE |divide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |exquo| ((|Union| $ "failed") $ $)) (SIGNATURE |shift| ($ $ (|Integer|))) (SIGNATURE |random| ($ $)) (ATTRIBUTE (|commutative| "*"))))) (T |NonNegativeInteger|))
+((|quo| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 #3=(|NonNegativeInteger|))) (|rem| #1# #2#) (|gcd| #1# #2#) (|divide| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |quotient| #3#) (|:| |remainder| #3#))) #2#)) (|exquo| #1# (|partial| |isDomain| *1 #3#)) (|shift| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #2#)) (|random| (*1 *1 *1) #2#))
+((|Integer|) (|%not| (|%ilt| |#1| 0)))
+((|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) 37 T ELT)))
+(((|NonLinearFirstOrderODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solve| ((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)))) (|Join| (|EuclideanDomain|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (T |NonLinearFirstOrderODESolver|))
+((|solve| (*1 *2 *2 *2 *3 *4) (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#) (|CharacteristicZero|))) (|isDomain| *1 (|NonLinearFirstOrderODESolver| *5 *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedFunctionSpace| *5) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 7 T ELT)) (|before?| #1#) (= (#2# 9 T ELT)))
+(((|None|) (|SetCategory|)) (T |None|))
+NIL
+((|coerce| (((|None|) |#1|) 8 T ELT)))
+(((|NoneFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|None|) |#1|))) (|Type|)) (T |NoneFunctions1|))
+((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|None|)) (|isDomain| *1 (|NoneFunctions1| *3)) (|ofCategory| *3 (|Type|)))))
+((|norm| ((|#2| |#4|) 35 T ELT)))
+(((|NormInMonogenicAlgebra| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |norm| (|#2| |#4|))) (|GcdDomain|) (|UnivariatePolynomialCategory| |#1|) (|MonogenicAlgebra| |#1| |#2|) (|UnivariatePolynomialCategory| |#3|)) (T |NormInMonogenicAlgebra|))
+((|norm| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|MonogenicAlgebra| *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|NormInMonogenicAlgebra| *4 *2 *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+((|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (|outputArgs| (((|Void|) #1=(|String|) #1# |#4| |#5|) 33 T ELT)) (|normalizedAssociate| ((|#4| |#4| |#5|) 74 T ELT)) (|normalize| (((|List| (|Record| (|:| |val| |#4|) #2=(|:| |tower| |#5|))) |#4| |#5|) 79 T ELT)) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) #2#)) |#4| |#5|) 16 T ELT)))
+(((|NormalizationPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |recip| ((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (SIGNATURE |normalizedAssociate| (|#4| |#4| |#5|)) (SIGNATURE |normalize| ((|List| (|Record| (|:| |val| |#4|) #1=(|:| |tower| |#5|))) |#4| |#5|)) (SIGNATURE |outputArgs| ((|Void|) #2=(|String|) #2# |#4| |#5|)) (SIGNATURE |normInvertible?| ((|List| (|Record| (|:| |val| (|Boolean|)) #1#)) |#4| |#5|))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |NormalizationPackage|))
+((|normInvertible?| #1=(*1 *2 *3 *4) (AND #2=(|ofCategory| *5 #3=(|GcdDomain|)) #4=(|ofCategory| *6 #5=(|OrderedAbelianMonoidSup|)) #6=(|ofCategory| *7 #7=(|OrderedSet|)) #8=(|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|List| (|Record| (|:| |val| (|Boolean|)) #9=(|:| |tower| *4)))) #10=(|isDomain| *1 (|NormalizationPackage| *5 *6 *7 *3 *4)) #11=(|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))) (|outputArgs| (*1 *2 *3 *3 *4 *5) (AND (|isDomain| *3 (|String|)) (|ofCategory| *6 #3#) (|ofCategory| *7 #5#) (|ofCategory| *8 #7#) (|ofCategory| *4 (|RecursivePolynomialCategory| *6 *7 *8)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|NormalizationPackage| *6 *7 *8 *4 *5)) (|ofCategory| *5 (|RegularTriangularSetCategory| *6 *7 *8 *4)))) (|normalize| #1# (AND #2# #4# #6# #8# (|isDomain| *2 (|List| (|Record| (|:| |val| *3) #9#))) #10# #11#)) (|normalizedAssociate| (*1 *2 *2 *3) (AND (|ofCategory| *4 #3#) (|ofCategory| *5 #5#) (|ofCategory| *6 #7#) (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *1 (|NormalizationPackage| *4 *5 *6 *2 *3)) (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *2)))) (|recip| #1# (AND #2# #4# #6# #8# (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *3))) #10# #11#)))
+((|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) 53 T ELT)) (|normFactors| (((|List| |#4|) |#4|) 22 T ELT)) (|Frobenius| ((|#4| |#4|) 17 T ELT)))
+(((|NormRetractPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |normFactors| ((|List| |#4|) |#4|)) (SIGNATURE |retractIfCan| ((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|)) (SIGNATURE |Frobenius| (|#4| |#4|))) (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| |#1|) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| |#3|) (|PositiveInteger|)) (T |NormRetractPackage|))
+((|Frobenius| (*1 *2 *2) (AND (|ofCategory| *3 #1=(|FiniteFieldCategory|)) (|ofCategory| *4 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|NormRetractPackage| *3 *4 *5 *2 *6)) (|ofCategory| *2 #2=(|UnivariatePolynomialCategory| *5)) (|ofType| *6 #3=(|PositiveInteger|)))) (|retractIfCan| #4=(*1 *2 *3) (|partial| AND #5=(|ofCategory| *4 #1#) #6=(|ofCategory| *5 (|FiniteAlgebraicExtensionField| *4)) #7=(|ofCategory| *6 #2#) (|isDomain| *2 (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))) #8=(|isDomain| *1 (|NormRetractPackage| *4 *5 *6 *3 *7)) #9=(|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) #10=(|ofType| *7 #3#))) (|normFactors| #4# (AND #5# #6# #7# (|isDomain| *2 (|List| *3)) #8# #9# #10#)))
+((|npcoef| (((|Record| (|:| |deter| (|List| #1=(|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| #2=(|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| #3=(|List| |#1|)) (|:| |nlead| #4=(|List| |#5|))) #1# #3# #4#) 72 T ELT)) (|listexp| (((|List| #2#) |#1|) 20 T ELT)))
+(((|NPCoef| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |npcoef| ((|Record| (|:| |deter| (|List| #1=(|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| #2=(|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| #3=(|List| |#1|)) (|:| |nlead| #4=(|List| |#5|))) #1# #3# #4#)) (SIGNATURE |listexp| ((|List| #2#) |#1|))) (|UnivariatePolynomialCategory| |#4|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#4| |#2| |#3|)) (T |NPCoef|))
+((|listexp| (*1 *2 *3) (AND (|ofCategory| *4 #1=(|OrderedAbelianMonoidSup|)) (|ofCategory| *5 #2=(|OrderedSet|)) (|ofCategory| *6 #3=(|EuclideanDomain|)) (|isDomain| *2 (|List| #4=(|NonNegativeInteger|))) (|isDomain| *1 (|NPCoef| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|npcoef| (*1 *2 *3 *4 *5) (AND (|ofCategory| *6 (|UnivariatePolynomialCategory| *9)) (|ofCategory| *7 #1#) (|ofCategory| *8 #2#) (|ofCategory| *9 #3#) (|ofCategory| *10 (|PolynomialCategory| *9 *7 *8)) (|isDomain| *2 (|Record| (|:| |deter| (|List| #5=(|SparseUnivariatePolynomial| *10))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| #4#) (|:| |pcoef| *10))))) (|:| |nfacts| #6=(|List| *6)) (|:| |nlead| #7=(|List| *10)))) (|isDomain| *1 (|NPCoef| *6 *7 *8 *9 *10)) (|isDomain| *3 #5#) (|isDomain| *4 #6#) (|isDomain| *5 #7#))))
+((|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| #1=(|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) #2=(|Matrix| #3=(|Fraction| #1#)) |#1|) 31 T ELT)) (|realEigenvalues| (((|List| |#1|) #2# |#1|) 21 T ELT)) (|characteristicPolynomial| ((#4=(|Polynomial| #3#) #2# (|Symbol|)) 18 T ELT) ((#4# #2#) 17 T ELT)))
+(((|NumericRealEigenPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (#1=(|Polynomial| #2=(|Fraction| #3=(|Integer|))) #4=(|Matrix| #2#))) (SIGNATURE |characteristicPolynomial| (#1# #4# (|Symbol|))) (SIGNATURE |realEigenvalues| ((|List| |#1|) #4# |#1|)) (SIGNATURE |realEigenvectors| ((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| #3#) (|:| |outvect| (|List| (|Matrix| |#1|))))) #4# |#1|))) (|Join| (|Field|) (|OrderedRing|))) (T |NumericRealEigenPackage|))
+((|realEigenvectors| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Matrix| #3=(|Fraction| #4=(|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |outval| *4) (|:| |outmult| #4#) (|:| |outvect| (|List| (|Matrix| *4)))))) #5=(|isDomain| *1 (|NumericRealEigenPackage| *4)) #6=(|ofCategory| *4 #7=(|Join| (|Field|) (|OrderedRing|))))) (|realEigenvalues| #1# (AND #2# (|isDomain| *2 (|List| *4)) #5# #6#)) (|characteristicPolynomial| #1# (AND #2# (|isDomain| *4 (|Symbol|)) #8=(|isDomain| *2 (|Polynomial| #3#)) (|isDomain| *1 (|NumericRealEigenPackage| *5)) (|ofCategory| *5 #7#))) (|characteristicPolynomial| (*1 *2 *3) (AND #2# #8# #5# #6#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 36 T ELT)) (|variables| ((#5=(|List| |#2|) $) NIL T ELT)) (|univariate| ((#6=(|SparseUnivariatePolynomial| $) $ |#2|) NIL T ELT) ((#7=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #8=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #9=(#10=($ $) NIL #8# ELT)) (|unit?| (#4# NIL #8# ELT)) (|totalDegree| #11=(#12=(#13=(|NonNegativeInteger|) $) NIL T ELT) ((#13# $ #5#) NIL T ELT)) (|tail| (#10# 30 T ELT)) (|supRittWu?| #1#) (|subtractIfCan| (#14=(#15=(|Union| $ #16="failed") $ $) NIL T ELT)) (|subResultantGcd| (#17=($ $ $) 110 #8# ELT)) (|subResultantChain| ((#18=(|List| $) $ $) 123 #8# ELT)) (|squareFreePolynomial| #19=(((|Factored| #6#) #6#) NIL #20=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #21=(#10# NIL #22=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#23=((|Factored| $) $) NIL #22# ELT)) (|solveLinearPolynomialEquation| (((|Union| #24=(|List| #6#) #16#) #24# #6#) NIL #20# ELT)) (|sample| (#25=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #26=(#16#)) . #27=($)) NIL T ELT) (((|Union| #28=(|Fraction| #29=(|Integer|)) . #26#) . #27#) NIL #30=(|has| |#1| (|RetractableTo| #28#)) ELT) (((|Union| #29# . #26#) . #27#) NIL #31=(|has| |#1| (|RetractableTo| #29#)) ELT) #32=(((|Union| |#2| . #26#) . #27#) NIL T ELT) ((#15# #33=(|Polynomial| #28#)) NIL #34=(AND #35=(|has| |#1| (|Algebra| #28#)) #36=(|has| |#2| (|ConvertibleTo| (|Symbol|)))) ELT) ((#15# #37=(|Polynomial| #29#)) NIL #38=(OR (AND #39=(|has| |#1| (|Algebra| #29#)) #36# #40=(|not| #35#)) #34#) ELT) ((#15# #41=(|Polynomial| |#1|)) NIL #42=(OR (AND #36# #40# (|not| #39#)) (AND #39# #36# #40# (|not| (|has| |#1| (|IntegerNumberSystem|)))) (AND #35# #36# (|not| (|has| |#1| (|QuotientFieldCategory| #29#))))) ELT) (((|Union| #43=(|SparseMultivariatePolynomial| |#1| |#2|) . #26#) $) 21 T ELT)) (|retract| #44=(#45=(|#1| . #46=($)) NIL T ELT) ((#28# . #46#) NIL #30# ELT) ((#29# . #46#) NIL #31# ELT) (#47=(|#2| . #46#) NIL T ELT) #48=(($ #33#) NIL #34# ELT) #49=(($ #37#) NIL #38# ELT) (#50=($ #41#) NIL #42# ELT) (#51=(#43# . #46#) NIL T ELT)) (|resultant| (#52=($ $ $ |#2|) NIL #53=(|has| |#1| (|CommutativeRing|)) ELT) (#17# 121 #8# ELT)) (|reductum| #54=(#10# NIL T ELT) #55=(#56=($ $ |#2|) NIL T ELT)) (|reducedSystem| ((#57=(|Matrix| #29#) . #58=(#59=(|Matrix| $))) NIL #60=(|has| |#1| (|LinearlyExplicitRingOver| #29#)) ELT) ((#61=(|Record| (|:| |mat| #57#) (|:| |vec| (|Vector| #29#))) . #62=(#59# #63=(|Vector| $))) NIL #60# ELT) ((#64=(|Record| (|:| |mat| #65=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #62#) NIL T ELT) ((#65# . #58#) NIL T ELT)) (|reduced?| #1# #66=((#3# $ #18#) NIL T ELT)) (|recip| ((#15# $) NIL T ELT)) (|quasiMonic?| #67=(#4# NIL T ELT)) (|pseudoDivide| ((#68=(|Record| #69=(|:| |quotient| $) #70=(|:| |remainder| $)) $ $) 81 T ELT)) (|primitivePart!| (#10# 136 #22# ELT)) (|primitivePart| #21# #71=(#56# NIL #22# ELT)) (|primitiveMonomials| #72=(#73=(#18# $) NIL T ELT)) (|prime?| (#4# NIL #20# ELT)) (|primPartElseUnitCanonical!| #9#) (|primPartElseUnitCanonical| #9#) (|prem| (#17# 76 T ELT) #74=(#52# NIL T ELT)) (|pquo| (#17# 79 T ELT) #74#) (|pomopo!| (($ $ |#1| #75=(|IndexedExponents| |#2|) $) NIL T ELT)) (|patternMatch| ((#76=(|PatternMatchResult| #77=(|Float|) . #78=($)) $ #79=(|Pattern| #77#) #76#) NIL (AND (|has| |#1| #80=(|PatternMatchable| #77#)) (|has| |#2| #80#)) ELT) ((#81=(|PatternMatchResult| #29# . #78#) $ #82=(|Pattern| #29#) #81#) NIL (AND (|has| |#1| #83=(|PatternMatchable| #29#)) (|has| |#2| #83#)) ELT)) (|opposite?| #1#) (|one?| (#4# 57 T ELT)) (|numberOfMonomials| #11#) (|normalized?| #1# #66#) (|nextsubResultant2| (($ $ $ $ $) 107 #8# ELT)) (|mvar| (#47# 22 T ELT)) (|multivariate| (($ #7# |#2|) NIL T ELT) (($ #6# |#2|) NIL T ELT)) (|monomials| #72#) (|monomial?| #67#) (|monomial| (($ |#1| #75#) NIL T ELT) (#84=($ $ |#2| #13#) 38 T ELT) #85=(($ $ #5# #86=(|List| #13#)) NIL T ELT)) (|monicModulo| (#17# 63 T ELT)) (|monicDivide| ((#68# $ $ |#2|) NIL T ELT)) (|monic?| #67#) (|minimumDegree| #87=((#75# $) NIL T ELT) (#88=(#13# $ |#2|) NIL T ELT) #89=((#86# $ #5#) NIL T ELT)) (|mdeg| (#12# 23 T ELT)) (|mapExponents| (($ (|Mapping| #75# #75#) $) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|mainVariable| #32#) (|mainSquareFreePart| #21#) (|mainPrimitivePart| #21#) (|mainMonomials| #72#) (|mainMonomial| (#10# 39 T ELT)) (|mainContent| #21#) (|mainCoefficients| (#73# 43 T ELT)) (|leftReducedSystem| ((#57# . #90=(#63#)) NIL #60# ELT) ((#61# . #91=(#63# $)) NIL #60# ELT) ((#64# . #91#) NIL T ELT) ((#65# . #90#) NIL T ELT)) (|leastMonomial| (#10# 41 T ELT)) (|leadingMonomial| #54#) (|leadingCoefficient| #44# (#56# 48 T ELT)) (|lcm| #92=(($ #18#) NIL #22# ELT) #93=(#17# NIL #22# ELT)) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| #13#)) $ $) 96 T ELT)) (|lazyPseudoDivide| ((#94=(|Record| #95=(|:| |coef| $) #96=(|:| |gap| #13#) #69# #70#) $ $) 78 T ELT) ((#94# $ $ |#2|) NIL T ELT)) (|lazyPremWithDefault| ((#97=(|Record| #95# #96# #70#) $ $) NIL T ELT) ((#97# $ $ |#2|) NIL T ELT)) (|lazyPrem| (#17# 83 T ELT) #74#) (|lazyPquo| (#17# 86 T ELT) #74#) (|latex| (#98=((|String|) $) NIL T ELT)) (|lastSubResultant| (#17# 125 #8# ELT)) (|iteratedInitials| (#73# 32 T ELT)) (|isTimes| #99=(((|Union| #18# #16#) $) NIL T ELT)) (|isPlus| #99#) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| #13#)) #16#) $) NIL T ELT)) (|initiallyReduced?| #1# #66#) (|initiallyReduce| #100=(#17# NIL T ELT)) (|init| (#10# 24 T ELT)) (|infRittWu?| #1#) (|headReduced?| #1# #66#) (|headReduce| #100#) (|head| (#10# 26 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|halfExtendedSubResultantGcd2| (((|Record| #101=(|:| |gcd| $) #102=(|:| |coef2| $)) $ $) 116 #8# ELT)) (|halfExtendedSubResultantGcd1| (((|Record| #101# #103=(|:| |coef1| $)) $ $) 113 #8# ELT)) (|ground?| (#4# 56 T ELT)) (|ground| (#45# 58 T ELT)) (|gcdPolynomial| ((#6# #6# #6#) NIL #22# ELT)) (|gcd| ((|#1| |#1| $) 133 #22# ELT) #92# #93#) (|factorSquareFreePolynomial| #19#) (|factorPolynomial| #19#) (|factor| (#23# NIL #20# ELT)) (|extendedSubResultantGcd| (((|Record| #101# #103# #102#) $ $) 119 #8# ELT)) (|exquo| ((#15# $ |#1|) NIL #8# ELT) (#14# 98 #8# ELT)) (|exactQuotient!| (#104=($ $ |#1|) 129 #8# ELT) #105=(#17# NIL #8# ELT)) (|exactQuotient| (#104# 128 #8# ELT) #105#) (|eval| (($ $ (|List| #106=(|Equation| $))) NIL T ELT) (($ $ #106#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #18# #18#) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ #5# #107=(|List| |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ #5# #18#) NIL T ELT)) (|discriminant| (#56# NIL #53# ELT)) (|differentiate| #85# #108=(#84# NIL T ELT) #109=(($ $ #5#) NIL T ELT) #55#) (|degree| #87# (#88# 45 T ELT) #89#) (|deepestTail| #54#) (|deepestInitial| (#10# 35 T ELT)) (|convert| ((#79# . #110=($)) NIL (AND (|has| |#1| #111=(|ConvertibleTo| #79#)) (|has| |#2| #111#)) ELT) ((#82# . #110#) NIL (AND (|has| |#1| #112=(|ConvertibleTo| #82#)) (|has| |#2| #112#)) ELT) ((#113=(|InputForm|) . #110#) NIL (AND (|has| |#1| #114=(|ConvertibleTo| #113#)) (|has| |#2| #114#)) ELT) #48# #49# (#50# NIL #36# ELT) (#98# NIL (AND #31# #36#) ELT) #115=((#41# . #110#) NIL #36# ELT)) (|content| (#45# 132 #22# ELT) #71#) (|conditionP| (((|Union| #63# #16#) #59#) NIL #116=(AND (|has| $ #117=(|CharacteristicNonZero|)) #20#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #29#) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) #115# (#51# 18 T ELT) (($ #43#) 19 T ELT) (($ #28#) NIL (OR #35# #30#) ELT) #9#) (|coefficients| ((#107# $) NIL T ELT)) (|coefficient| ((|#1| $ #75#) NIL T ELT) (#84# 47 T ELT) #85#) (|charthRoot| (((|Maybe| $) $) NIL (OR #116# (|has| |#1| #117#)) ELT)) (|characteristic| ((#13#) NIL T CONST)) (|binomThmExpt| (#118=($ $ $ #13#) NIL #53# ELT)) (|before?| #1#) (|associates?| (#2# NIL #8# ELT)) (|annihilate?| #1#) (|Zero| (#25# 13 T CONST)) (|RittWuCompare| (((|Union| #3# #16#) $ $) NIL T ELT)) (|One| (#25# 37 T CONST)) (|LazardQuotient2| (($ $ $ $ #13#) 105 #8# ELT)) (|LazardQuotient| (#118# 104 #8# ELT)) (D #85# #108# #109# #55#) (= #1#) (/ (#104# NIL (|has| |#1| (|Field|)) ELT)) (- #54# (#17# 75 T ELT)) (+ (#17# 85 T ELT)) (** (($ $ #119=(|PositiveInteger|)) NIL T ELT) (($ $ #13#) 70 T ELT)) (* (($ #119# $) NIL T ELT) (($ #13# $) NIL T ELT) (($ #29# . #120=($)) NIL T ELT) (#17# 62 T ELT) (($ $ #28#) NIL #35# ELT) (($ #28# . #120#) NIL #35# ELT) (($ |#1| . #120#) 61 T ELT) (#104# NIL T ELT)))
+(((|NewSparseMultivariatePolynomial| |#1| |#2|) (|Join| (|RecursivePolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) (|CoercibleTo| #1=(|SparseMultivariatePolynomial| |#1| |#2|)) (|RetractableTo| #1#)) (|Ring|) (|OrderedSet|)) (T |NewSparseMultivariatePolynomial|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 12 T ELT)) (|vectorise| ((#5=(|Vector| |#1|) $ #6=(|NonNegativeInteger|)) NIL T ELT)) (|variables| ((#7=(|List| #8=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|unmakeSUP| (#9=($ #10=(|SparseUnivariatePolynomial| |#1|)) NIL T ELT)) (|univariate| ((#11=(|SparseUnivariatePolynomial| $) $ #8#) NIL T ELT) #12=(#13=(#10# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #14=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #15=(#16=($ $) NIL #14# ELT)) (|unit?| (#4# NIL #14# ELT)) (|totalDegree| #17=(#18=(#6# $) NIL T ELT) ((#6# $ #7#) NIL T ELT)) (|subtractIfCan| (#19=(#20=(|Union| $ #21="failed") $ $) NIL T ELT)) (|subResultantsChain| ((#22=(|List| $) $ $) 54 #14# ELT)) (|subResultantGcd| (#23=($ $ $) 50 #14# ELT)) (|squareFreePolynomial| #24=(((|Factored| #11#) #11#) NIL #25=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #26=(#16# NIL #27=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#28=((|Factored| $) $) NIL #27# ELT)) (|solveLinearPolynomialEquation| (((|Union| #29=(|List| #11#) #21#) #29# #11#) NIL #25# ELT)) (|sizeLess?| (#2# NIL #30=(|has| |#1| (|Field|)) ELT)) (|shiftRight| #31=(($ $ #6#) NIL T ELT)) (|shiftLeft| #31#) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL #27# ELT)) (|sample| (#32=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #33=(#21#)) . #34=($)) NIL T ELT) (((|Union| #35=(|Fraction| #36=(|Integer|)) . #33#) . #34#) NIL #37=(|has| |#1| (|RetractableTo| #35#)) ELT) (((|Union| #36# . #33#) . #34#) NIL #38=(|has| |#1| (|RetractableTo| #36#)) ELT) #39=(((|Union| #8# . #33#) . #34#) NIL T ELT) (((|Union| #10# . #33#) $) 10 T ELT)) (|retract| #40=(#41=(|#1| . #42=($)) NIL T ELT) ((#35# . #42#) NIL #37# ELT) ((#36# . #42#) NIL #38# ELT) ((#8# . #42#) NIL T ELT) #12#) (|resultant| (($ $ $ #8#) NIL #43=(|has| |#1| (|CommutativeRing|)) ELT) ((|#1| $ $) 58 #43# ELT)) (|rem| #44=(#23# NIL #30# ELT)) (|reductum| #45=(#16# NIL T ELT)) (|reducedSystem| ((#46=(|Matrix| #36#) . #47=(#48=(|Matrix| $))) NIL #49=(|has| |#1| (|LinearlyExplicitRingOver| #36#)) ELT) ((#50=(|Record| (|:| |mat| #46#) (|:| |vec| (|Vector| #36#))) . #51=(#48# #52=(|Vector| $))) NIL #49# ELT) ((#53=(|Record| (|:| |mat| #54=(|Matrix| |#1|)) (|:| |vec| #5#)) . #51#) NIL T ELT) ((#54# . #47#) NIL T ELT)) (|recip| ((#20# $) NIL T ELT)) (|quo| #44#) (|pseudoRemainder| #55=(#23# NIL T ELT)) (|pseudoQuotient| (#23# 87 #14# ELT)) (|pseudoDivide| (((|Record| #56=(|:| |coef| |#1|) #57=(|:| |quotient| $) #58=(|:| |remainder| $)) $ $) 86 #14# ELT)) (|principalIdeal| (((|Record| (|:| |coef| #22#) #59=(|:| |generator| $)) #22#) NIL #30# ELT)) (|primitivePart| #26# #60=(#61=($ $ #8#) NIL #27# ELT)) (|primitiveMonomials| #62=((#22# $) NIL T ELT)) (|prime?| (#4# NIL #25# ELT)) (|pomopo!| (($ $ |#1| #6# $) NIL T ELT)) (|patternMatch| ((#63=(|PatternMatchResult| #64=(|Float|) . #65=($)) $ #66=(|Pattern| #64#) #63#) NIL (AND (|has| #8# #67=(|PatternMatchable| #64#)) (|has| |#1| #67#)) ELT) ((#68=(|PatternMatchResult| #36# . #65#) $ #69=(|Pattern| #36#) #68#) NIL (AND (|has| #8# #70=(|PatternMatchable| #36#)) (|has| |#1| #70#)) ELT)) (|order| ((#6# $ $) NIL #14# ELT)) (|opposite?| #1#) (|one?| #71=(#4# NIL T ELT)) (|numberOfMonomials| #17#) (|nextItem| (#72=((|Maybe| $) $) NIL #73=(|has| |#1| (|StepThrough|)) ELT)) (|multivariate| (($ #10# #8#) NIL T ELT) (($ #11# #8#) NIL T ELT)) (|multiplyExponents| #31#) (|multiEuclidean| ((#74=(|Union| #22# #21#) #22# $) NIL #30# ELT)) (|monomials| #62#) (|monomial?| #71#) (|monomial| (($ |#1| #6#) NIL T ELT) #75=(($ $ #8# #6#) NIL T ELT) #76=(($ $ #7# #77=(|List| #6#)) NIL T ELT)) (|monicModulo| (#23# 27 T ELT)) (|monicDivide| ((#78=(|Record| #57# #58#) $ $ #8#) NIL T ELT) (#79=(#78# $ $) NIL T ELT)) (|minimumDegree| #17# #80=((#6# $ #8#) NIL T ELT) #81=((#77# $ #7#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #6# #6#) $) NIL T ELT)) (|map| (($ #82=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeSUP| #12#) (|mainVariable| #39#) (|leftReducedSystem| ((#46# . #83=(#52#)) NIL #49# ELT) ((#50# . #84=(#52# $)) NIL #49# ELT) ((#53# . #84#) NIL T ELT) ((#54# . #83#) NIL T ELT)) (|leadingMonomial| #45#) (|leadingCoefficient| #40#) (|lcm| #85=(($ #22#) NIL #27# ELT) #86=(#23# NIL #27# ELT)) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| #6#)) $ $) 37 T ELT)) (|lazyPseudoRemainder| (#23# 41 T ELT)) (|lazyPseudoQuotient| (#23# 47 T ELT)) (|lazyPseudoDivide| (((|Record| #56# (|:| |gap| #6#) #57# #58#) $ $) 46 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|lastSubResultant| (#23# 56 #14# ELT)) (|karatsubaDivide| ((#78# $ #6#) NIL T ELT)) (|isTimes| #87=((#74# $) NIL T ELT)) (|isPlus| #87#) (|isExpt| (((|Union| (|Record| (|:| |var| #8#) (|:| |exponent| #6#)) #21#) $) NIL T ELT)) (|integrate| (#16# NIL #88=(|has| |#1| (|Algebra| #35#)) ELT)) (|init| (#32# NIL #73# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|halfExtendedSubResultantGcd2| (((|Record| #89=(|:| |gcd| $) #90=(|:| |coef2| $)) $ $) 82 #14# ELT)) (|halfExtendedSubResultantGcd1| (((|Record| #89# #91=(|:| |coef1| $)) $ $) 78 #14# ELT)) (|halfExtendedResultant2| (((|Record| #92=(|:| |resultant| |#1|) #90#) $ $) 70 #14# ELT)) (|halfExtendedResultant1| (((|Record| #92# #91#) $ $) 66 #14# ELT)) (|ground?| (#4# 13 T ELT)) (|ground| #40#) (|gcdPolynomial| ((#11# #11# #11#) NIL #27# ELT)) (|gcd| #85# #86#) (|fmecg| (($ $ #6# |#1| $) 26 T ELT)) (|factorSquareFreePolynomial| #24#) (|factorPolynomial| #24#) (|factor| (#28# NIL #25# ELT)) (|extendedSubResultantGcd| (((|Record| #89# #91# #90#) $ $) 74 #14# ELT)) (|extendedResultant| (((|Record| #92# #91# #90#) $ $) 62 #14# ELT)) (|extendedEuclidean| (((|Union| (|Record| #91# #90#) #21#) $ $ $) NIL #30# ELT) (((|Record| #91# #90# #59#) $ $) NIL #30# ELT)) (|exquo| ((#20# $ |#1|) NIL #14# ELT) #93=(#19# NIL #14# ELT)) (|expressIdealMember| (((|Maybe| #22#) #22# $) NIL #30# ELT)) (|eval| (($ $ (|List| #94=(|Equation| $))) NIL T ELT) (($ $ #94#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #22# #22#) NIL T ELT) (($ $ #8# |#1|) NIL T ELT) (($ $ #7# #95=(|List| |#1|)) NIL T ELT) (($ $ #8# $) NIL T ELT) (($ $ #7# #22#) NIL T ELT)) (|euclideanSize| (#18# NIL #30# ELT)) (|elt| ((|#1| $ |#1|) NIL T ELT) #55# ((#96=(|Fraction| $) #96# #96#) NIL #14# ELT) ((|#1| #96# |#1|) NIL #30# ELT) ((#96# $ #96#) NIL #14# ELT)) (|divideExponents| ((#20# $ #6#) NIL T ELT)) (|divide| (#79# NIL #30# ELT)) (|discriminant| (#61# NIL #43# ELT) (#41# NIL #43# ELT)) (|differentiate| #76# #75# #97=(($ $ #7#) NIL T ELT) #98=(#61# NIL T ELT) #45# #31# #99=(($ $ #82#) NIL T ELT) #100=(($ $ #82# #6#) NIL T ELT) (($ $ #82# $) NIL T ELT) #101=(($ $ #102=(|Symbol|)) NIL #103=(|has| |#1| (|PartialDifferentialSpace| #102#)) ELT) #104=(($ $ #105=(|List| #102#)) NIL #103# ELT) #106=(($ $ #102# #6#) NIL #103# ELT) #107=(($ $ #105# #77#) NIL #103# ELT)) (|degree| #17# #80# #81#) (|convert| ((#66# . #108=($)) NIL (AND (|has| #8# #109=(|ConvertibleTo| #66#)) (|has| |#1| #109#)) ELT) ((#69# . #108#) NIL (AND (|has| #8# #110=(|ConvertibleTo| #69#)) (|has| |#1| #110#)) ELT) ((#111=(|InputForm|) . #108#) NIL (AND (|has| #8# #112=(|ConvertibleTo| #111#)) (|has| |#1| #112#)) ELT)) (|content| (#41# NIL #27# ELT) #60#) (|conditionP| (((|Union| #52# #21#) #48#) NIL #113=(AND (|has| $ #114=(|CharacteristicNonZero|)) #25#) ELT)) (|composite| #93# (((|Union| #96# #21#) #96# $) NIL #14# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #36#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #8#) NIL T ELT) (#13# 7 T ELT) (#9# 8 T ELT) (($ #35#) NIL (OR #88# #37#) ELT) #15#) (|coefficients| ((#95# $) NIL T ELT)) (|coefficient| ((|#1| $ #6#) NIL T ELT) #75# #76#) (|charthRoot| (#72# NIL (OR #113# (|has| |#1| #114#)) ELT)) (|characteristic| ((#6#) NIL T CONST)) (|binomThmExpt| (($ $ $ #6#) NIL #43# ELT)) (|before?| #1#) (|associates?| (#2# NIL #14# ELT)) (|annihilate?| #1#) (|Zero| (#32# 28 T CONST)) (|One| (#32# 32 T CONST)) (D #76# #75# #97# #98# #45# #31# #99# #100# #101# #104# #106# #107#) (= #1#) (/ (#115=($ $ |#1|) NIL #30# ELT)) (- (#16# 40 T ELT) #55#) (+ #55#) (** (($ $ #116=(|PositiveInteger|)) NIL T ELT) #31#) (* (($ #116# $) NIL T ELT) (($ #6# $) NIL T ELT) (($ #36# . #117=($)) NIL T ELT) #55# (($ $ #35#) NIL #88# ELT) (($ #35# . #117#) NIL #88# ELT) (($ |#1| . #117#) 31 T ELT) (#115# NIL T ELT)))
+(((|NewSparseUnivariatePolynomial| |#1|) (|Join| (|UnivariatePolynomialCategory| |#1|) (|CoercibleTo| #1=(|SparseUnivariatePolynomial| |#1|)) (|RetractableTo| #1#) (CATEGORY |domain| (SIGNATURE |fmecg| ($ $ #2=(|NonNegativeInteger|) |#1| $)) (SIGNATURE |monicModulo| #3=($ $ $)) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| #2#)) $ $)) (SIGNATURE |lazyPseudoRemainder| #3#) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| |#1|) (|:| |gap| #2#) (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPseudoQuotient| #3#) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |subResultantsChain| ((|List| $) $ $)) (SIGNATURE |lastSubResultant| #3#) (SIGNATURE |extendedSubResultantGcd| ((|Record| #4=(|:| |gcd| $) #5=(|:| |coef1| $) #6=(|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd1| ((|Record| #4# #5#) $ $)) (SIGNATURE |halfExtendedSubResultantGcd2| ((|Record| #4# #6#) $ $)) (SIGNATURE |extendedResultant| ((|Record| #7=(|:| |resultant| |#1|) #5# #6#) $ $)) (SIGNATURE |halfExtendedResultant1| ((|Record| #7# #5#) $ $)) (SIGNATURE |halfExtendedResultant2| ((|Record| #7# #6#) $ $))) |%noBranch|))) (|Ring|)) (T |NewSparseUnivariatePolynomial|))
+((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 #1=(|NonNegativeInteger|)) #2=(|isDomain| *1 #3=(|NewSparseUnivariatePolynomial| *3)) #4=(|ofCategory| *3 #5=(|Ring|)))) (|monicModulo| #6=(*1 *1 *1 *1) #7=(AND #8=(|isDomain| *1 (|NewSparseUnivariatePolynomial| *2)) #9=(|ofCategory| *2 #5#))) (|lazyResidueClass| #10=(*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |polnum| #3#) (|:| |polden| *3) (|:| |power| #1#))) #2# #4#)) (|lazyPseudoRemainder| #6# #7#) (|lazyPseudoDivide| #10# (AND (|isDomain| *2 (|Record| (|:| |coef| *3) (|:| |gap| #1#) (|:| |quotient| #3#) (|:| |remainder| #3#))) #2# #4#)) (|lazyPseudoQuotient| #6# #7#) (|subResultantsChain| #10# (AND (|isDomain| *2 (|List| #3#)) #2# #11=(|ofCategory| *3 #12=(|IntegralDomain|)) #4#)) (|lastSubResultant| #6# (AND #8# (|ofCategory| *2 #12#) #9#)) (|extendedSubResultantGcd| #10# (AND (|isDomain| *2 (|Record| #13=(|:| |gcd| #3#) #14=(|:| |coef1| #3#) #15=(|:| |coef2| #3#))) #2# #11# #4#)) (|halfExtendedSubResultantGcd1| #10# (AND (|isDomain| *2 (|Record| #13# #14#)) #2# #11# #4#)) (|halfExtendedSubResultantGcd2| #10# (AND (|isDomain| *2 (|Record| #13# #15#)) #2# #11# #4#)) (|extendedResultant| #10# (AND (|isDomain| *2 (|Record| #16=(|:| |resultant| *3) #14# #15#)) #2# #11# #4#)) (|halfExtendedResultant1| #10# (AND (|isDomain| *2 (|Record| #16# #14#)) #2# #11# #4#)) (|halfExtendedResultant2| #10# (AND (|isDomain| *2 (|Record| #16# #15#)) #2# #11# #4#)))
+((|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) 13 T ELT)))
+(((|NewSparseUnivariatePolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)))) #1=(|Ring|) #1#) (T |NewSparseUnivariatePolynomialFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|NewSparseUnivariatePolynomial| *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|NewSparseUnivariatePolynomial| *6)) (|isDomain| *1 (|NewSparseUnivariatePolynomialFunctions2| *5 *6)))))
+((|eulerE| (#1=(|#1| (|NonNegativeInteger|) |#1|) 33 #2=(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT)) (|cyclotomic| (#1# 23 T ELT)) (|bernoulliB| (#1# 35 #2# ELT)))
+(((|NumberTheoreticPolynomialFunctions| |#1|) (CATEGORY |package| (SIGNATURE |cyclotomic| #1=(|#1| (|NonNegativeInteger|) |#1|)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |bernoulliB| #1#) (SIGNATURE |eulerE| #1#)) |%noBranch|)) (|CommutativeRing|)) (T |NumberTheoreticPolynomialFunctions|))
+((|eulerE| #1=(*1 *2 *3 *2) #2=(AND #3=(|isDomain| *3 (|NonNegativeInteger|)) #4=(|isDomain| *1 (|NumberTheoreticPolynomialFunctions| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) #5=(|ofCategory| *2 (|CommutativeRing|)))) (|bernoulliB| #1# #2#) (|cyclotomic| #1# (AND #3# #4# #5#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 91 T ELT)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 92 T ELT) ((#2=(|List| $) (|List| |#4|) #3=(|Boolean|)) 120 T ELT)) (|variables| (((|List| |#3|) . #4=($)) 39 T ELT)) (|trivialIdeal?| (#5=(#6=(|Boolean|) $) 32 T ELT)) (|triangular?| (#5# 23 (|has| |#1| . #7=((|IntegralDomain|))) ELT)) (|stronglyReduced?| ((#8=(|Boolean|) |#4| . #9=($)) 107 T ELT) (#10=(#8# $) 103 T ELT)) (|stronglyReduce| ((|#4| |#4| . #11=($)) 98 T ELT)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) . #12=(#13=(|:| |tower| $)))) |#4| $) 135 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #14=(|Boolean|) |#4|) . #15=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT) (((|Union| |#4| . #16=(#17="failed")) $ |#3|) 85 T ELT)) (|sample| (#18=($) 59 T CONST)) (|roughUnitIdeal?| (#5# 28 (|has| |#1| . #7#) ELT)) (|roughSubIdeal?| (#19=(#6# $ $) 30 (|has| |#1| . #7#) ELT)) (|roughEqualIdeals?| (#19# 29 (|has| |#1| . #7#) ELT)) (|roughBase?| (#5# 31 (|has| |#1| . #7#) ELT)) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 99 T ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) . #20=($)) 24 (|has| |#1| . #7#) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) . #20#) 25 (|has| |#1| . #7#) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|rest| ((#21=(|Union| $ #17#) $) 88 T ELT)) (|removeZero| ((|#4| |#4| . #11#) 95 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #22=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #22#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #14# |#4|) . #15#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| . #7#) ELT)) (|reduced?| ((#8# |#4| $ (|Mapping| #8# |#4| |#4|)) 108 T ELT)) (|reduceByQuasiMonic| ((|#4| |#4| . #11#) 93 T ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #23=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 100 T ELT)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 111 T ELT)) (|purelyTranscendental?| ((#3# |#4| . #24=($)) 145 T ELT)) (|purelyAlgebraicLeadingMonomial?| ((#3# |#4| . #24#) 142 T ELT)) (|purelyAlgebraic?| ((#3# |#4| . #24#) 146 T ELT) ((#3# $) 143 T ELT)) (|normalized?| ((#8# |#4| . #9#) 110 T ELT) (#10# 109 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#25=(|Boolean|) |#4| $) 53 (|has| |#4| . #23#) ELT)) (|map!| (($ (|Mapping| |#4| |#4|) $) 117 T ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) . #4#) 38 T ELT)) (|mainVariable?| ((#6# |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| #2#) |#4| |#4| $) 137 T ELT)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) . #12#)) |#4| |#4| $) 136 T ELT)) (|last| (((|Union| |#4| . #16#) . #26=($)) 89 T ELT)) (|invertibleSet| ((#2# |#4| . #27=($)) 138 T ELT)) (|invertibleElseSplit?| (((|Union| #3# #2#) |#4| $) 141 T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #13#)) |#4| $) 140 T ELT) ((#3# |#4| . #24#) 139 T ELT)) (|intersect| ((#2# |#4| . #27#) 134 T ELT) ((#2# (|List| |#4|) . #28=($)) 133 T ELT) ((#2# (|List| |#4|) . #29=(#2#)) 132 T ELT) ((#2# |#4| . #30=(#2#)) 131 T ELT)) (|internalAugment| (($ |#4| $) 126 T ELT) (($ (|List| |#4|) $) 125 T ELT)) (|initials| (((|List| |#4|) $) 113 T ELT)) (|initiallyReduced?| ((#8# |#4| . #9#) 105 T ELT) (#10# 101 T ELT)) (|initiallyReduce| ((|#4| |#4| . #11#) 96 T ELT)) (|infRittWu?| ((#8# $ $) 116 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| . #7#) ELT)) (|headReduced?| ((#8# |#4| . #9#) 106 T ELT) (#10# 102 T ELT)) (|headReduce| ((|#4| |#4| . #11#) 97 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| (((|Union| |#4| . #16#) . #26#) 90 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #25# |#4|) $) 51 T ELT)) (|extendIfCan| ((#21# $ |#4|) 84 T ELT)) (|extend| (($ $ |#4|) 83 T ELT) ((#2# |#4| . #27#) 124 T ELT) ((#2# |#4| . #30#) 123 T ELT) ((#2# (|List| |#4|) . #28#) 122 T ELT) ((#2# (|List| |#4|) . #29#) 121 T ELT)) (|every?| ((#25# (|Mapping| #25# |#4|) . #31=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT)) (|eq?| ((#33=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#33# $) 58 T ELT)) (|empty| (#18# 57 T ELT)) (|degree| (#34=((|NonNegativeInteger|) $) 112 T ELT)) (|count| ((#35=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #23#) ELT) ((#35# (|Mapping| #25# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#36=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #36#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collectQuasiMonic| (($ $) 94 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #37=($)) 13 T ELT) (((|List| |#4|) . #37#) 43 T ELT)) (|coHeight| (#34# 82 (|has| |#3| (|Finite|)) ELT)) (|before?| (#1# 6 T ELT)) (|basicSet| (((|Union| (|Record| #38=(|:| |bas| $) (|:| |top| (|List| |#4|))) . #39=(#17#)) (|List| |#4|) (|Mapping| #8# |#4| |#4|)) 115 T ELT) (((|Union| (|Record| #38# (|:| |top| (|List| |#4|))) . #39#) (|List| |#4|) (|Mapping| #8# |#4|) (|Mapping| #8# |#4| |#4|)) 114 T ELT)) (|autoReduced?| ((#8# $ (|Mapping| #8# |#4| (|List| |#4|))) 104 T ELT)) (|augment| ((#2# |#4| . #27#) 130 T ELT) ((#2# |#4| . #30#) 129 T ELT) ((#2# (|List| |#4|) . #28#) 128 T ELT) ((#2# (|List| |#4|) . #29#) 127 T ELT)) (|any?| ((#25# (|Mapping| #25# |#4|) . #31#) 45 T ELT)) (|algebraicVariables| (((|List| |#3|) $) 87 T ELT)) (|algebraicCoefficients?| ((#3# |#4| . #24#) 144 T ELT)) (|algebraic?| ((#8# |#3| $) 86 T ELT)) (= (#1# 8 T ELT)) (|#| ((#35# $) 44 T ELT)))
+(((|NormalizedTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |NormalizedTriangularSetCategory|))
+NIL
+(|Join| (|RegularTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#4|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T))
+((|numericIfCan| ((#1=(|Union| #2=(|Float|) #3="failed") #4=(|Expression| |#1|) #5=(|PositiveInteger|)) 60 #6=(AND #7=(|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|))) ELT) ((#1# #4#) 52 #6# ELT) ((#1# #8=(|Fraction| #9=(|Polynomial| |#1|)) #5#) 39 #7# ELT) ((#1# #8#) 35 #7# ELT) ((#1# #9# #5#) 30 #10=(|has| |#1| (|Ring|)) ELT) ((#1# #9#) 24 #10# ELT)) (|numeric| ((#2# #4# #5#) 92 #6# ELT) ((#2# #4#) 87 #6# ELT) ((#2# #8# #5#) 84 #7# ELT) ((#2# #8#) 81 #7# ELT) ((#2# #9# #5#) 80 #10# ELT) ((#2# #9#) 77 #10# ELT) ((#2# |#1| #5#) 73 T ELT) ((#2# |#1|) 22 T ELT)) (|complexNumericIfCan| ((#11=(|Union| #12=(|Complex| #2#) #3#) #13=(|Expression| #14=(|Complex| |#1|)) #5#) 68 #6# ELT) ((#11# #13#) 58 #6# ELT) ((#11# #4# #5#) 61 #6# ELT) ((#11# #4#) 59 #6# ELT) ((#11# #15=(|Fraction| #16=(|Polynomial| #14#)) #5#) 44 #7# ELT) ((#11# #15#) 43 #7# ELT) ((#11# #8# #5#) 38 #7# ELT) ((#11# #8#) 37 #7# ELT) ((#11# #9# #5#) 28 #10# ELT) ((#11# #9#) 26 #10# ELT) ((#11# #16# #5#) 18 #17=(|has| |#1| (|CommutativeRing|)) ELT) ((#11# #16#) 15 #17# ELT)) (|complexNumeric| ((#12# #13# #5#) 95 #6# ELT) ((#12# #13#) 94 #6# ELT) ((#12# #4# #5#) 93 #6# ELT) ((#12# #4#) 91 #6# ELT) ((#12# #15# #5#) 86 #7# ELT) ((#12# #15#) 85 #7# ELT) ((#12# #8# #5#) 83 #7# ELT) ((#12# #8#) 82 #7# ELT) ((#12# #9# #5#) 79 #10# ELT) ((#12# #9#) 78 #10# ELT) ((#12# #16# #5#) 75 #17# ELT) ((#12# #16#) 74 #17# ELT) ((#12# #14# #5#) 17 #17# ELT) ((#12# #14#) 13 #17# ELT) ((#12# |#1| #5#) 27 T ELT) ((#12# |#1|) 25 T ELT)))
+(((|Numeric| |#1|) (CATEGORY |package| (SIGNATURE |numeric| (#1=(|Float|) |#1|)) (SIGNATURE |numeric| (#1# |#1| #2=(|PositiveInteger|))) (SIGNATURE |complexNumeric| (#3=(|Complex| #1#) |#1|)) (SIGNATURE |complexNumeric| (#3# |#1| #2#)) (IF #4=(|has| |#1| (|CommutativeRing|)) (PROGN (SIGNATURE |complexNumeric| (#3# #5=(|Complex| |#1|))) (SIGNATURE |complexNumeric| (#3# #5# #2#)) (SIGNATURE |complexNumeric| (#3# #6=(|Polynomial| #5#))) (SIGNATURE |complexNumeric| (#3# #6# #2#))) |%noBranch|) (IF #7=(|has| |#1| (|Ring|)) (PROGN (SIGNATURE |numeric| (#1# #8=(|Polynomial| |#1|))) (SIGNATURE |numeric| (#1# #8# #2#)) (SIGNATURE |complexNumeric| (#3# #8#)) (SIGNATURE |complexNumeric| (#3# #8# #2#))) |%noBranch|) (IF #9=(|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |numeric| (#1# #10=(|Fraction| #8#))) (SIGNATURE |numeric| (#1# #10# #2#)) (SIGNATURE |complexNumeric| (#3# #10#)) (SIGNATURE |complexNumeric| (#3# #10# #2#)) (SIGNATURE |complexNumeric| (#3# #11=(|Fraction| #6#))) (SIGNATURE |complexNumeric| (#3# #11# #2#)) (IF #12=(|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |numeric| (#1# #13=(|Expression| |#1|))) (SIGNATURE |numeric| (#1# #13# #2#)) (SIGNATURE |complexNumeric| (#3# #13#)) (SIGNATURE |complexNumeric| (#3# #13# #2#)) (SIGNATURE |complexNumeric| (#3# #14=(|Expression| #5#))) (SIGNATURE |complexNumeric| (#3# #14# #2#))) |%noBranch|)) |%noBranch|) (IF #4# (PROGN (SIGNATURE |complexNumericIfCan| (#15=(|Union| #3# #16="failed") #6#)) (SIGNATURE |complexNumericIfCan| (#15# #6# #2#))) |%noBranch|) (IF #7# (PROGN (SIGNATURE |numericIfCan| (#17=(|Union| #1# #16#) #8#)) (SIGNATURE |numericIfCan| (#17# #8# #2#)) (SIGNATURE |complexNumericIfCan| (#15# #8#)) (SIGNATURE |complexNumericIfCan| (#15# #8# #2#))) |%noBranch|) (IF #9# (PROGN (SIGNATURE |numericIfCan| (#17# #10#)) (SIGNATURE |numericIfCan| (#17# #10# #2#)) (SIGNATURE |complexNumericIfCan| (#15# #10#)) (SIGNATURE |complexNumericIfCan| (#15# #10# #2#)) (SIGNATURE |complexNumericIfCan| (#15# #11#)) (SIGNATURE |complexNumericIfCan| (#15# #11# #2#)) (IF #12# (PROGN (SIGNATURE |numericIfCan| (#17# #13#)) (SIGNATURE |numericIfCan| (#17# #13# #2#)) (SIGNATURE |complexNumericIfCan| (#15# #13#)) (SIGNATURE |complexNumericIfCan| (#15# #13# #2#)) (SIGNATURE |complexNumericIfCan| (#15# #14#)) (SIGNATURE |complexNumericIfCan| (#15# #14# #2#))) |%noBranch|)) |%noBranch|)) (|ConvertibleTo| #1#)) (T |Numeric|))
+((|complexNumericIfCan| #1=(*1 *2 *3 *4) (|partial| AND #2=(|isDomain| *3 (|Expression| #3=(|Complex| *5))) #4=(|isDomain| *4 (|PositiveInteger|)) #5=(|ofCategory| *5 #6=(|IntegralDomain|)) #7=(|ofCategory| *5 #8=(|OrderedSet|)) #9=(|ofCategory| *5 #10=(|ConvertibleTo| #11=(|Float|))) #12=(|isDomain| *2 (|Complex| #11#)) #13=(|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| #14=(*1 *2 *3) (|partial| AND #15=(|isDomain| *3 (|Expression| #16=(|Complex| *4))) #17=(|ofCategory| *4 #6#) #18=(|ofCategory| *4 #8#) #19=(|ofCategory| *4 #10#) #12# #20=(|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| #1# (|partial| AND #21=(|isDomain| *3 (|Expression| *5)) #4# #5# #7# #9# #12# #13#)) (|complexNumericIfCan| #14# (|partial| AND #22=(|isDomain| *3 (|Expression| *4)) #17# #18# #19# #12# #20#)) (|numericIfCan| #1# (|partial| AND #21# #4# #5# #7# #23=(|ofCategory| *5 #24=(|ConvertibleTo| *2)) #25=(|isDomain| *2 #11#) #13#)) (|numericIfCan| #14# (|partial| AND #22# #17# #18# #26=(|ofCategory| *4 #24#) #25# #20#)) (|complexNumericIfCan| #1# (|partial| AND #27=(|isDomain| *3 (|Fraction| #28=(|Polynomial| #3#))) #4# #5# #9# #12# #13#)) (|complexNumericIfCan| #14# (|partial| AND #29=(|isDomain| *3 (|Fraction| #30=(|Polynomial| #16#))) #17# #19# #12# #20#)) (|complexNumericIfCan| #1# (|partial| AND #31=(|isDomain| *3 (|Fraction| #32=(|Polynomial| *5))) #4# #5# #9# #12# #13#)) (|complexNumericIfCan| #14# (|partial| AND #33=(|isDomain| *3 (|Fraction| #34=(|Polynomial| *4))) #17# #19# #12# #20#)) (|numericIfCan| #1# (|partial| AND #31# #4# #5# #23# #25# #13#)) (|numericIfCan| #14# (|partial| AND #33# #17# #26# #25# #20#)) (|complexNumericIfCan| #1# (|partial| AND #35=(|isDomain| *3 #32#) #4# #36=(|ofCategory| *5 #37=(|Ring|)) #9# #12# #13#)) (|complexNumericIfCan| #14# (|partial| AND #38=(|isDomain| *3 #34#) #39=(|ofCategory| *4 #37#) #19# #12# #20#)) (|numericIfCan| #1# (|partial| AND #35# #4# #36# #23# #25# #13#)) (|numericIfCan| #14# (|partial| AND #38# #39# #26# #25# #20#)) (|complexNumericIfCan| #1# (|partial| AND #40=(|isDomain| *3 #28#) #4# #41=(|ofCategory| *5 #42=(|CommutativeRing|)) #9# #12# #13#)) (|complexNumericIfCan| #14# (|partial| AND #43=(|isDomain| *3 #30#) #44=(|ofCategory| *4 #42#) #19# #12# #20#)) (|complexNumeric| #1# (AND #2# #4# #5# #7# #9# #12# #13#)) (|complexNumeric| #14# (AND #15# #17# #18# #19# #12# #20#)) (|complexNumeric| #1# (AND #21# #4# #5# #7# #9# #12# #13#)) (|complexNumeric| #14# (AND #22# #17# #18# #19# #12# #20#)) (|numeric| #1# (AND #21# #4# #5# #7# #23# #25# #13#)) (|numeric| #14# (AND #22# #17# #18# #26# #25# #20#)) (|complexNumeric| #1# (AND #27# #4# #5# #9# #12# #13#)) (|complexNumeric| #14# (AND #29# #17# #19# #12# #20#)) (|complexNumeric| #1# (AND #31# #4# #5# #9# #12# #13#)) (|complexNumeric| #14# (AND #33# #17# #19# #12# #20#)) (|numeric| #1# (AND #31# #4# #5# #23# #25# #13#)) (|numeric| #14# (AND #33# #17# #26# #25# #20#)) (|complexNumeric| #1# (AND #35# #4# #36# #9# #12# #13#)) (|complexNumeric| #14# (AND #38# #39# #19# #12# #20#)) (|numeric| #1# (AND #35# #4# #36# #23# #25# #13#)) (|numeric| #14# (AND #38# #39# #26# #25# #20#)) (|complexNumeric| #1# (AND #40# #4# #41# #9# #12# #13#)) (|complexNumeric| #14# (AND #43# #44# #19# #12# #20#)) (|complexNumeric| #1# (AND (|isDomain| *3 #3#) #4# #41# #9# #12# #13#)) (|complexNumeric| #14# (AND (|isDomain| *3 #16#) #44# #19# #12# #20#)) (|complexNumeric| #1# (AND #4# #12# #45=(|isDomain| *1 (|Numeric| *3)) #46=(|ofCategory| *3 #10#))) (|complexNumeric| #14# (AND #12# #45# #46#)) (|numeric| #1# (AND #4# #25# #45# #47=(|ofCategory| *3 #24#))) (|numeric| #14# (AND #25# #45# #47#)))
+((|ScanRoman| (#1=(#2=(|PositiveInteger|) #3=(|String|)) 90 T ELT)) (|ScanFloatIgnoreSpacesIfCan| (((|Union| #4=(|Float|) "failed") #3#) 36 T ELT)) (|ScanFloatIgnoreSpaces| ((#4# #3#) 34 T ELT)) (|ScanArabic| (#1# 64 T ELT)) (|FormatRoman| (#5=(#3# #2#) 74 T ELT)) (|FormatArabic| (#5# 63 T ELT)))
+(((|NumberFormats|) (CATEGORY |package| (SIGNATURE |FormatArabic| #1=(#2=(|String|) #3=(|PositiveInteger|))) (SIGNATURE |ScanArabic| #4=(#3# #2#)) (SIGNATURE |FormatRoman| #1#) (SIGNATURE |ScanRoman| #4#) (SIGNATURE |ScanFloatIgnoreSpaces| (#5=(|Float|) #2#)) (SIGNATURE |ScanFloatIgnoreSpacesIfCan| ((|Union| #5# "failed") #2#)))) (T |NumberFormats|))
+((|ScanFloatIgnoreSpacesIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *3 #3=(|String|)) #4=(|isDomain| *2 (|Float|)) #5=(|isDomain| *1 (|NumberFormats|)))) (|ScanFloatIgnoreSpaces| #1# (AND #2# #4# #5#)) (|ScanRoman| #1# #6=(AND #2# (|isDomain| *2 #7=(|PositiveInteger|)) #5#)) (|FormatRoman| #1# #8=(AND (|isDomain| *3 #7#) (|isDomain| *2 #3#) #5#)) (|ScanArabic| #1# #6#) (|FormatArabic| #1# #8#))
+((|rk4qc| ((#1=(|Void|) #2=(|Vector| #3=(|Float|)) #4=(|Integer|) #3# #5=(|Record| (|:| |tryValue| #3#) (|:| |did| #3#) (|:| |next| #3#)) #3# #2# #6=(|Mapping| #1# #2# #2# #3#) #2# #2# #2# #2# #2# #2# #2#) 54 T ELT) ((#1# #2# #4# #3# #5# #3# #2# #6#) 51 T ELT)) (|rk4f| ((#1# #2# #4# #3# #3# #4# #6#) 61 T ELT)) (|rk4a| ((#1# #2# #4# #3# #3# #3# #3# #4# #6#) 49 T ELT)) (|rk4| ((#1# #2# #4# #3# #3# #6# #2# #2# #2# #2#) 63 T ELT) ((#1# #2# #4# #3# #3# #6#) 62 T ELT)))
+(((|NumericalOrdinaryDifferentialEquations|) (CATEGORY |package| (SIGNATURE |rk4| (#1=(|Void|) #2=(|Vector| #3=(|Float|)) #4=(|Integer|) #3# #3# #5=(|Mapping| #1# #2# #2# #3#))) (SIGNATURE |rk4| (#1# #2# #4# #3# #3# #5# #2# #2# #2# #2#)) (SIGNATURE |rk4a| (#1# #2# #4# #3# #3# #3# #3# #4# #5#)) (SIGNATURE |rk4qc| (#1# #2# #4# #3# #6=(|Record| (|:| |tryValue| #3#) (|:| |did| #3#) (|:| |next| #3#)) #3# #2# #5#)) (SIGNATURE |rk4qc| (#1# #2# #4# #3# #6# #3# #2# #5# #2# #2# #2# #2# #2# #2# #2#)) (SIGNATURE |rk4f| (#1# #2# #4# #3# #3# #4# #5#)))) (T |NumericalOrdinaryDifferentialEquations|))
+((|rk4f| (*1 *2 *3 *4 *5 *5 *4 *6) #1=(AND #2=(|isDomain| *4 (|Integer|)) (|isDomain| *6 #3=(|Mapping| #4=(|Void|) #5=(|Vector| *5) #5# #6=(|Float|))) #7=(|isDomain| *3 (|Vector| #6#)) #8=(|isDomain| *5 #6#) #9=(|isDomain| *2 #4#) #10=(|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|)))) (|rk4qc| (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) #11=(AND #2# (|isDomain| *6 (|Record| (|:| |tryValue| #6#) (|:| |did| #6#) (|:| |next| #6#))) (|isDomain| *7 #3#) #7# #8# #9# #10#)) (|rk4qc| (*1 *2 *3 *4 *5 *6 *5 *3 *7) #11#) (|rk4a| (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) #1#) (|rk4| (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) #1#) (|rk4| (*1 *2 *3 *4 *5 *5 *6) #1#))
+((|trapezoidalo| (#1=(#2=(|Record| (|:| |value| #3=(|Float|)) (|:| |error| #3#) (|:| |totalpts| #4=(|Integer|)) (|:| |success| (|Boolean|))) #5=(|Mapping| #3# #3#) #3# #3# #3# #3# #4# #4#) 65 T ELT)) (|trapezoidal| (#1# 40 T ELT)) (|simpsono| (#1# 64 T ELT)) (|simpson| (#1# 38 T ELT)) (|rombergo| (#1# 63 T ELT)) (|romberg| (#1# 24 T ELT)) (|atrapezoidal| (#6=(#2# #5# #3# #3# #3# #3# #4# #4# #4#) 41 T ELT)) (|asimpson| (#6# 39 T ELT)) (|aromberg| (#6# 37 T ELT)))
+(((|NumericalQuadrature|) (CATEGORY |package| (SIGNATURE |aromberg| #1=(#2=(|Record| (|:| |value| #3=(|Float|)) (|:| |error| #3#) (|:| |totalpts| #4=(|Integer|)) (|:| |success| (|Boolean|))) #5=(|Mapping| #3# #3#) #3# #3# #3# #3# #4# #4# #4#)) (SIGNATURE |asimpson| #1#) (SIGNATURE |atrapezoidal| #1#) (SIGNATURE |romberg| #6=(#2# #5# #3# #3# #3# #3# #4# #4#)) (SIGNATURE |simpson| #6#) (SIGNATURE |trapezoidal| #6#) (SIGNATURE |rombergo| #6#) (SIGNATURE |simpsono| #6#) (SIGNATURE |trapezoidalo| #6#))) (T |NumericalQuadrature|))
+((|trapezoidalo| #1=(*1 *2 *3 *4 *4 *4 *4 *5 *5) #2=(AND (|isDomain| *3 (|Mapping| #3=(|Float|) #3#)) (|isDomain| *4 #3#) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| #4=(|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 #4#))) (|simpsono| #1# #2#) (|rombergo| #1# #2#) (|trapezoidal| #1# #2#) (|simpson| #1# #2#) (|romberg| #1# #2#) (|atrapezoidal| #5=(*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) #2#) (|asimpson| #5# #2#) (|aromberg| #5# #2#))
+((|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) 69 T ELT)))
+(((|NumericTubePlot| |#1|) (CATEGORY |package| (SIGNATURE |tube| ((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)))) (|PlottableSpaceCurveCategory|)) (T |NumericTubePlot|))
+((|tube| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|TubePlot| *3)) (|isDomain| *1 (|NumericTubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))))
+((|sign| (((|Integer|) $) 17 T ELT)) (|negative?| (((|Boolean|) $) 10 T ELT)) (|abs| (($ $) 19 T ELT)))
+(((|OrderedAbelianGroup&| |#1|) (CATEGORY |package| (SIGNATURE |abs| (|#1| |#1|)) (SIGNATURE |sign| ((|Integer|) |#1|)) (SIGNATURE |negative?| ((|Boolean|) |#1|))) (|OrderedAbelianGroup|)) (T |OrderedAbelianGroup&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 35 T ELT)) (|sign| (((|Integer|) $) 38 T ELT)) (|sample| (#3=($) 30 T CONST)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|negative?| (((|Boolean|) $) 39 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|abs| (($ $) 37 T ELT)) (|Zero| (#3# 29 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (- (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (+ (($ $ $) 25 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT) (($ (|Integer|) $) 40 T ELT)))
+(((|OrderedAbelianGroup|) (|Category|)) (T |OrderedAbelianGroup|))
+((|negative?| (*1 *2 *1) (AND (|ofCategory| *1 (|OrderedAbelianGroup|)) (|isDomain| *2 (|Boolean|)))) (|sign| (*1 *2 *1) (AND (|ofCategory| *1 (|OrderedAbelianGroup|)) (|isDomain| *2 (|Integer|)))) (|abs| (*1 *1 *1) (|ofCategory| *1 (|OrderedAbelianGroup|))))
+(|Join| (|OrderedCancellationAbelianMonoid|) (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |negative?| ((|Boolean|) $)) (SIGNATURE |sign| ((|Integer|) $)) (SIGNATURE |abs| ($ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|positive?| (((|Boolean|) $) 10 T ELT)))
+(((|OrderedAbelianMonoid&| |#1|) (CATEGORY |package| (SIGNATURE |positive?| ((|Boolean|) |#1|))) (|OrderedAbelianMonoid|)) (T |OrderedAbelianMonoid&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|sample| (#3=($) 30 T CONST)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 29 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (+ (($ $ $) 25 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT)))
+(((|OrderedAbelianMonoid|) (|Category|)) (T |OrderedAbelianMonoid|))
+((|positive?| (*1 *2 *1) (AND (|ofCategory| *1 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|OrderedAbelianSemiGroup|) (|AbelianMonoid|) (CATEGORY |domain| (SIGNATURE |positive?| ((|Boolean|) $))))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|sup| (($ $ $) 36 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 35 T ELT)) (|sample| (#3=($) 30 T CONST)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 29 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (+ (($ $ $) 25 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT)))
+(((|OrderedAbelianMonoidSup|) (|Category|)) (T |OrderedAbelianMonoidSup|))
+((|sup| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedAbelianMonoidSup|))))
+(|Join| (|OrderedCancellationAbelianMonoid|) (CATEGORY |domain| (SIGNATURE |sup| ($ $ $))))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|min| (#2=($ $ $) 23 T ELT)) (|max| (#2# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (>= (#3=((|Boolean|) $ $) 21 T ELT)) (> (#3# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#3# 20 T ELT)) (< (#3# 18 T ELT)) (+ (($ $ $) 25 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT)))
+(((|OrderedAbelianSemiGroup|) (|Category|)) (T |OrderedAbelianSemiGroup|))
+NIL
+(|Join| (|OrderedSet|) (|AbelianSemiGroup|))
+(((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|zero?| (#1=(#2=(|Boolean|) $) 42 T ELT)) (|retractIfCan| (((|Union| #3=(|Integer|) #4="failed") $) NIL T ELT) (#5=((|Union| #6=(|Fraction| #3#) #4#) $) NIL T ELT) (((|Union| |#2| #4#) $) 45 T ELT)) (|retract| ((#3# $) NIL T ELT) (#7=(#6# $) NIL T ELT) (#8=(|#2| $) 43 T ELT)) (|rationalIfCan| (#5# 78 T ELT)) (|rational?| (#1# 72 T ELT)) (|rational| (#7# 76 T ELT)) (|norm| (#8# 26 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 23 T ELT)) (|inv| (#9=($ $) 58 T ELT)) (|convert| (((|InputForm|) $) 67 T ELT)) (|conjugate| (#9# 21 T ELT)) (|coerce| (((|OutputForm|) $) 53 T ELT) (($ #3#) 40 T ELT) (($ |#2|) 38 T ELT) (($ #6#) NIL T ELT)) (|characteristic| ((#10=(|NonNegativeInteger|)) 10 T CONST)) (|abs| (#8# 71 T ELT)) (= (#11=(#2# $ $) 30 T ELT)) (< (#11# 69 T ELT)) (- (#9# 32 T ELT) #12=(#13=($ $ $) NIL T ELT)) (+ (#13# 31 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #3# $) 36 T ELT) #12# (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
+(((|OctonionCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE < #1=(#2=(|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |inv| #3=(|#1| |#1|)) (SIGNATURE |rationalIfCan| #4=((|Union| #5=(|Fraction| #6=(|Integer|)) #7="failed") |#1|)) (SIGNATURE |rational| #8=(#5# |#1|)) (SIGNATURE |rational?| #9=(#2# |#1|)) (SIGNATURE |abs| #10=(|#2| |#1|)) (SIGNATURE |norm| #10#) (SIGNATURE |conjugate| #3#) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #7#) |#1|)) (SIGNATURE |retract| #10#) (SIGNATURE |retract| #8#) (SIGNATURE |retractIfCan| #4#) (SIGNATURE |coerce| (|#1| #5#)) (SIGNATURE |retract| (#6# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #6# #7#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |characteristic| (#11=(|NonNegativeInteger|)) |constant|) (SIGNATURE |coerce| (|#1| #6#)) (SIGNATURE * #12=(|#1| |#1| |#1|)) (SIGNATURE - #12#) (SIGNATURE - #3#) (SIGNATURE * (|#1| #6# |#1|)) (SIGNATURE * (|#1| #11# |#1|)) (SIGNATURE |zero?| #9#) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + #12#) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = #1#)) (|OctonionCategory| |#2|) (|CommutativeRing|)) (T |OctonionCategory&|))
+((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OctonionCategory&| *3 *4)) (|ofCategory| *3 (|OctonionCategory| *4)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|size| (((|NonNegativeInteger|)) 67 (|has| |#1| . #3=((|Finite|))) ELT)) (|sample| (#4=($) 23 T CONST)) (|retractIfCan| (((|Union| #5=(|Integer|) . #6=("failed")) . #7=($)) 109 (|has| |#1| . #8=((|RetractableTo| #5#))) ELT) (((|Union| #9=(|Fraction| #5#) . #6#) . #7#) 106 (|has| |#1| . #10=((|RetractableTo| #9#))) ELT) (((|Union| |#1| . #6#) . #7#) 103 T ELT)) (|retract| ((#5# . #11=($)) 108 (|has| |#1| . #8#) ELT) ((#9# . #11#) 105 (|has| |#1| . #10#) ELT) ((|#1| . #11#) 104 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|real| ((|#1| $) 93 T ELT)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 80 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (((|Boolean|) $) 82 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational| (((|Fraction| (|Integer|)) $) 81 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|random| (($) 70 (|has| |#1| . #3#) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (|norm| ((|#1| $) 85 T ELT)) (|min| (#12=($ $ $) 71 (|has| |#1| . #13=((|OrderedSet|))) ELT)) (|max| (#12# 72 (|has| |#1| . #13#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 95 T ELT)) (|lookup| ((#14=(|PositiveInteger|) $) 69 (|has| |#1| . #3#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 79 (|has| |#1| (|Field|)) ELT)) (|index| (($ #14#) 68 (|has| |#1| . #3#) ELT)) (|imagk| ((|#1| $) 90 T ELT)) (|imagj| ((|#1| $) 91 T ELT)) (|imagi| ((|#1| $) 92 T ELT)) (|imagK| ((|#1| $) 86 T ELT)) (|imagJ| ((|#1| $) 87 T ELT)) (|imagI| ((|#1| $) 88 T ELT)) (|imagE| ((|#1| $) 89 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 101 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|Equation| |#1|)) 99 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| (|Equation| |#1|))) 98 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| #15=(|Symbol|)) (|List| |#1|)) 97 (|has| |#1| (|InnerEvalable| #15# |#1|)) ELT) (($ $ #15# |#1|) 96 (|has| |#1| (|InnerEvalable| #15# |#1|)) ELT)) (|elt| (($ $ |#1|) 102 (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|convert| (((|InputForm|) $) 77 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT)) (|conjugate| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT) (($ #9#) 107 (|has| |#1| . #10#) ELT)) (|charthRoot| (((|Maybe| $) $) 78 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| ((|#1| $) 83 (|has| |#1| (|RealNumberSystem|)) ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#16=((|Boolean|) $ $) 73 (|has| |#1| . #13#) ELT)) (> (#16# 75 (|has| |#1| . #13#) ELT)) (= (#1# 8 T ELT)) (<= (#16# 74 (|has| |#1| . #13#) ELT)) (< (#16# 76 (|has| |#1| . #13#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #17=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #17#) 53 T ELT)))
+(((|OctonionCategory| |#1|) (|Category|) (|CommutativeRing|)) (T |OctonionCategory|))
+((|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|real| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagi| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagj| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagk| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagE| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagI| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagJ| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagK| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|octon| (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|abs| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|RealNumberSystem|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|inv| (*1 *1 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|)))))
+(|Join| (|Algebra| |t#1|) (|FullyRetractableTo| |t#1|) (|FullyEvalableOver| |t#1|) (CATEGORY |domain| (SIGNATURE |conjugate| ($ $)) (SIGNATURE |real| (|t#1| $)) (SIGNATURE |imagi| (|t#1| $)) (SIGNATURE |imagj| (|t#1| $)) (SIGNATURE |imagk| (|t#1| $)) (SIGNATURE |imagE| (|t#1| $)) (SIGNATURE |imagI| (|t#1| $)) (SIGNATURE |imagJ| (|t#1| $)) (SIGNATURE |imagK| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |octon| ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (|Finite|)) (ATTRIBUTE (|Finite|)) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |abs| (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (|Field|)) (SIGNATURE |inv| ($ $)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1=(|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Finite|) |has| |#1| (|Finite|)) ((|FullyEvalableOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|RetractableTo| #1#) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 35 T ELT)) (|sample| (#3=($) 30 T CONST)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 29 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (+ (($ $ $) 25 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT)))
+(((|OrderedCancellationAbelianMonoid|) (|Category|)) (T |OrderedCancellationAbelianMonoid|))
+NIL
+(|Join| (|OrderedAbelianMonoid|) (|CancellationAbelianMonoid|))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|subtractIfCan| ((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|size| (#8=(#9=(|NonNegativeInteger|)) NIL #10=(|has| |#1| (|Finite|)) ELT)) (|sample| (#11=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #12=(#7#)) . #13=($)) NIL T ELT) (((|Union| #14=(|Quaternion| |#1|) . #12#) $) 35 T ELT) (((|Union| #15=(|Integer|) . #12#) . #13#) NIL #16=(OR (|has| #14# #17=(|RetractableTo| #15#)) (|has| |#1| #17#)) ELT) (#18=((|Union| #19=(|Fraction| #15#) . #12#) . #13#) NIL #20=(OR (|has| #14# #21=(|RetractableTo| #19#)) (|has| |#1| #21#)) ELT)) (|retract| #22=(#23=(|#1| . #24=($)) NIL T ELT) ((#14# $) 33 T ELT) ((#15# . #24#) NIL #16# ELT) (#25=(#19# . #24#) NIL #20# ELT)) (|recip| ((#6# $) NIL T ELT)) (|real| (#23# 16 T ELT)) (|rationalIfCan| (#18# NIL #26=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#5# NIL #26# ELT)) (|rational| (#25# NIL #26# ELT)) (|random| (#11# NIL #10# ELT)) (|opposite?| #1#) (|one?| #4#) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ #14# #14#) 29 T ELT)) (|norm| #22#) (|min| #27=(#28=($ $ $) NIL #29=(|has| |#1| (|OrderedSet|)) ELT)) (|max| #27#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|lookup| ((#30=(|PositiveInteger|) $) NIL #10# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#31=($ $) NIL (|has| |#1| (|Field|)) ELT)) (|index| (($ #30#) NIL #10# ELT)) (|imagk| (#23# 22 T ELT)) (|imagj| (#23# 20 T ELT)) (|imagi| (#23# 18 T ELT)) (|imagK| (#23# 26 T ELT)) (|imagJ| (#23# 25 T ELT)) (|imagI| (#23# 24 T ELT)) (|imagE| (#23# 23 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|eval| (($ $ #32=(|List| |#1|) #32#) NIL #33=(|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) NIL #33# ELT) (($ $ #34=(|Equation| |#1|)) NIL #33# ELT) (($ $ (|List| #34#)) NIL #33# ELT) (($ $ (|List| #35=(|Symbol|)) #32#) NIL #36=(|has| |#1| (|InnerEvalable| #35# |#1|)) ELT) (($ $ #35# |#1|) NIL #36# ELT)) (|elt| (#37=($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|convert| ((#38=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #38#)) ELT)) (|conjugate| #39=(#31# NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #14#) 30 T ELT) (($ #19#) NIL #20# ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (#8# NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|abs| (#23# NIL (|has| |#1| (|RealNumberSystem|)) ELT)) (|Zero| (#11# 8 T CONST)) (|One| (#11# 12 T CONST)) (>= #40=(#2# NIL #29# ELT)) (> #40#) (= #1#) (<= #40#) (< #40#) (- #39# #41=(#28# NIL T ELT)) (+ #41#) (** (($ $ #30#) NIL T ELT) (($ $ #9#) NIL T ELT)) (* (($ #30# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #15# . #42=($)) NIL T ELT) (#28# 40 T ELT) (#37# NIL T ELT) (($ |#1| . #42#) NIL T ELT)))
+(((|Octonion| |#1|) (|Join| (|OctonionCategory| |#1|) (|FullyRetractableTo| #1=(|Quaternion| |#1|)) (CATEGORY |domain| (SIGNATURE |octon| ($ #1# #1#)))) (|CommutativeRing|)) (T |Octonion|))
+((|octon| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Quaternion| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *1 (|Octonion| *3)))))
+((|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) 20 T ELT)))
+(((|OctonionCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) (|OctonionCategory| |#2|) #1=(|CommutativeRing|) (|OctonionCategory| |#4|) #1#) (T |OctonionCategoryFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|CommutativeRing|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|OctonionCategory| *6)) (|isDomain| *1 (|OctonionCategoryFunctions2| *4 *5 *2 *6)) (|ofCategory| *4 (|OctonionCategory| *5)))))
+((|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) 19 T ELT)))
+(((|ConstantLODE| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |constDsolve| ((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)))) (|Join| (|EuclideanDomain|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|)) (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (T |ConstantLODE|))
+((|constDsolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Symbol|)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#) (|CharacteristicZero|))) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedFunctionSpace| *6) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (|isDomain| *2 (|Record| (|:| |particular| *4) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|ConstantLODE| *6 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+((|solve| ((#1=(|Union| |#2| #2="failed") |#2| #3=(|BasicOperator|) #4=(|Equation| |#2|) #5=(|List| |#2|)) 28 T ELT) ((#1# #4# #3# #4# #5#) 29 T ELT) ((#6=(|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| #5#)) |#2| #2#) |#2| #3# #7=(|Symbol|)) 17 T ELT) ((#6# #4# #3# #7#) 18 T ELT) ((#8=(|Union| (|Record| (|:| |particular| #9=(|Vector| |#2|)) (|:| |basis| #10=(|List| #9#))) #2#) #5# #11=(|List| #3#) #7#) 24 T ELT) ((#8# (|List| #4#) #11# #7#) 26 T ELT) (((|Union| #10# #2#) #12=(|Matrix| |#2|) #7#) 37 T ELT) ((#8# #12# #9# #7#) 35 T ELT)))
+(((|ElementaryFunctionODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|Union| (|Record| (|:| |particular| #2=(|Vector| |#2|)) (|:| |basis| #3=(|List| #2#))) #4="failed") #5=(|Matrix| |#2|) #2# #6=(|Symbol|))) (SIGNATURE |solve| ((|Union| #3# #4#) #5# #6#)) (SIGNATURE |solve| (#1# (|List| #7=(|Equation| |#2|)) #8=(|List| #9=(|BasicOperator|)) #6#)) (SIGNATURE |solve| (#1# #10=(|List| |#2|) #8# #6#)) (SIGNATURE |solve| (#11=(|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| #10#)) |#2| #4#) #7# #9# #6#)) (SIGNATURE |solve| (#11# |#2| #9# #6#)) (SIGNATURE |solve| (#12=(|Union| |#2| #4#) #7# #9# #7# #10#)) (SIGNATURE |solve| (#12# |#2| #9# #7# #10#))) (|Join| (|EuclideanDomain|) (|RetractableTo| #13=(|Integer|)) (|LinearlyExplicitRingOver| #13#) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (T |ElementaryFunctionODESolver|))
+((|solve| (*1 *2 *2 *3 *4 *5) (|partial| AND (|isDomain| *3 #1=(|BasicOperator|)) (|isDomain| *4 #2=(|Equation| *2)) #3=(|isDomain| *5 (|List| *2)) #4=(|ofCategory| *2 #5=(|Join| (|AlgebraicallyClosedFunctionSpace| *6) #6=(|TranscendentalFunctionCategory|) #7=(|PrimitiveFunctionCategory|))) #8=(|ofCategory| *6 #9=(|Join| (|EuclideanDomain|) (|RetractableTo| #10=(|Integer|)) (|LinearlyExplicitRingOver| #10#) (|CharacteristicZero|))) #11=(|isDomain| *1 (|ElementaryFunctionODESolver| *6 *2)))) (|solve| (*1 *2 *3 *4 *3 *5) (|partial| AND (|isDomain| *3 #2#) #12=(|isDomain| *4 #1#) #3# #4# #11# #8#)) (|solve| #13=(*1 *2 *3 *4 *5) (AND #12# #14=(|isDomain| *5 #15=(|Symbol|)) #8# (|isDomain| *2 (|Union| (|Record| (|:| |particular| *3) (|:| |basis| (|List| *3))) *3 #16="failed")) (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *3)) (|ofCategory| *3 #5#))) (|solve| #13# (AND (|isDomain| *3 #17=(|Equation| *7)) #12# #14# #18=(|ofCategory| *7 #5#) #8# (|isDomain| *2 (|Union| (|Record| (|:| |particular| *7) (|:| |basis| #19=(|List| *7))) *7 #16#)) #20=(|isDomain| *1 (|ElementaryFunctionODESolver| *6 *7)))) (|solve| #13# (|partial| AND (|isDomain| *3 #19#) #21=(|isDomain| *4 (|List| #1#)) #14# #18# #8# #22=(|isDomain| *2 (|Record| (|:| |particular| #23=(|Vector| *7)) (|:| |basis| (|List| #23#)))) #20#)) (|solve| #13# (|partial| AND (|isDomain| *3 (|List| #17#)) #21# #14# #18# #8# #22# #20#)) (|solve| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Matrix| *6)) (|isDomain| *4 #15#) (|ofCategory| *6 (|Join| (|AlgebraicallyClosedFunctionSpace| *5) #6# #7#)) (|ofCategory| *5 #9#) (|isDomain| *2 (|List| (|Vector| *6))) (|isDomain| *1 (|ElementaryFunctionODESolver| *5 *6)))) (|solve| #13# (|partial| AND (|isDomain| *3 (|Matrix| *7)) #14# #18# #8# #22# #20# (|isDomain| *4 #23#))))
+((|int| (#1=(|#2| |#2| #2=(|Symbol|)) 17 T ELT)) (|expint| (#1# 56 T ELT)) (|diff| (((|Mapping| |#2| |#2|) #2#) 11 T ELT)))
+(((|ODEIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |int| #1=(|#2| |#2| #2=(|Symbol|))) (SIGNATURE |expint| #1#) (SIGNATURE |diff| ((|Mapping| |#2| |#2|) #2#))) (|Join| (|EuclideanDomain|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (T |ODEIntegration|))
+((|diff| (*1 *2 *3) (AND #1=(|isDomain| *3 (|Symbol|)) #2=(|ofCategory| *4 (|Join| (|EuclideanDomain|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#) (|CharacteristicZero|))) (|isDomain| *2 (|Mapping| *5 *5)) (|isDomain| *1 (|ODEIntegration| *4 *5)) (|ofCategory| *5 #4=(|Join| (|AlgebraicallyClosedFunctionSpace| *4) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))))) (|expint| #5=(*1 *2 *2 *3) #6=(AND #1# #2# (|isDomain| *1 (|ODEIntegration| *4 *2)) (|ofCategory| *2 #4#))) (|int| #5# #6#))
+((|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) 33 T ELT)))
+(((|PureAlgebraicLODE| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |algDsolve| ((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| (|Fraction| #1#))) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |PureAlgebraicLODE|))
+((|algDsolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| *4)) (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7)) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| (|Fraction| #1#)))) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|PureAlgebraicLODE| *5 *6 *7 *4)))))
+((|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| #1=(|List| #2=(|Fraction| |#2|)))) |#4| #1#) 53 T ELT)) (|indicialEquations| ((#3=(|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) 62 T ELT) ((#3# |#4|) 61 T ELT) ((#3# |#3| |#2|) 20 T ELT) ((#3# |#3|) 21 T ELT)) (|indicialEquation| ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (|denomLODE| ((|#2| |#3| #1#) 109 T ELT) (((|Union| |#2| "failed") |#3| #2#) 105 T ELT)))
+(((|PrimitiveRatDE| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |denomLODE| ((|Union| |#2| "failed") |#3| #1=(|Fraction| |#2|))) (SIGNATURE |denomLODE| (|#2| |#3| #2=(|List| #1#))) (SIGNATURE |indicialEquations| (#3=(|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|)) (SIGNATURE |indicialEquations| (#3# |#3| |#2|)) (SIGNATURE |indicialEquation| (|#2| |#3| |#1|)) (SIGNATURE |indicialEquations| (#3# |#4|)) (SIGNATURE |indicialEquations| (#3# |#4| |#2|)) (SIGNATURE |indicialEquation| (|#2| |#4| |#1|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |eq| |#3|) (|:| |rh| #2#)) |#4| #2#))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|)))) (|UnivariatePolynomialCategory| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|LinearOrdinaryDifferentialOperatorCategory| #1#)) (T |PrimitiveRatDE|))
+((|splitDenominator| #1=(*1 *2 *3 *4) (AND #2=(|ofCategory| *5 #3=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *6 #4=(|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|Record| (|:| |eq| *7) (|:| |rh| #5=(|List| #6=(|Fraction| *6))))) (|isDomain| *1 (|PrimitiveRatDE| *5 *6 *7 *3)) (|isDomain| *4 #5#) (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| *6)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| #6#)))) (|indicialEquation| #1# (AND #7=(|ofCategory| *2 #8=(|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PrimitiveRatDE| *4 *2 *5 *3)) #9=(|ofCategory| *4 #3#) (|ofCategory| *5 #10=(|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *3 #11=(|LinearOrdinaryDifferentialOperatorCategory| #12=(|Fraction| *2))))) (|indicialEquations| #1# (AND #2# #13=(|ofCategory| *4 #4#) #14=(|isDomain| *2 (|List| (|Record| (|:| |center| *4) (|:| |equation| *4)))) (|isDomain| *1 (|PrimitiveRatDE| *5 *4 *6 *3)) #15=(|ofCategory| *6 #16=(|LinearOrdinaryDifferentialOperatorCategory| *4)) (|ofCategory| *3 #17=(|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *4))))) (|indicialEquations| #18=(*1 *2 *3) (AND #9# #19=(|ofCategory| *5 #8#) #20=(|isDomain| *2 (|List| (|Record| (|:| |center| *5) (|:| |equation| *5)))) (|isDomain| *1 (|PrimitiveRatDE| *4 *5 *6 *3)) (|ofCategory| *6 #21=(|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *3 #22=(|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *5))))) (|indicialEquation| #1# (AND #7# (|isDomain| *1 (|PrimitiveRatDE| *4 *2 *3 *5)) #9# #23=(|ofCategory| *3 #10#) (|ofCategory| *5 #11#))) (|indicialEquations| #1# (AND #2# #13# #14# (|isDomain| *1 (|PrimitiveRatDE| *5 *4 *3 *6)) (|ofCategory| *3 #16#) (|ofCategory| *6 #17#))) (|indicialEquations| #18# (AND #9# #19# #20# (|isDomain| *1 (|PrimitiveRatDE| *4 *5 *3 *6)) (|ofCategory| *3 #21#) (|ofCategory| *6 #22#))) (|denomLODE| #1# (AND (|isDomain| *4 (|List| #12#)) #24=(|ofCategory| *2 #4#) #25=(|isDomain| *1 (|PrimitiveRatDE| *5 *2 *3 *6)) #2# #23# (|ofCategory| *6 #11#))) (|denomLODE| #1# (|partial| AND (|isDomain| *4 #12#) #24# #25# #2# #23# #15#)))
+((|singRicDE| (((|List| (|Record| (|:| |frac| #1=(|Fraction| |#2|)) #2=(|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) 156 T ELT)) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) #2#)) |#3| #3=(|Mapping| (|List| |#1|) |#2|)) 52 T ELT)) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) 123 T ELT)) (|denomRicDE| ((|#2| |#3|) 42 T ELT)) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) #2#)) |#3| #3#) 100 T ELT)) (|changeVar| ((|#3| |#3| #1#) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
+(((|PrimitiveRatRicDE| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |denomRicDE| (|#2| |#3|)) (SIGNATURE |leadingCoefficientRicDE| ((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|)) (SIGNATURE |constantCoefficientRicDE| ((|List| (|Record| (|:| |constant| |#1|) #1=(|:| |eq| |#3|))) |#3| #2=(|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |polyRicDE| ((|List| (|Record| (|:| |poly| |#2|) #1#)) |#3| #2#)) (SIGNATURE |singRicDE| ((|List| (|Record| (|:| |frac| #3=(|Fraction| |#2|)) #1#)) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|))) (SIGNATURE |changeVar| (|#3| |#3| |#2|)) (SIGNATURE |changeVar| (|#3| |#3| #3#))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|)))) (|UnivariatePolynomialCategory| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|LinearOrdinaryDifferentialOperatorCategory| #3#)) (T |PrimitiveRatRicDE|))
+((|changeVar| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 #2=(|Fraction| *5)) #3=(|ofCategory| *4 #4=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) #5=(|ofCategory| *5 #6=(|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *2 *6)) (|ofCategory| *2 #7=(|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *6 #8=(|LinearOrdinaryDifferentialOperatorCategory| *3)))) (|changeVar| #1# (AND #3# (|ofCategory| *3 #6#) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *3 *2 *5)) (|ofCategory| *2 #8#) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *3))))) (|singRicDE| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Mapping| (|List| *7) *7 (|SparseUnivariatePolynomial| *7))) (|isDomain| *5 (|Mapping| (|Factored| *7) *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 #4#) (|isDomain| *2 (|List| (|Record| (|:| |frac| #9=(|Fraction| *7)) #10=(|:| |eq| *3)))) (|isDomain| *1 (|PrimitiveRatRicDE| *6 *7 *3 *8)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *7)) (|ofCategory| *8 (|LinearOrdinaryDifferentialOperatorCategory| #9#)))) (|polyRicDE| #11=(*1 *2 *3 *4) (AND #12=(|isDomain| *4 (|Mapping| (|List| *5) *6)) #13=(|ofCategory| *5 #4#) #14=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| (|Record| (|:| |poly| *6) #10#))) #15=(|isDomain| *1 (|PrimitiveRatRicDE| *5 *6 *3 *7)) #16=(|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *6)) #17=(|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *6))))) (|constantCoefficientRicDE| #11# (AND #12# #13# #14# (|isDomain| *2 (|List| (|Record| (|:| |constant| *5) #10#))) #15# #16# #17#)) (|leadingCoefficientRicDE| #18=(*1 *2 *3) (AND #3# #5# (|isDomain| *2 (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| *5)))) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *3 *6)) (|ofCategory| *3 #7#) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| #2#)))) (|denomRicDE| #18# (AND (|ofCategory| *2 #6#) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *2 *3 *5)) #3# (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *2))))))
+((|ratDsolve| ((#1=(|Record| #2=(|:| |basis| #3=(|List| #4=(|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) #5=(|LinearOrdinaryDifferentialOperator2| |#2| #4#) #3#) 146 T ELT) ((#6=(|Record| (|:| |particular| (|Union| #4# "failed")) #2#) #5# #4#) 145 T ELT) ((#1# #7=(|LinearOrdinaryDifferentialOperator1| #4#) #3#) 140 T ELT) ((#6# #7# #4#) 138 T ELT)) (|indicialEquationAtInfinity| ((|#2| #5#) 86 T ELT) ((|#2| #7#) 89 T ELT)))
+(((|RationalLODE| |#1| |#2|) (CATEGORY |package| (SIGNATURE |ratDsolve| (#1=(|Record| (|:| |particular| (|Union| #2=(|Fraction| |#2|) "failed")) #3=(|:| |basis| #4=(|List| #2#))) #5=(|LinearOrdinaryDifferentialOperator1| #2#) #2#)) (SIGNATURE |ratDsolve| (#6=(|Record| #3# (|:| |mat| (|Matrix| |#1|))) #5# #4#)) (SIGNATURE |ratDsolve| (#1# #7=(|LinearOrdinaryDifferentialOperator2| |#2| #2#) #2#)) (SIGNATURE |ratDsolve| (#6# #7# #4#)) (SIGNATURE |indicialEquationAtInfinity| (|#2| #5#)) (SIGNATURE |indicialEquationAtInfinity| (|#2| #7#))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #8=(|Integer|)) (|RetractableTo| (|Fraction| #8#))) (|UnivariatePolynomialCategory| |#1|)) (T |RationalLODE|))
+((|indicialEquationAtInfinity| #1=(*1 *2 *3) (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *2 #2=(|Fraction| *2))) #3=(|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) #4=(|isDomain| *1 (|RationalLODE| *4 *2)) #5=(|ofCategory| *4 #6=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #7=(|Integer|)) (|RetractableTo| (|Fraction| #7#)))))) (|indicialEquationAtInfinity| #1# (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| #2#)) #3# #4# #5#)) (|ratDsolve| #8=(*1 *2 *3 *4) (AND #9=(|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *6 #10=(|Fraction| *6))) #11=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) #12=(|ofCategory| *5 #6#) #13=(|isDomain| *2 (|Record| (|:| |basis| #14=(|List| #10#)) (|:| |mat| (|Matrix| *5)))) #15=(|isDomain| *1 (|RationalLODE| *5 *6)) #16=(|isDomain| *4 #14#))) (|ratDsolve| #8# (AND #9# #17=(|isDomain| *4 #10#) #11# #12# #18=(|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) #15#)) (|ratDsolve| #8# (AND #19=(|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| #10#)) #11# #12# #13# #15# #16#)) (|ratDsolve| #8# (AND #19# #17# #11# #12# #18# #15#)))
+((|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) 49 T ELT)))
+(((|ReduceLODE| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |reduceLODE| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|UnivariatePolynomialCategory| |#1|) (|MonogenicAlgebra| |#1| |#3|) (|LinearOrdinaryDifferentialOperatorCategory| |#4|)) (T |ReduceLODE|))
+((|reduceLODE| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *4 (|MonogenicAlgebra| *5 *7)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *6)) (|:| |vec| (|Vector| *5)))) (|isDomain| *1 (|ReduceLODE| *5 *6 *7 *4 *3)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+((|singRicDE| (((|List| (|Record| (|:| |frac| #1=(|Fraction| |#2|)) #2=(|:| |eq| #3=(|LinearOrdinaryDifferentialOperator2| |#2| #1#)))) #3# #4=(|Mapping| (|Factored| |#2|) |#2|)) 47 T ELT)) (|ricDsolve| ((#5=(|List| #1#) #3# #4#) 163 #6=(|has| |#1| (|AlgebraicallyClosedField|)) ELT) ((#5# #3#) 164 #6# ELT) ((#5# #7=(|LinearOrdinaryDifferentialOperator1| #1#) #4#) 165 #6# ELT) ((#5# #7#) 166 #6# ELT) ((#5# #3# #8=(|Mapping| (|List| |#1|) |#2|) #4#) 38 T ELT) ((#5# #3# #8#) 39 T ELT) ((#5# #7# #8# #4#) 36 T ELT) ((#5# #7# #8#) 37 T ELT)) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) #2#)) #3# #8#) 96 T ELT)))
+(((|RationalRicDE| |#1| |#2|) (CATEGORY |package| (SIGNATURE |ricDsolve| (#1=(|List| #2=(|Fraction| |#2|)) #3=(|LinearOrdinaryDifferentialOperator1| #2#) #4=(|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |ricDsolve| (#1# #3# #4# #5=(|Mapping| (|Factored| |#2|) |#2|))) (SIGNATURE |ricDsolve| (#1# #6=(|LinearOrdinaryDifferentialOperator2| |#2| #2#) #4#)) (SIGNATURE |ricDsolve| (#1# #6# #4# #5#)) (SIGNATURE |singRicDE| ((|List| (|Record| (|:| |frac| #2#) #7=(|:| |eq| #6#))) #6# #5#)) (SIGNATURE |polyRicDE| ((|List| (|Record| (|:| |poly| |#2|) #7#)) #6# #4#)) (IF (|has| |#1| (|AlgebraicallyClosedField|)) (PROGN (SIGNATURE |ricDsolve| (#1# #3#)) (SIGNATURE |ricDsolve| (#1# #3# #5#)) (SIGNATURE |ricDsolve| (#1# #6#)) (SIGNATURE |ricDsolve| (#1# #6# #5#))) |%noBranch|)) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #8=(|Integer|)) (|RetractableTo| (|Fraction| #8#))) (|UnivariatePolynomialCategory| |#1|)) (T |RationalRicDE|))
+((|ricDsolve| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 #3=(|LinearOrdinaryDifferentialOperator2| *6 #4=(|Fraction| *6))) #5=(|isDomain| *4 (|Mapping| (|Factored| *6) *6)) #6=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) #7=(|ofCategory| *5 #8=(|AlgebraicallyClosedField|)) #9=(|ofCategory| *5 #10=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #11=(|Integer|)) (|RetractableTo| (|Fraction| #11#)))) #12=(|isDomain| *2 (|List| #4#)) #13=(|isDomain| *1 (|RationalRicDE| *5 *6)))) (|ricDsolve| #14=(*1 *2 *3) (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *5 #15=(|Fraction| *5))) #16=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) #17=(|ofCategory| *4 #8#) #18=(|ofCategory| *4 #10#) #19=(|isDomain| *2 (|List| #15#)) #20=(|isDomain| *1 (|RationalRicDE| *4 *5)))) (|ricDsolve| #1# (AND #21=(|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| #4#)) #5# #6# #7# #9# #12# #13#)) (|ricDsolve| #14# (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| #15#)) #16# #17# #18# #19# #20#)) (|polyRicDE| #1# (AND #22=(|isDomain| *4 (|Mapping| (|List| *5) *6)) #9# #6# (|isDomain| *2 (|List| (|Record| (|:| |poly| *6) #23=(|:| |eq| #3#)))) #13# #2#)) (|singRicDE| #1# (AND #5# #6# #9# (|isDomain| *2 (|List| (|Record| (|:| |frac| #4#) #23#))) #13# #2#)) (|ricDsolve| #24=(*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *7 #25=(|Fraction| *7))) #26=(|isDomain| *4 (|Mapping| (|List| *6) *7)) #27=(|isDomain| *5 (|Mapping| (|Factored| *7) *7)) #28=(|ofCategory| *6 #10#) #29=(|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) #30=(|isDomain| *2 (|List| #25#)) #31=(|isDomain| *1 (|RationalRicDE| *6 *7)))) (|ricDsolve| #1# (AND #2# #22# #9# #6# #12# #13#)) (|ricDsolve| #24# (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| #25#)) #26# #27# #28# #29# #30# #31#)) (|ricDsolve| #1# (AND #21# #22# #9# #6# #12# #13#)))
+((|triangulate| (((|Record| (|:| |mat| #1=(|Matrix| |#2|)) (|:| |vec| #2=(|Vector| |#1|))) #1# #2#) 110 T ELT) (((|Record| (|:| A #3=(|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C #3#) (|:| |g| #2#) (|:| |eq| |#2|) (|:| |rh| |#1|))))) #3# #2#) 15 T ELT)) (|solveInField| (((|Record| (|:| |particular| (|Union| #2# #4="failed")) (|:| |basis| (|List| #2#))) #1# #2# (|Mapping| (|Record| (|:| |particular| (|Union| |#1| #4#)) #5=(|:| |basis| (|List| |#1|))) |#2| |#1|)) 116 T ELT)) (|solve| (((|Union| (|Record| (|:| |particular| #2#) (|:| |basis| #3#)) #4#) #3# #2# (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) #5#) #4#) |#2| |#1|)) 54 T ELT)))
+(((|SystemODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |triangulate| ((|Record| (|:| A #1=(|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C #1#) (|:| |g| #2=(|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) #1# #2#)) (SIGNATURE |triangulate| ((|Record| (|:| |mat| #3=(|Matrix| |#2|)) (|:| |vec| #2#)) #3# #2#)) (SIGNATURE |solve| ((|Union| (|Record| (|:| |particular| #2#) (|:| |basis| #1#)) #4="failed") #1# #2# (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) #5=(|:| |basis| (|List| |#1|))) #4#) |#2| |#1|))) (SIGNATURE |solveInField| ((|Record| (|:| |particular| (|Union| #2# #4#)) (|:| |basis| (|List| #2#))) #3# #2# (|Mapping| (|Record| (|:| |particular| (|Union| |#1| #4#)) #5#) |#2| |#1|)))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |SystemODESolver|))
+((|solveInField| #1=(*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *7)) (|isDomain| *5 (|Mapping| (|Record| (|:| |particular| (|Union| *6 #2="failed")) #3=(|:| |basis| (|List| *6))) *7 *6)) #4=(|ofCategory| *6 #5=(|Field|)) #6=(|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| *6)) (|isDomain| *2 (|Record| (|:| |particular| (|Union| #7=(|Vector| *6) #2#)) (|:| |basis| (|List| #7#)))) #8=(|isDomain| *1 (|SystemODESolver| *6 *7)) #9=(|isDomain| *4 #7#))) (|solve| #1# (|partial| AND (|isDomain| *5 (|Mapping| (|Union| (|Record| (|:| |particular| *6) #3#) #2#) *7 *6)) #4# #6# (|isDomain| *2 (|Record| (|:| |particular| #7#) (|:| |basis| #10=(|Matrix| *6)))) #8# #11=(|isDomain| *3 #10#) #9#)) (|triangulate| #12=(*1 *2 *3 *4) (AND #13=(|ofCategory| *5 #5#) #14=(|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)) (|isDomain| *2 (|Record| (|:| |mat| #10#) (|:| |vec| #15=(|Vector| *5)))) #16=(|isDomain| *1 (|SystemODESolver| *5 *6)) #11# #17=(|isDomain| *4 #15#))) (|triangulate| #12# (AND #13# (|isDomain| *2 (|Record| (|:| A #18=(|Matrix| *5)) (|:| |eqs| (|List| (|Record| (|:| C #18#) (|:| |g| #15#) (|:| |eq| *6) (|:| |rh| *5)))))) #16# (|isDomain| *3 #18#) #17# #14#)))
+((|wronskianMatrix| ((#1=(|Matrix| |#1|) #2=(|List| |#1|) (|NonNegativeInteger|)) 14 T ELT) ((#1# #2#) 15 T ELT)) (|variationOfParameters| (((|Union| (|Vector| |#1|) #3="failed") |#2| |#1| #2#) 39 T ELT)) (|particularSolution| (((|Union| |#1| #3#) |#2| |#1| #2# (|Mapping| |#1| |#1|)) 46 T ELT)))
+(((|ODETools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |wronskianMatrix| (#1=(|Matrix| |#1|) #2=(|List| |#1|))) (SIGNATURE |wronskianMatrix| (#1# #2# (|NonNegativeInteger|))) (SIGNATURE |variationOfParameters| ((|Union| (|Vector| |#1|) #3="failed") |#2| |#1| #2#)) (SIGNATURE |particularSolution| ((|Union| |#1| #3#) |#2| |#1| #2# (|Mapping| |#1| |#1|)))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |ODETools|))
+((|particularSolution| (*1 *2 *3 *2 *4 *5) (|partial| AND (|isDomain| *4 (|List| *2)) (|isDomain| *5 (|Mapping| *2 *2)) (|ofCategory| *2 #1=(|Field|)) (|isDomain| *1 (|ODETools| *2 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)))) (|variationOfParameters| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 #2=(|List| *4)) #3=(|ofCategory| *4 #1#) (|isDomain| *2 (|Vector| *4)) (|isDomain| *1 (|ODETools| *4 *3)) (|ofCategory| *3 #4=(|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|wronskianMatrix| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 #1#) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|ODETools| *5 *6)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|wronskianMatrix| (*1 *2 *3) (AND (|isDomain| *3 #2#) #3# (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|ODETools| *4 *5)) (|ofCategory| *5 #4#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#2| (|BasicType|)) ELT)) (|zero?| (#5=(#3# $) NIL #6=(|has| |#2| (|AbelianMonoid|)) ELT)) (|unitVector| (#7=($ #8=(|PositiveInteger|)) NIL #9=(|has| |#2| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #10=(|Integer|) #10#) NIL #11=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|sup| (#12=($ $ $) NIL #13=(|has| |#2| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#14=(|Union| $ #15="failed") $ $) NIL (|has| |#2| (|CancellationAbelianMonoid|)) ELT)) (|size| (#16=(#17=(|NonNegativeInteger|)) NIL #18=(|has| |#2| (|Finite|)) ELT)) (|setelt| #19=(#20=(|#2| $ #10# |#2|) NIL #11# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# . #22=(#15#)) . #23=($)) NIL #24=(AND (|has| |#2| (|RetractableTo| #10#)) #25=(|has| |#2| (|SetCategory|))) ELT) (((|Union| #26=(|Fraction| #10#) . #22#) . #23#) NIL #27=(AND (|has| |#2| (|RetractableTo| #26#)) #25#) ELT) ((#28=(|Union| |#2| . #22#) . #23#) NIL #25# ELT)) (|retract| (#29=(#10# . #30=($)) NIL #24# ELT) ((#26# . #30#) NIL #27# ELT) (#31=(|#2| . #30#) NIL #25# ELT)) (|reducedSystem| ((#32=(|Matrix| #10#) . #33=(#34=(|Matrix| $))) NIL #35=(AND (|has| |#2| (|LinearlyExplicitRingOver| #10#)) #9#) ELT) ((#36=(|Record| (|:| |mat| #32#) (|:| |vec| (|Vector| #10#))) . #37=(#34# #38=(|Vector| $))) NIL #35# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| |#2|)) (|:| |vec| #41=(|Vector| |#2|))) . #37#) NIL #9# ELT) ((#40# . #33#) NIL #9# ELT)) (|reduce| ((|#2| #42=(|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) NIL #4# ELT) ((|#2| #42# $ |#2|) NIL T ELT) ((|#2| #42# $) NIL T ELT)) (|recip| ((#14# $) NIL #9# ELT)) (|random| (#21# NIL #18# ELT)) (|qsetelt!| #19#) (|qelt| #43=((|#2| $ #10#) NIL T ELT)) (|positive?| (#5# NIL #13# ELT)) (|opposite?| (#2# NIL #6# ELT)) (|one?| (#5# NIL #9# ELT)) (|minIndex| #44=(#29# NIL #45=(|has| #10# #46=(|OrderedSet|)) ELT)) (|min| #47=(#12# NIL #48=(|has| |#2| #46#) ELT)) (|members| #49=((#50=(|List| |#2|) $) NIL T ELT)) (|member?| (#51=(#3# |#2| $) NIL #4# ELT)) (|maxIndex| #44#) (|max| #47#) (|map| (($ #52=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|lookup| ((#8# $) NIL #18# ELT)) (|leftReducedSystem| ((#32# . #53=(#38#)) NIL #35# ELT) ((#36# . #54=(#38# $)) NIL #35# ELT) ((#39# . #54#) NIL #9# ELT) ((#40# . #53#) NIL #9# ELT)) (|latex| (((|String|) $) NIL #25# ELT)) (|indices| (((|List| #10#) $) NIL T ELT)) (|index?| ((#3# #10# $) NIL T ELT)) (|index| (#7# NIL #18# ELT)) (|hash| (((|SingleInteger|) $) NIL #25# ELT)) (|first| (#31# NIL #45# ELT)) (|find| ((#28# #55=(|Mapping| #3# |#2|) $) NIL T ELT)) (|fill!| (#56=($ $ |#2|) NIL #11# ELT)) (|every?| #57=((#3# #55# $) NIL T ELT)) (|eval| (($ $ (|List| #58=(|Equation| |#2|))) NIL #59=(AND (|has| |#2| (|Evalable| |#2|)) #25#) ELT) (($ $ #58#) NIL #59# ELT) (($ $ |#2| |#2|) NIL #59# ELT) (($ $ #50# #50#) NIL #59# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#51# NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #4#) ELT)) (|entries| #49#) (|empty?| (#5# NIL T ELT)) (|empty| (#21# NIL T ELT)) (|elt| (#20# NIL T ELT) #43#) (|dot| ((|#2| $ $) NIL #9# ELT)) (|directProduct| (($ #41#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) NIL #60=(|has| |#2| (|Field|)) ELT)) (|differentiate| #61=(#62=($ $ #17#) NIL #63=(AND (|has| |#2| (|DifferentialSpace|)) #9#) ELT) #64=(#65=($ $) NIL #63# ELT) #66=(($ $ #67=(|List| #68=(|Symbol|)) (|List| #17#)) NIL #69=(AND (|has| |#2| (|PartialDifferentialSpace| #68#)) #9#) ELT) #70=(($ $ #68# #17#) NIL #69# ELT) #71=(($ $ #67#) NIL #69# ELT) #72=(($ $ #68#) NIL #69# ELT) #73=(($ $ #52#) NIL #9# ELT) #74=(($ $ #52# #17#) NIL #9# ELT)) (|count| ((#17# |#2| $) NIL #4# ELT) ((#17# #55# $) NIL T ELT)) (|copy| (#65# NIL T ELT)) (|coerce| ((#41# . #75=($)) NIL T ELT) (($ #10#) NIL (OR #24# #9#) ELT) (($ #26#) NIL #27# ELT) (($ |#2|) NIL #25# ELT) ((#76=(|OutputForm|) . #75#) NIL (|has| |#2| (|CoercibleTo| #76#)) ELT)) (|characteristic| (#16# NIL #9# CONST)) (|before?| #1#) (|any?| #57#) (|annihilate?| (#2# NIL #9# ELT)) (|Zero| (#21# NIL #6# CONST)) (|One| (#21# NIL #9# CONST)) (D #61# #64# #66# #70# #71# #72# #73# #74#) (>= #77=(#2# NIL #48# ELT)) (> #77#) (= #1#) (<= #77#) (< (#2# 11 #48# ELT)) (/ (#56# NIL #60# ELT)) (- (#12# NIL #78=(|has| |#2| (|AbelianGroup|)) ELT) (#65# NIL #78# ELT)) (+ (#12# NIL #79=(|has| |#2| (|AbelianSemiGroup|)) ELT)) (** (#62# NIL #9# ELT) (($ $ #8#) NIL #9# ELT)) (* (#12# NIL #9# ELT) (#56# NIL #80=(|has| |#2| (|Monoid|)) ELT) (($ |#2| . #81=($)) NIL #80# ELT) (($ #10# . #81#) NIL #78# ELT) (($ #17# $) NIL #6# ELT) (($ #8# $) NIL #79# ELT)) (|#| ((#17# $) NIL T ELT)))
+(((|OrderedDirectProduct| |#1| |#2| |#3|) (|DirectProductCategory| |#1| |#2|) (|NonNegativeInteger|) (|OrderedAbelianMonoidSup|) (|Mapping| (|Boolean|) #1=(|Vector| |#2|) #1#)) (T |OrderedDirectProduct|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|weights| ((#6=(|List| #7=(|NonNegativeInteger|)) $) NIL T ELT) ((#6# $ #8=(|Symbol|)) NIL T ELT)) (|weight| #9=((#7# $) NIL T ELT) #10=((#7# $ #8#) NIL T ELT)) (|variables| ((#11=(|List| #12=(|OrderlyDifferentialVariable| #8#)) $) NIL T ELT)) (|univariate| ((#13=(|SparseUnivariatePolynomial| $) $ #12#) NIL T ELT) ((#14=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #15=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #16=(#17=($ $) NIL #15# ELT)) (|unit?| (#5# NIL #15# ELT)) (|totalDegree| #9# ((#7# $ #11#) NIL T ELT)) (|subtractIfCan| (#18=(#19=(|Union| $ #20="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #21=(((|Factored| #13#) #13#) NIL #22=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #23=(#17# NIL #24=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#25=((|Factored| $) $) NIL #24# ELT)) (|solveLinearPolynomialEquation| (((|Union| #26=(|List| #13#) #20#) #26# #13#) NIL #22# ELT)) (|separant| #27=(#17# NIL T ELT)) (|sample| #28=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #29=(#20#)) . #30=($)) NIL T ELT) (((|Union| #31=(|Fraction| #32=(|Integer|)) . #29#) . #30#) NIL #33=(|has| |#1| (|RetractableTo| #31#)) ELT) (((|Union| #32# . #29#) . #30#) NIL #34=(|has| |#1| (|RetractableTo| #32#)) ELT) #35=(((|Union| #12# . #29#) . #30#) NIL T ELT) (((|Union| #8# . #29#) . #30#) NIL T ELT) (((|Union| #36=(|SparseMultivariatePolynomial| |#1| #8#) . #29#) . #30#) NIL T ELT)) (|retract| #37=(#38=(|#1| . #39=($)) NIL T ELT) ((#31# . #39#) NIL #33# ELT) ((#32# . #39#) NIL #34# ELT) #40=((#12# . #39#) NIL T ELT) ((#8# . #39#) NIL T ELT) ((#36# . #39#) NIL T ELT)) (|resultant| (($ $ $ #12#) NIL #41=(|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| #27#) (|reducedSystem| ((#42=(|Matrix| #32#) . #43=(#44=(|Matrix| $))) NIL #45=(|has| |#1| (|LinearlyExplicitRingOver| #32#)) ELT) ((#46=(|Record| (|:| |mat| #42#) (|:| |vec| (|Vector| #32#))) . #47=(#44# #48=(|Vector| $))) NIL #45# ELT) ((#49=(|Record| (|:| |mat| #50=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #47#) NIL T ELT) ((#50# . #43#) NIL T ELT)) (|recip| ((#19# $) NIL T ELT)) (|primitivePart| #23# #51=(#52=($ $ #12#) NIL #24# ELT)) (|primitiveMonomials| #53=((#54=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #22# ELT)) (|pomopo!| (($ $ |#1| #55=(|IndexedExponents| #12#) $) NIL T ELT)) (|patternMatch| ((#56=(|PatternMatchResult| #57=(|Float|) . #58=($)) $ #59=(|Pattern| #57#) #56#) NIL (AND (|has| #12# #60=(|PatternMatchable| #57#)) (|has| |#1| #60#)) ELT) ((#61=(|PatternMatchResult| #32# . #58#) $ #62=(|Pattern| #32#) #61#) NIL (AND (|has| #12# #63=(|PatternMatchable| #32#)) (|has| |#1| #63#)) ELT)) (|order| #10# #9#) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #9#) (|multivariate| (($ #14# #12#) NIL T ELT) (($ #13# #12#) NIL T ELT)) (|monomials| #53#) (|monomial?| #4#) (|monomial| (($ |#1| #55#) NIL T ELT) #64=(($ $ #12# #7#) NIL T ELT) #65=(($ $ #11# #6#) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #12#) NIL T ELT)) (|minimumDegree| #66=((#55# $) NIL T ELT) #67=((#7# $ #12#) NIL T ELT) #68=((#6# $ #11#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #55# #55#) $) NIL T ELT)) (|map| (($ #69=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeVariable| ((#70=(|Mapping| $ #7#) #8#) NIL T ELT) ((#70# $) NIL #71=(|has| |#1| (|DifferentialRing|)) ELT)) (|mainVariable| #35#) (|leftReducedSystem| ((#42# . #72=(#48#)) NIL #45# ELT) ((#46# . #73=(#48# $)) NIL #45# ELT) ((#49# . #73#) NIL T ELT) ((#50# . #72#) NIL T ELT)) (|leadingMonomial| #27#) (|leadingCoefficient| #37#) (|leader| #40#) (|lcm| #74=(($ #54#) NIL #24# ELT) #75=(#76=($ $ $) NIL #24# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isobaric?| #4#) (|isTimes| #77=(((|Union| #54# #20#) $) NIL T ELT)) (|isPlus| #77#) (|isExpt| (((|Union| (|Record| (|:| |var| #12#) (|:| |exponent| #7#)) #20#) $) NIL T ELT)) (|initial| #27#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #37#) (|gcdPolynomial| ((#13# #13# #13#) NIL #24# ELT)) (|gcd| #74# #75#) (|factorSquareFreePolynomial| #21#) (|factorPolynomial| #21#) (|factor| (#25# NIL #22# ELT)) (|exquo| ((#19# $ |#1|) NIL #15# ELT) (#18# NIL #15# ELT)) (|eval| (($ $ (|List| #78=(|Equation| $))) NIL T ELT) (($ $ #78#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #54# #54#) NIL T ELT) (($ $ #12# |#1|) NIL T ELT) (($ $ #11# #79=(|List| |#1|)) NIL T ELT) (($ $ #12# $) NIL T ELT) (($ $ #11# #54#) NIL T ELT) (($ $ #8# $) NIL #71# ELT) (($ $ #80=(|List| #8#) #54#) NIL #71# ELT) (($ $ #8# |#1|) NIL #71# ELT) (($ $ #80# #79#) NIL #71# ELT)) (|discriminant| (#52# NIL #41# ELT)) (|differentiate| #65# #64# #81=(($ $ #11#) NIL T ELT) #82=(#52# NIL T ELT) #83=(($ $ #69#) NIL T ELT) #84=(($ $ #69# #7#) NIL T ELT) #85=(($ $ #8#) NIL #86=(|has| |#1| (|PartialDifferentialSpace| #8#)) ELT) #87=(($ $ #80#) NIL #86# ELT) #88=(($ $ #8# #7#) NIL #86# ELT) #89=(($ $ #80# #6#) NIL #86# ELT) #90=(#17# NIL #91=(|has| |#1| (|DifferentialSpace|)) ELT) #92=(#93=($ $ #7#) NIL #91# ELT)) (|differentialVariables| ((#80# $) NIL T ELT)) (|degree| #66# #67# #68# #10#) (|convert| ((#59# . #94=($)) NIL (AND (|has| #12# #95=(|ConvertibleTo| #59#)) (|has| |#1| #95#)) ELT) ((#62# . #94#) NIL (AND (|has| #12# #96=(|ConvertibleTo| #62#)) (|has| |#1| #96#)) ELT) ((#97=(|InputForm|) . #94#) NIL (AND (|has| #12# #98=(|ConvertibleTo| #97#)) (|has| |#1| #98#)) ELT)) (|content| (#38# NIL #24# ELT) #51#) (|conditionP| (((|Union| #48# #20#) #44#) NIL #99=(AND (|has| $ #100=(|CharacteristicNonZero|)) #22#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #32#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #12#) NIL T ELT) (($ #8#) NIL T ELT) (($ #36#) NIL T ELT) (($ #31#) NIL (OR #101=(|has| |#1| (|Algebra| #31#)) #33#) ELT) #16#) (|coefficients| ((#79# $) NIL T ELT)) (|coefficient| ((|#1| $ #55#) NIL T ELT) #64# #65#) (|charthRoot| (((|Maybe| $) $) NIL (OR #99# (|has| |#1| #100#)) ELT)) (|characteristic| ((#7#) NIL T CONST)) (|binomThmExpt| (($ $ $ #7#) NIL #41# ELT)) (|before?| #1#) (|associates?| (#2# NIL #15# ELT)) (|annihilate?| #1#) (|Zero| #28#) (|One| #28#) (D #65# #64# #81# #82# #83# #84# #85# #87# #88# #89# #90# #92#) (= #1#) (/ (#102=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #27# #103=(#76# NIL T ELT)) (+ #103#) (** (($ $ #104=(|PositiveInteger|)) NIL T ELT) (#93# NIL T ELT)) (* (($ #104# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #32# . #105=($)) NIL T ELT) #103# (($ $ #31#) NIL #101# ELT) (($ #31# . #105#) NIL #101# ELT) (($ |#1| . #105#) NIL T ELT) (#102# NIL T ELT)))
+(((|OrderlyDifferentialPolynomial| |#1|) (|Join| (|DifferentialPolynomialCategory| |#1| #1=(|Symbol|) #2=(|OrderlyDifferentialVariable| #1#) (|IndexedExponents| #2#)) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| #1#))) (|Ring|)) (T |OrderlyDifferentialPolynomial|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #6=(|has| |#2| (|Field|)) ELT)) (|unitCanonical| #7=(#8=($ $) NIL #6# ELT)) (|unit?| #9=(#5# NIL #6# ELT)) (|subtractIfCan| (#10=(#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|squareFreePart| #7#) (|squareFree| #13=(((|Factored| $) $) NIL #6# ELT)) (|sizeLess?| #14=(#2# NIL #6# ELT)) (|sample| #15=(($) NIL T CONST)) (|rem| #16=(#17=($ $ $) NIL #6# ELT)) (|recip| ((#11# $) NIL T ELT)) (|quo| #16#) (|principalIdeal| (((|Record| (|:| |coef| #18=(|List| $)) #19=(|:| |generator| $)) #18#) NIL #6# ELT)) (|prime?| #9#) (|opposite?| #1#) (|one?| #4#) (|multiEuclidean| (((|Union| #18# #12#) #18# $) NIL #6# ELT)) (|lcm| #20=(($ #18#) NIL #6# ELT) #16#) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#8# 20 #6# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#21=(|SparseUnivariatePolynomial| $) #21# #21#) NIL #6# ELT)) (|gcd| #20# #16#) (|factor| #13#) (|extendedEuclidean| (((|Union| (|Record| #22=(|:| |coef1| $) #23=(|:| |coef2| $)) #12#) $ $ $) NIL #6# ELT) (((|Record| #22# #23# #19#) $ $) NIL #6# ELT)) (|exquo| (#10# NIL #6# ELT)) (|expressIdealMember| (((|Maybe| #18#) #18# $) NIL #6# ELT)) (|euclideanSize| ((#24=(|NonNegativeInteger|) $) NIL #6# ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #6# ELT)) (|differentiate| (#8# 13 T ELT) #25=(($ $ #24#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #26=(|Integer|)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ #27=(|Fraction| #26#)) NIL #6# ELT) #7#) (|characteristic| ((#24#) NIL T CONST)) (|before?| #1#) (|associates?| #14#) (|annihilate?| #1#) (|Zero| #15#) (|One| #15#) (D #28=(#8# NIL T ELT) #25#) (= #1#) (/ (#17# 15 #6# ELT)) (- #28# #29=(#17# NIL T ELT)) (+ #29#) (** #25# (($ $ #30=(|PositiveInteger|)) NIL T ELT) (($ $ #26#) 18 #6# ELT)) (* (($ #30# $) NIL T ELT) (($ #24# $) NIL T ELT) (($ #26# . #31=($)) NIL T ELT) #29# #29# (($ #27# . #31#) NIL #6# ELT) (($ $ #27#) NIL #6# ELT)))
+(((|OrdinaryDifferentialRing| |#1| |#2| |#3|) (|Join| (|BiModule| $ $) (|DifferentialRing|) (|HomotopicTo| |#2|) (CATEGORY |package| (IF (|has| |#2| #1=(|Field|)) (ATTRIBUTE #1#) |%noBranch|))) (|SetCategory|) (|PartialDifferentialRing| |#1|) |#1|) (T |OrdinaryDifferentialRing|))
+NIL
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|weight| (#2=(#3=(|NonNegativeInteger|) $) NIL T ELT)) (|variable| (#4=(|#1| $) 10 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL T ELT)) (|retract| (#4# NIL T ELT)) (|order| (#2# 11 T ELT)) (|min| #5=(($ $ $) NIL T ELT)) (|max| #5#) (|makeVariable| (($ |#1| #3#) 9 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|differentiate| #6=(($ $ #3#) NIL T ELT) #7=(($ $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) NIL T ELT)) (|before?| #1#) (D #6# #7#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|OrderlyDifferentialVariable| |#1|) (|DifferentialVariableCategory| |#1|) (|OrderedSet|)) (T |OrderlyDifferentialVariable|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|varList| (((|List| |#1|) $) 39 T ELT)) (|size| (#4=(#5=(|NonNegativeInteger|) $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|rquo| #7=((#8=(|Union| $ #9="failed") $ $) NIL T ELT) (#10=(#8# $ |#1|) 29 T ELT)) (|retractIfCan| (((|Union| |#1| #9#) $) NIL T ELT)) (|retract| (#11=(|#1| $) NIL T ELT)) (|rest| (#12=($ $) 43 T ELT)) (|recip| ((#8# $) NIL T ELT)) (|overlap| (((|Record| #13=(|:| |lm| $) (|:| |mm| $) #14=(|:| |rm| $)) $ $) NIL T ELT)) (|one?| ((#3# $) NIL T ELT)) (|nthFactor| ((|#1| $ #15=(|Integer|)) NIL T ELT)) (|nthExpon| ((#5# $ #15#) NIL T ELT)) (|mirror| (#12# 55 T ELT)) (|min| #16=(($ $ $) NIL T ELT)) (|max| #16#) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|mapExpon| (($ (|Mapping| #5# #5#) $) NIL T ELT)) (|lquo| #7# (#10# 26 T ELT)) (|lexico| (#2# 52 T ELT)) (|length| (#4# 35 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hcrf| #16#) (|hclf| #16#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#11# 42 T ELT)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| #5#))) $) NIL T ELT)) (|divide| #17=(((|Union| (|Record| #13# #14#) #9#) $ $) NIL T ELT)) (|div| #17#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) NIL T ELT)) (|before?| #1#) (|One| (#6# 7 T CONST)) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 54 T ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ #5#) NIL T ELT) (($ |#1| #5#) NIL T ELT)) (* #16# (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((|OrderedFreeMonoid| |#1|) (|Join| (|FreeMonoidCategory| |#1|) (|OrderedMonoid|) (CATEGORY |domain| (SIGNATURE |first| (|#1| $)) (SIGNATURE |rest| #1=($ $)) (SIGNATURE |mirror| #1#) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |lquo| #2=((|Union| $ #3="failed") $ |#1|)) (SIGNATURE |rquo| #2#) (SIGNATURE |div| ((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) #3#) $ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) (|OrderedSet|)) (T |OrderedFreeMonoid|))
+((|first| #1=(*1 *2 *1) #2=(AND #3=(|isDomain| *1 (|OrderedFreeMonoid| *2)) #4=(|ofCategory| *2 #5=(|OrderedSet|)))) (|rest| #6=(*1 *1 *1) #2#) (|mirror| #6# #2#) (|lexico| #7=(*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) #8=(|isDomain| *1 #9=(|OrderedFreeMonoid| *3)) #10=(|ofCategory| *3 #5#))) (|lquo| #11=(*1 *1 *1 *2) #12=(|partial| AND #3# #4#)) (|rquo| #11# #12#) (|div| #7# (|partial| AND (|isDomain| *2 (|Record| (|:| |lm| #9#) (|:| |rm| #9#))) #8# #10#)) (|length| #1# (AND (|isDomain| *2 (|NonNegativeInteger|)) #8# #10#)) (|varList| #1# (AND (|isDomain| *2 (|List| *3)) #8# #10#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sign| (((|Integer|) $) 69 T ELT)) (|sample| (#4=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|positive?| (((|Boolean|) $) 67 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|negative?| (((|Boolean|) $) 68 T ELT)) (|min| (#5=($ $ $) 61 T ELT)) (|max| (#5# 62 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| (($ $) 70 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#6=((|Boolean|) $ $) 63 T ELT)) (> (#6# 65 T ELT)) (= (#1# 8 T ELT)) (<= (#6# 64 T ELT)) (< (#6# 66 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|OrderedIntegralDomain|) (|Category|)) (T |OrderedIntegralDomain|))
+NIL
+(|Join| (|IntegralDomain|) (|OrderedRing|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| ((#4=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| #5=(($) NIL T CONST)) (|reductum| #6=(#7=($ $) NIL T ELT)) (|recip| ((#4# $) NIL T ELT)) (|po| ((|#1| $) 10 T ELT)) (|opposite?| #1#) (|op| (($ |#1|) 9 T ELT)) (|one?| #3#) (|monomial| (($ |#2| #8=(|NonNegativeInteger|)) NIL T ELT)) (|minimumDegree| #9=((#8# $) NIL T ELT)) (|leadingCoefficient| ((|#2| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|differentiate| #10=(#7# NIL #11=(|has| |#1| (|DifferentialRing|)) ELT) #12=(#13=($ $ #8#) NIL #11# ELT)) (|degree| #9#) (|coerce| (((|OutputForm|) $) 17 T ELT) (($ #14=(|Integer|)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (|CommutativeRing|)) ELT)) (|coefficient| ((|#2| $ #8#) NIL T ELT)) (|characteristic| ((#8#) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| #5#) (|One| #5#) (D #10# #12#) (= #1#) (- #6# #15=(#16=($ $ $) NIL T ELT)) (+ #15#) (** (($ $ #17=(|PositiveInteger|)) NIL T ELT) (#13# NIL T ELT)) (* (($ #17# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #14# . #18=($)) NIL T ELT) (#16# 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| . #18#) NIL T ELT)))
+(((|OppositeMonogenicLinearOperator| |#1| |#2|) (|Join| #1=(|MonogenicLinearOperator| |#2|) (CATEGORY |domain| (IF (|has| |#1| #2=(|DifferentialRing|)) (ATTRIBUTE #2#) |%noBranch|) (SIGNATURE |op| ($ |#1|)) (SIGNATURE |po| (|#1| $)))) #1# (|Ring|)) (T |OppositeMonogenicLinearOperator|))
+((|op| (*1 *1 *2) (AND #1=(|ofCategory| *3 (|Ring|)) #2=(|isDomain| *1 (|OppositeMonogenicLinearOperator| *2 *3)) #3=(|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|po| (*1 *2 *1) (AND #3# #2# #1#)))
+((~= (#1=((|Boolean|) $ $) 18 T ELT)) (|union| (($ |#1| $) 71 T ELT) (($ $ |#1|) 70 T ELT) (#2=($ $ $) 69 T ELT)) (|symmetricDifference| (#2# 67 T ELT)) (|subset?| (#3=((|Boolean|) $ $) 68 T ELT)) (|set| (($ (|List| |#1|)) 63 T ELT) (#4=($) 62 T ELT)) (|select!| (($ (|Mapping| #5=(|Boolean|) |#1|) . #6=($)) 42 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #7=(|Boolean|) |#1|) . #8=($)) 49 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#9=($) 6 T CONST)) (|removeDuplicates!| (($ $) 55 T ELT)) (|removeDuplicates| (($ $) 51 (AND (|has| |#1| . #10=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove!| (($ |#1| $) 44 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ (|Mapping| #5# |#1|) . #6#) 43 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|remove| (($ |#1| $) 50 (AND (|has| |#1| . #10#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #7# |#1|) . #8#) 48 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 80 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 79 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 75 (|has| |#1| . #11=((|BasicType|))) ELT)) (|part?| (#3# 59 T ELT)) (|min| ((|#1| $) 74 T ELT)) (|merge!| (#12=($ $ $) 88 T ELT)) (|merge| (#12# 87 T ELT)) (|members| (((|List| |#1|) $) 81 T ELT)) (|member?| ((#13=(|Boolean|) |#1| $) 76 (|has| |#1| . #11#) ELT)) (|max| ((|#1| $) 86 T ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 T ELT)) (|intersect| (#2# 64 T ELT)) (|inspect| ((|#1| . #14=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT) (($ |#1| $ #15=(|NonNegativeInteger|)) 56 T ELT)) (|hash| (((|SingleInteger|) $) 20 T ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #13# |#1|) $) 78 T ELT)) (|extract!| ((|#1| . #14#) 37 T ELT)) (|every?| ((#13# (|Mapping| #13# |#1|) . #16=($)) 83 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17=((|SetCategory|)))) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #17#)) ELT)) (|eq?| ((#18=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#18# $) 7 T ELT)) (|empty| (#9# 8 T ELT)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| #15#))) $) 54 T ELT)) (|difference| (($ $ |#1|) 66 T ELT) (#2# 65 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| |#1|)) 45 T ELT)) (|count| ((#19=(|NonNegativeInteger|) (|Mapping| #13# |#1|) $) 82 T ELT) ((#19# |#1| $) 77 (|has| |#1| . #11#) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#20=(|InputForm|) $) 52 (|has| |#1| (|ConvertibleTo| #20#)) ELT)) (|construct| (($ (|List| |#1|)) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)) (|brace| (($ (|List| |#1|)) 61 T ELT) (#4# 60 T ELT)) (|before?| (#1# 19 T ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|any?| ((#13# (|Mapping| #13# |#1|) . #16#) 84 T ELT)) (= (#1# 17 T ELT)) (|#| ((#19# $) 85 T ELT)))
+(((|OrderedMultisetAggregate| |#1|) (|Category|) (|OrderedSet|)) (T |OrderedMultisetAggregate|))
+((|min| (*1 *2 *1) (AND (|ofCategory| *1 (|OrderedMultisetAggregate| *2)) (|ofCategory| *2 (|OrderedSet|)))))
+(|Join| (|MultisetAggregate| |t#1|) (|PriorityQueueAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |min| (|t#1| $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|MultiDictionary| |#1|) . T) ((|MultisetAggregate| |#1|) . T) ((|PriorityQueueAggregate| |#1|) . T) ((|SetAggregate| |#1|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= (#1=(#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) NIL #4=(|has| |#1| (|AbelianGroup|)) ELT)) (|subtractIfCan| ((#5=(|Union| $ #6="failed") $ $) NIL #4# ELT)) (|sign| (#7=(#8=(|Integer|) $) NIL #9=(|has| |#1| (|OrderedRing|)) ELT)) (|sample| (#10=($) NIL #4# CONST)) (|retractIfCan| (((|Union| #8# . #11=(#6#)) $) NIL #12=(|has| |#1| (|RetractableTo| #8#)) ELT) (#13=((|Union| #14=(|Fraction| #8#) #6#) $) NIL #15=(|has| |#1| (|RetractableTo| #14#)) ELT) (((|Union| |#1| . #11#) $) 15 T ELT)) (|retract| (#7# NIL #12# ELT) (#16=(#14# $) NIL #15# ELT) ((|#1| $) 9 T ELT)) (|recip| ((#5# $) 42 #9# ELT)) (|rationalIfCan| (#13# 51 #17=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#3# 46 #17# ELT)) (|rational| (#16# 48 #17# ELT)) (|positive?| #18=(#3# NIL #9# ELT)) (|opposite?| (#1# NIL #4# ELT)) (|one?| #18#) (|negative?| #18#) (|min| #19=(#20=($ $ $) NIL #9# ELT)) (|max| #19#) (|latex| (((|String|) $) NIL T ELT)) (|infinity| (#10# 13 T ELT)) (|infinite?| (#3# 12 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|finite?| (#3# 11 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #14#) NIL #15# ELT) (($ |#1|) 8 T ELT) (($ #8#) NIL (OR #9# #12#) ELT)) (|characteristic| ((#21=(|NonNegativeInteger|)) 36 #9# CONST)) (|before?| (#1# 53 T ELT)) (|annihilate?| #22=(#1# NIL #9# ELT)) (|abs| (#23=($ $) NIL #9# ELT)) (|Zero| (#10# 23 #4# CONST)) (|One| (#10# 33 #9# CONST)) (>= #22#) (> #22#) (= (#1# 21 T ELT)) (<= #22#) (< (#1# 45 #9# ELT)) (- (#20# NIL #4# ELT) (#23# 29 #4# ELT)) (+ (#20# 31 #4# ELT)) (** (($ $ #24=(|PositiveInteger|)) NIL #9# ELT) (($ $ #21#) NIL #9# ELT)) (* (#20# 39 #9# ELT) (($ #8# $) 27 #4# ELT) (($ #21# $) NIL #4# ELT) (($ #24# $) NIL #4# ELT)))
+(((|OnePointCompletion| |#1|) (|Join| #1=(|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |infinity| ($)) (SIGNATURE |finite?| #2=((|Boolean|) $)) (SIGNATURE |infinite?| #2#) (IF (|has| |#1| #3=(|AbelianGroup|)) (ATTRIBUTE #3#) |%noBranch|) (IF (|has| |#1| #4=(|OrderedRing|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| #2#) (SIGNATURE |rational| (#5=(|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| #5# "failed") $))) |%noBranch|))) #1#) (T |OnePointCompletion|))
+((|infinity| (*1 *1) (AND (|isDomain| *1 (|OnePointCompletion| *2)) (|ofCategory| *2 #1=(|SetCategory|)))) (|finite?| #2=(*1 *2 *1) #3=(AND #4=(|isDomain| *2 (|Boolean|)) #5=(|isDomain| *1 (|OnePointCompletion| *3)) #6=(|ofCategory| *3 #1#))) (|infinite?| #2# #3#) (|rational?| #2# (AND #4# #5# #7=(|ofCategory| *3 (|IntegerNumberSystem|)) #6#)) (|rational| #2# (AND #8=(|isDomain| *2 (|Fraction| (|Integer|))) #5# #7# #6#)) (|rationalIfCan| #2# (|partial| AND #8# #5# #7# #6#)))
+((|map| ((#1=(|OnePointCompletion| |#2|) #2=(|Mapping| |#2| |#1|) #3=(|OnePointCompletion| |#1|) #1#) 12 T ELT) ((#1# #2# #3#) 13 T ELT)))
+(((|OnePointCompletionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (#1=(|OnePointCompletion| |#2|) #2=(|Mapping| |#2| |#1|) #3=(|OnePointCompletion| |#1|))) (SIGNATURE |map| (#1# #2# #3# #1#))) #4=(|SetCategory|) #4#) (T |OnePointCompletionFunctions2|))
+((|map| (*1 *2 *3 *4 *2) (AND #1=(|isDomain| *2 (|OnePointCompletion| *6)) #2=(|isDomain| *3 (|Mapping| *6 *5)) #3=(|isDomain| *4 (|OnePointCompletion| *5)) #4=(|ofCategory| *5 #5=(|SetCategory|)) #6=(|ofCategory| *6 #5#) #7=(|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND #2# #3# #4# #6# #1# #7#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| ((#4=(|Union| $ #5="failed") $ $) NIL T ELT)) (|sample| #6=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #7=(#5#)) . #8=($)) NIL T ELT) (((|Union| #9=(|BasicOperator|) . #7#) . #8#) NIL T ELT)) (|retract| ((|#1| . #10=($)) NIL T ELT) ((#9# . #10#) NIL T ELT)) (|recip| ((#4# $) NIL T ELT)) (|opposite?| #1#) (|opeval| ((|#1| #9# |#1|) NIL T ELT)) (|one?| #3#) (|makeop| (($ |#1| (|FreeGroup| #9#)) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|evaluateInverse| #11=(($ $ (|Mapping| |#1| |#1|)) NIL T ELT)) (|evaluate| #11#) (|elt| ((|#1| $ |#1|) NIL T ELT)) (|conjug| ((|#1| |#1|) NIL #12=(|has| |#1| (|CommutativeRing|)) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #13=(|Integer|)) NIL T ELT) (($ |#1|) NIL T ELT) (($ #9#) NIL T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#14=(|NonNegativeInteger|)) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|adjoint| (#15=($ $) NIL #12# ELT) (#16=($ $ $) NIL #12# ELT)) (|Zero| #6#) (|One| #6#) (= #1#) (- (#15# NIL T ELT) #17=(#16# NIL T ELT)) (+ #17#) (** (($ $ #18=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT) (($ #9# #13#) NIL T ELT) (($ $ #13#) NIL T ELT)) (* (($ #18# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #13# . #19=($)) NIL T ELT) #17# (($ |#1| . #19#) NIL #12# ELT) (($ $ |#1|) NIL #12# ELT)))
+(((|Operator| |#1|) (|Join| #1=(|Ring|) (|RetractableTo| |#1|) (|RetractableTo| #2=(|BasicOperator|)) (|Eltable| |#1| |#1|) (CATEGORY |domain| (IF (|has| |#1| #3=(|CharacteristicZero|)) (ATTRIBUTE #3#) |%noBranch|) (IF (|has| |#1| #4=(|CharacteristicNonZero|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |%noBranch|) (SIGNATURE |evaluate| #5=($ $ (|Mapping| |#1| |#1|))) (SIGNATURE |evaluateInverse| #5#) (SIGNATURE ** ($ #2# #6=(|Integer|))) (SIGNATURE ** ($ $ #6#)) (SIGNATURE |opeval| (|#1| #2# |#1|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| #2#))))) #1#) (T |Operator|))
+((|adjoint| (*1 *1 *1) #1=(AND #2=(|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|)) #3=(|ofCategory| *2 #4=(|Ring|)))) (|adjoint| (*1 *1 *1 *1) #1#) (|conjug| (*1 *2 *2) #1#) (|evaluate| #5=(*1 *1 *1 *2) #6=(AND (|isDomain| *2 (|Mapping| *3 *3)) #7=(|ofCategory| *3 #4#) #8=(|isDomain| *1 (|Operator| *3)))) (|evaluateInverse| #5# #6#) (** #9=(*1 *1 *2 *3) (AND (|isDomain| *2 #10=(|BasicOperator|)) (|isDomain| *3 #11=(|Integer|)) (|isDomain| *1 (|Operator| *4)) (|ofCategory| *4 #4#))) (** #5# (AND (|isDomain| *2 #11#) #8# #7#)) (|opeval| (*1 *2 *3 *2) (AND (|isDomain| *3 #10#) #2# #3#)) (|makeop| #9# (AND (|isDomain| *3 (|FreeGroup| #10#)) #2# #3#)))
+((|is?| (((|Boolean|) $ |#2|) 14 T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT)))
+(((|OperatorCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |is?| ((|Boolean|) |#1| |#2|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|OperatorCategory| |#2|) (|SetCategory|)) (T |OperatorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|name| ((|#1| $) 19 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|is?| (((|Boolean|) $ |#1|) 17 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|arity| (((|Arity|) $) 18 T ELT)) (= (#1# 8 T ELT)))
+(((|OperatorCategory| |#1|) (|Category|) (|SetCategory|)) (T |OperatorCategory|))
+((|name| (*1 *2 *1) (AND (|ofCategory| *1 (|OperatorCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|arity| (*1 *2 *1) (AND (|ofCategory| *1 (|OperatorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Arity|)))) (|is?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OperatorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |name| (|t#1| $)) (SIGNATURE |arity| ((|Arity|) $)) (SIGNATURE |is?| ((|Boolean|) $ |t#1|))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|getDatabase| (((|Database| (|IndexCard|)) (|String|)) 9 T ELT)))
+(((|OperationsQuery|) (CATEGORY |package| (SIGNATURE |getDatabase| ((|Database| (|IndexCard|)) (|String|))))) (T |OperationsQuery|))
+((|getDatabase| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Database| (|IndexCard|))) (|isDomain| *1 (|OperationsQuery|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|signature| ((#4=(|Signature|) $) 10 T ELT)) (|name| ((#5=(|Identifier|) $) 9 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|is?| ((#3# $ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|construct| (($ #5# #4#) 8 T ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT)) (|before?| #1#) (|arity| (((|Arity|) $) 20 T ELT)) (= (#2# 12 T ELT)))
+(((|OperatorSignature|) (|Join| (|OperatorCategory| #1=(|Identifier|)) (CATEGORY |domain| (SIGNATURE |signature| (#2=(|Signature|) $)) (SIGNATURE |construct| ($ #1# #2#))))) (T |OperatorSignature|))
+((|signature| (*1 *2 *1) (AND (|isDomain| *2 #1=(|Signature|)) #2=(|isDomain| *1 (|OperatorSignature|)))) (|construct| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 #1#) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) NIL #5=(|has| |#1| (|AbelianGroup|)) ELT)) (|whatInfinity| (#6=((|SingleInteger|) $) 31 T ELT)) (|subtractIfCan| ((#7=(|Union| $ #8="failed") $ $) NIL #5# ELT)) (|sign| (#9=(#10=(|Integer|) $) NIL #11=(|has| |#1| (|OrderedRing|)) ELT)) (|sample| (#12=($) NIL #5# CONST)) (|retractIfCan| (((|Union| #10# . #13=(#8#)) $) NIL #14=(|has| |#1| (|RetractableTo| #10#)) ELT) (#15=((|Union| #16=(|Fraction| #10#) #8#) $) NIL #17=(|has| |#1| (|RetractableTo| #16#)) ELT) (((|Union| |#1| . #13#) $) 18 T ELT)) (|retract| (#9# NIL #14# ELT) (#18=(#16# $) NIL #17# ELT) ((|#1| $) 9 T ELT)) (|recip| ((#7# $) 57 #11# ELT)) (|rationalIfCan| (#15# 65 #19=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#4# 60 #19# ELT)) (|rational| (#18# 63 #19# ELT)) (|positive?| #20=(#4# NIL #11# ELT)) (|plusInfinity| (#12# 14 T ELT)) (|opposite?| (#2# NIL #5# ELT)) (|one?| #20#) (|negative?| #20#) (|minusInfinity| (#12# 16 T ELT)) (|min| #21=(#22=($ $ $) NIL #11# ELT)) (|max| #21#) (|latex| (((|String|) $) NIL T ELT)) (|infinite?| (#4# 12 T ELT)) (|hash| (#6# NIL T ELT)) (|finite?| (#4# 11 T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #16#) NIL #17# ELT) (($ |#1|) 8 T ELT) (($ #10#) NIL (OR #11# #14#) ELT)) (|characteristic| ((#23=(|NonNegativeInteger|)) 50 #11# CONST)) (|before?| #1#) (|annihilate?| #24=(#2# NIL #11# ELT)) (|abs| (#25=($ $) NIL #11# ELT)) (|Zero| (#12# 37 #5# CONST)) (|One| (#12# 47 #11# CONST)) (>= #24#) (> #24#) (= (#2# 35 T ELT)) (<= #24#) (< (#2# 59 #11# ELT)) (- (#22# NIL #5# ELT) (#25# 43 #5# ELT)) (+ (#22# 45 #5# ELT)) (** (($ $ #26=(|PositiveInteger|)) NIL #11# ELT) (($ $ #23#) NIL #11# ELT)) (* (#22# 54 #11# ELT) (($ #10# $) 41 #5# ELT) (($ #23# $) NIL #5# ELT) (($ #26# $) NIL #5# ELT)))
+(((|OrderedCompletion| |#1|) (|Join| #1=(|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |plusInfinity| #2=($)) (SIGNATURE |minusInfinity| #2#) (SIGNATURE |finite?| #3=((|Boolean|) $)) (SIGNATURE |infinite?| #3#) (SIGNATURE |whatInfinity| ((|SingleInteger|) $)) (IF (|has| |#1| #4=(|AbelianGroup|)) (ATTRIBUTE #4#) |%noBranch|) (IF (|has| |#1| #5=(|OrderedRing|)) (ATTRIBUTE #5#) |%noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| #3#) (SIGNATURE |rational| (#6=(|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| #6# "failed") $))) |%noBranch|))) #1#) (T |OrderedCompletion|))
+((|plusInfinity| #1=(*1 *1) #2=(AND (|isDomain| *1 (|OrderedCompletion| *2)) (|ofCategory| *2 #3=(|SetCategory|)))) (|minusInfinity| #1# #2#) (|finite?| #4=(*1 *2 *1) #5=(AND #6=(|isDomain| *2 (|Boolean|)) #7=(|isDomain| *1 (|OrderedCompletion| *3)) #8=(|ofCategory| *3 #3#))) (|infinite?| #4# #5#) (|whatInfinity| #4# (AND (|isDomain| *2 (|SingleInteger|)) #7# #8#)) (|rational?| #4# (AND #6# #7# #9=(|ofCategory| *3 (|IntegerNumberSystem|)) #8#)) (|rational| #4# (AND #10=(|isDomain| *2 (|Fraction| (|Integer|))) #7# #9# #8#)) (|rationalIfCan| #4# (|partial| AND #10# #7# #9# #8#)))
+((|map| ((#1=(|OrderedCompletion| |#2|) #2=(|Mapping| |#2| |#1|) #3=(|OrderedCompletion| |#1|) #1# #1#) 13 T ELT) ((#1# #2# #3#) 14 T ELT)))
+(((|OrderedCompletionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (#1=(|OrderedCompletion| |#2|) #2=(|Mapping| |#2| |#1|) #3=(|OrderedCompletion| |#1|))) (SIGNATURE |map| (#1# #2# #3# #1# #1#))) #4=(|SetCategory|) #4#) (T |OrderedCompletionFunctions2|))
+((|map| (*1 *2 *3 *4 *2 *2) (AND #1=(|isDomain| *2 (|OrderedCompletion| *6)) #2=(|isDomain| *3 (|Mapping| *6 *5)) #3=(|isDomain| *4 (|OrderedCompletion| *5)) #4=(|ofCategory| *5 #5=(|SetCategory|)) #6=(|ofCategory| *6 #5#) #7=(|isDomain| *1 (|OrderedCompletionFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND #2# #3# #4# #6# #1# #7#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|size| (((|NonNegativeInteger|)) 27 T ELT)) (|random| (($) 30 T ELT)) (|min| (#2=($ $ $) 23 T ELT) (($) 26 T CONST)) (|max| (#2# 22 T ELT) (($) 25 T CONST)) (|lookup| ((#3=(|PositiveInteger|) $) 29 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|index| (($ #3#) 28 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (>= (#4=((|Boolean|) $ $) 21 T ELT)) (> (#4# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#4# 20 T ELT)) (< (#4# 18 T ELT)))
+(((|OrderedFinite|) (|Category|)) (T |OrderedFinite|))
+((|min| (*1 *1) (|ofCategory| *1 (|OrderedFinite|))) (|max| (*1 *1) (|ofCategory| *1 (|OrderedFinite|))))
+(|Join| (|OrderedSet|) (|Finite|) (CATEGORY |domain| (SIGNATURE |min| ($) |constant|) (SIGNATURE |max| ($) |constant|)))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Finite|) . T) ((|Join|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|totalLex| (#1=((|Boolean|) #2=(|Vector| |#2|) #2#) 19 T ELT)) (|reverseLex| (#1# 20 T ELT)) (|pureLex| (#1# 16 T ELT)))
+(((|OrderingFunctions| |#1| |#2|) (CATEGORY |package| (SIGNATURE |pureLex| #1=((|Boolean|) #2=(|Vector| |#2|) #2#)) (SIGNATURE |totalLex| #1#) (SIGNATURE |reverseLex| #1#)) (|NonNegativeInteger|) (|OrderedAbelianMonoid|)) (T |OrderingFunctions|))
+((|reverseLex| #1=(*1 *2 *3 *3) #2=(AND (|isDomain| *3 (|Vector| *5)) (|ofCategory| *5 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderingFunctions| *4 *5)) (|ofType| *4 (|NonNegativeInteger|)))) (|totalLex| #1# #2#) (|pureLex| #1# #2#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|sample| (#2=($) 29 T CONST)) (|recip| (((|Union| $ "failed") $) 32 T ELT)) (|one?| (((|Boolean|) $) 30 T ELT)) (|min| (#3=($ $ $) 23 T ELT)) (|max| (#3# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (#2# 28 T CONST)) (>= (#4=((|Boolean|) $ $) 21 T ELT)) (> (#4# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#4# 20 T ELT)) (< (#4# 18 T ELT)) (** (($ $ (|PositiveInteger|)) 26 T ELT) (($ $ (|NonNegativeInteger|)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
+(((|OrderedMonoid|) (|Category|)) (T |OrderedMonoid|))
+NIL
+(|Join| (|OrderedSemiGroup|) (|Monoid|))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monoid|) . T) ((|OrderedSemiGroup|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 31 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 35 T ELT)) (|sign| (((|Integer|) $) 38 T ELT)) (|sample| (#3=($) 30 T CONST)) (|recip| (((|Union| $ "failed") $) 55 T ELT)) (|positive?| (((|Boolean|) $) 28 T ELT)) (|opposite?| ((#2# $ $) 33 T ELT)) (|one?| (((|Boolean|) $) 53 T ELT)) (|negative?| (((|Boolean|) $) 39 T ELT)) (|min| (#4=($ $ $) 23 T ELT)) (|max| (#4# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 56 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 57 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 51 T ELT)) (|abs| (($ $) 37 T ELT)) (|Zero| (#3# 29 T CONST)) (|One| (($) 52 T CONST)) (>= (#5=((|Boolean|) $ $) 21 T ELT)) (> (#5# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#5# 20 T ELT)) (< (#5# 18 T ELT)) (- (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (+ (($ $ $) 25 T ELT)) (** (($ $ (|NonNegativeInteger|)) 54 T ELT) (($ $ (|PositiveInteger|)) 49 T ELT)) (* (($ (|PositiveInteger|) $) 26 T ELT) (($ (|NonNegativeInteger|) $) 32 T ELT) (($ (|Integer|) $) 40 T ELT) (($ $ $) 50 T ELT)))
+(((|OrderedRing|) (|Category|)) (T |OrderedRing|))
+NIL
+(|Join| (|OrderedAbelianGroup|) (|CharacteristicZero|) (|Monoid|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|min| (#2=($ $ $) 23 T ELT)) (|max| (#2# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (>= (#3=((|Boolean|) $ $) 21 T ELT)) (> (#3# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#3# 20 T ELT)) (< (#3# 18 T ELT)))
+(((|OrderedSet|) (|Category|)) (T |OrderedSet|))
+NIL
+(|Join| (|SetCategory|) (|OrderedType|))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedType|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|min| #3=(($ $ $) NIL T ELT)) (|max| #3#) (|coerce| (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) ((#4=(|OutputForm|) $) 15 (|has| |#1| (|CoercibleTo| #4#)) ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 12 T ELT)))
+(((|OrderedStructure| |#1| |#2|) (|Join| (|OrderedType|) (|HomotopicTo| |#1|) (CATEGORY |package| (IF (|has| |#1| #1=(|CoercibleTo| (|OutputForm|))) (ATTRIBUTE #1#) |%noBranch|))) (|Type|) (|Mapping| (|Boolean|) |#1| |#1|)) (T |OrderedStructure|))
+NIL
+((|min| (#1=($ $ $) 16 T ELT)) (|max| (#1# 15 T ELT)) (|before?| (#2=((|Boolean|) $ $) 17 T ELT)) (>= (#2# 12 T ELT)) (> (#2# 9 T ELT)) (= (#2# 14 T ELT)) (<= (#2# 11 T ELT)))
+(((|OrderedType&| |#1|) (CATEGORY |package| (SIGNATURE |min| #1=(|#1| |#1| |#1|)) (SIGNATURE |max| #1#) (SIGNATURE >= #2=((|Boolean|) |#1| |#1|)) (SIGNATURE <= #2#) (SIGNATURE > #2#) (SIGNATURE |before?| #2#) (SIGNATURE = #2#)) (|OrderedType|)) (T |OrderedType&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|min| (($ $ $) 10 T ELT)) (|max| (($ $ $) 11 T ELT)) (|before?| (#1# 6 T ELT)) (>= (((|Boolean|) $ $) 12 T ELT)) (> (((|Boolean|) $ $) 14 T ELT)) (= (#1# 8 T ELT)) (<= (((|Boolean|) $ $) 13 T ELT)) (< (((|Boolean|) $ $) 15 T ELT)))
+(((|OrderedType|) (|Category|)) (T |OrderedType|))
+((< (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|)))) (> (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|)))) (<= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|)))) (>= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|)))) (|max| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedType|))) (|min| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedType|))))
+(|Join| (|BasicType|) (CATEGORY |domain| (SIGNATURE < ((|Boolean|) $ $)) (SIGNATURE > ((|Boolean|) $ $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE >= ((|Boolean|) $ $)) (SIGNATURE |max| ($ $ $)) (SIGNATURE |min| ($ $ $))))
+(((|BasicType|) . T) ((|Join|) . T) ((|Type|) . T))
+((|rightRemainder| (#1=($ $ $) 49 T ELT)) (|rightQuotient| (#1# 48 T ELT)) (|rightLcm| (#1# 46 T ELT)) (|rightGcd| (#1# 55 T ELT)) (|rightExtendedGcd| (#2=((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 50 T ELT)) (|rightExactQuotient| (#3=(#4=(|Union| $ #5="failed") $ $) 53 T ELT)) (|retractIfCan| (((|Union| #6=(|Integer|) #5#) $) NIL T ELT) (((|Union| #7=(|Fraction| #6#) #5#) $) NIL T ELT) (((|Union| |#2| #5#) $) 29 T ELT)) (|primitivePart| (($ $) 39 T ELT)) (|leftRemainder| (#1# 43 T ELT)) (|leftQuotient| (#1# 42 T ELT)) (|leftLcm| (#1# 51 T ELT)) (|leftGcd| (#1# 57 T ELT)) (|leftExtendedGcd| (#2# 45 T ELT)) (|leftExactQuotient| (#3# 52 T ELT)) (|exquo| ((#4# $ |#2|) 32 T ELT)) (|content| ((|#2| $) 36 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #6#) NIL T ELT) (($ #7#) NIL T ELT) (($ |#2|) 13 T ELT)) (|coefficients| (((|List| |#2|) $) 21 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #6# $) NIL T ELT) (#1# NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
+(((|UnivariateSkewPolynomialCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftLcm| #1=(|#1| |#1| |#1|)) (SIGNATURE |rightExtendedGcd| #2=((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rightGcd| #1#) (SIGNATURE |rightExactQuotient| #3=(#4=(|Union| |#1| #5="failed") |#1| |#1|)) (SIGNATURE |rightRemainder| #1#) (SIGNATURE |rightQuotient| #1#) (SIGNATURE |rightLcm| #1#) (SIGNATURE |leftExtendedGcd| #2#) (SIGNATURE |leftGcd| #1#) (SIGNATURE |leftExactQuotient| #3#) (SIGNATURE |leftRemainder| #1#) (SIGNATURE |leftQuotient| #1#) (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| (#4# |#1| |#2|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #5#) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #6=(|Fraction| #7=(|Integer|)) #5#) |#1|)) (SIGNATURE |coerce| (|#1| #6#)) (SIGNATURE |retractIfCan| ((|Union| #7# #5#) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| #7#)) (SIGNATURE * #1#) (SIGNATURE * (|#1| #7# |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariateSkewPolynomialCategory| |#2|) (|Ring|)) (T |UnivariateSkewPolynomialCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rightRemainder| (($ $ $) 58 (|has| |#1| (|Field|)) ELT)) (|rightQuotient| (($ $ $) 59 (|has| |#1| (|Field|)) ELT)) (|rightLcm| (($ $ $) 61 (|has| |#1| (|Field|)) ELT)) (|rightGcd| (($ $ $) 56 (|has| |#1| (|Field|)) ELT)) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 55 (|has| |#1| (|Field|)) ELT)) (|rightExactQuotient| (((|Union| $ "failed") $ $) 57 (|has| |#1| (|Field|)) ELT)) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 60 (|has| |#1| (|Field|)) ELT)) (|retractIfCan| (((|Union| #4=(|Integer|) . #5=("failed")) . #6=($)) 88 (|has| |#1| . #7=((|RetractableTo| #4#))) ELT) (((|Union| #8=(|Fraction| #4#) . #5#) . #6#) 85 (|has| |#1| . #9=((|RetractableTo| #8#))) ELT) (((|Union| |#1| . #5#) . #6#) 82 T ELT)) (|retract| ((#4# . #10=($)) 87 (|has| |#1| . #7#) ELT) ((#8# . #10#) 84 (|has| |#1| . #9#) ELT) ((|#1| . #10#) 83 T ELT)) (|reductum| (($ $) 77 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|primitivePart| (($ $) 68 (|has| |#1| (|GcdDomain|)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 75 T ELT)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 70 (|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 71 (|has| |#1| (|IntegralDomain|)) ELT)) (|minimumDegree| (((|NonNegativeInteger|) $) 79 T ELT)) (|leftRemainder| (($ $ $) 65 (|has| |#1| (|Field|)) ELT)) (|leftQuotient| (($ $ $) 66 (|has| |#1| (|Field|)) ELT)) (|leftLcm| (($ $ $) 54 (|has| |#1| (|Field|)) ELT)) (|leftGcd| (($ $ $) 63 (|has| |#1| (|Field|)) ELT)) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 62 (|has| |#1| (|Field|)) ELT)) (|leftExactQuotient| (((|Union| $ "failed") $ $) 64 (|has| |#1| (|Field|)) ELT)) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 67 (|has| |#1| (|Field|)) ELT)) (|leadingCoefficient| ((|#1| $) 78 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 72 (|has| |#1| (|IntegralDomain|)) ELT)) (|degree| (((|NonNegativeInteger|) $) 80 T ELT)) (|content| ((|#1| $) 69 (|has| |#1| (|GcdDomain|)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #8#) 86 (|has| |#1| . #9#) ELT) (($ |#1|) 81 T ELT)) (|coefficients| (((|List| |#1|) $) 74 T ELT)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 76 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|apply| ((|#1| $ |#1| |#1|) 73 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #11=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| . #11#) 89 T ELT)))
+(((|UnivariateSkewPolynomialCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariateSkewPolynomialCategory|))
+((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *3)))) (|apply| (*1 *2 *1 *2 *2) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))) (|monicLeftDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|monicRightDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|content| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|leftDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|leftQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftRemainder| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftExactQuotient| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftExtendedGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|rightLcm| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|rightQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightRemainder| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightExactQuotient| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightExtendedGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|leftLcm| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |apply| (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $))) |%noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |content| (|t#1| $)) (SIGNATURE |primitivePart| ($ $))) |%noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |leftQuotient| ($ $ $)) (SIGNATURE |leftRemainder| ($ $ $)) (SIGNATURE |leftExactQuotient| ((|Union| $ "failed") $ $)) (SIGNATURE |leftGcd| ($ $ $)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |rightLcm| ($ $ $)) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |rightQuotient| ($ $ $)) (SIGNATURE |rightRemainder| ($ $ $)) (SIGNATURE |rightExactQuotient| ((|Union| $ "failed") $ $)) (SIGNATURE |rightGcd| ($ $ $)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |leftLcm| ($ $ $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1=(|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|FullyRetractableTo| |#1|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| #1#) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|times| ((|#2| |#2| |#2| #1=(|Automorphism| |#1|) #2=(|Mapping| |#1| |#1|)) 20 T ELT)) (|rightDivide| (#3=((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| #1#) 46 #4=(|has| |#1| (|Field|)) ELT)) (|monicRightDivide| (#3# 43 #5=(|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| (#3# 42 #5# ELT)) (|leftDivide| (#3# 45 #4# ELT)) (|apply| ((|#1| |#2| |#1| |#1| #1# #2#) 33 T ELT)))
+(((|UnivariateSkewPolynomialCategoryOps| |#1| |#2|) (CATEGORY |package| (SIGNATURE |times| (|#2| |#2| |#2| #1=(|Automorphism| |#1|) #2=(|Mapping| |#1| |#1|))) (SIGNATURE |apply| (|#1| |#2| |#1| |#1| #1# #2#)) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |monicLeftDivide| #3=((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| #1#)) (SIGNATURE |monicRightDivide| #3#)) |%noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| #3#) (SIGNATURE |rightDivide| #3#)) |%noBranch|)) (|Ring|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |UnivariateSkewPolynomialCategoryOps|))
+((|rightDivide| #1=(*1 *2 *3 *3 *4) #2=(AND #3=(|isDomain| *4 #4=(|Automorphism| *5)) (|ofCategory| *5 (|Field|)) #5=(|ofCategory| *5 #6=(|Ring|)) #7=(|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) #8=(|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) #9=(|ofCategory| *3 #10=(|UnivariateSkewPolynomialCategory| *5)))) (|leftDivide| #1# #2#) (|monicRightDivide| #1# #11=(AND #3# (|ofCategory| *5 (|IntegralDomain|)) #5# #7# #8# #9#)) (|monicLeftDivide| #1# #11#) (|apply| (*1 *2 *3 *2 *2 *4 *5) (AND (|isDomain| *4 (|Automorphism| *2)) (|isDomain| *5 (|Mapping| *2 *2)) (|ofCategory| *2 #6#) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *2)))) (|times| (*1 *2 *2 *2 *3 *4) (AND (|isDomain| *3 #4#) (|isDomain| *4 (|Mapping| *5 *5)) #5# (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *2)) (|ofCategory| *2 #10#))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| (#4=(#5=(|Union| $ #6="failed") $ $) NIL T ELT)) (|sample| #7=(#8=($) NIL T CONST)) (|rightRemainder| #9=(#10=($ $ $) NIL #11=(|has| |#1| (|Field|)) ELT)) (|rightQuotient| #9#) (|rightLcm| #9#) (|rightGcd| #9#) (|rightExtendedGcd| #12=(((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL #11# ELT)) (|rightExactQuotient| #13=(#4# NIL #11# ELT)) (|rightDivide| (#14=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 34 #11# ELT)) (|retractIfCan| (((|Union| #15=(|Integer|) . #16=(#6#)) . #17=($)) NIL #18=(|has| |#1| (|RetractableTo| #15#)) ELT) (((|Union| #19=(|Fraction| #15#) . #16#) . #17#) NIL #20=(|has| |#1| (|RetractableTo| #19#)) ELT) (((|Union| |#1| . #16#) . #17#) NIL T ELT)) (|retract| ((#15# . #21=($)) NIL #18# ELT) ((#19# . #21#) NIL #20# ELT) #22=(#23=(|#1| . #21#) NIL T ELT)) (|reductum| #24=(#25=($ $) NIL T ELT)) (|recip| ((#5# $) NIL T ELT)) (|primitivePart| (#25# NIL #26=(|has| |#1| (|GcdDomain|)) ELT)) (|outputForm| ((#27=(|OutputForm|) $ #27#) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial| (($ |#1| #28=(|NonNegativeInteger|)) NIL T ELT)) (|monicRightDivide| (#14# 30 #29=(|has| |#1| (|IntegralDomain|)) ELT)) (|monicLeftDivide| (#14# 28 #29# ELT)) (|minimumDegree| #30=((#28# $) NIL T ELT)) (|leftRemainder| #9#) (|leftQuotient| #9#) (|leftLcm| #9#) (|leftGcd| #9#) (|leftExtendedGcd| #12#) (|leftExactQuotient| #13#) (|leftDivide| (#14# 32 #11# ELT)) (|leadingCoefficient| #22#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| ((#5# $ |#1|) NIL #29# ELT)) (|degree| #30#) (|content| (#23# NIL #26# ELT)) (|coerce| ((#27# $) NIL T ELT) (($ #15#) NIL T ELT) (($ #19#) NIL #20# ELT) (($ |#1|) NIL T ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ #28#) NIL T ELT)) (|characteristic| ((#28#) NIL T CONST)) (|before?| #1#) (|apply| ((|#1| $ |#1| |#1|) 15 T ELT)) (|annihilate?| #1#) (|Zero| #7#) (|One| (#8# 23 T CONST)) (= #1#) (- #24# #31=(#10# NIL T ELT)) (+ #31#) (** (($ $ #32=(|PositiveInteger|)) 19 T ELT) (($ $ #28#) 24 T ELT)) (* (($ #32# $) NIL T ELT) (($ #28# $) NIL T ELT) (($ #15# . #33=($)) NIL T ELT) (#10# 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| . #33#) NIL T ELT)))
+(((|SparseUnivariateSkewPolynomial| |#1| |#2| |#3|) (|Join| (|UnivariateSkewPolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| (#1=(|OutputForm|) $ #1#)))) (|Ring|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) (T |SparseUnivariateSkewPolynomial|))
+((|outputForm| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|SparseUnivariateSkewPolynomial| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Automorphism| *3)) (|ofType| *5 (|Mapping| *3 *3)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| (#4=(#5=(|Union| $ #6="failed") $ $) NIL T ELT)) (|sample| #7=(#8=($) NIL T CONST)) (|rightRemainder| #9=(#10=($ $ $) NIL #11=(|has| |#2| (|Field|)) ELT)) (|rightQuotient| #9#) (|rightLcm| #9#) (|rightGcd| #9#) (|rightExtendedGcd| #12=(((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL #11# ELT)) (|rightExactQuotient| #13=(#4# NIL #11# ELT)) (|rightDivide| #14=(#15=((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #11# ELT)) (|retractIfCan| (((|Union| #16=(|Integer|) . #17=(#6#)) . #18=($)) NIL #19=(|has| |#2| (|RetractableTo| #16#)) ELT) (((|Union| #20=(|Fraction| #16#) . #17#) . #18#) NIL #21=(|has| |#2| (|RetractableTo| #20#)) ELT) (((|Union| |#2| . #17#) . #18#) NIL T ELT)) (|retract| ((#16# . #22=($)) NIL #19# ELT) ((#20# . #22#) NIL #21# ELT) #23=(#24=(|#2| . #22#) NIL T ELT)) (|reductum| #25=(#26=($ $) NIL T ELT)) (|recip| ((#5# $) NIL T ELT)) (|primitivePart| (#26# NIL #27=(|has| |#2| (|GcdDomain|)) ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial| (($ |#2| #28=(|NonNegativeInteger|)) 17 T ELT)) (|monicRightDivide| #29=(#15# NIL #30=(|has| |#2| (|IntegralDomain|)) ELT)) (|monicLeftDivide| #29#) (|minimumDegree| #31=((#28# $) NIL T ELT)) (|leftRemainder| #9#) (|leftQuotient| #9#) (|leftLcm| #9#) (|leftGcd| #9#) (|leftExtendedGcd| #12#) (|leftExactQuotient| #13#) (|leftDivide| #14#) (|leadingCoefficient| #23#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| ((#5# $ |#2|) NIL #30# ELT)) (|degree| #31#) (|content| (#24# NIL #27# ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (($ #16#) NIL T ELT) (($ #20#) NIL #21# ELT) (($ |#2|) NIL T ELT) (($ (|Variable| |#1|)) 19 T ELT)) (|coefficients| (((|List| |#2|) $) NIL T ELT)) (|coefficient| ((|#2| $ #28#) NIL T ELT)) (|characteristic| ((#28#) NIL T CONST)) (|before?| #1#) (|apply| ((|#2| $ |#2| |#2|) NIL T ELT)) (|annihilate?| #1#) (|Zero| #7#) (|One| (#8# 13 T CONST)) (= #1#) (- #25# #32=(#10# NIL T ELT)) (+ #32#) (** (($ $ #33=(|PositiveInteger|)) NIL T ELT) (($ $ #28#) NIL T ELT)) (* (($ #33# $) NIL T ELT) (($ #28# $) NIL T ELT) (($ #16# . #34=($)) NIL T ELT) #32# (($ $ |#2|) NIL T ELT) (($ |#2| . #34#) NIL T ELT)))
+(((|UnivariateSkewPolynomial| |#1| |#2| |#3| |#4|) (|Join| (|UnivariateSkewPolynomialCategory| |#2|) (|CoercibleFrom| (|Variable| |#1|))) (|Symbol|) (|Ring|) (|Automorphism| |#2|) (|Mapping| |#2| |#2|)) (T |UnivariateSkewPolynomial|))
+NIL
+((|legendreP| (#1=(|#1| #2=(|NonNegativeInteger|) |#1|) 45 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT)) (|laguerreL| ((|#1| #2# #2# |#1|) 36 T ELT) (#1# 24 T ELT)) (|hermiteH| (#1# 40 T ELT)) (|chebyshevU| (#1# 38 T ELT)) (|chebyshevT| (#1# 37 T ELT)))
+(((|OrthogonalPolynomialFunctions| |#1|) (CATEGORY |package| (SIGNATURE |chebyshevT| #1=(|#1| #2=(|NonNegativeInteger|) |#1|)) (SIGNATURE |chebyshevU| #1#) (SIGNATURE |hermiteH| #1#) (SIGNATURE |laguerreL| #1#) (SIGNATURE |laguerreL| (|#1| #2# #2# |#1|)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |legendreP| #1#) |%noBranch|)) (|CommutativeRing|)) (T |OrthogonalPolynomialFunctions|))
+((|legendreP| #1=(*1 *2 *3 *2) (AND #2=(|isDomain| *3 (|NonNegativeInteger|)) #3=(|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) #4=(|ofCategory| *2 (|CommutativeRing|)))) (|laguerreL| (*1 *2 *3 *3 *2) #5=(AND #2# #3# #4#)) (|laguerreL| #1# #5#) (|hermiteH| #1# #5#) (|chebyshevU| #1# #5#) (|chebyshevT| #1# #5#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|min| (#2=($ $ $) 23 T ELT)) (|max| (#2# 22 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (>= (#3=((|Boolean|) $ $) 21 T ELT)) (> (#3# 19 T ELT)) (= (#1# 8 T ELT)) (<= (#3# 20 T ELT)) (< (#3# 18 T ELT)) (** (($ $ (|PositiveInteger|)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
+(((|OrderedSemiGroup|) (|Category|)) (T |OrderedSemiGroup|))
+NIL
+(|Join| (|OrderedSet|) (|SemiGroup|))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|value| ((#3=(|Integer|) $) 14 T ELT)) (|min| #4=(($ $ $) NIL T ELT)) (|max| #4#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #3#) 13 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= (#2# 10 T ELT)) (<= #1#) (< (#2# 12 T ELT)))
+(((|OrdSetInts|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1=(|Integer|))) (SIGNATURE |value| (#1# $))))) (T |OrdSetInts|))
+((|coerce| (*1 *1 *2) #1=(AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OrdSetInts|)))) (|value| (*1 *2 *1) #1#))
+((|outputList| ((#1=(|Void|) (|List| (|Any|))) 23 T ELT)) (|output| ((#1# #2=(|String|) #3=(|OutputForm|)) 13 T ELT) ((#1# #3#) 8 T ELT) ((#1# #2#) 10 T ELT)))
+(((|OutputPackage|) (CATEGORY |package| (SIGNATURE |output| (#1=(|Void|) #2=(|String|))) (SIGNATURE |output| (#1# #3=(|OutputForm|))) (SIGNATURE |output| (#1# #2# #3#)) (SIGNATURE |outputList| (#1# (|List| (|Any|)))))) (T |OutputPackage|))
+((|outputList| #1=(*1 *2 *3) (AND (|isDomain| *3 (|List| (|Any|))) #2=(|isDomain| *2 (|Void|)) #3=(|isDomain| *1 (|OutputPackage|)))) (|output| (*1 *2 *3 *4) (AND #4=(|isDomain| *3 (|String|)) (|isDomain| *4 #5=(|OutputForm|)) #2# #3#)) (|output| #1# (AND (|isDomain| *3 #5#) #2# #3#)) (|output| #1# (AND #4# #2# #3#)))
+((|writeUInt8!| (((|Maybe| #1=(|UInt8|)) $ #1#) 15 T ELT)) (|writeInt8!| (((|Maybe| #2=(|Int8|)) $ #2#) 12 T ELT)) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 30 T ELT)))
+(((|OutputByteConduit&| |#1|) (CATEGORY |package| (SIGNATURE |writeBytes!| ((|NonNegativeInteger|) |#1| (|ByteBuffer|))) (SIGNATURE |writeUInt8!| ((|Maybe| #1=(|UInt8|)) |#1| #1#)) (SIGNATURE |writeInt8!| ((|Maybe| #2=(|Int8|)) |#1| #2#))) (|OutputByteConduit|)) (T |OutputByteConduit&|))
+NIL
+((|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) 8 T ELT)) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) 9 T ELT)) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) 7 T ELT)) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) 10 T ELT)) (|close!| (($ $) 6 T ELT)))
+(((|OutputByteConduit|) (|Category|)) (T |OutputByteConduit|))
+((|writeByte!| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OutputByteConduit|)) (|isDomain| *2 (|Maybe| (|Byte|))) (|isDomain| *3 (|Byte|)))) (|writeInt8!| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OutputByteConduit|)) (|isDomain| *2 (|Maybe| (|Int8|))) (|isDomain| *3 (|Int8|)))) (|writeUInt8!| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OutputByteConduit|)) (|isDomain| *2 (|Maybe| (|UInt8|))) (|isDomain| *3 (|UInt8|)))) (|writeBytes!| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OutputByteConduit|)) (|isDomain| *3 (|ByteBuffer|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|Conduit|) (CATEGORY |domain| (SIGNATURE |writeByte!| ((|Maybe| (|Byte|)) $ (|Byte|))) (SIGNATURE |writeInt8!| ((|Maybe| (|Int8|)) $ (|Int8|))) (SIGNATURE |writeUInt8!| ((|Maybe| (|UInt8|)) $ (|UInt8|))) (SIGNATURE |writeBytes!| ((|NonNegativeInteger|) $ (|ByteBuffer|)))))
+(((|Conduit|) . T))
+((|writeUInt8!| (((|Maybe| #1=(|UInt8|)) $ #1#) NIL T ELT)) (|writeInt8!| (((|Maybe| #2=(|Int8|)) $ #2#) NIL T ELT)) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) NIL T ELT)) (|writeByte!| (((|Maybe| #3=(|Byte|)) $ #3#) 22 T ELT)) (|outputBinaryFile| (($ (|FileName|)) 12 T ELT) (($ (|String|)) 14 T ELT)) (|isOpen?| (((|Boolean|) $) 19 T ELT)) (|coerce| (((|OutputForm|) $) 26 T ELT)) (|close!| (($ $) 23 T ELT)))
+(((|OutputBinaryFile|) (|Join| (|OutputByteConduit|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |outputBinaryFile| ($ (|FileName|))) (SIGNATURE |outputBinaryFile| ($ (|String|))) (SIGNATURE |isOpen?| ((|Boolean|) $))))) (T |OutputBinaryFile|))
+((|outputBinaryFile| #1=(*1 *1 *2) (AND (|isDomain| *2 (|FileName|)) #2=(|isDomain| *1 (|OutputBinaryFile|)))) (|outputBinaryFile| #1# (AND (|isDomain| *2 (|String|)) #2#)) (|isOpen?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT) (#4=($ $ $) 85 T ELT)) (|zag| (#4# 125 T ELT)) (|width| (#5=(#6=(|Integer|) $) 31 T ELT) (#7=(#6#) 36 T ELT)) (|vspace| (#8=($ #6#) 53 T ELT)) (|vconcat| (#4# 54 T ELT) (#9=($ #10=(|List| $)) 84 T ELT)) (|supersub| (#11=($ $ #10#) 82 T ELT)) (|superHeight| (#5# 34 T ELT)) (|super| (#4# 73 T ELT)) (|sum| (#12=($ $) 140 T ELT) (#4# 141 T ELT) (#13=($ $ $ $) 142 T ELT)) (|subHeight| (#5# 33 T ELT)) (|sub| (#4# 72 T ELT)) (|string| (#12# 114 T ELT)) (|slash| (#4# 129 T ELT)) (|semicolonSeparate| (#9# 61 T ELT)) (|scripts| (#11# 79 T ELT)) (|rspace| (($ #6# #6#) 55 T ELT)) (|root| (#12# 126 T ELT) (#4# 127 T ELT)) (|right| (#14=($ $ #6#) 43 T ELT) (#12# 46 T ELT)) (|rem| (#4# 97 T ELT)) (|rarrow| (#4# 132 T ELT)) (|quote| (#12# 115 T ELT)) (|quo| (#4# 98 T ELT)) (|prod| (#12# 143 T ELT) (#4# 144 T ELT) (#13# 145 T ELT)) (|print| ((#15=(|Void|) $) 10 T ELT)) (|prime| (#12# 118 T ELT) (#16=($ $ (|NonNegativeInteger|)) 122 T ELT)) (|presuper| (#4# 75 T ELT)) (|presub| (#4# 74 T ELT)) (|prefix| (#11# 110 T ELT)) (|postfix| (#4# 113 T ELT)) (|pile| (#9# 59 T ELT)) (|paren| (#12# 70 T ELT) (#9# 71 T ELT)) (|overlabel| (#4# 123 T ELT)) (|overbar| (#12# 116 T ELT)) (|over| (#4# 128 T ELT)) (|outputForm| (#8# 21 T ELT) (($ (|Symbol|)) 23 T ELT) (#17=($ #18=(|String|)) 30 T ELT) (($ (|DoubleFloat|)) 25 T ELT)) (|or| (#4# 101 T ELT)) (|not| (#12# 102 T ELT)) (|messagePrint| ((#15# #18#) 15 T ELT)) (|message| (#17# 14 T ELT)) (|matrix| (($ (|List| #10#)) 58 T ELT)) (|left| (#14# 42 T ELT) (#12# 45 T ELT)) (|latex| ((#18# $) NIL T ELT)) (|label| (#4# 131 T ELT)) (|int| (#12# 146 T ELT) (#4# 147 T ELT) (#13# 148 T ELT)) (|infix?| ((#3# $) 108 T ELT)) (|infix| (#11# 111 T ELT) (#13# 112 T ELT)) (|hspace| (#8# 39 T ELT)) (|height| (#5# 32 T ELT) (#7# 35 T ELT)) (|hconcat| (#4# 40 T ELT) (#9# 83 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exquo| (#4# 99 T ELT)) (|empty| (($) 13 T ELT)) (|elt| (#11# 109 T ELT)) (|doubleFloatFormat| ((#18# #18#) 8 T ELT)) (|dot| (#12# 117 T ELT) (#16# 121 T ELT)) (|div| (#4# 96 T ELT)) (|differentiate| (#16# 139 T ELT)) (|commaSeparate| (#9# 60 T ELT)) (|coerce| (((|OutputForm|) $) 19 T ELT)) (|center| (#14# 41 T ELT) (#12# 44 T ELT)) (|bracket| (#12# 68 T ELT) (#9# 69 T ELT)) (|brace| (#12# 66 T ELT) (#9# 67 T ELT)) (|box| (#12# 124 T ELT)) (|blankSeparate| (#9# 65 T ELT)) (|binomial| (#4# 105 T ELT)) (|before?| #1#) (|assign| (#4# 130 T ELT)) (|and| (#4# 100 T ELT)) (SEGMENT (#4# 103 T ELT) (#12# 104 T ELT)) (>= (#4# 89 T ELT)) (> (#4# 87 T ELT)) (= (#2# 16 T ELT) (#4# 17 T ELT)) (<= (#4# 88 T ELT)) (< (#4# 86 T ELT)) (/ (#4# 94 T ELT)) (- (#4# 91 T ELT) (#12# 92 T ELT)) (+ (#4# 90 T ELT)) (** (#4# 95 T ELT)) (* (#4# 93 T ELT)))
+(((|OutputForm|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |print| (#1=(|Void|) $)) (SIGNATURE |message| #2=($ #3=(|String|))) (SIGNATURE |messagePrint| (#1# #3#)) (SIGNATURE |outputForm| #4=($ #5=(|Integer|))) (SIGNATURE |outputForm| ($ (|Symbol|))) (SIGNATURE |outputForm| #2#) (SIGNATURE |outputForm| ($ (|DoubleFloat|))) (SIGNATURE |empty| ($)) (SIGNATURE |doubleFloatFormat| (#3# #3#)) (SIGNATURE |width| #6=(#5# $)) (SIGNATURE |height| #6#) (SIGNATURE |width| #7=(#5#)) (SIGNATURE |height| #7#) (SIGNATURE |subHeight| #6#) (SIGNATURE |superHeight| #6#) (SIGNATURE |hspace| #4#) (SIGNATURE |vspace| #4#) (SIGNATURE |rspace| ($ #5# #5#)) (SIGNATURE |left| #8=($ $ #5#)) (SIGNATURE |right| #8#) (SIGNATURE |center| #8#) (SIGNATURE |left| #9=($ $)) (SIGNATURE |right| #9#) (SIGNATURE |center| #9#) (SIGNATURE |hconcat| #10=($ $ $)) (SIGNATURE |vconcat| #10#) (SIGNATURE |hconcat| #11=($ #12=(|List| $))) (SIGNATURE |vconcat| #11#) (SIGNATURE |prefix| #13=($ $ #12#)) (SIGNATURE |infix| #13#) (SIGNATURE |infix| #14=($ $ $ $)) (SIGNATURE |postfix| #10#) (SIGNATURE |infix?| ((|Boolean|) $)) (SIGNATURE |elt| #13#) (SIGNATURE |string| #9#) (SIGNATURE |label| #10#) (SIGNATURE |box| #9#) (SIGNATURE |matrix| ($ (|List| #12#))) (SIGNATURE |zag| #10#) (SIGNATURE |root| #9#) (SIGNATURE |root| #10#) (SIGNATURE |over| #10#) (SIGNATURE |slash| #10#) (SIGNATURE |assign| #10#) (SIGNATURE |rarrow| #10#) (SIGNATURE |differentiate| #15=($ $ (|NonNegativeInteger|))) (SIGNATURE |binomial| #10#) (SIGNATURE |sub| #10#) (SIGNATURE |super| #10#) (SIGNATURE |presub| #10#) (SIGNATURE |presuper| #10#) (SIGNATURE |scripts| #13#) (SIGNATURE |supersub| #13#) (SIGNATURE |quote| #9#) (SIGNATURE |dot| #9#) (SIGNATURE |dot| #15#) (SIGNATURE |prime| #9#) (SIGNATURE |prime| #15#) (SIGNATURE |overbar| #9#) (SIGNATURE |overlabel| #10#) (SIGNATURE |sum| #9#) (SIGNATURE |sum| #10#) (SIGNATURE |sum| #14#) (SIGNATURE |prod| #9#) (SIGNATURE |prod| #10#) (SIGNATURE |prod| #14#) (SIGNATURE |int| #9#) (SIGNATURE |int| #10#) (SIGNATURE |int| #14#) (SIGNATURE |brace| #9#) (SIGNATURE |brace| #11#) (SIGNATURE |bracket| #9#) (SIGNATURE |bracket| #11#) (SIGNATURE |paren| #9#) (SIGNATURE |paren| #11#) (SIGNATURE |pile| #11#) (SIGNATURE |commaSeparate| #11#) (SIGNATURE |semicolonSeparate| #11#) (SIGNATURE |blankSeparate| #11#) (SIGNATURE = #10#) (SIGNATURE ~= #10#) (SIGNATURE < #10#) (SIGNATURE > #10#) (SIGNATURE <= #10#) (SIGNATURE >= #10#) (SIGNATURE + #10#) (SIGNATURE - #10#) (SIGNATURE - #9#) (SIGNATURE * #10#) (SIGNATURE / #10#) (SIGNATURE ** #10#) (SIGNATURE |div| #10#) (SIGNATURE |rem| #10#) (SIGNATURE |quo| #10#) (SIGNATURE |exquo| #10#) (SIGNATURE |and| #10#) (SIGNATURE |or| #10#) (SIGNATURE |not| #9#) (SIGNATURE SEGMENT #10#) (SIGNATURE SEGMENT #9#)))) (T |OutputForm|))
+((|print| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Void|)) #3=(|isDomain| *1 #4=(|OutputForm|)))) (|message| #5=(*1 *1 *2) #6=(AND (|isDomain| *2 #7=(|String|)) #3#)) (|messagePrint| (*1 *2 *3) (AND (|isDomain| *3 #7#) #2# #3#)) (|outputForm| #5# #8=(AND (|isDomain| *2 (|Integer|)) #3#)) (|outputForm| #5# (AND (|isDomain| *2 (|Symbol|)) #3#)) (|outputForm| #5# #6#) (|outputForm| #5# (AND (|isDomain| *2 (|DoubleFloat|)) #3#)) (|empty| (*1 *1) #3#) (|doubleFloatFormat| (*1 *2 *2) #6#) (|width| #1# #8#) (|height| #1# #8#) (|width| #9=(*1 *2) #8#) (|height| #9# #8#) (|subHeight| #1# #8#) (|superHeight| #1# #8#) (|hspace| #5# #8#) (|vspace| #5# #8#) (|rspace| (*1 *1 *2 *2) #8#) (|left| #10=(*1 *1 *1 *2) #8#) (|right| #10# #8#) (|center| #10# #8#) (|left| #11=(*1 *1 *1) #3#) (|right| #11# #3#) (|center| #11# #3#) (|hconcat| #12=(*1 *1 *1 *1) #3#) (|vconcat| #12# #3#) (|hconcat| #5# #13=(AND (|isDomain| *2 #14=(|List| #4#)) #3#)) (|vconcat| #5# #13#) (|prefix| #10# #13#) (|infix| #10# #13#) (|infix| #15=(*1 *1 *1 *1 *1) #3#) (|postfix| #12# #3#) (|infix?| #1# (AND (|isDomain| *2 (|Boolean|)) #3#)) (|elt| #10# #13#) (|string| #11# #3#) (|label| #12# #3#) (|box| #11# #3#) (|matrix| #5# (AND (|isDomain| *2 (|List| #14#)) #3#)) (|zag| #12# #3#) (|root| #11# #3#) (|root| #12# #3#) (|over| #12# #3#) (|slash| #12# #3#) (|assign| #12# #3#) (|rarrow| #12# #3#) (|differentiate| #10# #16=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3#)) (|binomial| #12# #3#) (|sub| #12# #3#) (|super| #12# #3#) (|presub| #12# #3#) (|presuper| #12# #3#) (|scripts| #10# #13#) (|supersub| #10# #13#) (|quote| #11# #3#) (|dot| #11# #3#) (|dot| #10# #16#) (|prime| #11# #3#) (|prime| #10# #16#) (|overbar| #11# #3#) (|overlabel| #12# #3#) (|sum| #11# #3#) (|sum| #12# #3#) (|sum| #15# #3#) (|prod| #11# #3#) (|prod| #12# #3#) (|prod| #15# #3#) (|int| #11# #3#) (|int| #12# #3#) (|int| #15# #3#) (|brace| #11# #3#) (|brace| #5# #13#) (|bracket| #11# #3#) (|bracket| #5# #13#) (|paren| #11# #3#) (|paren| #5# #13#) (|pile| #5# #13#) (|commaSeparate| #5# #13#) (|semicolonSeparate| #5# #13#) (|blankSeparate| #5# #13#) (= #12# #3#) (~= #12# #3#) (< #12# #3#) (> #12# #3#) (<= #12# #3#) (>= #12# #3#) (+ #12# #3#) (- #12# #3#) (- #11# #3#) (* #12# #3#) (/ #12# #3#) (** #12# #3#) (|div| #12# #3#) (|rem| #12# #3#) (|quo| #12# #3#) (|exquo| #12# #3#) (|and| #12# #3#) (|or| #12# #3#) (|not| #11# #3#) (SEGMENT #12# #3#) (SEGMENT #11# #3#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|variable| (((|Union| $ "failed") #3=(|Symbol|)) 36 T ELT)) (|size| (((|NonNegativeInteger|)) 32 T ELT)) (|random| (#4=($) NIL T ELT)) (|min| #5=(($ $ $) NIL T ELT) #6=(#4# NIL T CONST)) (|max| #5# #6#) (|lookup| ((#7=(|PositiveInteger|) $) 29 T ELT)) (|latex| (((|String|) $) 43 T ELT)) (|index| (($ #7#) 28 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| ((#3# $) 13 T ELT) (((|InputForm|) $) 19 T ELT) (((|Pattern| (|Float|)) $) 26 T ELT) (((|Pattern| (|Integer|)) $) 22 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= (#2# 40 T ELT)) (<= #1#) (< (#2# 38 T ELT)))
+(((|OrderedVariableList| |#1|) (|Join| (|OrderedFinite|) (|ConvertibleTo| #1=(|Symbol|)) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| (|Pattern| (|Float|))) (|ConvertibleTo| (|Pattern| (|Integer|))) (CATEGORY |domain| (SIGNATURE |variable| ((|Union| $ "failed") #1#)))) (|List| #1#)) (T |OrderedVariableList|))
+((|variable| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OrderedVariableList| *3)) (|ofType| *3 (|List| *2)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|name| (((|Identifier|) $) 12 T ELT)) (|members| (((|List| (|FunctionDescriptor|)) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 22 T ELT)) (|before?| #1#) (= (#2# 17 T ELT)))
+(((|OverloadSet|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |name| ((|Identifier|) $)) (SIGNATURE |members| ((|List| (|FunctionDescriptor|)) $))))) (T |OverloadSet|))
+((|name| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) #2=(|isDomain| *1 (|OverloadSet|)))) (|members| #1# (AND (|isDomain| *2 (|List| (|FunctionDescriptor|))) #2#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|subtractIfCan| (#4=(#5=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| #6=(($) NIL T CONST)) (|recip| ((#5# $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) . #7=($)) NIL T ELT) (($ #8=(|Integer|)) NIL T ELT) (($ #9=(|Polynomial| |#1|)) NIL T ELT) ((#9# . #7#) NIL T ELT) (($ |#1|) NIL #10=(|has| |#1| (|CommutativeRing|)) ELT)) (|characteristic| ((#11=(|NonNegativeInteger|)) NIL T CONST)) (|changeWeightLevel| (((|Void|) #11#) NIL T ELT)) (|before?| #1#) (|annihilate?| #1#) (|Zero| #6#) (|One| #6#) (= #1#) (/ (#4# NIL (|has| |#1| (|Field|)) ELT)) (- (($ $) NIL T ELT) #12=(($ $ $) NIL T ELT)) (+ #12#) (** (($ $ #13=(|PositiveInteger|)) NIL T ELT) (($ $ #11#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #11# $) NIL T ELT) (($ #8# . #14=($)) NIL T ELT) #12# (($ |#1| . #14#) NIL #10# ELT) (($ $ |#1|) NIL #10# ELT)))
+(((|OrdinaryWeightedPolynomials| |#1| |#2| |#3| |#4|) (|Join| #1=(|Ring|) (|HomotopicTo| (|Polynomial| |#1|)) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |%noBranch|) (IF (|has| |#1| (|Field|)) (SIGNATURE / ((|Union| $ "failed") $ $)) |%noBranch|) (SIGNATURE |changeWeightLevel| ((|Void|) #2=(|NonNegativeInteger|))))) #1# (|List| (|Symbol|)) (|List| #2#) #2#) (T |OrdinaryWeightedPolynomials|))
+((/ (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|OrdinaryWeightedPolynomials| *2 *3 *4 *5)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 #1=(|Ring|)) (|ofType| *3 #2=(|List| (|Symbol|))) (|ofType| *4 (|List| #3=(|NonNegativeInteger|))) (|ofType| *5 #3#))) (|changeWeightLevel| (*1 *2 *3) (AND (|isDomain| *3 #3#) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OrdinaryWeightedPolynomials| *4 *5 *6 *7)) (|ofCategory| *4 #1#) (|ofType| *5 #2#) (|ofType| *6 (|List| *3)) (|ofType| *7 *3))))
+((|padecf| (((|Union| (|ContinuedFraction| |#3|) #1="failed") #2=(|NonNegativeInteger|) #2# |#2| |#2|) 38 T ELT)) (|pade| (((|Union| (|Fraction| |#3|) #1#) #2# #2# |#2| |#2|) 29 T ELT)))
+(((|PadeApproximants| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |pade| ((|Union| (|Fraction| |#3|) #1="failed") #2=(|NonNegativeInteger|) #2# |#2| |#2|)) (SIGNATURE |padecf| ((|Union| (|ContinuedFraction| |#3|) #1#) #2# #2# |#2| |#2|))) (|Field|) (|UnivariateTaylorSeriesCategory| |#1|) (|UnivariatePolynomialCategory| |#1|)) (T |PadeApproximants|))
+((|padecf| #1=(*1 *2 *3 *3 *4 *4) (|partial| AND #2=(|isDomain| *3 (|NonNegativeInteger|)) #3=(|ofCategory| *5 (|Field|)) (|isDomain| *2 (|ContinuedFraction| *6)) #4=(|isDomain| *1 (|PadeApproximants| *5 *4 *6)) #5=(|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *5)) #6=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)))) (|pade| #1# (|partial| AND #2# #3# (|isDomain| *2 (|Fraction| *6)) #4# #5# #6#)))
+((|pade| ((#1=(|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") #2=(|NonNegativeInteger|) #2# #3=(|UnivariateTaylorSeries| |#1| |#2| |#3|)) 30 T ELT) ((#1# #2# #2# #3# #3#) 28 T ELT)))
+(((|PadeApproximantPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |pade| (#1=(|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") #2=(|NonNegativeInteger|) #2# #3=(|UnivariateTaylorSeries| |#1| |#2| |#3|) #3#)) (SIGNATURE |pade| (#1# #2# #2# #3#))) (|Field|) (|Symbol|) |#1|) (T |PadeApproximantPackage|))
+((|pade| (*1 *2 *3 *3 *4) #1=(|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|UnivariateTaylorSeries| *5 *6 *7)) (|ofCategory| *5 (|Field|)) (|ofType| *6 (|Symbol|)) (|ofType| *7 *5) (|isDomain| *2 (|Fraction| (|UnivariatePolynomial| *6 *5))) (|isDomain| *1 (|PadeApproximantPackage| *5 *6 *7)))) (|pade| (*1 *2 *3 *3 *4 *4) #1#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(($ $) NIL T ELT)) (|unit?| #3#) (|subtractIfCan| #5=((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|sqrt| #8=(($ $ #9=(|Integer|)) NIL T ELT)) (|sizeLess?| #1#) (|sample| #10=(($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| #9#) #9#) NIL T ELT)) (|rem| #11=(($ $ $) NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|quotientByP| #4#) (|quo| #11#) (|principalIdeal| (((|Record| (|:| |coef| #12=(|List| $)) #13=(|:| |generator| $)) #12#) NIL T ELT)) (|order| #14=((#15=(|NonNegativeInteger|) $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|multiEuclidean| (((|Union| #12# #7#) #12# $) NIL T ELT)) (|modulus| ((#9#) NIL T ELT)) (|moduloP| ((#9# $) NIL T ELT)) (|lcm| #11# #16=(($ #12#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#17=(|SparseUnivariatePolynomial| $) #17# #17#) NIL T ELT)) (|gcd| #11# #16#) (|extendedEuclidean| (((|Record| #18=(|:| |coef1| $) #19=(|:| |coef2| $) #13#) $ $) NIL T ELT) (((|Union| (|Record| #18# #19#) #7#) $ $ $) NIL T ELT)) (|extend| #8#) (|exquo| #5#) (|expressIdealMember| (((|Maybe| #12#) #12# $) NIL T ELT)) (|euclideanSize| #14#) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|digits| (((|Stream| #9#) $) NIL T ELT)) (|complete| #4#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #9#) NIL T ELT) #4#) (|characteristic| ((#15#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|approximate| ((#9# $ #9#) NIL T ELT)) (|annihilate?| #1#) (|Zero| #10#) (|One| #10#) (= #1#) (- #4# #11#) (+ #11#) (** (($ $ #20=(|PositiveInteger|)) NIL T ELT) (($ $ #15#) NIL T ELT)) (* (($ #20# $) NIL T ELT) (($ #15# $) NIL T ELT) (($ #9# $) NIL T ELT) #11#))
+(((|PAdicInteger| |#1|) (|PAdicIntegerCategory| |#1|) (|Integer|)) (T |PAdicInteger|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sqrt| (($ $ (|Integer|)) 78 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#4=($) 23 T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) 77 T ELT)) (|rem| (#5=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quotientByP| (($ $) 80 T ELT)) (|quo| (#5# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #6=(|List| $)) (|:| |generator| $)) #6#) 66 T ELT)) (|order| (((|NonNegativeInteger|) $) 85 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiEuclidean| (((|Union| #7=(|List| $) #8="failed") #7# $) 68 T ELT)) (|modulus| (((|Integer|)) 82 T ELT)) (|moduloP| (((|Integer|) $) 81 T ELT)) (|lcm| (#9=($ $ $) 60 T ELT) (#10=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#11=(|SparseUnivariatePolynomial| $) #11# #11#) 58 T ELT)) (|gcd| (#9# 62 T ELT) (#10# 61 T ELT)) (|extendedEuclidean| (((|Record| #12=(|:| |coef1| $) #13=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #12# #13#) #8#) $ $ $) 69 T ELT)) (|extend| (($ $ (|Integer|)) 84 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #6#) #6# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|digits| (((|Stream| (|Integer|)) $) 86 T ELT)) (|complete| (($ $) 83 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|approximate| (((|Integer|) $ (|Integer|)) 79 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|PAdicIntegerCategory| |#1|) (|Category|) (|Integer|)) (T |PAdicIntegerCategory|))
+((|digits| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Stream| (|Integer|))))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|complete| (*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2))) (|modulus| (*1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|moduloP| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|quotientByP| (*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2))) (|approximate| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|sqrt| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|root| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|PAdicIntegerCategory| *4)))))
+(|Join| (|EuclideanDomain|) (|CharacteristicZero|) (CATEGORY |domain| (SIGNATURE |digits| ((|Stream| (|Integer|)) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |extend| ($ $ (|Integer|))) (SIGNATURE |complete| ($ $)) (SIGNATURE |modulus| ((|Integer|))) (SIGNATURE |moduloP| ((|Integer|) $)) (SIGNATURE |quotientByP| ($ $)) (SIGNATURE |approximate| ((|Integer|) $ (|Integer|))) (SIGNATURE |sqrt| ($ $ (|Integer|))) (SIGNATURE |root| ($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|PAdicInteger| |#1|) $) NIL #8=(|has| #7# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #9=(#10=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #11=((#12=(|Union| $ #13="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #14=(((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) NIL #16=(|has| #7# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #9#) (|squareFree| #17=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #18=(|List| #15#) #13#) #18# #15#) NIL #16# ELT)) (|sizeLess?| #1#) (|sign| (#19=(#20=(|Integer|) $) NIL #21=(|has| #7# (|OrderedIntegralDomain|)) ELT)) (|sample| #22=(#23=($) NIL T CONST)) (|retractIfCan| (((|Union| #7# . #24=(#13#)) . #25=($)) NIL T ELT) (((|Union| #26=(|Symbol|) . #24#) . #25#) NIL #27=(|has| #7# (|RetractableTo| #26#)) ELT) (((|Union| #28=(|Fraction| #20#) . #24#) . #25#) NIL #29=(|has| #7# (|RetractableTo| #20#)) ELT) (((|Union| #20# . #24#) . #25#) NIL #29# ELT)) (|retract| #30=(#6# NIL T ELT) ((#26# . #31=($)) NIL #27# ELT) ((#28# . #31#) NIL #29# ELT) (#19# NIL #29# ELT)) (|removeZeroes| #9# #32=(($ #20# $) NIL T ELT)) (|rem| #33=(#34=($ $ $) NIL T ELT)) (|reducedSystem| ((#35=(|Matrix| #20#) . #36=(#37=(|Matrix| $))) NIL #38=(|has| #7# (|LinearlyExplicitRingOver| #20#)) ELT) ((#39=(|Record| (|:| |mat| #35#) (|:| |vec| (|Vector| #20#))) . #40=(#37# #41=(|Vector| $))) NIL #38# ELT) ((#42=(|Record| (|:| |mat| #43=(|Matrix| #7#)) (|:| |vec| (|Vector| #7#))) . #40#) NIL T ELT) ((#43# . #36#) NIL T ELT)) (|recip| ((#12# $) NIL T ELT)) (|random| (#23# NIL #44=(|has| #7# (|IntegerNumberSystem|)) ELT)) (|quo| #33#) (|principalIdeal| (((|Record| (|:| |coef| #45=(|List| $)) #46=(|:| |generator| $)) #45#) NIL T ELT)) (|prime?| #4#) (|positive?| #47=(#5# NIL #21# ELT)) (|patternMatch| ((#48=(|PatternMatchResult| #20# . #49=($)) $ #50=(|Pattern| #20#) #48#) NIL (|has| #7# (|PatternMatchable| #20#)) ELT) ((#51=(|PatternMatchResult| #52=(|Float|) . #49#) $ #53=(|Pattern| #52#) #51#) NIL (|has| #7# (|PatternMatchable| #52#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #9#) (|numer| #30#) (|nextItem| (#54=((|Maybe| $) $) NIL #55=(|has| #7# (|StepThrough|)) ELT)) (|negative?| #47#) (|multiEuclidean| (((|Union| #45# #13#) #45# $) NIL T ELT)) (|min| #56=(#34# NIL #57=(|has| #7# (|OrderedSet|)) ELT)) (|max| #56#) (|map| (($ #58=(|Mapping| #7# #7#) $) NIL T ELT)) (|leftReducedSystem| ((#35# . #59=(#41#)) NIL #38# ELT) ((#39# . #60=(#41# $)) NIL #38# ELT) ((#42# . #60#) NIL T ELT) ((#43# . #59#) NIL T ELT)) (|lcm| #33# #61=(($ #45#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #9#) (|init| (#23# NIL #55# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#15# #15# #15#) NIL T ELT)) (|gcd| #33# #61#) (|fractionPart| (#10# NIL #8# ELT)) (|floor| #62=(#6# NIL #44# ELT)) (|factorSquareFreePolynomial| #14#) (|factorPolynomial| #14#) (|factor| #17#) (|extendedEuclidean| (((|Record| #63=(|:| |coef1| $) #64=(|:| |coef2| $) #46#) $ $) NIL T ELT) (((|Union| (|Record| #63# #64#) #13#) $ $ $) NIL T ELT)) (|exquo| #11#) (|expressIdealMember| (((|Maybe| #45#) #45# $) NIL T ELT)) (|eval| (($ $ #65=(|List| #7#) #65#) NIL #66=(|has| #7# (|Evalable| #7#)) ELT) (($ $ #7# #7#) NIL #66# ELT) (($ $ #67=(|Equation| #7#)) NIL #66# ELT) (($ $ (|List| #67#)) NIL #66# ELT) (($ $ #68=(|List| #26#) #65#) NIL #69=(|has| #7# (|InnerEvalable| #26# #7#)) ELT) (($ $ #26# #7#) NIL #69# ELT)) (|euclideanSize| ((#70=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#71=($ $ #7#) NIL (|has| #7# (|Eltable| #7# #7#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #72=(($ $ #58#) NIL T ELT) #73=(($ $ #58# #70#) NIL T ELT) #74=(($ $ #26#) NIL #75=(|has| #7# (|PartialDifferentialSpace| #26#)) ELT) #76=(($ $ #68#) NIL #75# ELT) #77=(($ $ #26# #70#) NIL #75# ELT) #78=(($ $ #68# (|List| #70#)) NIL #75# ELT) #79=(#10# NIL #80=(|has| #7# (|DifferentialSpace|)) ELT) #81=(#82=($ $ #70#) NIL #80# ELT)) (|denominator| #9#) (|denom| #30#) (|convert| ((#50# . #83=($)) NIL (|has| #7# (|ConvertibleTo| #50#)) ELT) ((#53# . #83#) NIL (|has| #7# (|ConvertibleTo| #53#)) ELT) ((#84=(|InputForm|) . #83#) NIL (|has| #7# (|ConvertibleTo| #84#)) ELT) ((#52# . #83#) NIL #85=(|has| #7# (|RealConstant|)) ELT) (((|DoubleFloat|) . #83#) NIL #85# ELT)) (|continuedFraction| (((|ContinuedFraction| #28#) $) NIL T ELT)) (|conditionP| (((|Union| #41# #13#) #37#) NIL #86=(AND (|has| $ #87=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20#) NIL T ELT) #9# (($ #28#) NIL T ELT) (($ #7#) NIL T ELT) (($ #26#) NIL #27# ELT)) (|charthRoot| (#54# NIL (OR #86# (|has| #7# #87#)) ELT)) (|characteristic| ((#70#) NIL T CONST)) (|ceiling| #62#) (|before?| #1#) (|associates?| #1#) (|approximate| ((#28# $ #20#) NIL T ELT)) (|annihilate?| #1#) (|abs| (#10# NIL #21# ELT)) (|Zero| #22#) (|One| #22#) (D #72# #73# #74# #76# #77# #78# #79# #81#) (>= #88=(#2# NIL #57# ELT)) (> #88#) (= #1#) (<= #88#) (< #88#) (/ #33# (($ #7# #7#) NIL T ELT)) (- #9# #33#) (+ #33#) (** (($ $ #89=(|PositiveInteger|)) NIL T ELT) (#82# NIL T ELT) (($ $ #20#) NIL T ELT)) (* (($ #89# $) NIL T ELT) (($ #70# $) NIL T ELT) #32# #33# (($ $ #28#) NIL T ELT) (($ #28# . #90=($)) NIL T ELT) (($ #7# . #90#) NIL T ELT) (#71# NIL T ELT)))
+(((|PAdicRational| |#1|) (|Join| (|QuotientFieldCategory| (|PAdicInteger| |#1|)) (CATEGORY |domain| (SIGNATURE |approximate| (#1=(|Fraction| #2=(|Integer|)) $ #2#)) (SIGNATURE |continuedFraction| ((|ContinuedFraction| #1#) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ #2# $)))) #2#) (T |PAdicRational|))
+((|approximate| (*1 *2 *1 *3) (AND (|isDomain| *2 #1=(|Fraction| #2=(|Integer|))) (|isDomain| *1 (|PAdicRational| *4)) (|ofType| *4 *3) (|isDomain| *3 #2#))) (|continuedFraction| (*1 *2 *1) (AND (|isDomain| *2 (|ContinuedFraction| #1#)) #3=(|isDomain| *1 (|PAdicRational| *3)) (|ofType| *3 #2#))) (|removeZeroes| (*1 *1 *1) (AND (|isDomain| *1 (|PAdicRational| *2)) (|ofType| *2 #2#))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 #2#) #3# (|ofType| *3 *2))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(|#2| $) NIL #7=(|has| |#2| (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #8=(#9=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #10=((#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #13=(((|Factored| #14=(|SparseUnivariatePolynomial| $)) #14#) NIL #15=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #8#) (|squareFree| #16=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #17=(|List| #14#) #12#) #17# #14#) NIL #15# ELT)) (|sizeLess?| #1#) (|sign| (#18=(#19=(|Integer|) $) NIL #20=(|has| |#2| (|OrderedIntegralDomain|)) ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #22=(#12#)) . #23=($)) NIL T ELT) (((|Union| #24=(|Symbol|) . #22#) . #23#) NIL #25=(|has| |#2| (|RetractableTo| #24#)) ELT) (((|Union| #26=(|Fraction| #19#) . #22#) . #23#) NIL #27=(|has| |#2| (|RetractableTo| #19#)) ELT) (((|Union| #19# . #22#) . #23#) NIL #27# ELT)) (|retract| #28=(#6# NIL T ELT) ((#24# . #29=($)) NIL #25# ELT) ((#26# . #29#) NIL #27# ELT) (#18# NIL #27# ELT)) (|removeZeroes| (#9# 35 T ELT) (#30=($ #19# $) 38 T ELT)) (|rem| #31=(#32=($ $ $) NIL T ELT)) (|reducedSystem| ((#33=(|Matrix| #19#) . #34=(#35=(|Matrix| $))) NIL #36=(|has| |#2| (|LinearlyExplicitRingOver| #19#)) ELT) ((#37=(|Record| (|:| |mat| #33#) (|:| |vec| (|Vector| #19#))) . #38=(#35# #39=(|Vector| $))) NIL #36# ELT) ((#40=(|Record| (|:| |mat| #41=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #38#) NIL T ELT) ((#41# . #34#) NIL T ELT)) (|recip| ((#11# $) 64 T ELT)) (|random| (#21# NIL #42=(|has| |#2| (|IntegerNumberSystem|)) ELT)) (|quo| #31#) (|principalIdeal| (((|Record| (|:| |coef| #43=(|List| $)) #44=(|:| |generator| $)) #43#) NIL T ELT)) (|prime?| #4#) (|positive?| #45=(#5# NIL #20# ELT)) (|patternMatch| ((#46=(|PatternMatchResult| #19# . #47=($)) $ #48=(|Pattern| #19#) #46#) NIL (|has| |#2| (|PatternMatchable| #19#)) ELT) ((#49=(|PatternMatchResult| #50=(|Float|) . #47#) $ #51=(|Pattern| #50#) #49#) NIL (|has| |#2| (|PatternMatchable| #50#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #8#) (|numer| #28#) (|nextItem| (#52=((|Maybe| $) $) NIL #53=(|has| |#2| (|StepThrough|)) ELT)) (|negative?| #45#) (|multiEuclidean| (((|Union| #43# #12#) #43# $) NIL T ELT)) (|min| #54=(#32# NIL #55=(|has| |#2| (|OrderedSet|)) ELT)) (|max| #54#) (|map| (($ #56=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|leftReducedSystem| ((#33# . #57=(#39#)) NIL #36# ELT) ((#37# . #58=(#39# $)) NIL #36# ELT) ((#40# . #58#) NIL T ELT) ((#41# . #57#) NIL T ELT)) (|lcm| #31# #59=(($ #43#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#9# 60 T ELT)) (|init| (#21# NIL #53# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#14# #14# #14#) NIL T ELT)) (|gcd| #31# #59#) (|fractionPart| (#9# NIL #7# ELT)) (|floor| #60=(#6# NIL #42# ELT)) (|factorSquareFreePolynomial| #13#) (|factorPolynomial| #13#) (|factor| #16#) (|extendedEuclidean| (((|Record| #61=(|:| |coef1| $) #62=(|:| |coef2| $) #44#) $ $) NIL T ELT) (((|Union| (|Record| #61# #62#) #12#) $ $ $) NIL T ELT)) (|exquo| #10#) (|expressIdealMember| (((|Maybe| #43#) #43# $) NIL T ELT)) (|eval| (($ $ #63=(|List| |#2|) #63#) NIL #64=(|has| |#2| (|Evalable| |#2|)) ELT) (($ $ |#2| |#2|) NIL #64# ELT) (($ $ #65=(|Equation| |#2|)) NIL #64# ELT) (($ $ (|List| #65#)) NIL #64# ELT) (($ $ #66=(|List| #24#) #63#) NIL #67=(|has| |#2| (|InnerEvalable| #24# |#2|)) ELT) (($ $ #24# |#2|) NIL #67# ELT)) (|euclideanSize| ((#68=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#69=($ $ |#2|) NIL (|has| |#2| (|Eltable| |#2| |#2|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #70=(($ $ #56#) NIL T ELT) #71=(($ $ #56# #68#) NIL T ELT) #72=(($ $ #24#) NIL #73=(|has| |#2| (|PartialDifferentialSpace| #24#)) ELT) #74=(($ $ #66#) NIL #73# ELT) #75=(($ $ #24# #68#) NIL #73# ELT) #76=(($ $ #66# (|List| #68#)) NIL #73# ELT) #77=(#9# NIL #78=(|has| |#2| (|DifferentialSpace|)) ELT) #79=(#80=($ $ #68#) NIL #78# ELT)) (|denominator| #8#) (|denom| #28#) (|convert| ((#48# . #81=($)) NIL (|has| |#2| (|ConvertibleTo| #48#)) ELT) ((#51# . #81#) NIL (|has| |#2| (|ConvertibleTo| #51#)) ELT) ((#82=(|InputForm|) . #81#) NIL (|has| |#2| (|ConvertibleTo| #82#)) ELT) ((#50# . #81#) NIL #83=(|has| |#2| (|RealConstant|)) ELT) (((|DoubleFloat|) . #81#) NIL #83# ELT)) (|continuedFraction| (((|ContinuedFraction| #26#) $) 78 T ELT)) (|conditionP| (((|Union| #39# #12#) #35#) NIL #84=(AND (|has| $ #85=(|CharacteristicNonZero|)) #15#) ELT)) (|coerce| (((|OutputForm|) $) 105 T ELT) (($ #19#) 20 T ELT) #8# (($ #26#) 25 T ELT) (($ |#2|) 19 T ELT) (($ #24#) NIL #25# ELT)) (|charthRoot| (#52# NIL (OR #84# (|has| |#2| #85#)) ELT)) (|characteristic| ((#68#) NIL T CONST)) (|ceiling| #60#) (|before?| #1#) (|associates?| #1#) (|approximate| ((#26# $ #19#) 71 T ELT)) (|annihilate?| #1#) (|abs| (#9# NIL #20# ELT)) (|Zero| (#21# 15 T CONST)) (|One| (#21# 17 T CONST)) (D #70# #71# #72# #74# #75# #76# #77# #79#) (>= #86=(#2# NIL #55# ELT)) (> #86#) (= (#2# 46 T ELT)) (<= #86#) (< #86#) (/ (#32# 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (- (#9# 50 T ELT) (#32# 52 T ELT)) (+ (#32# 48 T ELT)) (** (($ $ #87=(|PositiveInteger|)) NIL T ELT) (#80# NIL T ELT) (($ $ #19#) 61 T ELT)) (* (($ #87# $) NIL T ELT) (($ #68# $) NIL T ELT) (#30# 53 T ELT) (#32# 55 T ELT) (($ $ #26#) NIL T ELT) (($ #26# $) NIL T ELT) (($ |#2| $) 66 T ELT) (#69# NIL T ELT)))
+(((|PAdicRationalConstructor| |#1| |#2|) (|Join| (|QuotientFieldCategory| |#2|) (CATEGORY |domain| (SIGNATURE |approximate| (#1=(|Fraction| #2=(|Integer|)) $ #2#)) (SIGNATURE |continuedFraction| ((|ContinuedFraction| #1#) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ #2# $)))) #2# (|PAdicIntegerCategory| |#1|)) (T |PAdicRationalConstructor|))
+((|approximate| (*1 *2 *1 *3) (AND (|ofType| *4 *3) (|isDomain| *2 #1=(|Fraction| #2=(|Integer|))) (|isDomain| *1 (|PAdicRationalConstructor| *4 *5)) (|isDomain| *3 #2#) (|ofCategory| *5 (|PAdicIntegerCategory| *4)))) (|continuedFraction| (*1 *2 *1) (AND (|ofType| *3 #2#) (|isDomain| *2 (|ContinuedFraction| #1#)) #3=(|isDomain| *1 (|PAdicRationalConstructor| *3 *4)) #4=(|ofCategory| *4 (|PAdicIntegerCategory| *3)))) (|removeZeroes| (*1 *1 *1) (AND (|ofType| *2 #2#) (|isDomain| *1 (|PAdicRationalConstructor| *2 *3)) (|ofCategory| *3 (|PAdicIntegerCategory| *2)))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 #2#) (|ofType| *3 *2) #3# #4#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL #3=(AND (|has| |#1| #4=(|SetCategory|)) (|has| |#2| #4#)) ELT)) (|second| ((|#2| $) 12 T ELT)) (|pair| (#5=($ |#1| |#2|) 9 T ELT)) (|latex| (((|String|) $) NIL #3# ELT)) (|hash| (((|SingleInteger|) $) NIL #3# ELT)) (|first| ((|#1| $) 11 T ELT)) (|construct| (#5# 10 T ELT)) (|coerce| ((#6=(|OutputForm|) $) 18 (OR (AND (|has| |#1| #7=(|CoercibleTo| #6#)) (|has| |#2| #7#)) #3#) ELT)) (|before?| #1#) (= (#2# 23 #3# ELT)))
+(((|Pair| |#1| |#2|) (|Join| #1=(|Type|) (CATEGORY |domain| (IF (|has| |#1| #2=(|CoercibleTo| (|OutputForm|))) (IF (|has| |#2| #2#) (ATTRIBUTE #2#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #3=(|SetCategory|)) (IF (|has| |#2| #3#) (ATTRIBUTE #3#) |%noBranch|) |%noBranch|) (SIGNATURE |pair| #4=($ |#1| |#2|)) (SIGNATURE |construct| #4#) (SIGNATURE |first| (|#1| $)) (SIGNATURE |second| (|#2| $)))) #1# #1#) (T |Pair|))
+((|pair| #1=(*1 *1 *2 *3) #2=(AND #3=(|isDomain| *1 (|Pair| *2 *3)) #4=(|ofCategory| *2 #5=(|Type|)) #6=(|ofCategory| *3 #5#))) (|construct| #1# #2#) (|first| #7=(*1 *2 *1) (AND #4# #3# #6#)) (|second| #7# (AND #4# (|isDomain| *1 (|Pair| *3 *2)) #6#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|shade| (((|Integer|) $) 16 T ELT)) (|pastel| (#2=($ #3=(|Color|)) 13 T ELT)) (|light| (#2# 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hue| ((#3# $) 15 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|dim| (#2# 11 T ELT)) (|dark| (#2# 10 T ELT)) (|coerce| (((|OutputForm|) $) 24 T ELT) (#2# 17 T ELT)) (|bright| (#2# 12 T ELT)) (|before?| #1#) (= #1#))
+(((|Palette|) (|Join| (|SetCategory|) (|CoercibleFrom| #1=(|Color|)) (CATEGORY |domain| (SIGNATURE |dark| #2=($ #1#)) (SIGNATURE |dim| #2#) (SIGNATURE |bright| #2#) (SIGNATURE |pastel| #2#) (SIGNATURE |light| #2#) (SIGNATURE |hue| (#1# $)) (SIGNATURE |shade| ((|Integer|) $))))) (T |Palette|))
+((|dark| #1=(*1 *1 *2) #2=(AND (|isDomain| *2 (|Color|)) #3=(|isDomain| *1 (|Palette|)))) (|dim| #1# #2#) (|bright| #1# #2#) (|pastel| #1# #2#) (|light| #1# #2#) (|hue| #4=(*1 *2 *1) #2#) (|shade| #4# (AND (|isDomain| *2 (|Integer|)) #3#)))
+((|coerce| ((#1=(|Expression| (|Integer|)) (|Fraction| #2=(|Polynomial| (|AlgebraicNumber|)))) 23 T ELT) ((#1# #2#) 18 T ELT)))
+(((|PolynomialAN2Expression|) (CATEGORY |package| (SIGNATURE |coerce| (#1=(|Expression| (|Integer|)) #2=(|Polynomial| (|AlgebraicNumber|)))) (SIGNATURE |coerce| (#1# (|Fraction| #2#))))) (T |PolynomialAN2Expression|))
+((|coerce| #1=(*1 *2 *3) (AND (|isDomain| *3 (|Fraction| #2=(|Polynomial| (|AlgebraicNumber|)))) #3=(|isDomain| *2 (|Expression| (|Integer|))) #4=(|isDomain| *1 (|PolynomialAN2Expression|)))) (|coerce| #1# (AND (|isDomain| *3 #2#) #3# #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|latex| (#4=(#5=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #6=(|Syntax|)) NIL T ELT) ((#6# $) NIL T ELT)) (|case| ((#3# $ (|[\|\|]| #7=(|Identifier|))) 9 T ELT) ((#3# $ (|[\|\|]| #5#)) 13 T ELT)) (|before?| #1#) (|autoCoerce| ((#7# $) 10 T ELT) (#4# 14 T ELT)) (= (#2# 15 T ELT)))
+(((|ParameterAst|) (|Join| (|SpadSyntaxCategory|) (|UnionType|) (CATEGORY |domain| (SIGNATURE |case| (#1=(|Boolean|) $ (|[\|\|]| #2=(|Identifier|)))) (SIGNATURE |autoCoerce| (#2# $)) (SIGNATURE |case| (#1# $ (|[\|\|]| #3=(|String|)))) (SIGNATURE |autoCoerce| (#3# $))))) (T |ParameterAst|))
+((|case| #1=(*1 *2 *1 *3) (AND (|isDomain| *3 (|[\|\|]| #2=(|Identifier|))) #3=(|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 (|ParameterAst|)))) (|autoCoerce| #5=(*1 *2 *1) (AND (|isDomain| *2 #2#) #4#)) (|case| #1# (AND (|isDomain| *3 (|[\|\|]| #6=(|String|))) #3# #4#)) (|autoCoerce| #5# (AND (|isDomain| *2 #6#) #4#)))
+((|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) 15 T ELT)))
+(((|ParametricPlaneCurveFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)))) #1=(|Type|) #1#) (T |ParametricPlaneCurveFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricPlaneCurve| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|ParametricPlaneCurve| *6)) (|isDomain| *1 (|ParametricPlaneCurveFunctions2| *5 *6)))))
+((|curve| (($ |#1| |#1|) 8 T ELT)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 15 T ELT)))
+(((|ParametricPlaneCurve| |#1|) (CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricPlaneCurve|))
+((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) #1=(|isDomain| *1 (|ParametricPlaneCurve| *2)) #2=(|ofCategory| *2 (|Type|)))) (|curve| (*1 *1 *2 *2) (AND #1# #2#)))
+((|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) 15 T ELT)))
+(((|ParametricSpaceCurveFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)))) #1=(|Type|) #1#) (T |ParametricSpaceCurveFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricSpaceCurve| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|ParametricSpaceCurve| *6)) (|isDomain| *1 (|ParametricSpaceCurveFunctions2| *5 *6)))))
+((|curve| (($ |#1| |#1| |#1|) 8 T ELT)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 15 T ELT)))
+(((|ParametricSpaceCurve| |#1|) (CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricSpaceCurve|))
+((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) #1=(|isDomain| *1 (|ParametricSpaceCurve| *2)) #2=(|ofCategory| *2 (|Type|)))) (|curve| (*1 *1 *2 *2 *2) (AND #1# #2#)))
+((|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) 9 T ELT)))
+(((|Parser|) (CATEGORY |package| (SIGNATURE |getSyntaxFormsFromFile| ((|List| (|Syntax|)) (|String|))))) (T |Parser|))
+((|getSyntaxFormsFromFile| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|Parser|)))))
+((|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) 15 T ELT)))
+(((|ParametricSurfaceFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)))) #1=(|Type|) #1#) (T |ParametricSurfaceFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricSurface| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|ParametricSurface| *6)) (|isDomain| *1 (|ParametricSurfaceFunctions2| *5 *6)))))
+((|surface| (($ |#1| |#1| |#1|) 8 T ELT)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 15 T ELT)))
+(((|ParametricSurface| |#1|) (CATEGORY |domain| (SIGNATURE |surface| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricSurface|))
+((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) #1=(|isDomain| *1 (|ParametricSurface| *2)) #2=(|ofCategory| *2 (|Type|)))) (|surface| (*1 *1 *2 *2 *2) (AND #1# #2#)))
+((|shufflein| ((#1=(|Stream| #2=(|List| #3=(|Integer|))) #2# #1#) 41 T ELT)) (|shuffle| (#4=(#1# #2# #2#) 31 T ELT)) (|sequences| ((#1# #2#) 53 T ELT) (#4# 50 T ELT)) (|permutations| ((#1# #3#) 55 T ELT)) (|conjugates| ((#5=(|Stream| #6=(|List| (|PositiveInteger|))) #5#) 22 T ELT)) (|conjugate| ((#6# #6#) 18 T ELT)))
+(((|PartitionsAndPermutations|) (CATEGORY |package| (SIGNATURE |conjugate| (#1=(|List| (|PositiveInteger|)) #1#)) (SIGNATURE |conjugates| (#2=(|Stream| #1#) #2#)) (SIGNATURE |shuffle| #3=(#4=(|Stream| #5=(|List| #6=(|Integer|))) #5# #5#)) (SIGNATURE |shufflein| (#4# #5# #4#)) (SIGNATURE |sequences| #3#) (SIGNATURE |sequences| (#4# #5#)) (SIGNATURE |permutations| (#4# #6#)))) (T |PartitionsAndPermutations|))
+((|permutations| #1=(*1 *2 *3) (AND #2=(|isDomain| *2 (|Stream| #3=(|List| #4=(|Integer|)))) #5=(|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 #4#))) (|sequences| #1# #6=(AND #2# #5# #7=(|isDomain| *3 #3#))) (|sequences| #8=(*1 *2 *3 *3) #6#) (|shufflein| (*1 *2 *3 *2) (AND #2# #7# #5#)) (|shuffle| #8# #6#) (|conjugates| #9=(*1 *2 *2) (AND (|isDomain| *2 (|Stream| #10=(|List| (|PositiveInteger|)))) #5#)) (|conjugate| #9# (AND (|isDomain| *2 #10#) #5#)))
+((|convert| (((|Pattern| (|Float|)) . #1=($)) 9 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ELT) (((|Pattern| (|Integer|)) . #1#) 8 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ELT)))
+(((|Patternable| |#1|) (|Category|) (|Type|)) (T |Patternable|))
+NIL
+(|Join| (CATEGORY |package| (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Integer|)))) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Float|)))) |%noBranch|)))
+(((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|new| (#4=($) 14 T ELT)) (|makeResult| (($ #5=(|PatternMatchResult| |#1| |#2|) #6=(|PatternMatchResult| |#1| |#3|)) 28 T ELT)) (|lists| ((#6# $) 16 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|failed?| ((#3# $) 22 T ELT)) (|failed| (#4# 19 T ELT)) (|coerce| (((|OutputForm|) $) 31 T ELT)) (|before?| #1#) (|atoms| ((#5# $) 15 T ELT)) (= (#2# 26 T ELT)))
+(((|PatternMatchListResult| |#1| |#2| |#3|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| #2=($)) (SIGNATURE |new| #2#) (SIGNATURE |makeResult| ($ #3=(|PatternMatchResult| |#1| |#2|) #4=(|PatternMatchResult| |#1| |#3|))) (SIGNATURE |atoms| (#3# $)) (SIGNATURE |lists| (#4# $)))) #1# #1# (|ListAggregate| |#2|)) (T |PatternMatchListResult|))
+((|failed?| #1=(*1 *2 *1) (AND #2=(|ofCategory| *4 #3=(|SetCategory|)) (|isDomain| *2 (|Boolean|)) #4=(|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) #5=(|ofCategory| *3 #3#) #6=(|ofCategory| *5 (|ListAggregate| *4)))) (|failed| #7=(*1 *1) #8=(AND #5# (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4)) (|ofCategory| *2 #3#) (|ofCategory| *4 (|ListAggregate| *3)))) (|new| #7# #8#) (|makeResult| (*1 *1 *2 *3) (AND (|isDomain| *2 (|PatternMatchResult| *4 *5)) (|isDomain| *3 (|PatternMatchResult| *4 *6)) #2# (|ofCategory| *5 #3#) (|ofCategory| *6 (|ListAggregate| *5)) (|isDomain| *1 (|PatternMatchListResult| *4 *5 *6)))) (|atoms| #1# (AND #2# (|isDomain| *2 (|PatternMatchResult| *3 *4)) #4# #5# #6#)) (|lists| #1# (AND #2# (|isDomain| *2 (|PatternMatchResult| *3 *5)) #4# #5# #6#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) 17 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|PatternMatchable| |#1|) (|Category|) (|SetCategory|)) (T |PatternMatchable|))
+((|patternMatch| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|PatternMatchResult| *4 *1)) (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *1 (|PatternMatchable| *4)) (|ofCategory| *4 (|SetCategory|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |patternMatch| ((|PatternMatchResult| |t#1| $) $ (|Pattern| |t#1|) (|PatternMatchResult| |t#1| $)))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|is?| ((#1=(|Boolean|) #2=(|List| |#2|) |#3|) 23 T ELT) ((#1# |#2| |#3|) 18 T ELT)) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) 45 (AND #3=(|not| #4=(|has| |#2| (|RetractableTo| (|Symbol|)))) (|not| #5=(|has| |#2| (|Ring|)))) ELT) (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) 44 (AND #5# #3#) ELT) (((|List| (|Equation| |#2|)) |#2| |#3|) 36 #4# ELT) (((|PatternMatchListResult| |#1| |#2| #2#) #2# |#3|) 21 T ELT)))
+(((|PatternMatch| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |is?| (#1=(|Boolean|) |#2| |#3|)) (SIGNATURE |is?| (#1# #2=(|List| |#2|) |#3|)) (SIGNATURE |Is| ((|PatternMatchListResult| |#1| |#2| #2#) #2# |#3|)) (IF (|has| |#2| (|RetractableTo| (|Symbol|))) (SIGNATURE |Is| ((|List| (|Equation| |#2|)) |#2| |#3|)) (IF (|has| |#2| (|Ring|)) (SIGNATURE |Is| ((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|)) (SIGNATURE |Is| ((|PatternMatchResult| |#1| |#2|) |#2| |#3|))))) (|SetCategory|) (|PatternMatchable| |#1|) (|ConvertibleTo| (|Pattern| |#1|))) (T |PatternMatch|))
+((|Is| #1=(*1 *2 *3 *4) (AND #2=(|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *5 *3)) #3=(|isDomain| *1 (|PatternMatch| *5 *3 *4)) #4=(|not| #5=(|ofCategory| *3 (|RetractableTo| (|Symbol|)))) (|not| #6=(|ofCategory| *3 (|Ring|))) #7=(|ofCategory| *3 #8=(|PatternMatchable| *5)) #9=(|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|Is| #1# (AND #2# (|isDomain| *2 (|List| (|Equation| (|Polynomial| *3)))) #3# #6# #4# #7# #9#)) (|Is| #1# (AND #2# (|isDomain| *2 (|List| (|Equation| *3))) #3# #5# #7# #9#)) (|Is| #1# (AND #2# #10=(|ofCategory| *6 #8#) (|isDomain| *2 (|PatternMatchListResult| *5 *6 #11=(|List| *6))) #12=(|isDomain| *1 (|PatternMatch| *5 *6 *4)) #13=(|isDomain| *3 #11#) #9#)) (|is?| #1# (AND #13# #10# #2# #14=(|isDomain| *2 (|Boolean|)) #12# #9#)) (|is?| #1# (AND #2# #14# #3# #7# #9#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|union| (($ $ $) 40 T ELT)) (|satisfy?| (((|Union| #3# #4="failed") $ #5=(|Pattern| |#1|)) 37 T ELT)) (|new| (#6=($) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|insertMatch| (#7=($ #5# |#2| $) 20 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|getMatch| (((|Union| |#2| #4#) #5# $) 51 T ELT)) (|failed?| ((#3# $) 15 T ELT)) (|failed| (#6# 13 T ELT)) (|destruct| ((#8=(|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) 25 T ELT)) (|construct| (($ #8#) 23 T ELT)) (|coerce| (((|OutputForm|) $) 45 T ELT)) (|before?| #1#) (|addMatchRestricted| (($ #5# |#2| $ |#2|) 49 T ELT)) (|addMatch| (#7# 48 T ELT)) (= (#2# 42 T ELT)))
+(((|PatternMatchResult| |#1| |#2|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| (#2=(|Boolean|) $)) (SIGNATURE |failed| #3=($)) (SIGNATURE |new| #3#) (SIGNATURE |union| ($ $ $)) (SIGNATURE |getMatch| ((|Union| |#2| #4="failed") #5=(|Pattern| |#1|) $)) (SIGNATURE |addMatch| #6=($ #5# |#2| $)) (SIGNATURE |insertMatch| #6#) (SIGNATURE |addMatchRestricted| ($ #5# |#2| $ |#2|)) (SIGNATURE |destruct| (#7=(|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $)) (SIGNATURE |construct| ($ #7#)) (SIGNATURE |satisfy?| ((|Union| #2# #4#) $ #5#)))) #1# #1#) (T |PatternMatchResult|))
+((|failed?| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Boolean|)) #3=(|isDomain| *1 (|PatternMatchResult| *3 *4)) #4=(|ofCategory| *3 #5=(|SetCategory|)) #6=(|ofCategory| *4 #5#))) (|failed| #7=(*1 *1) #8=(AND (|isDomain| *1 (|PatternMatchResult| *2 *3)) #9=(|ofCategory| *2 #5#) #4#)) (|new| #7# #8#) (|union| (*1 *1 *1 *1) #8#) (|getMatch| (*1 *2 *3 *1) (|partial| AND #10=(|isDomain| *3 #11=(|Pattern| *4)) #6# #9# (|isDomain| *1 (|PatternMatchResult| *4 *2)))) (|addMatch| #12=(*1 *1 *2 *3 *1) #13=(AND (|isDomain| *2 #11#) #6# (|isDomain| *1 (|PatternMatchResult| *4 *3)) #4#)) (|insertMatch| #12# #13#) (|addMatchRestricted| (*1 *1 *2 *3 *1 *3) #13#) (|destruct| #1# (AND #14=(|isDomain| *2 (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| *4)))) #3# #4# #6#)) (|construct| (*1 *1 *2) (AND #14# #6# #3# #4#)) (|satisfy?| (*1 *2 *1 *3) (|partial| AND #10# #6# #2# (|isDomain| *1 (|PatternMatchResult| *4 *5)) (|ofCategory| *5 #5#))))
+((|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) 22 T ELT)))
+(((|PatternMatchResultFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)))) #1=(|SetCategory|) #1# #1#) (T |PatternMatchResultFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|PatternMatchResult| *5 *6)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 #1#) (|ofCategory| *7 #1#) (|isDomain| *2 (|PatternMatchResult| *5 *7)) (|isDomain| *1 (|PatternMatchResultFunctions2| *5 *6 *7)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|withPredicates| (#4=($ $ #5=(|List| #6=(|Any|))) 74 T ELT)) (|variables| ((#7=(|List| $) $) 139 T ELT)) (|topPredicate| (((|Record| (|:| |var| #8=(|List| #9=(|Symbol|))) (|:| |pred| #6#)) $) 30 T ELT)) (|symbol?| (#10=(#3# $) 35 T ELT)) (|setTopPredicate| (($ $ #8# #6#) 31 T ELT)) (|setPredicates| (#4# 73 T ELT)) (|retractIfCan| (((|Union| |#1| . #11=(#12="failed")) $) 71 T ELT) (((|Union| #9# . #11#) $) 167 T ELT)) (|retract| ((|#1| $) 68 T ELT) ((#9# $) NIL T ELT)) (|resetBadValues| (#13=($ $) 126 T ELT)) (|quoted?| (#10# 55 T ELT)) (|predicates| (#14=(#5# $) 50 T ELT)) (|patternVariable| (($ #9# #3# #3# #3#) 75 T ELT)) (|optpair| ((#15=(|Union| #7# #12#) #7#) 82 T ELT)) (|optional?| (#10# 58 T ELT)) (|multiple?| (#10# 57 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| (#16=(#15# $) 41 T ELT)) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) #12#) $) 48 T ELT)) (|isPower| (((|Union| (|Record| #17=(|:| |val| $) (|:| |exponent| $)) #12#) $) 97 T ELT)) (|isPlus| (#16# 40 T ELT)) (|isOp| ((#15# $ #18=(|BasicOperator|)) 124 T ELT) (((|Union| (|Record| (|:| |op| #18#) (|:| |arg| #7#)) #12#) $) 107 T ELT)) (|isList| (#16# 42 T ELT)) (|isExpt| (((|Union| (|Record| #17# (|:| |exponent| #19=(|NonNegativeInteger|))) #12#) $) 45 T ELT)) (|inR?| (#10# 34 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|hasTopPredicate?| (#10# 28 T ELT)) (|hasPredicate?| (#10# 52 T ELT)) (|getBadValues| (#14# 130 T ELT)) (|generic?| (#10# 56 T ELT)) (|elt| (($ #18# #7#) 104 T ELT)) (|depth| ((#19# $) 33 T ELT)) (|copy| (#13# 72 T ELT)) (|convert| (($ #7#) 69 T ELT)) (|constant?| (#10# 32 T ELT)) (|coerce| (((|OutputForm|) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ #9#) 76 T ELT)) (|before?| #1#) (|addBadValue| (($ $ #6#) 129 T ELT)) (|Zero| (#20=($) 103 T CONST)) (|One| (#20# 83 T CONST)) (= (#2# 93 T ELT)) (/ (#21=($ $ $) 117 T ELT)) (+ (#21# 121 T ELT)) (** (($ $ #19#) 115 T ELT) (#21# 64 T ELT)) (* (#21# 122 T ELT)))
+(((|Pattern| |#1|) (|Join| #1=(|SetCategory|) (|RetractableTo| |#1|) (|RetractableTo| #2=(|Symbol|)) (CATEGORY |domain| (SIGNATURE |Zero| #3=($) |constant|) (SIGNATURE |One| #3# |constant|) (SIGNATURE |isPlus| #4=(#5=(|Union| #6=(|List| $) #7="failed") $)) (SIGNATURE |isTimes| #4#) (SIGNATURE |isOp| (#5# $ #8=(|BasicOperator|))) (SIGNATURE |isOp| ((|Union| (|Record| (|:| |op| #8#) (|:| |arg| #6#)) #7#) $)) (SIGNATURE |isExpt| ((|Union| (|Record| #9=(|:| |val| $) (|:| |exponent| #10=(|NonNegativeInteger|))) #7#) $)) (SIGNATURE |isQuotient| ((|Union| (|Record| (|:| |num| $) (|:| |den| $)) #7#) $)) (SIGNATURE |isList| #4#) (SIGNATURE |isPower| ((|Union| (|Record| #9# (|:| |exponent| $)) #7#) $)) (SIGNATURE |elt| ($ #8# #6#)) (SIGNATURE + #11=($ $ $)) (SIGNATURE * #11#) (SIGNATURE ** ($ $ #10#)) (SIGNATURE ** #11#) (SIGNATURE / #11#) (SIGNATURE |depth| (#10# $)) (SIGNATURE |convert| ($ #6#)) (SIGNATURE |copy| #12=($ $)) (SIGNATURE |inR?| #13=(#14=(|Boolean|) $)) (SIGNATURE |quoted?| #13#) (SIGNATURE |symbol?| #13#) (SIGNATURE |constant?| #13#) (SIGNATURE |generic?| #13#) (SIGNATURE |multiple?| #13#) (SIGNATURE |optional?| #13#) (SIGNATURE |hasPredicate?| #13#) (SIGNATURE |predicates| #15=(#16=(|List| #17=(|Any|)) $)) (SIGNATURE |setPredicates| #18=($ $ #16#)) (SIGNATURE |withPredicates| #18#) (SIGNATURE |patternVariable| ($ #2# #14# #14# #14#)) (SIGNATURE |setTopPredicate| ($ $ #19=(|List| #2#) #17#)) (SIGNATURE |topPredicate| ((|Record| (|:| |var| #19#) (|:| |pred| #17#)) $)) (SIGNATURE |hasTopPredicate?| #13#) (SIGNATURE |resetBadValues| #12#) (SIGNATURE |addBadValue| ($ $ #17#)) (SIGNATURE |getBadValues| #15#) (SIGNATURE |variables| (#6# $)) (SIGNATURE |optpair| (#5# #6#)))) #1#) (T |Pattern|))
+((|Zero| #1=(*1 *1) #2=(AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 #3=(|SetCategory|)))) (|One| #1# #2#) (|isPlus| #4=(*1 *2 *1) #5=(|partial| AND #6=(|isDomain| *2 #7=(|List| #8=(|Pattern| *3))) #9=(|isDomain| *1 #8#) #10=(|ofCategory| *3 #3#))) (|isTimes| #4# #5#) (|isOp| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 #11=(|BasicOperator|)) (|isDomain| *2 #12=(|List| #13=(|Pattern| *4))) #14=(|isDomain| *1 #13#) #15=(|ofCategory| *4 #3#))) (|isOp| #4# (|partial| AND (|isDomain| *2 (|Record| (|:| |op| #11#) (|:| |arg| #7#))) #9# #10#)) (|isExpt| #4# (|partial| AND (|isDomain| *2 (|Record| #16=(|:| |val| #8#) (|:| |exponent| #17=(|NonNegativeInteger|)))) #9# #10#)) (|isQuotient| #4# (|partial| AND (|isDomain| *2 (|Record| (|:| |num| #8#) (|:| |den| #8#))) #9# #10#)) (|isList| #4# #5#) (|isPower| #4# (|partial| AND (|isDomain| *2 (|Record| #16# (|:| |exponent| #8#))) #9# #10#)) (|elt| (*1 *1 *2 *3) (AND (|isDomain| *2 #11#) (|isDomain| *3 #12#) #14# #15#)) (+ #18=(*1 *1 *1 *1) #2#) (* #18# #2#) (** #19=(*1 *1 *1 *2) #20=(AND (|isDomain| *2 #17#) #9# #10#)) (** #18# #2#) (/ #18# #2#) (|depth| #4# #20#) (|convert| (*1 *1 *2) #21=(AND #6# #9# #10#)) (|copy| #22=(*1 *1 *1) #2#) (|inR?| #4# #23=(AND (|isDomain| *2 #24=(|Boolean|)) #9# #10#)) (|quoted?| #4# #23#) (|symbol?| #4# #23#) (|constant?| #4# #23#) (|generic?| #4# #23#) (|multiple?| #4# #23#) (|optional?| #4# #23#) (|hasPredicate?| #4# #23#) (|predicates| #4# #25=(AND (|isDomain| *2 (|List| #26=(|Any|))) #9# #10#)) (|setPredicates| #19# #25#) (|withPredicates| #19# #25#) (|patternVariable| (*1 *1 *2 *3 *3 *3) (AND (|isDomain| *2 #27=(|Symbol|)) (|isDomain| *3 #24#) #14# #15#)) (|setTopPredicate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 #28=(|List| #27#)) (|isDomain| *3 #26#) #14# #15#)) (|topPredicate| #4# (AND (|isDomain| *2 (|Record| (|:| |var| #28#) (|:| |pred| #26#))) #9# #10#)) (|hasTopPredicate?| #4# #23#) (|resetBadValues| #22# #2#) (|addBadValue| #19# (AND (|isDomain| *2 #26#) #9# #10#)) (|getBadValues| #4# #25#) (|variables| #4# #21#) (|optpair| (*1 *2 *2) #5#))
+((|suchThat| ((#1=(|Pattern| |#1|) #1# (|List| (|Symbol|)) (|Mapping| #2=(|Boolean|) #3=(|List| |#2|))) 32 T ELT) ((#1# #1# (|List| #4=(|Mapping| #2# |#2|))) 46 T ELT) ((#1# #1# #4#) 35 T ELT)) (|satisfy?| ((#2# #3# #1#) 42 T ELT) ((#2# |#2| #1#) 36 T ELT)) (|predicate| ((#4# #1#) 16 T ELT)) (|badValues| ((#3# #1#) 24 T ELT)) (|addBadValue| ((#1# #1# |#2|) 20 T ELT)))
+(((|PatternFunctions1| |#1| |#2|) (CATEGORY |package| (SIGNATURE |suchThat| (#1=(|Pattern| |#1|) #1# #2=(|Mapping| #3=(|Boolean|) |#2|))) (SIGNATURE |suchThat| (#1# #1# (|List| #2#))) (SIGNATURE |suchThat| (#1# #1# (|List| (|Symbol|)) (|Mapping| #3# #4=(|List| |#2|)))) (SIGNATURE |predicate| (#2# #1#)) (SIGNATURE |satisfy?| (#3# |#2| #1#)) (SIGNATURE |satisfy?| (#3# #4# #1#)) (SIGNATURE |addBadValue| (#1# #1# |#2|)) (SIGNATURE |badValues| (#4# #1#))) (|SetCategory|) (|Type|)) (T |PatternFunctions1|))
+((|badValues| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|Pattern| *4)) #4=(|ofCategory| *4 #5=(|SetCategory|)) (|isDomain| *2 (|List| *5)) #6=(|isDomain| *1 (|PatternFunctions1| *4 *5)) #7=(|ofCategory| *5 #8=(|Type|)))) (|addBadValue| #9=(*1 *2 *2 *3) (AND #10=(|isDomain| *2 #3#) #4# (|isDomain| *1 (|PatternFunctions1| *4 *3)) #11=(|ofCategory| *3 #8#))) (|satisfy?| #12=(*1 *2 *3 *4) (AND (|isDomain| *3 #13=(|List| *6)) #14=(|isDomain| *4 #15=(|Pattern| *5)) #16=(|ofCategory| *5 #5#) #17=(|ofCategory| *6 #8#) #18=(|isDomain| *2 #19=(|Boolean|)) #20=(|isDomain| *1 (|PatternFunctions1| *5 *6)))) (|satisfy?| #12# (AND #14# #16# #18# (|isDomain| *1 (|PatternFunctions1| *5 *3)) #11#)) (|predicate| #1# (AND #2# #4# (|isDomain| *2 #21=(|Mapping| #19# *5)) #6# #7#)) (|suchThat| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 #15#) (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|Mapping| #19# #13#)) #16# #17# #20#)) (|suchThat| #9# (AND #10# (|isDomain| *3 (|List| #21#)) #4# #7# #6#)) (|suchThat| #9# (AND #10# (|isDomain| *3 #21#) #4# #7# #6#)))
+((|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) 19 T ELT)))
+(((|PatternFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)))) #1=(|SetCategory|) #1#) (T |PatternFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Pattern| *6)) (|isDomain| *1 (|PatternFunctions2| *5 *6)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|varList| (((|List| |#1|) $) 20 T ELT)) (|retractable?| ((#3# $) 49 T ELT)) (|retractIfCan| (((|Union| #4=(|LyndonWord| |#1|) "failed") $) 55 T ELT)) (|retract| (#5=(#4# $) 53 T ELT)) (|rest| (($ $) 24 T ELT)) (|min| #6=(($ $ $) NIL T ELT)) (|max| #6#) (|length| (((|NonNegativeInteger|) $) 60 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#5# 22 T ELT)) (|coerce| (((|OutputForm|) $) 47 T ELT) (($ #4#) 27 T ELT) (((|OrderedFreeMonoid| |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (|before?| #1#) (|One| (($) 11 T CONST)) (|ListOfTerms| (((|List| #4#) $) 28 T ELT)) (>= #1#) (> #1#) (= (#2# 14 T ELT)) (<= #1#) (< (#2# 66 T ELT)))
+(((|PoincareBirkhoffWittLyndonBasis| |#1|) (|Join| #1=(|OrderedSet|) (|RetractableTo| #2=(|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE |One| ($) |constant|) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |first| (#2# $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |ListOfTerms| ((|List| #2#) $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) #1#) (T |PoincareBirkhoffWittLyndonBasis|))
+((|One| (*1 *1) #1=(AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2)) (|ofCategory| *2 #2=(|OrderedSet|)))) (|coerce| #3=(*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) #4=(|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) #5=(|ofCategory| *3 #2#))) (|coerce| (*1 *1 *2) #1#) (|first| #3# (AND (|isDomain| *2 #6=(|LyndonWord| *3)) #4# #5#)) (|length| #3# (AND (|isDomain| *2 (|NonNegativeInteger|)) #4# #5#)) (|ListOfTerms| #3# (AND (|isDomain| *2 (|List| #6#)) #4# #5#)) (|rest| (*1 *1 *1) #1#) (|retractable?| #3# (AND (|isDomain| *2 (|Boolean|)) #4# #5#)) (|varList| #3# (AND (|isDomain| *2 (|List| *3)) #4# #5#)))
+((|compose| ((|#1| |#1| |#1|) 19 T ELT)))
+(((|PolynomialComposition| |#1| |#2|) (CATEGORY |package| (SIGNATURE |compose| (|#1| |#1| |#1|))) (|UnivariatePolynomialCategory| |#2|) (|Ring|)) (T |PolynomialComposition|))
+((|compose| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|PolynomialComposition| *2 *3)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+((D ((|#2| $ |#3|) 10 T ELT)))
+(((|PartialDifferentialDomain&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE D (|#2| |#1| |#3|))) (|PartialDifferentialDomain| |#2| |#3|) #1=(|Type|) #1#) (T |PartialDifferentialDomain&|))
+NIL
+((|differentiate| ((|#1| $ |#2|) 7 T ELT)) (D ((|#1| $ |#2|) 6 T ELT)))
+(((|PartialDifferentialDomain| |#1| |#2|) (|Category|) (|Type|) (|Type|)) (T |PartialDifferentialDomain|))
+((|differentiate| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PartialDifferentialDomain| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|Type|)))) (D (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PartialDifferentialDomain| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |differentiate| (|t#1| $ |t#2|)) (SIGNATURE D (|t#1| $ |t#2|))))
+(((|Join|) . T) ((|Type|) . T))
+((|rightFactorCandidate| ((|#1| |#1| #1=(|NonNegativeInteger|)) 26 T ELT)) (|leftFactor| (((|Union| |#1| #2="failed") |#1| |#1|) 23 T ELT)) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) #2#) |#1| #1# #1#) 29 T ELT) (((|List| |#1|) |#1|) 38 T ELT)))
+(((|PolynomialDecomposition| |#1| |#2|) (CATEGORY |package| (SIGNATURE |decompose| ((|List| |#1|) |#1|)) (SIGNATURE |decompose| ((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) #1="failed") |#1| #2=(|NonNegativeInteger|) #2#)) (SIGNATURE |leftFactor| ((|Union| |#1| #1#) |#1| |#1|)) (SIGNATURE |rightFactorCandidate| (|#1| |#1| #2#))) (|UnivariatePolynomialCategory| |#2|) (|Field|)) (T |PolynomialDecomposition|))
+((|rightFactorCandidate| (*1 *2 *2 *3) (AND (|isDomain| *3 #1=(|NonNegativeInteger|)) #2=(|ofCategory| *4 #3=(|Field|)) (|isDomain| *1 (|PolynomialDecomposition| *2 *4)) (|ofCategory| *2 #4=(|UnivariatePolynomialCategory| *4)))) (|leftFactor| (*1 *2 *2 *2) (|partial| AND (|ofCategory| *3 #3#) (|isDomain| *1 (|PolynomialDecomposition| *2 *3)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|decompose| (*1 *2 *3 *4 *4) (|partial| AND (|isDomain| *4 #1#) (|ofCategory| *5 #3#) (|isDomain| *2 (|Record| (|:| |left| *3) (|:| |right| *3))) (|isDomain| *1 (|PolynomialDecomposition| *3 *5)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|decompose| (*1 *2 *3) (AND #2# (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialDecomposition| *3 *4)) (|ofCategory| *3 #4#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (($ $ (|List| |#2|) . #4=((|List| #5=(|NonNegativeInteger|)))) 45 T ELT) (($ $ |#2| . #6=(#5#)) 44 T ELT) (($ $ (|List| |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (D (($ $ (|List| |#2|) . #4#) 48 T ELT) (($ $ |#2| . #6#) 47 T ELT) (($ $ (|List| |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #7=($)) 30 T ELT) (($ |#1| . #7#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|PartialDifferentialModule| |#1| |#2|) (|Category|) (|Ring|) (|BasicType|)) (T |PartialDifferentialModule|))
+NIL
+(|Join| (|BiModule| |t#1| |t#1|) (|PartialDifferentialSpace| |t#2|) (CATEGORY |package| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|PartialDifferentialDomain| $ |#2|) . T) ((|PartialDifferentialSpace| |#2|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|differentiate| (($ $ (|List| |#1|) . #4=((|List| #5=(|NonNegativeInteger|)))) 52 T ELT) (($ $ |#1| . #6=(#5#)) 51 T ELT) (($ $ (|List| |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| |#1|) . #4#) 55 T ELT) (($ $ |#1| . #6#) 54 T ELT) (($ $ (|List| |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|PartialDifferentialRing| |#1|) (|Category|) (|BasicType|)) (T |PartialDifferentialRing|))
+NIL
+(|Join| (|Ring|) (|PartialDifferentialSpace| |t#1|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ |#1|) . T) ((|PartialDifferentialSpace| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|differentiate| (#1=($ $ |#2|) NIL T ELT) (#2=($ $ #3=(|List| |#2|)) 10 T ELT) (#4=($ $ |#2| #5=(|NonNegativeInteger|)) 12 T ELT) (#6=($ $ #3# (|List| #5#)) 15 T ELT)) (D (#1# 16 T ELT) (#2# 18 T ELT) (#4# 19 T ELT) (#6# 21 T ELT)))
+(((|PartialDifferentialSpace&| |#1| |#2|) (CATEGORY |package| (SIGNATURE D #1=(|#1| |#1| #2=(|List| |#2|) (|List| #3=(|NonNegativeInteger|)))) (SIGNATURE D #4=(|#1| |#1| |#2| #3#)) (SIGNATURE D #5=(|#1| |#1| #2#)) (SIGNATURE |differentiate| #1#) (SIGNATURE |differentiate| #4#) (SIGNATURE |differentiate| #5#) (SIGNATURE D #6=(|#1| |#1| |#2|)) (SIGNATURE |differentiate| #6#)) (|PartialDifferentialSpace| |#2|) (|BasicType|)) (T |PartialDifferentialSpace&|))
+NIL
+((|differentiate| (($ $ |#1|) 7 T ELT) (($ $ (|List| |#1|)) 15 T ELT) (($ $ |#1| (|NonNegativeInteger|)) 14 T ELT) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 13 T ELT)) (D (($ $ |#1|) 6 T ELT) (($ $ (|List| |#1|)) 12 T ELT) (($ $ |#1| (|NonNegativeInteger|)) 11 T ELT) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 10 T ELT)))
+(((|PartialDifferentialSpace| |#1|) (|Category|) (|BasicType|)) (T |PartialDifferentialSpace|))
+((|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialSpace| *3)) (|ofCategory| *3 (|BasicType|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialSpace| *2)) (|ofCategory| *2 (|BasicType|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialSpace| *4)) (|ofCategory| *4 (|BasicType|)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialSpace| *3)) (|ofCategory| *3 (|BasicType|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialSpace| *2)) (|ofCategory| *2 (|BasicType|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialSpace| *4)) (|ofCategory| *4 (|BasicType|)))))
+(|Join| (|PartialDifferentialDomain| $ |t#1|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ (|List| |t#1|))) (SIGNATURE |differentiate| ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|)))) (SIGNATURE D ($ $ (|List| |t#1|))) (SIGNATURE D ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|))))))
+(((|Join|) . T) ((|PartialDifferentialDomain| $ |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) 26 T ELT)) (|setvalue!| ((|#1| $ |#1|) NIL #5=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setright!| #6=(#7=($ $ $) NIL #5# ELT)) (|setleft!| #6#) (|setelt| ((|#1| $ #8="value" |#1|) NIL #5# ELT) (($ $ #9="left" $) NIL #5# ELT) (($ $ #10="right" $) NIL #5# ELT)) (|setchildren!| (($ $ #11=(|List| $)) NIL #5# ELT)) (|sample| (#12=($) NIL T CONST)) (|right| (#13=($ $) 25 T ELT)) (|ptree| (($ |#1|) 12 T ELT) (#7# 17 T ELT)) (|nodes| #14=((#11# $) NIL T ELT)) (|node?| #1#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|left| (#13# 23 T ELT)) (|leaves| ((#15=(|List| |#1|) $) NIL T ELT)) (|leaf?| (#16=(#3# $) 20 T ELT)) (|latex| (((|String|) $) NIL #17=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #17# ELT)) (|eval| (($ $ (|List| #18=(|Equation| |#1|))) NIL #19=(AND (|has| |#1| (|Evalable| |#1|)) #17#) ELT) (($ $ #18#) NIL #19# ELT) (($ $ |#1| |#1|) NIL #19# ELT) (($ $ #15# #15#) NIL #19# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| #20=(#16# NIL T ELT)) (|empty| (#12# NIL T ELT)) (|elt| ((|#1| $ #8#) NIL T ELT) (($ $ #9#) NIL T ELT) (($ $ #10#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| #20#) (|copy| (#13# NIL T ELT)) (|coerce| (((|Tree| |#1|) $) 9 T ELT) ((#21=(|OutputForm|) $) 29 (|has| |#1| (|CoercibleTo| #21#)) ELT)) (|children| #14#) (|child?| #1#) (|before?| #1#) (= (#2# 21 #4# ELT)))
+(((|PendantTree| |#1|) (|Join| (|BinaryRecursiveAggregate| |#1|) (|CoercibleTo| (|Tree| |#1|)) (CATEGORY |domain| (SIGNATURE |ptree| ($ |#1|)) (SIGNATURE |ptree| ($ $ $)))) (|SetCategory|)) (T |PendantTree|))
+((|ptree| (*1 *1 *2) #1=(AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|ptree| (*1 *1 *1 *1) #1#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|support| (#4=(#5=(|Set| |#1|) $) 61 T ELT)) (|sort| ((#6=(|List| $) #6#) 104 T ELT)) (|sign| ((#7=(|Integer|) $) 84 T ELT)) (|sample| (#8=($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|order| (#9=(#10=(|NonNegativeInteger|) $) 81 T ELT)) (|orbit| ((#5# $ |#1|) 71 T ELT)) (|one?| (#11=(#3# $) NIL T ELT)) (|odd?| (#11# 89 T ELT)) (|numberOfCycles| (#9# 85 T ELT)) (|min| #12=(#13=($ $ $) NIL #14=(OR #15=(|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) ELT)) (|max| #12#) (|listRepresentation| (((|Record| (|:| |preimage| #16=(|List| |#1|)) (|:| |image| #16#)) $) 56 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (($ $) 131 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fixedPoints| (#4# 136 #15# ELT)) (|even?| (#11# 82 T ELT)) (|elt| ((|#1| $ |#1|) 69 T ELT)) (|degree| (#9# 63 T ELT)) (|cycles| (#17=($ (|List| #16#)) 119 T ELT)) (|cyclePartition| (((|Partition|) $) 75 T ELT)) (|cycle| (#18=($ #16#) 32 T ELT)) (|conjugate| #19=(#13# NIL T ELT)) (|commutator| #19#) (|coercePreimagesImages| (#17# 58 T ELT)) (|coerceListOfPairs| (#17# 124 T ELT)) (|coerceImages| (#18# 133 T ELT)) (|coerce| (((|OutputForm|) $) 118 T ELT) (#17# 92 T ELT) (#18# 93 T ELT)) (|before?| #1#) (|One| (#8# 24 T CONST)) (>= #20=(#2# NIL #14# ELT)) (> #20#) (= (#2# 67 T ELT)) (<= #20#) (< (#2# 91 T ELT)) (/ #19#) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ #10#) NIL T ELT) (($ $ #7#) NIL T ELT)) (* (#13# 33 T ELT)))
+(((|Permutation| |#1|) (|Join| (|PermutationCategory| |#1|) (CATEGORY |domain| (SIGNATURE |listRepresentation| ((|Record| (|:| |preimage| #1=(|List| |#1|)) (|:| |image| #1#)) $)) (SIGNATURE |coercePreimagesImages| #2=($ (|List| #1#))) (SIGNATURE |coerce| #2#) (SIGNATURE |coerce| #3=($ #1#)) (SIGNATURE |coerceListOfPairs| #2#) (SIGNATURE |degree| #4=((|NonNegativeInteger|) $)) (SIGNATURE |cyclePartition| ((|Partition|) $)) (SIGNATURE |order| #4#) (SIGNATURE |numberOfCycles| #4#) (SIGNATURE |sign| ((|Integer|) $)) (SIGNATURE |even?| #5=((|Boolean|) $)) (SIGNATURE |odd?| #5#) (SIGNATURE |sort| (#6=(|List| $) #6#)) (IF #7=(|has| |#1| (|Finite|)) (SIGNATURE |fixedPoints| ((|Set| |#1|) $)) |%noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) #8=(SIGNATURE |coerceImages| #3#) (IF #7# #8# |%noBranch|)))) (|SetCategory|)) (T |Permutation|))
+((|listRepresentation| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |preimage| #2=(|List| *3)) (|:| |image| #2#))) #3=(|isDomain| *1 #4=(|Permutation| *3)) #5=(|ofCategory| *3 (|SetCategory|)))) (|coercePreimagesImages| #6=(*1 *1 *2) #7=(AND (|isDomain| *2 (|List| #2#)) #5# #3#)) (|coerce| #6# #7#) (|coerce| #6# #8=(AND (|isDomain| *2 #2#) #5# #3#)) (|coerceListOfPairs| #6# #7#) (|degree| #1# #9=(AND (|isDomain| *2 (|NonNegativeInteger|)) #3# #5#)) (|cyclePartition| #1# (AND (|isDomain| *2 (|Partition|)) #3# #5#)) (|order| #1# #9#) (|numberOfCycles| #1# #9#) (|sign| #1# (AND (|isDomain| *2 (|Integer|)) #3# #5#)) (|even?| #1# #10=(AND (|isDomain| *2 (|Boolean|)) #3# #5#)) (|odd?| #1# #10#) (|sort| (*1 *2 *2) (AND (|isDomain| *2 (|List| #4#)) #3# #5#)) (|fixedPoints| #1# (AND (|isDomain| *2 (|Set| *3)) #3# (|ofCategory| *3 (|Finite|)) #5#)) (|coerceImages| #6# #8#))
+((|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) 48 T ELT)))
+(((|Permanent| |#1| |#2|) (CATEGORY |package| (SIGNATURE |permanent| (|#2| (|SquareMatrix| |#1| |#2|)))) (|PositiveInteger|) (|Join| (|Ring|) (CATEGORY |package| (ATTRIBUTE (|commutative| "*"))))) (T |Permanent|))
+((|permanent| (*1 *2 *3) (AND (|isDomain| *3 (|SquareMatrix| *4 *2)) (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *2 (|Join| (|Ring|) (CATEGORY |package| (ATTRIBUTE (|commutative| "*"))))) (|isDomain| *1 (|Permanent| *4 *2)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|support| (((|Set| |#1|) $) 42 T ELT)) (|sample| (#2=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 20 T ELT)) (|orbit| (((|Set| |#1|) $ |#1|) 41 T ELT)) (|one?| (((|Boolean|) $) 22 T ELT)) (|min| (#3=($ $ $) 35 (OR (|has| |#1| . #4=((|OrderedSet|))) (|has| |#1| . #5=((|Finite|)))) ELT)) (|max| (#3# 36 (OR (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 30 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|elt| ((|#1| $ |#1|) 45 T ELT)) (|cycles| (($ (|List| (|List| |#1|))) 43 T ELT)) (|cycle| (($ (|List| |#1|)) 44 T ELT)) (|conjugate| (#6=($ $ $) 27 T ELT)) (|commutator| (#6# 26 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|One| (#2# 24 T CONST)) (>= (#7=((|Boolean|) $ $) 37 (OR (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (> (#7# 39 (OR (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (= (#1# 8 T ELT)) (<= (#7# 38 (OR (|has| |#1| . #4#) (|has| |#1| . #5#)) ELT)) (< (((|Boolean|) $ $) 40 T ELT)) (/ (#6# 29 T ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT) (($ $ (|NonNegativeInteger|)) 21 T ELT) (($ $ (|Integer|)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((|PermutationCategory| |#1|) (|Category|) (|SetCategory|)) (T |PermutationCategory|))
+((|cycle| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|PermutationCategory| *3)))) (|cycles| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|PermutationCategory| *3)))) (|support| (*1 *2 *1) (AND (|ofCategory| *1 (|PermutationCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Set| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PermutationCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Set| *3)))) (< (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PermutationCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|Group|) (|Eltable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |cycle| ($ (|List| |t#1|))) (SIGNATURE |cycles| ($ (|List| (|List| |t#1|)))) (SIGNATURE |support| ((|Set| |t#1|) $)) (SIGNATURE |orbit| ((|Set| |t#1|) $ |t#1|)) (SIGNATURE < ((|Boolean|) $ $)) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|) (IF (|has| |t#1| (|Finite|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|)))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Eltable| |#1| |#1|) . T) ((|Group|) . T) ((|Join|) . T) ((|Monoid|) . T) ((|OrderedSet|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))) ((|OrderedType|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|wordsForStrongGenerators| (((|List| #4=(|List| #5=(|NonNegativeInteger|))) $) 163 T ELT)) (|wordInStrongGenerators| (#6=(#4# #7=(|Permutation| |#1|) $) 191 T ELT)) (|wordInGenerators| (#6# 192 T ELT)) (|support| ((#8=(|Set| |#1|) $) 155 T ELT)) (|strongGenerators| (#9=(#10=(|List| #7#) $) 152 T ELT)) (|random| ((#7# $ #11=(|Integer|)) 157 T ELT) ((#7# $) 158 T ELT)) (|permutationGroup| (#12=($ #10#) 165 T ELT)) (|order| (#13=(#5# $) 159 T ELT)) (|orbits| ((#14=(|Set| #8#) $) 189 T ELT)) (|orbit| ((#8# $ |#1|) 180 T ELT) ((#14# $ #8#) 201 T ELT) (((|Set| #15=(|List| |#1|)) $ #15#) 204 T ELT)) (|member?| ((#3# #7# $) 140 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|initializeGroupForWordProblem| ((#16=(|Void|) $) 145 T ELT) ((#16# $ #11# #11#) 205 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generators| (#9# 146 T ELT)) (|elt| ((#7# $ #5#) 153 T ELT)) (|degree| (#13# 160 T ELT)) (|coerce| (((|OutputForm|) $) 177 T ELT) (#9# 28 T ELT) (#12# 164 T ELT)) (|before?| #1#) (|base| ((#15# $) 162 T ELT)) (= (#2# 198 T ELT)) (<= (#2# 195 T ELT)) (< (#2# 194 T ELT)))
+(((|PermutationGroup| |#1|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| #2=(#3=(|List| #4=(|Permutation| |#1|)) $)) (SIGNATURE |generators| #2#) (SIGNATURE |elt| (#4# $ #5=(|NonNegativeInteger|))) (SIGNATURE |random| (#4# $ #6=(|Integer|))) (SIGNATURE |random| (#4# $)) (SIGNATURE |order| #7=(#5# $)) (SIGNATURE |degree| #7#) (SIGNATURE |base| (#8=(|List| |#1|) $)) (SIGNATURE |strongGenerators| #2#) (SIGNATURE |wordsForStrongGenerators| ((|List| #9=(|List| #5#)) $)) (SIGNATURE |coerce| #10=($ #3#)) (SIGNATURE |permutationGroup| #10#) (SIGNATURE |orbit| (#11=(|Set| |#1|) $ |#1|)) (SIGNATURE |orbits| (#12=(|Set| #11#) $)) (SIGNATURE |orbit| (#12# $ #11#)) (SIGNATURE |orbit| ((|Set| #8#) $ #8#)) (SIGNATURE |member?| (#13=(|Boolean|) #4# $)) (SIGNATURE |wordInStrongGenerators| #14=(#9# #4# $)) (SIGNATURE |wordInGenerators| #14#) (SIGNATURE |support| (#11# $)) (SIGNATURE < #15=(#13# $ $)) (SIGNATURE <= #15#) (SIGNATURE |initializeGroupForWordProblem| (#16=(|Void|) $)) (SIGNATURE |initializeGroupForWordProblem| (#16# $ #6# #6#)))) #1#) (T |PermutationGroup|))
+((|coerce| #1=(*1 *2 *1) #2=(AND #3=(|isDomain| *2 (|List| #4=(|Permutation| *3))) #5=(|isDomain| *1 (|PermutationGroup| *3)) #6=(|ofCategory| *3 #7=(|SetCategory|)))) (|generators| #1# #2#) (|elt| #8=(*1 *2 *1 *3) (AND (|isDomain| *3 #9=(|NonNegativeInteger|)) #10=(|isDomain| *2 #11=(|Permutation| *4)) #12=(|isDomain| *1 (|PermutationGroup| *4)) #13=(|ofCategory| *4 #7#))) (|random| #8# (AND #14=(|isDomain| *3 (|Integer|)) #10# #12# #13#)) (|random| #1# (AND (|isDomain| *2 #4#) #5# #6#)) (|order| #1# #15=(AND (|isDomain| *2 #9#) #5# #6#)) (|degree| #1# #15#) (|base| #1# (AND (|isDomain| *2 (|List| *3)) #5# #6#)) (|strongGenerators| #1# #2#) (|wordsForStrongGenerators| #1# (AND (|isDomain| *2 (|List| #16=(|List| #9#))) #5# #6#)) (|coerce| #17=(*1 *1 *2) #18=(AND #3# #6# #5#)) (|permutationGroup| #17# #18#) (|orbit| #8# #19=(AND (|isDomain| *2 #20=(|Set| *3)) #5# #6#)) (|orbits| #1# (AND (|isDomain| *2 (|Set| #20#)) #5# #6#)) (|orbit| #8# (AND #13# (|isDomain| *2 (|Set| #21=(|Set| *4))) #12# (|isDomain| *3 #21#))) (|orbit| #8# (AND #13# (|isDomain| *2 (|Set| #22=(|List| *4))) #12# (|isDomain| *3 #22#))) (|member?| #23=(*1 *2 *3 *1) (AND #24=(|isDomain| *3 #11#) #13# #25=(|isDomain| *2 (|Boolean|)) #12#)) (|wordInStrongGenerators| #23# #26=(AND #24# #13# (|isDomain| *2 #16#) #12#)) (|wordInGenerators| #23# #26#) (|support| #1# #19#) (< #27=(*1 *2 *1 *1) #28=(AND #25# #5# #6#)) (<= #27# #28#) (|initializeGroupForWordProblem| #1# (AND #29=(|isDomain| *2 (|Void|)) #5# #6#)) (|initializeGroupForWordProblem| (*1 *2 *1 *3 *3) (AND #14# #29# #12# #13#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #3#) (|transcendent?| #3#) (|transcendenceDegree| #7=(#8=(#9=(|NonNegativeInteger|)) NIL T ELT)) (|trace| #10=(#11=($ $ #12=(|PositiveInteger|)) NIL #13=(|has| $ (|Finite|)) ELT) #5#) (|tableForDiscreteLogarithm| (((|Table| #12# #9#) #14=(|Integer|)) NIL T ELT)) (|subtractIfCan| #15=((#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #18=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| #7#) (|sample| #19=(#20=($) NIL T CONST)) (|retractIfCan| #21=((#16# $) NIL T ELT)) (|retract| #5#) (|represents| (($ #22=(|Vector| $)) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (|rem| #23=(($ $ $) NIL T ELT)) (|recip| #21#) (|random| #24=(#20# NIL T ELT)) (|quo| #23#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|primitiveElement| #24#) (|primitive?| #3#) (|primeFrobenius| #5# #27=(#28=($ $ #9#) NIL T ELT)) (|prime?| #3#) (|order| #29=((#30=(|OnePointCompletion| #12#) $) NIL T ELT) #31=((#12# $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|normalElement| #32=(#20# NIL #13# ELT)) (|normal?| (#4# NIL #13# ELT)) (|norm| #10# #5#) (|nextItem| #33=(((|Maybe| $) $) NIL T ELT)) (|multiEuclidean| (((|Union| #25# #17#) #25# $) NIL T ELT)) (|minimalPolynomial| ((#34=(|SparseUnivariatePolynomial| $) $ #12#) NIL #13# ELT) (#35=(#34# $) NIL T ELT)) (|lookup| #31#) (|linearAssociatedOrder| #36=(#35# NIL #13# ELT)) (|linearAssociatedLog| (((|Union| #34# #17#) $ $) NIL #13# ELT) #36#) (|linearAssociatedExp| (($ $ #34#) NIL #13# ELT)) (|lcm| #23# #37=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #5#) (|init| #19#) (|index| (($ #12#) NIL T ELT)) (|inGroundField?| #3#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| #32#) (|gcdPolynomial| ((#34# #34# #34#) NIL T ELT)) (|gcd| #23# #37#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #14#) (|:| |exponent| #14#)))) NIL T ELT)) (|factor| #18#) (|extensionDegree| ((#12#) NIL T ELT) ((#30#) NIL T ELT)) (|extendedEuclidean| (((|Record| #38=(|:| |coef1| $) #39=(|:| |coef2| $) #26#) $ $) NIL T ELT) (((|Union| (|Record| #38# #39#) #17#) $ $ $) NIL T ELT)) (|exquo| #15#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|euclideanSize| #40=((#9# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|discreteLog| (((|Union| #9# #17#) $ $) NIL T ELT) #40#) (|dimension| (((|CardinalNumber|)) NIL T ELT)) (|differentiate| #5# #27#) (|degree| #31# #29#) (|definingPolynomial| ((#34#) NIL T ELT)) (|createPrimitiveElement| #24#) (|createNormalElement| #32#) (|coordinates| ((#41=(|Matrix| $) #22#) NIL T ELT) ((#22# $) NIL T ELT)) (|convert| ((#14# $) NIL T ELT)) (|conditionP| (((|Union| #22# #17#) #41#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) NIL T ELT) #5# (($ #42=(|Fraction| #14#)) NIL T ELT)) (|charthRoot| #33# #5#) (|characteristic| (#8# NIL T CONST)) (|before?| #1#) (|basis| ((#22# #12#) NIL T ELT) ((#22#) NIL T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|algebraic?| #3#) (|Zero| #19#) (|One| #19#) (|Frobenius| (#28# NIL #13# ELT) (#6# NIL #13# ELT)) (D #5# #27#) (= #1#) (/ #23#) (- #5# #23#) (+ #23#) (** (#11# NIL T ELT) #27# (($ $ #14#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #14# . #43=($)) NIL T ELT) #23# (($ $ #42#) NIL T ELT) (($ #42# . #43#) NIL T ELT)))
+(((|PrimeField| |#1|) (|Join| (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| $) (|ConvertibleTo| (|Integer|))) (|PositiveInteger|)) (T |PrimeField|))
+NIL
+((|solveLinearPolynomialEquationByRecursion| ((#1=(|Union| #2=(|List| #3=(|SparseUnivariatePolynomial| |#4|)) "failed") #2# #3#) 164 T ELT)) (|randomR| ((|#1|) 101 T ELT)) (|factorSquareFreeByRecursion| (#4=(#5=(|Factored| #3#) #3#) 173 T ELT)) (|factorSFBRlcUnit| ((#5# (|List| |#3|) #3#) 83 T ELT)) (|factorByRecursion| (#4# 183 T ELT)) (|bivariateSLPEBR| ((#1# #2# #3# |#3|) 117 T ELT)))
+(((|PolynomialFactorizationByRecursion| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| (#1=(|Union| #2=(|List| #3=(|SparseUnivariatePolynomial| |#4|)) "failed") #2# #3#)) (SIGNATURE |factorByRecursion| #4=(#5=(|Factored| #3#) #3#)) (SIGNATURE |factorSquareFreeByRecursion| #4#) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |bivariateSLPEBR| (#1# #2# #3# |#3|)) (SIGNATURE |factorSFBRlcUnit| (#5# (|List| |#3|) #3#))) (|PolynomialFactorizationExplicit|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |PolynomialFactorizationByRecursion|))
+((|factorSFBRlcUnit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 #1=(|OrderedSet|)) #2=(|ofCategory| *5 #3=(|PolynomialFactorizationExplicit|)) #4=(|ofCategory| *6 #5=(|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Factored| #6=(|SparseUnivariatePolynomial| *8))) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *7 *8)) (|isDomain| *4 #6#))) (|bivariateSLPEBR| (*1 *2 *2 *3 *4) (|partial| AND #7=(|isDomain| *2 (|List| #8=(|SparseUnivariatePolynomial| *7))) #9=(|isDomain| *3 #8#) (|ofCategory| *7 (|PolynomialCategory| *5 *6 *4)) #2# #4# #10=(|ofCategory| *4 #1#) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *4 *7)))) (|randomR| (*1 *2) (AND (|ofCategory| *3 #5#) #10# (|ofCategory| *2 #3#) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))) (|factorSquareFreeByRecursion| #11=(*1 *2 *3) #12=(AND #13=(|ofCategory| *4 #3#) #14=(|ofCategory| *5 #5#) #15=(|ofCategory| *6 #1#) #16=(|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Factored| #8#)) #17=(|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7)) #9#)) (|factorByRecursion| #11# #12#) (|solveLinearPolynomialEquationByRecursion| (*1 *2 *2 *3) (|partial| AND #7# #9# #16# #13# #14# #15# #17#)))
+((|solveLinearPolynomialEquationByRecursion| (((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#2|)) "failed") #1# #2#) 39 T ELT)) (|randomR| ((|#1|) 71 T ELT)) (|factorSquareFreeByRecursion| (#3=((|Factored| #2#) #2#) 125 T ELT)) (|factorSFBRlcUnit| (#3# 109 T ELT)) (|factorByRecursion| (#3# 136 T ELT)))
+(((|PolynomialFactorizationByRecursionUnivariate| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| ((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#2|)) "failed") #1# #2#)) (SIGNATURE |factorByRecursion| #3=((|Factored| #2#) #2#)) (SIGNATURE |factorSquareFreeByRecursion| #3#) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |factorSFBRlcUnit| #3#)) (|PolynomialFactorizationExplicit|) (|UnivariatePolynomialCategory| |#1|)) (T |PolynomialFactorizationByRecursionUnivariate|))
+((|factorSFBRlcUnit| #1=(*1 *2 *3) #2=(AND #3=(|ofCategory| *4 #4=(|PolynomialFactorizationExplicit|)) #5=(|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Factored| #6=(|SparseUnivariatePolynomial| *5))) #7=(|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5)) #8=(|isDomain| *3 #6#))) (|randomR| (*1 *2) (AND (|ofCategory| *2 #4#) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|factorSquareFreeByRecursion| #1# #2#) (|factorByRecursion| #1# #2#) (|solveLinearPolynomialEquationByRecursion| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| #6#)) #8# #5# #3# #7#)))
+((|solveLinearPolynomialEquation| (((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| $)) "failed") #1# #2#) 46 T ELT)) (|gcdPolynomial| ((#2# #2# #2#) 18 T ELT)) (|charthRoot| (((|Maybe| $) $) 40 T ELT)))
+(((|PolynomialFactorizationExplicit&| |#1|) (CATEGORY |package| (SIGNATURE |charthRoot| ((|Maybe| |#1|) |#1|)) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #1=(|List| #2=(|SparseUnivariatePolynomial| |#1|)) "failed") #1# #2#)) (SIGNATURE |gcdPolynomial| (#2# #2# #2#))) (|PolynomialFactorizationExplicit|)) (T |PolynomialFactorizationExplicit&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 75 T ELT)) (|squareFreePart| (($ $) 66 T ELT)) (|squareFree| (#4=((|Factored| $) $) 67 T ELT)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 72 T ELT)) (|sample| (#5=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|prime?| (((|Boolean|) $) 68 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|lcm| (#6=($ $ $) 60 T ELT) (#7=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#8=(|SparseUnivariatePolynomial| $) #8# #8#) 58 T ELT)) (|gcd| (#6# 62 T ELT) (#7# 61 T ELT)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 73 T ELT)) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 74 T ELT)) (|factor| (#4# 65 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 71 (|has| $ (|CharacteristicNonZero|)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|charthRoot| (((|Maybe| $) $) 70 (|has| $ (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|PolynomialFactorizationExplicit|) (|Category|)) (T |PolynomialFactorizationExplicit|))
+((|gcdPolynomial| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))) (|squareFreePolynomial| (*1 *2 *3) (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1))) (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))) (|factorPolynomial| (*1 *2 *3) (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1))) (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))) (|factorSquareFreePolynomial| (*1 *2 *3) (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1))) (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))) (|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *1))) (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))) (|conditionP| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Matrix| *1)) (|ofCategory| *1 (|CharacteristicNonZero|)) (|ofCategory| *1 (|PolynomialFactorizationExplicit|)) (|isDomain| *2 (|Vector| *1)))) (|charthRoot| (*1 *2 *1) (AND (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|CharacteristicNonZero|)) (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))))
+(|Join| (|UniqueFactorizationDomain|) (CATEGORY |domain| (SIGNATURE |squareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $))) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $))) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $))) (IF (|has| $ (|CharacteristicNonZero|)) (PROGN (SIGNATURE |conditionP| ((|Union| (|Vector| $) "failed") (|Matrix| $))) (SIGNATURE |charthRoot| ((|Maybe| $) $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|torsionIfCan| (((|Union| (|Record| (|:| |order| #1=(|NonNegativeInteger|)) (|:| |function| |#5|)) #2="failed") #3=(|FiniteDivisor| |#2| |#3| |#4| |#5|)) 78 T ELT)) (|torsion?| (((|Boolean|) #3#) 17 T ELT)) (|order| (((|Union| #1# #2#) #3#) 15 T ELT)))
+(((|PointsOfFiniteOrder| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |order| ((|Union| #1=(|NonNegativeInteger|) #2="failed") #3=(|FiniteDivisor| |#2| |#3| |#4| |#5|))) (SIGNATURE |torsion?| ((|Boolean|) #3#)) (SIGNATURE |torsionIfCan| ((|Union| (|Record| (|:| |order| #1#) (|:| |function| |#5|)) #2#) #3#))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))) (|FunctionSpace| |#1|) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| (|Fraction| |#3|)) (|FunctionFieldCategory| |#2| |#3| |#4|)) (T |PointsOfFiniteOrder|))
+((|torsionIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *3 (|FiniteDivisor| *5 *6 *7 *8)) #3=(|ofCategory| *5 (|FunctionSpace| *4)) #4=(|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) #5=(|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) #6=(|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7)) #7=(|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |order| #8=(|NonNegativeInteger|)) (|:| |function| *8))) #9=(|isDomain| *1 (|PointsOfFiniteOrder| *4 *5 *6 *7 *8)))) (|torsion?| #1# (AND #2# #3# #4# #5# #6# #7# (|isDomain| *2 (|Boolean|)) #9#)) (|order| #1# (|partial| AND #2# #3# #4# #5# #6# #7# (|isDomain| *2 #8#) #9#)))
+((|torsionIfCan| (((|Union| (|Record| (|:| |order| #1=(|NonNegativeInteger|)) (|:| |function| |#3|)) #2="failed") #3=(|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) 64 T ELT)) (|torsion?| (((|Boolean|) #3#) 16 T ELT)) (|order| (((|Union| #1# #2#) #3#) 14 T ELT)))
+(((|PointsOfFiniteOrderRational| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |order| ((|Union| #1=(|NonNegativeInteger|) #2="failed") #3=(|FiniteDivisor| #4=(|Fraction| (|Integer|)) |#1| |#2| |#3|))) (SIGNATURE |torsion?| ((|Boolean|) #3#)) (SIGNATURE |torsionIfCan| ((|Union| (|Record| (|:| |order| #1#) (|:| |function| |#3|)) #2#) #3#))) (|UnivariatePolynomialCategory| #4#) (|UnivariatePolynomialCategory| (|Fraction| |#1|)) (|FunctionFieldCategory| #4# |#1| |#2|)) (T |PointsOfFiniteOrderRational|))
+((|torsionIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *3 (|FiniteDivisor| #3=(|Fraction| (|Integer|)) *4 *5 *6)) #4=(|ofCategory| *4 (|UnivariatePolynomialCategory| #3#)) #5=(|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) #6=(|ofCategory| *6 (|FunctionFieldCategory| #3# *4 *5)) (|isDomain| *2 (|Record| (|:| |order| #7=(|NonNegativeInteger|)) (|:| |function| *6))) #8=(|isDomain| *1 (|PointsOfFiniteOrderRational| *4 *5 *6)))) (|torsion?| #1# (AND #2# #4# #5# #6# (|isDomain| *2 (|Boolean|)) #8#)) (|order| #1# (|partial| AND #2# #4# #5# #6# (|isDomain| *2 #7#) #8#)))
+((|polyred| ((|#2| |#2|) 26 T ELT)) (|mix| ((#1=(|Integer|) (|List| #2=(|Record| (|:| |den| #1#) (|:| |gcdnum| #1#)))) 15 T ELT)) (|getGoodPrime| (((|PositiveInteger|) #1#) 38 T ELT)) (|doubleDisc| (#3=(#1# |#2|) 45 T ELT)) (|badNum| (#3# 21 T ELT) ((#2# |#1|) 20 T ELT)))
+(((|PointsOfFiniteOrderTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |getGoodPrime| ((|PositiveInteger|) #1=(|Integer|))) (SIGNATURE |badNum| (#2=(|Record| (|:| |den| #1#) (|:| |gcdnum| #1#)) |#1|)) (SIGNATURE |badNum| #3=(#1# |#2|)) (SIGNATURE |mix| (#1# (|List| #2#))) (SIGNATURE |doubleDisc| #3#) (SIGNATURE |polyred| (|#2| |#2|))) (|UnivariatePolynomialCategory| (|Fraction| #1#)) (|UnivariatePolynomialCategory| (|Fraction| |#1|))) (T |PointsOfFiniteOrderTools|))
+((|polyred| (*1 *2 *2) (AND #1=(|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| #2=(|Integer|)))) (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *2)) (|ofCategory| *2 #3=(|UnivariatePolynomialCategory| (|Fraction| *3))))) (|doubleDisc| #4=(*1 *2 *3) #5=(AND #6=(|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) #7=(|isDomain| *2 #2#) (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *3)) (|ofCategory| *3 #8=(|UnivariatePolynomialCategory| (|Fraction| *4))))) (|mix| #4# (AND (|isDomain| *3 (|List| #9=(|Record| (|:| |den| #2#) (|:| |gcdnum| #2#)))) #6# #7# #10=(|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *5)) #11=(|ofCategory| *5 #8#))) (|badNum| #4# #5#) (|badNum| #4# (AND #1# (|isDomain| *2 #9#) (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *4)) #12=(|ofCategory| *4 #3#))) (|getGoodPrime| #4# (AND (|isDomain| *3 #2#) #12# (|isDomain| *2 (|PositiveInteger|)) #10# #11#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|wholePart| (#5=(|#1| $) 99 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #6=(#7=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| (#8=(#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|squareFreePart| #6#) (|squareFree| #11=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sample| (#12=($) NIL T CONST)) (|rem| #13=(#14=($ $ $) NIL T ELT)) (|recip| ((#9# $) 93 T ELT)) (|quo| #13#) (|principalIdeal| (((|Record| (|:| |coef| #15=(|List| $)) #16=(|:| |generator| $)) #15#) NIL T ELT)) (|prime?| #4#) (|partialFraction| (($ |#1| #17=(|Factored| |#1|)) 91 T ELT)) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) 52 T ELT)) (|padicFraction| (#7# 60 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfFractionalTerms| ((#18=(|Integer|) $) 96 T ELT)) (|nthFractionalTerm| (#19=($ $ #18#) 98 T ELT)) (|multiEuclidean| (((|Union| #15# #10#) #15# $) NIL T ELT)) (|lcm| #13# #20=(($ #15#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #6#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#21=(|SparseUnivariatePolynomial| $) #21# #21#) NIL T ELT)) (|gcd| #13# #20#) (|firstNumer| (#5# 95 T ELT)) (|firstDenom| ((#17# $) 94 T ELT)) (|factor| #11#) (|extendedEuclidean| (((|Record| #22=(|:| |coef1| $) #23=(|:| |coef2| $) #16#) $ $) NIL T ELT) (((|Union| (|Record| #22# #23#) #10#) $ $ $) NIL T ELT)) (|exquo| (#8# 92 T ELT)) (|expressIdealMember| (((|Maybe| #15#) #15# $) NIL T ELT)) (|euclideanSize| ((#24=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|compactFraction| (#7# 49 T ELT)) (|coerce| (((|OutputForm|) $) 123 T ELT) (($ #18#) 72 T ELT) #6# (($ #25=(|Fraction| #18#)) NIL T ELT) (($ |#1|) 40 T ELT) (((|Fraction| |#1|) $) 77 T ELT) (($ (|Fraction| #17#)) 85 T ELT)) (|characteristic| ((#24#) 70 T CONST)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| (#12# 24 T CONST)) (|One| (#12# 12 T CONST)) (= (#2# 86 T ELT)) (/ #13#) (- (#7# 107 T ELT) #13#) (+ (#14# 48 T ELT)) (** (($ $ #26=(|PositiveInteger|)) NIL T ELT) (($ $ #24#) NIL T ELT) (#19# NIL T ELT)) (* (($ #26# $) NIL T ELT) (($ #24# $) NIL T ELT) (($ #18# $) 109 T ELT) (#14# 47 T ELT) (($ $ #25#) NIL T ELT) (($ #25# $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
+(((|PartialFraction| |#1|) (|Join| (|Field|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| |#1|) $)) (SIGNATURE |coerce| ($ (|Fraction| #1=(|Factored| |#1|)))) (SIGNATURE |compactFraction| #2=($ $)) (SIGNATURE |firstDenom| (#1# $)) (SIGNATURE |firstNumer| #3=(|#1| $)) (SIGNATURE |nthFractionalTerm| ($ $ #4=(|Integer|))) (SIGNATURE |numberOfFractionalTerms| (#4# $)) (SIGNATURE |padicallyExpand| ((|SparseUnivariatePolynomial| |#1|) |#1| |#1|)) (SIGNATURE |padicFraction| #2#) (SIGNATURE |partialFraction| ($ |#1| #1#)) (SIGNATURE |wholePart| #3#))) (|EuclideanDomain|)) (T |PartialFraction|))
+((|coerce| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Fraction| *3)) #2=(|isDomain| *1 (|PartialFraction| *3)) #3=(|ofCategory| *3 #4=(|EuclideanDomain|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| #5=(|Factored| *3))) #3# #2#)) (|compactFraction| #6=(*1 *1 *1) #7=(AND #8=(|isDomain| *1 (|PartialFraction| *2)) #9=(|ofCategory| *2 #4#))) (|firstDenom| #1# (AND (|isDomain| *2 #5#) #2# #3#)) (|firstNumer| #1# #7#) (|nthFractionalTerm| (*1 *1 *1 *2) #10=(AND (|isDomain| *2 (|Integer|)) #2# #3#)) (|numberOfFractionalTerms| #1# #10#) (|padicallyExpand| (*1 *2 *3 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) #2# #3#)) (|padicFraction| #6# #7#) (|partialFraction| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Factored| *2)) #9# #8#)) (|wholePart| #1# #7#))
+((|partialFraction| ((#1=(|Any|) #2=(|Polynomial| |#1|) (|Factored| #2#) #3=(|Symbol|)) 17 T ELT) ((#1# (|Fraction| #2#) #3#) 18 T ELT)))
+(((|PartialFractionPackage| |#1|) (CATEGORY |package| (SIGNATURE |partialFraction| (#1=(|Any|) (|Fraction| #2=(|Polynomial| |#1|)) #3=(|Symbol|))) (SIGNATURE |partialFraction| (#1# #2# (|Factored| #2#) #3#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (T |PartialFractionPackage|))
+((|partialFraction| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Factored| #1=(|Polynomial| *6))) (|isDomain| *5 #2=(|Symbol|)) (|isDomain| *3 #1#) (|ofCategory| *6 #3=(|Join| (|EuclideanDomain|) (|CharacteristicZero|))) #4=(|isDomain| *2 (|Any|)) (|isDomain| *1 (|PartialFractionPackage| *6)))) (|partialFraction| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 #2#) (|ofCategory| *5 #3#) #4# (|isDomain| *1 (|PartialFractionPackage| *5)))))
+((|gcdPrimitive| (#1=(|#4| (|List| |#4|)) 148 T ELT) (#2=(#3=(|SparseUnivariatePolynomial| |#4|) #3# #3#) 85 T ELT) (#4=(|#4| |#4| |#4|) 147 T ELT)) (|gcd| ((#3# (|List| #3#)) 141 T ELT) (#2# 61 T ELT) (#1# 70 T ELT) (#4# 108 T ELT)))
+(((|PolynomialGcdPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gcd| #1=(|#4| |#4| |#4|)) (SIGNATURE |gcd| #2=(|#4| (|List| |#4|))) (SIGNATURE |gcd| #3=(#4=(|SparseUnivariatePolynomial| |#4|) #4# #4#)) (SIGNATURE |gcd| (#4# (|List| #4#))) (SIGNATURE |gcdPrimitive| #1#) (SIGNATURE |gcdPrimitive| #3#) (SIGNATURE |gcdPrimitive| #2#)) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |PolynomialGcdPackage|))
+((|gcdPrimitive| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 #3=(|PolynomialCategory| *6 *4 *5)) (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *2)) #4=(|ofCategory| *4 #5=(|OrderedAbelianMonoidSup|)) #6=(|ofCategory| *5 #7=(|OrderedSet|)) #8=(|ofCategory| *6 #9=(|EuclideanDomain|)))) (|gcdPrimitive| #10=(*1 *2 *2 *2) #11=(AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *6 #12=(|PolynomialCategory| *5 *3 *4)) #13=(|ofCategory| *3 #5#) #14=(|ofCategory| *4 #7#) #15=(|ofCategory| *5 #9#) (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *6)))) (|gcdPrimitive| #10# #16=(AND #13# #14# #15# (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *2)) (|ofCategory| *2 #12#))) (|gcd| #1# (AND (|isDomain| *3 (|List| #17=(|SparseUnivariatePolynomial| *7))) #4# #6# #8# (|isDomain| *2 #17#) (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *7)) (|ofCategory| *7 #3#))) (|gcd| #10# #11#) (|gcd| #1# #2#) (|gcd| #10# #16#))
+((|youngGroup| ((#1=(|PermutationGroup| #2=(|Integer|)) (|Partition|)) 38 T ELT) (#3=(#1# (|List| #2#)) 34 T ELT)) (|symmetricGroup| (#3# 66 T ELT) (#4=(#1# #5=(|PositiveInteger|)) 67 T ELT)) (|rubiksGroup| (#6=(#1#) 39 T ELT)) (|mathieu24| (#6# 53 T ELT) (#3# 52 T ELT)) (|mathieu23| (#6# 51 T ELT) (#3# 50 T ELT)) (|mathieu22| (#6# 49 T ELT) (#3# 48 T ELT)) (|mathieu12| (#6# 47 T ELT) (#3# 46 T ELT)) (|mathieu11| (#6# 45 T ELT) (#3# 44 T ELT)) (|janko2| (#6# 55 T ELT) (#3# 54 T ELT)) (|dihedralGroup| (#3# 71 T ELT) (#4# 73 T ELT)) (|cyclicGroup| (#3# 68 T ELT) (#4# 69 T ELT)) (|alternatingGroup| (#3# 64 T ELT) (#4# 65 T ELT)) (|abelianGroup| ((#1# (|List| #5#)) 57 T ELT)))
+(((|PermutationGroupExamples|) (CATEGORY |package| (SIGNATURE |symmetricGroup| #1=(#2=(|PermutationGroup| #3=(|Integer|)) #4=(|PositiveInteger|))) (SIGNATURE |symmetricGroup| #5=(#2# (|List| #3#))) (SIGNATURE |alternatingGroup| #1#) (SIGNATURE |alternatingGroup| #5#) (SIGNATURE |abelianGroup| (#2# (|List| #4#))) (SIGNATURE |cyclicGroup| #1#) (SIGNATURE |cyclicGroup| #5#) (SIGNATURE |dihedralGroup| #1#) (SIGNATURE |dihedralGroup| #5#) (SIGNATURE |mathieu11| #5#) (SIGNATURE |mathieu11| #6=(#2#)) (SIGNATURE |mathieu12| #5#) (SIGNATURE |mathieu12| #6#) (SIGNATURE |mathieu22| #5#) (SIGNATURE |mathieu22| #6#) (SIGNATURE |mathieu23| #5#) (SIGNATURE |mathieu23| #6#) (SIGNATURE |mathieu24| #5#) (SIGNATURE |mathieu24| #6#) (SIGNATURE |janko2| #5#) (SIGNATURE |janko2| #6#) (SIGNATURE |rubiksGroup| #6#) (SIGNATURE |youngGroup| #5#) (SIGNATURE |youngGroup| (#2# (|Partition|))))) (T |PermutationGroupExamples|))
+((|youngGroup| #1=(*1 *2 *3) (AND (|isDomain| *3 (|Partition|)) #2=(|isDomain| *2 (|PermutationGroup| #3=(|Integer|))) #4=(|isDomain| *1 (|PermutationGroupExamples|)))) (|youngGroup| #1# #5=(AND (|isDomain| *3 (|List| #3#)) #2# #4#)) (|rubiksGroup| #6=(*1 *2) #7=(AND #2# #4#)) (|janko2| #6# #7#) (|janko2| #1# #5#) (|mathieu24| #6# #7#) (|mathieu24| #1# #5#) (|mathieu23| #6# #7#) (|mathieu23| #1# #5#) (|mathieu22| #6# #7#) (|mathieu22| #1# #5#) (|mathieu12| #6# #7#) (|mathieu12| #1# #5#) (|mathieu11| #6# #7#) (|mathieu11| #1# #5#) (|dihedralGroup| #1# #5#) (|dihedralGroup| #1# #8=(AND (|isDomain| *3 #9=(|PositiveInteger|)) #2# #4#)) (|cyclicGroup| #1# #5#) (|cyclicGroup| #1# #8#) (|abelianGroup| #1# (AND (|isDomain| *3 (|List| #9#)) #2# #4#)) (|alternatingGroup| #1# #5#) (|alternatingGroup| #1# #8#) (|symmetricGroup| #1# #5#) (|symmetricGroup| #1# #8#))
+((|totalGroebner| (#1=(#2=(|List| (|Polynomial| |#1|)) #2# (|List| (|Symbol|))) 14 T ELT)) (|lexGroebner| (#1# 13 T ELT)))
+(((|PolyGroebner| |#1|) (CATEGORY |package| (SIGNATURE |lexGroebner| #1=(#2=(|List| (|Polynomial| |#1|)) #2# (|List| (|Symbol|)))) (SIGNATURE |totalGroebner| #1#)) (|GcdDomain|)) (T |PolyGroebner|))
+((|totalGroebner| #1=(*1 *2 *2 *3) #2=(AND (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *1 (|PolyGroebner| *4)))) (|lexGroebner| #1# #2#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|sample| #3=(($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL T ELT)) (|one?| ((#2# $) NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT)) (|max| #4#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcd| #4#) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|One| #3#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (+ #4#) (** (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ #5=(|PositiveInteger|)) NIL T ELT)) (* (($ #5# $) NIL T ELT) #4#))
+(((|PositiveInteger|) (|Join| (|OrderedAbelianSemiGroup|) (|Monoid|) (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)) (ATTRIBUTE (|commutative| "*"))))) (T |PositiveInteger|))
+((|gcd| (*1 *1 *1 *1) (|isDomain| *1 (|PositiveInteger|))))
+((|NonNegativeInteger|) (|%ilt| 0 |#1|))
+((|coerce| (((|Expression| |#1|) (|Pi|)) 16 T ELT)))
+(((|PiCoercions| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|Expression| |#1|) (|Pi|)))) (|IntegralDomain|)) (T |PiCoercions|))
+((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Pi|)) (|isDomain| *2 (|Expression| *4)) (|isDomain| *1 (|PiCoercions| *4)) (|ofCategory| *4 (|IntegralDomain|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#4=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 66 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|lcm| (#5=($ $ $) 60 T ELT) (#6=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#7=(|SparseUnivariatePolynomial| $) #7# #7#) 58 T ELT)) (|gcd| (#5# 62 T ELT) (#6# 61 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) 65 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|PrincipalIdealDomain|) (|Category|)) (T |PrincipalIdealDomain|))
+((|principalIdeal| (*1 *2 *3) (AND (|ofCategory| *1 (|PrincipalIdealDomain|)) (|isDomain| *2 (|Record| (|:| |coef| (|List| *1)) (|:| |generator| *1))) (|isDomain| *3 (|List| *1)))) (|expressIdealMember| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PrincipalIdealDomain|)) (|isDomain| *2 (|Maybe| (|List| *1))) (|isDomain| *3 (|List| *1)))))
+(|Join| (|GcdDomain|) (CATEGORY |domain| (SIGNATURE |principalIdeal| ((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $))) (SIGNATURE |expressIdealMember| ((|Maybe| (|List| $)) (|List| $) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|interpolate| (((|SparseUnivariatePolynomial| |#2|) #1=(|List| |#2|) #1#) 17 T ELT) ((#2=(|UnivariatePolynomial| |#1| |#2|) #2# #1# #1#) 13 T ELT)))
+(((|PolynomialInterpolation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |interpolate| (#1=(|UnivariatePolynomial| |#1| |#2|) #1# #2=(|List| |#2|) #2#)) (SIGNATURE |interpolate| ((|SparseUnivariatePolynomial| |#2|) #2# #2#))) (|Symbol|) (|Field|)) (T |PolynomialInterpolation|))
+((|interpolate| (*1 *2 *3 *3) (AND #1=(|isDomain| *3 (|List| *5)) #2=(|ofCategory| *5 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *5)) #3=(|isDomain| *1 (|PolynomialInterpolation| *4 *5)) #4=(|ofType| *4 (|Symbol|)))) (|interpolate| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *5)) #1# #4# #2# #3#)))
+((|LagrangeInterpolation| ((|#2| #1=(|List| |#1|) #1#) 28 T ELT)))
+(((|PolynomialInterpolationAlgorithms| |#1| |#2|) (CATEGORY |package| (SIGNATURE |LagrangeInterpolation| (|#2| #1=(|List| |#1|) #1#))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |PolynomialInterpolationAlgorithms|))
+((|LagrangeInterpolation| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PolynomialInterpolationAlgorithms| *4 *2)))))
+((|wrregime| ((#1=(|Integer|) #2=(|List| #3=(|Record| (|:| |eqzro| #4=(|List| |#4|)) (|:| |neqzro| #4#) (|:| |wcond| #5=(|List| #6=(|Polynomial| |#1|))) (|:| |bsoln| #7=(|Record| (|:| |partsol| #8=(|Vector| #9=(|Fraction| #6#))) (|:| |basis| (|List| #8#)))))) #10=(|String|)) 175 T ELT)) (|sqfree| ((|#4| |#4|) 194 T ELT)) (|se2rfi| ((#11=(|List| #9#) #12=(|List| (|Symbol|))) 146 T ELT)) (|regime| ((#3# #13=(|Record| (|:| |det| |#4|) #14=(|:| |rows| #15=(|List| #1#)) #16=(|:| |cols| #15#)) #17=(|Matrix| |#4|) #11# #18=(|List| #4#) #19=(|NonNegativeInteger|) #19# #1#) 88 T ELT)) (|redpps| ((#7# #7# #4#) 69 T ELT)) (|redmat| ((#17# #17# #4#) 65 T ELT)) (|rdregime| ((#2# #10#) 187 T ELT)) (|psolve| ((#1# #17# #20=(|PositiveInteger|) #10#) 167 T ELT) ((#1# #17# #12# #20# #10#) 166 T ELT) ((#1# #17# #4# #20# #10#) 165 T ELT) ((#1# #17# #10#) 154 T ELT) ((#1# #17# #12# #10#) 153 T ELT) ((#1# #17# #4# #10#) 152 T ELT) ((#2# #17# #20#) 151 T ELT) ((#2# #17# #12# #20#) 150 T ELT) ((#2# #17# #4# #20#) 149 T ELT) ((#2# #17#) 148 T ELT) ((#2# #17# #12#) 147 T ELT) ((#2# #17# #4#) 143 T ELT)) (|pr2dmp| ((|#4| #6#) 80 T ELT)) (|overset?| ((#21=(|Boolean|) #4# #18#) 191 T ELT)) (|nextSublist| (((|List| #15#) #1# #1#) 161 T ELT)) (|minset| ((#18# #18#) 106 T ELT)) (|minrank| (#22=(#19# #23=(|List| (|Record| #24=(|:| |rank| #19#) (|:| |eqns| #25=(|List| #13#)) (|:| |fgb| #4#)))) 100 T ELT)) (|maxrank| (#22# 99 T ELT)) (|inconsistent?| ((#21# #5#) 19 T ELT) ((#21# #4#) 15 T ELT)) (|hasoln| (((|Record| (|:| |sysok| #21#) (|:| |z0| #4#) (|:| |n0| #4#)) #4# #4#) 84 T ELT)) (|factorset| ((#4# |#4|) 57 T ELT)) (|dmp2rfi| ((#11# #4#) 142 T ELT) ((#26=(|Matrix| #9#) #17#) 66 T ELT) ((#9# |#4|) 139 T ELT)) (|bsolve| (((|Record| (|:| |rgl| #2#) (|:| |rgsz| #1#)) #17# #11# #19# #10# #1#) 112 T ELT)) (|ParCondList| ((#23# #17# #19#) 98 T ELT)) (|ParCond| ((#25# #17# #19#) 121 T ELT)) (|B1solve| ((#7# (|Record| (|:| |mat| #26#) (|:| |vec| #11#) #24# #14# #16#)) 56 T ELT)))
+(((|ParametricLinearEquations| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |psolve| (#1=(|List| #2=(|Record| (|:| |eqzro| #3=(|List| |#4|)) (|:| |neqzro| #3#) (|:| |wcond| #4=(|List| #5=(|Polynomial| |#1|))) (|:| |bsoln| #6=(|Record| (|:| |partsol| #7=(|Vector| #8=(|Fraction| #5#))) (|:| |basis| (|List| #7#)))))) #9=(|Matrix| |#4|) #3#)) (SIGNATURE |psolve| (#1# #9# #10=(|List| #11=(|Symbol|)))) (SIGNATURE |psolve| (#1# #9#)) (SIGNATURE |psolve| (#1# #9# #3# #12=(|PositiveInteger|))) (SIGNATURE |psolve| (#1# #9# #10# #12#)) (SIGNATURE |psolve| (#1# #9# #12#)) (SIGNATURE |psolve| (#13=(|Integer|) #9# #3# #14=(|String|))) (SIGNATURE |psolve| (#13# #9# #10# #14#)) (SIGNATURE |psolve| (#13# #9# #14#)) (SIGNATURE |psolve| (#13# #9# #3# #12# #14#)) (SIGNATURE |psolve| (#13# #9# #10# #12# #14#)) (SIGNATURE |psolve| (#13# #9# #12# #14#)) (SIGNATURE |wrregime| (#13# #1# #14#)) (SIGNATURE |rdregime| (#1# #14#)) (SIGNATURE |bsolve| ((|Record| (|:| |rgl| #1#) (|:| |rgsz| #13#)) #9# #15=(|List| #8#) #16=(|NonNegativeInteger|) #14# #13#)) (SIGNATURE |dmp2rfi| (#8# |#4|)) (SIGNATURE |dmp2rfi| (#17=(|Matrix| #8#) #9#)) (SIGNATURE |dmp2rfi| (#15# #3#)) (SIGNATURE |se2rfi| (#15# #10#)) (SIGNATURE |pr2dmp| (|#4| #5#)) (SIGNATURE |hasoln| ((|Record| (|:| |sysok| #18=(|Boolean|)) (|:| |z0| #3#) (|:| |n0| #3#)) #3# #3#)) (SIGNATURE |ParCondList| (#19=(|List| (|Record| #20=(|:| |rank| #16#) (|:| |eqns| #21=(|List| #22=(|Record| (|:| |det| |#4|) #23=(|:| |rows| #24=(|List| #13#)) #25=(|:| |cols| #24#)))) (|:| |fgb| #3#))) #9# #16#)) (SIGNATURE |redpps| (#6# #6# #3#)) (SIGNATURE |B1solve| (#6# (|Record| (|:| |mat| #17#) (|:| |vec| #15#) #20# #23# #25#))) (SIGNATURE |factorset| (#3# |#4|)) (SIGNATURE |maxrank| #26=(#16# #19#)) (SIGNATURE |minrank| #26#) (SIGNATURE |minset| (#27=(|List| #3#) #27#)) (SIGNATURE |nextSublist| ((|List| #24#) #13# #13#)) (SIGNATURE |overset?| (#18# #3# #27#)) (SIGNATURE |ParCond| (#21# #9# #16#)) (SIGNATURE |redmat| (#9# #9# #3#)) (SIGNATURE |regime| (#2# #22# #9# #15# #27# #16# #16# #13#)) (SIGNATURE |sqfree| (|#4| |#4|)) (SIGNATURE |inconsistent?| (#18# #3#)) (SIGNATURE |inconsistent?| (#18# #4#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|Join| (|OrderedSet|) (|ConvertibleTo| #11#)) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| |#1| |#3| |#2|)) (T |ParametricLinearEquations|))
+((|inconsistent?| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|List| #3=(|Polynomial| *4))) #4=(|ofCategory| *4 #5=(|Join| (|EuclideanDomain|) (|CharacteristicZero|))) #6=(|ofCategory| *5 #7=(|Join| (|OrderedSet|) (|ConvertibleTo| #8=(|Symbol|)))) #9=(|ofCategory| *6 #10=(|OrderedAbelianMonoidSup|)) #11=(|isDomain| *2 #12=(|Boolean|)) #13=(|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) #14=(|ofCategory| *7 #15=(|PolynomialCategory| *4 *6 *5)))) (|inconsistent?| #1# (AND #16=(|isDomain| *3 #17=(|List| *7)) #14# #4# #6# #9# #11# #13#)) (|sqfree| #18=(*1 *2 *2) (AND #19=(|ofCategory| *3 #5#) #20=(|ofCategory| *4 #7#) #21=(|ofCategory| *5 #10#) (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *2)) (|ofCategory| *2 #22=(|PolynomialCategory| *3 *5 *4)))) (|regime| (*1 *2 *3 *4 *5 *6 *7 *7 *8) (AND (|isDomain| *3 (|Record| (|:| |det| *12) #23=(|:| |rows| #24=(|List| #25=(|Integer|))) #26=(|:| |cols| #24#))) (|isDomain| *4 (|Matrix| *12)) (|isDomain| *5 (|List| #27=(|Fraction| #28=(|Polynomial| *9)))) (|isDomain| *6 (|List| #29=(|List| *12))) (|isDomain| *7 #30=(|NonNegativeInteger|)) (|isDomain| *8 #25#) (|ofCategory| *9 #5#) (|ofCategory| *12 (|PolynomialCategory| *9 *11 *10)) (|ofCategory| *10 #7#) (|ofCategory| *11 #10#) (|isDomain| *2 (|Record| (|:| |eqzro| #29#) (|:| |neqzro| #29#) (|:| |wcond| (|List| #28#)) (|:| |bsoln| (|Record| (|:| |partsol| #31=(|Vector| #27#)) (|:| |basis| (|List| #31#)))))) (|isDomain| *1 (|ParametricLinearEquations| *9 *10 *11 *12)))) (|redmat| #32=(*1 *2 *2 *3) (AND (|isDomain| *2 #33=(|Matrix| *7)) #16# #14# #4# #6# #9# #13#)) (|ParCond| #34=(*1 *2 *3 *4) (AND #35=(|isDomain| *3 (|Matrix| *8)) #36=(|isDomain| *4 #30#) #37=(|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) #38=(|ofCategory| *5 #5#) #39=(|ofCategory| *6 #7#) #40=(|ofCategory| *7 #10#) (|isDomain| *2 #41=(|List| (|Record| (|:| |det| *8) #23# #26#))) #42=(|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|overset?| #34# (AND (|isDomain| *4 (|List| #43=(|List| *8))) (|isDomain| *3 #43#) #37# #38# #39# #40# #11# #42#)) (|nextSublist| #44=(*1 *2 *3 *3) (AND #4# #6# #9# (|isDomain| *2 (|List| #24#)) #13# (|isDomain| *3 #25#) #14#)) (|minset| #18# (AND (|isDomain| *2 (|List| (|List| *6))) (|ofCategory| *6 #22#) #19# #20# #21# (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *6)))) (|minrank| #1# #45=(AND (|isDomain| *3 (|List| (|Record| #46=(|:| |rank| #30#) (|:| |eqns| (|List| (|Record| (|:| |det| *7) #23# #26#))) (|:| |fgb| #17#)))) #14# #4# #6# #9# (|isDomain| *2 #30#) #13#)) (|maxrank| #1# #45#) (|factorset| #1# (AND #4# #6# #9# (|isDomain| *2 (|List| *3)) #47=(|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *3)) #48=(|ofCategory| *3 #15#))) (|B1solve| #1# (AND (|isDomain| *3 (|Record| (|:| |mat| #49=(|Matrix| #50=(|Fraction| #3#))) (|:| |vec| #51=(|List| #50#)) #46# #23# #26#)) #4# #6# #9# #52=(|isDomain| *2 #53=(|Record| (|:| |partsol| #54=(|Vector| #50#)) (|:| |basis| (|List| #54#)))) #13# #14#)) (|redpps| #32# (AND #52# #16# #4# #14# #6# #9# #13#)) (|ParCondList| #34# (AND #35# #37# #38# #39# #40# (|isDomain| *2 (|List| (|Record| #46# (|:| |eqns| #41#) (|:| |fgb| #43#)))) #42# #36#)) (|hasoln| #44# (AND #4# #6# #9# #14# (|isDomain| *2 (|Record| (|:| |sysok| #12#) (|:| |z0| #17#) (|:| |n0| #17#))) #13# #16#)) (|pr2dmp| #1# (AND (|isDomain| *3 #3#) #4# (|ofCategory| *2 #15#) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *2)) #6# #9#)) (|se2rfi| #1# (AND (|isDomain| *3 #55=(|List| #8#)) #4# #6# #9# #56=(|isDomain| *2 #51#) #13# #14#)) (|dmp2rfi| #1# (AND #16# #14# #4# #6# #9# #56# #13#)) (|dmp2rfi| #1# (AND #57=(|isDomain| *3 #33#) #14# #4# #6# #9# (|isDomain| *2 #49#) #13#)) (|dmp2rfi| #1# (AND #4# #6# #9# (|isDomain| *2 #50#) #47# #48#)) (|bsolve| (*1 *2 *3 *4 *5 *6 *7) (AND (|isDomain| *3 (|Matrix| *11)) (|isDomain| *4 (|List| #58=(|Fraction| #59=(|Polynomial| *8)))) (|isDomain| *5 #30#) #60=(|isDomain| *6 #61=(|String|)) (|ofCategory| *8 #5#) (|ofCategory| *11 (|PolynomialCategory| *8 *10 *9)) (|ofCategory| *9 #7#) (|ofCategory| *10 #10#) (|isDomain| *2 (|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| #62=(|List| *11)) (|:| |neqzro| #62#) (|:| |wcond| (|List| #59#)) (|:| |bsoln| (|Record| (|:| |partsol| #63=(|Vector| #58#)) (|:| |basis| (|List| #63#))))))) (|:| |rgsz| #25#))) (|isDomain| *1 (|ParametricLinearEquations| *8 *9 *10 *11)) (|isDomain| *7 #25#))) (|rdregime| #1# (AND (|isDomain| *3 #61#) #4# #6# #9# #64=(|isDomain| *2 (|List| (|Record| (|:| |eqzro| #17#) (|:| |neqzro| #17#) (|:| |wcond| #2#) (|:| |bsoln| #53#)))) #13# #14#)) (|wrregime| #34# (AND (|isDomain| *3 #65=(|List| (|Record| (|:| |eqzro| #43#) (|:| |neqzro| #43#) (|:| |wcond| (|List| #66=(|Polynomial| *5))) (|:| |bsoln| (|Record| (|:| |partsol| #67=(|Vector| (|Fraction| #66#))) (|:| |basis| (|List| #67#))))))) #68=(|isDomain| *4 #61#) #38# #37# #39# #40# #69=(|isDomain| *2 #25#) #42#)) (|psolve| #70=(*1 *2 *3 *4 *5) (AND #71=(|isDomain| *3 (|Matrix| *9)) #72=(|isDomain| *4 #73=(|PositiveInteger|)) #74=(|isDomain| *5 #61#) #75=(|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) #76=(|ofCategory| *6 #5#) #77=(|ofCategory| *7 #7#) #78=(|ofCategory| *8 #10#) #69# #79=(|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))) (|psolve| #80=(*1 *2 *3 *4 *5 *6) (AND #81=(|isDomain| *3 (|Matrix| *10)) #82=(|isDomain| *4 #55#) #83=(|isDomain| *5 #73#) #60# #84=(|ofCategory| *10 (|PolynomialCategory| *7 *9 *8)) #85=(|ofCategory| *7 #5#) #86=(|ofCategory| *8 #7#) #87=(|ofCategory| *9 #10#) #69# #88=(|isDomain| *1 (|ParametricLinearEquations| *7 *8 *9 *10)))) (|psolve| #80# (AND #81# (|isDomain| *4 (|List| *10)) #83# #60# #84# #85# #86# #87# #69# #88#)) (|psolve| #34# (AND #35# #68# #37# #38# #39# #40# #69# #42#)) (|psolve| #70# (AND #71# #82# #74# #75# #76# #77# #78# #69# #79#)) (|psolve| #70# (AND #71# #89=(|isDomain| *4 #90=(|List| *9)) #74# #75# #76# #77# #78# #69# #79#)) (|psolve| #34# (AND #35# #72# #37# #38# #39# #40# #91=(|isDomain| *2 #65#) #42#)) (|psolve| #70# (AND #71# #82# #83# #75# #76# #77# #78# #92=(|isDomain| *2 (|List| (|Record| (|:| |eqzro| #90#) (|:| |neqzro| #90#) (|:| |wcond| (|List| #93=(|Polynomial| *6))) (|:| |bsoln| (|Record| (|:| |partsol| #94=(|Vector| (|Fraction| #93#))) (|:| |basis| (|List| #94#))))))) #79#)) (|psolve| #70# (AND #71# #83# #75# #76# #77# #78# #92# #79# #89#)) (|psolve| #1# (AND #57# #14# #4# #6# #9# #64# #13#)) (|psolve| #34# (AND #35# #82# #37# #38# #39# #40# #91# #42#)) (|psolve| #34# (AND #35# #37# #38# #39# #40# #91# #42# (|isDomain| *4 #43#))))
+((|zoom| (#1=($ $ #2=(|Segment| #3=(|DoubleFloat|))) 125 T ELT) (($ $ #2# #2#) 126 T ELT)) (|yRange| (#4=(#2# $) 73 T ELT)) (|xRange| (#4# 72 T ELT)) (|tRange| (#4# 74 T ELT)) (|setScreenResolution| (#5=(#6=(|Integer|) #6#) 66 T ELT)) (|setMinPoints| (#5# 61 T ELT)) (|setMaxPoints| (#5# 64 T ELT)) (|setAdaptive| (#7=(#8=(|Boolean|) #8#) 68 T ELT)) (|screenResolution| (#9=(#6#) 65 T ELT)) (|refine| (#1# 129 T ELT) (($ $) 130 T ELT)) (|pointPlot| (($ #10=(|Mapping| #11=(|Point| #3#) #3#) #2#) 148 T ELT) (($ #10# #2# #2# #2#) 149 T ELT)) (|plotPolar| (#12=($ #13=(|Mapping| #3# #3#) #2#) 156 T ELT) (($ #13#) 160 T ELT)) (|plot| (#12# 144 T ELT) (($ #13# #2# #2#) 145 T ELT) (($ #14=(|List| #13#) #2#) 153 T ELT) (($ #14# #2# #2#) 154 T ELT) (($ #13# #13# #2#) 146 T ELT) (($ #13# #13# #2# #2# #2#) 147 T ELT) (#1# 131 T ELT)) (|parametric?| ((#8# $) 69 T ELT)) (|numFunEvals| (#9# 70 T ELT)) (|minPoints| (#9# 59 T ELT)) (|maxPoints| (#9# 62 T ELT)) (|listBranches| (((|List| (|List| #11#)) $) 35 T ELT)) (|debug| (#7# 71 T ELT)) (|coerce| (((|OutputForm|) $) 174 T ELT)) (|adaptive?| ((#8#) 67 T ELT)))
+(((|Plot|) (|Join| (|PlottablePlaneCurveCategory|) (CATEGORY |domain| (SIGNATURE |plot| #1=($ #2=(|Mapping| #3=(|DoubleFloat|) #3#) #4=(|Segment| #3#))) (SIGNATURE |plot| ($ #2# #4# #4#)) (SIGNATURE |plot| ($ #5=(|List| #2#) #4#)) (SIGNATURE |plot| ($ #5# #4# #4#)) (SIGNATURE |plot| ($ #2# #2# #4#)) (SIGNATURE |plot| ($ #2# #2# #4# #4# #4#)) (SIGNATURE |pointPlot| ($ #6=(|Mapping| (|Point| #3#) #3#) #4#)) (SIGNATURE |pointPlot| ($ #6# #4# #4# #4#)) (SIGNATURE |plotPolar| #1#) (SIGNATURE |plotPolar| ($ #2#)) (SIGNATURE |plot| #7=($ $ #4#)) (SIGNATURE |parametric?| (#8=(|Boolean|) $)) (SIGNATURE |zoom| #7#) (SIGNATURE |zoom| ($ $ #4# #4#)) (SIGNATURE |refine| #7#) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| (#4# $)) (SIGNATURE |minPoints| #9=(#10=(|Integer|))) (SIGNATURE |setMinPoints| #11=(#10# #10#)) (SIGNATURE |maxPoints| #9#) (SIGNATURE |setMaxPoints| #11#) (SIGNATURE |screenResolution| #9#) (SIGNATURE |setScreenResolution| #11#) (SIGNATURE |adaptive?| (#8#)) (SIGNATURE |setAdaptive| #12=(#8# #8#)) (SIGNATURE |numFunEvals| #9#) (SIGNATURE |debug| #12#)))) (T |Plot|))
+((|plot| #1=(*1 *1 *2 *3) #2=(AND #3=(|isDomain| *2 #4=(|Mapping| #5=(|DoubleFloat|) #5#)) #6=(|isDomain| *3 #7=(|Segment| #5#)) #8=(|isDomain| *1 (|Plot|)))) (|plot| #9=(*1 *1 *2 *3 *3) #2#) (|plot| #1# #10=(AND (|isDomain| *2 (|List| #4#)) #6# #8#)) (|plot| #9# #10#) (|plot| (*1 *1 *2 *2 *3) #2#) (|plot| (*1 *1 *2 *2 *3 *3 *3) #2#) (|pointPlot| #1# #11=(AND (|isDomain| *2 (|Mapping| (|Point| #5#) #5#)) #6# #8#)) (|pointPlot| (*1 *1 *2 *3 *3 *3) #11#) (|plotPolar| #1# #2#) (|plotPolar| (*1 *1 *2) (AND #3# #8#)) (|plot| #12=(*1 *1 *1 *2) #13=(AND (|isDomain| *2 #7#) #8#)) (|parametric?| #14=(*1 *2 *1) #15=(AND (|isDomain| *2 (|Boolean|)) #8#)) (|zoom| #12# #13#) (|zoom| (*1 *1 *1 *2 *2) #13#) (|refine| #12# #13#) (|refine| (*1 *1 *1) #8#) (|tRange| #14# #13#) (|minPoints| #16=(*1 *2) #17=(AND (|isDomain| *2 (|Integer|)) #8#)) (|setMinPoints| #18=(*1 *2 *2) #17#) (|maxPoints| #16# #17#) (|setMaxPoints| #18# #17#) (|screenResolution| #16# #17#) (|setScreenResolution| #18# #17#) (|adaptive?| #16# #15#) (|setAdaptive| #18# #15#) (|numFunEvals| #16# #17#) (|debug| #18# #15#))
+((|plotPolar| ((#1=(|Plot|) |#1| #2=(|Symbol|)) 17 T ELT) (#3=(#1# |#1| #2# #4=(|Segment| (|DoubleFloat|))) 21 T ELT)) (|plot| ((#1# |#1| |#1| #2# #4#) 19 T ELT) (#3# 15 T ELT)))
+(((|PlotFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |plot| #1=(#2=(|Plot|) |#1| #3=(|Symbol|) #4=(|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| (#2# |#1| |#1| #3# #4#)) (SIGNATURE |plotPolar| #1#) (SIGNATURE |plotPolar| (#2# |#1| #3#))) (|ConvertibleTo| (|InputForm|))) (T |PlotFunctions1|))
+((|plotPolar| (*1 *2 *3 *4) (AND #1=(|isDomain| *4 (|Symbol|)) #2=(|isDomain| *2 (|Plot|)) #3=(|isDomain| *1 (|PlotFunctions1| *3)) #4=(|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|plotPolar| #5=(*1 *2 *3 *4 *5) #6=(AND #1# (|isDomain| *5 (|Segment| (|DoubleFloat|))) #2# #3# #4#)) (|plot| (*1 *2 *3 *3 *4 *5) #6#) (|plot| #5# #6#))
+((|zoom| (($ $ #1=(|Segment| #2=(|DoubleFloat|)) #1# #1#) 123 T ELT)) (|zRange| (#3=(#1# $) 64 T ELT)) (|yRange| (#3# 63 T ELT)) (|xRange| (#3# 62 T ELT)) (|tValues| (((|List| (|List| #2#)) $) 69 T ELT)) (|tRange| (#3# 65 T ELT)) (|setScreenResolution3D| (#4=(#5=(|Integer|) #5#) 57 T ELT)) (|setMinPoints3D| (#4# 52 T ELT)) (|setMaxPoints3D| (#4# 55 T ELT)) (|setAdaptive3D| (#6=(#7=(|Boolean|) #7#) 59 T ELT)) (|screenResolution3D| (#8=(#5#) 56 T ELT)) (|refine| (#9=($ $ #1#) 126 T ELT) (($ $) 127 T ELT)) (|pointPlot| (($ #10=(|Mapping| #11=(|Point| #2#) #2#) #1#) 133 T ELT) (($ #10# #1# #1# #1# #1#) 134 T ELT)) (|plot| (($ #12=(|Mapping| #2# #2#) #12# #12# #12# #1#) 140 T ELT) (($ #12# #12# #12# #12# #1# #1# #1# #1#) 141 T ELT) (#9# 129 T ELT)) (|numFunEvals3D| (#8# 60 T ELT)) (|minPoints3D| (#8# 50 T ELT)) (|maxPoints3D| (#8# 53 T ELT)) (|listBranches| (((|List| (|List| #11#)) $) 157 T ELT)) (|debug3D| (#6# 61 T ELT)) (|coerce| (((|OutputForm|) $) 155 T ELT)) (|adaptive3D?| ((#7#) 58 T ELT)))
+(((|Plot3D|) (|Join| (|PlottableSpaceCurveCategory|) (CATEGORY |domain| (SIGNATURE |pointPlot| ($ #1=(|Mapping| (|Point| #2=(|DoubleFloat|)) #2#) #3=(|Segment| #2#))) (SIGNATURE |pointPlot| ($ #1# #3# #3# #3# #3#)) (SIGNATURE |plot| ($ #4=(|Mapping| #2# #2#) #4# #4# #4# #3#)) (SIGNATURE |plot| ($ #4# #4# #4# #4# #3# #3# #3# #3#)) (SIGNATURE |plot| #5=($ $ #3#)) (SIGNATURE |zoom| ($ $ #3# #3# #3#)) (SIGNATURE |refine| #5#) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| (#3# $)) (SIGNATURE |tValues| ((|List| (|List| #2#)) $)) (SIGNATURE |minPoints3D| #6=(#7=(|Integer|))) (SIGNATURE |setMinPoints3D| #8=(#7# #7#)) (SIGNATURE |maxPoints3D| #6#) (SIGNATURE |setMaxPoints3D| #8#) (SIGNATURE |screenResolution3D| #6#) (SIGNATURE |setScreenResolution3D| #8#) (SIGNATURE |adaptive3D?| (#9=(|Boolean|))) (SIGNATURE |setAdaptive3D| #10=(#9# #9#)) (SIGNATURE |numFunEvals3D| #6#) (SIGNATURE |debug3D| #10#)))) (T |Plot3D|))
+((|pointPlot| (*1 *1 *2 *3) #1=(AND (|isDomain| *2 (|Mapping| (|Point| #2=(|DoubleFloat|)) #2#)) #3=(|isDomain| *3 #4=(|Segment| #2#)) #5=(|isDomain| *1 (|Plot3D|)))) (|pointPlot| (*1 *1 *2 *3 *3 *3 *3) #1#) (|plot| (*1 *1 *2 *2 *2 *2 *3) #6=(AND (|isDomain| *2 (|Mapping| #2# #2#)) #3# #5#)) (|plot| (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) #6#) (|plot| #7=(*1 *1 *1 *2) #8=(AND (|isDomain| *2 #4#) #5#)) (|zoom| (*1 *1 *1 *2 *2 *2) #8#) (|refine| #7# #8#) (|refine| (*1 *1 *1) #5#) (|tRange| #9=(*1 *2 *1) #8#) (|tValues| #9# (AND (|isDomain| *2 (|List| (|List| #2#))) #5#)) (|minPoints3D| #10=(*1 *2) #11=(AND (|isDomain| *2 (|Integer|)) #5#)) (|setMinPoints3D| #12=(*1 *2 *2) #11#) (|maxPoints3D| #10# #11#) (|setMaxPoints3D| #12# #11#) (|screenResolution3D| #10# #11#) (|setScreenResolution3D| #12# #11#) (|adaptive3D?| #10# #13=(AND (|isDomain| *2 (|Boolean|)) #5#)) (|setAdaptive3D| #12# #13#) (|numFunEvals3D| #10# #11#) (|debug3D| #12# #13#))
+((|calcRanges| (((|List| (|Segment| #1=(|DoubleFloat|))) (|List| (|List| (|Point| #1#)))) 34 T ELT)))
+(((|PlotTools|) (CATEGORY |package| (SIGNATURE |calcRanges| ((|List| (|Segment| #1=(|DoubleFloat|))) (|List| (|List| (|Point| #1#))))))) (T |PlotTools|))
+((|calcRanges| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|Point| #1=(|DoubleFloat|))))) (|isDomain| *2 (|List| (|Segment| #1#))) (|isDomain| *1 (|PlotTools|)))))
+((|optional| (#1=(#2=(|Expression| (|Integer|)) #3=(|Symbol|)) 16 T ELT)) (|multiple| (#1# 14 T ELT)) (|constant| (#1# 12 T ELT)) (|assert| ((#2# #3# (|Identifier|)) 19 T ELT)))
+(((|PatternMatchAssertions|) (CATEGORY |package| (SIGNATURE |assert| (#1=(|Expression| (|Integer|)) #2=(|Symbol|) (|Identifier|))) (SIGNATURE |constant| #3=(#1# #2#)) (SIGNATURE |optional| #3#) (SIGNATURE |multiple| #3#))) (T |PatternMatchAssertions|))
+((|multiple| #1=(*1 *2 *3) #2=(AND #3=(|isDomain| *3 (|Symbol|)) #4=(|isDomain| *2 (|Expression| (|Integer|))) #5=(|isDomain| *1 (|PatternMatchAssertions|)))) (|optional| #1# #2#) (|constant| #1# #2#) (|assert| (*1 *2 *3 *4) (AND #3# (|isDomain| *4 (|Identifier|)) #4# #5#)))
+((|optional| (#1=(|#2| |#2|) 28 T ELT)) (|multiple| (#1# 29 T ELT)) (|constant| (#1# 27 T ELT)) (|assert| ((|#2| |#2| (|Identifier|)) 26 T ELT)))
+(((|FunctionSpaceAssertions| |#1| |#2|) (CATEGORY |package| (SIGNATURE |assert| (|#2| |#2| (|Identifier|))) (SIGNATURE |constant| #1=(|#2| |#2|)) (SIGNATURE |optional| #1#) (SIGNATURE |multiple| #1#)) (|SetCategory|) (|FunctionSpace| |#1|)) (T |FunctionSpaceAssertions|))
+((|multiple| #1=(*1 *2 *2) #2=(AND (|ofCategory| *3 #3=(|SetCategory|)) (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2)) (|ofCategory| *2 (|FunctionSpace| *3)))) (|optional| #1# #2#) (|constant| #1# #2#) (|assert| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Identifier|)) (|ofCategory| *4 #3#) (|isDomain| *1 (|FunctionSpaceAssertions| *4 *2)) (|ofCategory| *2 (|FunctionSpace| *4)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) #1#) 25 T ELT)) (|fixPredicate| (((|Mapping| #2=(|Boolean|) |#2|) (|Mapping| #2# |#3|)) 13 T ELT)))
+(((|PatternMatchPushDown| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |fixPredicate| ((|Mapping| #1=(|Boolean|) |#2|) (|Mapping| #1# |#3|))) (SIGNATURE |patternMatch| (#2=(|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) #2#))) #3=(|SetCategory|) (|PatternMatchable| |#1|) (|Join| #3# (|RetractableTo| |#2|))) (T |PatternMatchPushDown|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *6)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 (|Join| #1# (|RetractableTo| *3))) (|ofCategory| *3 (|PatternMatchable| *5)) (|isDomain| *1 (|PatternMatchPushDown| *5 *3 *6)))) (|fixPredicate| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| #2=(|Boolean|) *6)) (|ofCategory| *6 (|Join| #1# (|RetractableTo| *5))) (|ofCategory| *5 (|PatternMatchable| *4)) (|ofCategory| *4 #1#) (|isDomain| *2 (|Mapping| #2# *5)) (|isDomain| *1 (|PatternMatchPushDown| *4 *5 *6)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) #1#) 30 T ELT)))
+(((|PatternMatchFunctionSpace| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| |#3|) |#3| #2=(|Pattern| |#1|) #1#))) (|SetCategory|) (|Join| (|IntegralDomain|) #3=(|PatternMatchable| |#1|)) (|Join| (|FunctionSpace| |#2|) (|ConvertibleTo| #2#) #3# (|RetractableTo| (|Kernel| $)))) (T |PatternMatchFunctionSpace|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|ConvertibleTo| *4) #1=(|PatternMatchable| *5) (|RetractableTo| (|Kernel| $)))) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *6 (|Join| (|IntegralDomain|) #1#)) (|isDomain| *1 (|PatternMatchFunctionSpace| *5 *6 *3)))))
+((|patternMatch| ((#1=(|PatternMatchResult| #2=(|Integer|) |#1|) |#1| (|Pattern| #2#) #1#) 13 T ELT)))
+(((|PatternMatchIntegerNumberSystem| |#1|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| #2=(|Integer|) |#1|) |#1| (|Pattern| #2#) #1#))) (|IntegerNumberSystem|)) (T |PatternMatchIntegerNumberSystem|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| #1=(|Integer|) *3)) (|isDomain| *4 (|Pattern| #1#)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *1 (|PatternMatchIntegerNumberSystem| *3)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) #1#) 57 T ELT)))
+(((|PatternMatchKernel| |#1| |#2|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) #2=(|Pattern| |#1|) #1#))) #3=(|SetCategory|) (|Join| #3# (|RetractableTo| (|Kernel| $)) (|ConvertibleTo| #2#) (|PatternMatchable| |#1|))) (T |PatternMatchKernel|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *6)) (|isDomain| *3 (|Kernel| *6)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 (|Join| #1# (|RetractableTo| (|Kernel| $)) (|ConvertibleTo| *4) (|PatternMatchable| *5))) (|isDomain| *4 (|Pattern| *5)) (|isDomain| *1 (|PatternMatchKernel| *5 *6)))))
+((|patternMatch| ((#1=(|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) #1#) 17 T ELT)))
+(((|PatternMatchListAggregate| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) #1#))) (|SetCategory|) (|PatternMatchable| |#1|) (|ListAggregate| |#2|)) (T |PatternMatchListAggregate|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchListResult| *5 *6 *3)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|PatternMatchable| *5)) (|ofCategory| *3 (|ListAggregate| *6)) (|isDomain| *1 (|PatternMatchListAggregate| *5 *6 *3)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#5|) |#5| #2=(|Pattern| |#1|) #1#) 17 (|has| |#3| (|PatternMatchable| |#1|)) ELT) ((#1# |#5| #2# #1# (|Mapping| #1# |#3| #2# #1#)) 16 T ELT)))
+(((|PatternMatchPolynomialCategory| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| |#5|) |#5| #2=(|Pattern| |#1|) #1# (|Mapping| #1# |#3| #2# #1#))) (IF (|has| |#3| #3=(|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| (#1# |#5| #2# #1#)) |%noBranch|)) (|SetCategory|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Join| (|Ring|) #3#) (|Join| (|PolynomialCategory| |#4| |#2| |#3|) (|ConvertibleTo| #2#))) (T |PatternMatchPolynomialCategory|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *3 (|Join| (|PolynomialCategory| *8 *6 *7) #2=(|ConvertibleTo| *4))) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *7 #3=(|PatternMatchable| *5)) (|ofCategory| *6 #4=(|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #5=(|OrderedSet|)) (|ofCategory| *8 (|Join| #6=(|Ring|) #3#)) (|isDomain| *1 (|PatternMatchPolynomialCategory| *5 *6 *7 *8 *3)))) (|patternMatch| (*1 *2 *3 *4 *2 *5) (AND (|isDomain| *5 (|Mapping| #7=(|PatternMatchResult| *6 *3) *8 #8=(|Pattern| *6) #7#)) (|ofCategory| *8 #5#) (|isDomain| *2 #7#) (|isDomain| *4 #8#) (|ofCategory| *6 #1#) (|ofCategory| *3 (|Join| (|PolynomialCategory| *9 *7 *8) #2#)) (|ofCategory| *7 #4#) (|ofCategory| *9 (|Join| #6# (|PatternMatchable| *6))) (|isDomain| *1 (|PatternMatchPolynomialCategory| *6 *7 *8 *9 *3)))))
+((|suchThat| ((#1=(|Expression| (|Integer|)) #2=(|Symbol|) (|List| #3=(|Mapping| (|Boolean|) |#1|))) 18 T ELT) ((#1# #2# #3#) 15 T ELT)))
+(((|AttachPredicates| |#1|) (CATEGORY |package| (SIGNATURE |suchThat| (#1=(|Expression| (|Integer|)) #2=(|Symbol|) #3=(|Mapping| (|Boolean|) |#1|))) (SIGNATURE |suchThat| (#1# #2# (|List| #3#)))) (|Type|)) (T |AttachPredicates|))
+((|suchThat| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|List| #3=(|Mapping| (|Boolean|) *5))) #4=(|ofCategory| *5 (|Type|)) #5=(|isDomain| *2 (|Expression| (|Integer|))) #6=(|isDomain| *1 (|AttachPredicates| *5)))) (|suchThat| #1# (AND #2# (|isDomain| *4 #3#) #4# #5# #6#)))
+((|suchThat| ((|#2| |#2| (|List| #1=(|Mapping| (|Boolean|) |#3|))) 12 T ELT) ((|#2| |#2| #1#) 13 T ELT)))
+(((|FunctionSpaceAttachPredicates| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |suchThat| (|#2| |#2| #1=(|Mapping| (|Boolean|) |#3|))) (SIGNATURE |suchThat| (|#2| |#2| (|List| #1#)))) (|SetCategory|) (|FunctionSpace| |#1|) (|Type|)) (T |FunctionSpaceAttachPredicates|))
+((|suchThat| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 (|List| #2=(|Mapping| (|Boolean|) *5))) #3=(|ofCategory| *5 (|Type|)) #4=(|ofCategory| *4 (|SetCategory|)) #5=(|isDomain| *1 (|FunctionSpaceAttachPredicates| *4 *2 *5)) #6=(|ofCategory| *2 (|FunctionSpace| *4)))) (|suchThat| #1# (AND (|isDomain| *3 #2#) #3# #4# #5# #6#)))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) #1#) 25 T ELT)))
+(((|PatternMatchQuotientFieldCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| |#3|) |#3| #2=(|Pattern| |#1|) #1#))) (|SetCategory|) (|Join| (|IntegralDomain|) (|PatternMatchable| |#1|) (|ConvertibleTo| #2#)) (|QuotientFieldCategory| |#2|)) (T |PatternMatchQuotientFieldCategory|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|QuotientFieldCategory| *6)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|PatternMatchable| *5) (|ConvertibleTo| *4))) (|isDomain| *4 (|Pattern| *5)) (|isDomain| *1 (|PatternMatchQuotientFieldCategory| *5 *6 *3)))))
+((|patternMatch| ((#1=(|PatternMatchResult| |#1| #2=(|Symbol|)) #2# (|Pattern| |#1|) #1#) 18 T ELT)))
+(((|PatternMatchSymbol| |#1|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| #2=(|Symbol|)) #2# (|Pattern| |#1|) #1#))) (|SetCategory|)) (T |PatternMatchSymbol|))
+((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 #1=(|Symbol|))) (|isDomain| *3 #1#) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *1 (|PatternMatchSymbol| *5)))))
+((|patternMatchTimes| ((#1=(|PatternMatchResult| |#1| |#3|) #2=(|List| |#3|) #3=(|List| #4=(|Pattern| |#1|)) #1# #5=(|Mapping| #1# |#3| #4# #1#)) 34 T ELT)) (|patternMatch| ((#1# #2# #3# (|Mapping| |#3| #2#) #1# #5#) 33 T ELT)))
+(((|PatternMatchTools| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| (#1=(|PatternMatchResult| |#1| |#3|) #2=(|List| |#3|) #3=(|List| #4=(|Pattern| |#1|)) (|Mapping| |#3| #2#) #1# #5=(|Mapping| #1# |#3| #4# #1#))) (SIGNATURE |patternMatchTimes| (#1# #2# #3# #1# #5#))) (|SetCategory|) #6=(|Ring|) (|Join| #6# (|ConvertibleTo| #4#) (|RetractableTo| |#2|))) (T |PatternMatchTools|))
+((|patternMatchTimes| (*1 *2 *3 *4 *2 *5) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| #1=(|Pattern| *6))) (|isDomain| *5 (|Mapping| #2=(|PatternMatchResult| *6 *8) *8 #1# #2#)) (|ofCategory| *6 #3=(|SetCategory|)) (|ofCategory| *8 (|Join| #4=(|Ring|) (|ConvertibleTo| #1#) (|RetractableTo| *7))) (|isDomain| *2 #2#) (|ofCategory| *7 #4#) (|isDomain| *1 (|PatternMatchTools| *6 *7 *8)))) (|patternMatch| (*1 *2 *3 *4 *5 *2 *6) (AND (|isDomain| *4 (|List| #5=(|Pattern| *7))) (|isDomain| *5 (|Mapping| *9 #6=(|List| *9))) (|isDomain| *6 (|Mapping| #7=(|PatternMatchResult| *7 *9) *9 #5# #7#)) (|ofCategory| *7 #3#) (|ofCategory| *9 (|Join| #4# (|ConvertibleTo| #5#) (|RetractableTo| *8))) (|isDomain| *2 #7#) (|isDomain| *3 #6#) (|ofCategory| *8 #4#) (|isDomain| *1 (|PatternMatchTools| *7 *8 *9)))))
+((|legendre| (#1=((|SparseUnivariatePolynomial| (|Fraction| #2=(|Integer|))) #2#) 80 T ELT)) (|laguerre| (#3=(#4=(|SparseUnivariatePolynomial| #2#) #2#) 83 T ELT)) (|hermite| (#3# 77 T ELT)) (|fixedDivisor| ((#2# #4#) 73 T ELT)) (|euler| (#1# 66 T ELT)) (|cyclotomic| (#3# 49 T ELT)) (|chebyshevU| (#3# 85 T ELT)) (|chebyshevT| (#3# 84 T ELT)) (|bernoulli| (#1# 68 T ELT)))
+(((|PolynomialNumberTheoryFunctions|) (CATEGORY |package| (SIGNATURE |bernoulli| #1=((|SparseUnivariatePolynomial| (|Fraction| #2=(|Integer|))) #2#)) (SIGNATURE |chebyshevT| #3=(#4=(|SparseUnivariatePolynomial| #2#) #2#)) (SIGNATURE |chebyshevU| #3#) (SIGNATURE |cyclotomic| #3#) (SIGNATURE |euler| #1#) (SIGNATURE |fixedDivisor| (#2# #4#)) (SIGNATURE |hermite| #3#) (SIGNATURE |laguerre| #3#) (SIGNATURE |legendre| #1#))) (T |PolynomialNumberTheoryFunctions|))
+((|legendre| #1=(*1 *2 *3) #2=(AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| #3=(|Integer|)))) #4=(|isDomain| *1 (|PolynomialNumberTheoryFunctions|)) #5=(|isDomain| *3 #3#))) (|laguerre| #1# #6=(AND (|isDomain| *2 #7=(|SparseUnivariatePolynomial| #3#)) #4# #5#)) (|hermite| #1# #6#) (|fixedDivisor| #1# (AND (|isDomain| *3 #7#) (|isDomain| *2 #3#) #4#)) (|euler| #1# #2#) (|cyclotomic| #1# #6#) (|chebyshevU| #1# #6#) (|chebyshevT| #1# #6#) (|bernoulli| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|zero| (($ #5=(|NonNegativeInteger|)) NIL (|has| |#1| (|AbelianMonoid|)) ELT)) (|swap!| (((|Void|) $ #6=(|Integer|) #6#) NIL #7=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #8=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#9=(#3# $) NIL #10=(|has| |#1| #11=(|OrderedSet|)) ELT)) (|sort!| (#12=($ #8# $) NIL #7# ELT) (#13=($ $) NIL (AND #7# #10#) ELT)) (|sort| (#12# NIL T ELT) (#13# NIL #10# ELT)) (|setelt| #14=(#15=(|#1| $ #6# |#1|) NIL #7# ELT) ((|#1| $ #16=(|UniversalSegment| #6#) |#1|) NIL #7# ELT)) (|select| #17=(($ #18=(|Mapping| #3# |#1|) $) NIL #19=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#20=($) NIL T CONST)) (|reverse!| (#13# NIL #7# ELT)) (|reverse| #21=(#13# NIL T ELT)) (|removeDuplicates| (#13# NIL #22=(AND #19# #4#) ELT)) (|remove| (#23=($ |#1| $) NIL #22# ELT) #17#) (|reduce| ((|#1| #24=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #24# $ |#1|) NIL T ELT) ((|#1| #24# $) NIL T ELT)) (|qsetelt!| #14#) (|qelt| (#25=(|#1| $ #6#) NIL T ELT)) (|position| ((#6# #18# $) NIL T ELT) ((#6# |#1| $) NIL #4# ELT) ((#6# |#1| $ #6#) NIL #4# ELT)) (|point| (#26=($ #27=(|List| |#1|)) 9 T ELT)) (|outerProduct| (((|Matrix| |#1|) $ $) NIL #28=(|has| |#1| (|Ring|)) ELT)) (|new| (($ #5# |#1|) NIL T ELT)) (|minIndex| #29=((#6# $) NIL #30=(|has| #6# #11#) ELT)) (|min| #31=(#32=($ $ $) NIL #10# ELT)) (|merge| (($ #8# $ $) NIL T ELT) #31#) (|members| #33=((#27# $) NIL T ELT)) (|member?| (#34=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| #29#) (|max| #31#) (|map!| #35=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #35# (($ #24# $ $) NIL T ELT)) (|magnitude| #36=(#37=(|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) #28#) ELT)) (|length| #36#) (|latex| (((|String|) $) NIL #38=(|has| |#1| (|SetCategory|)) ELT)) (|insert| (($ |#1| $ #6#) NIL T ELT) (#39=($ $ $ #6#) NIL T ELT)) (|indices| (((|List| #6#) $) NIL T ELT)) (|index?| ((#3# #6# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #38# ELT)) (|first| (#37# NIL #30# ELT)) (|find| (((|Union| |#1| "failed") #18# $) NIL T ELT)) (|fill!| (#40=($ $ |#1|) NIL #7# ELT)) (|extend| (($ $ #27#) 25 T ELT)) (|every?| #41=((#3# #18# $) NIL T ELT)) (|eval| (($ $ (|List| #42=(|Equation| |#1|))) NIL #43=(AND (|has| |#1| (|Evalable| |#1|)) #38#) ELT) (($ $ #42#) NIL #43# ELT) (($ $ |#1| |#1|) NIL #43# ELT) (($ $ #27# #27#) NIL #43# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#34# NIL #22# ELT)) (|entries| #33#) (|empty?| (#9# NIL T ELT)) (|empty| (#20# NIL T ELT)) (|elt| (#15# NIL T ELT) (#25# 18 T ELT) #44=(($ $ #16#) NIL T ELT)) (|dot| ((|#1| $ $) NIL #28# ELT)) (|dimension| (((|PositiveInteger|) $) 13 T ELT)) (|delete| (($ $ #6#) NIL T ELT) #44#) (|cross| (#32# 23 T ELT)) (|count| ((#5# |#1| $) NIL #4# ELT) ((#5# #18# $) NIL T ELT)) (|copyInto!| (#39# NIL #7# ELT)) (|copy| #21#) (|convert| ((#45=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #45#)) ELT) (#26# 14 T ELT)) (|construct| (#26# NIL T ELT)) (|concat| (#40# NIL T ELT) (#23# NIL T ELT) (#32# 24 T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#46=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #46#)) ELT)) (|before?| #1#) (|any?| #41#) (>= #47=(#2# NIL #10# ELT)) (> #47#) (= #1#) (<= #47#) (< #47#) (- (#13# NIL #48=(|has| |#1| (|AbelianGroup|)) ELT) (#32# NIL #48# ELT)) (+ (#32# NIL (|has| |#1| (|AbelianSemiGroup|)) ELT)) (* (($ #6# $) NIL #48# ELT) (#23# NIL #49=(|has| |#1| (|Monoid|)) ELT) (#40# NIL #49# ELT)) (|#| ((#5# $) 11 T ELT)))
+(((|Point| |#1|) (|PointCategory| |#1|) (|Ring|)) (T |Point|))
+NIL
+((|pToHdmp| ((#1=(|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) #2=(|Polynomial| |#2|)) 22 T ELT)) (|pToDmp| ((#3=(|DistributedMultivariatePolynomial| |#1| |#2|) #2#) 35 T ELT)) (|hdmpToP| ((#2# #1#) 27 T ELT)) (|hdmpToDmp| ((#3# #1#) 57 T ELT)) (|dmpToP| ((#2# #3#) 32 T ELT)) (|dmpToHdmp| ((#1# #3#) 48 T ELT)))
+(((|PolToPol| |#1| |#2|) (CATEGORY |package| (SIGNATURE |dmpToHdmp| (#1=(|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) #2=(|DistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |hdmpToDmp| (#2# #1#)) (SIGNATURE |pToHdmp| (#1# #3=(|Polynomial| |#2|))) (SIGNATURE |hdmpToP| (#3# #1#)) (SIGNATURE |dmpToP| (#3# #2#)) (SIGNATURE |pToDmp| (#2# #3#))) (|List| (|Symbol|)) (|Ring|)) (T |PolToPol|))
+((|pToDmp| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|Polynomial| *5)) #4=(|ofCategory| *5 (|Ring|)) #5=(|isDomain| *2 #6=(|DistributedMultivariatePolynomial| *4 *5)) #7=(|isDomain| *1 (|PolToPol| *4 *5)) #8=(|ofType| *4 (|List| (|Symbol|))))) (|dmpToP| #1# (AND #9=(|isDomain| *3 #6#) #8# #4# #10=(|isDomain| *2 #3#) #7#)) (|hdmpToP| #1# (AND #11=(|isDomain| *3 #12=(|HomogeneousDistributedMultivariatePolynomial| *4 *5)) #8# #4# #10# #7#)) (|pToHdmp| #1# (AND #2# #4# #13=(|isDomain| *2 #12#) #7# #8#)) (|hdmpToDmp| #1# (AND #11# #8# #4# #5# #7#)) (|dmpToHdmp| #1# (AND #9# #8# #4# #13# #7#)))
+((|sylvesterSequence| ((#1=(|List| |#2|) |#2| |#2|) 10 T ELT)) (|sturmVariationsOf| ((#2=(|NonNegativeInteger|) #3=(|List| |#1|)) 47 #4=(|has| |#1| (|OrderedRing|)) ELT)) (|sturmSequence| ((#1# |#2|) 11 T ELT)) (|lazyVariations| ((#2# #3# #5=(|Integer|) #5#) 45 #4# ELT)) (|boundOfCauchy| ((|#1| |#2|) 37 #4# ELT)))
+(((|RealPolynomialUtilitiesPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sylvesterSequence| (#1=(|List| |#2|) |#2| |#2|)) (SIGNATURE |sturmSequence| (#1# |#2|)) (IF (|has| |#1| (|OrderedRing|)) (PROGN (SIGNATURE |boundOfCauchy| (|#1| |#2|)) (SIGNATURE |sturmVariationsOf| (#2=(|NonNegativeInteger|) #3=(|List| |#1|))) (SIGNATURE |lazyVariations| (#2# #3# #4=(|Integer|) #4#))) |%noBranch|)) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |RealPolynomialUtilitiesPackage|))
+((|lazyVariations| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|Integer|)) (|ofCategory| *5 #1=(|OrderedRing|)) (|ofCategory| *5 #2=(|Field|)) #3=(|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *5 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)))) (|sturmVariationsOf| #4=(*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 #1#) #5=(|ofCategory| *4 #2#) #3# (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *4 *5)) (|ofCategory| *5 #6=(|UnivariatePolynomialCategory| *4)))) (|boundOfCauchy| #4# (AND (|ofCategory| *2 #2#) (|ofCategory| *2 #1#) (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|sturmSequence| #4# #7=(AND #5# (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *4 *3)) (|ofCategory| *3 #6#))) (|sylvesterSequence| (*1 *2 *3 *3) #7#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|Symbol|)) $) 16 T ELT)) (|univariate| ((#8=(|SparseUnivariatePolynomial| $) $ #7#) 21 T ELT) ((#9=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #10=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #11=(#12=($ $) NIL #10# ELT)) (|unit?| (#5# NIL #10# ELT)) (|totalDegree| #13=((#14=(|NonNegativeInteger|) $) NIL T ELT) ((#14# $ #6#) NIL T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #18=(((|Factored| #8#) #8#) NIL #19=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #20=(#12# NIL #21=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#22=((|Factored| $) $) NIL #21# ELT)) (|solveLinearPolynomialEquation| (((|Union| #23=(|List| #8#) #17#) #23# #8#) NIL #19# ELT)) (|sample| #24=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #25=(#17#)) . #26=($)) 8 T ELT) (((|Union| #27=(|Fraction| #28=(|Integer|)) . #25#) . #26#) NIL #29=(|has| |#1| (|RetractableTo| #27#)) ELT) (((|Union| #28# . #25#) . #26#) NIL #30=(|has| |#1| (|RetractableTo| #28#)) ELT) (#31=((|Union| #7# . #25#) . #26#) NIL T ELT)) (|retract| #32=(#33=(|#1| . #34=($)) NIL T ELT) ((#27# . #34#) NIL #29# ELT) ((#28# . #34#) NIL #30# ELT) ((#7# . #34#) NIL T ELT)) (|resultant| (($ $ $ #7#) NIL #35=(|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| #36=(#12# NIL T ELT)) (|reducedSystem| ((#37=(|Matrix| #28#) . #38=(#39=(|Matrix| $))) NIL #40=(|has| |#1| (|LinearlyExplicitRingOver| #28#)) ELT) ((#41=(|Record| (|:| |mat| #37#) (|:| |vec| (|Vector| #28#))) . #42=(#39# #43=(|Vector| $))) NIL #40# ELT) ((#44=(|Record| (|:| |mat| #45=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #42#) NIL T ELT) ((#45# . #38#) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|primitivePart| #20# #46=(#47=($ $ #7#) NIL #21# ELT)) (|primitiveMonomials| #48=((#49=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #19# ELT)) (|pomopo!| (($ $ |#1| #50=(|IndexedExponents| #7#) $) NIL T ELT)) (|patternMatch| ((#51=(|PatternMatchResult| #52=(|Float|) . #53=($)) $ #54=(|Pattern| #52#) #51#) NIL (AND (|has| #7# #55=(|PatternMatchable| #52#)) (|has| |#1| #55#)) ELT) ((#56=(|PatternMatchResult| #28# . #53#) $ #57=(|Pattern| #28#) #56#) NIL (AND (|has| #7# #58=(|PatternMatchable| #28#)) (|has| |#1| #58#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #13#) (|multivariate| (($ #9# #7#) NIL T ELT) (($ #8# #7#) NIL T ELT)) (|monomials| #48#) (|monomial?| #4#) (|monomial| (($ |#1| #50#) NIL T ELT) #59=(($ $ #7# #14#) NIL T ELT) #60=(($ $ #6# #61=(|List| #14#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #7#) NIL T ELT)) (|minimumDegree| #62=((#50# $) NIL T ELT) #63=((#14# $ #7#) NIL T ELT) #64=((#61# $ #6#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #50# #50#) $) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|mainVariable| (#31# 19 T ELT)) (|leftReducedSystem| ((#37# . #65=(#43#)) NIL #40# ELT) ((#41# . #66=(#43# $)) NIL #40# ELT) ((#44# . #66#) NIL T ELT) ((#45# . #65#) NIL T ELT)) (|leadingMonomial| #36#) (|leadingCoefficient| #32#) (|lcm| #67=(($ #49#) NIL #21# ELT) #68=(#69=($ $ $) NIL #21# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #70=(((|Union| #49# #17#) $) NIL T ELT)) (|isPlus| #70#) (|isExpt| (((|Union| (|Record| (|:| |var| #7#) (|:| |exponent| #14#)) #17#) $) NIL T ELT)) (|integrate| (#47# 29 #71=(|has| |#1| (|Algebra| #27#)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #32#) (|gcdPolynomial| ((#8# #8# #8#) NIL #21# ELT)) (|gcd| #67# #68#) (|factorSquareFreePolynomial| #18#) (|factorPolynomial| #18#) (|factor| (#22# NIL #19# ELT)) (|exquo| ((#16# $ |#1|) NIL #10# ELT) (#15# NIL #10# ELT)) (|eval| (($ $ (|List| #72=(|Equation| $))) NIL T ELT) (($ $ #72#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #49# #49#) NIL T ELT) (($ $ #7# |#1|) NIL T ELT) (($ $ #6# #73=(|List| |#1|)) NIL T ELT) (($ $ #7# $) NIL T ELT) (($ $ #6# #49#) NIL T ELT)) (|discriminant| (#47# NIL #35# ELT)) (|differentiate| #60# #59# #74=(($ $ #6#) NIL T ELT) #75=(#47# NIL T ELT)) (|degree| #62# #63# #64#) (|convert| ((#54# . #76=($)) NIL (AND (|has| #7# #77=(|ConvertibleTo| #54#)) (|has| |#1| #77#)) ELT) ((#57# . #76#) NIL (AND (|has| #7# #78=(|ConvertibleTo| #57#)) (|has| |#1| #78#)) ELT) ((#79=(|InputForm|) . #76#) NIL (AND (|has| #7# #80=(|ConvertibleTo| #79#)) (|has| |#1| #80#)) ELT)) (|content| (#33# NIL #21# ELT) #46#) (|conditionP| (((|Union| #43# #17#) #39#) NIL #81=(AND (|has| $ #82=(|CharacteristicNonZero|)) #19#) ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT) (($ #28#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #7#) 27 T ELT) (($ #27#) NIL (OR #71# #29#) ELT) #11#) (|coefficients| ((#73# $) NIL T ELT)) (|coefficient| ((|#1| $ #50#) NIL T ELT) #59# #60#) (|charthRoot| (((|Maybe| $) $) NIL (OR #81# (|has| |#1| #82#)) ELT)) (|characteristic| ((#14#) NIL T CONST)) (|binomThmExpt| (($ $ $ #14#) NIL #35# ELT)) (|before?| #1#) (|associates?| (#2# NIL #10# ELT)) (|annihilate?| #1#) (|Zero| #24#) (|One| #24#) (D #60# #59# #74# #75#) (= #1#) (/ (#83=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #36# #84=(#69# NIL T ELT)) (+ #84#) (** (($ $ #85=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) NIL T ELT)) (* (($ #85# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #28# . #86=($)) NIL T ELT) #84# (($ $ #27#) NIL #71# ELT) (($ #27# . #86#) NIL #71# ELT) (($ |#1| . #86#) NIL T ELT) (#83# NIL T ELT)))
+(((|Polynomial| |#1|) (|Join| (|PolynomialCategory| |#1| (|IndexedExponents| #1=(|Symbol|)) #1#) (CATEGORY |domain| (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|)) (T |Polynomial|))
+((|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Polynomial| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)))))
+((|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) 19 T ELT)))
+(((|PolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)))) #1=(|Ring|) #1#) (T |PolynomialFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Polynomial| *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Polynomial| *6)) (|isDomain| *1 (|PolynomialFunctions2| *5 *6)))))
+((|univariate| (((|UnivariatePolynomial| |#1| #1=(|Polynomial| |#2|)) #1# (|Variable| |#1|)) 18 T ELT)))
+(((|PolynomialToUnivariatePolynomial| |#1| |#2|) (CATEGORY |package| (SIGNATURE |univariate| ((|UnivariatePolynomial| |#1| #1=(|Polynomial| |#2|)) #1# (|Variable| |#1|)))) (|Symbol|) (|Ring|)) (T |PolynomialToUnivariatePolynomial|))
+((|univariate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Variable| *5)) (|ofType| *5 (|Symbol|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|UnivariatePolynomial| *5 #1=(|Polynomial| *6))) (|isDomain| *1 (|PolynomialToUnivariatePolynomial| *5 *6)) (|isDomain| *3 #1#))))
+((|totalDegree| ((#1=(|NonNegativeInteger|) $) 88 T ELT) ((#1# $ #2=(|List| |#4|)) 93 T ELT)) (|squareFreePart| (#3=($ $) 214 T ELT)) (|squareFree| (#4=((|Factored| $) $) 206 T ELT)) (|solveLinearPolynomialEquation| (((|Union| #5=(|List| #6=(|SparseUnivariatePolynomial| $)) #7="failed") #5# #6#) 141 T ELT)) (|retractIfCan| (((|Union| |#2| #7#) $) NIL T ELT) (((|Union| #8=(|Fraction| #9=(|Integer|)) #7#) $) NIL T ELT) (((|Union| #9# #7#) $) NIL T ELT) (((|Union| |#4| #7#) $) 74 T ELT)) (|retract| #10=((|#2| $) NIL T ELT) ((#8# $) NIL T ELT) ((#9# $) NIL T ELT) ((|#4| $) 73 T ELT)) (|resultant| (($ $ $ |#4|) 95 T ELT)) (|reducedSystem| ((#11=(|Matrix| #9#) #12=(|Matrix| $)) NIL T ELT) (((|Record| (|:| |mat| #11#) (|:| |vec| (|Vector| #9#))) #12# #13=(|Vector| $)) NIL T ELT) (((|Record| (|:| |mat| #14=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) #12# #13#) 131 T ELT) ((#14# #12#) 121 T ELT)) (|primitivePart| (#3# 221 T ELT) (#15=($ $ |#4|) 224 T ELT)) (|primitiveMonomials| (#16=(#17=(|List| $) $) 77 T ELT)) (|patternMatch| ((#18=(|PatternMatchResult| #19=(|Float|) $) $ #20=(|Pattern| #19#) #18#) 240 T ELT) ((#21=(|PatternMatchResult| #9# $) $ #22=(|Pattern| #9#) #21#) 233 T ELT)) (|monomials| (#16# 34 T ELT)) (|monomial| (($ |#2| |#3|) NIL T ELT) (#23=($ $ |#4| #1#) NIL T ELT) (#24=($ $ #2# (|List| #1#)) 71 T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) 203 T ELT)) (|isTimes| (#25=((|Union| #17# #7#) $) 52 T ELT)) (|isPlus| (#25# 39 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| #1#)) #7#) $) 57 T ELT)) (|gcdPolynomial| ((#6# #6# #6#) 134 T ELT)) (|factorSquareFreePolynomial| (#26=((|Factored| #6#) #6#) 147 T ELT)) (|factorPolynomial| (#26# 145 T ELT)) (|factor| (#4# 165 T ELT)) (|eval| (($ $ (|List| #27=(|Equation| $))) 24 T ELT) (($ $ #27#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #17# #17#) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ #2# (|List| |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ #2# #17#) NIL T ELT)) (|discriminant| (#15# 97 T ELT)) (|convert| ((#20# $) 254 T ELT) ((#22# $) 247 T ELT) (((|InputForm|) $) 262 T ELT)) (|content| #10# (#15# 216 T ELT)) (|conditionP| (((|Union| #13# #7#) #12#) 185 T ELT)) (|coefficient| ((|#2| $ |#3|) NIL T ELT) (#23# 62 T ELT) (#24# 69 T ELT)) (|charthRoot| (((|Maybe| $) $) 195 T ELT)) (|before?| (((|Boolean|) $ $) 227 T ELT)))
+(((|PolynomialCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gcdPolynomial| (#1=(|SparseUnivariatePolynomial| |#1|) #1# #1#)) (SIGNATURE |squareFree| #2=((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| #3=(|#1| |#1|)) (SIGNATURE |charthRoot| ((|Maybe| |#1|) |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| (#4=(|Pattern| #5=(|Integer|)) |#1|)) (SIGNATURE |convert| (#6=(|Pattern| #7=(|Float|)) |#1|)) (SIGNATURE |patternMatch| (#8=(|PatternMatchResult| #5# |#1|) |#1| #4# #8#)) (SIGNATURE |patternMatch| (#9=(|PatternMatchResult| #7# |#1|) |#1| #6# #9#)) (SIGNATURE |factor| #2#) (SIGNATURE |factorPolynomial| #10=((|Factored| #1#) #1#)) (SIGNATURE |factorSquareFreePolynomial| #10#) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #11=(|List| #1#) #12="failed") #11# #1#)) (SIGNATURE |conditionP| ((|Union| #13=(|Vector| |#1|) #12#) #14=(|Matrix| |#1|))) (SIGNATURE |primitivePart| #15=(|#1| |#1| |#4|)) (SIGNATURE |content| #15#) (SIGNATURE |discriminant| #15#) (SIGNATURE |resultant| (|#1| |#1| |#1| |#4|)) (SIGNATURE |primitiveMonomials| #16=(#17=(|List| |#1|) |#1|)) (SIGNATURE |totalDegree| (#18=(|NonNegativeInteger|) |#1| #19=(|List| |#4|))) (SIGNATURE |totalDegree| (#18# |#1|)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| #18#)) #12#) |#1|)) (SIGNATURE |isTimes| #20=((|Union| #17# #12#) |#1|)) (SIGNATURE |isPlus| #20#) (SIGNATURE |monomial| #21=(|#1| |#1| #19# (|List| #18#))) (SIGNATURE |monomial| #22=(|#1| |#1| |#4| #18#)) (SIGNATURE |monicDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1| |#4|)) (SIGNATURE |monomials| #16#) (SIGNATURE |coefficient| #21#) (SIGNATURE |coefficient| #22#) (SIGNATURE |reducedSystem| (#23=(|Matrix| |#2|) #14#)) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #23#) (|:| |vec| (|Vector| |#2|))) #14# #13#)) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #24=(|Matrix| #5#)) (|:| |vec| (|Vector| #5#))) #14# #13#)) (SIGNATURE |reducedSystem| (#24# #14#)) (SIGNATURE |retractIfCan| ((|Union| |#4| #12#) |#1|)) (SIGNATURE |retract| (|#4| |#1|)) (SIGNATURE |eval| (|#1| |#1| #19# #17#)) (SIGNATURE |eval| (|#1| |#1| |#4| |#1|)) (SIGNATURE |eval| (|#1| |#1| #19# (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#4| |#2|)) (SIGNATURE |eval| (|#1| |#1| #17# #17#)) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| #25=(|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| #25#))) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |coefficient| (|#2| |#1| |#3|)) (SIGNATURE |retractIfCan| ((|Union| #5# #12#) |#1|)) (SIGNATURE |retract| (#5# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #26=(|Fraction| #5#) #12#) |#1|)) (SIGNATURE |retract| (#26# |#1|)) (SIGNATURE |retract| #27=(|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #12#) |#1|)) (SIGNATURE |content| #27#) (SIGNATURE |primitivePart| #3#) (SIGNATURE |before?| ((|Boolean|) |#1| |#1|))) (|PolynomialCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |PolynomialCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| |#3|) $) 124 T ELT)) (|univariate| (((|SparseUnivariatePolynomial| $) $ |#3|) 139 T ELT) (((|SparseUnivariatePolynomial| |#1|) $) 138 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 101 (|has| |#1| . #3=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 102 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 104 (|has| |#1| . #3#) ELT)) (|totalDegree| (((|NonNegativeInteger|) $) 126 T ELT) (((|NonNegativeInteger|) $ (|List| |#3|)) 125 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (#5=((|Factored| #6=(|SparseUnivariatePolynomial| $)) #6#) 114 (|has| |#1| . #7=((|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| (($ $) 112 (|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#8=((|Factored| $) $) 111 (|has| |#1| (|GcdDomain|)) ELT)) (|solveLinearPolynomialEquation| (((|Union| #9=(|List| #6#) #10="failed") #9# #6#) 117 (|has| |#1| . #7#) ELT)) (|sample| (#11=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| . #12=("failed")) . #13=($)) 182 T ELT) (((|Union| #14=(|Fraction| #15=(|Integer|)) . #12#) . #13#) 179 (|has| |#1| . #16=((|RetractableTo| #14#))) ELT) (((|Union| #15# . #12#) . #13#) 177 (|has| |#1| . #17=((|RetractableTo| #15#))) ELT) (((|Union| |#3| . #12#) . #13#) 154 T ELT)) (|retract| ((|#1| . #18=($)) 181 T ELT) ((#14# . #18#) 180 (|has| |#1| . #16#) ELT) ((#15# . #18#) 178 (|has| |#1| . #17#) ELT) ((|#3| . #18#) 155 T ELT)) (|resultant| (($ $ $ |#3|) 122 (|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| (#19=($ $) 172 T ELT)) (|reducedSystem| (((|Matrix| #20=(|Integer|)) . #21=(#22=(|Matrix| $))) 150 (|has| |#1| . #23=((|LinearlyExplicitRingOver| #20#))) ELT) (((|Record| (|:| |mat| (|Matrix| #20#)) (|:| |vec| (|Vector| #20#))) . #24=(#22# #25=(|Vector| $))) 149 (|has| |#1| . #23#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #24#) 148 T ELT) (((|Matrix| |#1|) . #21#) 147 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|primitivePart| (($ $) 194 (|has| |#1| . #26=((|GcdDomain|))) ELT) (($ $ |#3|) 119 (|has| |#1| (|GcdDomain|)) ELT)) (|primitiveMonomials| (((|List| $) $) 123 T ELT)) (|prime?| (((|Boolean|) $) 110 (|has| |#1| . #7#) ELT)) (|pomopo!| (($ $ |#1| |#2| $) 190 T ELT)) (|patternMatch| (((|PatternMatchResult| #27=(|Float|) . #28=($)) $ (|Pattern| #27#) (|PatternMatchResult| #27# . #28#)) 98 (AND (|has| |#3| (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ELT) (((|PatternMatchResult| #29=(|Integer|) . #28#) $ (|Pattern| #29#) (|PatternMatchResult| #29# . #28#)) 97 (AND (|has| |#3| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfMonomials| ((#30=(|NonNegativeInteger|) $) 187 T ELT)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#3|) 131 T ELT) (($ (|SparseUnivariatePolynomial| $) |#3|) 130 T ELT)) (|monomials| (((|List| $) $) 140 T ELT)) (|monomial?| (((|Boolean|) $) 170 T ELT)) (|monomial| (($ |#1| |#2|) 171 T ELT) (($ $ |#3| (|NonNegativeInteger|)) 133 T ELT) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 132 T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 134 T ELT)) (|minimumDegree| ((|#2| $) 188 T ELT) (((|NonNegativeInteger|) $ |#3|) 136 T ELT) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 135 T ELT)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) 189 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 166 T ELT)) (|mainVariable| (((|Union| |#3| "failed") $) 137 T ELT)) (|leftReducedSystem| (((|Matrix| #20#) . #31=(#25#)) 152 (|has| |#1| . #23#) ELT) (((|Record| (|:| |mat| (|Matrix| #20#)) (|:| |vec| (|Vector| #20#))) . #32=(#25# $)) 151 (|has| |#1| . #23#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #32#) 146 T ELT) (((|Matrix| |#1|) . #31#) 145 T ELT)) (|leadingMonomial| (#19# 168 T ELT)) (|leadingCoefficient| ((|#1| $) 167 T ELT)) (|lcm| (#33=($ (|List| $)) 108 (|has| |#1| . #34=((|GcdDomain|))) ELT) (#35=($ $ $) 107 (|has| |#1| . #34#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|isTimes| (((|Union| (|List| $) "failed") $) 128 T ELT)) (|isPlus| (((|Union| (|List| $) "failed") $) 129 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) 127 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 184 T ELT)) (|ground| ((|#1| . #36=($)) 185 T ELT)) (|gcdPolynomial| ((#37=(|SparseUnivariatePolynomial| $) #37# #37#) 109 (|has| |#1| . #34#) ELT)) (|gcd| (#33# 106 (|has| |#1| . #34#) ELT) (#35# 105 (|has| |#1| . #34#) ELT)) (|factorSquareFreePolynomial| (#5# 116 (|has| |#1| . #7#) ELT)) (|factorPolynomial| (#5# 115 (|has| |#1| . #7#) ELT)) (|factor| (#8# 113 (|has| |#1| . #7#) ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 192 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| $ "failed") $ $) 100 (|has| |#1| . #3#) ELT)) (|eval| (($ $ (|List| (|Equation| $))) 163 T ELT) (($ $ (|Equation| $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (|List| $) (|List| $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (|List| |#3|) (|List| |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (|List| |#3|) (|List| $)) 156 T ELT)) (|discriminant| (($ $ |#3|) 121 (|has| |#1| (|CommutativeRing|)) ELT)) (|differentiate| (($ $ (|List| |#3|) . #38=((|List| #39=(|NonNegativeInteger|)))) 52 T ELT) (($ $ |#3| . #40=(#39#)) 51 T ELT) (($ $ (|List| |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (|degree| ((|#2| $) 169 T ELT) (((|NonNegativeInteger|) $ |#3|) 144 T ELT) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 143 T ELT)) (|convert| (((|Pattern| (|Float|)) . #41=($)) 96 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) ELT) (((|Pattern| (|Integer|)) . #41#) 95 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) ELT) (((|InputForm|) . #41#) 94 (AND (|has| |#3| (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))) ELT)) (|content| ((|#1| . #36#) 193 (|has| |#1| . #26#) ELT) (($ $ |#3|) 120 (|has| |#1| (|GcdDomain|)) ELT)) (|conditionP| (((|Union| (|Vector| $) #10#) (|Matrix| $)) 118 (|and| #42=(|has| $ (|CharacteristicNonZero|)) (|has| |#1| . #7#)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (($ $) 99 (|has| |#1| . #3#) ELT) (($ #14#) 92 (OR (|has| |#1| . #16#) (|has| |#1| . #43=((|Algebra| #44=(|Fraction| (|Integer|)))))) ELT)) (|coefficients| (((|List| |#1|) $) 186 T ELT)) (|coefficient| ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| (|NonNegativeInteger|)) 142 T ELT) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 141 T ELT)) (|charthRoot| (((|Maybe| $) $) 93 (OR (|and| #42# (|has| |#1| . #7#)) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|binomThmExpt| (($ $ $ #30#) 191 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#4# $ $) 103 (|has| |#1| . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#11# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| |#3|) . #38#) 55 T ELT) (($ $ |#3| . #40#) 54 T ELT) (($ $ (|List| |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 174 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #45=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #44#) 176 (|has| |#1| . #43#) ELT) (($ #44# . #45#) 175 (|has| |#1| . #43#) ELT) (($ |#1| . #45#) 165 T ELT) (($ $ |#1|) 164 T ELT)))
+(((|PolynomialCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |PolynomialCategory|))
+((|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|PolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|degree| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|degree| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)))) (|monomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))) (|univariate| (*1 *2 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)))) (|univariate| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|mainVariable| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|minimumDegree| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|monicDivide| (*1 *2 *1 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)))) (|multivariate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)))) (|multivariate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)))) (|isPlus| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))) (|isTimes| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))) (|isExpt| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |var| *5) (|:| |exponent| (|NonNegativeInteger|)))))) (|totalDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|totalDegree| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5)))) (|primitiveMonomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))) (|resultant| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|discriminant| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|content| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|GcdDomain|)))) (|primitivePart| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|GcdDomain|)))) (|squareFreePart| (*1 *1 *1) (AND (|ofCategory| *1 (|PolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|squareFree| (*1 *2 *1) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))))
+(|Join| (|PartialDifferentialRing| |t#3|) (|FiniteAbelianMonoidRing| |t#1| |t#2|) (|Evalable| $) (|InnerEvalable| |t#3| |t#1|) (|InnerEvalable| |t#3| $) (|RetractableTo| |t#3|) (|FullyLinearlyExplicitRingOver| |t#1|) (CATEGORY |domain| (SIGNATURE |degree| ((|NonNegativeInteger|) $ |t#3|)) (SIGNATURE |degree| ((|List| (|NonNegativeInteger|)) $ (|List| |t#3|))) (SIGNATURE |coefficient| ($ $ |t#3| (|NonNegativeInteger|))) (SIGNATURE |coefficient| ($ $ (|List| |t#3|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |univariate| ((|SparseUnivariatePolynomial| $) $ |t#3|)) (SIGNATURE |univariate| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |mainVariable| ((|Union| |t#3| "failed") $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $ |t#3|)) (SIGNATURE |minimumDegree| ((|List| (|NonNegativeInteger|)) $ (|List| |t#3|))) (SIGNATURE |monicDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |t#3|)) (SIGNATURE |monomial| ($ $ |t#3| (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ $ (|List| |t#3|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |multivariate| ($ (|SparseUnivariatePolynomial| |t#1|) |t#3|)) (SIGNATURE |multivariate| ($ (|SparseUnivariatePolynomial| $) |t#3|)) (SIGNATURE |isPlus| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isTimes| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| |t#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) $ (|List| |t#3|))) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |primitiveMonomials| ((|List| $) $)) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (IF (|has| |t#3| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (IF (|has| |t#3| (|ConvertibleTo| (|Pattern| (|Integer|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Integer|)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (IF (|has| |t#3| (|ConvertibleTo| (|Pattern| (|Float|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Float|)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|PatternMatchable| (|Integer|))) (IF (|has| |t#3| (|PatternMatchable| (|Integer|))) (ATTRIBUTE (|PatternMatchable| (|Integer|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|PatternMatchable| (|Float|))) (IF (|has| |t#3| (|PatternMatchable| (|Float|))) (ATTRIBUTE (|PatternMatchable| (|Float|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (PROGN (SIGNATURE |resultant| ($ $ $ |t#3|)) (SIGNATURE |discriminant| ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (ATTRIBUTE (|GcdDomain|)) (SIGNATURE |content| ($ $ |t#3|)) (SIGNATURE |primitivePart| ($ $)) (SIGNATURE |primitivePart| ($ $ |t#3|)) (SIGNATURE |squareFree| ((|Factored| $) $)) (SIGNATURE |squareFreePart| ($ $))) |%noBranch|) (IF (|has| |t#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |%noBranch|) (IF (|has| |t#1| (|PolynomialFactorizationExplicit|)) (ATTRIBUTE (|PolynomialFactorizationExplicit|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| |#3|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|InnerEvalable| |#3| |#1|) . T) ((|InnerEvalable| |#3| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| #2=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|LinearlyExplicitRingOver| #2#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ |#3|) . T) ((|PartialDifferentialRing| |#3|) . T) ((|PartialDifferentialSpace| |#3|) . T) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RetractableTo| |#3|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|)))
+((|variables| (((|List| |#2|) |#5|) 40 T ELT)) (|univariate| ((#1=(|SparseUnivariatePolynomial| |#5|) |#5| |#2| #1#) 23 T ELT) ((#2=(|Fraction| #1#) |#5| |#2|) 16 T ELT)) (|multivariate| ((|#5| #2# |#2|) 30 T ELT)) (|mainVariable| (((|Union| |#2| #3="failed") |#5|) 70 T ELT)) (|isTimes| (#4=((|Union| (|List| |#5|) #3#) |#5|) 64 T ELT)) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) #5=(|:| |exponent| (|Integer|))) #3#) |#5|) 53 T ELT)) (|isPlus| (#4# 66 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) #5#) #3#) |#5|) 56 T ELT)))
+(((|PolynomialCategoryQuotientFunctions| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |variables| ((|List| |#2|) |#5|)) (SIGNATURE |mainVariable| ((|Union| |#2| #1="failed") |#5|)) (SIGNATURE |univariate| (#2=(|Fraction| #3=(|SparseUnivariatePolynomial| |#5|)) |#5| |#2|)) (SIGNATURE |multivariate| (|#5| #2# |#2|)) (SIGNATURE |univariate| (#3# |#5| |#2| #3#)) (SIGNATURE |isPlus| #4=((|Union| (|List| |#5|) #1#) |#5|)) (SIGNATURE |isTimes| #4#) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| |#2|) #5=(|:| |exponent| (|Integer|))) #1#) |#5|)) (SIGNATURE |isPower| ((|Union| (|Record| (|:| |val| |#5|) #5#) #1#) |#5|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Ring|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |numer| #6=(|#4| $)) (SIGNATURE |denom| #6#)))) (T |PolynomialCategoryQuotientFunctions|))
+((|isPower| #1=(*1 *2 *3) (|partial| AND #2=(|ofCategory| *4 #3=(|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *5 #5=(|OrderedSet|)) #6=(|ofCategory| *6 #7=(|Ring|)) #8=(|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)) (|isDomain| *2 (|Record| (|:| |val| *3) #9=(|:| |exponent| (|Integer|)))) #10=(|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3)) #11=(|ofCategory| *3 #12=(|Join| #13=(|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)) (SIGNATURE |numer| #14=(*7 $)) (SIGNATURE |denom| #14#)))))) (|isExpt| #1# (|partial| AND #2# #4# #6# #8# (|isDomain| *2 (|Record| (|:| |var| *5) #9#)) #10# #11#)) (|isTimes| #1# #15=(|partial| AND #2# #4# #6# #8# (|isDomain| *2 (|List| *3)) #10# #11#)) (|isPlus| #1# #15#) (|univariate| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 #16=(|SparseUnivariatePolynomial| *3)) #11# #17=(|ofCategory| *7 (|PolynomialCategory| *6 *5 *4)) #18=(|ofCategory| *5 #3#) #19=(|ofCategory| *4 #5#) #6# #20=(|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *5 *4 *6 *7 *3)))) (|multivariate| #21=(*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|SparseUnivariatePolynomial| *2))) #18# #19# #6# (|ofCategory| *2 #12#) (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *5 *4 *6 *7 *2)) #17#)) (|univariate| #21# (AND #18# #19# #6# #17# (|isDomain| *2 (|Fraction| #16#)) #20# #11#)) (|mainVariable| #1# (|partial| AND #2# (|ofCategory| *5 #7#) (|ofCategory| *6 (|PolynomialCategory| *5 *4 *2)) (|ofCategory| *2 #5#) (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *2 *5 *6 *3)) (|ofCategory| *3 (|Join| #13# (CATEGORY |domain| (SIGNATURE |coerce| ($ *6)) (SIGNATURE |numer| #22=(*6 $)) (SIGNATURE |denom| #22#)))))) (|variables| #1# (AND #2# #4# #6# #8# (|isDomain| *2 (|List| *5)) #10# #11#)))
+((|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) 24 T ELT)))
+(((|PolynomialCategoryLifting| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |map| (|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Ring|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + #1=($ $ $)) (SIGNATURE * #1#) (SIGNATURE ** ($ $ (|NonNegativeInteger|)))))) (T |PolynomialCategoryLifting|))
+((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *2 *7)) (|isDomain| *4 (|Mapping| *2 *8)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|Ring|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + #1=($ $ $)) (SIGNATURE * #1#) (SIGNATURE ** ($ $ (|NonNegativeInteger|)))))) (|isDomain| *1 (|PolynomialCategoryLifting| *6 *7 *8 *5 *2)) (|ofCategory| *5 (|PolynomialCategory| *8 *6 *7)))))
+((|rroot| ((#1=(|Record| #2=(|:| |exponent| #3=(|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| #3#) 48 T ELT)) (|qroot| ((#1# (|Fraction| (|Integer|)) #3#) 43 T ELT)) (|nthr| (((|Record| #2# (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| #3#) 64 T ELT)) (|froot| ((#1# |#5| #3#) 73 (|has| |#3| (|GcdDomain|)) ELT)))
+(((|PolynomialRoots| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |rroot| (#1=(|Record| #2=(|:| |exponent| #3=(|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| #3#)) (SIGNATURE |qroot| (#1# (|Fraction| (|Integer|)) #3#)) (IF (|has| |#3| (|GcdDomain|)) (SIGNATURE |froot| (#1# |#5| #3#)) |%noBranch|) (SIGNATURE |nthr| ((|Record| #2# (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| #3#))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |numer| #4=(|#4| $)) (SIGNATURE |denom| #4#)))) (T |PolynomialRoots|))
+((|nthr| #1=(*1 *2 *3 *4) (AND #2=(|ofCategory| *5 (|OrderedAbelianMonoidSup|)) #3=(|ofCategory| *6 (|OrderedSet|)) #4=(|ofCategory| *7 #5=(|IntegralDomain|)) (|ofCategory| *3 #6=(|PolynomialCategory| *7 *5 *6)) (|isDomain| *2 (|Record| #7=(|:| |exponent| #8=(|NonNegativeInteger|)) #9=(|:| |coef| *3) (|:| |radicand| (|List| *3)))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *3 *8)) #10=(|isDomain| *4 #8#) (|ofCategory| *8 (|Join| #11=(|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ *3)) (SIGNATURE |numer| #12=(*3 $)) (SIGNATURE |denom| #12#)))))) (|froot| #1# (AND (|ofCategory| *7 (|GcdDomain|)) #2# #3# #4# #13=(|ofCategory| *8 #6#) (|isDomain| *2 (|Record| #7# #9# (|:| |radicand| *3))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *3)) #10# (|ofCategory| *3 #14=(|Join| #11# (CATEGORY |domain| (SIGNATURE |coerce| ($ *8)) (SIGNATURE |numer| #15=(*8 $)) (SIGNATURE |denom| #15#)))))) (|qroot| #1# (AND (|isDomain| *3 (|Fraction| (|Integer|))) #2# #3# #4# #13# (|isDomain| *2 (|Record| #7# (|:| |coef| *9) (|:| |radicand| *9))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *9)) #10# (|ofCategory| *9 #14#))) (|rroot| #1# (AND #2# #3# (|ofCategory| *3 #5#) (|ofCategory| *7 (|PolynomialCategory| *3 *5 *6)) (|isDomain| *2 (|Record| #7# (|:| |coef| *8) (|:| |radicand| *8))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *3 *7 *8)) #10# (|ofCategory| *8 (|Join| #11# (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)) (SIGNATURE |numer| #16=(*7 $)) (SIGNATURE |denom| #16#)))))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|port| (($ #3=(|SingleInteger|)) 8 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (#4=(#3# $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 15 T ELT) (#4# 12 T ELT)) (|before?| #1#) (= (#2# 11 T ELT)))
+(((|PortNumber|) (|Join| (|SetCategory|) (|CoercibleTo| #1=(|SingleInteger|)) (CATEGORY |domain| (SIGNATURE |port| ($ #1#))))) (T |PortNumber|))
+((|port| (*1 *1 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|PortNumber|)))))
+((|yRange| (((|Segment| (|DoubleFloat|)) $) 8 T ELT)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 9 T ELT)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 10 T ELT)) (|coerce| (((|OutputForm|) $) 6 T ELT)))
+(((|PlottablePlaneCurveCategory|) (|Category|)) (T |PlottablePlaneCurveCategory|))
+((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))))
+(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $))))
+(((|CoercibleTo| (|OutputForm|)) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 80 #6=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| (#7=($ $) 81 #6# ELT)) (|unit?| (#5# NIL #6# ELT)) (|subtractIfCan| (#8=(#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|sample| (#11=($) NIL T CONST)) (|retractIfCan| (((|Union| #12=(|Integer|) . #13=(#10#)) . #14=($)) NIL #15=(|has| |#1| (|RetractableTo| #12#)) ELT) (((|Union| #16=(|Fraction| #12#) . #13#) . #14#) NIL #17=(|has| |#1| (|RetractableTo| #16#)) ELT) (((|Union| |#1| . #13#) $) 35 T ELT)) (|retract| ((#12# . #18=($)) NIL #15# ELT) ((#16# . #18#) NIL #17# ELT) #19=(#20=(|#1| . #18#) NIL T ELT)) (|reductum| (#7# 32 T ELT)) (|recip| ((#9# $) 43 T ELT)) (|primitivePart| (#7# NIL #21=(|has| |#1| (|GcdDomain|)) ELT)) (|pomopo!| (($ $ |#1| |#2| $) 64 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| ((#22=(|NonNegativeInteger|) $) 18 T ELT)) (|monomial?| #4#) (|monomial| (($ |#1| |#2|) NIL T ELT)) (|minimumDegree| (#23=(|#2| $) 25 T ELT)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingMonomial| (#7# 29 T ELT)) (|leadingCoefficient| (#20# 27 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| (#5# 52 T ELT)) (|ground| #19#) (|fmecg| (($ $ |#2| |#1| $) 90 (AND (|has| |#2| (|CancellationAbelianMonoid|)) #6#) ELT)) (|exquo| (#8# 92 #6# ELT) ((#9# $ |#1|) 87 #6# ELT)) (|degree| (#23# 23 T ELT)) (|content| (#20# NIL #21# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #12#) 47 T ELT) (#7# NIL #6# ELT) (($ |#1|) 42 T ELT) (($ #16#) NIL (OR #24=(|has| |#1| (|Algebra| #16#)) #17#) ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ |#2|) 38 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#22#) 15 T CONST)) (|binomThmExpt| (($ $ $ #22#) 76 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| #1#) (|associates?| (#2# 86 #6# ELT)) (|annihilate?| #1#) (|Zero| (#11# 28 T CONST)) (|One| (#11# 12 T CONST)) (= (#2# 85 T ELT)) (/ (#25=($ $ |#1|) 93 (|has| |#1| (|Field|)) ELT)) (- (#7# NIL T ELT) #26=(#27=($ $ $) NIL T ELT)) (+ #26#) (** (($ $ #28=(|PositiveInteger|)) 71 T ELT) (($ $ #22#) 69 T ELT)) (* (($ #28# $) NIL T ELT) (($ #22# $) NIL T ELT) (($ #12# . #29=($)) NIL T ELT) (#27# 68 T ELT) (#25# 66 T ELT) (($ |#1| . #29#) 65 T ELT) (($ #16# . #29#) NIL #24# ELT) (($ $ #16#) NIL #24# ELT)))
+(((|PolynomialRing| |#1| |#2|) (|Join| (|FiniteAbelianMonoidRing| |#1| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| #1=(ATTRIBUTE |canonicalUnitNormal|)) #1# |%noBranch|))) (|Ring|) (|OrderedAbelianMonoid|)) (T |PolynomialRing|))
+((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *1 (|PolynomialRing| *3 *2)) (|ofCategory| *2 (|CancellationAbelianMonoid|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))))
+((|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) 18 T ELT)))
+(((|PrecomputedAssociatedEquations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |firstUncouplingMatrix| ((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)))) (|IntegralDomain|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |PrecomputedAssociatedEquations|))
+((|firstUncouplingMatrix| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|PrecomputedAssociatedEquations| *5 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) NIL #6=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #7=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#8=(#3# $) NIL #9=(|has| |#1| #10=(|OrderedSet|)) ELT)) (|sort!| (#11=($ #7# $) NIL #6# ELT) (#12=($ $) NIL (AND #6# #9#) ELT)) (|sort| (#11# NIL T ELT) (#12# NIL #9# ELT)) (|setelt| (#13=(|#1| $ #5# |#1|) 18 #6# ELT) ((|#1| $ #14=(|UniversalSegment| #5#) |#1|) NIL #6# ELT)) (|select| #15=(($ #16=(|Mapping| #3# |#1|) $) NIL #17=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#18=($) NIL T CONST)) (|reverse!| (#12# NIL #6# ELT)) (|reverse| (#12# NIL T ELT)) (|removeDuplicates| (#12# NIL #19=(AND #17# #4#) ELT)) (|remove| (#20=($ |#1| $) NIL #19# ELT) #15#) (|reduce| ((|#1| #21=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #21# $ |#1|) NIL T ELT) ((|#1| #21# $) NIL T ELT)) (|qsetelt!| (#13# 17 #6# ELT)) (|qelt| (#22=(|#1| $ #5#) 15 T ELT)) (|position| ((#5# #16# $) NIL T ELT) ((#5# |#1| $) NIL #4# ELT) ((#5# |#1| $ #5#) NIL #4# ELT)) (|new| (($ #23=(|NonNegativeInteger|) |#1|) 14 T ELT)) (|minIndex| (#24=(#5# $) 10 #25=(|has| #5# #10#) ELT)) (|min| #26=(#27=($ $ $) NIL #9# ELT)) (|merge| (($ #7# $ $) NIL T ELT) #26#) (|members| (#28=(#29=(|List| |#1|) $) 23 T ELT)) (|member?| (#30=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| (#24# 22 #25# ELT)) (|max| #26#) (|map!| #31=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #31# (($ #21# $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #32=(|has| |#1| (|SetCategory|)) ELT)) (|insert| (($ |#1| $ #5#) NIL T ELT) (#33=($ $ $ #5#) NIL T ELT)) (|indices| (((|List| #5#) $) NIL T ELT)) (|index?| ((#3# #5# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #32# ELT)) (|first| ((|#1| $) NIL #25# ELT)) (|find| (((|Union| |#1| "failed") #16# $) NIL T ELT)) (|fill!| (#34=($ $ |#1|) 19 #6# ELT)) (|every?| #35=((#3# #16# $) NIL T ELT)) (|eval| (($ $ (|List| #36=(|Equation| |#1|))) NIL #37=(AND (|has| |#1| (|Evalable| |#1|)) #32#) ELT) (($ $ #36#) NIL #37# ELT) (($ $ |#1| |#1|) NIL #37# ELT) (($ $ #29# #29#) NIL #37# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#30# NIL #19# ELT)) (|entries| (#28# NIL T ELT)) (|empty?| (#8# NIL T ELT)) (|empty| (#18# 11 T ELT)) (|elt| (#13# NIL T ELT) (#22# 16 T ELT) #38=(($ $ #14#) NIL T ELT)) (|delete| (($ $ #5#) NIL T ELT) #38#) (|count| ((#23# |#1| $) NIL #4# ELT) ((#23# #16# $) NIL T ELT)) (|copyInto!| (#33# NIL #6# ELT)) (|copy| (#12# 20 T ELT)) (|convert| ((#39=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #39#)) ELT)) (|construct| (($ #29#) 13 T ELT)) (|concat| (#34# NIL T ELT) (#20# NIL T ELT) (#27# NIL T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#40=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #40#)) ELT)) (|before?| #1#) (|any?| #35#) (>= #41=(#2# NIL #9# ELT)) (> #41#) (= #1#) (<= #41#) (< #41#) (|#| ((#23# $) 8 T ELT)))
+(((|PrimitiveArray| |#1|) (|OneDimensionalArrayAggregate| |#1|) (|Type|)) (T |PrimitiveArray|))
+NIL
+((|scan| ((#1=(|PrimitiveArray| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|PrimitiveArray| |#1|) |#2|) 16 T ELT)) (|reduce| ((|#2| #2# #3# |#2|) 18 T ELT)) (|map| ((#1# (|Mapping| |#2| |#1|) #3#) 13 T ELT)))
+(((|PrimitiveArrayFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| (#1=(|PrimitiveArray| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| #2# #3# |#2|)) (SIGNATURE |map| (#1# (|Mapping| |#2| |#1|) #3#))) #4=(|Type|) #4#) (T |PrimitiveArrayFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #1=(|isDomain| *4 #2=(|PrimitiveArray| *5)) #3=(|ofCategory| *5 #4=(|Type|)) #5=(|ofCategory| *6 #4#) (|isDomain| *2 #6=(|PrimitiveArray| *6)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #1# #3# (|ofCategory| *2 #4#) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 #6#) #5# #3# (|isDomain| *2 #2#) (|isDomain| *1 (|PrimitiveArrayFunctions2| *6 *5)))))
+((|integral| (($ $ (|SegmentBinding| $)) 7 T ELT) (($ $ (|Symbol|)) 6 T ELT)))
+(((|PrimitiveFunctionCategory|) (|Category|)) (T |PrimitiveFunctionCategory|))
+((|integral| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|PrimitiveFunctionCategory|)))) (|integral| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PrimitiveFunctionCategory|)) (|isDomain| *2 (|Symbol|)))))
+(|Join| (CATEGORY |domain| (SIGNATURE |integral| ($ $ (|Symbol|))) (SIGNATURE |integral| ($ $ (|SegmentBinding| $)))))
+((|primitiveElement| ((#1=(|Record| (|:| |coef| (|List| #2=(|Integer|))) (|:| |poly| (|List| #3=(|SparseUnivariatePolynomial| |#1|))) #4=(|:| |prim| #3#)) #5=(|List| #6=(|Polynomial| |#1|)) #7=(|List| #8=(|Symbol|)) #8#) 26 T ELT) ((#1# #5# #7#) 27 T ELT) (((|Record| (|:| |coef1| #2#) (|:| |coef2| #2#) #4#) #6# #8# #6# #8#) 49 T ELT)))
+(((|PrimitiveElement| |#1|) (CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| (|:| |coef1| #1=(|Integer|)) (|:| |coef2| #1#) #2=(|:| |prim| #3=(|SparseUnivariatePolynomial| |#1|))) #4=(|Polynomial| |#1|) #5=(|Symbol|) #4# #5#)) (SIGNATURE |primitiveElement| (#6=(|Record| (|:| |coef| (|List| #1#)) (|:| |poly| (|List| #3#)) #2#) #7=(|List| #4#) #8=(|List| #5#))) (SIGNATURE |primitiveElement| (#6# #7# #8# #5#))) (|Join| (|Field|) (|CharacteristicZero|))) (T |PrimitiveElement|))
+((|primitiveElement| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| (|Polynomial| *6))) #1=(|isDomain| *4 (|List| #2=(|Symbol|))) (|isDomain| *5 #2#) (|ofCategory| *6 #3=(|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| #4=(|:| |coef| (|List| #5=(|Integer|))) (|:| |poly| (|List| #6=(|SparseUnivariatePolynomial| *6))) (|:| |prim| #6#))) (|isDomain| *1 (|PrimitiveElement| *6)))) (|primitiveElement| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| #7=(|Polynomial| *5))) #1# #8=(|ofCategory| *5 #3#) (|isDomain| *2 (|Record| #4# (|:| |poly| (|List| #9=(|SparseUnivariatePolynomial| *5))) #10=(|:| |prim| #9#))) #11=(|isDomain| *1 (|PrimitiveElement| *5)))) (|primitiveElement| (*1 *2 *3 *4 *3 *4) (AND (|isDomain| *3 #7#) (|isDomain| *4 #2#) #8# (|isDomain| *2 (|Record| (|:| |coef1| #5#) (|:| |coef2| #5#) #10#)) #11#)))
+((|primes| (((|List| |#1|) |#1| |#1|) 47 T ELT)) (|prime?| (((|Boolean|) |#1|) 44 T ELT)) (|prevPrime| (#1=(|#1| |#1|) 80 T ELT)) (|nextPrime| (#1# 79 T ELT)))
+(((|IntegerPrimesPackage| |#1|) (CATEGORY |package| (SIGNATURE |prime?| ((|Boolean|) |#1|)) (SIGNATURE |nextPrime| #1=(|#1| |#1|)) (SIGNATURE |prevPrime| #1#) (SIGNATURE |primes| ((|List| |#1|) |#1| |#1|))) (|IntegerNumberSystem|)) (T |IntegerPrimesPackage|))
+((|primes| (*1 *2 *3 *3) (AND (|isDomain| *2 (|List| *3)) #1=(|isDomain| *1 (|IntegerPrimesPackage| *3)) #2=(|ofCategory| *3 #3=(|IntegerNumberSystem|)))) (|prevPrime| #4=(*1 *2 *2) #5=(AND (|isDomain| *1 (|IntegerPrimesPackage| *2)) (|ofCategory| *2 #3#))) (|nextPrime| #4# #5#) (|prime?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) #1# #2#)))
+((|print| (((|Void|) (|OutputForm|)) 9 T ELT)))
+(((|PrintPackage|) (CATEGORY |package| (SIGNATURE |print| ((|Void|) (|OutputForm|))))) (T |PrintPackage|))
+((|print| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PrintPackage|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) NIL #5=(OR #6=(AND (|has| |#1| #7=(|AbelianGroup|)) (|has| |#2| #7#)) #8=(AND (|has| |#1| #9=(|AbelianMonoid|)) (|has| |#2| #9#)) #10=(AND (|has| |#1| #11=(|CancellationAbelianMonoid|)) (|has| |#2| #11#)) #12=(AND (|has| |#1| #13=(|OrderedAbelianMonoidSup|)) (|has| |#2| #13#))) ELT)) (|sup| (#14=($ $ $) 65 #12# ELT)) (|subtractIfCan| ((#15=(|Union| $ "failed") $ $) 52 (OR #6# #10# #12#) ELT)) (|size| ((#16=(|NonNegativeInteger|)) 36 #17=(AND (|has| |#1| #18=(|Finite|)) (|has| |#2| #18#)) ELT)) (|selectsecond| ((|#2| $) 22 T ELT)) (|selectfirst| ((|#1| $) 21 T ELT)) (|sample| (#19=($) NIL (OR #6# #8# #10# #20=(AND (|has| |#1| #21=(|Group|)) (|has| |#2| #21#)) #22=(AND (|has| |#1| #23=(|Monoid|)) (|has| |#2| #23#)) #12#) CONST)) (|recip| ((#15# $) NIL #24=(OR #20# #22#) ELT)) (|random| (#19# NIL #17# ELT)) (|positive?| (#4# NIL #12# ELT)) (|opposite?| (#2# NIL #5# ELT)) (|one?| (#4# NIL #24# ELT)) (|min| #25=(#14# NIL #26=(OR #12# (AND (|has| |#1| #27=(|OrderedSet|)) (|has| |#2| #27#))) ELT)) (|max| #25#) (|makeprod| (($ |#1| |#2|) 20 T ELT)) (|lookup| ((#28=(|PositiveInteger|) $) NIL #17# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#29=($ $) 39 #20# ELT)) (|index| (($ #28#) NIL #17# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|conjugate| #30=(#14# NIL #20# ELT)) (|commutator| #30#) (|coerce| (((|OutputForm|) $) 14 T ELT)) (|before?| #1#) (|Zero| (#19# 42 #5# CONST)) (|One| (#19# 25 #24# CONST)) (>= #31=(#2# NIL #26# ELT)) (> #31#) (= (#2# 19 T ELT)) (<= #31#) (< (#2# 69 #26# ELT)) (/ #30#) (- (#14# 58 #6# ELT) (#29# 55 #6# ELT)) (+ (#14# 45 #5# ELT)) (** (($ $ #32=(|Integer|)) NIL #20# ELT) (($ $ #16#) 32 #24# ELT) (($ $ #28#) NIL #24# ELT)) (* (($ #32# $) 62 #6# ELT) (($ #16# $) 48 #5# ELT) (($ #28# $) NIL #5# ELT) (#14# 28 #24# ELT)))
+(((|Product| |#1| |#2|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (IF (|has| |#1| #2=(|Finite|)) (IF (|has| |#2| #2#) (ATTRIBUTE #2#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #3=(|Monoid|)) (IF (|has| |#2| #3#) (ATTRIBUTE #3#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #4=(|AbelianMonoid|)) (IF (|has| |#2| #4#) (ATTRIBUTE #4#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #5=(|CancellationAbelianMonoid|)) (IF (|has| |#2| #5#) (ATTRIBUTE #5#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #6=(|Group|)) (IF (|has| |#2| #6#) (ATTRIBUTE #6#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #7=(|AbelianGroup|)) (IF (|has| |#2| #7#) (ATTRIBUTE #7#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #8=(|OrderedAbelianMonoidSup|)) (IF (|has| |#2| #8#) (ATTRIBUTE #8#) |%noBranch|) |%noBranch|) (IF (|has| |#1| #9=(|OrderedSet|)) (IF (|has| |#2| #9#) (ATTRIBUTE #9#) |%noBranch|) |%noBranch|) (SIGNATURE |makeprod| ($ |#1| |#2|)) (SIGNATURE |selectfirst| (|#1| $)) (SIGNATURE |selectsecond| (|#2| $)))) #1# #1#) (T |Product|))
+((|makeprod| (*1 *1 *2 *3) (AND #1=(|isDomain| *1 (|Product| *2 *3)) #2=(|ofCategory| *2 #3=(|SetCategory|)) #4=(|ofCategory| *3 #3#))) (|selectfirst| #5=(*1 *2 *1) (AND #2# #1# #4#)) (|selectsecond| #5# (AND #2# (|isDomain| *1 (|Product| *3 *2)) #4#)))
+((|value| ((#1=(|SExpression|) $) 13 T ELT)) (|property| (($ #2=(|Identifier|) #1#) 15 T ELT)) (|name| ((#2# $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT)))
+(((|Property|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |name| (#1=(|Identifier|) $)) (SIGNATURE |value| (#2=(|SExpression|) $)) (SIGNATURE |property| ($ #1# #2#))))) (T |Property|))
+((|name| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|Identifier|)) #3=(|isDomain| *1 (|Property|)))) (|value| #1# (AND (|isDomain| *2 #4=(|SExpression|)) #3#)) (|property| (*1 *1 *2 *3) (AND #2# (|isDomain| *3 #4#) #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (#2=($ $) 29 T ELT)) (|true| (#3=($) 17 T CONST)) (|or| #4=(#5=($ $ $) NIL T ELT)) (|not| (#2# NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isOr| (#6=((|Maybe| (|Pair| $ $)) $) 62 T ELT)) (|isNot| (((|Maybe| $) $) 52 T ELT)) (|isImplies| (#6# 63 T ELT)) (|isEquiv| (#6# 64 T ELT)) (|isAtom| (((|Maybe| |#1|) $) 43 T ELT)) (|isAnd| (#6# 61 T ELT)) (|implies| (#5# 38 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|false| (#3# 16 T CONST)) (|equiv| (#5# 39 T ELT)) (|disjunction| (#5# 36 T ELT)) (|conjunction| (#5# 34 T ELT)) (|coerce| (((|OutputForm|) $) 66 T ELT) (($ |#1|) 12 T ELT)) (|before?| #1#) (|and| #4#) (|\\/| (#5# 37 T ELT)) (= #1#) (|/\\| (#5# 35 T ELT)))
+(((|PropositionalFormula| |#1|) (|Join| (|PropositionalLogic|) (|CoercibleFrom| |#1|) (CATEGORY |domain| (SIGNATURE |isAtom| ((|Maybe| |#1|) $)) (SIGNATURE |isNot| ((|Maybe| $) $)) (SIGNATURE |isAnd| #1=((|Maybe| (|Pair| $ $)) $)) (SIGNATURE |isOr| #1#) (SIGNATURE |isImplies| #1#) (SIGNATURE |isEquiv| #1#) (SIGNATURE |conjunction| #2=($ $ $)) (SIGNATURE |disjunction| #2#))) (|SetCategory|)) (T |PropositionalFormula|))
+((|isAtom| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Maybe| *3)) #2=(|isDomain| *1 #3=(|PropositionalFormula| *3)) #4=(|ofCategory| *3 #5=(|SetCategory|)))) (|isNot| #1# (AND (|isDomain| *2 (|Maybe| #3#)) #2# #4#)) (|isAnd| #1# #6=(AND (|isDomain| *2 (|Maybe| (|Pair| #3# #3#))) #2# #4#)) (|isOr| #1# #6#) (|isImplies| #1# #6#) (|isEquiv| #1# #6#) (|conjunction| #7=(*1 *1 *1 *1) #8=(AND (|isDomain| *1 (|PropositionalFormula| *2)) (|ofCategory| *2 #5#))) (|disjunction| #7# #8#))
+((|simplify| (#1=(#2=(|PropositionalFormula| |#1|) #2#) 46 T ELT)) (|dual| (#1# 22 T ELT)) (|atoms| (((|Set| |#1|) #2#) 41 T ELT)))
+(((|PropositionalFormulaFunctions1| |#1|) (|Join| (|Type|) (CATEGORY |package| (SIGNATURE |dual| #1=(#2=(|PropositionalFormula| |#1|) #2#)) (SIGNATURE |atoms| ((|Set| |#1|) #2#)) (SIGNATURE |simplify| #1#))) (|SetCategory|)) (T |PropositionalFormulaFunctions1|))
+((|dual| #1=(*1 *2 *2) #2=(AND (|isDomain| *2 (|PropositionalFormula| *3)) (|ofCategory| *3 #3=(|SetCategory|)) (|isDomain| *1 (|PropositionalFormulaFunctions1| *3)))) (|atoms| (*1 *2 *3) (AND (|isDomain| *3 (|PropositionalFormula| *4)) (|ofCategory| *4 #3#) (|isDomain| *2 (|Set| *4)) (|isDomain| *1 (|PropositionalFormulaFunctions1| *4)))) (|simplify| #1# #2#))
+((|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) 29 T ELT)))
+(((|PropositionalFormulaFunctions2| |#1| |#2|) (|Join| (|Type|) (CATEGORY |package| (SIGNATURE |map| ((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|))))) #1=(|SetCategory|) #1#) (T |PropositionalFormulaFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|PropositionalFormula| *5)) (|ofCategory| *5 #1=(|SetCategory|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|PropositionalFormula| *6)) (|isDomain| *1 (|PropositionalFormulaFunctions2| *5 *6)))))
+((~= (#1=((|Boolean|) $ $) 19 T ELT)) (~ (($ $) 8 T ELT)) (|true| (($) 17 T CONST)) (|or| (#2=($ $ $) 9 T ELT)) (|not| (($ $) 11 T ELT)) (|latex| (((|String|) $) 23 T ELT)) (|implies| (($ $ $) 15 T ELT)) (|hash| (((|SingleInteger|) $) 22 T ELT)) (|false| (($) 16 T CONST)) (|equiv| (($ $ $) 14 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT)) (|before?| (#1# 20 T ELT)) (|and| (#2# 10 T ELT)) (|\\/| (#3=($ $ $) 6 T ELT)) (= (#1# 18 T ELT)) (|/\\| (#3# 7 T ELT)))
+(((|PropositionalLogic|) (|Category|)) (T |PropositionalLogic|))
+((|true| (*1 *1) (|ofCategory| *1 (|PropositionalLogic|))) (|false| (*1 *1) (|ofCategory| *1 (|PropositionalLogic|))) (|implies| (*1 *1 *1 *1) (|ofCategory| *1 (|PropositionalLogic|))) (|equiv| (*1 *1 *1 *1) (|ofCategory| *1 (|PropositionalLogic|))))
+(|Join| (|BooleanLogic|) (|SetCategory|) (CATEGORY |domain| (SIGNATURE |true| ($) |constant|) (SIGNATURE |false| ($) |constant|) (SIGNATURE |implies| ($ $ $)) (SIGNATURE |equiv| ($ $ $))))
+(((|BasicType|) . T) ((|BooleanLogic|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Logic|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|sample| (#3=($) 6 T CONST)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| . #4=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 50 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 49 T ELT)) (|merge!| (($ $ $) 41 T ELT)) (|merge| (($ $ $) 42 T ELT)) (|members| (((|List| |#1|) $) 48 T ELT)) (|member?| ((#5=(|Boolean|) |#1| $) 53 (|has| |#1| . #4#) ELT)) (|max| ((|#1| $) 43 T ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #6=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #7=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #6#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #5# |#1|) $) 51 T ELT)) (|extract!| ((|#1| . #7#) 37 T ELT)) (|every?| ((#5# (|Mapping| #5# |#1|) . #8=($)) 46 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT)) (|eq?| ((#9=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#9# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|count| ((#10=(|NonNegativeInteger|) |#1| $) 52 (|has| |#1| . #4#) ELT) ((#10# (|Mapping| #5# |#1|) $) 47 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|any?| ((#5# (|Mapping| #5# |#1|) . #8#) 45 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#10# $) 44 T ELT)))
+(((|PriorityQueueAggregate| |#1|) (|Category|) (|OrderedSet|)) (T |PriorityQueueAggregate|))
+((|max| (*1 *2 *1) (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|merge!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2)) (|ofCategory| *2 (|OrderedSet|)))))
+(|Join| (|BagAggregate| |t#1|) (|FiniteAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |max| (|t#1| $)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge!| ($ $ $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|subResultantGcdEuclidean| (((|Record| #1=(|:| |coef1| |#2|) #2=(|:| |coef2| |#2|) #3=(|:| |gcd| |#2|)) |#2| |#2|) 105 T ELT)) (|subResultantGcd| (#4=(|#2| |#2| |#2|) 103 T ELT)) (|semiSubResultantGcdEuclidean2| (((|Record| #2# #3#) |#2| |#2|) 107 T ELT)) (|semiSubResultantGcdEuclidean1| (((|Record| #1# #3#) |#2| |#2|) 109 T ELT)) (|semiResultantReduitEuclidean| (((|Record| #2# #5=(|:| |resultantReduit| |#1|)) |#2| |#2|) 132 #6=(|has| |#1| (|GcdDomain|)) ELT)) (|semiResultantEuclideannaif| (#7=((|Record| #2# #8=(|:| |resultant| |#1|)) |#2| |#2|) 56 T ELT)) (|semiResultantEuclidean2| (#7# 80 T ELT)) (|semiResultantEuclidean1| (((|Record| #1# #8#) |#2| |#2|) 82 T ELT)) (|semiLastSubResultantEuclidean| ((#9=(|Record| #2# #10=(|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (|semiIndiceSubResultantEuclidean| (#11=(#9# |#2| |#2| #12=(|NonNegativeInteger|)) 89 T ELT)) (|semiDiscriminantEuclidean| (((|Record| #2# #13=(|:| |discriminant| |#1|)) |#2|) 121 T ELT)) (|semiDegreeSubResultantEuclidean| (#11# 92 T ELT)) (|schema| (((|List| #12#) |#2| |#2|) 102 T ELT)) (|resultantnaif| (#14=(|#1| |#2| |#2|) 50 T ELT)) (|resultantReduitEuclidean| (((|Record| #1# #2# #5#) |#2| |#2|) 130 #6# ELT)) (|resultantReduit| (#14# 128 #6# ELT)) (|resultantEuclideannaif| (#15=((|Record| #1# #2# #8#) |#2| |#2|) 54 T ELT)) (|resultantEuclidean| (#15# 79 T ELT)) (|resultant| (#14# 76 T ELT)) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) #16=(|:| |quotient| |#2|) #17=(|:| |remainder| |#2|)) |#2| |#2|) 41 T ELT)) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (|lastSubResultantEuclidean| ((#18=(|Record| #1# #2# #10#) |#2| |#2|) 94 T ELT)) (|lastSubResultant| (#4# 93 T ELT)) (|indiceSubResultantEuclidean| (#19=(#18# |#2| |#2| #12#) 87 T ELT)) (|indiceSubResultant| (#20=(|#2| |#2| |#2| #12#) 85 T ELT)) (|gcd| (#4# 136 #6# ELT)) (|exquo| ((#21=(|Vector| |#2|) #21# |#1|) 22 T ELT)) (|divide| (((|Record| #16# #17#) |#2| |#2|) 46 T ELT)) (|discriminantEuclidean| (((|Record| #1# #2# #13#) |#2|) 119 T ELT)) (|discriminant| ((|#1| |#2|) 116 T ELT)) (|degreeSubResultantEuclidean| (#19# 91 T ELT)) (|degreeSubResultant| (#20# 90 T ELT)) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) 99 T ELT)) (|Lazard2| ((|#2| |#2| |#1| |#1| #12#) 62 T ELT)) (|Lazard| ((|#1| |#1| |#1| #12#) 61 T ELT)) (* ((#21# |#1| #21#) 17 T ELT)))
+(((|PseudoRemainderSequence| |#1| |#2|) (CATEGORY |package| (SIGNATURE |resultant| #1=(|#1| |#2| |#2|)) (SIGNATURE |resultantEuclidean| #2=((|Record| #3=(|:| |coef1| |#2|) #4=(|:| |coef2| |#2|) #5=(|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean2| #6=((|Record| #4# #5#) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean1| ((|Record| #3# #5#) |#2| |#2|)) (SIGNATURE |indiceSubResultant| #7=(|#2| |#2| |#2| #8=(|NonNegativeInteger|))) (SIGNATURE |indiceSubResultantEuclidean| #9=(#10=(|Record| #3# #4# #11=(|:| |subResultant| |#2|)) |#2| |#2| #8#)) (SIGNATURE |semiIndiceSubResultantEuclidean| #12=(#13=(|Record| #4# #11#) |#2| |#2| #8#)) (SIGNATURE |degreeSubResultant| #7#) (SIGNATURE |degreeSubResultantEuclidean| #9#) (SIGNATURE |semiDegreeSubResultantEuclidean| #12#) (SIGNATURE |lastSubResultant| #14=(|#2| |#2| |#2|)) (SIGNATURE |lastSubResultantEuclidean| (#10# |#2| |#2|)) (SIGNATURE |semiLastSubResultantEuclidean| (#13# |#2| |#2|)) (SIGNATURE |subResultantGcd| #14#) (SIGNATURE |subResultantGcdEuclidean| ((|Record| #3# #4# #15=(|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean2| ((|Record| #4# #15#) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean1| ((|Record| #3# #15#) |#2| |#2|)) (SIGNATURE |discriminant| (|#1| |#2|)) (SIGNATURE |discriminantEuclidean| ((|Record| #3# #4# #16=(|:| |discriminant| |#1|)) |#2|)) (SIGNATURE |semiDiscriminantEuclidean| ((|Record| #4# #16#) |#2|)) (SIGNATURE |chainSubResultants| ((|List| |#2|) |#2| |#2|)) (SIGNATURE |schema| ((|List| #8#) |#2| |#2|)) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |resultantReduit| #1#) (SIGNATURE |resultantReduitEuclidean| ((|Record| #3# #4# #17=(|:| |resultantReduit| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantReduitEuclidean| ((|Record| #4# #17#) |#2| |#2|)) (SIGNATURE |gcd| #14#)) |%noBranch|) (SIGNATURE * (#18=(|Vector| |#2|) |#1| #18#)) (SIGNATURE |exquo| (#18# #18# |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#1|) #19=(|:| |quotient| |#2|) #20=(|:| |remainder| |#2|)) |#2| |#2|)) (SIGNATURE |divide| ((|Record| #19# #20#) |#2| |#2|)) (SIGNATURE |Lazard| (|#1| |#1| |#1| #8#)) (SIGNATURE |Lazard2| (|#2| |#2| |#1| |#1| #8#)) (SIGNATURE |nextsousResultant2| (|#2| |#2| |#2| |#2| |#1|)) (SIGNATURE |resultantnaif| #1#) (SIGNATURE |resultantEuclideannaif| #2#) (SIGNATURE |semiResultantEuclideannaif| #6#)) (|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |PseudoRemainderSequence|))
+((|semiResultantEuclideannaif| #1=(*1 *2 *3 *3) #2=(AND #3=(|ofCategory| *4 #4=(|IntegralDomain|)) (|isDomain| *2 (|Record| #5=(|:| |coef2| *3) #6=(|:| |resultant| *4))) #7=(|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) #8=(|ofCategory| *3 #9=(|UnivariatePolynomialCategory| *4)))) (|resultantEuclideannaif| #1# #10=(AND #3# (|isDomain| *2 (|Record| #11=(|:| |coef1| *3) #5# #6#)) #7# #8#)) (|resultantnaif| #1# #12=(AND #13=(|ofCategory| *2 #4#) #14=(|isDomain| *1 (|PseudoRemainderSequence| *2 *3)) #15=(|ofCategory| *3 #16=(|UnivariatePolynomialCategory| *2)))) (|nextsousResultant2| (*1 *2 *2 *2 *2 *3) #17=(AND #18=(|ofCategory| *3 #4#) #19=(|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) #20=(|ofCategory| *2 #21=(|UnivariatePolynomialCategory| *3)))) (|Lazard2| (*1 *2 *2 *3 *3 *4) (AND #22=(|isDomain| *4 #23=(|NonNegativeInteger|)) #18# #19# #20#)) (|Lazard| #24=(*1 *2 *2 *2 *3) (AND #25=(|isDomain| *3 #23#) #13# (|isDomain| *1 (|PseudoRemainderSequence| *2 *4)) (|ofCategory| *4 #16#))) (|divide| #1# (AND #3# (|isDomain| *2 (|Record| #26=(|:| |quotient| *3) #27=(|:| |remainder| *3))) #7# #8#)) (|pseudoDivide| #1# (AND #3# (|isDomain| *2 (|Record| (|:| |coef| *4) #26# #27#)) #7# #8#)) (|exquo| (*1 *2 *2 *3) #28=(AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 #21#) #18# (|isDomain| *1 (|PseudoRemainderSequence| *3 *4)))) (* (*1 *2 *3 *2) #28#) (|gcd| #29=(*1 *2 *2 *2) (AND (|ofCategory| *3 #30=(|GcdDomain|)) #18# #19# #20#)) (|semiResultantReduitEuclidean| #1# (AND #31=(|ofCategory| *4 #30#) #3# (|isDomain| *2 (|Record| #5# #32=(|:| |resultantReduit| *4))) #7# #8#)) (|resultantReduitEuclidean| #1# (AND #31# #3# (|isDomain| *2 (|Record| #11# #5# #32#)) #7# #8#)) (|resultantReduit| #1# (AND #13# (|ofCategory| *2 #30#) #14# #15#)) (|schema| #1# (AND #3# (|isDomain| *2 (|List| #23#)) #7# #8#)) (|chainSubResultants| #1# (AND #3# (|isDomain| *2 (|List| *3)) #7# #8#)) (|semiDiscriminantEuclidean| #33=(*1 *2 *3) (AND #3# (|isDomain| *2 (|Record| #5# #34=(|:| |discriminant| *4))) #7# #8#)) (|discriminantEuclidean| #33# (AND #3# (|isDomain| *2 (|Record| #11# #5# #34#)) #7# #8#)) (|discriminant| #33# #12#) (|semiSubResultantGcdEuclidean1| #1# (AND #3# (|isDomain| *2 (|Record| #11# #35=(|:| |gcd| *3))) #7# #8#)) (|semiSubResultantGcdEuclidean2| #1# (AND #3# (|isDomain| *2 (|Record| #5# #35#)) #7# #8#)) (|subResultantGcdEuclidean| #1# (AND #3# (|isDomain| *2 (|Record| #11# #5# #35#)) #7# #8#)) (|subResultantGcd| #29# #17#) (|semiLastSubResultantEuclidean| #1# (AND #3# #36=(|isDomain| *2 (|Record| #5# #37=(|:| |subResultant| *3))) #7# #8#)) (|lastSubResultantEuclidean| #1# (AND #3# #38=(|isDomain| *2 (|Record| #11# #5# #37#)) #7# #8#)) (|lastSubResultant| #29# #17#) (|semiDegreeSubResultantEuclidean| #39=(*1 *2 *3 *3 *4) #40=(AND #22# #41=(|ofCategory| *5 #4#) #36# #42=(|isDomain| *1 (|PseudoRemainderSequence| *5 *3)) #43=(|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|degreeSubResultantEuclidean| #39# #44=(AND #22# #41# #38# #42# #43#)) (|degreeSubResultant| #24# #45=(AND #25# #3# (|isDomain| *1 (|PseudoRemainderSequence| *4 *2)) (|ofCategory| *2 #9#))) (|semiIndiceSubResultantEuclidean| #39# #40#) (|indiceSubResultantEuclidean| #39# #44#) (|indiceSubResultant| #24# #45#) (|semiResultantEuclidean1| #1# (AND #3# (|isDomain| *2 (|Record| #11# #6#)) #7# #8#)) (|semiResultantEuclidean2| #1# #2#) (|resultantEuclidean| #1# #10#) (|resultant| #1# #12#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|target| (((|TypeAst|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|PretendAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $)) (SIGNATURE |target| ((|TypeAst|) $))))) (T |PretendAst|))
+((|expression| #1=(*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) #2=(|isDomain| *1 (|PretendAst|)))) (|target| #1# (AND (|isDomain| *2 (|TypeAst|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 40 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 54 T ELT)) (|sample| (#5=($) NIL T CONST)) (|powers| (((|List| (|Pair| #6=(|PositiveInteger|) #6#)) $) 64 T ELT)) (|positive?| (#4# NIL T ELT)) (|pdct| ((#6# $) 91 T ELT)) (|parts| (#7=(#8=(|List| #6#) $) 17 T ELT)) (|partitions| (((|Stream| $) #9=(|NonNegativeInteger|)) 39 T ELT)) (|partition| (($ #8#) 16 T ELT)) (|opposite?| #1#) (|min| #10=(#11=($ $ $) NIL T ELT)) (|max| #10#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|conjugate| (($ $) 67 T ELT)) (|coerce| (((|OutputForm|) $) 87 T ELT) (#7# 11 T ELT)) (|before?| #1#) (|Zero| (#5# 10 T CONST)) (>= #1#) (> #1#) (= (#2# 44 T ELT)) (<= #1#) (< (#2# 42 T ELT)) (+ (#11# 46 T ELT)) (* (($ #6# $) NIL T ELT) (($ #9# $) 49 T ELT)) (|#| ((#9# $) 22 T ELT)))
+(((|Partition|) (|Join| (|OrderedCancellationAbelianMonoid|) (|CoercibleTo| #1=(|List| #2=(|PositiveInteger|))) (CATEGORY |domain| (SIGNATURE |partition| ($ #1#)) (SIGNATURE |parts| (#1# $)) (SIGNATURE |#| (#3=(|NonNegativeInteger|) $)) (SIGNATURE |partitions| ((|Stream| $) #3#)) (SIGNATURE |powers| ((|List| (|Pair| #2# #2#)) $)) (SIGNATURE |pdct| (#2# $)) (SIGNATURE |conjugate| ($ $))))) (T |Partition|))
+((|partition| (*1 *1 *2) #1=(AND (|isDomain| *2 (|List| #2=(|PositiveInteger|))) #3=(|isDomain| *1 #4=(|Partition|)))) (|parts| #5=(*1 *2 *1) #1#) (|#| #5# (AND (|isDomain| *2 #6=(|NonNegativeInteger|)) #3#)) (|partitions| (*1 *2 *3) (AND (|isDomain| *3 #6#) (|isDomain| *2 (|Stream| #4#)) #3#)) (|powers| #5# (AND (|isDomain| *2 (|List| (|Pair| #2# #2#))) #3#)) (|pdct| #5# (AND (|isDomain| *2 #2#) #3#)) (|conjugate| (*1 *1 *1) #3#))
+((/ (#1=($ $ |#2|) 31 T ELT)) (- (($ $) 23 T ELT) #2=(($ $ $) NIL T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ #3=(|Integer|) $) 17 T ELT) #2# (#1# 21 T ELT) (($ |#2| $) 20 T ELT) (($ #4=(|Fraction| #3#) $) 27 T ELT) (($ $ #4#) 29 T ELT)))
+(((|PowerSeriesCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE * (|#1| |#1| #1=(|Fraction| #2=(|Integer|)))) (SIGNATURE * (|#1| #1# |#1|)) (SIGNATURE / #3=(|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * #3#) (SIGNATURE * #4=(|#1| |#1| |#1|)) (SIGNATURE - #4#) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| #2# |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|PowerSeriesCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| |#3|) $) 96 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #3=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #3#) ELT)) (|unit?| ((#4=(|Boolean|) $) 75 (|has| |#1| . #3#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#5=($) 23 T CONST)) (|reductum| (#6=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| |#2|) 82 T ELT) (($ $ |#3| |#2|) 98 T ELT) (($ $ (|List| |#3|) (|List| |#2|)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|leadingMonomial| (#6# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #3#) ELT)) (|degree| ((|#2| $) 84 T ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #7=(|Fraction| (|Integer|))) 78 (|has| |#1| . #8=((|Algebra| #7#))) ELT) (($ $) 70 (|has| |#1| . #3#) ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficient| ((|#1| $ |#2|) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#4# $ $) 74 (|has| |#1| . #3#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #9=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #9#) 88 T ELT) (($ #7# . #9#) 77 (|has| |#1| . #8#) ELT) (($ $ #7#) 76 (|has| |#1| . #8#) ELT)))
+(((|PowerSeriesCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory|))
+((|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|leadingMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|PowerSeriesCategory| *4 *3 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|PowerSeriesCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoid|)) (|ofCategory| *6 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5)))) (|pole?| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|complete| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)))))
+(|Join| (|AbelianMonoidRing| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |monomial| ($ $ |t#3| |t#2|)) (SIGNATURE |monomial| ($ $ (|List| |t#3|) (|List| |t#2|))) (SIGNATURE |leadingMonomial| ($ $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |complete| ($ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Functorial| |#1|) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|zRange| (((|Segment| (|DoubleFloat|)) $) 8 T ELT)) (|yRange| (((|Segment| (|DoubleFloat|)) $) 9 T ELT)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 10 T ELT)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 6 T ELT)))
+(((|PlottableSpaceCurveCategory|) (|Category|)) (T |PlottableSpaceCurveCategory|))
+((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|zRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))))
+(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |zRange| ((|Segment| (|DoubleFloat|)) $))))
+(((|CoercibleTo| (|OutputForm|)) . T))
+((|variables| (#1=((|List| |#4|) $) 23 T ELT)) (|trivialIdeal?| (#2=(#3=(|Boolean|) $) 55 T ELT)) (|triangular?| (#2# 54 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (|roughUnitIdeal?| (#2# 56 T ELT)) (|roughSubIdeal?| (#4=(#3# $ $) 62 T ELT)) (|roughEqualIdeals?| (#4# 65 T ELT)) (|roughBase?| (#2# 60 T ELT)) (|rewriteIdealWithRemainder| (#5=(#6=(|List| |#5|) #6# $) 98 T ELT)) (|rewriteIdealWithHeadRemainder| (#5# 95 T ELT)) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) #7=(|:| |den| |#2|)) |#5| $) 88 T ELT)) (|mainVariables| (#1# 27 T ELT)) (|mainVariable?| ((#3# |#4| $) 34 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#5|) #7#) |#5| $) 81 T ELT)) (|collectUpper| (#8=($ $ |#4|) 39 T ELT)) (|collectUnder| (#8# 38 T ELT)) (|collect| (#8# 40 T ELT)) (= (#4# 46 T ELT)))
+(((|PolynomialSetCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |triangular?| #1=(#2=(|Boolean|) |#1|)) (SIGNATURE |rewriteIdealWithRemainder| #3=(#4=(|List| |#5|) #4# |#1|)) (SIGNATURE |rewriteIdealWithHeadRemainder| #3#) (SIGNATURE |remainder| ((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) #5=(|:| |den| |#2|)) |#5| |#1|)) (SIGNATURE |headRemainder| ((|Record| (|:| |num| |#5|) #5#) |#5| |#1|)) (SIGNATURE |roughUnitIdeal?| #1#) (SIGNATURE |roughEqualIdeals?| #6=(#2# |#1| |#1|)) (SIGNATURE |roughSubIdeal?| #6#) (SIGNATURE |roughBase?| #1#) (SIGNATURE |trivialIdeal?| #1#) (SIGNATURE |sort| ((|Record| (|:| |under| |#1|) (|:| |floor| |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (SIGNATURE |collectUpper| #7=(|#1| |#1| |#4|)) (SIGNATURE |collect| #7#) (SIGNATURE |collectUnder| #7#) (SIGNATURE |mainVariable?| (#2# |#4| |#1|)) (SIGNATURE |mainVariables| #8=((|List| |#4|) |#1|)) (SIGNATURE |variables| #8#) (SIGNATURE = #6#)) (|PolynomialSetCategory| |#2| |#3| |#4| |#5|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#2| |#3| |#4|)) (T |PolynomialSetCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|variables| (((|List| |#3|) $) 39 T ELT)) (|trivialIdeal?| (((|Boolean|) $) 32 T ELT)) (|triangular?| (((|Boolean|) $) 23 (|has| |#1| (|IntegralDomain|)) ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #2=(|Boolean|) |#4|) . #3=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|sample| (#4=($) 59 T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) 28 (|has| |#1| (|IntegralDomain|)) ELT)) (|roughSubIdeal?| (((|Boolean|) $ $) 30 (|has| |#1| (|IntegralDomain|)) ELT)) (|roughEqualIdeals?| (((|Boolean|) $ $) 29 (|has| |#1| (|IntegralDomain|)) ELT)) (|roughBase?| (((|Boolean|) $) 31 (|has| |#1| (|IntegralDomain|)) ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 24 (|has| |#1| (|IntegralDomain|)) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) 25 (|has| |#1| (|IntegralDomain|)) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #5=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #5#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #2# |#4|) . #3#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (|IntegralDomain|)) ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #6=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#7=(|Boolean|) |#4| $) 53 (|has| |#4| . #6#) ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) $) 38 T ELT)) (|mainVariable?| (((|Boolean|) |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| (|IntegralDomain|)) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #7# |#4|) $) 51 T ELT)) (|every?| ((#7# (|Mapping| #7# |#4|) . #8=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #9=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #9#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #9#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #9#)) ELT)) (|eq?| ((#10=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#10# $) 58 T ELT)) (|empty| (#4# 57 T ELT)) (|count| ((#11=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #6#) ELT) ((#11# (|Mapping| #7# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#12=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #12#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #13=($)) 13 T ELT) (((|List| |#4|) . #13#) 43 T ELT)) (|before?| (#1# 6 T ELT)) (|any?| ((#7# (|Mapping| #7# |#4|) . #8#) 45 T ELT)) (= (#1# 8 T ELT)) (|#| ((#11# $) 44 T ELT)))
+(((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |PolynomialSetCategory|))
+((|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)))) (|mvar| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *2 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|mainVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|mainVariable?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Boolean|)))) (|collectUnder| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|collect| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|collectUpper| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|sort| (*1 *2 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Record| (|:| |under| *1) (|:| |floor| *1) (|:| |upper| *1))) (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6)))) (|trivialIdeal?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|roughBase?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughSubIdeal?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughEqualIdeals?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughUnitIdeal?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|headRemainder| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))))) (|remainder| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (|rewriteIdealWithHeadRemainder| (*1 *2 *2 *1) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)))) (|rewriteIdealWithRemainder| (*1 *2 *2 *1) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)))) (|triangular?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|SetCategory|) (|Collection| |t#4|) (|FiniteAggregate| |t#4|) (|CoercibleTo| (|List| |t#4|)) (CATEGORY |domain| (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|List| |t#4|))) (SIGNATURE |retract| ($ (|List| |t#4|))) (SIGNATURE |mvar| (|t#3| $)) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |mainVariables| ((|List| |t#3|) $)) (SIGNATURE |mainVariable?| ((|Boolean|) |t#3| $)) (SIGNATURE |collectUnder| ($ $ |t#3|)) (SIGNATURE |collect| ($ $ |t#3|)) (SIGNATURE |collectUpper| ($ $ |t#3|)) (SIGNATURE |sort| ((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |t#3|)) (SIGNATURE |trivialIdeal?| ((|Boolean|) $)) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |roughBase?| ((|Boolean|) $)) (SIGNATURE |roughSubIdeal?| ((|Boolean|) $ $)) (SIGNATURE |roughEqualIdeals?| ((|Boolean|) $ $)) (SIGNATURE |roughUnitIdeal?| ((|Boolean|) $)) (SIGNATURE |headRemainder| ((|Record| (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (SIGNATURE |remainder| ((|Record| (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (SIGNATURE |rewriteIdealWithHeadRemainder| ((|List| |t#4|) (|List| |t#4|) $)) (SIGNATURE |rewriteIdealWithRemainder| ((|List| |t#4|) (|List| |t#4|) $)) (SIGNATURE |triangular?| ((|Boolean|) $))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|unprotectedRemoveRedundantFactors| (#1=(#2=(|List| |#4|) |#4| |#4|) 135 T ELT)) (|univariatePolynomialsGcds| ((#2# #2# #3=(|Boolean|)) 123 #4=(|has| |#1| (|GcdDomain|)) ELT) (#5=(#2# #2#) 124 #4# ELT)) (|univariatePolynomials| (#6=(#7=(|Record| (|:| |goodPols| #2#) (|:| |badPols| #2#)) #2#) 44 T ELT)) (|univariate?| (#8=(#3# |#4|) 43 T ELT)) (|squareFreeFactors| ((#2# |#4|) 120 #4# ELT)) (|selectPolynomials| ((#7# #9=(|Mapping| #3# |#4|) #2#) 24 T ELT)) (|selectOrPolynomials| (#10=(#7# (|List| #9#) #2#) 30 T ELT)) (|selectAndPolynomials| (#10# 31 T ELT)) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| #2#)) "failed") #2#) 90 T ELT)) (|rewriteSetByReducingWithParticularGenerators| ((#2# #2# #9# #11=(|Mapping| #3# |#4| |#4|) #12=(|Mapping| |#4| |#4| |#4|)) 103 T ELT)) (|rewriteIdealWithQuasiMonicGenerators| ((#2# #2# #11# #12#) 127 T ELT)) (|removeSquaresIfCan| (#5# 126 T ELT)) (|removeRoughlyRedundantFactorsInPols| ((#2# #2# #2# #3#) 59 T ELT) (#13=(#2# #2# #2#) 61 T ELT)) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| #2#) 60 T ELT)) (|removeRoughlyRedundantFactorsInContents| (#13# 131 #4# ELT)) (|removeRedundantFactorsInPols| (#13# 134 #4# ELT)) (|removeRedundantFactorsInContents| (#13# 133 #4# ELT)) (|removeRedundantFactors| ((#2# #2# #2# (|Mapping| #2# #2#)) 105 T ELT) (#13# 107 T ELT) ((#2# #2# |#4|) 139 T ELT) (#1# 136 T ELT) (#5# 106 T ELT)) (|removeIrreducibleRedundantFactors| (#13# 117 #14=(AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))) ELT)) (|quasiMonicPolynomials| (#6# 52 T ELT)) (|probablyZeroDim?| ((#3# #2#) 79 T ELT)) (|possiblyNewVariety?| ((#3# #2# (|List| #2#)) 67 T ELT)) (|linearPolynomials| (#6# 37 T ELT)) (|linear?| (#8# 36 T ELT)) (|lazyIrreducibleFactors| (#5# 116 #14# ELT)) (|irreducibleFactors| (#5# 115 #14# ELT)) (|interReduce| (#5# 83 T ELT)) (|crushedSet| (#5# 97 T ELT)) (|certainlySubVariety?| ((#3# #2# #2#) 65 T ELT)) (|bivariatePolynomials| (#6# 50 T ELT)) (|bivariate?| (#8# 45 T ELT)))
+(((|PolynomialSetUtilitiesPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |removeRedundantFactors| #1=(#2=(|List| |#4|) #2#)) (SIGNATURE |removeRedundantFactors| #3=(#2# |#4| |#4|)) (SIGNATURE |removeSquaresIfCan| #1#) (SIGNATURE |unprotectedRemoveRedundantFactors| #3#) (SIGNATURE |removeRedundantFactors| (#2# #2# |#4|)) (SIGNATURE |removeRedundantFactors| #4=(#2# #2# #2#)) (SIGNATURE |removeRedundantFactors| (#2# #2# #2# (|Mapping| #2# #2#))) (SIGNATURE |certainlySubVariety?| (#5=(|Boolean|) #2# #2#)) (SIGNATURE |possiblyNewVariety?| (#5# #2# (|List| #2#))) (SIGNATURE |probablyZeroDim?| (#5# #2#)) (SIGNATURE |selectPolynomials| (#6=(|Record| (|:| |goodPols| #2#) (|:| |badPols| #2#)) #7=(|Mapping| #5# |#4|) #2#)) (SIGNATURE |selectOrPolynomials| #8=(#6# (|List| #7#) #2#)) (SIGNATURE |selectAndPolynomials| #8#) (SIGNATURE |quasiMonicPolynomials| #9=(#6# #2#)) (SIGNATURE |univariate?| #10=(#5# |#4|)) (SIGNATURE |univariatePolynomials| #9#) (SIGNATURE |linear?| #10#) (SIGNATURE |linearPolynomials| #9#) (SIGNATURE |bivariate?| #10#) (SIGNATURE |bivariatePolynomials| #9#) (SIGNATURE |removeRoughlyRedundantFactorsInPols| #4#) (SIGNATURE |removeRoughlyRedundantFactorsInPols| (#2# #2# #2# #5#)) (SIGNATURE |removeRoughlyRedundantFactorsInPol| (|#4| |#4| #2#)) (SIGNATURE |interReduce| #1#) (SIGNATURE |roughBasicSet| ((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| #2#)) "failed") #2#)) (SIGNATURE |crushedSet| #1#) (SIGNATURE |rewriteSetByReducingWithParticularGenerators| (#2# #2# #7# #11=(|Mapping| #5# |#4| |#4|) #12=(|Mapping| |#4| |#4| |#4|))) (SIGNATURE |rewriteIdealWithQuasiMonicGenerators| (#2# #2# #11# #12#)) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |squareFreeFactors| (#2# |#4|)) (SIGNATURE |univariatePolynomialsGcds| #1#) (SIGNATURE |univariatePolynomialsGcds| (#2# #2# #5#)) (SIGNATURE |removeRoughlyRedundantFactorsInContents| #4#) (SIGNATURE |removeRedundantFactorsInContents| #4#) (SIGNATURE |removeRedundantFactorsInPols| #4#)) |%noBranch|) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |irreducibleFactors| #1#) (SIGNATURE |lazyIrreducibleFactors| #1#) (SIGNATURE |removeIrreducibleRedundantFactors| #4#)) |%noBranch|) |%noBranch|)) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |PolynomialSetUtilitiesPackage|))
+((|removeIrreducibleRedundantFactors| #1=(*1 *2 *2 *2) #2=(AND #3=(|isDomain| *2 (|List| *6)) #4=(|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|CharacteristicZero|)) (|ofCategory| *3 (|EuclideanDomain|)) #5=(|ofCategory| *3 #6=(|IntegralDomain|)) #7=(|ofCategory| *4 #8=(|OrderedAbelianMonoidSup|)) #9=(|ofCategory| *5 #10=(|OrderedSet|)) #11=(|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|lazyIrreducibleFactors| #12=(*1 *2 *2) #2#) (|irreducibleFactors| #12# #2#) (|removeRedundantFactorsInPols| #1# #13=(AND #3# #4# (|ofCategory| *3 #14=(|GcdDomain|)) #5# #7# #9# #11#)) (|removeRedundantFactorsInContents| #1# #13#) (|removeRoughlyRedundantFactorsInContents| #1# #13#) (|univariatePolynomialsGcds| #15=(*1 *2 *2 *3) (AND #16=(|isDomain| *2 #17=(|List| *7)) #18=(|isDomain| *3 #19=(|Boolean|)) #20=(|ofCategory| *7 #21=(|RecursivePolynomialCategory| *4 *5 *6)) #22=(|ofCategory| *4 #14#) #23=(|ofCategory| *4 #6#) #24=(|ofCategory| *5 #8#) #25=(|ofCategory| *6 #10#) #26=(|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|univariatePolynomialsGcds| #12# #13#) (|squareFreeFactors| #27=(*1 *2 *3) (AND #22# #23# #24# #25# #28=(|isDomain| *2 (|List| *3)) #29=(|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) #30=(|ofCategory| *3 #21#))) (|rewriteIdealWithQuasiMonicGenerators| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 #31=(|List| *8)) (|isDomain| *3 (|Mapping| #19# *8 *8)) (|isDomain| *4 (|Mapping| *8 *8 *8)) #32=(|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) #33=(|ofCategory| *5 #6#) #34=(|ofCategory| *6 #8#) #35=(|ofCategory| *7 #10#) #36=(|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)))) (|rewriteSetByReducingWithParticularGenerators| (*1 *2 *2 *3 *4 *5) (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|Mapping| #19# *9)) (|isDomain| *4 (|Mapping| #19# *9 *9)) (|isDomain| *5 (|Mapping| *9 *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 #6#) (|ofCategory| *7 #8#) (|ofCategory| *8 #10#) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *6 *7 *8 *9)))) (|crushedSet| #12# #37=(AND #3# #4# #5# #7# #9# #11#)) (|roughBasicSet| #27# (|partial| AND #23# #24# #25# #20# (|isDomain| *2 (|Record| (|:| |bas| (|GeneralTriangularSet| *4 *5 *6 *7)) (|:| |top| #17#))) #26# #38=(|isDomain| *3 #17#))) (|interReduce| #12# #37#) (|removeRoughlyRedundantFactorsInPol| #15# (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 #21#) #23# #24# #25# (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *2)))) (|removeRoughlyRedundantFactorsInPols| #39=(*1 *2 *2 *2 *3) (AND #16# #18# #20# #23# #24# #25# #26#)) (|removeRoughlyRedundantFactorsInPols| #1# #37#) (|bivariatePolynomials| #27# #40=(AND #23# #24# #25# #20# (|isDomain| *2 (|Record| (|:| |goodPols| #17#) (|:| |badPols| #17#))) #26# #38#)) (|bivariate?| #27# #41=(AND #23# #24# #25# #42=(|isDomain| *2 #19#) #29# #30#)) (|linearPolynomials| #27# #40#) (|linear?| #27# #41#) (|univariatePolynomials| #27# #40#) (|univariate?| #27# #41#) (|quasiMonicPolynomials| #27# #40#) (|selectAndPolynomials| #43=(*1 *2 *3 *4) #44=(AND (|isDomain| *3 (|List| #45=(|Mapping| #19# *8))) #32# #33# #34# #35# #46=(|isDomain| *2 (|Record| (|:| |goodPols| #31#) (|:| |badPols| #31#))) #36# #47=(|isDomain| *4 #31#))) (|selectOrPolynomials| #43# #44#) (|selectPolynomials| #43# (AND (|isDomain| *3 #45#) #32# #33# #34# #35# #46# #36# #47#)) (|probablyZeroDim?| #27# #48=(AND #38# #20# #23# #24# #25# #42# #26#)) (|possiblyNewVariety?| #43# (AND (|isDomain| *4 (|List| #31#)) (|isDomain| *3 #31#) #32# #33# #34# #35# #42# #36#)) (|certainlySubVariety?| #49=(*1 *2 *3 *3) #48#) (|removeRedundantFactors| #39# (AND (|isDomain| *3 (|Mapping| #17# #17#)) #16# #20# #23# #24# #25# #26#)) (|removeRedundantFactors| #1# #37#) (|removeRedundantFactors| #15# (AND #28# #30# #23# #24# #25# #29#)) (|unprotectedRemoveRedundantFactors| #49# #50=(AND #23# #24# #25# #28# #29# #30#)) (|removeSquaresIfCan| #12# #37#) (|removeRedundantFactors| #49# #50#) (|removeRedundantFactors| #12# #37#))
+((|normalForm| (((|Record| (|:| R #1=(|Matrix| |#1|)) (|:| A #1#) (|:| |Ainv| #1#)) #1# #2=(|Automorphism| |#1|) #3=(|Mapping| |#1| |#1|)) 19 T ELT)) (|companionBlocks| (((|List| (|Record| (|:| C #1#) (|:| |g| #4=(|Vector| |#1|)))) #1# #4#) 45 T ELT)) (|changeBase| ((#1# #1# #1# #2# #3#) 16 T ELT)))
+(((|PseudoLinearNormalForm| |#1|) (CATEGORY |package| (SIGNATURE |normalForm| ((|Record| (|:| R #1=(|Matrix| |#1|)) (|:| A #1#) (|:| |Ainv| #1#)) #1# #2=(|Automorphism| |#1|) #3=(|Mapping| |#1| |#1|))) (SIGNATURE |changeBase| (#1# #1# #1# #2# #3#)) (SIGNATURE |companionBlocks| ((|List| (|Record| (|:| C #1#) (|:| |g| #4=(|Vector| |#1|)))) #1# #4#))) (|Field|)) (T |PseudoLinearNormalForm|))
+((|companionBlocks| (*1 *2 *3 *4) (AND #1=(|ofCategory| *5 #2=(|Field|)) (|isDomain| *2 (|List| (|Record| (|:| C #3=(|Matrix| *5)) (|:| |g| #4=(|Vector| *5))))) #5=(|isDomain| *1 (|PseudoLinearNormalForm| *5)) (|isDomain| *3 #3#) (|isDomain| *4 #4#))) (|changeBase| (*1 *2 *2 *2 *3 *4) (AND (|isDomain| *2 #3#) (|isDomain| *3 (|Automorphism| *5)) (|isDomain| *4 (|Mapping| *5 *5)) #1# #5#)) (|normalForm| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Automorphism| *6)) (|isDomain| *5 (|Mapping| *6 *6)) (|ofCategory| *6 #2#) (|isDomain| *2 (|Record| (|:| R #6=(|Matrix| *6)) (|:| A #6#) (|:| |Ainv| #6#))) (|isDomain| *1 (|PseudoLinearNormalForm| *6)) (|isDomain| *3 #6#))))
+((|squareFree| (((|Factored| |#4|) |#4|) 61 T ELT)))
+(((|PolynomialSquareFree| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |squareFree| ((|Factored| |#4|) |#4|))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|GcdDomain|) (|PolynomialCategory| |#3| |#2| |#1|)) (T |PolynomialSquareFree|))
+((|squareFree| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|PolynomialSquareFree| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|zero| (($ (|NonNegativeInteger|)) 123 (|has| |#1| (|AbelianMonoid|)) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#4=(|Boolean|) (|Mapping| #4# |#1| |#1|) $) 96 T ELT) ((#4# $) 90 (|has| |#1| . #5=((|OrderedSet|))) ELT)) (|sort!| (($ (|Mapping| #4# |#1| |#1|) . #6=($)) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (#7=($ $) 86 (AND (|has| |#1| . #5#) (|has| $ (|ShallowlyMutableAggregate| |#1|))) ELT)) (|sort| (($ (|Mapping| #4# |#1| |#1|) . #6#) 97 T ELT) (#7# 91 (|has| |#1| . #5#) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #8=(|UniversalSegment| #3#) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #9=(|Boolean|) |#1|) . #10=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#11=($) 6 T CONST)) (|reverse!| (#7# 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|reverse| (#7# 98 T ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #12=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #12#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #9# |#1|) . #10#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| . #13=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 105 T ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|position| ((#14=(|Integer|) (|Mapping| #4# |#1|) $) 95 T ELT) ((#14# |#1| $) 94 (|has| |#1| . #15=((|BasicType|))) ELT) ((#14# |#1| $ #14#) 93 (|has| |#1| . #15#) ELT)) (|point| (($ (|List| |#1|)) 129 T ELT)) (|outerProduct| (((|Matrix| |#1|) $ $) 116 (|has| |#1| . #16=((|Ring|))) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #17=($)) 38 (|has| #3# . #18=((|OrderedSet|))) ELT)) (|min| (#19=($ $ $) 80 (|has| |#1| . #5#) ELT)) (|merge| (($ (|Mapping| #4# |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| . #5#) ELT)) (|members| (((|List| |#1|) $) 104 T ELT)) (|member?| ((#20=(|Boolean|) |#1| $) 109 (|has| |#1| . #13#) ELT)) (|maxIndex| ((#3# . #17#) 39 (|has| #3# . #18#) ELT)) (|max| (#19# 81 (|has| |#1| . #5#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 112 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|magnitude| ((|#1| . #21=($)) 113 (AND (|has| |#1| . #16#) (|has| |#1| . #22=((|RadicalCategory|)))) ELT)) (|length| ((|#1| . #21#) 114 (AND (|has| |#1| . #16#) (|has| |#1| . #22#)) ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #23=((|SetCategory|))) ELT)) (|insert| (($ |#1| $ #3#) 57 T ELT) (($ $ $ #3#) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#24=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #23#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #18#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #20# |#1|) $) 107 T ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|extend| (($ $ (|List| |#1|)) 127 T ELT)) (|every?| ((#20# (|Mapping| #20# |#1|) . #25=($)) 102 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #23#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #23#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #23#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #23#)) ELT)) (|eq?| ((#26=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#24# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#26# $) 7 T ELT)) (|empty| (#11# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ #8#) 66 T ELT)) (|dot| ((|#1| $ $) 117 (|has| |#1| . #16#) ELT)) (|dimension| (((|PositiveInteger|) $) 128 T ELT)) (|delete| (($ $ #3#) 59 T ELT) (($ $ #8#) 58 T ELT)) (|cross| (($ $ $) 115 T ELT)) (|count| ((#27=(|NonNegativeInteger|) |#1| $) 108 (|has| |#1| . #13#) ELT) ((#27# (|Mapping| #20# |#1|) $) 103 T ELT)) (|copyInto!| (($ $ $ #14#) 89 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#28=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #28#)) ELT) (($ (|List| |#1|)) 130 T ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#20# (|Mapping| #20# |#1|) . #25#) 101 T ELT)) (>= (#29=((|Boolean|) $ $) 82 (|has| |#1| . #5#) ELT)) (> (#29# 84 (|has| |#1| . #5#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (<= (#29# 83 (|has| |#1| . #5#) ELT)) (< (#29# 85 (|has| |#1| . #5#) ELT)) (- (($ $) 122 (|has| |#1| . #30=((|AbelianGroup|))) ELT) (#31=($ $ $) 121 (|has| |#1| . #30#) ELT)) (+ (#31# 124 (|has| |#1| (|AbelianSemiGroup|)) ELT)) (* (($ (|Integer|) $) 120 (|has| |#1| . #30#) ELT) (($ |#1| $) 119 (|has| |#1| . #32=((|Monoid|))) ELT) (($ $ |#1|) 118 (|has| |#1| . #32#) ELT)) (|#| ((#27# $) 100 T ELT)))
+(((|PointCategory| |#1|) (|Category|) (|Ring|)) (T |PointCategory|))
+((|point| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|PointCategory| *3)))) (|dimension| (*1 *2 *1) (AND (|ofCategory| *1 (|PointCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|PositiveInteger|)))) (|cross| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|PointCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PointCategory| *3)) (|ofCategory| *3 (|Ring|)))))
+(|Join| (|VectorCategory| |t#1|) (|ConvertibleFrom| (|List| |t#1|)) (CATEGORY |domain| (SIGNATURE |point| ($ (|List| |t#1|))) (SIGNATURE |dimension| ((|PositiveInteger|) $)) (SIGNATURE |cross| ($ $ $)) (SIGNATURE |extend| ($ $ (|List| |t#1|)))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleFrom| (|List| |#1|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|FiniteLinearAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|OneDimensionalArrayAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T) ((|VectorCategory| |#1|) . T))
+((|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) 17 T ELT)))
+(((|PointFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)))) #1=(|Ring|) #1#) (T |PointFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Point| *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|Point| *6)) (|isDomain| *1 (|PointFunctions2| *5 *6)))))
+((|zCoord| (#1=(|#1| (|Point| |#1|)) 14 T ELT)) (|yCoord| (#1# 13 T ELT)) (|xCoord| (#1# 12 T ELT)) (|thetaCoord| (#1# 16 T ELT)) (|shade| (#1# 24 T ELT)) (|rCoord| (#1# 15 T ELT)) (|phiCoord| (#1# 17 T ELT)) (|hue| (#1# 23 T ELT)) (|color| (#1# 22 T ELT)))
+(((|PointPackage| |#1|) (CATEGORY |package| (SIGNATURE |xCoord| #1=(|#1| (|Point| |#1|))) (SIGNATURE |yCoord| #1#) (SIGNATURE |zCoord| #1#) (SIGNATURE |rCoord| #1#) (SIGNATURE |thetaCoord| #1#) (SIGNATURE |phiCoord| #1#) (SIGNATURE |color| #1#) (SIGNATURE |hue| #1#) (SIGNATURE |shade| #1#)) (|Ring|)) (T |PointPackage|))
+((|shade| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|hue| #1# #2#) (|color| #1# #2#) (|phiCoord| #1# #2#) (|thetaCoord| #1# #2#) (|rCoord| #1# #2#) (|zCoord| #1# #2#) (|yCoord| #1# #2#) (|xCoord| #1# #2#))
+((|tanhIfCan| (((|Union| |#1| "failed") |#1|) 18 T ELT)) (|tanIfCan| (((|Union| |#1| "failed") |#1|) 6 T ELT)) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) 16 T ELT)) (|sinIfCan| (((|Union| |#1| "failed") |#1|) 4 T ELT)) (|sechIfCan| (((|Union| |#1| "failed") |#1|) 20 T ELT)) (|secIfCan| (((|Union| |#1| "failed") |#1|) 8 T ELT)) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) 1 T ELT)) (|logIfCan| (((|Union| |#1| "failed") |#1|) 3 T ELT)) (|expIfCan| (((|Union| |#1| "failed") |#1|) 2 T ELT)) (|cschIfCan| (((|Union| |#1| "failed") |#1|) 21 T ELT)) (|cscIfCan| (((|Union| |#1| "failed") |#1|) 9 T ELT)) (|cothIfCan| (((|Union| |#1| "failed") |#1|) 19 T ELT)) (|cotIfCan| (((|Union| |#1| "failed") |#1|) 7 T ELT)) (|coshIfCan| (((|Union| |#1| "failed") |#1|) 17 T ELT)) (|cosIfCan| (((|Union| |#1| "failed") |#1|) 5 T ELT)) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) 24 T ELT)) (|atanIfCan| (((|Union| |#1| "failed") |#1|) 12 T ELT)) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) 22 T ELT)) (|asinIfCan| (((|Union| |#1| "failed") |#1|) 10 T ELT)) (|asechIfCan| (((|Union| |#1| "failed") |#1|) 26 T ELT)) (|asecIfCan| (((|Union| |#1| "failed") |#1|) 14 T ELT)) (|acschIfCan| (((|Union| |#1| "failed") |#1|) 27 T ELT)) (|acscIfCan| (((|Union| |#1| "failed") |#1|) 15 T ELT)) (|acothIfCan| (((|Union| |#1| "failed") |#1|) 25 T ELT)) (|acotIfCan| (((|Union| |#1| "failed") |#1|) 13 T ELT)) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) 23 T ELT)) (|acosIfCan| (((|Union| |#1| "failed") |#1|) 11 T ELT)))
+(((|PartialTranscendentalFunctions| |#1|) (|Category|) (|TranscendentalFunctionCategory|)) (T |PartialTranscendentalFunctions|))
+((|acschIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asechIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acothIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|atanhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acoshIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asinhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cschIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sechIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cothIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|tanhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|coshIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sinhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acscIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asecIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acotIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|atanIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acosIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asinIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cscIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|secIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cotIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|tanIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cosIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sinIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|logIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|expIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|nthRootIfCan| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(|Join| (CATEGORY |package| (SIGNATURE |nthRootIfCan| ((|Union| |t#1| "failed") |t#1| (|NonNegativeInteger|))) (SIGNATURE |expIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |logIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sinIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cosIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |tanIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cotIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |secIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cscIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asinIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acosIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |atanIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acotIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asecIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acscIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sinhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |coshIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |tanhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cothIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sechIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cschIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asinhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acoshIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |atanhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acothIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asechIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acschIfCan| ((|Union| |t#1| "failed") |t#1|))))
+((|pushup| (#1=(|#4| |#4| (|List| |#3|)) 57 T ELT) (#2=(|#4| |#4| |#3|) 56 T ELT)) (|pushdown| (#1# 24 T ELT) (#2# 20 T ELT)) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) 33 T ELT)))
+(((|PushVariables| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |pushdown| #1=(|#4| |#4| |#3|)) (SIGNATURE |pushdown| #2=(|#4| |#4| (|List| |#3|))) (SIGNATURE |pushup| #1#) (SIGNATURE |pushup| #2#) (SIGNATURE |map| (|#4| (|Mapping| |#4| #3=(|Polynomial| |#1|)) |#4|))) (|Ring|) (|OrderedAbelianMonoidSup|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#4=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #4#)))) (|PolynomialCategory| #3# |#2| |#3|)) (T |PushVariables|))
+((|map| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| *2 #1=(|Polynomial| *4))) #2=(|ofCategory| *4 (|Ring|)) #3=(|ofCategory| *2 (|PolynomialCategory| #1# *5 *6)) #4=(|ofCategory| *5 (|OrderedAbelianMonoidSup|)) #5=(|ofCategory| *6 #6=(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| (#7=(|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") #7#))))) #8=(|isDomain| *1 (|PushVariables| *4 *5 *6 *2)))) (|pushup| #9=(*1 *2 *2 *3) #10=(AND (|isDomain| *3 (|List| *6)) #5# #2# #4# #8# #3#)) (|pushup| #9# #11=(AND #2# #4# (|ofCategory| *3 #6#) (|isDomain| *1 (|PushVariables| *4 *5 *3 *2)) (|ofCategory| *2 (|PolynomialCategory| #1# *5 *3)))) (|pushdown| #9# #10#) (|pushdown| #9# #11#))
+((|reducedDiscriminant| ((|#2| |#3|) 35 T ELT)) (|localIntegralBasis| ((#1=(|Record| (|:| |basis| #2=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #2#)) |#2|) 79 T ELT)) (|integralBasis| ((#1#) 100 T ELT)))
+(((|PAdicWildFunctionFieldIntegralBasis| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |integralBasis| (#1=(|Record| (|:| |basis| #2=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #2#)))) (SIGNATURE |localIntegralBasis| (#1# |#2|)) (SIGNATURE |reducedDiscriminant| (|#2| |#3|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|MonogenicAlgebra| |#2| |#3|)) (T |PAdicWildFunctionFieldIntegralBasis|))
+((|reducedDiscriminant| #1=(*1 *2 *3) (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 #2=(|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *4 *2 *3 *5)) #3=(|ofCategory| *4 #4=(|FiniteFieldCategory|)) (|ofCategory| *5 (|MonogenicAlgebra| *2 *3)))) (|localIntegralBasis| #1# (AND #3# (|ofCategory| *3 #2#) (|ofCategory| *5 #5=(|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Record| (|:| |basis| #6=(|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| #6#))) (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *4 *3 *5 *6)) (|ofCategory| *6 (|MonogenicAlgebra| *3 *5)))) (|integralBasis| (*1 *2) (AND (|ofCategory| *3 #4#) (|ofCategory| *4 #5#) (|ofCategory| *5 #2#) (|isDomain| *2 (|Record| (|:| |basis| #7=(|Matrix| *4)) (|:| |basisDen| *4) (|:| |basisInv| #7#))) (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *3 *4 *5 *6)) (|ofCategory| *6 (|MonogenicAlgebra| *4 *5)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|status| ((#3=(|Union| #2# "failed") $) 71 T ELT)) (|simplify| (#4=($ $) 36 (AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))) ELT)) (|setStatus| (($ $ #3#) 72 T ELT)) (|quasiAlgebraicSet| (($ #5=(|List| |#4|) |#4|) 25 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|idealSimplify| (#4# 69 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|empty?| ((#2# $) 70 T ELT)) (|empty| (($) 30 T ELT)) (|definingInequation| ((|#4| $) 74 T ELT)) (|definingEquations| ((#5# $) 73 T ELT)) (|coerce| (((|OutputForm|) $) 68 T ELT)) (|before?| #1#) (= #1#))
+(((|QuasiAlgebraicSet| |#1| |#2| |#3| |#4|) (|Join| (|SetCategory|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |quasiAlgebraicSet| ($ #1=(|List| |#4|) |#4|)) (SIGNATURE |status| (#2=(|Union| #3=(|Boolean|) "failed") $)) (SIGNATURE |setStatus| ($ $ #2#)) (SIGNATURE |empty?| (#3# $)) (SIGNATURE |definingEquations| (#1# $)) (SIGNATURE |definingInequation| (|#4| $)) (SIGNATURE |idealSimplify| #4=($ $)) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (SIGNATURE |simplify| #4#) |%noBranch|) |%noBranch|))) (|GcdDomain|) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| |#1| |#3| |#2|)) (T |QuasiAlgebraicSet|))
+((|empty| (*1 *1) #1=(AND #2=(|ofCategory| *2 #3=(|GcdDomain|)) #4=(|ofCategory| *3 #5=(|OrderedSet|)) #6=(|ofCategory| *4 #7=(|OrderedAbelianMonoidSup|)) #8=(|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5)) #9=(|ofCategory| *5 (|PolynomialCategory| *2 *4 *3)))) (|quasiAlgebraicSet| (*1 *1 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 #3#) (|ofCategory| *5 #5#) (|ofCategory| *6 #7#) (|isDomain| *1 (|QuasiAlgebraicSet| *4 *5 *6 *3)))) (|status| #10=(*1 *2 *1) (|partial| AND #11=(|ofCategory| *3 #3#) #12=(|ofCategory| *4 #5#) #13=(|ofCategory| *5 #7#) #14=(|isDomain| *2 #15=(|Boolean|)) #16=(|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6)) #17=(|ofCategory| *6 #18=(|PolynomialCategory| *3 *5 *4)))) (|setStatus| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Union| #15# "failed")) #11# #12# #13# #16# #17#)) (|empty?| #10# (AND #11# #12# #13# #14# #16# #17#)) (|definingEquations| #10# (AND #11# #12# #13# (|isDomain| *2 (|List| *6)) #16# #17#)) (|definingInequation| #10# (AND (|ofCategory| *2 #18#) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *2)) #11# #12# #13#)) (|idealSimplify| #19=(*1 *1 *1) #1#) (|simplify| #19# (AND (|ofCategory| *2 (|CharacteristicZero|)) (|ofCategory| *2 (|EuclideanDomain|)) #2# #4# #6# #8# #9#)))
+((|radicalSimplify| ((#1=(|QuasiAlgebraicSet| #2=(|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| #2#)) #1#) 82 T ELT)))
+(((|QuasiAlgebraicSet2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |radicalSimplify| (#1=(|QuasiAlgebraicSet| #2=(|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| #3=(|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| #2#)) #1#))) (|List| (|Symbol|)) #3#) (T |QuasiAlgebraicSet2|))
+((|radicalSimplify| (*1 *2 *2) (AND (|isDomain| *2 (|QuasiAlgebraicSet| #1=(|Fraction| (|Integer|)) (|OrderedVariableList| *3) (|DirectProduct| *4 #2=(|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| *3 #1#))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 #2#) (|isDomain| *1 (|QuasiAlgebraicSet2| *3 *4)))))
+((|supDimElseRittWu?| (#1=(#2=(|Boolean|) |#5| |#5|) 44 T ELT)) (|subTriSet?| (#1# 59 T ELT)) (|subQuasiComponent?| ((#2# |#5| #3=(|List| |#5|)) 81 T ELT) (#1# 68 T ELT)) (|subPolSet?| (#4=(#2# #5=(|List| |#4|) #5#) 65 T ELT)) (|subCase?| ((#2# #6=(|Record| (|:| |val| #5#) #7=(|:| |tower| |#5|)) #6#) 70 T ELT)) (|stopTable!| ((#8=(|Void|)) 32 T ELT)) (|startTable!| ((#8# #9=(|String|) #9# #9#) 28 T ELT)) (|removeSuperfluousQuasiComponents| (#10=(#3# #3#) 100 T ELT)) (|removeSuperfluousCases| ((#11=(|List| #6#) #11#) 92 T ELT)) (|prepareDecompose| (((|List| #12=(|Record| (|:| |eq| #5#) #7# (|:| |ineq| #5#))) #5# #3# #2# #2#) 122 T ELT)) (|moreAlgebraic?| (#1# 53 T ELT)) (|internalSubQuasiComponent?| (((|Union| #2# #13="failed") |#5| |#5|) 78 T ELT)) (|internalSubPolSet?| (#4# 64 T ELT)) (|internalInfRittWu?| (#4# 66 T ELT)) (|infRittWu?| (#4# 67 T ELT)) (|branchIfCan| (((|Union| #12# #13#) #5# |#5| #5# #2# #2# #2# #2# #2#) 117 T ELT)) (|algebraicSort| (#10# 49 T ELT)))
+(((|QuasiComponentPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |startTable!| (#1=(|Void|) #2=(|String|) #2# #2#)) (SIGNATURE |stopTable!| (#1#)) (SIGNATURE |supDimElseRittWu?| #3=(#4=(|Boolean|) |#5| |#5|)) (SIGNATURE |algebraicSort| #5=(#6=(|List| |#5|) #6#)) (SIGNATURE |moreAlgebraic?| #3#) (SIGNATURE |subTriSet?| #3#) (SIGNATURE |subPolSet?| #7=(#4# #8=(|List| |#4|) #8#)) (SIGNATURE |internalSubPolSet?| #7#) (SIGNATURE |internalInfRittWu?| #7#) (SIGNATURE |infRittWu?| #7#) (SIGNATURE |internalSubQuasiComponent?| ((|Union| #4# #9="failed") |#5| |#5|)) (SIGNATURE |subQuasiComponent?| #3#) (SIGNATURE |subQuasiComponent?| (#4# |#5| #6#)) (SIGNATURE |removeSuperfluousQuasiComponents| #5#) (SIGNATURE |subCase?| (#4# #10=(|Record| (|:| |val| #8#) #11=(|:| |tower| |#5|)) #10#)) (SIGNATURE |removeSuperfluousCases| (#12=(|List| #10#) #12#)) (SIGNATURE |prepareDecompose| ((|List| #13=(|Record| (|:| |eq| #8#) #11# (|:| |ineq| #8#))) #8# #6# #4# #4#)) (SIGNATURE |branchIfCan| ((|Union| #13# #9#) #8# |#5| #8# #4# #4# #4# #4# #4#))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |QuasiComponentPackage|))
+((|branchIfCan| (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| AND #1=(|isDomain| *5 #2=(|Boolean|)) #3=(|ofCategory| *6 #4=(|GcdDomain|)) #5=(|ofCategory| *7 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *8 #8=(|OrderedSet|)) #9=(|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|isDomain| *2 (|Record| #10=(|:| |eq| #11=(|List| *9)) (|:| |tower| *4) #12=(|:| |ineq| #11#))) (|isDomain| *1 (|QuasiComponentPackage| *6 *7 *8 *9 *4)) #13=(|isDomain| *3 #11#) (|ofCategory| *4 #14=(|RegularTriangularSetCategory| *6 *7 *8 *9)))) (|prepareDecompose| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *4 (|List| *10)) #1# (|ofCategory| *10 #14#) #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| #10# (|:| |tower| *10) #12#))) (|isDomain| *1 (|QuasiComponentPackage| *6 *7 *8 *9 *10)) #13#)) (|removeSuperfluousCases| #15=(*1 *2 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *6)) (|:| |tower| *7)))) #16=(|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) #17=(|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)) #18=(|ofCategory| *3 #4#) #19=(|ofCategory| *4 #6#) #20=(|ofCategory| *5 #8#) #21=(|isDomain| *1 (|QuasiComponentPackage| *3 *4 *5 *6 *7)))) (|subCase?| #22=(*1 *2 *3 *3) (AND (|isDomain| *3 (|Record| (|:| |val| #23=(|List| *7)) (|:| |tower| *8))) #24=(|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) #25=(|ofCategory| *8 #26=(|RegularTriangularSetCategory| *4 *5 *6 *7)) #27=(|ofCategory| *4 #4#) #28=(|ofCategory| *5 #6#) #29=(|ofCategory| *6 #8#) #30=(|isDomain| *2 #2#) #31=(|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8)))) (|removeSuperfluousQuasiComponents| #15# #32=(AND (|isDomain| *2 #23#) #17# #18# #19# #20# #16# #21#)) (|subQuasiComponent?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) (|ofCategory| *3 (|RegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 #4#) (|ofCategory| *6 #6#) (|ofCategory| *7 #8#) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) #30# (|isDomain| *1 (|QuasiComponentPackage| *5 *6 *7 *8 *3)))) (|subQuasiComponent?| #22# #33=(AND #27# #28# #29# #24# #30# #34=(|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3)) #35=(|ofCategory| *3 #26#))) (|internalSubQuasiComponent?| #22# (|partial| AND #27# #28# #29# #24# #30# #34# #35#)) (|infRittWu?| #22# #36=(AND (|isDomain| *3 #23#) #24# #27# #28# #29# #30# #31# #25#)) (|internalInfRittWu?| #22# #36#) (|internalSubPolSet?| #22# #36#) (|subPolSet?| #22# #36#) (|subTriSet?| #22# #33#) (|moreAlgebraic?| #22# #33#) (|algebraicSort| #15# #32#) (|supDimElseRittWu?| #22# #33#) (|stopTable!| (*1 *2) (AND #18# #19# #20# #16# #37=(|isDomain| *2 (|Void|)) #21# #17#)) (|startTable!| (*1 *2 *3 *3 *3) (AND (|isDomain| *3 (|String|)) #27# #28# #29# #24# #37# #31# #25#)))
+((|variable| ((#1=(|Symbol|) $) 15 T ELT)) (|value| ((#2=(|String|) $) 16 T ELT)) (|equation| (($ #1# #2#) 14 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)))
+(((|QueryEquation|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |equation| ($ #1=(|Symbol|) #2=(|String|))) (SIGNATURE |variable| (#1# $)) (SIGNATURE |value| (#2# $))))) (T |QueryEquation|))
+((|equation| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|Symbol|)) (|isDomain| *3 #2=(|String|)) #3=(|isDomain| *1 (|QueryEquation|)))) (|variable| #4=(*1 *2 *1) (AND #1# #3#)) (|value| #4# (AND (|isDomain| *2 #2#) #3#)))
+((|retractIfCan| (((|Union| |#2| #1="failed") $) NIL T ELT) (((|Union| #2=(|Symbol|) #1#) $) 72 T ELT) (((|Union| #3=(|Fraction| #4=(|Integer|)) #1#) $) NIL T ELT) (((|Union| #4# #1#) $) 102 T ELT)) (|retract| ((|#2| $) NIL T ELT) ((#2# $) 67 T ELT) ((#3# $) NIL T ELT) ((#4# $) 99 T ELT)) (|reducedSystem| ((#5=(|Matrix| #4#) #6=(|Matrix| $)) NIL T ELT) (((|Record| (|:| |mat| #5#) (|:| |vec| (|Vector| #4#))) #6# #7=(|Vector| $)) NIL T ELT) (((|Record| (|:| |mat| #8=(|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) #6# #7#) 121 T ELT) ((#8# #6#) 35 T ELT)) (|random| (#9=($) 105 T ELT)) (|patternMatch| ((#10=(|PatternMatchResult| #4# $) $ #11=(|Pattern| #4#) #10#) 82 T ELT) ((#12=(|PatternMatchResult| #13=(|Float|) $) $ #14=(|Pattern| #13#) #12#) 91 T ELT)) (|numerator| (#15=($ $) 10 T ELT)) (|nextItem| (((|Maybe| $) $) 27 T ELT)) (|map| (($ #16=(|Mapping| |#2| |#2|) $) 29 T ELT)) (|init| (#9# 16 T CONST)) (|fractionPart| (#15# 61 T ELT)) (|differentiate| (($ $ #16#) 43 T ELT) (($ $ #16# #17=(|NonNegativeInteger|)) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #18=(|List| #2#)) NIL T ELT) (($ $ #2# #17#) NIL T ELT) (($ $ #18# (|List| #17#)) NIL T ELT) #19=(#15# NIL T ELT) (($ $ #17#) NIL T ELT)) (|denominator| (#15# 12 T ELT)) (|convert| ((#11# $) 77 T ELT) ((#14# $) 86 T ELT) (((|InputForm|) $) 47 T ELT) ((#13# $) 51 T ELT) (((|DoubleFloat|) $) 55 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #4#) NIL T ELT) #19# (($ #3#) 97 T ELT) (($ |#2|) NIL T ELT) (($ #2#) 64 T ELT)) (|characteristic| ((#17#) 38 T CONST)) (< (((|Boolean|) $ $) 57 T ELT)))
+(((|QuotientFieldCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #1=(|NonNegativeInteger|))) (SIGNATURE |differentiate| #2=(|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #3=(|List| #4=(|Symbol|)) (|List| #1#))) (SIGNATURE |differentiate| (|#1| |#1| #4# #1#)) (SIGNATURE |differentiate| (|#1| |#1| #3#)) (SIGNATURE |differentiate| (|#1| |#1| #4#)) (SIGNATURE |init| #5=(|#1|) |constant|) (SIGNATURE |nextItem| ((|Maybe| |#1|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #6=(|Integer|) #7="failed") |#1|)) (SIGNATURE |retract| (#6# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #8=(|Fraction| #6#) #7#) |#1|)) (SIGNATURE |retract| (#8# |#1|)) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| (#9=(|Float|) |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |coerce| (|#1| #4#)) (SIGNATURE |retractIfCan| ((|Union| #4# #7#) |#1|)) (SIGNATURE |retract| (#4# |#1|)) (SIGNATURE |random| #5#) (SIGNATURE |fractionPart| #2#) (SIGNATURE |denominator| #2#) (SIGNATURE |numerator| #2#) (SIGNATURE |patternMatch| (#10=(|PatternMatchResult| #9# |#1|) |#1| #11=(|Pattern| #9#) #10#)) (SIGNATURE |patternMatch| (#12=(|PatternMatchResult| #6# |#1|) |#1| #13=(|Pattern| #6#) #12#)) (SIGNATURE |convert| (#11# |#1|)) (SIGNATURE |convert| (#13# |#1|)) (SIGNATURE |reducedSystem| (#14=(|Matrix| |#2|) #15=(|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #14#) (|:| |vec| (|Vector| |#2|))) #15# #16=(|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #17=(|Matrix| #6#)) (|:| |vec| (|Vector| #6#))) #15# #16#)) (SIGNATURE |reducedSystem| (#17# #15#)) (SIGNATURE |differentiate| (|#1| |#1| #18=(|Mapping| |#2| |#2|) #1#)) (SIGNATURE |differentiate| (|#1| |#1| #18#)) (SIGNATURE |map| (|#1| #18# |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #7#) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| #8#)) (SIGNATURE |coerce| #2#) (SIGNATURE |characteristic| (#1#) |constant|) (SIGNATURE |coerce| (|#1| #6#)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|QuotientFieldCategory| |#2|) (|IntegralDomain|)) (T |QuotientFieldCategory&|))
+((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|QuotientFieldCategory&| *3 *4)) (|ofCategory| *3 (|QuotientFieldCategory| *4)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|wholePart| ((|#1| $) 173 (|has| |#1| (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (#4=((|Factored| #5=(|SparseUnivariatePolynomial| $)) #5#) 164 (|has| |#1| . #6=((|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#7=((|Factored| $) $) 90 T ELT)) (|solveLinearPolynomialEquation| (((|Union| #8=(|List| #5#) #9="failed") #8# #5#) 167 (|has| |#1| . #6#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sign| (((|Integer|) $) 154 (|has| |#1| . #10=((|OrderedIntegralDomain|))) ELT)) (|sample| (#11=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| . #12=("failed")) . #13=($)) 203 T ELT) (((|Union| #14=(|Symbol|) . #12#) . #13#) 162 (|has| |#1| . #15=((|RetractableTo| (|Symbol|)))) ELT) (((|Union| #16=(|Fraction| (|Integer|)) . #12#) . #13#) 145 (|has| |#1| . #17=((|RetractableTo| (|Integer|)))) ELT) (((|Union| #18=(|Integer|) . #12#) . #13#) 143 (|has| |#1| . #19=((|RetractableTo| (|Integer|)))) ELT)) (|retract| ((|#1| . #20=($)) 204 T ELT) ((#14# . #20#) 163 (|has| |#1| . #15#) ELT) ((#16# . #20#) 146 (|has| |#1| . #17#) ELT) ((#18# . #20#) 144 (|has| |#1| . #19#) ELT)) (|rem| (#21=($ $ $) 71 T ELT)) (|reducedSystem| (((|Matrix| #22=(|Integer|)) . #23=(#24=(|Matrix| $))) 188 (|has| |#1| . #25=((|LinearlyExplicitRingOver| #22#))) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #26=(#24# #27=(|Vector| $))) 187 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #26#) 186 T ELT) (((|Matrix| |#1|) . #23#) 185 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|random| (($) 171 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|quo| (#21# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #28=(|List| $)) (|:| |generator| $)) #28#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|positive?| (((|Boolean|) $) 156 (|has| |#1| . #10#) ELT)) (|patternMatch| (((|PatternMatchResult| #29=(|Integer|) . #30=($)) $ (|Pattern| #29#) (|PatternMatchResult| #29# . #30#)) 180 (|has| |#1| (|PatternMatchable| #29#)) ELT) (((|PatternMatchResult| #31=(|Float|) . #30#) $ (|Pattern| #31#) (|PatternMatchResult| #31# . #30#)) 179 (|has| |#1| (|PatternMatchable| #31#)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numerator| (($ $) 175 T ELT)) (|numer| ((|#1| $) 177 T ELT)) (|nextItem| (((|Maybe| $) $) 142 (|has| |#1| . #32=((|StepThrough|))) ELT)) (|negative?| (((|Boolean|) $) 155 (|has| |#1| . #10#) ELT)) (|multiEuclidean| (((|Union| #33=(|List| $) #34="failed") #33# $) 68 T ELT)) (|min| (#35=($ $ $) 147 (|has| |#1| . #36=((|OrderedSet|))) ELT)) (|max| (#35# 148 (|has| |#1| . #36#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 195 T ELT)) (|leftReducedSystem| (((|Matrix| #22#) . #37=(#27#)) 190 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #38=(#27# $)) 189 (|has| |#1| . #25#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #38#) 184 T ELT) (((|Matrix| |#1|) . #37#) 183 T ELT)) (|lcm| (#39=($ $ $) 60 T ELT) (#40=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|init| (($) 141 (|has| |#1| . #32#) CONST)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#41=(|SparseUnivariatePolynomial| $) #41# #41#) 58 T ELT)) (|gcd| (#39# 62 T ELT) (#40# 61 T ELT)) (|fractionPart| (($ $) 172 (|has| |#1| (|EuclideanDomain|)) ELT)) (|floor| ((|#1| $) 169 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|factorSquareFreePolynomial| (#4# 166 (|has| |#1| . #6#) ELT)) (|factorPolynomial| (#4# 165 (|has| |#1| . #6#) ELT)) (|factor| (#7# 92 T ELT)) (|extendedEuclidean| (((|Record| #42=(|:| |coef1| $) #43=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #42# #43#) #34#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #28#) #28# $) 65 T ELT)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 201 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|Equation| |#1|)) 199 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| (|Equation| |#1|))) 198 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| #44=(|Symbol|)) (|List| |#1|)) 197 (|has| |#1| (|InnerEvalable| #44# |#1|)) ELT) (($ $ #44# |#1|) 196 (|has| |#1| (|InnerEvalable| #44# |#1|)) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|elt| (($ $ |#1|) 202 (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|differentiate| (($ $ (|Mapping| |#1| |#1|)) 194 T ELT) (($ $ (|Mapping| |#1| |#1|) . #45=((|NonNegativeInteger|))) 193 T ELT) (($ . #46=($)) 140 (|has| |#1| . #47=((|DifferentialSpace|))) ELT) (#48=($ $ (|NonNegativeInteger|)) 138 (|has| |#1| . #47#) ELT) (($ $ #49=(|Symbol|)) 136 (|has| |#1| . #50=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #49#)) 134 (|has| |#1| . #50#) ELT) (($ $ #49# . #51=(#52=(|NonNegativeInteger|))) 133 (|has| |#1| . #50#) ELT) (($ $ (|List| #49#) . #53=((|List| #52#))) 132 (|has| |#1| . #50#) ELT)) (|denominator| (($ $) 174 T ELT)) (|denom| ((|#1| $) 176 T ELT)) (|convert| ((#54=(|Pattern| (|Integer|)) . #55=($)) 182 (|has| |#1| (|ConvertibleTo| #54#)) ELT) ((#56=(|Pattern| (|Float|)) . #55#) 181 (|has| |#1| (|ConvertibleTo| #56#)) ELT) (((|InputForm|) . #55#) 159 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT) (((|Float|) . #55#) 158 (|has| |#1| . #57=((|RealConstant|))) ELT) (((|DoubleFloat|) . #55#) 157 (|has| |#1| . #57#) ELT)) (|conditionP| (((|Union| (|Vector| $) #9#) (|Matrix| $)) 168 (|and| #58=(|has| $ (|CharacteristicNonZero|)) (|has| |#1| . #6#)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #59=(|Fraction| #60=(|Integer|))) 84 T ELT) (($ |#1|) 207 T ELT) (($ #14#) 161 (|has| |#1| . #15#) ELT)) (|charthRoot| (((|Maybe| $) $) 160 (OR (|has| |#1| (|CharacteristicNonZero|)) (|and| #58# (|has| |#1| . #6#))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|ceiling| ((|#1| $) 170 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| (($ $) 153 (|has| |#1| . #10#) ELT)) (|Zero| (#11# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#1| |#1|)) 192 T ELT) (($ $ (|Mapping| |#1| |#1|) . #45#) 191 T ELT) (($ . #46#) 139 (|has| |#1| . #47#) ELT) (#48# 137 (|has| |#1| . #47#) ELT) (($ $ #49#) 135 (|has| |#1| . #50#) ELT) (($ $ (|List| #49#)) 131 (|has| |#1| . #50#) ELT) (($ $ #49# . #51#) 130 (|has| |#1| . #50#) ELT) (($ $ (|List| #49#) . #53#) 129 (|has| |#1| . #50#) ELT)) (>= (#61=((|Boolean|) $ $) 149 (|has| |#1| . #36#) ELT)) (> (#61# 151 (|has| |#1| . #36#) ELT)) (= (#1# 8 T ELT)) (<= (#61# 150 (|has| |#1| . #36#) ELT)) (< (#61# 152 (|has| |#1| . #36#) ELT)) (/ (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #60#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #62=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #59#) 86 T ELT) (($ #59# . #62#) 85 T ELT) (($ |#1| . #62#) 206 T ELT) (($ $ |#1|) 205 T ELT)))
+(((|QuotientFieldCategory| |#1|) (|Category|) (|IntegralDomain|)) (T |QuotientFieldCategory|))
+((/ (*1 *1 *2 *2) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|numerator| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|denominator| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|wholePart| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|EuclideanDomain|)))) (|fractionPart| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|EuclideanDomain|)))) (|random| (*1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)) (|ofCategory| *2 (|IntegralDomain|)))) (|ceiling| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|floor| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(|Join| (|Field|) (|Algebra| |t#1|) (|RetractableTo| |t#1|) (|FullyEvalableOver| |t#1|) (|DifferentialExtension| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (|Patternable| |t#1|) (|FullyPatternMatchable| |t#1|) (CATEGORY |domain| (SIGNATURE / ($ |t#1| |t#1|)) (SIGNATURE |numer| (|t#1| $)) (SIGNATURE |denom| (|t#1| $)) (SIGNATURE |numerator| ($ $)) (SIGNATURE |denominator| ($ $)) (IF (|has| |t#1| (|StepThrough|)) (ATTRIBUTE (|StepThrough|)) |%noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (PROGN (ATTRIBUTE (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|))))) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|) (IF (|has| |t#1| (|OrderedIntegralDomain|)) (ATTRIBUTE (|OrderedIntegralDomain|)) |%noBranch|) (IF (|has| |t#1| (|RealConstant|)) (ATTRIBUTE (|RealConstant|)) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Symbol|))) (ATTRIBUTE (|RetractableTo| (|Symbol|))) |%noBranch|) (IF (|has| |t#1| (|EuclideanDomain|)) (PROGN (SIGNATURE |wholePart| (|t#1| $)) (SIGNATURE |fractionPart| ($ $))) |%noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |random| ($)) (SIGNATURE |ceiling| (|t#1| $)) (SIGNATURE |floor| (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (|PolynomialFactorizationExplicit|)) (ATTRIBUTE (|PolynomialFactorizationExplicit|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| |#1|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) OR (|has| |#1| (|OrderedIntegralDomain|)) (|has| |#1| (|CharacteristicZero|))) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #2=(|Symbol|)) |has| |#1| (|RetractableTo| (|Symbol|))) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|Float|)) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DifferentialDomain| $) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DifferentialSpace|) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#1|) . T) ((|DivisionRing|) . T) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Field|) . T) ((|FullyEvalableOver| |#1|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyPatternMatchable| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| #3=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| |#1|) . T) ((|LinearSet| $) . T) ((|LinearlyExplicitRingOver| #3#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedAbelianMonoid|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedAbelianSemiGroup|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedCancellationAbelianMonoid|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedIntegralDomain|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedRing|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedSet|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|OrderedIntegralDomain|))) ((|OrderedType|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|OrderedIntegralDomain|))) ((|PartialDifferentialDomain| $ #4=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #4#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|PrincipalIdealDomain|) . T) ((|RealConstant|) |has| |#1| (|RealConstant|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| #2#) |has| |#1| (|RetractableTo| (|Symbol|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|StepThrough|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) 14 T ELT)))
+(((|QuotientFieldCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#2| |#1|) |#3|))) #1=(|IntegralDomain|) #1# (|QuotientFieldCategory| |#1|) (|QuotientFieldCategory| |#2|)) (T |QuotientFieldCategoryFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|IntegralDomain|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|QuotientFieldCategory| *6)) (|isDomain| *1 (|QuotientFieldCategoryFunctions2| *5 *6 *4 *2)) (|ofCategory| *4 (|QuotientFieldCategory| *5)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| ((#2# $) NIL T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL T ELT)) (|sample| #3=(($) NIL T CONST)) (|quadraticForm| (($ #4=(|SquareMatrix| |#1| |#2|)) 11 T ELT)) (|opposite?| #1#) (|matrix| ((#4# $) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) 16 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|Zero| #3#) (= #1#) (- (($ $) NIL T ELT) #5=(($ $ $) NIL T ELT)) (+ #5#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ (|NonNegativeInteger|) $) NIL T ELT) (($ (|Integer|) $) NIL T ELT)))
+(((|QuadraticForm| |#1| |#2|) (|Join| (|AbelianGroup|) (|Eltable| (|DirectProduct| |#1| |#2|) |#2|) (CATEGORY |domain| (SIGNATURE |quadraticForm| ($ #1=(|SquareMatrix| |#1| |#2|))) (SIGNATURE |matrix| (#1# $)))) (|PositiveInteger|) (|Field|)) (T |QuadraticForm|))
+((|quadraticForm| (*1 *1 *2) (AND #1=(|isDomain| *2 (|SquareMatrix| *3 *4)) #2=(|ofType| *3 (|PositiveInteger|)) #3=(|ofCategory| *4 (|Field|)) #4=(|isDomain| *1 (|QuadraticForm| *3 *4)))) (|matrix| (*1 *2 *1) (AND #1# #4# #2# #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 10 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|QuasiquoteAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $))))) (T |QuasiquoteAst|))
+((|expression| (*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|QuasiquoteAst|)))))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|sample| (#3=($) 6 T CONST)) (|rotate!| (($ $) 44 T ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 57 (|has| |#1| . #4=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 53 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 52 T ELT)) (|members| (((|List| |#1|) $) 51 T ELT)) (|member?| ((#5=(|Boolean|) |#1| $) 56 (|has| |#1| . #4#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|length| (((|NonNegativeInteger|) $) 43 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #6=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #7=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #6#) ELT)) (|front| ((|#1| $) 42 T ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #5# |#1|) $) 54 T ELT)) (|extract!| ((|#1| . #7#) 37 T ELT)) (|every?| ((#5# (|Mapping| #5# |#1|) . #8=($)) 49 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT)) (|eq?| ((#9=(|Boolean|) $ $) 10 T ELT)) (|enqueue!| ((|#1| |#1| $) 46 T ELT)) (|empty?| ((#9# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|dequeue!| ((|#1| $) 45 T ELT)) (|count| ((#10=(|NonNegativeInteger|) |#1| $) 55 (|has| |#1| . #4#) ELT) ((#10# (|Mapping| #5# |#1|) $) 50 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|back| ((|#1| $) 41 T ELT)) (|any?| ((#5# (|Mapping| #5# |#1|) . #8#) 48 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#10# $) 47 T ELT)))
+(((|QueueAggregate| |#1|) (|Category|) (|Type|)) (T |QueueAggregate|))
+((|enqueue!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|dequeue!| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|rotate!| (*1 *1 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|length| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|front| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|back| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|BagAggregate| |t#1|) (|FiniteAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |enqueue!| (|t#1| |t#1| $)) (SIGNATURE |dequeue!| (|t#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |front| (|t#1| $)) (SIGNATURE |back| (|t#1| $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|subtractIfCan| ((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|sample| (#8=($) NIL T CONST)) (|retractIfCan| (((|Union| #9=(|Integer|) . #10=(#7#)) . #11=($)) NIL #12=(|has| |#1| (|RetractableTo| #9#)) ELT) (#13=((|Union| #14=(|Fraction| #9#) . #10#) . #11#) NIL #15=(|has| |#1| (|RetractableTo| #14#)) ELT) (((|Union| |#1| . #10#) . #11#) NIL T ELT)) (|retract| ((#9# . #16=($)) NIL #12# ELT) (#17=(#14# . #16#) NIL #15# ELT) #18=(#19=(|#1| . #16#) NIL T ELT)) (|reducedSystem| ((#20=(|Matrix| #9#) . #21=(#22=(|Matrix| $))) NIL #23=(|has| |#1| (|LinearlyExplicitRingOver| #9#)) ELT) ((#24=(|Record| (|:| |mat| #20#) (|:| |vec| (|Vector| #9#))) . #25=(#22# #26=(|Vector| $))) NIL #23# ELT) ((#27=(|Record| (|:| |mat| #28=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #25#) NIL T ELT) ((#28# . #21#) NIL T ELT)) (|recip| ((#6# $) NIL T ELT)) (|real| (#19# 12 T ELT)) (|rationalIfCan| (#13# NIL #29=(|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (#5# NIL #29# ELT)) (|rational| (#17# NIL #29# ELT)) (|quatern| (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (|opposite?| #1#) (|one?| #4#) (|norm| #18#) (|min| #30=(#31=($ $ $) NIL #32=(|has| |#1| (|OrderedSet|)) ELT)) (|max| #30#) (|map| (($ #33=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|leftReducedSystem| ((#20# . #34=(#26#)) NIL #23# ELT) ((#24# . #35=(#26# $)) NIL #23# ELT) ((#27# . #35#) NIL T ELT) ((#28# . #34#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#36=($ $) NIL #37=(|has| |#1| (|Field|)) ELT)) (|imagK| (#19# 15 T ELT)) (|imagJ| (#19# 14 T ELT)) (|imagI| (#19# 13 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|eval| (($ $ #38=(|List| |#1|) #38#) NIL #39=(|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) NIL #39# ELT) (($ $ #40=(|Equation| |#1|)) NIL #39# ELT) (($ $ (|List| #40#)) NIL #39# ELT) (($ $ #41=(|List| #42=(|Symbol|)) #38#) NIL #43=(|has| |#1| (|InnerEvalable| #42# |#1|)) ELT) (($ $ #42# |#1|) NIL #43# ELT)) (|elt| (#44=($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|differentiate| #45=(($ $ #33#) NIL T ELT) #46=(($ $ #33# #47=(|NonNegativeInteger|)) NIL T ELT) #48=(#36# NIL #49=(|has| |#1| (|DifferentialSpace|)) ELT) #50=(#51=($ $ #47#) NIL #49# ELT) #52=(($ $ #42#) NIL #53=(|has| |#1| (|PartialDifferentialSpace| #42#)) ELT) #54=(($ $ #41#) NIL #53# ELT) #55=(($ $ #42# #47#) NIL #53# ELT) #56=(($ $ #41# (|List| #47#)) NIL #53# ELT)) (|convert| ((#57=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #57#)) ELT)) (|conjugate| #58=(#36# NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #9#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #14#) NIL (OR #37# #15#) ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#47#) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|abs| (#19# NIL (|has| |#1| (|RealNumberSystem|)) ELT)) (|Zero| (#8# 8 T CONST)) (|One| (#8# 10 T CONST)) (D #45# #46# #48# #50# #52# #54# #55# #56#) (>= #59=(#2# NIL #32# ELT)) (> #59#) (= #1#) (<= #59#) (< #59#) (- #58# #60=(#31# NIL T ELT)) (+ #60#) (** (($ $ #61=(|PositiveInteger|)) NIL T ELT) (#51# NIL T ELT) (($ $ #9#) NIL #37# ELT)) (* (($ #61# $) NIL T ELT) (($ #47# $) NIL T ELT) (($ #9# . #62=($)) NIL T ELT) (#31# 20 T ELT) (#44# NIL T ELT) (($ |#1| . #62#) NIL T ELT) (($ $ #14#) NIL #37# ELT) (($ #14# . #62#) NIL #37# ELT)))
+(((|Quaternion| |#1|) (|QuaternionCategory| |#1|) (|CommutativeRing|)) (T |Quaternion|))
+NIL
+((|zero?| (#1=(#2=(|Boolean|) $) 43 T ELT)) (|retractIfCan| (((|Union| #3=(|Integer|) #4="failed") $) NIL T ELT) (#5=((|Union| #6=(|Fraction| #3#) #4#) $) NIL T ELT) (((|Union| |#2| #4#) $) 46 T ELT)) (|retract| ((#3# $) NIL T ELT) (#7=(#6# $) NIL T ELT) (#8=(|#2| $) 44 T ELT)) (|rationalIfCan| (#5# 78 T ELT)) (|rational?| (#1# 72 T ELT)) (|rational| (#7# 76 T ELT)) (|one?| (#1# 42 T ELT)) (|norm| (#8# 22 T ELT)) (|map| (($ #9=(|Mapping| |#2| |#2|) $) 19 T ELT)) (|inv| (#10=($ $) 58 T ELT)) (|differentiate| (($ $ #9#) 35 T ELT) (($ $ #9# #11=(|NonNegativeInteger|)) NIL T ELT) (($ $ #12=(|Symbol|)) NIL T ELT) (($ $ #13=(|List| #12#)) NIL T ELT) (($ $ #12# #11#) NIL T ELT) (($ $ #13# (|List| #11#)) NIL T ELT) (#10# NIL T ELT) (($ $ #11#) NIL T ELT)) (|convert| (((|InputForm|) $) 67 T ELT)) (|conjugate| (#10# 17 T ELT)) (|coerce| (((|OutputForm|) $) 53 T ELT) (($ #3#) 39 T ELT) (($ |#2|) 37 T ELT) (($ #6#) NIL T ELT)) (|characteristic| ((#11#) 10 T CONST)) (|abs| (#8# 71 T ELT)) (= (#14=(#2# $ $) 26 T ELT)) (< (#14# 69 T ELT)) (- (#10# 30 T ELT) (#15=($ $ $) 29 T ELT)) (+ (#15# 27 T ELT)) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #11# $) NIL T ELT) (($ #3# $) 34 T ELT) (#15# NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ #6#) NIL T ELT) (($ #6# $) NIL T ELT)))
+(((|QuaternionCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| #1=(|Fraction| #2=(|Integer|)))) (SIGNATURE |differentiate| (|#1| |#1| #3=(|NonNegativeInteger|))) (SIGNATURE |differentiate| #4=(|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #5=(|List| #6=(|Symbol|)) (|List| #3#))) (SIGNATURE |differentiate| (|#1| |#1| #6# #3#)) (SIGNATURE |differentiate| (|#1| |#1| #5#)) (SIGNATURE |differentiate| (|#1| |#1| #6#)) (SIGNATURE < #7=(#8=(|Boolean|) |#1| |#1|)) (SIGNATURE * (|#1| #1# |#1|)) (SIGNATURE * (|#1| |#1| #1#)) (SIGNATURE |inv| #4#) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |rationalIfCan| #9=((|Union| #1# #10="failed") |#1|)) (SIGNATURE |rational| #11=(#1# |#1|)) (SIGNATURE |rational?| #12=(#8# |#1|)) (SIGNATURE |abs| #13=(|#2| |#1|)) (SIGNATURE |norm| #13#) (SIGNATURE |conjugate| #4#) (SIGNATURE |map| (|#1| #14=(|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #14# #3#)) (SIGNATURE |differentiate| (|#1| |#1| #14#)) (SIGNATURE |retractIfCan| ((|Union| |#2| #10#) |#1|)) (SIGNATURE |retract| #13#) (SIGNATURE |retract| #11#) (SIGNATURE |retractIfCan| #9#) (SIGNATURE |retract| (#2# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #2# #10#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |characteristic| (#3#) |constant|) (SIGNATURE |coerce| (|#1| #2#)) (SIGNATURE |one?| #12#) (SIGNATURE * #15=(|#1| |#1| |#1|)) (SIGNATURE - #15#) (SIGNATURE - #4#) (SIGNATURE * (|#1| #2# |#1|)) (SIGNATURE * (|#1| #3# |#1|)) (SIGNATURE |zero?| #12#) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + #15#) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = #7#)) (|QuaternionCategory| |#2|) (|CommutativeRing|)) (T |QuaternionCategory&|))
+((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|QuaternionCategory&| *3 *4)) (|ofCategory| *3 (|QuaternionCategory| *4)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|retractIfCan| (((|Union| #4=(|Integer|) . #5=("failed")) . #6=($)) 143 (|has| |#1| . #7=((|RetractableTo| #4#))) ELT) (((|Union| #8=(|Fraction| #4#) . #5#) . #6#) 141 (|has| |#1| . #9=((|RetractableTo| #8#))) ELT) (((|Union| |#1| . #5#) . #6#) 138 T ELT)) (|retract| ((#4# . #10=($)) 142 (|has| |#1| . #7#) ELT) ((#8# . #10#) 140 (|has| |#1| . #9#) ELT) ((|#1| . #10#) 139 T ELT)) (|reducedSystem| (((|Matrix| #11=(|Integer|)) . #12=(#13=(|Matrix| $))) 123 (|has| |#1| . #14=((|LinearlyExplicitRingOver| #11#))) ELT) (((|Record| (|:| |mat| (|Matrix| #11#)) (|:| |vec| (|Vector| #11#))) . #15=(#13# #16=(|Vector| $))) 122 (|has| |#1| . #14#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #15#) 121 T ELT) (((|Matrix| |#1|) . #12#) 120 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|real| ((|#1| $) 111 T ELT)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 107 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational?| (((|Boolean|) $) 109 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|rational| (((|Fraction| (|Integer|)) $) 108 (|has| |#1| (|IntegerNumberSystem|)) ELT)) (|quatern| (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|norm| ((|#1| $) 113 T ELT)) (|min| (#17=($ $ $) 95 (|has| |#1| . #18=((|OrderedSet|))) ELT)) (|max| (#17# 96 (|has| |#1| . #18#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 126 T ELT)) (|leftReducedSystem| (((|Matrix| #11#) . #19=(#16#)) 125 (|has| |#1| . #14#) ELT) (((|Record| (|:| |mat| (|Matrix| #11#)) (|:| |vec| (|Vector| #11#))) . #20=(#16# $)) 124 (|has| |#1| . #14#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #20#) 119 T ELT) (((|Matrix| |#1|) . #19#) 118 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 104 (|has| |#1| . #21=((|Field|))) ELT)) (|imagK| ((|#1| $) 114 T ELT)) (|imagJ| ((|#1| $) 115 T ELT)) (|imagI| ((|#1| $) 116 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 132 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|Equation| |#1|)) 130 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| (|Equation| |#1|))) 129 (|has| |#1| (|Evalable| |#1|)) ELT) (($ $ (|List| #22=(|Symbol|)) (|List| |#1|)) 128 (|has| |#1| (|InnerEvalable| #22# |#1|)) ELT) (($ $ #22# |#1|) 127 (|has| |#1| (|InnerEvalable| #22# |#1|)) ELT)) (|elt| (($ $ |#1|) 133 (|has| |#1| (|Eltable| |#1| |#1|)) ELT)) (|differentiate| (($ $ (|Mapping| |#1| |#1|)) 137 T ELT) (($ $ (|Mapping| |#1| |#1|) . #23=((|NonNegativeInteger|))) 136 T ELT) (($ . #24=($)) 94 (|has| |#1| . #25=((|DifferentialSpace|))) ELT) (#26=($ $ (|NonNegativeInteger|)) 92 (|has| |#1| . #25#) ELT) (($ $ #27=(|Symbol|)) 90 (|has| |#1| . #28=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #27#)) 88 (|has| |#1| . #28#) ELT) (($ $ #27# . #29=(#30=(|NonNegativeInteger|))) 87 (|has| |#1| . #28#) ELT) (($ $ (|List| #27#) . #31=((|List| #30#))) 86 (|has| |#1| . #28#) ELT)) (|convert| (((|InputForm|) $) 105 (|has| |#1| (|ConvertibleTo| (|InputForm|))) ELT)) (|conjugate| (($ $) 117 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 52 T ELT) (($ #8#) 82 (OR (|has| |#1| . #21#) (|has| |#1| . #9#)) ELT)) (|charthRoot| (((|Maybe| $) $) 106 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| ((|#1| $) 110 (|has| |#1| (|RealNumberSystem|)) ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#1| |#1|)) 135 T ELT) (($ $ (|Mapping| |#1| |#1|) . #23#) 134 T ELT) (($ . #24#) 93 (|has| |#1| . #25#) ELT) (#26# 91 (|has| |#1| . #25#) ELT) (($ $ #27#) 89 (|has| |#1| . #28#) ELT) (($ $ (|List| #27#)) 85 (|has| |#1| . #28#) ELT) (($ $ #27# . #29#) 84 (|has| |#1| . #28#) ELT) (($ $ (|List| #27#) . #31#) 83 (|has| |#1| . #28#) ELT)) (>= (#32=((|Boolean|) $ $) 97 (|has| |#1| . #18#) ELT)) (> (#32# 99 (|has| |#1| . #18#) ELT)) (= (#1# 8 T ELT)) (<= (#32# 98 (|has| |#1| . #18#) ELT)) (< (#32# 100 (|has| |#1| . #18#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #33=(|Integer|)) 103 (|has| |#1| . #21#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #34=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| . #34#) 53 T ELT) (($ $ #35=(|Fraction| #33#)) 102 (|has| |#1| . #21#) ELT) (($ #35# . #34#) 101 (|has| |#1| . #21#) ELT)))
+(((|QuaternionCategory| |#1|) (|Category|) (|CommutativeRing|)) (T |QuaternionCategory|))
+((|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagI| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagJ| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagK| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|quatern| (*1 *1 *2 *2 *2 *2) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|real| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|abs| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|RealNumberSystem|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))))
+(|Join| (|Algebra| |t#1|) (|FullyRetractableTo| |t#1|) (|DifferentialExtension| |t#1|) (|FullyEvalableOver| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (CATEGORY |domain| (SIGNATURE |conjugate| ($ $)) (SIGNATURE |imagI| (|t#1| $)) (SIGNATURE |imagJ| (|t#1| $)) (SIGNATURE |imagK| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |quatern| ($ |t#1| |t#1| |t#1| |t#1|)) (SIGNATURE |real| (|t#1| $)) (IF (|has| |t#1| (|EntireRing|)) (ATTRIBUTE (|EntireRing|)) |%noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |%noBranch|) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|DivisionRing|)) |%noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |%noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |%noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |abs| (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Field|)) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DifferentialDomain| $) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DifferentialSpace|) OR (|has| |#1| (|DifferentialSpace|)) (|has| |#1| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#1|) . T) ((|DivisionRing|) |has| |#1| (|Field|)) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|EntireRing|) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|FullyEvalableOver| |#1|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Field|)) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Field|)) ((|LeftModule| #2=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Field|)) ((|LinearSet| |#1|) . T) ((|LinearlyExplicitRingOver| #2#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) |has| |#1| (|Field|)) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #3#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Field|)) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|RightModule| #1#) |has| |#1| (|Field|)) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) 16 T ELT)))
+(((|QuaternionCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) (|QuaternionCategory| |#2|) #1=(|CommutativeRing|) (|QuaternionCategory| |#4|) #1#) (T |QuaternionCategoryFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|CommutativeRing|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|QuaternionCategory| *6)) (|isDomain| *1 (|QuaternionCategoryFunctions2| *4 *5 *2 *6)) (|ofCategory| *4 (|QuaternionCategory| *5)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|sample| (#5=($) NIL T CONST)) (|rotate!| (#6=($ $) 24 T ELT)) (|reduce| ((|#1| #7=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #7# $ |#1|) NIL T ELT) ((|#1| #7# $) NIL T ELT)) (|queue| (#8=($ #9=(|List| |#1|)) 34 T ELT)) (|members| ((#9# $) NIL T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| #10=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #10#) (|length| (#11=(#12=(|NonNegativeInteger|) $) 27 T ELT)) (|latex| (((|String|) $) NIL #13=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| (#14=(|#1| $) 29 T ELT)) (|insert!| (($ |#1| $) 18 T ELT)) (|hash| (((|SingleInteger|) $) NIL #13# ELT)) (|front| (#14# 28 T ELT)) (|find| (((|Union| |#1| "failed") #15=(|Mapping| #3# |#1|) $) NIL T ELT)) (|extract!| (#14# 23 T ELT)) (|every?| #16=((#3# #15# $) NIL T ELT)) (|eval| (($ $ (|List| #17=(|Equation| |#1|))) NIL #18=(AND (|has| |#1| (|Evalable| |#1|)) #13#) ELT) (($ $ #17#) NIL #18# ELT) (($ $ |#1| |#1|) NIL #18# ELT) (($ $ #9# #9#) NIL #18# ELT)) (|eq?| (#2# NIL T ELT)) (|enqueue!| ((|#1| |#1| $) 17 T ELT)) (|empty?| ((#3# $) 19 T ELT)) (|empty| (#5# NIL T ELT)) (|dequeue!| (#14# 22 T ELT)) (|count| ((#12# |#1| $) NIL #4# ELT) ((#12# #15# $) NIL T ELT)) (|copy| (#6# NIL T ELT)) (|coerce| ((#19=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #19#)) ELT)) (|before?| #1#) (|bag| (#8# NIL T ELT)) (|back| (#14# 31 T ELT)) (|any?| #16#) (= #1#) (|#| (#11# NIL T ELT)))
+(((|Queue| |#1|) (|Join| (|QueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |queue| ($ (|List| |#1|))))) (|SetCategory|)) (T |Queue|))
+((|queue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Queue| *3)))))
+((|sqrt| (($ $) 12 T ELT)) (|nthRoot| (($ $ (|Integer|)) 13 T ELT)))
+(((|RadicalCategory&| |#1|) (CATEGORY |package| (SIGNATURE |sqrt| (|#1| |#1|)) (SIGNATURE |nthRoot| (|#1| |#1| (|Integer|)))) (|RadicalCategory|)) (T |RadicalCategory&|))
+NIL
+((|sqrt| (($ $) 6 T ELT)) (|nthRoot| (($ $ (|Integer|)) 7 T ELT)) (** (($ $ (|Fraction| (|Integer|))) 8 T ELT)))
+(((|RadicalCategory|) (|Category|)) (T |RadicalCategory|))
+((** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RadicalCategory|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|nthRoot| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RadicalCategory|)) (|isDomain| *2 (|Integer|)))) (|sqrt| (*1 *1 *1) (|ofCategory| *1 (|RadicalCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |sqrt| ($ $)) (SIGNATURE |nthRoot| ($ $ (|Integer|))) (SIGNATURE ** ($ $ (|Fraction| (|Integer|))))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|yCoordinates| (#6=((|Record| (|:| |num| #7=(|Vector| |#2|)) #8=(|:| |den| |#2|)) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| #10=(|Fraction| |#2|) #11=(|Field|)) ELT)) (|unitCanonical| #12=(#13=($ $) NIL #9# ELT)) (|unit?| #14=(#5# NIL #9# ELT)) (|traceMatrix| #15=((#16=(|Matrix| #10#) #17=(|Vector| $)) NIL T ELT) (#18=(#16#) NIL T ELT)) (|trace| #19=((#10# $) NIL T ELT)) (|tableForDiscreteLogarithm| (((|Table| #20=(|PositiveInteger|) #21=(|NonNegativeInteger|)) #22=(|Integer|)) NIL #23=(|has| #10# (|FiniteFieldCategory|)) ELT)) (|subtractIfCan| (#24=(#25=(|Union| $ #26="failed") $ $) NIL T ELT)) (|squareFreePart| #12#) (|squareFree| #27=(((|Factored| $) $) NIL #9# ELT)) (|sizeLess?| #28=(#2# NIL #9# ELT)) (|size| (#29=(#21#) NIL #30=(|has| #10# #31=(|Finite|)) ELT)) (|singularAtInfinity?| #32=(#33=(#3#) NIL T ELT)) (|singular?| (#34=(#3# |#1|) 162 T ELT) (#35=(#3# |#2|) 166 T ELT)) (|sample| #36=(#37=($) NIL T CONST)) (|retractIfCan| (((|Union| #22# . #38=(#26#)) . #39=($)) NIL #40=(|has| #10# (|RetractableTo| #22#)) ELT) (((|Union| #41=(|Fraction| #22#) . #38#) . #39#) NIL #42=(|has| #10# (|RetractableTo| #41#)) ELT) (((|Union| #10# . #38#) . #39#) NIL T ELT)) (|retract| ((#22# . #43=($)) NIL #40# ELT) ((#41# . #43#) NIL #42# ELT) #19#) (|represents| (($ #44=(|Vector| #10#) #17#) NIL T ELT) (#45=($ #44#) 79 T ELT) (#46=($ #7# |#2|) NIL T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #23# ELT)) (|rem| #47=(#48=($ $ $) NIL #9# ELT)) (|regularRepresentation| ((#16# $ #17#) NIL T ELT) ((#16# $) NIL T ELT)) (|reducedSystem| ((#49=(|Matrix| #22#) . #50=(#51=(|Matrix| $))) NIL #52=(|has| #10# (|LinearlyExplicitRingOver| #22#)) ELT) ((#53=(|Record| (|:| |mat| #49#) (|:| |vec| (|Vector| #22#))) . #54=(#51# #17#)) NIL #52# ELT) ((#55=(|Record| (|:| |mat| #16#) (|:| |vec| #44#)) . #54#) NIL T ELT) ((#16# . #50#) NIL T ELT)) (|reduceBasisAtInfinity| #56=((#17# #17#) NIL T ELT)) (|reduce| (#57=($ |#3|) 73 T ELT) ((#25# (|Fraction| |#3|)) NIL #9# ELT)) (|recip| ((#25# $) NIL T ELT)) (|rationalPoints| (((|List| (|List| |#1|))) NIL (|has| |#1| #31#) ELT)) (|rationalPoint?| ((#3# |#1| |#1|) NIL T ELT)) (|rank| ((#20#) NIL T ELT)) (|random| (#37# NIL #30# ELT)) (|ramifiedAtInfinity?| #32#) (|ramified?| (#34# 61 T ELT) (#35# 164 T ELT)) (|quo| #47#) (|principalIdeal| (((|Record| (|:| |coef| #58=(|List| $)) #59=(|:| |generator| $)) #58#) NIL #9# ELT)) (|primitivePart| #60=(#13# NIL T ELT)) (|primitiveElement| #61=(#37# NIL #23# ELT)) (|primitive?| (#5# NIL #23# ELT)) (|primeFrobenius| (#62=($ $ #21#) NIL #23# ELT) #63=(#13# NIL #23# ELT)) (|prime?| #14#) (|order| (#64=(#20# $) NIL #23# ELT) (((|OnePointCompletion| #20#) $) NIL #23# ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfComponents| #65=(#29# NIL T ELT)) (|normalizeAtInfinity| #56#) (|norm| #19#) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) #66=(|Symbol|)) NIL (|has| |#1| #11#) ELT)) (|nextItem| (#67=((|Maybe| $) $) NIL #23# ELT)) (|multiEuclidean| (((|Union| #58# #26#) #58# $) NIL #9# ELT)) (|minimalPolynomial| (#68=(|#3| $) NIL #9# ELT)) (|lookup| (#64# NIL #30# ELT)) (|lift| #69=(#68# NIL T ELT)) (|leftReducedSystem| ((#49# #17#) NIL #52# ELT) ((#53# . #70=(#17# $)) NIL #52# ELT) ((#55# . #70#) NIL T ELT) #15#) (|lcm| #71=(($ #58#) NIL #9# ELT) #47#) (|latex| (((|String|) $) NIL T ELT)) (|inverseIntegralMatrixAtInfinity| (#18# 57 T ELT)) (|inverseIntegralMatrix| (#18# 56 T ELT)) (|inv| #12#) (|integralRepresents| (#46# 80 T ELT)) (|integralMatrixAtInfinity| (#18# 55 T ELT)) (|integralMatrix| (#18# 54 T ELT)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) #8#) #72=(|Mapping| |#2| |#2|)) 95 T ELT)) (|integralCoordinates| (#6# 86 T ELT)) (|integralBasisAtInfinity| (#73=(#17#) 51 T ELT)) (|integralBasis| (#73# 50 T ELT)) (|integralAtInfinity?| #4#) (|integral?| #4# ((#3# $ |#1|) NIL T ELT) ((#3# $ |#2|) NIL T ELT)) (|init| (#37# NIL #23# CONST)) (|index| (($ #20#) NIL #30# ELT)) (|hyperelliptic| (#74=((|Union| |#2| #26#)) 70 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|genus| #65#) (|generator| (#37# NIL T ELT)) (|gcdPolynomial| ((#75=(|SparseUnivariatePolynomial| $) #75# #75#) NIL #9# ELT)) (|gcd| #71# #47#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #22#) (|:| |exponent| #22#)))) NIL #23# ELT)) (|factor| #27#) (|extendedEuclidean| (((|Union| (|Record| #76=(|:| |coef1| $) #77=(|:| |coef2| $)) #26#) $ $ $) NIL #9# ELT) (((|Record| #76# #77# #59#) $ $) NIL #9# ELT)) (|exquo| (#24# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #58#) #58# $) NIL #9# ELT)) (|euclideanSize| (#78=(#21# $) NIL #9# ELT)) (|elt| ((|#1| $ |#1| |#1|) NIL T ELT)) (|elliptic| (#74# 68 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #9# ELT)) (|discriminant| ((#10# #17#) NIL T ELT) ((#10#) 47 T ELT)) (|discreteLog| (#78# NIL #23# ELT) (((|Union| #21# #26#) $ $) NIL #23# ELT)) (|differentiate| #79=(($ $ #80=(|Mapping| #10# #10#)) NIL #9# ELT) #81=(($ $ #80# #21#) NIL #9# ELT) (($ $ #72#) NIL T ELT) #82=(($ $ #83=(|List| #66#) (|List| #21#)) NIL #84=(OR (AND #9# (|has| #10# (|PartialDifferentialRing| #66#))) (AND #9# (|has| #10# (|PartialDifferentialSpace| #66#)))) ELT) #85=(($ $ #66# #21#) NIL #84# ELT) #86=(($ $ #83#) NIL #84# ELT) #87=(($ $ #66#) NIL #84# ELT) #88=(#62# NIL #89=(OR (AND (|has| #10# (|DifferentialRing|)) #9#) (AND (|has| #10# (|DifferentialSpace|)) #9#) #23#) ELT) #90=(#13# NIL #89# ELT)) (|derivationCoordinates| ((#16# #17# #80#) NIL #9# ELT)) (|definingPolynomial| ((|#3|) 58 T ELT)) (|createPrimitiveElement| #61#) (|coordinates| ((#44# $ #17#) NIL T ELT) ((#16# #17# #17#) NIL T ELT) (#91=(#44# $) 81 T ELT) #15#) (|convert| (#91# NIL T ELT) (#45# NIL T ELT) #69# (#57# NIL T ELT)) (|conditionP| (((|Union| #17# #26#) #51#) NIL #23# ELT)) (|complementaryBasis| #56#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #22#) NIL T ELT) (($ #10#) NIL T ELT) (($ #41#) NIL (OR #9# #42#) ELT) #12#) (|charthRoot| #63# (#67# NIL (|has| #10# (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| #69#) (|characteristic| (#29# NIL T CONST)) (|branchPointAtInfinity?| (#33# 65 T ELT)) (|branchPoint?| (#34# 167 T ELT) (#35# 168 T ELT)) (|before?| #1#) (|basis| (#73# NIL T ELT)) (|associates?| #28#) (|annihilate?| #1#) (|algSplitSimple| (((|Record| (|:| |num| $) #8# (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ #72#) NIL T ELT)) (|absolutelyIrreducible?| #32#) (|Zero| #36#) (|One| #36#) (D #79# #81# #82# #85# #86# #87# #88# #90#) (= #1#) (/ #47#) (- #60# #92=(#48# NIL T ELT)) (+ #92#) (** (($ $ #20#) NIL T ELT) (#62# NIL T ELT) (($ $ #22#) NIL #9# ELT)) (* (($ #20# $) NIL T ELT) (($ #21# $) NIL T ELT) (($ #22# . #93=($)) NIL T ELT) #92# (($ $ #10#) NIL T ELT) (($ #10# . #93#) NIL T ELT) (($ #41# . #93#) NIL #9# ELT) (($ $ #41#) NIL #9# ELT)))
+(((|RadicalFunctionField| |#1| |#2| |#3| |#4| |#5|) (|FunctionFieldCategory| |#1| |#2| |#3|) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| #1=(|Fraction| |#2|)) #1# (|NonNegativeInteger|)) (T |RadicalFunctionField|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholeRagits| (#6=(#7=(|List| #8=(|Integer|)) $) 73 T ELT)) (|wholeRadix| (($ #7#) 81 T ELT)) (|wholePart| (#9=(#8# $) 48 #10=(|has| #8# (|EuclideanDomain|)) ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #11=(#12=($ $) NIL T ELT)) (|unit?| #4#) (|subtractIfCan| #13=((#14=(|Union| $ #15="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #16=(((|Factored| #17=(|SparseUnivariatePolynomial| $)) #17#) NIL #18=(|has| #8# (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #11#) (|squareFree| #19=(((|Factored| $) $) NIL T ELT)) (|solveLinearPolynomialEquation| (((|Union| #20=(|List| #17#) #15#) #20# #17#) NIL #18# ELT)) (|sizeLess?| #1#) (|sign| (#9# NIL #21=(|has| #8# (|OrderedIntegralDomain|)) ELT)) (|sample| (#22=($) NIL T CONST)) (|retractIfCan| (#23=((|Union| #8# . #24=(#15#)) $) 60 T ELT) (((|Union| #25=(|Symbol|) . #24#) $) NIL #26=(|has| #8# (|RetractableTo| #25#)) ELT) (((|Union| #27=(|Fraction| #8#) . #24#) $) 57 #28=(|has| #8# (|RetractableTo| #8#)) ELT) (#23# 60 #28# ELT)) (|retract| (#9# NIL T ELT) ((#25# $) NIL #26# ELT) (#29=(#27# $) NIL #28# ELT) (#9# NIL #28# ELT)) (|rem| #30=(#31=($ $ $) NIL T ELT)) (|reducedSystem| (#32=(#33=(|Matrix| #8#) #34=(|Matrix| $)) NIL #35=(|has| #8# (|LinearlyExplicitRingOver| #8#)) ELT) (#36=(#37=(|Record| (|:| |mat| #33#) (|:| |vec| (|Vector| #8#))) #34# #38=(|Vector| $)) NIL #35# ELT) (#36# NIL T ELT) (#32# NIL T ELT)) (|recip| ((#14# $) NIL T ELT)) (|random| (#22# NIL #39=(|has| #8# (|IntegerNumberSystem|)) ELT)) (|quo| #30#) (|principalIdeal| (((|Record| (|:| |coef| #40=(|List| $)) #41=(|:| |generator| $)) #40#) NIL T ELT)) (|prime?| #4#) (|prefixRagits| (#6# 79 T ELT)) (|positive?| #42=(#5# NIL #21# ELT)) (|patternMatch| ((#43=(|PatternMatchResult| #8# . #44=($)) $ #45=(|Pattern| #8#) #43#) NIL (|has| #8# (|PatternMatchable| #8#)) ELT) ((#46=(|PatternMatchResult| #47=(|Float|) . #44#) $ #48=(|Pattern| #47#) #46#) NIL (|has| #8# (|PatternMatchable| #47#)) ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #11#) (|numer| (#9# 45 T ELT)) (|nextItem| (#49=((|Maybe| $) $) NIL #50=(|has| #8# (|StepThrough|)) ELT)) (|negative?| #42#) (|multiEuclidean| (((|Union| #40# #15#) #40# $) NIL T ELT)) (|min| #51=(#31# NIL #52=(|has| #8# (|OrderedSet|)) ELT)) (|max| #51#) (|map| (($ #53=(|Mapping| #8# #8#) $) NIL T ELT)) (|leftReducedSystem| (#54=(#33# #38#) NIL #35# ELT) (#55=(#37# #38# $) NIL #35# ELT) (#55# NIL T ELT) (#54# NIL T ELT)) (|lcm| #30# #56=(($ #40#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #11#) (|init| (#22# NIL #50# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#17# #17# #17#) NIL T ELT)) (|gcd| #30# #56#) (|fractionPart| (#12# NIL #10# ELT) (#29# 50 T ELT)) (|fractRagits| (((|Stream| #8#) $) 78 T ELT)) (|fractRadix| (($ #7# #7#) 82 T ELT)) (|floor| (#9# 64 #39# ELT)) (|factorSquareFreePolynomial| #16#) (|factorPolynomial| #16#) (|factor| #19#) (|extendedEuclidean| (((|Record| #57=(|:| |coef1| $) #58=(|:| |coef2| $) #41#) $ $) NIL T ELT) (((|Union| (|Record| #57# #58#) #15#) $ $ $) NIL T ELT)) (|exquo| #13#) (|expressIdealMember| (((|Maybe| #40#) #40# $) NIL T ELT)) (|eval| (($ $ #7# #7#) NIL #59=(|has| #8# (|Evalable| #8#)) ELT) (($ $ #8# #8#) NIL #59# ELT) (($ $ #60=(|Equation| #8#)) NIL #59# ELT) (($ $ (|List| #60#)) NIL #59# ELT) (($ $ #61=(|List| #25#) #7#) NIL #62=(|has| #8# (|InnerEvalable| #25# #8#)) ELT) (($ $ #25# #8#) NIL #62# ELT)) (|euclideanSize| ((#63=(|NonNegativeInteger|) $) NIL T ELT)) (|elt| (#64=($ $ #8#) NIL (|has| #8# (|Eltable| #8# #8#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #65=(($ $ #53#) NIL T ELT) #66=(($ $ #53# #63#) NIL T ELT) #67=(($ $ #25#) NIL #68=(|has| #8# (|PartialDifferentialSpace| #25#)) ELT) #69=(($ $ #61#) NIL #68# ELT) #70=(($ $ #25# #63#) NIL #68# ELT) #71=(($ $ #61# (|List| #63#)) NIL #68# ELT) (#12# 15 #72=(|has| #8# (|DifferentialSpace|)) ELT) #73=(#74=($ $ #63#) NIL #72# ELT)) (|denominator| #11#) (|denom| (#9# 47 T ELT)) (|cycleRagits| (#6# 80 T ELT)) (|convert| ((#45# . #75=($)) NIL (|has| #8# (|ConvertibleTo| #45#)) ELT) ((#48# . #75#) NIL (|has| #8# (|ConvertibleTo| #48#)) ELT) ((#76=(|InputForm|) . #75#) NIL (|has| #8# (|ConvertibleTo| #76#)) ELT) ((#47# . #75#) NIL #77=(|has| #8# (|RealConstant|)) ELT) (((|DoubleFloat|) . #75#) NIL #77# ELT)) (|conditionP| (((|Union| #38# #15#) #34#) NIL #78=(AND (|has| $ #79=(|CharacteristicNonZero|)) #18#) ELT)) (|coerce| (((|OutputForm|) $) 108 T ELT) #80=(($ #8#) 51 T ELT) #11# (($ #27#) 27 T ELT) #80# (($ #25#) NIL #26# ELT) (#29# 25 T ELT)) (|charthRoot| (#49# NIL (OR #78# (|has| #8# #79#)) ELT)) (|characteristic| ((#63#) 13 T CONST)) (|ceiling| (#9# 62 #39# ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|abs| (#12# NIL #21# ELT)) (|Zero| (#22# 14 T CONST)) (|One| (#22# 17 T CONST)) (D #65# #66# #67# #69# #70# #71# (#12# NIL #72# ELT) #73#) (>= #81=(#2# NIL #52# ELT)) (> #81#) (= (#2# 21 T ELT)) (<= #81#) (< (#2# 40 #52# ELT)) (/ (#31# 36 T ELT) (($ #8# #8#) 38 T ELT)) (- (#12# 23 T ELT) (#31# 30 T ELT)) (+ (#31# 28 T ELT)) (** (($ $ #82=(|PositiveInteger|)) NIL T ELT) (#74# NIL T ELT) #83=(#64# NIL T ELT)) (* (($ #82# $) NIL T ELT) (($ #63# $) NIL T ELT) #84=(($ #8# $) 32 T ELT) (#31# 34 T ELT) (($ $ #27#) NIL T ELT) (($ #27# $) NIL T ELT) #84# #83#))
+(((|RadixExpansion| |#1|) (|Join| (|QuotientFieldCategory| #1=(|Integer|)) (|CoercibleTo| #2=(|Fraction| #1#)) (CATEGORY |domain| (SIGNATURE |fractionPart| (#2# $)) (SIGNATURE |wholeRagits| #3=(#4=(|List| #1#) $)) (SIGNATURE |fractRagits| ((|Stream| #1#) $)) (SIGNATURE |prefixRagits| #3#) (SIGNATURE |cycleRagits| #3#) (SIGNATURE |wholeRadix| ($ #4#)) (SIGNATURE |fractRadix| ($ #4# #4#)))) #1#) (T |RadixExpansion|))
+((|fractionPart| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Fraction| #2=(|Integer|))) #3=(|isDomain| *1 (|RadixExpansion| *3)) #4=(|ofType| *3 #2#))) (|wholeRagits| #1# #5=(AND (|isDomain| *2 (|List| #2#)) #3# #4#)) (|fractRagits| #1# (AND (|isDomain| *2 (|Stream| #2#)) #3# #4#)) (|prefixRagits| #1# #5#) (|cycleRagits| #1# #5#) (|wholeRadix| (*1 *1 *2) #5#) (|fractRadix| (*1 *1 *2 *2) #5#))
+((|radix| (((|Any|) (|Fraction| #1=(|Integer|)) #1#) 9 T ELT)))
+(((|RadixUtilities|) (CATEGORY |package| (SIGNATURE |radix| ((|Any|) (|Fraction| #1=(|Integer|)) #1#)))) (T |RadixUtilities|))
+((|radix| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| #1=(|Integer|))) (|isDomain| *4 #1#) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|RadixUtilities|)))))
+((|size| (#1=(#2=(|Integer|)) 21 T ELT)) (|seed| (#1# 26 T ELT)) (|reseed| (((|Void|) #2#) 24 T ELT)) (|randnum| ((#2# #2#) 27 T ELT) (#1# 20 T ELT)))
+(((|RandomNumberSource|) (CATEGORY |package| (SIGNATURE |randnum| #1=(#2=(|Integer|))) (SIGNATURE |size| #1#) (SIGNATURE |randnum| (#2# #2#)) (SIGNATURE |reseed| ((|Void|) #2#)) (SIGNATURE |seed| #1#))) (T |RandomNumberSource|))
+((|seed| #1=(*1 *2) #2=(AND (|isDomain| *2 #3=(|Integer|)) #4=(|isDomain| *1 (|RandomNumberSource|)))) (|reseed| (*1 *2 *3) (AND (|isDomain| *3 #3#) (|isDomain| *2 (|Void|)) #4#)) (|randnum| (*1 *2 *2) #2#) (|size| #1# #2#) (|randnum| #1# #2#))
+((|factorSquareFree| (#1=((|Factored| |#1|) |#1|) 43 T ELT)) (|factor| (#1# 41 T ELT)))
+(((|RationalFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| #1=((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| #1#)) (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (T |RationalFactorize|))
+((|factorSquareFree| #1=(*1 *2 *3) #2=(AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))))) (|factor| #1# #2#))
+((|rationalIfCan| (((|Union| #1=(|Fraction| (|Integer|)) "failed") |#1|) 15 T ELT)) (|rational?| (((|Boolean|) |#1|) 14 T ELT)) (|rational| ((#1# |#1|) 10 T ELT)))
+(((|RationalRetractions| |#1|) (CATEGORY |package| (SIGNATURE |rational| (#1=(|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |rationalIfCan| ((|Union| #1# "failed") |#1|))) (|RetractableTo| #1#)) (T |RationalRetractions|))
+((|rationalIfCan| #1=(*1 *2 *3) (|partial| AND #2=(|isDomain| *2 #3=(|Fraction| (|Integer|))) #4=(|isDomain| *1 (|RationalRetractions| *3)) #5=(|ofCategory| *3 (|RetractableTo| *2)))) (|rational?| #1# (AND (|isDomain| *2 (|Boolean|)) #4# (|ofCategory| *3 (|RetractableTo| #3#)))) (|rational| #1# (AND #2# #4# #5#)))
+((|setelt| ((|#2| $ #1="value" |#2|) 12 T ELT)) (|elt| ((|#2| $ #1#) 10 T ELT)) (|child?| (((|Boolean|) $ $) 18 T ELT)))
+(((|RecursiveAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |setelt| (|#2| |#1| #1="value" |#2|)) (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| #1#))) (|RecursiveAggregate| |#2|) (|Type|)) (T |RecursiveAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ "value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ (|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sample| (#3=($) 6 T CONST)) (|nodes| (((|List| $) $) 45 T ELT)) (|node?| (((|Boolean|) $ $) 37 (|has| |#1| (|BasicType|)) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #4=((|SetCategory|))) ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #4#) ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #4#)) ELT)) (|eq?| ((#5=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#5# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|elt| ((|#1| $ "value") 42 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|cyclic?| (((|Boolean|) $) 41 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (((|List| $) $) 46 T ELT)) (|child?| (((|Boolean|) $ $) 38 (|has| |#1| (|BasicType|)) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|RecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |RecursiveAggregate|))
+((|children| (*1 *2 *1) (AND (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursiveAggregate| *3)))) (|nodes| (*1 *2 *1) (AND (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursiveAggregate| *3)))) (|leaf?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|value| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "value") (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cyclic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|leaves| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *3)))) (|distance| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Integer|)))) (|child?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|)))) (|node?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|)))) (|setchildren!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 "value") (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setvalue!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |children| ((|List| $) $)) (SIGNATURE |nodes| ((|List| $) $)) (SIGNATURE |leaf?| ((|Boolean|) $)) (SIGNATURE |value| (|t#1| $)) (SIGNATURE |elt| (|t#1| $ "value")) (SIGNATURE |cyclic?| ((|Boolean|) $)) (SIGNATURE |leaves| ((|List| |t#1|) $)) (SIGNATURE |distance| ((|Integer|) $ $)) (IF (|has| |t#1| (|BasicType|)) (PROGN (SIGNATURE |child?| ((|Boolean|) $ $)) (SIGNATURE |node?| ((|Boolean|) $ $))) |%noBranch|) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (PROGN (SIGNATURE |setchildren!| ($ $ (|List| $))) (SIGNATURE |setelt| (|t#1| $ "value" |t#1|)) (SIGNATURE |setvalue!| (|t#1| $ |t#1|))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((|sqrt| (($ $) 9 T ELT) (#1=($ $ #2=(|PositiveInteger|)) 49 T ELT) (($ #3=(|Fraction| #4=(|Integer|))) 13 T ELT) (($ #4#) 15 T ELT)) (|rootOf| ((#5=(|Union| $ "failed") #6=(|SparseUnivariatePolynomial| $) #2# (|OutputForm|)) 24 T ELT) ((#5# #6# #2#) 32 T ELT)) (|nthRoot| (#7=($ $ #4#) 58 T ELT)) (|characteristic| ((#8=(|NonNegativeInteger|)) 18 T CONST)) (|allRootsOf| ((#9=(|List| $) #6#) NIL T ELT) ((#9# (|SparseUnivariatePolynomial| #3#)) 63 T ELT) ((#9# (|SparseUnivariatePolynomial| #4#)) 68 T ELT) ((#9# (|Polynomial| $)) 72 T ELT) ((#9# (|Polynomial| #3#)) 76 T ELT) ((#9# (|Polynomial| #4#)) 80 T ELT)) (** (#1# NIL T ELT) (($ $ #8#) NIL T ELT) (#7# NIL T ELT) (($ $ #3#) 53 T ELT)))
+(((|RealClosedField&| |#1|) (CATEGORY |package| (SIGNATURE |sqrt| (|#1| #1=(|Integer|))) (SIGNATURE |sqrt| (|#1| #2=(|Fraction| #1#))) (SIGNATURE |sqrt| #3=(|#1| |#1| #4=(|PositiveInteger|))) (SIGNATURE |allRootsOf| (#5=(|List| |#1|) (|Polynomial| #1#))) (SIGNATURE |allRootsOf| (#5# (|Polynomial| #2#))) (SIGNATURE |allRootsOf| (#5# (|Polynomial| |#1|))) (SIGNATURE |allRootsOf| (#5# (|SparseUnivariatePolynomial| #1#))) (SIGNATURE |allRootsOf| (#5# (|SparseUnivariatePolynomial| #2#))) (SIGNATURE |allRootsOf| (#5# #6=(|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |rootOf| (#7=(|Union| |#1| "failed") #6# #4#)) (SIGNATURE |rootOf| (#7# #6# #4# (|OutputForm|))) (SIGNATURE ** (|#1| |#1| #2#)) (SIGNATURE |nthRoot| #8=(|#1| |#1| #1#)) (SIGNATURE |sqrt| (|#1| |#1|)) (SIGNATURE ** #8#) (SIGNATURE |characteristic| (#9=(|NonNegativeInteger|)) |constant|) (SIGNATURE ** (|#1| |#1| #9#)) (SIGNATURE ** #3#)) (|RealClosedField|)) (T |RealClosedField&|))
+((|characteristic| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|RealClosedField&| *3)) (|ofCategory| *3 (|RealClosedField|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 111 T ELT)) (|unitCanonical| (($ $) 112 T ELT)) (|unit?| ((#3=(|Boolean|) $) 114 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 131 T ELT)) (|squareFree| (#4=((|Factored| $) $) 132 T ELT)) (|sqrt| (($ $) 95 T ELT) (($ $ (|PositiveInteger|)) 81 T ELT) (($ (|Fraction| (|Integer|))) 80 T ELT) (($ (|Integer|)) 79 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 122 T ELT)) (|sign| (((|Integer|) $) 148 T ELT)) (|sample| (#5=($) 23 T CONST)) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) 89 T ELT) (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) 88 T ELT)) (|retractIfCan| (((|Union| #6=(|Integer|) . #7=("failed")) . #8=($)) 108 (|has| #9=(|Fraction| (|Integer|)) . #10=((|RetractableTo| #11=(|Integer|)))) ELT) (((|Union| #12=(|Fraction| #6#) . #7#) . #8#) 106 (|has| #9# . #13=((|RetractableTo| (|Fraction| #11#)))) ELT) (((|Union| #9# . #7#) . #8#) 103 T ELT)) (|retract| ((#6# . #14=($)) 107 (|has| #9# . #10#) ELT) ((#12# . #14#) 105 (|has| #9# . #13#) ELT) ((#9# . #14#) 104 T ELT)) (|rename!| (($ $ (|OutputForm|)) 78 T ELT)) (|rename| (($ $ (|OutputForm|)) 77 T ELT)) (|rem| (#15=($ $ $) 126 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#15# 125 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #16=(|List| $)) (|:| |generator| $)) #16#) 120 T ELT)) (|prime?| (((|Boolean|) $) 133 T ELT)) (|positive?| (((|Boolean|) $) 146 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #17=(|Integer|)) 94 T ELT)) (|negative?| (((|Boolean|) $) 147 T ELT)) (|multiEuclidean| (((|Union| #18=(|List| $) #19="failed") #18# $) 129 T ELT)) (|min| (#20=($ $ $) 140 T ELT)) (|max| (#20# 141 T ELT)) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) 90 T ELT)) (|mainForm| (((|Union| (|OutputForm|) "failed") $) 92 T ELT)) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) 91 T ELT)) (|lcm| (#21=($ (|List| $)) 118 T ELT) (#22=($ $ $) 117 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 134 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#23=(|SparseUnivariatePolynomial| $) #23# #23#) 119 T ELT)) (|gcd| (#21# 116 T ELT) (#22# 115 T ELT)) (|factor| (#4# 130 T ELT)) (|extendedEuclidean| (((|Union| (|Record| #24=(|:| |coef1| $) #25=(|:| |coef2| $)) #19#) $ $ $) 128 T ELT) (((|Record| #24# #25# (|:| |generator| $)) $ $) 127 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 110 T ELT)) (|expressIdealMember| (((|Maybe| #16#) #16# $) 121 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 123 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 124 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #26=(|Fraction| #27=(|Integer|))) 138 T ELT) (($ $) 109 T ELT) (($ #9#) 102 T ELT) (($ #28=(|Integer|)) 101 T ELT) (($ #29=(|Fraction| (|Integer|))) 98 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 113 T ELT)) (|approximate| (((|Fraction| (|Integer|)) $ $) 76 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|allRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $)) 87 T ELT) (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) 86 T ELT) (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) 85 T ELT) (((|List| $) (|Polynomial| $)) 84 T ELT) (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) 83 T ELT) (((|List| $) (|Polynomial| (|Integer|))) 82 T ELT)) (|abs| (($ $) 149 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#30=((|Boolean|) $ $) 142 T ELT)) (> (#30# 144 T ELT)) (= (#1# 8 T ELT)) (<= (#30# 143 T ELT)) (< (#30# 145 T ELT)) (/ (($ $ $) 139 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #27#) 135 T ELT) (($ $ (|Fraction| #17#)) 93 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #31=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ #26# . #31#) 137 T ELT) (($ $ #26#) 136 T ELT) (($ #28# . #31#) 100 T ELT) (($ $ #28#) 99 T ELT) (($ #29# . #31#) 97 T ELT) (($ $ #29#) 96 T ELT)))
+(((|RealClosedField|) (|Category|)) (T |RealClosedField|))
+((|sqrt| (*1 *1 *1) (|ofCategory| *1 (|RealClosedField|))) (|mainForm| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|mainDefiningPolynomial| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|mainValue| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|rootOf| (*1 *1 *2 *3 *4) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|OutputForm|)) (|ofCategory| *1 (|RealClosedField|)))) (|rootOf| (*1 *1 *2 *3) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|List| *1)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *1)) (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|List| *1)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|sqrt| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|PositiveInteger|)))) (|sqrt| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *1 (|RealClosedField|)))) (|sqrt| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|RealClosedField|)))) (|rename!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|rename| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|approximate| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|Fraction| (|Integer|))))))
+(|Join| (|CharacteristicZero|) (|OrderedRing|) (|CommutativeRing|) (|Field|) (|FullyRetractableTo| (|Fraction| (|Integer|))) (|Algebra| (|Integer|)) (|Algebra| (|Fraction| (|Integer|))) (|RadicalCategory|) (CATEGORY |domain| (SIGNATURE |mainForm| ((|Union| (|OutputForm|) "failed") $)) (SIGNATURE |mainDefiningPolynomial| ((|Union| (|SparseUnivariatePolynomial| $) "failed") $)) (SIGNATURE |mainValue| ((|Union| (|SparseUnivariatePolynomial| $) "failed") $)) (SIGNATURE |rootOf| ((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|))) (SIGNATURE |rootOf| ((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| $))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| $))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| (|Integer|)))) (SIGNATURE |sqrt| ($ $ (|PositiveInteger|))) (SIGNATURE |sqrt| ($ $)) (SIGNATURE |sqrt| ($ (|Fraction| (|Integer|)))) (SIGNATURE |sqrt| ($ (|Integer|))) (SIGNATURE |rename!| ($ $ (|OutputForm|))) (SIGNATURE |rename| ($ $ (|OutputForm|))) (SIGNATURE |approximate| ((|Fraction| (|Integer|)) $ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| #2=(|Integer|)) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| #2# #2#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FullyRetractableTo| (|Fraction| (|Integer|))) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| #2#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| #2#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| #2#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) |has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|))) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| #2#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| #2#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) #1#) #2#) |#2| |#2|)) 67 T ELT)))
+(((|ElementaryRischDE| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rischDE| ((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) #1=(|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #2=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) #2#) #3#) |#2| |#2|)))) (|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| #1#) (|LinearlyExplicitRingOver| #1#)) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|))) (T |ElementaryRischDE|))
+((|rischDE| (*1 *2 *3 *4 *4 *5 *6 *7) (AND (|isDomain| *5 (|Symbol|)) (|isDomain| *6 (|Mapping| (|Union| (|Record| (|:| |mainpart| *4) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| *4) (|:| |logand| *4))))) #2="failed") *4 (|List| *4))) (|isDomain| *7 (|Mapping| (|Union| (|Record| (|:| |ratpart| *4) #1#) #2#) *4 *4)) (|ofCategory| *4 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| *8))) (|ofCategory| *8 (|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| *3) (|LinearlyExplicitRingOver| *3))) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Record| (|:| |ans| *4) (|:| |right| *4) (|:| |sol?| (|Boolean|)))) (|isDomain| *1 (|ElementaryRischDE| *8 *4)))))
+((|rischDEsys| (((|Union| #1=(|List| |#2|) #2="failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #3=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| #1#) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) #3#) #2#) |#2| |#2|)) 55 T ELT)))
+(((|ElementaryRischDESystem| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rischDEsys| ((|Union| #1=(|List| |#2|) #2="failed") #3=(|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| #4=(|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| #1#) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) #4#) #2#) |#2| |#2|)))) (|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| #3#) (|LinearlyExplicitRingOver| #3#)) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|))) (T |ElementaryRischDESystem|))
+((|rischDEsys| (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| AND (|isDomain| *5 (|Symbol|)) (|isDomain| *6 (|Mapping| (|Union| (|Record| (|:| |mainpart| *4) (|:| |limitedlogs| (|List| (|Record| #1=(|:| |coeff| *4) (|:| |logand| *4))))) #2="failed") *4 #3=(|List| *4))) (|isDomain| *7 (|Mapping| (|Union| (|Record| (|:| |ratpart| *4) #1#) #2#) *4 *4)) (|ofCategory| *4 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| *8))) (|ofCategory| *8 (|Join| (|GcdDomain|) (|CharacteristicZero|) (|RetractableTo| *3) (|LinearlyExplicitRingOver| *3))) (|isDomain| *3 (|Integer|)) (|isDomain| *2 #3#) (|isDomain| *1 (|ElementaryRischDESystem| *8 *4)))))
+((|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) #1=(|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| #2=(|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| #2# #3=(|Mapping| |#2| |#2|)) 39 T ELT)) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| #4=(|Fraction| |#2|)) (|:| |c| #4#) (|:| |t| |#2|)) "failed") #4# #4# #3#) 71 T ELT)) (|baseRDE| (((|Record| (|:| |ans| #4#) #1#) #4# #4#) 76 T ELT)))
+(((|TranscendentalRischDE| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monomRDE| ((|Union| (|Record| (|:| |a| |#2|) (|:| |b| #1=(|Fraction| |#2|)) (|:| |c| #1#) (|:| |t| |#2|)) "failed") #1# #1# #2=(|Mapping| |#2| |#2|))) (SIGNATURE |baseRDE| ((|Record| (|:| |ans| #1#) #3=(|:| |nosol| (|Boolean|))) #1# #1#)) (SIGNATURE |polyRDE| ((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) #3#)) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| #4=(|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| #4# #2#))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| #4#)) (|UnivariatePolynomialCategory| |#1|)) (T |TranscendentalRischDE|))
+((|polyRDE| (*1 *2 *3 *3 *3 *4 *5) (AND (|isDomain| *5 (|Mapping| *3 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| #1=(|Field|) #2=(|CharacteristicZero|) (|RetractableTo| *4))) (|isDomain| *4 #3=(|Integer|)) (|isDomain| *2 (|Union| (|:| |ans| (|Record| (|:| |ans| *3) #4=(|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (|isDomain| *1 (|TranscendentalRischDE| *6 *3)))) (|baseRDE| (*1 *2 *3 *3) (AND (|ofCategory| *4 #5=(|Join| #1# #2# (|RetractableTo| #3#))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Record| (|:| |ans| #6=(|Fraction| *5)) #4#)) (|isDomain| *1 (|TranscendentalRischDE| *4 *5)) (|isDomain| *3 #6#))) (|monomRDE| (*1 *2 *3 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #5#) (|isDomain| *2 (|Record| (|:| |a| *6) (|:| |b| #7=(|Fraction| *6)) (|:| |c| #7#) (|:| |t| *6))) (|isDomain| *1 (|TranscendentalRischDE| *5 *6)) (|isDomain| *3 #7#))))
+((|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| #1=(|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| #1#) (|:| |c2| #1#) (|:| |t| |#2|)) #2="failed") #1# #1# #1# (|Mapping| |#2| |#2|)) 22 T ELT)) (|baseRDEsys| (((|Union| (|List| #1#) #2#) #1# #1# #1#) 34 T ELT)))
+(((|TranscendentalRischDESystem| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monomRDEsys| ((|Union| (|Record| (|:| |a| |#2|) (|:| |b| #1=(|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| #1#) (|:| |c2| #1#) (|:| |t| |#2|)) #2="failed") #1# #1# #1# (|Mapping| |#2| |#2|))) (SIGNATURE |baseRDEsys| ((|Union| (|List| #1#) #2#) #1# #1# #1#))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|))) (|UnivariatePolynomialCategory| |#1|)) (T |TranscendentalRischDESystem|))
+((|baseRDEsys| (*1 *2 *3 *3 *3) (|partial| AND (|ofCategory| *4 #1=(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| #2=(|Fraction| *5))) (|isDomain| *1 (|TranscendentalRischDESystem| *4 *5)) (|isDomain| *3 #2#))) (|monomRDEsys| (*1 *2 *3 *3 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 #1#) (|isDomain| *2 (|Record| (|:| |a| *6) (|:| |b| #3=(|Fraction| *6)) (|:| |h| *6) (|:| |c1| #3#) (|:| |c2| #3#) (|:| |t| *6))) (|isDomain| *1 (|TranscendentalRischDESystem| *5 *6)) (|isDomain| *3 #3#))))
+((|weighted| ((#1=(|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| #2=(|Integer|))))) 34 T ELT)) (|uniform| ((#1# (|Set| |#1|)) 42 T ELT)) (|rdHack1| ((#1# (|Vector| |#1|) (|Vector| #2#) #2#) 31 T ELT)))
+(((|RandomDistributions| |#1|) (CATEGORY |package| (SIGNATURE |uniform| (#1=(|Mapping| |#1|) (|Set| |#1|))) (SIGNATURE |weighted| (#1# (|List| (|Record| (|:| |value| |#1|) (|:| |weight| #2=(|Integer|)))))) (SIGNATURE |rdHack1| (#1# (|Vector| |#1|) (|Vector| #2#) #2#))) (|SetCategory|)) (T |RandomDistributions|))
+((|rdHack1| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Vector| *6)) (|isDomain| *4 (|Vector| #1=(|Integer|))) (|isDomain| *5 #1#) (|ofCategory| *6 #2=(|SetCategory|)) (|isDomain| *2 (|Mapping| *6)) (|isDomain| *1 (|RandomDistributions| *6)))) (|weighted| #3=(*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |value| *4) (|:| |weight| #1#)))) #4=(|ofCategory| *4 #2#) #5=(|isDomain| *2 (|Mapping| *4)) #6=(|isDomain| *1 (|RandomDistributions| *4)))) (|uniform| #3# (AND (|isDomain| *3 (|Set| *4)) #4# #5# #6#)))
+((|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) 23 T ELT)))
+(((|ReducedDivisor| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |order| ((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)))) #1=(|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|) (|Join| (|Finite|) #1#)) (T |ReducedDivisor|))
+((|order| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|FiniteDivisor| *6 *7 *4 *8)) (|isDomain| *5 (|Mapping| *9 *6)) (|ofCategory| *6 #1=(|Field|)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *7))) (|ofCategory| *8 (|FunctionFieldCategory| *6 *7 *4)) (|ofCategory| *9 (|Join| (|Finite|) #1#)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ReducedDivisor| *6 *7 *4 *8 *9)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|operator| (#2=((|SpadAst|) $) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) . #3=($)) NIL T ELT) (($ #4=(|Syntax|)) NIL T ELT) ((#4# . #3#) NIL T ELT)) (|body| (#2# 12 T ELT)) (|before?| #1#) (= #1#))
+(((|ReduceAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |operator| #1=((|SpadAst|) $)) (SIGNATURE |body| #1#)))) (T |ReduceAst|))
+((|operator| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ReduceAst|)))) (|body| #1# #2#))
+((|convert| (((|DoubleFloat|) . #1=($)) 6 T ELT) (((|Float|) . #1#) 9 T ELT)))
+(((|RealConstant|) (|Category|)) (T |RealConstant|))
+NIL
+(|Join| (|ConvertibleTo| (|DoubleFloat|)) (|ConvertibleTo| (|Float|)))
+(((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T))
+((|refine| (((|Union| #1=(|Record| (|:| |left| #2=(|Fraction| (|Integer|))) (|:| |right| #2#)) "failed") |#1| #1# #1#) 32 T ELT) ((#1# |#1| #1# #2#) 29 T ELT)) (|realZeros| ((#3=(|List| #1#) |#1| #1# #2#) 34 T ELT) ((#3# |#1| #2#) 30 T ELT) ((#3# |#1| #1#) 33 T ELT) ((#3# |#1|) 28 T ELT)) (|midpoints| (((|List| #2#) #3#) 20 T ELT)) (|midpoint| ((#2# #1#) 17 T ELT)))
+(((|RealZeroPackage| |#1|) (CATEGORY |package| (SIGNATURE |realZeros| (#1=(|List| #2=(|Record| (|:| |left| #3=(|Fraction| #4=(|Integer|))) (|:| |right| #3#))) |#1|)) (SIGNATURE |realZeros| (#1# |#1| #2#)) (SIGNATURE |realZeros| (#1# |#1| #3#)) (SIGNATURE |realZeros| (#1# |#1| #2# #3#)) (SIGNATURE |refine| (#2# |#1| #2# #3#)) (SIGNATURE |refine| ((|Union| #2# "failed") |#1| #2# #2#)) (SIGNATURE |midpoint| (#3# #2#)) (SIGNATURE |midpoints| ((|List| #3#) #1#))) (|UnivariatePolynomialCategory| #4#)) (T |RealZeroPackage|))
+((|midpoints| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|List| #3=(|Record| (|:| |left| #4=(|Fraction| #5=(|Integer|))) (|:| |right| #4#)))) (|isDomain| *2 (|List| #4#)) #6=(|isDomain| *1 (|RealZeroPackage| *4)) #7=(|ofCategory| *4 #8=(|UnivariatePolynomialCategory| #5#)))) (|midpoint| #1# (AND (|isDomain| *3 #3#) (|isDomain| *2 #4#) #6# #7#)) (|refine| (*1 *2 *3 *2 *2) (|partial| AND #9=(|isDomain| *2 #3#) #10=(|isDomain| *1 (|RealZeroPackage| *3)) #11=(|ofCategory| *3 #8#))) (|refine| (*1 *2 *3 *2 *4) (AND #9# #12=(|isDomain| *4 #4#) #10# #11#)) (|realZeros| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 #4#) (|isDomain| *2 (|List| #13=(|Record| (|:| |left| *5) (|:| |right| *5)))) #10# #11# (|isDomain| *4 #13#))) (|realZeros| #14=(*1 *2 *3 *4) (AND #15=(|isDomain| *2 #2#) #10# #11# #12#)) (|realZeros| #14# (AND #15# #10# #11# (|isDomain| *4 #3#))) (|realZeros| #1# (AND #15# #10# #11#)))
+((|refine| (((|Union| #1=(|Record| (|:| |left| #2=(|Fraction| (|Integer|))) (|:| |right| #2#)) "failed") |#1| #1# #1#) 35 T ELT) ((#1# |#1| #1# #2#) 32 T ELT)) (|realZeros| ((#3=(|List| #1#) |#1| #1# #2#) 30 T ELT) ((#3# |#1| #2#) 26 T ELT) ((#3# |#1| #1#) 28 T ELT) ((#3# |#1|) 24 T ELT)))
+(((|RealZeroPackageQ| |#1|) (CATEGORY |package| (SIGNATURE |realZeros| (#1=(|List| #2=(|Record| (|:| |left| #3=(|Fraction| (|Integer|))) (|:| |right| #3#))) |#1|)) (SIGNATURE |realZeros| (#1# |#1| #2#)) (SIGNATURE |realZeros| (#1# |#1| #3#)) (SIGNATURE |realZeros| (#1# |#1| #2# #3#)) (SIGNATURE |refine| (#2# |#1| #2# #3#)) (SIGNATURE |refine| ((|Union| #2# "failed") |#1| #2# #2#))) (|UnivariatePolynomialCategory| #3#)) (T |RealZeroPackageQ|))
+((|refine| (*1 *2 *3 *2 *2) (|partial| AND #1=(|isDomain| *2 #2=(|Record| (|:| |left| #3=(|Fraction| (|Integer|))) (|:| |right| #3#))) #4=(|isDomain| *1 (|RealZeroPackageQ| *3)) #5=(|ofCategory| *3 (|UnivariatePolynomialCategory| #3#)))) (|refine| (*1 *2 *3 *2 *4) (AND #1# #6=(|isDomain| *4 #3#) #4# #7=(|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|realZeros| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 #3#) (|isDomain| *2 (|List| #8=(|Record| (|:| |left| *5) (|:| |right| *5)))) #4# (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|isDomain| *4 #8#))) (|realZeros| #9=(*1 *2 *3 *4) (AND #6# (|isDomain| *2 (|List| (|Record| (|:| |left| *4) (|:| |right| *4)))) #4# #7#)) (|realZeros| #9# (AND #10=(|isDomain| *2 (|List| #2#)) #4# #5# (|isDomain| *4 #2#))) (|realZeros| (*1 *2 *3) (AND #10# #4# #5#)))
+((|solve| ((#1=(|List| #2=(|Float|)) #3=(|Polynomial| #4=(|Integer|)) #2#) 28 T ELT) ((#1# (|Polynomial| (|Fraction| #4#)) #2#) 27 T ELT)) (|realSolve| (((|List| #1#) (|List| #3#) (|List| (|Symbol|)) #2#) 37 T ELT)))
+(((|RealSolvePackage|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|List| #2=(|Float|)) (|Polynomial| (|Fraction| #3=(|Integer|))) #2#)) (SIGNATURE |solve| (#1# #4=(|Polynomial| #3#) #2#)) (SIGNATURE |realSolve| ((|List| #1#) (|List| #4#) (|List| (|Symbol|)) #2#)))) (T |RealSolvePackage|))
+((|realSolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| #1=(|Polynomial| #2=(|Integer|)))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|List| #3=(|List| #4=(|Float|)))) #5=(|isDomain| *1 (|RealSolvePackage|)) (|isDomain| *5 #4#))) (|solve| #6=(*1 *2 *3 *4) (AND (|isDomain| *3 #1#) #7=(|isDomain| *2 #3#) #5# #8=(|isDomain| *4 #4#))) (|solve| #6# (AND (|isDomain| *3 (|Polynomial| (|Fraction| #2#))) #7# #5# #8#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 75 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #5=(#6=($ $) NIL T ELT)) (|unit?| #7=(#4# NIL T ELT)) (|subtractIfCan| #8=((#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|squareFreePart| #5#) (|squareFree| #11=(((|Factored| $) $) NIL T ELT)) (|sqrt| #5# #12=(($ $ #13=(|PositiveInteger|)) NIL T ELT) #14=(($ #15=(|Fraction| #16=(|Integer|))) NIL T ELT) #17=(($ #16#) NIL T ELT)) (|sizeLess?| #1#) (|sign| (#18=(#16# $) 70 T ELT)) (|sample| (#19=($) NIL T CONST)) (|rootOf| ((#9# #20=(|SparseUnivariatePolynomial| $) #13# #21=(|OutputForm|)) NIL T ELT) ((#9# #20# #13#) 55 T ELT)) (|retractIfCan| (#22=((|Union| #15# . #23=(#10#)) . #24=($)) NIL #25=(|has| #15# (|RetractableTo| #15#)) ELT) (#22# NIL T ELT) (((|Union| |#1| . #23#) $) 115 T ELT) (((|Union| #16# . #23#) . #24#) NIL #26=(OR (|has| #15# #27=(|RetractableTo| #16#)) (|has| |#1| #27#)) ELT)) (|retract| (#28=(#15# $) 17 #25# ELT) (#28# 17 T ELT) ((|#1| $) 116 T ELT) (#18# NIL #26# ELT)) (|rename!| (#29=($ $ #21#) 47 T ELT)) (|rename| (#29# 48 T ELT)) (|rem| #30=(#31=($ $ $) NIL T ELT)) (|relativeApprox| (#32=(#15# $ $) 21 T ELT)) (|recip| ((#9# $) 88 T ELT)) (|quo| #30#) (|principalIdeal| (((|Record| (|:| |coef| #33=(|List| $)) #34=(|:| |generator| $)) #33#) NIL T ELT)) (|prime?| #7#) (|positive?| (#4# 66 T ELT)) (|opposite?| #1#) (|one?| #7#) (|nthRoot| #35=(($ $ #16#) NIL T ELT)) (|negative?| (#4# 69 T ELT)) (|multiEuclidean| (((|Union| #33# #10#) #33# $) NIL T ELT)) (|min| #30#) (|max| #30#) (|mainValue| (#36=((|Union| #20# #10#) $) 83 T ELT)) (|mainForm| (((|Union| #21# #10#) $) 82 T ELT)) (|mainDefiningPolynomial| (#36# 80 T ELT)) (|mainCharacterization| (((|Union| #37=(|RightOpenIntervalRootCharacterization| $ #20#) #10#) $) 78 T ELT)) (|lcm| #38=(($ #33#) NIL T ELT) #30#) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#6# 89 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#20# #20# #20#) NIL T ELT)) (|gcd| #38# #30#) (|factor| #11#) (|extendedEuclidean| (((|Union| (|Record| #39=(|:| |coef1| $) #40=(|:| |coef2| $)) #10#) $ $ $) NIL T ELT) (((|Record| #39# #40# #34#) $ $) NIL T ELT)) (|exquo| #8#) (|expressIdealMember| (((|Maybe| #33#) #33# $) NIL T ELT)) (|euclideanSize| ((#41=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|coerce| ((#21# $) 87 T ELT) #17# #14# (#6# 63 T ELT) #14# #17# #14# (($ |#1|) 118 T ELT)) (|characteristic| ((#41#) NIL T CONST)) (|before?| #1#) (|associates?| #1#) (|approximate| (#32# 27 T ELT)) (|annihilate?| #1#) (|allRootsOf| ((#33# #20#) 61 T ELT) ((#33# (|SparseUnivariatePolynomial| #15#)) NIL T ELT) ((#33# (|SparseUnivariatePolynomial| #16#)) NIL T ELT) ((#33# (|Polynomial| $)) NIL T ELT) ((#33# (|Polynomial| #15#)) NIL T ELT) ((#33# (|Polynomial| #16#)) NIL T ELT)) (|algebraicOf| (($ #37# #21#) 46 T ELT)) (|abs| (#6# 22 T ELT)) (|Zero| (#19# 32 T CONST)) (|One| (#19# 39 T CONST)) (>= #1#) (> #1#) (= (#2# 76 T ELT)) (<= #1#) (< (#2# 24 T ELT)) (/ (#31# 37 T ELT)) (- (#6# 38 T ELT) (#31# 74 T ELT)) (+ (#31# 111 T ELT)) (** #12# (($ $ #41#) NIL T ELT) #35# #42=(($ $ #15#) NIL T ELT)) (* (($ #13# $) NIL T ELT) (($ #41# $) NIL T ELT) #43=(($ #16# $) 71 T ELT) (#31# 103 T ELT) #44=(($ #15# $) NIL T ELT) #42# #43# #35# #44# #42# (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
+(((|RealClosure| |#1|) (|Join| (|RealClosedField|) (|FullyRetractableTo| |#1|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |algebraicOf| ($ #1=(|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|))) (SIGNATURE |mainCharacterization| ((|Union| #1# "failed") $)) (SIGNATURE |relativeApprox| ((|Fraction| (|Integer|)) $ $)))) (|Join| (|OrderedRing|) (|Field|) (|RealConstant|))) (T |RealClosure|))
+((|algebraicOf| (*1 *1 *2 *3) (AND (|isDomain| *2 (|RightOpenIntervalRootCharacterization| #1=(|RealClosure| *4) (|SparseUnivariatePolynomial| #1#))) (|isDomain| *3 (|OutputForm|)) (|isDomain| *1 #1#) (|ofCategory| *4 #2=(|Join| (|OrderedRing|) (|Field|) (|RealConstant|))))) (|mainCharacterization| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|RightOpenIntervalRootCharacterization| #3=(|RealClosure| *3) (|SparseUnivariatePolynomial| #3#))) #4=(|isDomain| *1 #3#) #5=(|ofCategory| *3 #2#))) (|relativeApprox| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) #4# #5#)))
+((|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| #1=(|List| |#1|))) |#2| #1#) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
+(((|ReductionOfOrder| |#1| |#2|) (CATEGORY |package| (SIGNATURE |ReduceOrder| (|#2| |#2| |#1|)) (SIGNATURE |ReduceOrder| ((|Record| (|:| |eq| |#2|) (|:| |op| #1=(|List| |#1|))) |#2| #1#))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |ReductionOfOrder|))
+((|ReduceOrder| (*1 *2 *3 *4) (AND (|ofCategory| *5 #1=(|Field|)) (|isDomain| *2 (|Record| (|:| |eq| *3) (|:| |op| #2=(|List| *5)))) (|isDomain| *1 (|ReductionOfOrder| *5 *3)) (|isDomain| *4 #2#) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|ReduceOrder| (*1 *2 *2 *3) (AND (|ofCategory| *3 #1#) (|isDomain| *1 (|ReductionOfOrder| *3 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *3)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|setref| ((|#1| $ |#1|) 12 T ELT)) (|ref| (($ |#1|) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|deref| ((|#1| $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 17 T ELT)) (|before?| #1#) (= (#2# 9 T ELT)))
+(((|Reference| |#1|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |ref| ($ |#1|)) (SIGNATURE |deref| (|#1| $)) (SIGNATURE |setref| (|#1| $ |#1|)) (SIGNATURE = ((|Boolean|) $ $)))) (|Type|)) (T |Reference|))
+((= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Reference| *3)) (|ofCategory| *3 #1=(|Type|)))) (|ref| (*1 *1 *2) #2=(AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 #1#))) (|deref| (*1 *2 *1) #2#) (|setref| (*1 *2 *1 *2) #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) #4=(|:| |open| #5=(|List| |#4|)))) #5#) NIL T ELT)) (|zeroSetSplit| ((#6=(|List| $) #5#) 113 T ELT) ((#6# #5# #3#) 114 T ELT) ((#6# #5# #3# #3#) 112 T ELT) ((#6# #5# #3# #3# #3# #3#) 115 T ELT)) (|variables| #7=(((|List| |#3|) $) NIL T ELT)) (|trivialIdeal?| #8=(#9=(#3# $) NIL T ELT)) (|triangular?| #10=(#9# NIL #11=(|has| |#1| (|IntegralDomain|)) ELT)) (|stronglyReduced?| #12=(#13=(#3# |#4| $) NIL T ELT) #8#) (|stronglyReduce| #14=(#15=(|#4| |#4| $) NIL T ELT)) (|squareFreePart| ((#16=(|List| (|Record| (|:| |val| |#4|) #17=(|:| |tower| $))) |#4| $) 107 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (|select| #18=(($ #19=(|Mapping| #3# |#4|) $) NIL #20=(|has| $ (|FiniteAggregate| |#4|)) ELT) ((#21=(|Union| |#4| #22="failed") $ |#3|) 62 T ELT)) (|sample| (#23=($) NIL T CONST)) (|roughUnitIdeal?| (#9# 28 #11# ELT)) (|roughSubIdeal?| #24=(#2# NIL #11# ELT)) (|roughEqualIdeals?| #24#) (|roughBase?| #10#) (|rewriteSetWithReduction| ((#5# #5# $ #25=(|Mapping| |#4| |#4| |#4|) #26=(|Mapping| #3# |#4| |#4|)) NIL T ELT)) (|rewriteIdealWithRemainder| #27=((#5# #5# $) NIL #11# ELT)) (|rewriteIdealWithHeadRemainder| #27#) (|retractIfCan| ((#28=(|Union| $ #22#) #5#) NIL T ELT)) (|retract| (#29=($ #5#) NIL T ELT)) (|rest| ((#28# $) 44 T ELT)) (|removeZero| (#15# 65 T ELT)) (|removeDuplicates| (#30=($ $) NIL #31=(AND #20# #32=(|has| |#4| (|BasicType|))) ELT)) (|remove| (#33=($ |#4| $) NIL #31# ELT) #18#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) #34=(|:| |den| |#1|)) |#4| $) 80 #11# ELT)) (|reduced?| ((#3# |#4| $ #26#) NIL T ELT)) (|reduceByQuasiMonic| #14#) (|reduce| ((|#4| #25# $ |#4| |#4|) NIL #32# ELT) ((|#4| #25# $ |#4|) NIL T ELT) ((|#4| #25# $) NIL T ELT) ((|#4| |#4| $ #25# #26#) NIL T ELT)) (|quasiComponent| (((|Record| (|:| |close| #5#) #4#) $) NIL T ELT)) (|purelyTranscendental?| #12#) (|purelyAlgebraicLeadingMonomial?| #12#) (|purelyAlgebraic?| #12# #8#) (|preprocess| (((|Record| (|:| |val| #5#) (|:| |towers| #6#)) #5# #3# #3#) 128 T ELT)) (|normalized?| #12# #8#) (|mvar| ((|#3| $) 37 T ELT)) (|members| (#35=(#5# $) 18 T ELT)) (|member?| (#13# 26 #32# ELT)) (|map!| (#36=($ (|Mapping| |#4| |#4|) $) 24 T ELT)) (|map| (#36# 22 T ELT)) (|mainVariables| #7#) (|mainVariable?| (#37=(#3# |#3| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| #6#) |#4| |#4| $) NIL T ELT)) (|lastSubResultant| ((#16# |#4| |#4| $) 105 T ELT)) (|last| (#38=(#21# $) 41 T ELT)) (|invertibleSet| (#39=(#6# |#4| $) 88 T ELT)) (|invertibleElseSplit?| (((|Union| #3# #6#) |#4| $) NIL T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #17#)) |#4| $) 98 T ELT) (#13# 60 T ELT)) (|intersect| (#39# 110 T ELT) #40=((#6# #5# $) NIL T ELT) (#41=(#6# #5# #6#) 111 T ELT) #42=((#6# |#4| #6#) NIL T ELT)) (|internalZeroSetSplit| ((#6# #5# #3# #3# #3#) 123 T ELT)) (|internalAugment| (#33# 77 T ELT) (($ #5# $) 78 T ELT) ((#6# |#4| $ #3# #3# #3# #3# #3#) 74 T ELT)) (|initials| (#35# NIL T ELT)) (|initiallyReduced?| #12# #8#) (|initiallyReduce| #14#) (|infRittWu?| #1#) (|headRemainder| (((|Record| (|:| |num| |#4|) #34#) |#4| $) NIL #11# ELT)) (|headReduced?| #12# #8#) (|headReduce| #14#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#38# 39 T ELT)) (|find| ((#21# #19# $) NIL T ELT)) (|extendIfCan| ((#28# $ |#4|) 55 T ELT)) (|extend| (($ $ |#4|) NIL T ELT) (#39# 90 T ELT) #42# #40# (#41# 84 T ELT)) (|every?| #43=((#3# #19# $) NIL T ELT)) (|eval| (($ $ #5# #5#) NIL #44=(AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ELT) (($ $ |#4| |#4|) NIL #44# ELT) (($ $ #45=(|Equation| |#4|)) NIL #44# ELT) (($ $ (|List| #45#)) NIL #44# ELT)) (|eq?| #1#) (|empty?| (#9# 17 T ELT)) (|empty| (#23# 14 T ELT)) (|degree| #46=(#47=(#48=(|NonNegativeInteger|) $) NIL T ELT)) (|count| ((#48# |#4| $) NIL #32# ELT) ((#48# #19# $) NIL T ELT)) (|copy| (#30# 13 T ELT)) (|convert| ((#49=(|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| #49#)) ELT)) (|construct| (#29# 21 T ELT)) (|collectUpper| (#50=($ $ |#3|) 48 T ELT)) (|collectUnder| (#50# 50 T ELT)) (|collectQuasiMonic| (#30# NIL T ELT)) (|collect| (#50# NIL T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT) (#35# 45 T ELT)) (|coHeight| (#47# NIL (|has| |#3| (|Finite|)) ELT)) (|before?| #1#) (|basicSet| ((#51=(|Union| (|Record| (|:| |bas| $) (|:| |top| #5#)) #22#) #5# #26#) NIL T ELT) ((#51# #5# #19# #26#) NIL T ELT)) (|autoReduced?| ((#3# $ (|Mapping| #3# |#4| #5#)) NIL T ELT)) (|augment| (#39# 87 T ELT) #42# #40# (#41# NIL T ELT)) (|any?| #43#) (|algebraicVariables| #7#) (|algebraicCoefficients?| #12#) (|algebraic?| (#37# 61 T ELT)) (= #1#) (|#| #46#))
+(((|RegularTriangularSet| |#1| |#2| |#3| |#4|) (|Join| (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |internalAugment| (#1=(|List| $) |#4| $ #2=(|Boolean|) #2# #2# #2# #2#)) (SIGNATURE |zeroSetSplit| (#1# #3=(|List| |#4|) #2# #2#)) (SIGNATURE |zeroSetSplit| (#1# #3# #2# #2# #2# #2#)) (SIGNATURE |internalZeroSetSplit| (#1# #3# #2# #2# #2#)) (SIGNATURE |preprocess| ((|Record| (|:| |val| #3#) (|:| |towers| #1#)) #3# #2# #2#)))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |RegularTriangularSet|))
+((|internalAugment| (*1 *2 *3 *1 *4 *4 *4 *4 *4) (AND #1=(|isDomain| *4 (|Boolean|)) #2=(|ofCategory| *5 (|GcdDomain|)) #3=(|ofCategory| *6 (|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| #5=(|RegularTriangularSet| *5 *6 *7 *3))) (|isDomain| *1 #5#) (|ofCategory| *3 #6=(|RecursivePolynomialCategory| *5 *6 *7)))) (|zeroSetSplit| #7=(*1 *2 *3 *4 *4) #8=(AND #9=(|isDomain| *3 #10=(|List| *8)) #1# #11=(|ofCategory| *8 #6#) #2# #3# #4# (|isDomain| *2 #12=(|List| #13=(|RegularTriangularSet| *5 *6 *7 *8))) #14=(|isDomain| *1 #13#))) (|zeroSetSplit| (*1 *2 *3 *4 *4 *4 *4) #8#) (|internalZeroSetSplit| (*1 *2 *3 *4 *4 *4) #8#) (|preprocess| #7# (AND #1# #2# #3# #4# #11# (|isDomain| *2 (|Record| (|:| |val| #10#) (|:| |towers| #12#))) #14# #9#)))
+((|radicalEigenvectors| (((|List| (|Record| (|:| |radval| #1=(|Expression| #2=(|Integer|))) (|:| |radmult| #2#) (|:| |radvect| #3=(|List| #4=(|Matrix| #1#))))) #5=(|Matrix| (|Fraction| (|Polynomial| #2#)))) 67 T ELT)) (|radicalEigenvector| ((#3# #1# #5#) 52 T ELT)) (|radicalEigenvalues| (((|List| #1#) #5#) 45 T ELT)) (|orthonormalBasis| ((#3# #5#) 85 T ELT)) (|normalise| ((#4# #4#) 38 T ELT)) (|gramschmidt| ((#3# #3#) 74 T ELT)) (|eigenMatrix| (((|Union| #4# "failed") #5#) 82 T ELT)))
+(((|RadicalEigenPackage|) (CATEGORY |package| (SIGNATURE |radicalEigenvectors| ((|List| (|Record| (|:| |radval| #1=(|Expression| #2=(|Integer|))) (|:| |radmult| #2#) (|:| |radvect| #3=(|List| #4=(|Matrix| #1#))))) #5=(|Matrix| (|Fraction| (|Polynomial| #2#))))) (SIGNATURE |radicalEigenvector| (#3# #1# #5#)) (SIGNATURE |radicalEigenvalues| ((|List| #1#) #5#)) (SIGNATURE |eigenMatrix| ((|Union| #4# "failed") #5#)) (SIGNATURE |normalise| (#4# #4#)) (SIGNATURE |gramschmidt| (#3# #3#)) (SIGNATURE |orthonormalBasis| (#3# #5#)))) (T |RadicalEigenPackage|))
+((|orthonormalBasis| #1=(*1 *2 *3) (AND #2=(|isDomain| *3 #3=(|Matrix| (|Fraction| (|Polynomial| #4=(|Integer|))))) #5=(|isDomain| *2 #6=(|List| #7=(|Matrix| #8=(|Expression| #4#)))) #9=(|isDomain| *1 (|RadicalEigenPackage|)))) (|gramschmidt| #10=(*1 *2 *2) (AND #5# #9#)) (|normalise| #10# (AND #11=(|isDomain| *2 #7#) #9#)) (|eigenMatrix| #1# (|partial| AND #2# #11# #9#)) (|radicalEigenvalues| #1# (AND #2# (|isDomain| *2 (|List| #8#)) #9#)) (|radicalEigenvector| (*1 *2 *3 *4) (AND (|isDomain| *4 #3#) #5# #9# (|isDomain| *3 #8#))) (|radicalEigenvectors| #1# (AND #2# (|isDomain| *2 (|List| (|Record| (|:| |radval| #8#) (|:| |radmult| #4#) (|:| |radvect| #6#)))) #9#)))
+((|tensorProduct| ((#1=(|List| #2=(|Matrix| |#1|)) #1#) 69 T ELT) ((#2# #2#) 68 T ELT) ((#1# #1# #1#) 67 T ELT) ((#2# #2# #2#) 64 T ELT)) (|symmetricTensors| (#3=(#1# #1# #4=(|PositiveInteger|)) 62 T ELT) (#5=(#2# #2# #4#) 61 T ELT)) (|permutationRepresentation| ((#6=(|List| #7=(|Matrix| #8=(|Integer|))) (|List| #9=(|List| #8#))) 80 T ELT) ((#6# (|List| #10=(|Permutation| #8#)) #8#) 79 T ELT) ((#7# #9#) 76 T ELT) ((#7# #10# #8#) 74 T ELT)) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) 94 T ELT)) (|antisymmetricTensors| (#3# 48 #11=(|has| |#1| (ATTRIBUTE (|commutative| "*"))) ELT) (#5# 46 #11# ELT)))
+(((|RepresentationPackage1| |#1|) (CATEGORY |package| (IF #1=(|has| |#1| (ATTRIBUTE (|commutative| "*"))) (SIGNATURE |antisymmetricTensors| #2=(#3=(|Matrix| |#1|) #3# #4=(|PositiveInteger|))) |%noBranch|) (IF #1# (SIGNATURE |antisymmetricTensors| #5=(#6=(|List| #3#) #6# #4#)) |%noBranch|) (SIGNATURE |createGenericMatrix| ((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|))) (SIGNATURE |symmetricTensors| #2#) (SIGNATURE |symmetricTensors| #5#) (SIGNATURE |tensorProduct| (#3# #3# #3#)) (SIGNATURE |tensorProduct| (#6# #6# #6#)) (SIGNATURE |tensorProduct| (#3# #3#)) (SIGNATURE |tensorProduct| (#6# #6#)) (SIGNATURE |permutationRepresentation| (#7=(|Matrix| #8=(|Integer|)) #9=(|Permutation| #8#) #8#)) (SIGNATURE |permutationRepresentation| (#7# #10=(|List| #8#))) (SIGNATURE |permutationRepresentation| (#11=(|List| #7#) (|List| #9#) #8#)) (SIGNATURE |permutationRepresentation| (#11# (|List| #10#)))) (|Ring|)) (T |RepresentationPackage1|))
+((|permutationRepresentation| #1=(*1 *2 *3) (AND (|isDomain| *3 (|List| #2=(|List| #3=(|Integer|)))) (|isDomain| *2 (|List| #4=(|Matrix| #3#))) #5=(|isDomain| *1 (|RepresentationPackage1| *4)) #6=(|ofCategory| *4 #7=(|Ring|)))) (|permutationRepresentation| #8=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| #9=(|Permutation| #3#))) #10=(|isDomain| *4 #3#) #11=(|isDomain| *2 (|List| #12=(|Matrix| *4))) #13=(|isDomain| *1 (|RepresentationPackage1| *5)) #14=(|ofCategory| *5 #7#))) (|permutationRepresentation| #1# (AND (|isDomain| *3 #2#) (|isDomain| *2 #4#) #5# #6#)) (|permutationRepresentation| #8# (AND (|isDomain| *3 #9#) #10# #15=(|isDomain| *2 #12#) #13# #14#)) (|tensorProduct| #16=(*1 *2 *2) #17=(AND (|isDomain| *2 (|List| #18=(|Matrix| *3))) #19=(|ofCategory| *3 #7#) #20=(|isDomain| *1 (|RepresentationPackage1| *3)))) (|tensorProduct| #16# #21=(AND (|isDomain| *2 #18#) #19# #20#)) (|tensorProduct| #22=(*1 *2 *2 *2) #17#) (|tensorProduct| #22# #21#) (|symmetricTensors| #23=(*1 *2 *2 *3) (AND #11# #24=(|isDomain| *3 (|PositiveInteger|)) #6# #5#)) (|symmetricTensors| #23# (AND #15# #24# #6# #5#)) (|createGenericMatrix| #1# (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Matrix| (|Polynomial| *4))) #5# #6#)) (|antisymmetricTensors| #23# (AND #11# #24# #25=(|has| *4 (ATTRIBUTE (|commutative| "*"))) #6# #5#)) (|antisymmetricTensors| #23# (AND #15# #24# #25# #6# #5#)))
+((|standardBasisOfCyclicSubmodule| ((#1=(|Matrix| |#1|) #2=(|List| #1#) #3=(|Vector| |#1|)) 69 #4=(|has| |#1| (|EuclideanDomain|)) ELT)) (|split| ((#5=(|List| #2#) #2# #6=(|Vector| #3#)) 107 #7=(|has| |#1| (|Field|)) ELT) ((#5# #2# #3#) 104 #7# ELT)) (|scanOneDimSubspaces| ((#3# (|List| #3#) #8=(|Integer|)) 113 #9=(AND #7# (|has| |#1| (|Finite|))) ELT)) (|meatAxe| ((#5# #2# (|PositiveInteger|)) 119 #9# ELT) ((#5# #2# #10=(|Boolean|)) 118 #9# ELT) ((#5# #2#) 117 #9# ELT) ((#5# #2# #10# #8# #8#) 116 #9# ELT)) (|isAbsolutelyIrreducible?| ((#10# #2#) 101 #7# ELT) ((#10# #2# #8#) 100 #7# ELT)) (|cyclicSubmodule| ((#6# #2# #3#) 66 #4# ELT)) (|createRandomElement| ((#1# #2# #1#) 46 T ELT)) (|completeEchelonBasis| ((#1# #6#) 39 T ELT)) (|areEquivalent?| ((#1# #2# #2# #8#) 93 #7# ELT) ((#1# #2# #2#) 92 #7# ELT) ((#1# #2# #2# #10# #8#) 91 #7# ELT)))
+(((|RepresentationPackage2| |#1|) (CATEGORY |package| (SIGNATURE |completeEchelonBasis| (#1=(|Matrix| |#1|) #2=(|Vector| #3=(|Vector| |#1|)))) (SIGNATURE |createRandomElement| (#1# #4=(|List| #1#) #1#)) (IF (|has| |#1| (|EuclideanDomain|)) (PROGN (SIGNATURE |cyclicSubmodule| (#2# #4# #3#)) (SIGNATURE |standardBasisOfCyclicSubmodule| (#1# #4# #3#))) |%noBranch|) (IF #5=(|has| |#1| (|Field|)) (PROGN (SIGNATURE |areEquivalent?| (#1# #4# #4# #6=(|Boolean|) #7=(|Integer|))) (SIGNATURE |areEquivalent?| (#1# #4# #4#)) (SIGNATURE |areEquivalent?| (#1# #4# #4# #7#)) (SIGNATURE |isAbsolutelyIrreducible?| (#6# #4# #7#)) (SIGNATURE |isAbsolutelyIrreducible?| (#6# #4#)) (SIGNATURE |split| (#8=(|List| #4#) #4# #3#)) (SIGNATURE |split| (#8# #4# #2#))) |%noBranch|) (IF (|has| |#1| (|Finite|)) (IF #5# (PROGN (SIGNATURE |meatAxe| (#8# #4# #6# #7# #7#)) (SIGNATURE |meatAxe| (#8# #4#)) (SIGNATURE |meatAxe| (#8# #4# #6#)) (SIGNATURE |meatAxe| (#8# #4# (|PositiveInteger|))) (SIGNATURE |scanOneDimSubspaces| (#3# (|List| #3#) #7#))) |%noBranch|) |%noBranch|)) (|Ring|)) (T |RepresentationPackage2|))
+((|scanOneDimSubspaces| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| #2=(|Vector| *5))) #3=(|isDomain| *4 #4=(|Integer|)) (|isDomain| *2 #2#) #5=(|isDomain| *1 (|RepresentationPackage2| *5)) #6=(|ofCategory| *5 #7=(|Field|)) #8=(|ofCategory| *5 #9=(|Finite|)) #10=(|ofCategory| *5 #11=(|Ring|)))) (|meatAxe| #1# (AND (|isDomain| *4 (|PositiveInteger|)) #6# #8# #10# #12=(|isDomain| *2 (|List| #13=(|List| #14=(|Matrix| *5)))) #5# #15=(|isDomain| *3 #13#))) (|meatAxe| #1# (AND #16=(|isDomain| *4 #17=(|Boolean|)) #6# #8# #10# #12# #5# #15#)) (|meatAxe| #18=(*1 *2 *3) (AND #19=(|ofCategory| *4 #7#) (|ofCategory| *4 #9#) #20=(|ofCategory| *4 #11#) (|isDomain| *2 (|List| #21=(|List| #22=(|Matrix| *4)))) #23=(|isDomain| *1 (|RepresentationPackage2| *4)) #24=(|isDomain| *3 #21#))) (|meatAxe| (*1 *2 *3 *4 *5 *5) (AND #16# #25=(|isDomain| *5 #4#) #26=(|ofCategory| *6 #7#) (|ofCategory| *6 #9#) #27=(|ofCategory| *6 #11#) (|isDomain| *2 (|List| #28=(|List| #29=(|Matrix| *6)))) #30=(|isDomain| *1 (|RepresentationPackage2| *6)) #31=(|isDomain| *3 #28#))) (|split| #1# (AND (|isDomain| *4 #32=(|Vector| #2#)) #6# #10# #12# #5# #15#)) (|split| #1# (AND #33=(|isDomain| *4 #2#) #6# #10# #12# #5# #15#)) (|isAbsolutelyIrreducible?| #18# (AND #24# #19# #20# #34=(|isDomain| *2 #17#) #23#)) (|isAbsolutelyIrreducible?| #1# (AND #15# #3# #6# #10# #34# #5#)) (|areEquivalent?| (*1 *2 *3 *3 *4) (AND #15# #3# #35=(|isDomain| *2 #14#) #5# #6# #10#)) (|areEquivalent?| (*1 *2 *3 *3) (AND #24# #36=(|isDomain| *2 #22#) #23# #19# #20#)) (|areEquivalent?| (*1 *2 *3 *3 *4 *5) (AND #31# #16# #25# (|isDomain| *2 #29#) #30# #26# #27#)) (|standardBasisOfCyclicSubmodule| #1# (AND #15# #33# #37=(|ofCategory| *5 (|EuclideanDomain|)) #10# #35# #5#)) (|cyclicSubmodule| #1# (AND #15# #37# #10# (|isDomain| *2 #32#) #5# #33#)) (|createRandomElement| (*1 *2 *3 *2) (AND #24# #36# #20# #23#)) (|completeEchelonBasis| #18# (AND (|isDomain| *3 (|Vector| (|Vector| *4))) #20# #36# #23#)))
+((|double| ((|#1| (|PositiveInteger|) |#1|) 18 T ELT)))
+(((|RepeatedDoubling| |#1|) (CATEGORY |package| (SIGNATURE |double| (|#1| (|PositiveInteger|) |#1|))) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $))))) (T |RepeatedDoubling|))
+((|double| (*1 *2 *3 *2) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|RepeatedDoubling| *2)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $))))))))
+((|expt| ((|#1| |#1| (|PositiveInteger|)) 18 T ELT)))
+(((|RepeatedSquaring| |#1|) (CATEGORY |package| (SIGNATURE |expt| (|#1| |#1| (|PositiveInteger|)))) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $))))) (T |RepeatedSquaring|))
+((|expt| (*1 *2 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|RepeatedSquaring| *2)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $))))))))
+((|coerce| ((|#1| (|Exit|)) 11 T ELT) (((|Void|) |#1|) 9 T ELT)))
+(((|ResolveLatticeCompletion| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|Void|) |#1|)) (SIGNATURE |coerce| (|#1| (|Exit|)))) (|Type|)) (T |ResolveLatticeCompletion|))
+((|coerce| #1=(*1 *2 *3) (AND (|isDomain| *3 (|Exit|)) (|isDomain| *1 (|ResolveLatticeCompletion| *2)) (|ofCategory| *2 #2=(|Type|)))) (|coerce| #1# (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ResolveLatticeCompletion| *3)) (|ofCategory| *3 #2#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=((#3# $) NIL T ELT)) (|subtractIfCan| ((#5=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#6=($) NIL T CONST)) (|reduce| (#7=($ |#4|) 24 T ELT)) (|recip| ((#5# $) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|lift| ((|#4| $) 26 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 45 T ELT) (($ #8=(|Integer|)) NIL T ELT) (($ |#1|) NIL T ELT) (#7# 25 T ELT)) (|characteristic| ((#9=(|NonNegativeInteger|)) 42 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#6# 21 T CONST)) (|One| (#6# 22 T CONST)) (= (#2# 39 T ELT)) (- (($ $) 30 T ELT) (#10=($ $ $) NIL T ELT)) (+ (#10# 28 T ELT)) (** (($ $ #11=(|PositiveInteger|)) NIL T ELT) (($ $ #9#) NIL T ELT)) (* (($ #11# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #8# $) 35 T ELT) (#10# 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
+(((|ResidueRing| |#1| |#2| |#3| |#4| |#5|) (|Join| (|CommutativeRing|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |reduce| #1=($ |#4|)) (SIGNATURE |coerce| #1#) (SIGNATURE |lift| (|#4| $)))) (|Field|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|) (|List| |#4|)) (T |ResidueRing|))
+((|reduce| #1=(*1 *1 *2) #2=(AND #3=(|ofCategory| *3 (|Field|)) #4=(|ofCategory| *4 (|OrderedAbelianMonoidSup|)) #5=(|ofCategory| *5 (|OrderedSet|)) #6=(|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6)) #7=(|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)) #8=(|ofType| *6 (|List| *2)))) (|coerce| #1# #2#) (|lift| (*1 *2 *1) (AND #7# #6# #3# #4# #5# #8#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 17 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|ReturnAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $))))) (T |ReturnAst|))
+((|expression| (*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ReturnAst|)))))
+((|retract| ((|#2| $) 10 T ELT)))
+(((|RetractableTo&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |retract| (|#2| |#1|))) (|RetractableTo| |#2|) (|Type|)) (T |RetractableTo&|))
+NIL
+((|retractIfCan| (((|Union| |#1| "failed") $) 9 T ELT)) (|retract| ((|#1| $) 8 T ELT)) (|coerce| (($ |#1|) 6 T ELT)))
+(((|RetractableTo| |#1|) (|Category|) (|Type|)) (T |RetractableTo|))
+((|retractIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|)))) (|retract| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|CoercibleFrom| |t#1|) (CATEGORY |domain| (SIGNATURE |retractIfCan| ((|Union| |t#1| "failed") $)) (SIGNATURE |retract| (|t#1| $))))
+(((|CoercibleFrom| |#1|) . T))
+((|solveRetract| (((|List| (|List| (|Equation| (|Fraction| #1=(|Polynomial| |#2|))))) (|List| #1#) (|List| (|Symbol|))) 38 T ELT)))
+(((|RetractSolvePackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveRetract| ((|List| (|List| (|Equation| (|Fraction| #1=(|Polynomial| |#2|))))) (|List| #1#) (|List| (|Symbol|))))) #2=(|IntegralDomain|) (|Join| #2# (|RetractableTo| |#1|))) (T |RetractSolvePackage|))
+((|solveRetract| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| #1=(|Polynomial| *6))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|Join| #2=(|IntegralDomain|) (|RetractableTo| *5))) (|ofCategory| *5 #2#) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| #1#))))) (|isDomain| *1 (|RetractSolvePackage| *5 *6)))))
+((|variables| ((#1=(|List| #2=(|Symbol|)) #3=(|Fraction| (|Polynomial| |#1|))) 17 T ELT)) (|univariate| ((#4=(|Fraction| (|SparseUnivariatePolynomial| #3#)) #3# #2#) 24 T ELT)) (|multivariate| ((#3# #4# #2#) 26 T ELT)) (|mainVariable| (((|Union| #2# "failed") #3#) 20 T ELT)) (|eval| ((#3# #3# (|List| #5=(|Equation| #3#))) 32 T ELT) ((#3# #3# #5#) 33 T ELT) ((#3# #3# #1# (|List| #3#)) 28 T ELT) ((#3# #3# #2# #3#) 29 T ELT)) (|coerce| ((#3# |#1|) 11 T ELT)))
+(((|RationalFunction| |#1|) (CATEGORY |package| (SIGNATURE |variables| (#1=(|List| #2=(|Symbol|)) #3=(|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |mainVariable| ((|Union| #2# "failed") #3#)) (SIGNATURE |univariate| (#4=(|Fraction| (|SparseUnivariatePolynomial| #3#)) #3# #2#)) (SIGNATURE |multivariate| (#3# #4# #2#)) (SIGNATURE |eval| (#3# #3# #2# #3#)) (SIGNATURE |eval| (#3# #3# #1# (|List| #3#))) (SIGNATURE |eval| (#3# #3# #5=(|Equation| #3#))) (SIGNATURE |eval| (#3# #3# (|List| #5#))) (SIGNATURE |coerce| (#3# |#1|))) (|IntegralDomain|)) (T |RationalFunction|))
+((|coerce| #1=(*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3))) (|isDomain| *1 (|RationalFunction| *3)) (|ofCategory| *3 #2=(|IntegralDomain|)))) (|eval| #3=(*1 *2 *2 *3) (AND (|isDomain| *3 (|List| #4=(|Equation| #5=(|Fraction| (|Polynomial| *4))))) #6=(|isDomain| *2 #5#) #7=(|ofCategory| *4 #2#) #8=(|isDomain| *1 (|RationalFunction| *4)))) (|eval| #3# (AND (|isDomain| *3 #4#) #6# #7# #8#)) (|eval| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 #9=(|List| #10=(|Symbol|))) (|isDomain| *4 (|List| #11=(|Fraction| (|Polynomial| *5)))) #12=(|isDomain| *2 #11#) #13=(|ofCategory| *5 #2#) #14=(|isDomain| *1 (|RationalFunction| *5)))) (|eval| (*1 *2 *2 *3 *2) (AND #6# (|isDomain| *3 #10#) #7# #8#)) (|multivariate| #15=(*1 *2 *3 *4) (AND (|isDomain| *3 #16=(|Fraction| (|SparseUnivariatePolynomial| #11#))) #17=(|isDomain| *4 #10#) #12# #14# #13#)) (|univariate| #15# (AND #17# #13# (|isDomain| *2 #16#) #14# (|isDomain| *3 #11#))) (|mainVariable| #1# (|partial| AND #18=(|isDomain| *3 #5#) #7# (|isDomain| *2 #10#) #8#)) (|variables| #1# (AND #18# #7# (|isDomain| *2 #9#) #8#)))
+((|uniform01| (#1=(#2=(|Float|)) 17 T ELT)) (|uniform| (#3=(#4=(|Mapping| #2#) #2# #2#) 22 T ELT)) (|t| (#5=(#4# #6=(|NonNegativeInteger|)) 48 T ELT)) (|normal01| (#1# 37 T ELT)) (|normal| (#3# 38 T ELT)) (|exponential1| (#1# 29 T ELT)) (|exponential| ((#4# #2#) 30 T ELT)) (|chiSquare1| ((#2# #6#) 43 T ELT)) (|chiSquare| (#5# 44 T ELT)) (F (#7=(#4# #6# #6#) 47 T ELT)) (|Beta| (#7# 45 T ELT)))
+(((|RandomFloatDistributions|) (CATEGORY |package| (SIGNATURE |uniform01| #1=(#2=(|Float|))) (SIGNATURE |normal01| #1#) (SIGNATURE |exponential1| #1#) (SIGNATURE |chiSquare1| (#2# #3=(|NonNegativeInteger|))) (SIGNATURE |uniform| #4=(#5=(|Mapping| #2#) #2# #2#)) (SIGNATURE |normal| #4#) (SIGNATURE |exponential| (#5# #2#)) (SIGNATURE |chiSquare| #6=(#5# #3#)) (SIGNATURE |Beta| #7=(#5# #3# #3#)) (SIGNATURE F #7#) (SIGNATURE |t| #6#))) (T |RandomFloatDistributions|))
+((|t| #1=(*1 *2 *3) #2=(AND #3=(|isDomain| *3 (|NonNegativeInteger|)) #4=(|isDomain| *2 (|Mapping| #5=(|Float|))) #6=(|isDomain| *1 (|RandomFloatDistributions|)))) (F #7=(*1 *2 *3 *3) #2#) (|Beta| #7# #2#) (|chiSquare| #1# #2#) (|exponential| #1# #8=(AND #4# #6# (|isDomain| *3 #5#))) (|normal| #7# #8#) (|uniform| #7# #8#) (|chiSquare1| #1# (AND #3# #9=(|isDomain| *2 #5#) #6#)) (|exponential1| #10=(*1 *2) #11=(AND #9# #6#)) (|normal01| #10# #11#) (|uniform01| #10# #11#))
+((|factor| (((|Factored| |#1|) |#1|) 33 T ELT)))
+(((|RationalFunctionFactor| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1|))) (|UnivariatePolynomialCategory| (|Fraction| (|Polynomial| (|Integer|))))) (T |RationalFunctionFactor|))
+((|factor| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFunctionFactor| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Polynomial| (|Integer|))))))))
+((|factorFraction| (((|Fraction| (|Factored| #1=(|Polynomial| |#1|))) (|Fraction| #1#)) 14 T ELT)))
+(((|RationalFunctionFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |factorFraction| ((|Fraction| (|Factored| #1=(|Polynomial| |#1|))) (|Fraction| #1#)))) (|EuclideanDomain|)) (T |RationalFunctionFactorizer|))
+((|factorFraction| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| #1=(|Polynomial| *4))) (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Fraction| (|Factored| #1#))) (|isDomain| *1 (|RationalFunctionFactorizer| *4)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|sample| (#3=($) 23 T CONST)) (|red| ((|#1| $) 29 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|green| ((|#1| $) 28 T ELT)) (|componentUpperBound| ((|#1|) 26 T CONST)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|blue| ((|#1| $) 27 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT)))
+(((|RGBColorModel| |#1|) (|Category|) (|AbelianMonoid|)) (T |RGBColorModel|))
+((|red| (*1 *2 *1) (AND (|ofCategory| *1 (|RGBColorModel| *2)) (|ofCategory| *2 (|AbelianMonoid|)))) (|green| (*1 *2 *1) (AND (|ofCategory| *1 (|RGBColorModel| *2)) (|ofCategory| *2 (|AbelianMonoid|)))) (|blue| (*1 *2 *1) (AND (|ofCategory| *1 (|RGBColorModel| *2)) (|ofCategory| *2 (|AbelianMonoid|)))) (|componentUpperBound| (*1 *2) (AND (|ofCategory| *1 (|RGBColorModel| *2)) (|ofCategory| *2 (|AbelianMonoid|)))))
+(|Join| (|AbelianMonoid|) (CATEGORY |domain| (SIGNATURE |red| (|t#1| $)) (SIGNATURE |green| (|t#1| $)) (SIGNATURE |blue| (|t#1| $)) (SIGNATURE |componentUpperBound| (|t#1|) |constant|)))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|whitePoint| (($) 31 T CONST)) (|sample| (#3=($) 23 T CONST)) (|red| ((|#1| . #4=($)) 29 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|green| ((|#1| . #4#) 28 T ELT)) (|componentUpperBound| ((|#1|) 26 T CONST)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|blue| ((|#1| . #4#) 27 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT)))
+(((|RGBColorSpace| |#1|) (|Category|) (|AbelianMonoid|)) (T |RGBColorSpace|))
+((|whitePoint| (*1 *1) (AND (|ofCategory| *1 (|RGBColorSpace| *2)) (|ofCategory| *2 (|AbelianMonoid|)))))
+(|Join| (|RGBColorModel| |t#1|) (CATEGORY |domain| (SIGNATURE |whitePoint| ($) |constant|)))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|RGBColorModel| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) #4=(|:| |open| #5=(|List| #6=(|NewSparseMultivariatePolynomial| |#1| #7=(|OrderedVariableList| |#2|)))))) #5#) NIL T ELT)) (|zeroSetSplit| ((#8=(|List| $) #5#) NIL T ELT) ((#8# #5# #3#) NIL T ELT) ((#8# #5# #3# #3#) NIL T ELT)) (|variables| #9=(((|List| #7#) $) NIL T ELT)) (|trivialIdeal?| #10=(#11=(#3# $) NIL T ELT)) (|triangular?| #12=(#11# NIL #13=(|has| |#1| (|IntegralDomain|)) ELT)) (|stronglyReduced?| #14=(#15=(#3# #6# $) NIL T ELT) #10#) (|stronglyReduce| #16=((#6# #6# $) NIL T ELT)) (|squareFreePart| ((#17=(|List| (|Record| (|:| |val| #6#) #18=(|:| |tower| $))) #6# $) NIL T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ #7#) NIL T ELT)) (|select| #19=(($ #20=(|Mapping| #3# #6#) $) NIL #21=(|has| $ (|FiniteAggregate| #6#)) ELT) ((#22=(|Union| #6# #23="failed") $ #7#) NIL T ELT)) (|sample| (#24=($) NIL T CONST)) (|roughUnitIdeal?| #12#) (|roughSubIdeal?| #25=(#2# NIL #13# ELT)) (|roughEqualIdeals?| #25#) (|roughBase?| #12#) (|rewriteSetWithReduction| ((#5# #5# $ #26=(|Mapping| #6# #6# #6#) #27=(|Mapping| #3# #6# #6#)) NIL T ELT)) (|rewriteIdealWithRemainder| #28=((#5# #5# $) NIL #13# ELT)) (|rewriteIdealWithHeadRemainder| #28#) (|retractIfCan| ((#29=(|Union| $ #23#) #5#) NIL T ELT)) (|retract| #30=(($ #5#) NIL T ELT)) (|rest| ((#29# $) NIL T ELT)) (|removeZero| #16#) (|removeDuplicates| (#31=($ $) NIL #32=(AND #21# #33=(|has| #6# (|BasicType|))) ELT)) (|remove| (#34=($ #6# $) NIL #32# ELT) #19#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| #6#) #35=(|:| |den| |#1|)) #6# $) NIL #13# ELT)) (|reduced?| ((#3# #6# $ #27#) NIL T ELT)) (|reduceByQuasiMonic| #16#) (|reduce| ((#6# #26# $ #6# #6#) NIL #33# ELT) ((#6# #26# $ #6#) NIL T ELT) ((#6# #26# $) NIL T ELT) ((#6# #6# $ #26# #27#) NIL T ELT)) (|quasiComponent| (((|Record| (|:| |close| #5#) #4#) $) NIL T ELT)) (|purelyTranscendental?| #14#) (|purelyAlgebraicLeadingMonomial?| #14#) (|purelyAlgebraic?| #14# #10#) (|normalized?| #14# #10#) (|mvar| ((#7# $) NIL T ELT)) (|members| #36=((#5# $) NIL T ELT)) (|member?| (#15# NIL #33# ELT)) (|map!| #37=(($ (|Mapping| #6# #6#) $) NIL T ELT)) (|map| #37#) (|mainVariables| #9#) (|mainVariable?| #38=((#3# #7# $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|lastSubResultantElseSplit| (((|Union| #6# #8#) #6# #6# $) NIL T ELT)) (|lastSubResultant| ((#17# #6# #6# $) NIL T ELT)) (|last| #39=((#22# $) NIL T ELT)) (|invertibleSet| #40=((#8# #6# $) NIL T ELT)) (|invertibleElseSplit?| (((|Union| #3# #8#) #6# $) NIL T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #18#)) #6# $) NIL T ELT) #14#) (|intersect| #40# #41=((#8# #5# $) NIL T ELT) #42=((#8# #5# #8#) NIL T ELT) #43=((#8# #6# #8#) NIL T ELT)) (|internalAugment| (#34# NIL T ELT) (($ #5# $) NIL T ELT)) (|initials| #36#) (|initiallyReduced?| #14# #10#) (|initiallyReduce| #16#) (|infRittWu?| #1#) (|headRemainder| (((|Record| (|:| |num| #6#) #35#) #6# $) NIL #13# ELT)) (|headReduced?| #14# #10#) (|headReduce| #16#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| #39#) (|find| ((#22# #20# $) NIL T ELT)) (|extendIfCan| ((#29# $ #6#) NIL T ELT)) (|extend| (($ $ #6#) NIL T ELT) #40# #43# #41# #42#) (|every?| #44=((#3# #20# $) NIL T ELT)) (|eval| (($ $ #5# #5#) NIL #45=(AND (|has| #6# (|Evalable| #6#)) (|has| #6# (|SetCategory|))) ELT) (($ $ #6# #6#) NIL #45# ELT) (($ $ #46=(|Equation| #6#)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT)) (|eq?| #1#) (|empty?| #10#) (|empty| (#24# NIL T ELT)) (|degree| #47=(#48=(#49=(|NonNegativeInteger|) $) NIL T ELT)) (|count| ((#49# #6# $) NIL #33# ELT) ((#49# #20# $) NIL T ELT)) (|copy| #50=(#31# NIL T ELT)) (|convert| ((#51=(|InputForm|) $) NIL (|has| #6# (|ConvertibleTo| #51#)) ELT)) (|construct| #30#) (|collectUpper| #52=(($ $ #7#) NIL T ELT)) (|collectUnder| #52#) (|collectQuasiMonic| #50#) (|collect| #52#) (|coerce| (((|OutputForm|) $) NIL T ELT) #36#) (|coHeight| (#48# NIL (|has| #7# (|Finite|)) ELT)) (|before?| #1#) (|basicSet| ((#53=(|Union| (|Record| (|:| |bas| $) (|:| |top| #5#)) #23#) #5# #27#) NIL T ELT) ((#53# #5# #20# #27#) NIL T ELT)) (|autoReduced?| ((#3# $ (|Mapping| #3# #6# #5#)) NIL T ELT)) (|augment| #40# #43# #41# #42#) (|any?| #44#) (|algebraicVariables| #9#) (|algebraicCoefficients?| #14#) (|algebraic?| #38#) (= #1#) (|#| #47#))
+(((|RegularChain| |#1| |#2|) (|Join| (|RegularTriangularSetCategory| |#1| (|IndexedExponents| #1=(|OrderedVariableList| |#2|)) #1# #2=(|NewSparseMultivariatePolynomial| |#1| #1#)) (CATEGORY |domain| (SIGNATURE |zeroSetSplit| ((|List| $) (|List| #2#) #3=(|Boolean|) #3#)))) (|GcdDomain|) (|List| (|Symbol|))) (T |RegularChain|))
+((|zeroSetSplit| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6)))) (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|)) (|ofType| *6 (|List| (|Symbol|))) (|isDomain| *2 (|List| #1=(|RegularChain| *5 *6))) (|isDomain| *1 #1#))))
+((|uniform| ((#1=(|Mapping| #2=(|Integer|)) (|Segment| #2#)) 32 T ELT)) (|ridHack1| ((#2# #2# #2# #2# #2#) 29 T ELT)) (|poisson| #3=((#1# |RationalNumber|) NIL T ELT)) (|geometric| #3#) (|binomial| ((#1# #2# |RationalNumber|) NIL T ELT)))
+(((|RandomIntegerDistributions|) (CATEGORY |package| (SIGNATURE |uniform| (#1=(|Mapping| #2=(|Integer|)) (|Segment| #2#))) (SIGNATURE |binomial| (#1# #2# |RationalNumber|)) (SIGNATURE |poisson| #3=(#1# |RationalNumber|)) (SIGNATURE |geometric| #3#) (SIGNATURE |ridHack1| (#2# #2# #2# #2# #2#)))) (T |RandomIntegerDistributions|))
+((|ridHack1| (*1 *2 *2 *2 *2 *2) (AND (|isDomain| *2 #1=(|Integer|)) #2=(|isDomain| *1 (|RandomIntegerDistributions|)))) (|geometric| #3=(*1 *2 *3) #4=(AND (|isDomain| *3 |RationalNumber|) #5=(|isDomain| *2 (|Mapping| #1#)) #2#)) (|poisson| #3# #4#) (|binomial| (*1 *2 *3 *4) (AND (|isDomain| *4 |RationalNumber|) #5# #2# (|isDomain| *3 #1#))) (|uniform| #3# (AND (|isDomain| *3 (|Segment| #1#)) #5# #2#)))
+((|coerce| (((|OutputForm|) $) NIL T ELT) (($ (|Integer|)) 10 T ELT)))
+(((|Ring&| |#1|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|Ring|)) (T |Ring&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|Ring|) (|Category|)) (T |Ring|))
+((|characteristic| (*1 *2) (AND (|ofCategory| *1 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|Rng|) (|SemiRing|) (|LeftModule| $) (|CoercibleFrom| (|Integer|)) (CATEGORY |package| (SIGNATURE |characteristic| ((|NonNegativeInteger|)) |constant|) (ATTRIBUTE |unitsKnown|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|interpolate| (((|Fraction| (|Polynomial| |#2|)) #1=(|List| |#2|) #1# #2=(|NonNegativeInteger|) #2#) 55 T ELT)))
+(((|RationalInterpolation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |interpolate| ((|Fraction| (|Polynomial| |#2|)) #1=(|List| |#2|) #1# #2=(|NonNegativeInteger|) #2#))) (|Symbol|) (|Field|)) (T |RationalInterpolation|))
+((|interpolate| (*1 *2 *3 *3 *4 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|Fraction| (|Polynomial| *6))) (|isDomain| *1 (|RationalInterpolation| *5 *6)) (|ofType| *5 (|Symbol|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
+(((|RightLinearSet| |#1|) (|Category|) (|SemiGroup|)) (T |RightLinearSet|))
+((* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RightLinearSet| *2)) (|ofCategory| *2 (|SemiGroup|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ |t#1|))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|symmetric?| (#1=((|Boolean|) $) 38 T ELT)) (|square?| (#1# 17 T ELT)) (|nrows| (#2=((|NonNegativeInteger|) $) 13 T ELT)) (|ncols| (#2# 14 T ELT)) (|diagonal?| (#1# 30 T ELT)) (|antisymmetric?| (#1# 40 T ELT)))
+(((|RectangularMatrixCategory&| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |ncols| #1=(#2=(|NonNegativeInteger|) |#1|)) (SIGNATURE |nrows| #1#) (SIGNATURE |antisymmetric?| #3=((|Boolean|) |#1|)) (SIGNATURE |symmetric?| #3#) (SIGNATURE |diagonal?| #3#) (SIGNATURE |square?| #3#)) (|RectangularMatrixCategory| |#2| |#3| |#4| |#5| |#6|) #2# #2# (|Ring|) (|DirectProductCategory| |#3| |#4|) (|DirectProductCategory| |#2| |#4|)) (T |RectangularMatrixCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|symmetric?| (((|Boolean|) $) 63 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|square?| (((|Boolean|) $) 65 T ELT)) (|sample| (#3=($) 23 T CONST)) (|rowEchelon| (($ $) 46 (|has| |#3| (|EuclideanDomain|)) ELT)) (|row| ((|#4| $ (|Integer|)) 51 T ELT)) (|reduce| ((|#3| (|Mapping| |#3| |#3| |#3|) $ |#3| |#3|) 86 (|has| |#3| . #4=((|BasicType|))) ELT) ((|#3| (|Mapping| |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (|Mapping| |#3| |#3| |#3|) $) 81 T ELT)) (|rank| (((|NonNegativeInteger|) $) 45 (|has| |#3| (|IntegralDomain|)) ELT)) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) 53 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|nullity| (((|NonNegativeInteger|) $) 44 (|has| |#3| (|IntegralDomain|)) ELT)) (|nullSpace| (((|List| |#5|) $) 43 (|has| |#3| (|IntegralDomain|)) ELT)) (|nrows| (((|NonNegativeInteger|) $) 57 T ELT)) (|ncols| (((|NonNegativeInteger|) $) 56 T ELT)) (|minRowIndex| (((|Integer|) $) 61 T ELT)) (|minColIndex| (((|Integer|) $) 59 T ELT)) (|members| (((|List| |#3|) $) 80 T ELT)) (|member?| ((#5=(|Boolean|) |#3| $) 85 (|has| |#3| . #4#) ELT)) (|maxRowIndex| (((|Integer|) $) 60 T ELT)) (|maxColIndex| (((|Integer|) $) 58 T ELT)) (|matrix| (($ (|List| (|List| |#3|))) 66 T ELT)) (|map| (($ (|Mapping| |#3| |#3|) $) 71 T ELT) (($ (|Mapping| |#3| |#3| |#3|) $ $) 49 T ELT)) (|listOfLists| (((|List| (|List| |#3|)) $) 55 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|find| (((|Union| |#3| "failed") (|Mapping| #5# |#3|) $) 83 T ELT)) (|exquo| (((|Union| $ "failed") $ |#3|) 48 (|has| |#3| (|IntegralDomain|)) ELT)) (|every?| ((#5# (|Mapping| #5# |#3|) . #6=($)) 78 T ELT)) (|eval| (($ $ (|List| |#3|) (|List| |#3|)) 75 (AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| . #7=((|SetCategory|)))) ELT) (($ $ |#3| |#3|) 74 (AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| . #7#)) ELT) (($ $ (|Equation| |#3|)) 73 (AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| . #7#)) ELT) (($ $ (|List| (|Equation| |#3|))) 72 (AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| . #7#)) ELT)) (|eq?| ((#8=(|Boolean|) $ $) 67 T ELT)) (|empty?| ((#8# $) 70 T ELT)) (|empty| (($) 69 T ELT)) (|elt| ((|#3| $ (|Integer|) (|Integer|)) 54 T ELT) ((|#3| $ (|Integer|) (|Integer|) |#3|) 52 T ELT)) (|diagonal?| (((|Boolean|) $) 64 T ELT)) (|count| ((#9=(|NonNegativeInteger|) |#3| $) 84 (|has| |#3| . #4#) ELT) ((#9# (|Mapping| #5# |#3|) $) 79 T ELT)) (|copy| (($ $) 68 T ELT)) (|column| ((|#5| $ (|Integer|)) 50 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|any?| ((#5# (|Mapping| #5# |#3|) . #6#) 77 T ELT)) (|antisymmetric?| (((|Boolean|) $) 62 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#3|) 47 (|has| |#3| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #10=($)) 30 T ELT) (($ |#3| . #10#) 33 T ELT) (($ $ |#3|) 37 T ELT)) (|#| ((#9# $) 76 T ELT)))
+(((|RectangularMatrixCategory| |#1| |#2| |#3| |#4| |#5|) (|Category|) #1=(|NonNegativeInteger|) #1# (|Ring|) (|DirectProductCategory| |t#2| |t#3|) (|DirectProductCategory| |t#1| |t#3|)) (T |RectangularMatrixCategory|))
+((|matrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *5))) (|ofCategory| *5 (|Ring|)) (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)))) (|square?| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Boolean|)))) (|diagonal?| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Boolean|)))) (|symmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Boolean|)))) (|antisymmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Boolean|)))) (|minRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Integer|)))) (|maxRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Integer|)))) (|minColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Integer|)))) (|maxColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|Integer|)))) (|nrows| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|NonNegativeInteger|)))) (|ncols| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|NonNegativeInteger|)))) (|listOfLists| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|isDomain| *2 (|List| (|List| *5))))) (|elt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7)) (|ofCategory| *6 (|DirectProductCategory| *5 *2)) (|ofCategory| *7 (|DirectProductCategory| *4 *2)) (|ofCategory| *2 (|Ring|)))) (|qelt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7)) (|ofCategory| *6 (|DirectProductCategory| *5 *2)) (|ofCategory| *7 (|DirectProductCategory| *4 *2)) (|ofCategory| *2 (|Ring|)))) (|elt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *5 *2)) (|ofCategory| *7 (|DirectProductCategory| *4 *2)))) (|row| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *6 *2 *7)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *7 (|DirectProductCategory| *4 *6)) (|ofCategory| *2 (|DirectProductCategory| *5 *6)))) (|column| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *6 *7 *2)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *7 (|DirectProductCategory| *5 *6)) (|ofCategory| *2 (|DirectProductCategory| *4 *6)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *5 *5 *5)) (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *2 *5 *6)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *4 *2)) (|ofCategory| *6 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|IntegralDomain|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *2 *5 *6)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *4 *2)) (|ofCategory| *6 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Field|)))) (|rowEchelon| (*1 *1 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *2 *3 *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)) (|ofCategory| *6 (|DirectProductCategory| *2 *4)) (|ofCategory| *4 (|EuclideanDomain|)))) (|rank| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullity| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullSpace| (*1 *2 *1) (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|DirectProductCategory| *4 *5)) (|ofCategory| *7 (|DirectProductCategory| *3 *5)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| *7)))))
+(|Join| (|BiModule| |t#3| |t#3|) (|FiniteAggregate| |t#3|) (CATEGORY |domain| (IF (|has| |t#3| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#3|)) |%noBranch|) (SIGNATURE |matrix| ($ (|List| (|List| |t#3|)))) (SIGNATURE |square?| ((|Boolean|) $)) (SIGNATURE |diagonal?| ((|Boolean|) $)) (SIGNATURE |symmetric?| ((|Boolean|) $)) (SIGNATURE |antisymmetric?| ((|Boolean|) $)) (SIGNATURE |minRowIndex| ((|Integer|) $)) (SIGNATURE |maxRowIndex| ((|Integer|) $)) (SIGNATURE |minColIndex| ((|Integer|) $)) (SIGNATURE |maxColIndex| ((|Integer|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |listOfLists| ((|List| (|List| |t#3|)) $)) (SIGNATURE |elt| (|t#3| $ (|Integer|) (|Integer|))) (SIGNATURE |qelt| (|t#3| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|t#3| $ (|Integer|) (|Integer|) |t#3|)) (SIGNATURE |row| (|t#4| $ (|Integer|))) (SIGNATURE |column| (|t#5| $ (|Integer|))) (SIGNATURE |map| ($ (|Mapping| |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (|Field|)) (SIGNATURE / ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (|EuclideanDomain|)) (SIGNATURE |rowEchelon| ($ $)) |%noBranch|) (IF (|has| |t#3| (|IntegralDomain|)) (PROGN (SIGNATURE |rank| ((|NonNegativeInteger|) $)) (SIGNATURE |nullity| ((|NonNegativeInteger|) $)) (SIGNATURE |nullSpace| ((|List| |t#5|) $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Aggregate|) . T) ((|BasicType|) . T) ((|BiModule| |#3| |#3|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Evalable| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))) ((|FiniteAggregate| |#3|) . T) ((|Functorial| |#3|) . T) ((|HomogeneousAggregate| |#3|) . T) ((|InnerEvalable| |#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#3|) . T) ((|LeftModule| |#3|) . T) ((|LinearSet| |#3|) |has| |#3| (|CommutativeRing|)) ((|Module| |#3|) |has| |#3| (|CommutativeRing|)) ((|RightLinearSet| |#3|) . T) ((|RightModule| |#3|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|symmetric?| #3#) (|subtractIfCan| ((#4=(|Union| $ #5="failed") $ $) NIL T ELT)) (|square?| #3#) (|sample| (#6=($) NIL T CONST)) (|rowEchelon| (#7=($ $) 46 (|has| |#3| (|EuclideanDomain|)) ELT)) (|row| (((|DirectProduct| |#2| |#3|) $ #8=(|Integer|)) 35 T ELT)) (|reduce| ((|#3| #9=(|Mapping| |#3| |#3| |#3|) $ |#3| |#3|) NIL #10=(|has| |#3| (|BasicType|)) ELT) ((|#3| #9# $ |#3|) NIL T ELT) ((|#3| #9# $) NIL T ELT)) (|rectangularMatrix| (($ #11=(|Matrix| |#3|)) 44 T ELT)) (|rank| (#12=(#13=(|NonNegativeInteger|) $) 48 #14=(|has| |#3| (|IntegralDomain|)) ELT)) (|qelt| #15=((|#3| $ #8# #8#) NIL T ELT)) (|opposite?| #1#) (|nullity| (#12# 50 #14# ELT)) (|nullSpace| (((|List| #16=(|DirectProduct| |#1| |#3|)) $) 54 #14# ELT)) (|nrows| #17=(#12# NIL T ELT)) (|ncols| #17#) (|minRowIndex| #18=((#8# $) NIL T ELT)) (|minColIndex| #18#) (|members| ((#19=(|List| |#3|) $) NIL T ELT)) (|member?| ((#2# |#3| $) NIL #10# ELT)) (|maxRowIndex| #18#) (|maxColIndex| #18#) (|matrix| (($ #20=(|List| #19#)) 30 T ELT)) (|map| (($ (|Mapping| |#3| |#3|) $) NIL T ELT) (($ #9# $ $) NIL T ELT)) (|listOfLists| ((#20# $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| (((|Union| |#3| #5#) #21=(|Mapping| #2# |#3|) $) NIL T ELT)) (|exquo| ((#4# $ |#3|) NIL #14# ELT)) (|every?| #22=((#2# #21# $) NIL T ELT)) (|eval| (($ $ #19# #19#) NIL #23=(AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|))) ELT) (($ $ |#3| |#3|) NIL #23# ELT) (($ $ #24=(|Equation| |#3|)) NIL #23# ELT) (($ $ (|List| #24#)) NIL #23# ELT)) (|eq?| #1#) (|empty?| #3#) (|empty| (#6# NIL T ELT)) (|elt| #15# ((|#3| $ #8# #8# |#3|) NIL T ELT)) (|dimension| (((|CardinalNumber|)) 58 #25=(|has| |#3| (|Field|)) ELT)) (|diagonal?| #3#) (|count| ((#13# |#3| $) NIL #10# ELT) ((#13# #21# $) NIL T ELT)) (|copy| #26=(#7# NIL T ELT)) (|convert| ((#27=(|InputForm|) $) 65 (|has| |#3| (|ConvertibleTo| #27#)) ELT)) (|column| ((#16# $ #8#) 39 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) ((#11# $) 41 T ELT)) (|before?| #1#) (|any?| #22#) (|antisymmetric?| #3#) (|Zero| (#6# 15 T CONST)) (= #1#) (/ (#28=($ $ |#3|) NIL #25# ELT)) (- #26# #29=(($ $ $) NIL T ELT)) (+ #29#) (* (($ (|PositiveInteger|) $) NIL T ELT) (($ #13# $) NIL T ELT) (($ #8# . #30=($)) NIL T ELT) (($ |#3| . #30#) NIL T ELT) (#28# NIL T ELT)) (|#| #17#))
+(((|RectangularMatrix| |#1| |#2| |#3|) (|Join| (|RectangularMatrixCategory| |#1| |#2| |#3| (|DirectProduct| |#2| |#3|) (|DirectProduct| |#1| |#3|)) (|CoercibleTo| #1=(|Matrix| |#3|)) (CATEGORY |domain| (IF (|has| |#3| (|Field|)) (ATTRIBUTE (|VectorSpace| |#3|)) |%noBranch|) (IF (|has| |#3| #2=(|ConvertibleTo| (|InputForm|))) (ATTRIBUTE #2#) |%noBranch|) (SIGNATURE |rectangularMatrix| ($ #1#)))) #3=(|NonNegativeInteger|) #3# (|Ring|)) (T |RectangularMatrix|))
+((|rectangularMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|RectangularMatrix| *3 *4 *5)) (|ofType| *3 #1=(|NonNegativeInteger|)) (|ofType| *4 #1#))))
+((|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) 34 T ELT)))
+(((|RectangularMatrixCategoryFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (CATEGORY |package| (SIGNATURE |map| (|#10| (|Mapping| |#7| |#3|) |#6|)) (SIGNATURE |reduce| (|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|))) #1=(|NonNegativeInteger|) #1# #2=(|Ring|) (|DirectProductCategory| |#2| |#3|) (|DirectProductCategory| |#1| |#3|) (|RectangularMatrixCategory| |#1| |#2| |#3| |#4| |#5|) #2# (|DirectProductCategory| |#2| |#7|) (|DirectProductCategory| |#1| |#7|) (|RectangularMatrixCategory| |#1| |#2| |#7| |#8| |#9|)) (T |RectangularMatrixCategoryFunctions2|))
+((|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *7 *2)) #1=(|ofCategory| *7 #2=(|Ring|)) (|ofCategory| *2 #2#) #3=(|ofType| *5 #4=(|NonNegativeInteger|)) #5=(|ofType| *6 #4#) #6=(|ofCategory| *8 (|DirectProductCategory| *6 *7)) #7=(|ofCategory| *9 (|DirectProductCategory| *5 *7)) (|ofCategory| *10 (|DirectProductCategory| *6 *2)) (|ofCategory| *11 (|DirectProductCategory| *5 *2)) (|isDomain| *1 (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) #8=(|ofCategory| *4 (|RectangularMatrixCategory| *5 *6 *7 *8 *9)) (|ofCategory| *12 (|RectangularMatrixCategory| *5 *6 *2 *10 *11)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *10 *7)) #1# (|ofCategory| *10 #2#) #3# #5# #6# #7# (|ofCategory| *2 (|RectangularMatrixCategory| *5 *6 *10 *11 *12)) (|isDomain| *1 (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) #8# (|ofCategory| *11 (|DirectProductCategory| *6 *10)) (|ofCategory| *12 (|DirectProductCategory| *5 *10)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
+(((|RightModule| |#1|) (|Category|) (|Rng|)) (T |RightModule|))
+NIL
+(|Join| (|AbelianGroup|) (|RightLinearSet| |t#1|))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|RightLinearSet| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|annihilate?| (((|Boolean|) $ $) 10 T ELT)))
+(((|Rng&| |#1|) (CATEGORY |package| (SIGNATURE |annihilate?| ((|Boolean|) |#1| |#1|))) (|Rng|)) (T |Rng&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|Rng|) (|Category|)) (T |Rng|))
+((|annihilate?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|Rng|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|AbelianGroup|) (|SemiGroup|) (CATEGORY |domain| (SIGNATURE |annihilate?| ((|Boolean|) $ $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=((|Boolean|) $ $) NIL #3=(|has| |#1| (|SetCategory|)) ELT)) (|variable| ((#4=(|Symbol|) $) 11 T ELT)) (|segment| ((|#1| $) 12 T ELT)) (|latex| (((|String|) $) NIL #3# ELT)) (|hash| (((|SingleInteger|) $) NIL #3# ELT)) (|equation| (($ #4# |#1|) 10 T ELT)) (|coerce| (((|OutputForm|) $) 22 #3# ELT)) (|before?| #1#) (= (#2# 17 #3# ELT)))
+(((|RangeBinding| |#1| |#2|) (|Join| #1=(|Type|) (CATEGORY |domain| (SIGNATURE |equation| ($ #2=(|Symbol|) |#1|)) (SIGNATURE |variable| (#2# $)) (SIGNATURE |segment| (|#1| $)) (IF (|has| |#1| #3=(|SetCategory|)) (ATTRIBUTE #3#) |%noBranch|))) (|SegmentCategory| |#2|) #1#) (T |RangeBinding|))
+((|equation| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|Symbol|)) #2=(|ofCategory| *4 #3=(|Type|)) #4=(|isDomain| *1 (|RangeBinding| *3 *4)) #5=(|ofCategory| *3 (|SegmentCategory| *4)))) (|variable| #6=(*1 *2 *1) (AND #2# #1# #4# #5#)) (|segment| #6# (AND (|ofCategory| *2 (|SegmentCategory| *3)) (|isDomain| *1 (|RangeBinding| *2 *3)) (|ofCategory| *3 #3#))))
+((|truncate| (#1=($ $) 17 T ELT)) (|round| (#1# 25 T ELT)) (|patternMatch| ((#2=(|PatternMatchResult| #3=(|Float|) $) $ #4=(|Pattern| #3#) #2#) 54 T ELT)) (|norm| (#1# 27 T ELT)) (|fractionPart| (#1# 12 T ELT)) (|floor| (#1# 40 T ELT)) (|convert| ((#3# $) NIL T ELT) (((|DoubleFloat|) $) NIL T ELT) ((#4# $) 36 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) #5=(($ #6=(|Integer|)) NIL T ELT) (#1# NIL T ELT) #7=(($ (|Fraction| #6#)) 31 T ELT) #5# #7#) (|characteristic| (((|NonNegativeInteger|)) 9 T CONST)) (|ceiling| (#1# 44 T ELT)))
+(((|RealNumberSystem&| |#1|) (CATEGORY |package| (SIGNATURE |round| #1=(|#1| |#1|)) (SIGNATURE |truncate| #1#) (SIGNATURE |fractionPart| #1#) (SIGNATURE |floor| #1#) (SIGNATURE |ceiling| #1#) (SIGNATURE |norm| #1#) (SIGNATURE |patternMatch| (#2=(|PatternMatchResult| #3=(|Float|) |#1|) |#1| #4=(|Pattern| #3#) #2#)) (SIGNATURE |convert| (#4# |#1|)) #5=(SIGNATURE |coerce| (|#1| (|Fraction| #6=(|Integer|)))) #7=(SIGNATURE |coerce| (|#1| #6#)) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| (#3# |#1|)) #5# (SIGNATURE |coerce| #1#) (SIGNATURE |characteristic| ((|NonNegativeInteger|)) |constant|) #7# (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|RealNumberSystem|)) (T |RealNumberSystem&|))
+((|characteristic| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|RealNumberSystem&| *3)) (|ofCategory| *3 (|RealNumberSystem|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|wholePart| (((|Integer|) $) 108 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|truncate| (($ $) 106 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sqrt| (($ $) 116 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sign| (((|Integer|) $) 133 T ELT)) (|sample| (#5=($) 23 T CONST)) (|round| (($ $) 105 T ELT)) (|retractIfCan| (((|Union| #6=(|Integer|) . #7=("failed")) . #8=($)) 121 T ELT) (((|Union| #9=(|Fraction| (|Integer|)) . #7#) . #8#) 118 T ELT)) (|retract| ((#6# . #10=($)) 122 T ELT) ((#9# . #10#) 119 T ELT)) (|rem| (#11=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#11# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #12=(|List| $)) (|:| |generator| $)) #12#) 66 T ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|positive?| (((|Boolean|) $) 131 T ELT)) (|patternMatch| (((|PatternMatchResult| #13=(|Float|) . #14=($)) $ (|Pattern| #13#) (|PatternMatchResult| #13# . #14#)) 112 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #15=(|Integer|)) 115 T ELT)) (|norm| (($ $) 111 T ELT)) (|negative?| (((|Boolean|) $) 132 T ELT)) (|multiEuclidean| (((|Union| #16=(|List| $) #17="failed") #16# $) 68 T ELT)) (|min| (#18=($ $ $) 125 T ELT)) (|max| (#18# 126 T ELT)) (|lcm| (#19=($ $ $) 60 T ELT) (#20=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#21=(|SparseUnivariatePolynomial| $) #21# #21#) 58 T ELT)) (|gcd| (#19# 62 T ELT) (#20# 61 T ELT)) (|fractionPart| (($ $) 107 T ELT)) (|floor| (($ $) 109 T ELT)) (|factor| (#4# 92 T ELT)) (|extendedEuclidean| (((|Record| #22=(|:| |coef1| $) #23=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #22# #23#) #17#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #12#) #12# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|convert| (((|Float|) . #24=($)) 124 T ELT) (((|DoubleFloat|) . #24#) 123 T ELT) (((|Pattern| (|Float|)) . #24#) 113 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #25=(|Fraction| #26=(|Integer|))) 84 T ELT) (($ #6#) 120 T ELT) (($ #9#) 117 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|ceiling| (($ $) 110 T ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|abs| (($ $) 134 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (>= (#27=((|Boolean|) $ $) 127 T ELT)) (> (#27# 129 T ELT)) (= (#1# 8 T ELT)) (<= (#27# 128 T ELT)) (< (#27# 130 T ELT)) (/ (($ $ $) 83 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #26#) 87 T ELT) (($ $ (|Fraction| #15#)) 114 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #28=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #25#) 86 T ELT) (($ #25# . #28#) 85 T ELT)))
+(((|RealNumberSystem|) (|Category|)) (T |RealNumberSystem|))
+((|norm| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|ceiling| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|floor| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|wholePart| (*1 *2 *1) (AND (|ofCategory| *1 (|RealNumberSystem|)) (|isDomain| *2 (|Integer|)))) (|fractionPart| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|truncate| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|round| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
+(|Join| (|Field|) (|OrderedRing|) (|RealConstant|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| (|Fraction| #1#)) (|RadicalCategory|) (|ConvertibleTo| (|Pattern| #2=(|Float|))) (|PatternMatchable| #2#) (|CharacteristicZero|) (CATEGORY |domain| (SIGNATURE |norm| #3=($ $)) (SIGNATURE |ceiling| #3#) (SIGNATURE |floor| #3#) (SIGNATURE |wholePart| (#1# $)) (SIGNATURE |fractionPart| #3#) (SIGNATURE |truncate| #3#) (SIGNATURE |round| #3#)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|Pattern| #2=(|Float|))) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|OrderedType|) . T) ((|PatternMatchable| #2#) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RealConstant|) . T) ((|RetractableTo| (|Fraction| #3=(|Integer|))) . T) ((|RetractableTo| #3#) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# |#2| $) 26 T ELT)) (|size| (#5=(|#1| $) 10 T ELT)) (|sign| (((|Integer|) |#2| $) 119 T ELT)) (|rootOf| (((|Union| $ #6="failed") |#2| (|PositiveInteger|)) 76 T ELT)) (|right| (#5# 31 T ELT)) (|relativeApprox| (#7=(|#1| |#2| $ |#1|) 40 T ELT)) (|refine| (($ $) 28 T ELT)) (|recip| (((|Union| |#2| #6#) |#2| $) 113 T ELT)) (|positive?| #8=(#4# NIL T ELT)) (|negative?| #8#) (|mightHaveRoots| (#4# 27 T ELT)) (|middle| (#5# 120 T ELT)) (|left| (#5# 30 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|definingPolynomial| ((|#2| $) 104 T ELT)) (|coerce| (((|OutputForm|) $) 95 T ELT)) (|before?| #1#) (|approximate| (#7# 41 T ELT)) (|allRootsOf| (((|List| $) |#2|) 78 T ELT)) (= (#2# 99 T ELT)))
+(((|RightOpenIntervalRootCharacterization| |#1| |#2|) (|Join| (|RealRootCharacterizationCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |left| #1=(|#1| $)) (SIGNATURE |right| #1#) (SIGNATURE |size| #1#) (SIGNATURE |middle| #1#) (SIGNATURE |refine| ($ $)) (SIGNATURE |mightHaveRoots| ((|Boolean|) |#2| $)) (SIGNATURE |relativeApprox| (|#1| |#2| $ |#1|)))) (|Join| (|OrderedRing|) (|Field|)) (|UnivariatePolynomialCategory| |#1|)) (T |RightOpenIntervalRootCharacterization|))
+((|relativeApprox| (*1 *2 *3 *1 *2) #1=(AND (|ofCategory| *2 #2=(|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|left| #3=(*1 *2 *1) #1#) (|right| #3# #1#) (|size| #3# #1#) (|middle| #3# #1#) (|refine| (*1 *1 *1) #1#) (|mightHaveRoots| (*1 *2 *3 *1) (AND (|ofCategory| *4 #2#) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(#5=($ $) NIL T ELT)) (|unit?| #3#) (|symmetricRemainder| #6=(($ $ $) NIL T ELT)) (|subtractIfCan| #7=((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|submod| #10=(($ $ $ $) NIL T ELT)) (|squareFreePart| #4#) (|squareFree| #11=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|sign| #12=(#13=(#14=(|Integer|) $) NIL T ELT)) (|shift| #6#) (|sample| #15=(#16=($) NIL T CONST)) (|roman| (#17=($ (|Symbol|)) 10 T ELT) (#18=($ #14#) 7 T ELT)) (|retractIfCan| (((|Union| #14# #9#) $) NIL T ELT)) (|retract| #12#) (|rem| #6#) (|reducedSystem| ((#19=(|Record| (|:| |mat| #20=(|Matrix| #14#)) (|:| |vec| (|Vector| #14#))) #21=(|Matrix| $) #22=(|Vector| $)) NIL T ELT) ((#20# #21#) NIL T ELT)) (|recip| ((#8# $) NIL T ELT)) (|rationalIfCan| (((|Union| #23=(|Fraction| #14#) #9#) $) NIL T ELT)) (|rational?| #3#) (|rational| ((#23# $) NIL T ELT)) (|random| #24=(#16# NIL T ELT) #4#) (|quo| #6#) (|principalIdeal| (((|Record| (|:| |coef| #25=(|List| $)) #26=(|:| |generator| $)) #25#) NIL T ELT)) (|prime?| #3#) (|powmod| #10#) (|positiveRemainder| #6#) (|positive?| #3#) (|permutation| #6#) (|patternMatch| ((#27=(|PatternMatchResult| #14# $) $ #28=(|Pattern| #14#) #27#) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|odd?| #3#) (|nextItem| (((|Maybe| $) $) NIL T ELT)) (|negative?| #3#) (|multiEuclidean| (((|Union| #25# #9#) #25# $) NIL T ELT)) (|mulmod| #10#) (|min| #6#) (|max| #6#) (|mask| #4#) (|length| #4#) (|leftReducedSystem| ((#19# #22# $) NIL T ELT) ((#20# #22#) NIL T ELT)) (|lcm| #6# #29=(($ #25#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|invmod| #6#) (|init| #15#) (|inc| #4#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#30=(|SparseUnivariatePolynomial| $) #30# #30#) NIL T ELT)) (|gcd| #6# #29#) (|factorial| #4#) (|factor| #11#) (|extendedEuclidean| (((|Union| (|Record| #31=(|:| |coef1| $) #32=(|:| |coef2| $)) #9#) $ $ $) NIL T ELT) (((|Record| #31# #32# #26#) $ $) NIL T ELT)) (|exquo| #7#) (|expressIdealMember| (((|Maybe| #25#) #25# $) NIL T ELT)) (|even?| #3#) (|euclideanSize| ((#33=(|NonNegativeInteger|) $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL T ELT)) (|differentiate| #4# #34=(($ $ #33#) NIL T ELT)) (|dec| #4#) (|copy| #4#) (|convert| (#13# 16 T ELT) (((|InputForm|) . #35=($)) NIL T ELT) ((#28# . #35#) NIL T ELT) (((|Float|) . #35#) NIL T ELT) (((|DoubleFloat|) . #35#) NIL T ELT) (#17# 9 T ELT)) (|coerce| (((|OutputForm|) $) 23 T ELT) #36=(#18# 6 T ELT) #4# #36#) (|characteristic| ((#33#) NIL T CONST)) (|bit?| #1#) (|binomial| #6#) (|before?| #1#) (|base| #24#) (|associates?| #1#) (|annihilate?| #1#) (|addmod| #10#) (|abs| #4#) (|Zero| #15#) (|One| #15#) (D #4# #34#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (- (#5# 22 T ELT) #6#) (+ #6#) (** (($ $ #37=(|PositiveInteger|)) NIL T ELT) #34#) (* (($ #37# $) NIL T ELT) (($ #33# $) NIL T ELT) #38=(($ #14# $) NIL T ELT) #6# #38#))
+(((|RomanNumeral|) (|Join| (|IntegerNumberSystem|) (|ConvertibleFrom| #1=(|Symbol|)) (CATEGORY |domain| (ATTRIBUTE |canonical|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |noetherian|) (SIGNATURE |roman| ($ #1#)) (SIGNATURE |roman| ($ (|Integer|)))))) (T |RomanNumeral|))
+((|roman| #1=(*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) #2=(|isDomain| *1 (|RomanNumeral|)))) (|roman| #1# (AND (|isDomain| *2 (|Integer|)) #2#)))
+((|tail| (#1=($ $) 46 T ELT)) (|supRittWu?| (#2=(#3=(|Boolean|) $ $) 82 T ELT)) (|retractIfCan| (((|Union| |#2| #4="failed") $) NIL T ELT) (((|Union| #5=(|Fraction| #6=(|Integer|)) #4#) $) NIL T ELT) (((|Union| #6# #4#) $) NIL T ELT) (((|Union| |#4| #4#) $) NIL T ELT) ((#7=(|Union| $ #4#) #8=(|Polynomial| #5#)) 247 T ELT) ((#7# #9=(|Polynomial| #6#)) 246 T ELT) ((#7# #10=(|Polynomial| |#2|)) 249 T ELT)) (|retract| #11=((|#2| $) NIL T ELT) ((#5# $) NIL T ELT) ((#6# $) NIL T ELT) (#12=(|#4| $) NIL T ELT) (#13=($ #8#) 235 T ELT) (#14=($ #9#) 231 T ELT) (#15=($ #10#) 255 T ELT)) (|reductum| #16=(#1# NIL T ELT) (#17=($ $ |#4|) 44 T ELT)) (|reduced?| (#2# 131 T ELT) (#18=(#3# $ #19=(|List| $)) 135 T ELT)) (|quasiMonic?| (#20=(#3# $) 60 T ELT)) (|pseudoDivide| (((|Record| #21=(|:| |quotient| $) #22=(|:| |remainder| $)) $ $) 125 T ELT)) (|primitivePart!| (#1# 160 T ELT)) (|primPartElseUnitCanonical!| (#1# 156 T ELT)) (|primPartElseUnitCanonical| (#1# 155 T ELT)) (|prem| (#23=($ $ $) 87 T ELT) (#24=($ $ $ |#4|) 92 T ELT)) (|pquo| (#23# 90 T ELT) (#24# 94 T ELT)) (|normalized?| (#2# 143 T ELT) (#18# 144 T ELT)) (|mvar| (#12# 32 T ELT)) (|monicModulo| (#23# 128 T ELT)) (|monic?| (#20# 59 T ELT)) (|mdeg| ((#25=(|NonNegativeInteger|) $) 35 T ELT)) (|mainSquareFreePart| (#1# 174 T ELT)) (|mainPrimitivePart| (#1# 171 T ELT)) (|mainMonomials| (#26=(#19# $) 72 T ELT)) (|mainMonomial| (#1# 62 T ELT)) (|mainContent| (#1# 167 T ELT)) (|mainCoefficients| (#26# 69 T ELT)) (|leastMonomial| (#1# 64 T ELT)) (|leadingCoefficient| #11# (#17# 39 T ELT)) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| #25#)) $ $) 130 T ELT)) (|lazyPseudoDivide| ((#27=(|Record| #28=(|:| |coef| $) #29=(|:| |gap| #25#) #21# #22#) $ $) 126 T ELT) ((#27# $ $ |#4|) 127 T ELT)) (|lazyPremWithDefault| ((#30=(|Record| #28# #29# #22#) $ $) 121 T ELT) ((#30# $ $ |#4|) 123 T ELT)) (|lazyPrem| (#23# 97 T ELT) (#24# 106 T ELT)) (|lazyPquo| (#23# 98 T ELT) (#24# 107 T ELT)) (|iteratedInitials| (#26# 54 T ELT)) (|initiallyReduced?| (#2# 140 T ELT) (#18# 141 T ELT)) (|initiallyReduce| (#23# 116 T ELT)) (|init| (#1# 37 T ELT)) (|infRittWu?| (#2# 80 T ELT)) (|headReduced?| (#2# 136 T ELT) (#18# 138 T ELT)) (|headReduce| (#23# 112 T ELT)) (|head| (#1# 41 T ELT)) (|gcd| ((|#2| |#2| $) 164 T ELT) (($ #19#) NIL T ELT) (#23# NIL T ELT)) (|exactQuotient!| (#31=($ $ |#2|) NIL T ELT) (#23# 153 T ELT)) (|exactQuotient| (#31# 148 T ELT) (#23# 151 T ELT)) (|deepestTail| (#1# 49 T ELT)) (|deepestInitial| (#1# 55 T ELT)) (|convert| (((|Pattern| (|Float|)) $) NIL T ELT) (((|Pattern| #6#) $) NIL T ELT) (((|InputForm|) $) NIL T ELT) (#13# 237 T ELT) (#14# 233 T ELT) (#15# 248 T ELT) (((|String|) $) 278 T ELT) (#32=(#10# $) 184 T ELT)) (|coerce| (((|OutputForm|) $) 29 T ELT) (($ #6#) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (#32# 185 T ELT) (($ #5#) NIL T ELT) #16#) (|RittWuCompare| (((|Union| #3# #4#) $ $) 79 T ELT)))
+(((|RecursivePolynomialCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |coerce| #1=(|#1| |#1|)) (SIGNATURE |gcd| #2=(|#1| |#1| |#1|)) (SIGNATURE |gcd| (|#1| #3=(|List| |#1|))) (SIGNATURE |coerce| (|#1| #4=(|Fraction| #5=(|Integer|)))) (SIGNATURE |coerce| #6=(#7=(|Polynomial| |#2|) |#1|)) (SIGNATURE |convert| #6#) (SIGNATURE |convert| ((|String|) |#1|)) (SIGNATURE |mainSquareFreePart| #1#) (SIGNATURE |mainPrimitivePart| #1#) (SIGNATURE |mainContent| #1#) (SIGNATURE |primitivePart!| #1#) (SIGNATURE |gcd| (|#2| |#2| |#1|)) (SIGNATURE |exactQuotient!| #2#) (SIGNATURE |exactQuotient| #2#) (SIGNATURE |exactQuotient!| #8=(|#1| |#1| |#2|)) (SIGNATURE |exactQuotient| #8#) (SIGNATURE |primPartElseUnitCanonical!| #1#) (SIGNATURE |primPartElseUnitCanonical| #1#) (SIGNATURE |convert| #9=(|#1| #7#)) (SIGNATURE |retract| #9#) (SIGNATURE |retractIfCan| (#10=(|Union| |#1| #11="failed") #7#)) (SIGNATURE |convert| #12=(|#1| #13=(|Polynomial| #5#))) (SIGNATURE |retract| #12#) (SIGNATURE |retractIfCan| (#10# #13#)) (SIGNATURE |convert| #14=(|#1| #15=(|Polynomial| #4#))) (SIGNATURE |retract| #14#) (SIGNATURE |retractIfCan| (#10# #15#)) (SIGNATURE |initiallyReduce| #2#) (SIGNATURE |headReduce| #2#) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| |power| #16=(|NonNegativeInteger|))) |#1| |#1|)) (SIGNATURE |monicModulo| #2#) (SIGNATURE |pseudoDivide| ((|Record| #17=(|:| |quotient| |#1|) #18=(|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |lazyPseudoDivide| (#19=(|Record| #20=(|:| |coef| |#1|) #21=(|:| |gap| #16#) #17# #18#) |#1| |#1| |#4|)) (SIGNATURE |lazyPseudoDivide| (#19# |#1| |#1|)) (SIGNATURE |lazyPremWithDefault| (#22=(|Record| #20# #21# #18#) |#1| |#1| |#4|)) (SIGNATURE |lazyPremWithDefault| (#22# |#1| |#1|)) (SIGNATURE |lazyPquo| #23=(|#1| |#1| |#1| |#4|)) (SIGNATURE |lazyPrem| #23#) (SIGNATURE |lazyPquo| #2#) (SIGNATURE |lazyPrem| #2#) (SIGNATURE |pquo| #23#) (SIGNATURE |prem| #23#) (SIGNATURE |pquo| #2#) (SIGNATURE |prem| #2#) (SIGNATURE |normalized?| #24=(#25=(|Boolean|) |#1| #3#)) (SIGNATURE |normalized?| #26=(#25# |#1| |#1|)) (SIGNATURE |initiallyReduced?| #24#) (SIGNATURE |initiallyReduced?| #26#) (SIGNATURE |headReduced?| #24#) (SIGNATURE |headReduced?| #26#) (SIGNATURE |reduced?| #24#) (SIGNATURE |reduced?| #26#) (SIGNATURE |supRittWu?| #26#) (SIGNATURE |infRittWu?| #26#) (SIGNATURE |RittWuCompare| ((|Union| #25# #11#) |#1| |#1|)) (SIGNATURE |mainMonomials| #27=(#3# |#1|)) (SIGNATURE |mainCoefficients| #27#) (SIGNATURE |leastMonomial| #1#) (SIGNATURE |mainMonomial| #1#) (SIGNATURE |quasiMonic?| #28=(#25# |#1|)) (SIGNATURE |monic?| #28#) (SIGNATURE |reductum| #29=(|#1| |#1| |#4|)) (SIGNATURE |leadingCoefficient| #29#) (SIGNATURE |deepestInitial| #1#) (SIGNATURE |iteratedInitials| #27#) (SIGNATURE |deepestTail| #1#) (SIGNATURE |tail| #1#) (SIGNATURE |head| #1#) (SIGNATURE |init| #1#) (SIGNATURE |mdeg| (#16# |#1|)) (SIGNATURE |mvar| #30=(|#4| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Pattern| #5#) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |retractIfCan| ((|Union| |#4| #11#) |#1|)) (SIGNATURE |retract| #30#) (SIGNATURE |leadingCoefficient| #31=(|#2| |#1|)) (SIGNATURE |reductum| #1#) (SIGNATURE |retractIfCan| ((|Union| #5# #11#) |#1|)) (SIGNATURE |retract| (#5# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #4# #11#) |#1|)) (SIGNATURE |retract| (#4# |#1|)) (SIGNATURE |retract| #31#) (SIGNATURE |retractIfCan| ((|Union| |#2| #11#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| #5#)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|RecursivePolynomialCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |RecursivePolynomialCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| |#3|) $) 124 T ELT)) (|univariate| ((#3=(|SparseUnivariatePolynomial| $) $ |#3|) 139 T ELT) (((|SparseUnivariatePolynomial| |#1|) $) 138 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 101 (|has| |#1| . #4=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 102 (|has| |#1| . #4#) ELT)) (|unit?| ((#5=(|Boolean|) $) 104 (|has| |#1| . #4#) ELT)) (|totalDegree| ((#6=(|NonNegativeInteger|) $) 126 T ELT) ((#6# $ (|List| |#3|)) 125 T ELT)) (|tail| (($ $) 294 T ELT)) (|supRittWu?| (((|Boolean|) $ $) 280 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|subResultantGcd| (($ $ $) 239 (|has| |#1| (|IntegralDomain|)) ELT)) (|subResultantChain| (((|List| $) $ $) 234 (|has| |#1| (|IntegralDomain|)) ELT)) (|squareFreePolynomial| (#7=((|Factored| #8=(|SparseUnivariatePolynomial| $)) #8#) 114 (|has| |#1| . #9=((|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| (($ $) 112 (|has| |#1| . #10=((|GcdDomain|))) ELT)) (|squareFree| (#11=((|Factored| $) $) 111 (|has| |#1| . #10#) ELT)) (|solveLinearPolynomialEquation| (((|Union| #12=(|List| #8#) #13="failed") #12# #8#) 117 (|has| |#1| . #9#) ELT)) (|sample| (#14=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| . #15=("failed")) . #16=($)) 182 T ELT) (((|Union| #17=(|Fraction| #18=(|Integer|)) . #15#) . #16#) 179 (|has| |#1| . #19=((|RetractableTo| #17#))) ELT) (((|Union| #18# . #15#) . #16#) 177 (|has| |#1| . #20=((|RetractableTo| #18#))) ELT) (((|Union| |#3| . #15#) . #16#) 154 T ELT) (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) 254 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ELT) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 251 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) ELT) (((|Union| $ "failed") (|Polynomial| |#1|)) 248 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|IntegerNumberSystem|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) ELT)) (|retract| ((|#1| . #21=($)) 181 T ELT) ((#17# . #21#) 180 (|has| |#1| . #19#) ELT) ((#18# . #21#) 178 (|has| |#1| . #20#) ELT) ((|#3| . #21#) 155 T ELT) (($ (|Polynomial| (|Fraction| (|Integer|)))) 253 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ELT) (($ (|Polynomial| (|Integer|))) 250 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) ELT) (($ (|Polynomial| |#1|)) 247 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|IntegerNumberSystem|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) ELT)) (|resultant| (($ $ $ |#3|) 122 (|has| |#1| . #22=((|CommutativeRing|))) ELT) (($ $ $) 235 (|has| |#1| (|IntegralDomain|)) ELT)) (|reductum| (#23=($ $) 172 T ELT) (($ $ |#3|) 289 T ELT)) (|reducedSystem| (((|Matrix| #24=(|Integer|)) . #25=(#26=(|Matrix| $))) 150 (|has| |#1| . #27=((|LinearlyExplicitRingOver| #24#))) ELT) (((|Record| (|:| |mat| (|Matrix| #24#)) (|:| |vec| (|Vector| #24#))) . #28=(#26# #29=(|Vector| $))) 149 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #28#) 148 T ELT) (((|Matrix| |#1|) . #25#) 147 T ELT)) (|reduced?| (((|Boolean|) $ $) 279 T ELT) (((|Boolean|) $ (|List| $)) 278 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quasiMonic?| (((|Boolean|) $) 287 T ELT)) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 259 T ELT)) (|primitivePart!| (($ $) 228 (|has| |#1| (|GcdDomain|)) ELT)) (|primitivePart| (($ $) 194 (|has| |#1| . #30=((|GcdDomain|))) ELT) (($ $ |#3|) 119 (|has| |#1| . #10#) ELT)) (|primitiveMonomials| (#31=(#32=(|List| $) $) 123 T ELT)) (|prime?| (((|Boolean|) $) 110 (|has| |#1| . #9#) ELT)) (|primPartElseUnitCanonical!| (($ $) 244 (|has| |#1| (|IntegralDomain|)) ELT)) (|primPartElseUnitCanonical| (($ $) 245 (|has| |#1| (|IntegralDomain|)) ELT)) (|prem| (($ $ $) 271 T ELT) (($ $ $ |#3|) 269 T ELT)) (|pquo| (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (|pomopo!| (($ $ |#1| |#2| $) 190 T ELT)) (|patternMatch| (((|PatternMatchResult| #33=(|Float|) . #34=($)) $ (|Pattern| #33#) (|PatternMatchResult| #33# . #34#)) 98 (AND (|has| |#3| #35=(|PatternMatchable| #33#)) (|has| |#1| #35#)) ELT) (((|PatternMatchResult| #36=(|Integer|) . #34#) $ (|Pattern| #36#) (|PatternMatchResult| #36# . #34#)) 97 (AND (|has| |#3| #37=(|PatternMatchable| #36#)) (|has| |#1| #37#)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfMonomials| ((#38=(|NonNegativeInteger|) $) 187 T ELT)) (|normalized?| (((|Boolean|) $ $) 273 T ELT) (((|Boolean|) $ (|List| $)) 272 T ELT)) (|nextsubResultant2| (($ $ $ $ $) 230 (|has| |#1| (|IntegralDomain|)) ELT)) (|mvar| ((|#3| $) 298 T ELT)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#3|) 131 T ELT) (($ #3# |#3|) 130 T ELT)) (|monomials| (#31# 140 T ELT)) (|monomial?| (((|Boolean|) $) 170 T ELT)) (|monomial| (($ |#1| |#2|) 171 T ELT) (($ $ |#3| . #39=(#6#)) 133 T ELT) (($ $ (|List| |#3|) . #40=(#41=(|List| #6#))) 132 T ELT)) (|monicModulo| (($ $ $) 258 T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 134 T ELT)) (|monic?| (((|Boolean|) $) 288 T ELT)) (|minimumDegree| ((|#2| $) 188 T ELT) ((#6# $ |#3|) 136 T ELT) ((#41# $ (|List| |#3|)) 135 T ELT)) (|mdeg| (((|NonNegativeInteger|) $) 297 T ELT)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) 189 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 166 T ELT)) (|mainVariable| (((|Union| |#3| #42="failed") $) 137 T ELT)) (|mainSquareFreePart| (($ $) 225 (|has| |#1| (|GcdDomain|)) ELT)) (|mainPrimitivePart| (($ $) 226 (|has| |#1| (|GcdDomain|)) ELT)) (|mainMonomials| (((|List| $) $) 283 T ELT)) (|mainMonomial| (($ $) 286 T ELT)) (|mainContent| (($ $) 227 (|has| |#1| (|GcdDomain|)) ELT)) (|mainCoefficients| (((|List| $) $) 284 T ELT)) (|leftReducedSystem| (((|Matrix| #24#) . #43=(#29#)) 152 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| #24#)) (|:| |vec| (|Vector| #24#))) . #44=(#29# $)) 151 (|has| |#1| . #27#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #44#) 146 T ELT) (((|Matrix| |#1|) . #43#) 145 T ELT)) (|leastMonomial| (($ $) 285 T ELT)) (|leadingMonomial| (#23# 168 T ELT)) (|leadingCoefficient| ((|#1| $) 167 T ELT) (($ $ |#3|) 290 T ELT)) (|lcm| (#45=($ (|List| $)) 108 (|has| |#1| . #10#) ELT) (#46=($ $ $) 107 (|has| |#1| . #10#) ELT)) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) 257 T ELT)) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) 261 T ELT) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 260 T ELT)) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) 263 T ELT) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) 262 T ELT)) (|lazyPrem| (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (|lazyPquo| (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|lastSubResultant| (($ $ $) 233 (|has| |#1| (|IntegralDomain|)) ELT)) (|iteratedInitials| (((|List| $) $) 292 T ELT)) (|isTimes| (#47=((|Union| #32# #42#) $) 128 T ELT)) (|isPlus| (#47# 129 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| #6#)) #42#) $) 127 T ELT)) (|initiallyReduced?| (((|Boolean|) $ $) 275 T ELT) (((|Boolean|) $ (|List| $)) 274 T ELT)) (|initiallyReduce| (($ $ $) 255 T ELT)) (|init| (($ $) 296 T ELT)) (|infRittWu?| (((|Boolean|) $ $) 281 T ELT)) (|headReduced?| (((|Boolean|) $ $) 277 T ELT) (((|Boolean|) $ (|List| $)) 276 T ELT)) (|headReduce| (($ $ $) 256 T ELT)) (|head| (($ $) 295 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) 236 (|has| |#1| (|IntegralDomain|)) ELT)) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) 237 (|has| |#1| (|IntegralDomain|)) ELT)) (|ground?| (((|Boolean|) $) 184 T ELT)) (|ground| ((|#1| . #48=($)) 185 T ELT)) (|gcdPolynomial| ((#49=(|SparseUnivariatePolynomial| $) #49# #49#) 109 (|has| |#1| . #10#) ELT)) (|gcd| ((|#1| |#1| $) 229 (|has| |#1| (|GcdDomain|)) ELT) (#45# 106 (|has| |#1| . #10#) ELT) (#46# 105 (|has| |#1| . #10#) ELT)) (|factorSquareFreePolynomial| (#7# 116 (|has| |#1| . #9#) ELT)) (|factorPolynomial| (#7# 115 (|has| |#1| . #9#) ELT)) (|factor| (#11# 113 (|has| |#1| . #9#) ELT)) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 238 (|has| |#1| (|IntegralDomain|)) ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 192 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| $ "failed") $ $) 100 (|has| |#1| . #4#) ELT)) (|exactQuotient!| (($ $ |#1|) 242 (|has| |#1| (|IntegralDomain|)) ELT) (($ $ $) 240 (|has| |#1| (|IntegralDomain|)) ELT)) (|exactQuotient| (($ $ |#1|) 243 (|has| |#1| (|IntegralDomain|)) ELT) (($ $ $) 241 (|has| |#1| (|IntegralDomain|)) ELT)) (|eval| (($ $ (|List| (|Equation| $))) 163 T ELT) (($ $ (|Equation| $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (|List| $) (|List| $)) 160 T ELT) (($ $ |#3| |#1|) 159 T ELT) (($ $ (|List| |#3|) (|List| |#1|)) 158 T ELT) (($ $ |#3| $) 157 T ELT) (($ $ (|List| |#3|) (|List| $)) 156 T ELT)) (|discriminant| (($ $ |#3|) 121 (|has| |#1| . #22#) ELT)) (|differentiate| (($ $ (|List| |#3|) . #50=((|List| #51=(|NonNegativeInteger|)))) 52 T ELT) (($ $ |#3| . #52=(#51#)) 51 T ELT) (($ $ (|List| |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (|degree| ((|#2| $) 169 T ELT) ((#6# $ |#3|) 144 T ELT) ((#41# $ (|List| |#3|)) 143 T ELT)) (|deepestTail| (($ $) 293 T ELT)) (|deepestInitial| (($ $) 291 T ELT)) (|convert| ((#53=(|Pattern| #33#) . #54=($)) 96 (AND (|has| |#3| #55=(|ConvertibleTo| #53#)) (|has| |#1| #55#)) ELT) ((#56=(|Pattern| #36#) . #54#) 95 (AND (|has| |#3| #57=(|ConvertibleTo| #56#)) (|has| |#1| #57#)) ELT) ((#58=(|InputForm|) . #54#) 94 (AND (|has| |#3| #59=(|ConvertibleTo| #58#)) (|has| |#1| #59#)) ELT) (($ (|Polynomial| (|Fraction| (|Integer|)))) 252 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ELT) (($ (|Polynomial| (|Integer|))) 249 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) ELT) (($ (|Polynomial| |#1|)) 246 (|has| |#3| (|ConvertibleTo| (|Symbol|))) ELT) (((|String|) . #54#) 224 (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ELT) (((|Polynomial| |#1|) . #54#) 223 (|has| |#3| (|ConvertibleTo| (|Symbol|))) ELT)) (|content| ((|#1| . #48#) 193 (|has| |#1| . #30#) ELT) (($ $ |#3|) 120 (|has| |#1| . #10#) ELT)) (|conditionP| (((|Union| (|Vector| $) #13#) (|Matrix| $)) 118 (|and| #60=(|has| $ (|CharacteristicNonZero|)) (|has| |#1| . #9#)) ELT)) (|coerce| (((|OutputForm|) . #61=($)) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 183 T ELT) (($ |#3|) 153 T ELT) (((|Polynomial| |#1|) . #61#) 222 (|has| |#3| (|ConvertibleTo| (|Symbol|))) ELT) (($ #62=(|Fraction| (|Integer|))) 92 (OR (|has| |#1| . #19#) (|has| |#1| . #63=((|Algebra| #62#)))) ELT) (($ $) 99 (|has| |#1| . #4#) ELT)) (|coefficients| (((|List| |#1|) $) 186 T ELT)) (|coefficient| ((|#1| $ |#2|) 173 T ELT) (($ $ |#3| . #39#) 142 T ELT) (($ $ (|List| |#3|) . #40#) 141 T ELT)) (|charthRoot| (((|Maybe| $) $) 93 (OR (|and| #60# (|has| |#1| . #9#)) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|binomThmExpt| (($ $ $ #38#) 191 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#5# $ $) 103 (|has| |#1| . #4#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#14# 24 T CONST)) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) 282 T ELT)) (|One| (($) 45 T CONST)) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) 231 (|has| |#1| (|IntegralDomain|)) ELT)) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) 232 (|has| |#1| (|IntegralDomain|)) ELT)) (D (($ $ (|List| |#3|) . #50#) 55 T ELT) (($ $ |#3| . #52#) 54 T ELT) (($ $ (|List| |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 174 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #64=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #62#) 176 (|has| |#1| . #63#) ELT) (($ #62# . #64#) 175 (|has| |#1| . #63#) ELT) (($ |#1| . #64#) 165 T ELT) (($ $ |#1|) 164 T ELT)))
+(((|RecursivePolynomialCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |RecursivePolynomialCategory|))
+((|mvar| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|mdeg| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|init| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|head| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|deepestTail| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|iteratedInitials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|deepestInitial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|leadingCoefficient| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|reductum| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|monic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|quasiMonic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|mainMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|leastMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|mainCoefficients| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|mainMonomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|RittWuCompare| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|infRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|supRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|prem| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|pquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|prem| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|pquo| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPrem| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyPquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyPrem| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPquo| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPremWithDefault| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lazyPremWithDefault| (*1 *2 *1 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3)))) (|lazyPseudoDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lazyPseudoDivide| (*1 *2 *1 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3)))) (|pseudoDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|monicModulo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyResidueClass| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |polnum| *1) (|:| |polden| *1) (|:| |power| (|NonNegativeInteger|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|headReduce| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|initiallyReduce| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|retractIfCan| (*1 *1 *2) (|partial| OR (AND #1=(|isDomain| *2 (|Polynomial| (|Integer|))) #2=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #3=((|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (AND #1# #2# (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #3#))) (|retract| (*1 *1 *2) (OR (AND #4=(|isDomain| *2 (|Polynomial| (|Integer|))) #5=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #6=((|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (AND #4# #5# (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #6#))) (|convert| (*1 *1 *2) (OR (AND #7=(|isDomain| *2 (|Polynomial| (|Integer|))) #8=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #9=((|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (AND #7# #8# (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #9#))) (|retractIfCan| (*1 *1 *2) (|partial| OR (AND #10=(|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|not| (|ofCategory| *3 (|Algebra| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #11=((|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (AND #10# (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|))) (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #11#) (AND #10# (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|)))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #11#))) (|retract| (*1 *1 *2) (OR (AND #12=(|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|not| (|ofCategory| *3 (|Algebra| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #13=((|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (AND #12# (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|))) (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #13#) (AND #12# (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|)))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) . #13#))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|primPartElseUnitCanonical| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|primPartElseUnitCanonical!| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|subResultantGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|extendedSubResultantGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef1| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|halfExtendedSubResultantGcd1| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef1| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|halfExtendedSubResultantGcd2| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|resultant| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|subResultantChain| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lastSubResultant| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|LazardQuotient| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))) (|LazardQuotient2| (*1 *1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))) (|nextsubResultant2| (*1 *1 *1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|gcd| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart!| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainContent| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainPrimitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainSquareFreePart| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
+(|Join| (|PolynomialCategory| |t#1| |t#2| |t#3|) (CATEGORY |domain| (SIGNATURE |mvar| (|t#3| $)) (SIGNATURE |mdeg| ((|NonNegativeInteger|) $)) (SIGNATURE |init| ($ $)) (SIGNATURE |head| ($ $)) (SIGNATURE |tail| ($ $)) (SIGNATURE |deepestTail| ($ $)) (SIGNATURE |iteratedInitials| ((|List| $) $)) (SIGNATURE |deepestInitial| ($ $)) (SIGNATURE |leadingCoefficient| ($ $ |t#3|)) (SIGNATURE |reductum| ($ $ |t#3|)) (SIGNATURE |monic?| ((|Boolean|) $)) (SIGNATURE |quasiMonic?| ((|Boolean|) $)) (SIGNATURE |mainMonomial| ($ $)) (SIGNATURE |leastMonomial| ($ $)) (SIGNATURE |mainCoefficients| ((|List| $) $)) (SIGNATURE |mainMonomials| ((|List| $) $)) (SIGNATURE |RittWuCompare| ((|Union| (|Boolean|) "failed") $ $)) (SIGNATURE |infRittWu?| ((|Boolean|) $ $)) (SIGNATURE |supRittWu?| ((|Boolean|) $ $)) (SIGNATURE |reduced?| ((|Boolean|) $ $)) (SIGNATURE |reduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |headReduced?| ((|Boolean|) $ $)) (SIGNATURE |headReduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |initiallyReduced?| ((|Boolean|) $ $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |normalized?| ((|Boolean|) $ $)) (SIGNATURE |normalized?| ((|Boolean|) $ (|List| $))) (SIGNATURE |prem| ($ $ $)) (SIGNATURE |pquo| ($ $ $)) (SIGNATURE |prem| ($ $ $ |t#3|)) (SIGNATURE |pquo| ($ $ $ |t#3|)) (SIGNATURE |lazyPrem| ($ $ $)) (SIGNATURE |lazyPquo| ($ $ $)) (SIGNATURE |lazyPrem| ($ $ $ |t#3|)) (SIGNATURE |lazyPquo| ($ $ $ |t#3|)) (SIGNATURE |lazyPremWithDefault| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPremWithDefault| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |t#3|)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |t#3|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |monicModulo| ($ $ $)) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $)) (SIGNATURE |headReduce| ($ $ $)) (SIGNATURE |initiallyReduce| ($ $ $)) (IF (|has| |t#3| (|ConvertibleTo| (|Symbol|))) (PROGN (ATTRIBUTE (|CoercibleTo| (|Polynomial| |t#1|))) (ATTRIBUTE (|ConvertibleTo| (|Polynomial| |t#1|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |convert| ($ (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |convert| ($ (|Polynomial| (|Integer|)))) (IF (|has| |t#1| (|QuotientFieldCategory| (|Integer|))) |%noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Integer|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) |%noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |convert| ($ (|Polynomial| (|Integer|)))) (IF (|has| |t#1| (|IntegerNumberSystem|)) |%noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Integer|))) |%noBranch| (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) |%noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|)))))) (SIGNATURE |convert| ($ (|Polynomial| |t#1|))) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|ConvertibleTo| (|String|))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |primPartElseUnitCanonical| ($ $)) (SIGNATURE |primPartElseUnitCanonical!| ($ $)) (SIGNATURE |exactQuotient| ($ $ |t#1|)) (SIGNATURE |exactQuotient!| ($ $ |t#1|)) (SIGNATURE |exactQuotient| ($ $ $)) (SIGNATURE |exactQuotient!| ($ $ $)) (SIGNATURE |subResultantGcd| ($ $ $)) (SIGNATURE |extendedSubResultantGcd| ((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd1| ((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd2| ((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $)) (SIGNATURE |resultant| ($ $ $)) (SIGNATURE |subResultantChain| ((|List| $) $ $)) (SIGNATURE |lastSubResultant| ($ $ $)) (SIGNATURE |LazardQuotient| ($ $ $ (|NonNegativeInteger|))) (SIGNATURE |LazardQuotient2| ($ $ $ $ (|NonNegativeInteger|))) (SIGNATURE |nextsubResultant2| ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |gcd| (|t#1| |t#1| $)) (SIGNATURE |primitivePart!| ($ $)) (SIGNATURE |mainContent| ($ $)) (SIGNATURE |mainPrimitivePart| ($ $)) (SIGNATURE |mainSquareFreePart| ($ $))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| |#3|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| (|Polynomial| |#1|)) |has| |#3| (|ConvertibleTo| (|Symbol|))) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|ConvertibleTo| (|Polynomial| |#1|)) |has| |#3| (|ConvertibleTo| (|Symbol|))) ((|ConvertibleTo| (|String|)) AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|InnerEvalable| |#3| |#1|) . T) ((|InnerEvalable| |#3| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| #2=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|LinearlyExplicitRingOver| #2#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ |#3|) . T) ((|PartialDifferentialRing| |#3|) . T) ((|PartialDifferentialSpace| |#3|) . T) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) ((|PolynomialCategory| |#1| |#2| |#3|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RetractableTo| |#3|) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|iterators| (((|List| #2=(|SpadAst|)) $) 18 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 27 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|body| ((#2# $) 20 T ELT)) (|before?| #1#) (= #1#))
+(((|RepeatAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |iterators| ((|List| #1=(|SpadAst|)) $)) (SIGNATURE |body| (#1# $))))) (T |RepeatAst|))
+((|iterators| #1=(*1 *2 *1) (AND (|isDomain| *2 (|List| #2=(|SpadAst|))) #3=(|isDomain| *1 (|RepeatAst|)))) (|body| #1# (AND (|isDomain| *2 #2#) #3#)))
+((|zero?| (#1=((|Boolean|) |#3| $) 15 T ELT)) (|rootOf| (((|Union| $ #2="failed") |#3| (|PositiveInteger|)) 29 T ELT)) (|recip| (((|Union| |#3| #2#) |#3| $) 45 T ELT)) (|positive?| (#1# 19 T ELT)) (|negative?| (#1# 17 T ELT)))
+(((|RealRootCharacterizationCategory&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |rootOf| ((|Union| |#1| #1="failed") |#3| (|PositiveInteger|))) (SIGNATURE |recip| ((|Union| |#3| #1#) |#3| |#1|)) (SIGNATURE |positive?| #2=((|Boolean|) |#3| |#1|)) (SIGNATURE |negative?| #2#) (SIGNATURE |zero?| #2#)) (|RealRootCharacterizationCategory| |#2| |#3|) (|Join| (|OrderedRing|) (|Field|)) (|UnivariatePolynomialCategory| |#2|)) (T |RealRootCharacterizationCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| (((|Boolean|) |#2| $) 25 T ELT)) (|sign| (((|Integer|) |#2| $) 26 T ELT)) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) 19 T ELT)) (|relativeApprox| ((|#1| |#2| $ |#1|) 17 T ELT)) (|recip| (((|Union| |#2| "failed") |#2| $) 22 T ELT)) (|positive?| (((|Boolean|) |#2| $) 23 T ELT)) (|negative?| (((|Boolean|) |#2| $) 24 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|definingPolynomial| ((|#2| $) 21 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|approximate| ((|#1| |#2| $ |#1|) 18 T ELT)) (|allRootsOf| (((|List| $) |#2|) 20 T ELT)) (= (#1# 8 T ELT)))
+(((|RealRootCharacterizationCategory| |#1| |#2|) (|Category|) (|Join| (|OrderedRing|) (|Field|)) (|UnivariatePolynomialCategory| |t#1|)) (T |RealRootCharacterizationCategory|))
+((|sign| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)) (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Integer|)))) (|zero?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)) (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Boolean|)))) (|negative?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)) (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Boolean|)))) (|positive?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)) (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Boolean|)))) (|recip| (*1 *2 *2 *1) (|partial| AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *3 *2)) (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|definingPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *3 *2)) (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|allRootsOf| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)))) (|rootOf| (*1 *1 *2 *3) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|approximate| (*1 *2 *3 *1 *2) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *2 *3)) (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|relativeApprox| (*1 *2 *3 *1 *2) (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *2 *3)) (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |sign| ((|Integer|) |t#2| $)) (SIGNATURE |zero?| ((|Boolean|) |t#2| $)) (SIGNATURE |negative?| ((|Boolean|) |t#2| $)) (SIGNATURE |positive?| ((|Boolean|) |t#2| $)) (SIGNATURE |recip| ((|Union| |t#2| "failed") |t#2| $)) (SIGNATURE |definingPolynomial| (|t#2| $)) (SIGNATURE |allRootsOf| ((|List| $) |t#2|)) (SIGNATURE |rootOf| ((|Union| $ "failed") |t#2| (|PositiveInteger|))) (SIGNATURE |approximate| (|t#1| |t#2| $ |t#1|)) (SIGNATURE |relativeApprox| (|t#1| |t#2| $ |t#1|))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|upDateBranches| ((#1=(|List| #2=(|Record| (|:| |val| #3=(|List| |#4|)) (|:| |tower| |#5|))) #3# #4=(|List| |#5|) #1# #5=(|Record| (|:| |done| #4#) (|:| |todo| #1#)) #6=(|NonNegativeInteger|)) 114 T ELT)) (|transcendentalDecompose| (#7=(#5# |#4| |#5|) 64 T ELT) (#8=(#5# |#4| |#5| #6#) 63 T ELT)) (|printInfo| (((|Void|) #1# #6#) 99 T ELT)) (|numberOfVariables| (#9=(#6# #3# #4#) 30 T ELT)) (|internalDecompose| (#7# 66 T ELT) (#8# 65 T ELT) ((#5# |#4| |#5| #6# #10=(|Boolean|)) 67 T ELT)) (|decompose| ((#4# #3# #4# #10# #10# #10# #10# #10#) 86 T ELT) ((#4# #3# #4# #10# #10#) 87 T ELT)) (|convert| (((|String|) #2#) 92 T ELT)) (|algebraicDecompose| ((#5# |#4| |#5| #10#) 62 T ELT)) (|KrullNumber| (#9# 21 T ELT)))
+(((|RegularSetDecompositionPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |KrullNumber| #1=(#2=(|NonNegativeInteger|) #3=(|List| |#4|) #4=(|List| |#5|))) (SIGNATURE |numberOfVariables| #1#) (SIGNATURE |algebraicDecompose| (#5=(|Record| (|:| |done| #4#) (|:| |todo| #6=(|List| #7=(|Record| (|:| |val| #3#) (|:| |tower| |#5|))))) |#4| |#5| #8=(|Boolean|))) (SIGNATURE |transcendentalDecompose| #9=(#5# |#4| |#5| #2#)) (SIGNATURE |transcendentalDecompose| #10=(#5# |#4| |#5|)) (SIGNATURE |internalDecompose| (#5# |#4| |#5| #2# #8#)) (SIGNATURE |internalDecompose| #9#) (SIGNATURE |internalDecompose| #10#) (SIGNATURE |decompose| (#4# #3# #4# #8# #8#)) (SIGNATURE |decompose| (#4# #3# #4# #8# #8# #8# #8# #8#)) (SIGNATURE |upDateBranches| (#6# #3# #4# #6# #5# #2#)) (SIGNATURE |convert| ((|String|) #7#)) (SIGNATURE |printInfo| ((|Void|) #6# #2#))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |RegularSetDecompositionPackage|))
+((|printInfo| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| #2=(|List| *8)) (|:| |tower| *9)))) (|isDomain| *4 #3=(|NonNegativeInteger|)) #4=(|ofCategory| *8 #5=(|RecursivePolynomialCategory| *5 *6 *7)) #6=(|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8)) #7=(|ofCategory| *5 #8=(|GcdDomain|)) #9=(|ofCategory| *6 #10=(|OrderedAbelianMonoidSup|)) #11=(|ofCategory| *7 #12=(|OrderedSet|)) (|isDomain| *2 (|Void|)) #13=(|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|convert| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8))) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 #8#) (|ofCategory| *5 #10#) (|ofCategory| *6 #12#) (|isDomain| *2 (|String|)) (|isDomain| *1 (|RegularSetDecompositionPackage| *4 *5 *6 *7 *8)))) (|upDateBranches| (*1 *2 *3 *4 *2 *5 *6) (AND (|isDomain| *5 (|Record| (|:| |done| #14=(|List| *11)) (|:| |todo| (|List| (|Record| (|:| |val| *3) #15=(|:| |tower| *11)))))) (|isDomain| *6 #3#) (|isDomain| *2 (|List| (|Record| (|:| |val| #16=(|List| *10)) #15#))) (|isDomain| *3 #16#) (|isDomain| *4 #14#) (|ofCategory| *10 #17=(|RecursivePolynomialCategory| *7 *8 *9)) (|ofCategory| *11 (|RegularTriangularSetCategory| *7 *8 *9 *10)) #18=(|ofCategory| *7 #8#) #19=(|ofCategory| *8 #10#) #20=(|ofCategory| *9 #12#) (|isDomain| *1 (|RegularSetDecompositionPackage| *7 *8 *9 *10 *11)))) (|decompose| (*1 *2 *3 *2 *4 *4 *4 *4 *4) #21=(AND (|isDomain| *2 #22=(|List| *9)) #23=(|isDomain| *3 #2#) (|isDomain| *4 #24=(|Boolean|)) #4# #6# #7# #9# #11# #13#)) (|decompose| (*1 *2 *3 *2 *4 *4) #21#) (|internalDecompose| #1# #25=(AND #7# #9# #11# (|ofCategory| *3 #5#) #26=(|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *3 *4)) (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))) (|internalDecompose| #27=(*1 *2 *3 *4 *5) #28=(AND #29=(|isDomain| *5 #3#) #30=(|ofCategory| *6 #8#) #31=(|ofCategory| *7 #10#) #32=(|ofCategory| *8 #12#) #33=(|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) #26# #34=(|isDomain| *1 (|RegularSetDecompositionPackage| *6 *7 *8 *3 *4)) #35=(|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3)))) (|internalDecompose| (*1 *2 *3 *4 *5 *6) (AND #29# (|isDomain| *6 #24#) #18# #19# #20# (|ofCategory| *3 #17#) #26# (|isDomain| *1 (|RegularSetDecompositionPackage| *7 *8 *9 *3 *4)) (|ofCategory| *4 (|RegularTriangularSetCategory| *7 *8 *9 *3)))) (|transcendentalDecompose| #1# #25#) (|transcendentalDecompose| #27# #28#) (|algebraicDecompose| #27# (AND (|isDomain| *5 #24#) #30# #31# #32# #33# #26# #34# #35#)) (|numberOfVariables| #1# #36=(AND #23# (|isDomain| *4 #22#) #4# #6# #7# #9# #11# (|isDomain| *2 #3#) #13#)) (|KrullNumber| #1# #36#))
+((|purelyTranscendental?| (#1=(#2=(|Boolean|) |#5| $) 26 T ELT)) (|purelyAlgebraicLeadingMonomial?| (#1# 29 T ELT)) (|purelyAlgebraic?| (#1# 18 T ELT) ((#2# $) 52 T ELT)) (|intersect| #3=((#4=(|List| $) |#5| $) NIL T ELT) (#5=(#4# #6=(|List| |#5|) $) 94 T ELT) (#7=(#4# #6# #4#) 92 T ELT) (#8=(#4# |#5| #4#) 95 T ELT)) (|extend| (($ $ |#5|) NIL T ELT) #3# (#8# 73 T ELT) (#5# 75 T ELT) (#7# 77 T ELT)) (|augment| #3# (#8# 64 T ELT) (#5# 69 T ELT) (#7# 71 T ELT)) (|algebraicCoefficients?| (#1# 32 T ELT)))
+(((|RegularTriangularSetCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |extend| #1=(#2=(|List| |#1|) #3=(|List| |#5|) #2#)) (SIGNATURE |extend| #4=(#2# #3# |#1|)) (SIGNATURE |extend| #5=(#2# |#5| #2#)) (SIGNATURE |extend| #6=(#2# |#5| |#1|)) (SIGNATURE |augment| #1#) (SIGNATURE |augment| #4#) (SIGNATURE |augment| #5#) (SIGNATURE |augment| #6#) (SIGNATURE |intersect| #5#) (SIGNATURE |intersect| #1#) (SIGNATURE |intersect| #4#) (SIGNATURE |intersect| #6#) (SIGNATURE |purelyAlgebraicLeadingMonomial?| #7=(#8=(|Boolean|) |#5| |#1|)) (SIGNATURE |purelyAlgebraic?| (#8# |#1|)) (SIGNATURE |algebraicCoefficients?| #7#) (SIGNATURE |purelyTranscendental?| #7#) (SIGNATURE |purelyAlgebraic?| #7#) (SIGNATURE |extend| (|#1| |#1| |#5|))) (|RegularTriangularSetCategory| |#2| |#3| |#4| |#5|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#2| |#3| |#4|)) (T |RegularTriangularSetCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 91 T ELT)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 92 T ELT) (((|List| $) (|List| |#4|) (|Boolean|)) 120 T ELT)) (|variables| (((|List| |#3|) . #2=($)) 39 T ELT)) (|trivialIdeal?| (#3=(#4=(|Boolean|) $) 32 T ELT)) (|triangular?| (#3# 23 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|stronglyReduced?| ((#6=(|Boolean|) |#4| . #7=($)) 107 T ELT) (#8=(#6# $) 103 T ELT)) (|stronglyReduce| ((|#4| |#4| . #9=($)) 98 T ELT)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) 135 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #10=(|Boolean|) |#4|) . #11=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT) (((|Union| |#4| . #12=(#13="failed")) $ |#3|) 85 T ELT)) (|sample| (#14=($) 59 T CONST)) (|roughUnitIdeal?| (#3# 28 (|has| |#1| . #5#) ELT)) (|roughSubIdeal?| (#15=(#4# $ $) 30 (|has| |#1| . #5#) ELT)) (|roughEqualIdeals?| (#15# 29 (|has| |#1| . #5#) ELT)) (|roughBase?| (#3# 31 (|has| |#1| . #5#) ELT)) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #6# |#4| |#4|)) 99 T ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) . #16=($)) 24 (|has| |#1| . #5#) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) . #16#) 25 (|has| |#1| . #5#) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|rest| ((#17=(|Union| $ #13#) $) 88 T ELT)) (|removeZero| ((|#4| |#4| . #9#) 95 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #18=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #18#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #10# |#4|) . #11#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| . #5#) ELT)) (|reduced?| ((#6# |#4| $ (|Mapping| #6# |#4| |#4|)) 108 T ELT)) (|reduceByQuasiMonic| ((|#4| |#4| . #9#) 93 T ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #19=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #6# |#4| |#4|)) 100 T ELT)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 111 T ELT)) (|purelyTranscendental?| (((|Boolean|) |#4| $) 145 T ELT)) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) 142 T ELT)) (|purelyAlgebraic?| (((|Boolean|) |#4| $) 146 T ELT) (((|Boolean|) $) 143 T ELT)) (|normalized?| ((#6# |#4| . #7#) 110 T ELT) (#8# 109 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#20=(|Boolean|) |#4| $) 53 (|has| |#4| . #19#) ELT)) (|map!| (($ (|Mapping| |#4| |#4|) $) 117 T ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) . #2#) 38 T ELT)) (|mainVariable?| ((#4# |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) 137 T ELT)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) 136 T ELT)) (|last| (((|Union| |#4| . #12#) . #21=($)) 89 T ELT)) (|invertibleSet| (((|List| $) |#4| $) 138 T ELT)) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) 141 T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) 140 T ELT) (((|Boolean|) |#4| $) 139 T ELT)) (|intersect| (((|List| $) |#4| $) 134 T ELT) (((|List| $) (|List| |#4|) $) 133 T ELT) (((|List| $) (|List| |#4|) (|List| $)) 132 T ELT) (((|List| $) |#4| (|List| $)) 131 T ELT)) (|internalAugment| (($ |#4| $) 126 T ELT) (($ (|List| |#4|) $) 125 T ELT)) (|initials| (((|List| |#4|) $) 113 T ELT)) (|initiallyReduced?| ((#6# |#4| . #7#) 105 T ELT) (#8# 101 T ELT)) (|initiallyReduce| ((|#4| |#4| . #9#) 96 T ELT)) (|infRittWu?| ((#6# $ $) 116 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| . #5#) ELT)) (|headReduced?| ((#6# |#4| . #7#) 106 T ELT) (#8# 102 T ELT)) (|headReduce| ((|#4| |#4| . #9#) 97 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| (((|Union| |#4| . #12#) . #21#) 90 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #20# |#4|) $) 51 T ELT)) (|extendIfCan| ((#17# $ |#4|) 84 T ELT)) (|extend| (($ $ |#4|) 83 T ELT) (((|List| $) |#4| $) 124 T ELT) (((|List| $) |#4| (|List| $)) 123 T ELT) (((|List| $) (|List| |#4|) $) 122 T ELT) (((|List| $) (|List| |#4|) (|List| $)) 121 T ELT)) (|every?| ((#20# (|Mapping| #20# |#4|) . #22=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #23=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #23#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #23#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #23#)) ELT)) (|eq?| ((#24=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#24# $) 58 T ELT)) (|empty| (#14# 57 T ELT)) (|degree| (#25=((|NonNegativeInteger|) $) 112 T ELT)) (|count| ((#26=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #19#) ELT) ((#26# (|Mapping| #20# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#27=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #27#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collectQuasiMonic| (($ $) 94 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #28=($)) 13 T ELT) (((|List| |#4|) . #28#) 43 T ELT)) (|coHeight| (#25# 82 (|has| |#3| (|Finite|)) ELT)) (|before?| (#1# 6 T ELT)) (|basicSet| (((|Union| (|Record| #29=(|:| |bas| $) (|:| |top| (|List| |#4|))) . #30=(#13#)) (|List| |#4|) (|Mapping| #6# |#4| |#4|)) 115 T ELT) (((|Union| (|Record| #29# (|:| |top| (|List| |#4|))) . #30#) (|List| |#4|) (|Mapping| #6# |#4|) (|Mapping| #6# |#4| |#4|)) 114 T ELT)) (|autoReduced?| ((#6# $ (|Mapping| #6# |#4| (|List| |#4|))) 104 T ELT)) (|augment| (((|List| $) |#4| $) 130 T ELT) (((|List| $) |#4| (|List| $)) 129 T ELT) (((|List| $) (|List| |#4|) $) 128 T ELT) (((|List| $) (|List| |#4|) (|List| $)) 127 T ELT)) (|any?| ((#20# (|Mapping| #20# |#4|) . #22#) 45 T ELT)) (|algebraicVariables| (((|List| |#3|) $) 87 T ELT)) (|algebraicCoefficients?| (((|Boolean|) |#4| $) 144 T ELT)) (|algebraic?| ((#6# |#3| $) 86 T ELT)) (= (#1# 8 T ELT)) (|#| ((#26# $) 44 T ELT)))
+(((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |RegularTriangularSetCategory|))
+((|purelyAlgebraic?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|purelyTranscendental?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|algebraicCoefficients?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|purelyAlgebraic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|purelyAlgebraicLeadingMonomial?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|invertibleElseSplit?| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Union| (|Boolean|) (|List| *1))) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|invertible?| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *1)))) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|invertible?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|invertibleSet| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|lastSubResultantElseSplit| (*1 *2 *3 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Union| *3 (|List| *1))) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|lastSubResultant| (*1 *2 *3 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *1)))) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|squareFreePart| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *1)))) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|intersect| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|intersect| (*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)))) (|intersect| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)))) (|intersect| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|augment| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|augment| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|augment| (*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)))) (|augment| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)))) (|internalAugment| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|internalAugment| (*1 *1 *2 *1) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)))) (|extend| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))) (|extend| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|extend| (*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)))) (|extend| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7)) (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)))) (|zeroSetSplit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RegularTriangularSetCategory| *5 *6 *7 *8)))))
+(|Join| (|TriangularSetCategory| |t#1| |t#2| |t#3| |t#4|) (CATEGORY |domain| (SIGNATURE |purelyAlgebraic?| ((|Boolean|) |t#4| $)) (SIGNATURE |purelyTranscendental?| ((|Boolean|) |t#4| $)) (SIGNATURE |algebraicCoefficients?| ((|Boolean|) |t#4| $)) (SIGNATURE |purelyAlgebraic?| ((|Boolean|) $)) (SIGNATURE |purelyAlgebraicLeadingMonomial?| ((|Boolean|) |t#4| $)) (SIGNATURE |invertibleElseSplit?| ((|Union| (|Boolean|) (|List| $)) |t#4| $)) (SIGNATURE |invertible?| ((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |t#4| $)) (SIGNATURE |invertible?| ((|Boolean|) |t#4| $)) (SIGNATURE |invertibleSet| ((|List| $) |t#4| $)) (SIGNATURE |lastSubResultantElseSplit| ((|Union| |t#4| (|List| $)) |t#4| |t#4| $)) (SIGNATURE |lastSubResultant| ((|List| (|Record| (|:| |val| |t#4|) (|:| |tower| $))) |t#4| |t#4| $)) (SIGNATURE |squareFreePart| ((|List| (|Record| (|:| |val| |t#4|) (|:| |tower| $))) |t#4| $)) (SIGNATURE |intersect| ((|List| $) |t#4| $)) (SIGNATURE |intersect| ((|List| $) (|List| |t#4|) $)) (SIGNATURE |intersect| ((|List| $) (|List| |t#4|) (|List| $))) (SIGNATURE |intersect| ((|List| $) |t#4| (|List| $))) (SIGNATURE |augment| ((|List| $) |t#4| $)) (SIGNATURE |augment| ((|List| $) |t#4| (|List| $))) (SIGNATURE |augment| ((|List| $) (|List| |t#4|) $)) (SIGNATURE |augment| ((|List| $) (|List| |t#4|) (|List| $))) (SIGNATURE |internalAugment| ($ |t#4| $)) (SIGNATURE |internalAugment| ($ (|List| |t#4|) $)) (SIGNATURE |extend| ((|List| $) |t#4| $)) (SIGNATURE |extend| ((|List| $) |t#4| (|List| $))) (SIGNATURE |extend| ((|List| $) (|List| |t#4|) $)) (SIGNATURE |extend| ((|List| $) (|List| |t#4|) (|List| $))) (SIGNATURE |zeroSetSplit| ((|List| $) (|List| |t#4|) (|Boolean|)))))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#4|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T))
+((|toseSquareFreePart| ((#1=(|List| (|Record| (|:| |val| |#4|) #2=(|:| |tower| |#5|))) |#4| |#5|) 86 T ELT)) (|toseLastSubResultant| (#3=(#1# |#4| |#4| |#5|) 125 T ELT)) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) 74 T ELT)) (|toseInvertible?| (((|List| (|Record| (|:| |val| #4=(|Boolean|)) #2#)) |#4| |#5|) 47 T ELT) ((#4# |#4| |#5|) 55 T ELT)) (|stopTableInvSet!| (#5=(#6=(|Void|)) 36 T ELT)) (|stopTableGcd!| (#5# 25 T ELT)) (|startTableInvSet!| (#7=(#6# #8=(|String|) #8# #8#) 32 T ELT)) (|startTableGcd!| (#7# 21 T ELT)) (|prepareSubResAlgo| ((#9=(|List| (|Record| (|:| |val| (|List| |#4|)) #2#)) |#4| |#4| |#5|) 106 T ELT)) (|internalLastSubResultant| ((#1# #9# |#3| #4#) 117 T ELT) ((#1# |#4| |#4| |#5| #4# #4#) 52 T ELT)) (|integralLastSubResultant| (#3# 112 T ELT)))
+(((|RegularTriangularSetGcdPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |startTableGcd!| #1=(#2=(|Void|) #3=(|String|) #3# #3#)) (SIGNATURE |stopTableGcd!| #4=(#2#)) (SIGNATURE |startTableInvSet!| #1#) (SIGNATURE |stopTableInvSet!| #4#) (SIGNATURE |prepareSubResAlgo| (#5=(|List| (|Record| (|:| |val| (|List| |#4|)) #6=(|:| |tower| |#5|))) |#4| |#4| |#5|)) (SIGNATURE |internalLastSubResultant| (#7=(|List| (|Record| (|:| |val| |#4|) #6#)) |#4| |#4| |#5| #8=(|Boolean|) #8#)) (SIGNATURE |internalLastSubResultant| (#7# #5# |#3| #8#)) (SIGNATURE |integralLastSubResultant| #9=(#7# |#4| |#4| |#5|)) (SIGNATURE |toseLastSubResultant| #9#) (SIGNATURE |toseInvertible?| (#8# |#4| |#5|)) (SIGNATURE |toseInvertible?| ((|List| (|Record| (|:| |val| #8#) #6#)) |#4| |#5|)) (SIGNATURE |toseInvertibleSet| ((|List| |#5|) |#4| |#5|)) (SIGNATURE |toseSquareFreePart| (#7# |#4| |#5|))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |RegularTriangularSetGcdPackage|))
+((|toseSquareFreePart| #1=(*1 *2 *3 *4) #2=(AND #3=(|ofCategory| *5 #4=(|GcdDomain|)) #5=(|ofCategory| *6 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *7 #8=(|OrderedSet|)) #9=(|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) #10=(|isDomain| *2 (|List| (|Record| (|:| |val| *3) #11=(|:| |tower| *4)))) #12=(|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4)) #13=(|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))) (|toseInvertibleSet| #1# (AND #3# #5# #7# #9# (|isDomain| *2 (|List| *4)) #12# #13#)) (|toseInvertible?| #1# (AND #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| (|:| |val| #14=(|Boolean|)) #11#))) #12# #13#)) (|toseInvertible?| #1# (AND #3# #5# #7# #9# (|isDomain| *2 #14#) #12# #13#)) (|toseLastSubResultant| #15=(*1 *2 *3 *3 *4) #2#) (|integralLastSubResultant| #15# #2#) (|internalLastSubResultant| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) #16=(|:| |tower| *9)))) #17=(|isDomain| *5 #14#) (|ofCategory| *8 (|RecursivePolynomialCategory| *6 *7 *4)) (|ofCategory| *9 (|RegularTriangularSetCategory| *6 *7 *4 *8)) #18=(|ofCategory| *6 #4#) #19=(|ofCategory| *7 #6#) (|ofCategory| *4 #8#) (|isDomain| *2 (|List| (|Record| (|:| |val| *8) #16#))) (|isDomain| *1 (|RegularTriangularSetGcdPackage| *6 *7 *4 *8 *9)))) (|internalLastSubResultant| (*1 *2 *3 *3 *4 *5 *5) (AND #17# #18# #19# (|ofCategory| *8 #8#) (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) #10# (|isDomain| *1 (|RegularTriangularSetGcdPackage| *6 *7 *8 *3 *4)) (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3)))) (|prepareSubResAlgo| #15# (AND #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *3)) #11#))) #12# #13#)) (|stopTableInvSet!| #20=(*1 *2) #21=(AND (|ofCategory| *3 #4#) (|ofCategory| *4 #6#) (|ofCategory| *5 #8#) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) #22=(|isDomain| *2 (|Void|)) (|isDomain| *1 (|RegularTriangularSetGcdPackage| *3 *4 *5 *6 *7)) (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)))) (|startTableInvSet!| #23=(*1 *2 *3 *3 *3) #24=(AND (|isDomain| *3 (|String|)) (|ofCategory| *4 #4#) (|ofCategory| *5 #6#) (|ofCategory| *6 #8#) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) #22# (|isDomain| *1 (|RegularTriangularSetGcdPackage| *4 *5 *6 *7 *8)) (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))) (|stopTableGcd!| #20# #21#) (|startTableGcd!| #23# #24#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|target| (((|TypeAst|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expression| (((|SpadAst|) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|RestrictAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |expression| ((|SpadAst|) $)) (SIGNATURE |target| ((|TypeAst|) $))))) (T |RestrictAst|))
+((|expression| #1=(*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) #2=(|isDomain| *1 (|RestrictAst|)))) (|target| #1# (AND (|isDomain| *2 (|TypeAst|)) #2#)))
+((|eq| (((|Boolean|) $ $) 7 T ELT)))
+(((|RuntimeValue|) (|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |eq| ((|Boolean|) $ $))))) (T |RuntimeValue|))
+((|eq| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RuntimeValue|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|suchThat| (($ $ #4=(|List| (|Symbol|)) (|Mapping| #3# (|List| |#3|))) 34 T ELT)) (|rule| (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| #4#) 21 T ELT)) (|rhs| (#5=(|#3| $) 13 T ELT)) (|retractIfCan| (((|Union| #6=(|Equation| |#3|) "failed") $) 60 T ELT)) (|retract| ((#6# $) NIL T ELT)) (|quotedOperators| ((#4# $) 16 T ELT)) (|pattern| (((|Pattern| |#1|) $) 11 T ELT)) (|lhs| (#5# 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (|PositiveInteger|)) 41 T ELT)) (|coerce| (((|OutputForm|) $) 89 T ELT) (($ #6#) 22 T ELT)) (|before?| #1#) (= (#2# 38 T ELT)))
+(((|RewriteRule| |#1| |#2| |#3|) (|Join| #1=(|SetCategory|) (|Eltable| |#3| |#3|) (|RetractableTo| (|Equation| |#3|)) (CATEGORY |domain| (SIGNATURE |rule| ($ |#3| |#3|)) (SIGNATURE |rule| ($ |#3| |#3| #2=(|List| (|Symbol|)))) (SIGNATURE |suchThat| ($ $ #2# (|Mapping| (|Boolean|) (|List| |#3|)))) (SIGNATURE |pattern| (#3=(|Pattern| |#1|) $)) (SIGNATURE |lhs| #4=(|#3| $)) (SIGNATURE |rhs| #4#) (SIGNATURE |elt| (|#3| $ |#3| (|PositiveInteger|))) (SIGNATURE |quotedOperators| (#2# $)))) #1# (|Join| (|Ring|) #5=(|PatternMatchable| |#1|) #6=(|ConvertibleTo| #3#)) (|Join| (|FunctionSpace| |#2|) #5# #6#)) (T |RewriteRule|))
+((|rule| (*1 *1 *2 *2) (AND #1=(|ofCategory| *3 #2=(|SetCategory|)) #3=(|ofCategory| *4 (|Join| #4=(|Ring|) #5=(|PatternMatchable| *3) #6=(|ConvertibleTo| #7=(|Pattern| *3)))) #8=(|isDomain| *1 (|RewriteRule| *3 *4 *2)) #9=(|ofCategory| *2 #10=(|Join| #11=(|FunctionSpace| *4) #5# #6#)))) (|rule| (*1 *1 *2 *2 *3) (AND (|isDomain| *3 #12=(|List| (|Symbol|))) #13=(|ofCategory| *4 #2#) #14=(|ofCategory| *5 (|Join| #4# #15=(|PatternMatchable| *4) #16=(|ConvertibleTo| (|Pattern| *4)))) #17=(|isDomain| *1 (|RewriteRule| *4 *5 *2)) #18=(|ofCategory| *2 #19=(|Join| (|FunctionSpace| *5) #15# #16#)))) (|suchThat| (*1 *1 *1 *2 *3) (AND #20=(|isDomain| *2 #12#) (|isDomain| *3 (|Mapping| (|Boolean|) (|List| *6))) (|ofCategory| *6 #19#) #13# #14# (|isDomain| *1 (|RewriteRule| *4 *5 *6)))) (|pattern| #21=(*1 *2 *1) (AND #1# (|ofCategory| *4 (|Join| #4# #5# #22=(|ConvertibleTo| *2))) (|isDomain| *2 #7#) #23=(|isDomain| *1 (|RewriteRule| *3 *4 *5)) (|ofCategory| *5 (|Join| #11# #5# #22#)))) (|lhs| #21# #24=(AND #1# #9# #8# #3#)) (|rhs| #21# #24#) (|elt| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) #13# #14# #17# #18#)) (|quotedOperators| #21# (AND #1# #3# #20# #23# (|ofCategory| *5 #10#))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|name| (((|Symbol|) $) 8 T ELT)) (|latex| (((|String|) $) 17 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT)) (|before?| #1#) (= (#2# 14 T ELT)))
+(((|RuleCalled| |#1|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |name| (#1=(|Symbol|) $)))) #1#) (T |RuleCalled|))
+((|name| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RuleCalled| *3)) (|ofType| *3 *2))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|ruleset| (($ #3=(|List| (|RewriteRule| |#1| |#2| |#3|))) 15 T ELT)) (|rules| ((#3# $) 22 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (|PositiveInteger|)) 28 T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT)) (|before?| #1#) (= (#2# 21 T ELT)))
+(((|Ruleset| |#1| |#2| |#3|) (|Join| #1=(|SetCategory|) (|Eltable| |#3| |#3|) (CATEGORY |domain| (SIGNATURE |ruleset| ($ #2=(|List| (|RewriteRule| |#1| |#2| |#3|)))) (SIGNATURE |rules| (#2# $)) (SIGNATURE |elt| (|#3| $ |#3| (|PositiveInteger|))))) #1# (|Join| (|Ring|) #3=(|PatternMatchable| |#1|) #4=(|ConvertibleTo| (|Pattern| |#1|))) (|Join| (|FunctionSpace| |#2|) #3# #4#)) (T |Ruleset|))
+((|ruleset| (*1 *1 *2) (AND #1=(|isDomain| *2 (|List| (|RewriteRule| *3 *4 *5))) #2=(|ofCategory| *3 #3=(|SetCategory|)) #4=(|ofCategory| *4 (|Join| #5=(|Ring|) #6=(|PatternMatchable| *3) #7=(|ConvertibleTo| (|Pattern| *3)))) #8=(|ofCategory| *5 (|Join| (|FunctionSpace| *4) #6# #7#)) #9=(|isDomain| *1 (|Ruleset| *3 *4 *5)))) (|rules| (*1 *2 *1) (AND #2# #4# #1# #9# #8#)) (|elt| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 #3#) (|ofCategory| *5 (|Join| #5# #10=(|PatternMatchable| *4) #11=(|ConvertibleTo| (|Pattern| *4)))) (|isDomain| *1 (|Ruleset| *4 *5 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *5) #10# #11#)))))
+((|rur| ((#1=(|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| #2=(|List| (|Polynomial| |#1|))))) #2# #3=(|Boolean|) #3#) 88 T ELT) ((#1# #2#) 92 T ELT) ((#1# #2# #3#) 90 T ELT)))
+(((|RationalUnivariateRepresentationPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rur| (#1=(|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| #2=(|List| (|Polynomial| |#1|))))) #2# #3=(|Boolean|))) (SIGNATURE |rur| (#1# #2#)) (SIGNATURE |rur| (#1# #2# #3# #3#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|List| (|Symbol|))) (T |RationalUnivariateRepresentationPackage|))
+((|rur| (*1 *2 *3 *4 *4) #1=(AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 #2=(|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5)) (|:| |coordinates| #3=(|List| (|Polynomial| *5)))))) (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *5 *6)) (|isDomain| *3 #3#) (|ofType| *6 #4=(|List| (|Symbol|))))) (|rur| (*1 *2 *3) (AND (|ofCategory| *4 #2#) (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *4)) (|:| |coordinates| #5=(|List| (|Polynomial| *4)))))) (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *4 *5)) (|isDomain| *3 #5#) (|ofType| *5 #4#))) (|rur| (*1 *2 *3 *4) #1#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 132 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #5=(|has| |#1| (|Field|)) ELT)) (|unitCanonical| #6=(#7=($ $) NIL #5# ELT)) (|unit?| #8=(#4# NIL #5# ELT)) (|traceMatrix| #9=(#10=(#11=(|Matrix| |#1|) #12=(|Vector| $)) NIL T ELT) ((#11#) 117 T ELT)) (|trace| (#13=(|#1| $) 121 T ELT)) (|tableForDiscreteLogarithm| (((|Table| #14=(|PositiveInteger|) #15=(|NonNegativeInteger|)) #16=(|Integer|)) NIL #17=(|has| |#1| (|FiniteFieldCategory|)) ELT)) (|subtractIfCan| (#18=(#19=(|Union| $ #20="failed") $ $) NIL T ELT)) (|squareFreePart| #6#) (|squareFree| #21=(((|Factored| $) $) NIL #5# ELT)) (|sizeLess?| #22=(#2# NIL #5# ELT)) (|size| (#23=(#15#) 43 #24=(|has| |#1| (|Finite|)) ELT)) (|sample| (#25=($) NIL T CONST)) (|retractIfCan| (((|Union| #16# . #26=(#20#)) . #27=($)) NIL #28=(|has| |#1| (|RetractableTo| #16#)) ELT) (((|Union| #29=(|Fraction| #16#) . #26#) . #27#) NIL #30=(|has| |#1| (|RetractableTo| #29#)) ELT) (((|Union| |#1| . #26#) . #27#) NIL T ELT)) (|retract| ((#16# . #31=($)) NIL #28# ELT) ((#29# . #31#) NIL #30# ELT) #32=(#13# NIL T ELT)) (|represents| (($ #33=(|Vector| |#1|) #12#) NIL T ELT) (#34=($ #33#) 46 T ELT)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL #17# ELT)) (|rem| #35=(#36=($ $ $) NIL #5# ELT)) (|regularRepresentation| ((#11# $ #12#) NIL T ELT) ((#11# $) NIL T ELT)) (|reducedSystem| ((#37=(|Matrix| #16#) #38=(|Matrix| $)) NIL #39=(|has| |#1| (|LinearlyExplicitRingOver| #16#)) ELT) ((#40=(|Record| (|:| |mat| #37#) (|:| |vec| (|Vector| #16#))) #38# #12#) NIL #39# ELT) ((#41=(|Record| (|:| |mat| #11#) (|:| |vec| #33#)) #38# #12#) 109 T ELT) ((#11# #38#) 104 T ELT)) (|reduce| (#42=($ |#2|) 62 T ELT) ((#19# (|Fraction| |#2|)) NIL #5# ELT)) (|recip| ((#19# $) NIL T ELT)) (|rank| ((#14#) 80 T ELT)) (|random| (#25# 47 #24# ELT)) (|quo| #35#) (|principalIdeal| (((|Record| (|:| |coef| #43=(|List| $)) #44=(|:| |generator| $)) #43#) NIL #5# ELT)) (|primitiveElement| #45=(#25# NIL #17# ELT)) (|primitive?| (#4# NIL #17# ELT)) (|primeFrobenius| (#46=($ $ #15#) NIL #17# ELT) #47=(#7# NIL #17# ELT)) (|prime?| #8#) (|order| (#48=(#14# $) NIL #17# ELT) (((|OnePointCompletion| #14#) $) NIL #17# ELT)) (|opposite?| #1#) (|one?| (#4# NIL T ELT)) (|norm| #32#) (|nextItem| (#49=((|Maybe| $) $) NIL #17# ELT)) (|multiEuclidean| (((|Union| #43# #20#) #43# $) NIL #5# ELT)) (|minimalPolynomial| (#50=(|#2| $) 87 #5# ELT)) (|lookup| (#48# 140 #24# ELT)) (|lift| (#50# 59 T ELT)) (|leftReducedSystem| ((#37# #12#) NIL #39# ELT) ((#40# . #51=(#12# $)) NIL #39# ELT) ((#41# . #51#) NIL T ELT) #9#) (|lcm| #52=(($ #43#) NIL #5# ELT) #35#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #6#) (|init| (#25# NIL #17# CONST)) (|index| (($ #14#) 131 #24# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generator| (#25# 123 T ELT)) (|gcdPolynomial| ((#53=(|SparseUnivariatePolynomial| $) #53# #53#) NIL #5# ELT)) (|gcd| #52# #35#) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| #16#) (|:| |exponent| #16#)))) NIL #17# ELT)) (|factor| #21#) (|extendedEuclidean| (((|Union| (|Record| #54=(|:| |coef1| $) #55=(|:| |coef2| $)) #20#) $ $ $) NIL #5# ELT) (((|Record| #54# #55# #44#) $ $) NIL #5# ELT)) (|exquo| (#18# NIL #5# ELT)) (|expressIdealMember| (((|Maybe| #43#) #43# $) NIL #5# ELT)) (|euclideanSize| (#56=(#15# $) NIL #5# ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #5# ELT)) (|discriminant| ((|#1| #12#) NIL T ELT) ((|#1|) 113 T ELT)) (|discreteLog| (#56# NIL #17# ELT) (((|Union| #15# #20#) $ $) NIL #17# ELT)) (|differentiate| #57=(#46# NIL #58=(OR (AND (|has| |#1| (|DifferentialSpace|)) #5#) #17#) ELT) #59=(#7# NIL #58# ELT) #60=(($ $ #61=(|List| #62=(|Symbol|)) (|List| #15#)) NIL #63=(AND #5# (|has| |#1| (|PartialDifferentialSpace| #62#))) ELT) #64=(($ $ #62# #15#) NIL #63# ELT) #65=(($ $ #61#) NIL #63# ELT) #66=(($ $ #62#) NIL #63# ELT) #67=(($ $ #68=(|Mapping| |#1| |#1|)) NIL #5# ELT) #69=(($ $ #68# #15#) NIL #5# ELT)) (|derivationCoordinates| ((#11# #12# #68#) NIL #5# ELT)) (|definingPolynomial| ((|#2|) 77 T ELT)) (|createPrimitiveElement| #45#) (|coordinates| ((#33# $ #12#) 92 T ELT) ((#11# #12# #12#) NIL T ELT) (#70=(#33# $) 72 T ELT) (#10# 88 T ELT)) (|convert| (#70# NIL T ELT) (#34# NIL T ELT) (#50# NIL T ELT) (#42# NIL T ELT)) (|conditionP| (((|Union| #12# #20#) #38#) NIL #17# ELT)) (|coerce| (((|OutputForm|) $) 58 T ELT) (($ #16#) 53 T ELT) (($ |#1|) 55 T ELT) #6# (($ #29#) NIL (OR #5# #30#) ELT)) (|charthRoot| #47# (#49# NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristicPolynomial| (#50# 85 T ELT)) (|characteristic| (#23# 79 T CONST)) (|before?| #1#) (|basis| ((#12#) 84 T ELT)) (|associates?| #22#) (|annihilate?| #1#) (|Zero| (#25# 32 T CONST)) (|One| (#25# 19 T CONST)) (D #57# #59# #60# #64# #65# #66# #67# #69#) (= (#2# 64 T ELT)) (/ #35#) (- (#7# 68 T ELT) (#36# NIL T ELT)) (+ (#36# 66 T ELT)) (** (($ $ #14#) NIL T ELT) (#46# NIL T ELT) (($ $ #16#) NIL #5# ELT)) (* (($ #14# $) NIL T ELT) (($ #15# $) NIL T ELT) (($ #16# $) 51 T ELT) (#36# 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ #29# $) NIL #5# ELT) (($ $ #29#) NIL #5# ELT)))
+(((|SimpleAlgebraicExtension| |#1| |#2| |#3|) (|MonogenicAlgebra| |#1| |#2|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#1|) |#2|) (T |SimpleAlgebraicExtension|))
+NIL
+((|factor| (((|Factored| |#3|) |#3|) 18 T ELT)))
+(((|SimpleAlgebraicExtensionAlgFactor| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#3|) |#3|))) (|UnivariatePolynomialCategory| #1=(|Fraction| (|Integer|))) (|Join| (|Field|) (|CharacteristicZero|) (|MonogenicAlgebra| #1# |#1|)) (|UnivariatePolynomialCategory| |#2|)) (T |SimpleAlgebraicExtensionAlgFactor|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| #1=(|Fraction| (|Integer|)))) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|MonogenicAlgebra| #1# *4))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|SimpleAlgebraicExtensionAlgFactor| *4 *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+((|factor| (((|Factored| |#3|) |#3|) 19 T ELT)))
+(((|SAERationalFunctionAlgFactor| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#3|) |#3|))) (|UnivariatePolynomialCategory| #1=(|Fraction| (|Polynomial| (|Integer|)))) (|Join| (|Field|) (|CharacteristicZero|) (|MonogenicAlgebra| #1# |#1|)) (|UnivariatePolynomialCategory| |#2|)) (T |SAERationalFunctionAlgFactor|))
+((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| #1=(|Fraction| (|Polynomial| (|Integer|))))) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|MonogenicAlgebra| #1# *4))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|SAERationalFunctionAlgFactor| *4 *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|min| (#3=($ $ $) 16 T ELT)) (|max| (#3# 17 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|create| (($) 6 T ELT)) (|convert| (((|Symbol|) $) 20 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= (#2# 15 T ELT)) (<= #1#) (< (#2# 9 T ELT)))
+(((|SingletonAsOrderedSet|) (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |create| ($))))) (T |SingletonAsOrderedSet|))
+((|create| (*1 *1) (|isDomain| *1 (|SingletonAsOrderedSet|))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) . #2=($)) 13 T ELT) (($ #3=(|Syntax|)) 20 T ELT) ((#3# . #2#) 19 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|SpadSyntaxCategory|) (|Category|)) (T |SpadSyntaxCategory|))
+NIL
+(|Join| (|AbstractSyntaxCategory|))
+(((|AbstractSyntaxCategory|) . T) ((|BasicType|) . T) ((|CoercibleFrom| #1=(|Syntax|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| #1#) . T) ((|HomotopicTo| #1#) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) 33 T ELT)) (|clearCache| (((|Void|)) 21 T ELT)) (|cache| (((|List| |#1|)) 13 T ELT)))
+(((|SortedCache| |#1|) (CATEGORY |package| (SIGNATURE |clearCache| ((|Void|))) (SIGNATURE |cache| ((|List| |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)))) (|CachableSet|)) (T |SortedCache|))
+((|enterInCache| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Integer|) *2 *2)) #2=(|ofCategory| *2 #3=(|CachableSet|)) #4=(|isDomain| *1 (|SortedCache| *2)))) (|enterInCache| #1# (AND (|isDomain| *3 (|Mapping| (|Boolean|) *2)) #2# #4#)) (|cache| #5=(*1 *2) (AND (|isDomain| *2 (|List| *3)) #6=(|isDomain| *1 (|SortedCache| *3)) #7=(|ofCategory| *3 #3#))) (|clearCache| #5# (AND (|isDomain| *2 (|Void|)) #6# #7#)))
+((|pushNewContour| (($ #1=(|Binding|) $) 20 T ELT)) (|findBinding| (((|Maybe| #1#) (|Identifier|) $) 19 T ELT)) (|empty| (#2=($) 7 T ELT)) (|currentScope| (#2# 21 T ELT)) (|currentCategoryFrame| (#2# 22 T ELT)) (|contours| (((|List| (|Contour|)) $) 10 T ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT)))
+(((|Scope|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |empty| #1=($)) (SIGNATURE |contours| ((|List| (|Contour|)) $)) (SIGNATURE |findBinding| ((|Maybe| #2=(|Binding|)) (|Identifier|) $)) (SIGNATURE |pushNewContour| ($ #2# $)) (SIGNATURE |currentScope| #1#) (SIGNATURE |currentCategoryFrame| #1#)))) (T |Scope|))
+((|empty| #1=(*1 *1) #2=(|isDomain| *1 (|Scope|))) (|contours| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Contour|))) #2#)) (|findBinding| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| #3=(|Binding|))) #2#)) (|pushNewContour| (*1 *1 *2 *1) (AND (|isDomain| *2 #3#) #2#)) (|currentScope| #1# #2#) (|currentCategoryFrame| #1# #2#))
+((|structuralConstants| (((|Vector| #1=(|Matrix| |#1|)) #2=(|List| #1#)) 45 T ELT) (((|Vector| #3=(|Matrix| #4=(|Polynomial| |#1|))) #5=(|List| (|Symbol|)) #3#) 75 T ELT) (((|Vector| #6=(|Matrix| (|Fraction| #4#))) #5# #6#) 92 T ELT)) (|coordinates| (((|Vector| |#1|) #1# #2#) 39 T ELT)))
+(((|StructuralConstantsPackage| |#1|) (CATEGORY |package| (SIGNATURE |structuralConstants| ((|Vector| #1=(|Matrix| (|Fraction| #2=(|Polynomial| |#1|)))) #3=(|List| (|Symbol|)) #1#)) (SIGNATURE |structuralConstants| ((|Vector| #4=(|Matrix| #2#)) #3# #4#)) (SIGNATURE |structuralConstants| ((|Vector| #5=(|Matrix| |#1|)) #6=(|List| #5#))) (SIGNATURE |coordinates| ((|Vector| |#1|) #5# #6#))) (|Field|)) (T |StructuralConstantsPackage|))
+((|coordinates| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|List| #2=(|Matrix| *5))) (|isDomain| *3 #2#) #3=(|ofCategory| *5 #4=(|Field|)) (|isDomain| *2 (|Vector| *5)) #5=(|isDomain| *1 (|StructuralConstantsPackage| *5)))) (|structuralConstants| (*1 *2 *3) (AND (|isDomain| *3 (|List| #6=(|Matrix| *4))) (|ofCategory| *4 #4#) (|isDomain| *2 (|Vector| #6#)) (|isDomain| *1 (|StructuralConstantsPackage| *4)))) (|structuralConstants| #1# (AND #7=(|isDomain| *3 (|List| (|Symbol|))) #3# (|isDomain| *2 (|Vector| #8=(|Matrix| #9=(|Polynomial| *5)))) #5# (|isDomain| *4 #8#))) (|structuralConstants| #1# (AND #7# #3# (|isDomain| *2 (|Vector| #10=(|Matrix| (|Fraction| #9#)))) #5# (|isDomain| *4 #10#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|weights| ((#6=(|List| #7=(|NonNegativeInteger|)) $) NIL T ELT) ((#6# $ #8=(|Symbol|)) NIL T ELT)) (|weight| #9=((#7# $) NIL T ELT) #10=((#7# $ #8#) NIL T ELT)) (|variables| ((#11=(|List| #12=(|SequentialDifferentialVariable| #8#)) $) NIL T ELT)) (|univariate| ((#13=(|SparseUnivariatePolynomial| $) $ #12#) NIL T ELT) ((#14=(|SparseUnivariatePolynomial| |#1|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #15=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #16=(#17=($ $) NIL #15# ELT)) (|unit?| (#5# NIL #15# ELT)) (|totalDegree| #9# ((#7# $ #11#) NIL T ELT)) (|subtractIfCan| (#18=(#19=(|Union| $ #20="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #21=(((|Factored| #13#) #13#) NIL #22=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #23=(#17# NIL #24=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#25=((|Factored| $) $) NIL #24# ELT)) (|solveLinearPolynomialEquation| (((|Union| #26=(|List| #13#) #20#) #26# #13#) NIL #22# ELT)) (|separant| #27=(#17# NIL T ELT)) (|sample| #28=(($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #29=(#20#)) . #30=($)) NIL T ELT) (((|Union| #31=(|Fraction| #32=(|Integer|)) . #29#) . #30#) NIL #33=(|has| |#1| (|RetractableTo| #31#)) ELT) (((|Union| #32# . #29#) . #30#) NIL #34=(|has| |#1| (|RetractableTo| #32#)) ELT) #35=(((|Union| #12# . #29#) . #30#) NIL T ELT) (((|Union| #8# . #29#) . #30#) NIL T ELT) (((|Union| #36=(|SparseMultivariatePolynomial| |#1| #8#) . #29#) . #30#) NIL T ELT)) (|retract| #37=(#38=(|#1| . #39=($)) NIL T ELT) ((#31# . #39#) NIL #33# ELT) ((#32# . #39#) NIL #34# ELT) #40=((#12# . #39#) NIL T ELT) ((#8# . #39#) NIL T ELT) ((#36# . #39#) NIL T ELT)) (|resultant| (($ $ $ #12#) NIL #41=(|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| #27#) (|reducedSystem| ((#42=(|Matrix| #32#) . #43=(#44=(|Matrix| $))) NIL #45=(|has| |#1| (|LinearlyExplicitRingOver| #32#)) ELT) ((#46=(|Record| (|:| |mat| #42#) (|:| |vec| (|Vector| #32#))) . #47=(#44# #48=(|Vector| $))) NIL #45# ELT) ((#49=(|Record| (|:| |mat| #50=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #47#) NIL T ELT) ((#50# . #43#) NIL T ELT)) (|recip| ((#19# $) NIL T ELT)) (|primitivePart| #23# #51=(#52=($ $ #12#) NIL #24# ELT)) (|primitiveMonomials| #53=((#54=(|List| $) $) NIL T ELT)) (|prime?| (#5# NIL #22# ELT)) (|pomopo!| (($ $ |#1| #55=(|IndexedExponents| #12#) $) NIL T ELT)) (|patternMatch| ((#56=(|PatternMatchResult| #57=(|Float|) . #58=($)) $ #59=(|Pattern| #57#) #56#) NIL (AND (|has| #12# #60=(|PatternMatchable| #57#)) (|has| |#1| #60#)) ELT) ((#61=(|PatternMatchResult| #32# . #58#) $ #62=(|Pattern| #32#) #61#) NIL (AND (|has| #12# #63=(|PatternMatchable| #32#)) (|has| |#1| #63#)) ELT)) (|order| #10# #9#) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #9#) (|multivariate| (($ #14# #12#) NIL T ELT) (($ #13# #12#) NIL T ELT)) (|monomials| #53#) (|monomial?| #4#) (|monomial| (($ |#1| #55#) NIL T ELT) #64=(($ $ #12# #7#) NIL T ELT) #65=(($ $ #11# #6#) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #12#) NIL T ELT)) (|minimumDegree| #66=((#55# $) NIL T ELT) #67=((#7# $ #12#) NIL T ELT) #68=((#6# $ #11#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #55# #55#) $) NIL T ELT)) (|map| (($ #69=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeVariable| ((#70=(|Mapping| $ #7#) #8#) NIL T ELT) ((#70# $) NIL #71=(|has| |#1| (|DifferentialRing|)) ELT)) (|mainVariable| #35#) (|leftReducedSystem| ((#42# . #72=(#48#)) NIL #45# ELT) ((#46# . #73=(#48# $)) NIL #45# ELT) ((#49# . #73#) NIL T ELT) ((#50# . #72#) NIL T ELT)) (|leadingMonomial| #27#) (|leadingCoefficient| #37#) (|leader| #40#) (|lcm| #74=(($ #54#) NIL #24# ELT) #75=(#76=($ $ $) NIL #24# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isobaric?| #4#) (|isTimes| #77=(((|Union| #54# #20#) $) NIL T ELT)) (|isPlus| #77#) (|isExpt| (((|Union| (|Record| (|:| |var| #12#) (|:| |exponent| #7#)) #20#) $) NIL T ELT)) (|initial| #27#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #37#) (|gcdPolynomial| ((#13# #13# #13#) NIL #24# ELT)) (|gcd| #74# #75#) (|factorSquareFreePolynomial| #21#) (|factorPolynomial| #21#) (|factor| (#25# NIL #22# ELT)) (|exquo| ((#19# $ |#1|) NIL #15# ELT) (#18# NIL #15# ELT)) (|eval| (($ $ (|List| #78=(|Equation| $))) NIL T ELT) (($ $ #78#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #54# #54#) NIL T ELT) (($ $ #12# |#1|) NIL T ELT) (($ $ #11# #79=(|List| |#1|)) NIL T ELT) (($ $ #12# $) NIL T ELT) (($ $ #11# #54#) NIL T ELT) (($ $ #8# $) NIL #71# ELT) (($ $ #80=(|List| #8#) #54#) NIL #71# ELT) (($ $ #8# |#1|) NIL #71# ELT) (($ $ #80# #79#) NIL #71# ELT)) (|discriminant| (#52# NIL #41# ELT)) (|differentiate| #65# #64# #81=(($ $ #11#) NIL T ELT) #82=(#52# NIL T ELT) #83=(($ $ #69#) NIL T ELT) #84=(($ $ #69# #7#) NIL T ELT) #85=(($ $ #8#) NIL #86=(|has| |#1| (|PartialDifferentialSpace| #8#)) ELT) #87=(($ $ #80#) NIL #86# ELT) #88=(($ $ #8# #7#) NIL #86# ELT) #89=(($ $ #80# #6#) NIL #86# ELT) #90=(#17# NIL #91=(|has| |#1| (|DifferentialSpace|)) ELT) #92=(#93=($ $ #7#) NIL #91# ELT)) (|differentialVariables| ((#80# $) NIL T ELT)) (|degree| #66# #67# #68# #10#) (|convert| ((#59# . #94=($)) NIL (AND (|has| #12# #95=(|ConvertibleTo| #59#)) (|has| |#1| #95#)) ELT) ((#62# . #94#) NIL (AND (|has| #12# #96=(|ConvertibleTo| #62#)) (|has| |#1| #96#)) ELT) ((#97=(|InputForm|) . #94#) NIL (AND (|has| #12# #98=(|ConvertibleTo| #97#)) (|has| |#1| #98#)) ELT)) (|content| (#38# NIL #24# ELT) #51#) (|conditionP| (((|Union| #48# #20#) #44#) NIL #99=(AND (|has| $ #100=(|CharacteristicNonZero|)) #22#) ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #32#) NIL T ELT) (($ |#1|) NIL T ELT) (($ #12#) NIL T ELT) (($ #8#) NIL T ELT) (($ #36#) NIL T ELT) (($ #31#) NIL (OR #101=(|has| |#1| (|Algebra| #31#)) #33#) ELT) #16#) (|coefficients| ((#79# $) NIL T ELT)) (|coefficient| ((|#1| $ #55#) NIL T ELT) #64# #65#) (|charthRoot| (((|Maybe| $) $) NIL (OR #99# (|has| |#1| #100#)) ELT)) (|characteristic| ((#7#) NIL T CONST)) (|binomThmExpt| (($ $ $ #7#) NIL #41# ELT)) (|before?| #1#) (|associates?| (#2# NIL #15# ELT)) (|annihilate?| #1#) (|Zero| #28#) (|One| #28#) (D #65# #64# #81# #82# #83# #84# #85# #87# #88# #89# #90# #92#) (= #1#) (/ (#102=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #27# #103=(#76# NIL T ELT)) (+ #103#) (** (($ $ #104=(|PositiveInteger|)) NIL T ELT) (#93# NIL T ELT)) (* (($ #104# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #32# . #105=($)) NIL T ELT) #103# (($ $ #31#) NIL #101# ELT) (($ #31# . #105#) NIL #101# ELT) (($ |#1| . #105#) NIL T ELT) (#102# NIL T ELT)))
+(((|SequentialDifferentialPolynomial| |#1|) (|Join| (|DifferentialPolynomialCategory| |#1| #1=(|Symbol|) #2=(|SequentialDifferentialVariable| #1#) (|IndexedExponents| #2#)) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| #1#))) (|Ring|)) (T |SequentialDifferentialPolynomial|))
+NIL
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|weight| (#3=(#4=(|NonNegativeInteger|) $) NIL T ELT)) (|variable| (#5=(|#1| $) 10 T ELT)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL T ELT)) (|retract| (#5# NIL T ELT)) (|order| (#3# 11 T ELT)) (|min| #6=(($ $ $) NIL T ELT)) (|max| #6#) (|makeVariable| (($ |#1| #4#) 9 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|differentiate| #7=(($ $ #4#) NIL T ELT) #8=(($ $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ |#1|) NIL T ELT)) (|before?| #1#) (D #7# #8#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< (#2# 16 T ELT)))
+(((|SequentialDifferentialVariable| |#1|) (|DifferentialVariableCategory| |#1|) (|OrderedSet|)) (T |SequentialDifferentialVariable|))
+NIL
+((~= #1=(#2=((|Boolean|) $ $) NIL #3=(|has| |#1| (|SetCategory|)) ELT)) (|segment| (#4=($ |#1| |#1|) 16 T ELT)) (|map| ((#5=(|List| |#1|) (|Mapping| |#1| |#1|) $) 44 #6=(|has| |#1| (|OrderedRing|)) ELT)) (|low| (#7=(|#1| $) 12 T ELT)) (|lo| (#7# 11 T ELT)) (|latex| (((|String|) $) NIL #3# ELT)) (|incr| ((#8=(|Integer|) $) 15 T ELT)) (|high| (#7# 14 T ELT)) (|hi| (#7# 13 T ELT)) (|hash| (((|SingleInteger|) $) NIL #3# ELT)) (|expand| ((#5# $) 42 #6# ELT) ((#5# (|List| $)) 41 #6# ELT)) (|convert| (($ |#1|) 29 T ELT)) (|coerce| (((|OutputForm|) $) 28 #3# ELT)) (|before?| #1#) (SEGMENT (#4# 10 T ELT)) (BY (($ $ #8#) 17 T ELT)) (= (#2# 22 #3# ELT)))
+(((|Segment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| #1=(|SetCategory|)) (ATTRIBUTE #1#) |%noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|List| |#1|))) |%noBranch|))) (|Type|)) (T |Segment|))
+NIL
+((|map| (((|List| |#2|) #1=(|Mapping| |#2| |#1|) #2=(|Segment| |#1|)) 27 (|has| |#1| (|OrderedRing|)) ELT) (((|Segment| |#2|) #1# #2#) 14 T ELT)))
+(((|SegmentFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Segment| |#2|) #1=(|Mapping| |#2| |#1|) #2=(|Segment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|List| |#2|) #1# #2#)) |%noBranch|)) #3=(|Type|) #3#) (T |SegmentFunctions2|))
+((|map| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Mapping| *6 *5)) #3=(|isDomain| *4 (|Segment| *5)) (|ofCategory| *5 (|OrderedRing|)) #4=(|ofCategory| *5 #5=(|Type|)) #6=(|ofCategory| *6 #5#) (|isDomain| *2 (|List| *6)) #7=(|isDomain| *1 (|SegmentFunctions2| *5 *6)))) (|map| #1# (AND #2# #3# #4# #6# (|isDomain| *2 (|Segment| *6)) #7#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|bounds| (((|List| (|SpadAst|)) $) 10 T ELT)) (|before?| #1#) (= #1#))
+(((|SegmentAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |bounds| ((|List| (|SpadAst|)) $))))) (T |SegmentAst|))
+((|bounds| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|SegmentAst|)))))
+((~= #1=(((|Boolean|) $ $) NIL #2=(|has| #3=(|Segment| |#1|) (|SetCategory|)) ELT)) (|variable| ((#4=(|Symbol|) $) NIL T ELT)) (|segment| ((#3# $) NIL T ELT)) (|latex| (((|String|) $) NIL #2# ELT)) (|hash| (((|SingleInteger|) $) NIL #2# ELT)) (|equation| (($ #4# #3#) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL #2# ELT)) (|before?| #1#) (= #1#))
+(((|SegmentBinding| |#1|) (|Join| #1=(|Type|) (CATEGORY |domain| (SIGNATURE |equation| ($ #2=(|Symbol|) #3=(|Segment| |#1|))) (SIGNATURE |variable| (#2# $)) (SIGNATURE |segment| (#3# $)) (IF (|has| #3# #4=(|SetCategory|)) (ATTRIBUTE #4#) |%noBranch|))) #1#) (T |SegmentBinding|))
+((|equation| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Segment| *4)) (|ofCategory| *4 #2=(|Type|)) (|isDomain| *1 (|SegmentBinding| *4)))) (|variable| #3=(*1 *2 *1) (AND #1# #4=(|isDomain| *1 (|SegmentBinding| *3)) #5=(|ofCategory| *3 #2#))) (|segment| #3# (AND (|isDomain| *2 (|Segment| *3)) #4# #5#)))
+((|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) 19 T ELT)))
+(((|SegmentBindingFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)))) #1=(|Type|) #1#) (T |SegmentBindingFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SegmentBinding| *5)) (|ofCategory| *5 #1=(|Type|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|SegmentBinding| *6)) (|isDomain| *1 (|SegmentBindingFunctions2| *5 *6)))))
+((|segment| (($ |#1| |#1|) 8 T ELT)) (|low| ((|#1| $) 11 T ELT)) (|lo| ((|#1| $) 13 T ELT)) (|incr| (((|Integer|) $) 9 T ELT)) (|high| ((|#1| $) 10 T ELT)) (|hi| ((|#1| $) 12 T ELT)) (|convert| (($ |#1|) 6 T ELT)) (SEGMENT (($ |#1| |#1|) 15 T ELT)) (BY (($ $ (|Integer|)) 14 T ELT)))
+(((|SegmentCategory| |#1|) (|Category|) (|Type|)) (T |SegmentCategory|))
+((SEGMENT (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (BY (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)))) (|lo| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|hi| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|low| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|high| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|incr| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Integer|)))) (|segment| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))))
+(|Join| (|ConvertibleFrom| |t#1|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |t#1| |t#1|)) (SIGNATURE BY ($ $ (|Integer|))) (SIGNATURE |lo| (|t#1| $)) (SIGNATURE |hi| (|t#1| $)) (SIGNATURE |low| (|t#1| $)) (SIGNATURE |high| (|t#1| $)) (SIGNATURE |incr| ((|Integer|) $)) (SIGNATURE |segment| ($ |t#1| |t#1|))))
+(((|ConvertibleFrom| |#1|) . T))
+((|segment| (($ |#1| |#1|) 8 T ELT)) (|map| ((|#2| (|Mapping| |#1| |#1|) $) 17 T ELT)) (|low| ((|#1| . #1=($)) 11 T ELT)) (|lo| ((|#1| . #1#) 13 T ELT)) (|incr| ((#2=(|Integer|) $) 9 T ELT)) (|high| ((|#1| . #1#) 10 T ELT)) (|hi| ((|#1| . #1#) 12 T ELT)) (|expand| ((|#2| (|List| $)) 19 T ELT) ((|#2| $) 18 T ELT)) (|convert| (($ |#1|) 6 T ELT)) (SEGMENT (($ |#1| |#1|) 15 T ELT)) (BY (($ $ #2#) 14 T ELT)))
+(((|SegmentExpansionCategory| |#1| |#2|) (|Category|) (|OrderedRing|) (|StreamAggregate| |t#1|)) (T |SegmentExpansionCategory|))
+((|expand| (*1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2)) (|ofCategory| *4 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *4)))) (|expand| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentExpansionCategory| *3 *2)) (|ofCategory| *3 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *3)))) (|map| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2)) (|ofCategory| *4 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *4)))))
+(|Join| (|SegmentCategory| |t#1|) (CATEGORY |domain| (SIGNATURE |expand| (|t#2| (|List| $))) (SIGNATURE |expand| (|t#2| $)) (SIGNATURE |map| (|t#2| (|Mapping| |t#1| |t#1|) $))))
+(((|ConvertibleFrom| |#1|) . T) ((|SegmentCategory| |#1|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|last| ((#2=(|SpadAst|) $) 14 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 20 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|body| (((|List| #2#) $) 12 T ELT)) (|before?| #1#) (= #1#))
+(((|SequenceAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |body| ((|List| #1=(|SpadAst|)) $)) (SIGNATURE |last| (#1# $))))) (T |SequenceAst|))
+((|body| #1=(*1 *2 *1) (AND (|isDomain| *2 (|List| #2=(|SpadAst|))) #3=(|isDomain| *1 (|SequenceAst|)))) (|last| #1# (AND (|isDomain| *2 #2#) #3#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|universe| #4=(#5=($) NIL #6=(|has| |#1| (|Finite|)) ELT)) (|union| (#7=($ |#1| $) NIL T ELT) #8=(($ $ |#1|) NIL T ELT) (#9=($ $ $) 84 T ELT)) (|symmetricDifference| (#9# 81 T ELT)) (|subset?| (#2# 83 T ELT)) (|size| ((#10=(|NonNegativeInteger|)) NIL #6# ELT)) (|set| #11=(#12=($ #13=(|List| |#1|)) NIL T ELT) (#5# 14 T ELT)) (|select!| #14=(($ #15=(|Mapping| #3# |#1|) $) NIL #16=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|select| #14#) (|sample| (#5# NIL T CONST)) (|removeDuplicates| (#17=($ $) NIL #18=(AND #16# #19=(|has| |#1| (|BasicType|))) ELT)) (|remove!| (#7# 75 #16# ELT) #14#) (|remove| (#7# NIL #18# ELT) #14#) (|reduce| ((|#1| #20=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 44 #19# ELT) ((|#1| #20# $ |#1|) 42 T ELT) ((|#1| #20# $) 40 T ELT)) (|random| #4#) (|part?| #1#) (|min| (#21=(|#1| $) 56 #22=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#13# $) 20 T ELT)) (|member?| ((#3# |#1| $) 74 #19# ELT)) (|max| (#21# 54 #22# ELT)) (|map!| (#23=($ (|Mapping| |#1| |#1|) $) 34 T ELT)) (|map| (#23# 35 T ELT)) (|lookup| ((#24=(|PositiveInteger|) $) NIL #6# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|intersect| (#9# 79 T ELT)) (|inspect| (#21# 26 T ELT)) (|insert!| (#7# 70 T ELT)) (|index| (($ #24#) NIL #6# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| (((|Union| |#1| "failed") #15# $) 32 T ELT)) (|extract!| (#21# 28 T ELT)) (|every?| #25=((#3# #15# $) NIL T ELT)) (|eval| (($ $ (|List| #26=(|Equation| |#1|))) NIL #27=(AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ELT) (($ $ #26#) NIL #27# ELT) (($ $ |#1| |#1|) NIL #27# ELT) (($ $ #13# #13#) NIL #27# ELT)) (|eq?| #1#) (|empty?| ((#3# $) 22 T ELT)) (|empty| (#5# 12 T ELT)) (|difference| #8# (#9# 80 T ELT)) (|dictionary| (#5# NIL T ELT) #11#) (|count| ((#10# |#1| $) NIL #19# ELT) ((#10# #15# $) NIL T ELT)) (|copy| (#17# 17 T ELT)) (|convert| ((#28=(|InputForm|) $) 51 (|has| |#1| (|ConvertibleTo| #28#)) ELT)) (|construct| (#12# 63 T ELT)) (|complement| (#17# NIL #6# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|cardinality| (#29=(#10# $) NIL T ELT)) (|brace| #11# (#5# 13 T ELT)) (|before?| #1#) (|bag| #11#) (|any?| #25#) (= (#2# 53 T ELT)) (|#| (#29# 11 T ELT)))
+(((|Set| |#1|) (|FiniteSetAggregate| |#1|) (|SetCategory|)) (T |Set|))
+NIL
+((|union| #1=(#2=($ $ $) NIL T ELT) (#3=($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (|symmetricDifference| (#2# 10 T ELT)) (|difference| #1# (#3# 15 T ELT)))
+(((|SetAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |union| #1=(|#1| |#1| |#2|)) (SIGNATURE |union| #2=(|#1| |#1| |#1|)) (SIGNATURE |symmetricDifference| #2#) (SIGNATURE |difference| #1#) (SIGNATURE |difference| #2#)) (|SetAggregate| |#2|) (|SetCategory|)) (T |SetAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|union| (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT) (($ |#1| $) 21 T ELT)) (|symmetricDifference| (($ $ $) 25 T ELT)) (|subset?| (((|Boolean|) $ $) 24 T ELT)) (|set| (($) 30 T ELT) (($ (|List| |#1|)) 29 T ELT)) (|select| (($ (|Mapping| #2=(|Boolean|) |#1|) . #3=($)) 46 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#4=($) 38 T CONST)) (|removeDuplicates| (($ $) 48 (AND (|has| |#1| . #5=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 47 (AND (|has| |#1| . #5#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #2# |#1|) . #3#) 45 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|part?| (((|Boolean|) $ $) 33 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|intersect| (($ $ $) 28 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 43 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6=((|SetCategory|)))) ELT) (($ $ |#1| |#1|) 42 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|Equation| |#1|)) 41 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|List| (|Equation| |#1|))) 40 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT)) (|eq?| ((#7=(|Boolean|) $ $) 34 T ELT)) (|empty?| ((#7# $) 37 T ELT)) (|empty| (#4# 36 T ELT)) (|difference| (($ $ $) 27 T ELT) (($ $ |#1|) 26 T ELT)) (|copy| (($ $) 35 T ELT)) (|convert| ((#8=(|InputForm|) $) 49 (|has| |#1| (|ConvertibleTo| #8#)) ELT)) (|construct| (($ (|List| |#1|)) 44 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|brace| (($) 32 T ELT) (($ (|List| |#1|)) 31 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|SetAggregate| |#1|) (|Category|) (|SetCategory|)) (T |SetAggregate|))
+((|part?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|brace| (*1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|brace| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|SetAggregate| *3)))) (|set| (*1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|set| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|SetAggregate| *3)))) (|intersect| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|difference| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|difference| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|symmetricDifference| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|subset?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|union| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|union| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))) (|union| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|SetAggregate| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(|Join| (|SetCategory|) (|Collection| |t#1|) (CATEGORY |domain| (ATTRIBUTE |partiallyOrderedSet|) (SIGNATURE |part?| ((|Boolean|) $ $)) (SIGNATURE |brace| ($)) (SIGNATURE |brace| ($ (|List| |t#1|))) (SIGNATURE |set| ($)) (SIGNATURE |set| ($ (|List| |t#1|))) (SIGNATURE |intersect| ($ $ $)) (SIGNATURE |difference| ($ $ $)) (SIGNATURE |difference| ($ $ |t#1|)) (SIGNATURE |symmetricDifference| ($ $ $)) (SIGNATURE |subset?| ((|Boolean|) $ $)) (SIGNATURE |union| ($ $ $)) (SIGNATURE |union| ($ $ |t#1|)) (SIGNATURE |union| ($ |t#1| $))))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|latex| (((|String|) $) 10 T ELT)) (|hash| (((|SingleInteger|) $) 8 T ELT)))
+(((|SetCategory&| |#1|) (CATEGORY |package| (SIGNATURE |latex| ((|String|) |#1|)) (SIGNATURE |hash| ((|SingleInteger|) |#1|))) (|SetCategory|)) (T |SetCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|SetCategory|) (|Category|)) (T |SetCategory|))
+((|hash| #1=(*1 *2 *1) (AND #2=(|ofCategory| *1 (|SetCategory|)) (|isDomain| *2 (|SingleInteger|)))) (|latex| #1# (AND #2# (|isDomain| *2 (|String|)))))
+(|Join| (|BasicType|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |latex| ((|String|) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|size| ((#4=(|NonNegativeInteger|)) 36 T ELT)) (|setOfMinN| (($ #5=(|List| #6=(|PositiveInteger|))) 70 T ELT)) (|replaceKthElement| ((#7=(|Union| $ "failed") $ #6# #6#) 81 T ELT)) (|random| (($) 40 T ELT)) (|member?| ((#3# #6# $) 42 T ELT)) (|lookup| ((#6# $) 64 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #6#) 39 T ELT)) (|incrementKthElement| ((#7# $ #6#) 77 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|enumerate| (((|Vector| $)) 47 T ELT)) (|elements| ((#5# $) 27 T ELT)) (|delta| ((#4# $ #6# #6#) 78 T ELT)) (|coerce| (((|OutputForm|) $) 32 T ELT)) (|before?| #1#) (= (#2# 24 T ELT)))
+(((|SetOfMIntegersInOneToN| |#1| |#2|) (|Join| (|Finite|) (CATEGORY |domain| (SIGNATURE |incrementKthElement| (#1=(|Union| $ "failed") $ #2=(|PositiveInteger|))) (SIGNATURE |replaceKthElement| (#1# $ #2# #2#)) (SIGNATURE |elements| (#3=(|List| #2#) $)) (SIGNATURE |setOfMinN| ($ #3#)) (SIGNATURE |enumerate| ((|Vector| $))) (SIGNATURE |member?| ((|Boolean|) #2# $)) (SIGNATURE |delta| ((|NonNegativeInteger|) $ #2# #2#)))) #2# #2#) (T |SetOfMIntegersInOneToN|))
+((|incrementKthElement| (*1 *1 *1 *2) #1=(|partial| AND (|isDomain| *2 #2=(|PositiveInteger|)) #3=(|isDomain| *1 #4=(|SetOfMIntegersInOneToN| *3 *4)) (|ofType| *3 *2) (|ofType| *4 *2))) (|replaceKthElement| (*1 *1 *1 *2 *2) #1#) (|elements| (*1 *2 *1) #5=(AND (|isDomain| *2 (|List| #2#)) #3# #6=(|ofType| *3 #2#) #7=(|ofType| *4 #2#))) (|setOfMinN| (*1 *1 *2) #5#) (|enumerate| (*1 *2) (AND (|isDomain| *2 (|Vector| #4#)) #3# #6# #7#)) (|member?| (*1 *2 *3 *1) (AND #8=(|isDomain| *3 #2#) (|isDomain| *2 (|Boolean|)) #9=(|isDomain| *1 (|SetOfMIntegersInOneToN| *4 *5)) #10=(|ofType| *4 *3) #11=(|ofType| *5 *3))) (|delta| (*1 *2 *1 *3 *3) (AND #8# (|isDomain| *2 (|NonNegativeInteger|)) #9# #10# #11#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|symbol?| #3=((#2# $) NIL T ELT)) (|symbol| ((#4=(|Symbol|) $) NIL T ELT)) (|string?| #3#) (|string| #5=((#6=(|String|) $) NIL T ELT)) (|pair?| #3#) (|null?| #3#) (|list?| #3#) (|latex| #5#) (|integer?| #3#) (|integer| #7=((#8=(|Integer|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|float?| #3#) (|float| ((#9=(|DoubleFloat|) $) NIL T ELT)) (|expr| #10=((#11=(|OutputForm|) $) NIL T ELT)) (|eq| #1#) (|elt| (($ $ #8#) NIL T ELT) (($ $ (|List| #8#)) NIL T ELT)) (|destruct| ((#12=(|List| $) $) NIL T ELT)) (|convert| (($ #6#) NIL T ELT) (($ #4#) NIL T ELT) (($ #8#) NIL T ELT) (($ #9#) NIL T ELT) (($ #11#) NIL T ELT) (($ #12#) NIL T ELT)) (|coerce| #10#) (|cdr| #13=(($ $) NIL T ELT)) (|car| #13#) (|before?| #1#) (|atom?| #3#) (= #1#) (|#| #7#))
+(((|SExpression|) (|SExpressionCategory| (|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|))) (T |SExpression|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|symbol?| (((|Boolean|) $) 36 T ELT)) (|symbol| ((|#2| $) 31 T ELT)) (|string?| (((|Boolean|) $) 37 T ELT)) (|string| ((|#1| $) 32 T ELT)) (|pair?| (((|Boolean|) $) 39 T ELT)) (|null?| (((|Boolean|) $) 41 T ELT)) (|list?| (((|Boolean|) $) 38 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|integer?| (((|Boolean|) $) 35 T ELT)) (|integer| ((|#3| $) 30 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|float?| (((|Boolean|) $) 34 T ELT)) (|float| ((|#4| $) 29 T ELT)) (|expr| ((|#5| $) 28 T ELT)) (|eq| (((|Boolean|) $ $) 42 T ELT)) (|elt| (($ $ (|Integer|)) 44 T ELT) (($ $ (|List| (|Integer|))) 43 T ELT)) (|destruct| (((|List| $) $) 33 T ELT)) (|convert| (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (|List| $)) 45 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|cdr| (($ $) 26 T ELT)) (|car| (($ $) 27 T ELT)) (|before?| (#1# 6 T ELT)) (|atom?| (((|Boolean|) $) 40 T ELT)) (= (#1# 8 T ELT)) (|#| (((|Integer|) $) 25 T ELT)))
+(((|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) (|Category|) #1=(|SetCategory|) #1# #1# #1# #1#) (T |SExpressionCategory|))
+((|eq| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|null?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|atom?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|pair?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|list?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|string?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|symbol?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|integer?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|float?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|destruct| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)))) (|string| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|symbol| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|integer| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *2 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|float| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *2 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|expr| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|car| (*1 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|cdr| (*1 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Integer|)))))
+(|Join| (|SetCategory|) (|ConvertibleFrom| |t#1|) (|ConvertibleFrom| |t#2|) (|ConvertibleFrom| |t#3|) (|ConvertibleFrom| |t#4|) (|ConvertibleFrom| |t#4|) (|ConvertibleFrom| |t#5|) (|ConvertibleFrom| (|List| $)) (|Eltable| (|Integer|) $) (|Eltable| (|List| (|Integer|)) $) (CATEGORY |domain| (SIGNATURE |eq| ((|Boolean|) $ $)) (SIGNATURE |null?| ((|Boolean|) $)) (SIGNATURE |atom?| ((|Boolean|) $)) (SIGNATURE |pair?| ((|Boolean|) $)) (SIGNATURE |list?| ((|Boolean|) $)) (SIGNATURE |string?| ((|Boolean|) $)) (SIGNATURE |symbol?| ((|Boolean|) $)) (SIGNATURE |integer?| ((|Boolean|) $)) (SIGNATURE |float?| ((|Boolean|) $)) (SIGNATURE |destruct| ((|List| $) $)) (SIGNATURE |string| (|t#1| $)) (SIGNATURE |symbol| (|t#2| $)) (SIGNATURE |integer| (|t#3| $)) (SIGNATURE |float| (|t#4| $)) (SIGNATURE |expr| (|t#5| $)) (SIGNATURE |car| ($ $)) (SIGNATURE |cdr| ($ $)) (SIGNATURE |#| ((|Integer|) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|ConvertibleFrom| (|List| $)) . T) ((|ConvertibleFrom| |#1|) . T) ((|ConvertibleFrom| |#2|) . T) ((|ConvertibleFrom| |#3|) . T) ((|ConvertibleFrom| |#4|) . T) ((|ConvertibleFrom| |#5|) . T) ((|Eltable| (|Integer|) $) . T) ((|Eltable| (|List| (|Integer|)) $) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|symbol?| (#4=(#3# $) 45 T ELT)) (|symbol| ((|#2| $) 48 T ELT)) (|string?| (#4# 20 T ELT)) (|string| ((|#1| $) 21 T ELT)) (|pair?| (#4# 42 T ELT)) (|null?| (#4# 14 T ELT)) (|list?| (#4# 44 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integer?| (#4# 46 T ELT)) (|integer| ((|#3| $) 50 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|float?| (#4# 47 T ELT)) (|float| ((|#4| $) 49 T ELT)) (|expr| ((|#5| $) 51 T ELT)) (|eq| (#2# 41 T ELT)) (|elt| (($ $ #5=(|Integer|)) 62 T ELT) (($ $ (|List| #5#)) 64 T ELT)) (|destruct| ((#6=(|List| $) $) 27 T ELT)) (|convert| (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ #6#) 52 T ELT)) (|coerce| (((|OutputForm|) $) 28 T ELT)) (|cdr| (#7=($ $) 26 T ELT)) (|car| (#7# 58 T ELT)) (|before?| #1#) (|atom?| (#4# 23 T ELT)) (= (#2# 40 T ELT)) (|#| ((#5# $) 60 T ELT)))
+(((|SExpressionOf| |#1| |#2| |#3| |#4| |#5|) (|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) #1=(|SetCategory|) #1# #1# #1# #1#) (T |SExpressionOf|))
+NIL
+((|supDimElseRittWu?| (#1=(#2=(|Boolean|) |#5| |#5|) 44 T ELT)) (|subTriSet?| (#1# 59 T ELT)) (|subQuasiComponent?| ((#2# |#5| #3=(|List| |#5|)) 82 T ELT) (#1# 68 T ELT)) (|subPolSet?| (#4=(#2# #5=(|List| |#4|) #5#) 65 T ELT)) (|subCase?| ((#2# #6=(|Record| (|:| |val| #5#) #7=(|:| |tower| |#5|)) #6#) 70 T ELT)) (|stopTable!| ((#8=(|Void|)) 32 T ELT)) (|startTable!| ((#8# #9=(|String|) #9# #9#) 28 T ELT)) (|removeSuperfluousQuasiComponents| (#10=(#3# #3#) 101 T ELT)) (|removeSuperfluousCases| ((#11=(|List| #6#) #11#) 93 T ELT)) (|prepareDecompose| (((|List| #12=(|Record| (|:| |eq| #5#) #7# (|:| |ineq| #5#))) #5# #3# #2# #2#) 123 T ELT)) (|moreAlgebraic?| (#1# 53 T ELT)) (|internalSubQuasiComponent?| (((|Union| #2# #13="failed") |#5| |#5|) 78 T ELT)) (|internalSubPolSet?| (#4# 64 T ELT)) (|internalInfRittWu?| (#4# 66 T ELT)) (|infRittWu?| (#4# 67 T ELT)) (|branchIfCan| (((|Union| #12# #13#) #5# |#5| #5# #2# #2# #2# #2# #2#) 118 T ELT)) (|algebraicSort| (#10# 49 T ELT)))
+(((|SquareFreeQuasiComponentPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |startTable!| (#1=(|Void|) #2=(|String|) #2# #2#)) (SIGNATURE |stopTable!| (#1#)) (SIGNATURE |supDimElseRittWu?| #3=(#4=(|Boolean|) |#5| |#5|)) (SIGNATURE |algebraicSort| #5=(#6=(|List| |#5|) #6#)) (SIGNATURE |moreAlgebraic?| #3#) (SIGNATURE |subTriSet?| #3#) (SIGNATURE |subPolSet?| #7=(#4# #8=(|List| |#4|) #8#)) (SIGNATURE |internalSubPolSet?| #7#) (SIGNATURE |internalInfRittWu?| #7#) (SIGNATURE |infRittWu?| #7#) (SIGNATURE |internalSubQuasiComponent?| ((|Union| #4# #9="failed") |#5| |#5|)) (SIGNATURE |subQuasiComponent?| #3#) (SIGNATURE |subQuasiComponent?| (#4# |#5| #6#)) (SIGNATURE |removeSuperfluousQuasiComponents| #5#) (SIGNATURE |subCase?| (#4# #10=(|Record| (|:| |val| #8#) #11=(|:| |tower| |#5|)) #10#)) (SIGNATURE |removeSuperfluousCases| (#12=(|List| #10#) #12#)) (SIGNATURE |prepareDecompose| ((|List| #13=(|Record| (|:| |eq| #8#) #11# (|:| |ineq| #8#))) #8# #6# #4# #4#)) (SIGNATURE |branchIfCan| ((|Union| #13# #9#) #8# |#5| #8# #4# #4# #4# #4# #4#))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |SquareFreeQuasiComponentPackage|))
+((|branchIfCan| (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| AND #1=(|isDomain| *5 #2=(|Boolean|)) #3=(|ofCategory| *6 #4=(|GcdDomain|)) #5=(|ofCategory| *7 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *8 #8=(|OrderedSet|)) #9=(|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|isDomain| *2 (|Record| #10=(|:| |eq| #11=(|List| *9)) (|:| |tower| *4) #12=(|:| |ineq| #11#))) (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *6 *7 *8 *9 *4)) #13=(|isDomain| *3 #11#) (|ofCategory| *4 #14=(|RegularTriangularSetCategory| *6 *7 *8 *9)))) (|prepareDecompose| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *4 (|List| *10)) #1# (|ofCategory| *10 #14#) #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| #10# (|:| |tower| *10) #12#))) (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *6 *7 *8 *9 *10)) #13#)) (|removeSuperfluousCases| #15=(*1 *2 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *6)) (|:| |tower| *7)))) #16=(|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) #17=(|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)) #18=(|ofCategory| *3 #4#) #19=(|ofCategory| *4 #6#) #20=(|ofCategory| *5 #8#) #21=(|isDomain| *1 (|SquareFreeQuasiComponentPackage| *3 *4 *5 *6 *7)))) (|subCase?| #22=(*1 *2 *3 *3) (AND (|isDomain| *3 (|Record| (|:| |val| #23=(|List| *7)) (|:| |tower| *8))) #24=(|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) #25=(|ofCategory| *8 #26=(|RegularTriangularSetCategory| *4 *5 *6 *7)) #27=(|ofCategory| *4 #4#) #28=(|ofCategory| *5 #6#) #29=(|ofCategory| *6 #8#) #30=(|isDomain| *2 #2#) #31=(|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8)))) (|removeSuperfluousQuasiComponents| #15# #32=(AND (|isDomain| *2 #23#) #17# #18# #19# #20# #16# #21#)) (|subQuasiComponent?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) (|ofCategory| *3 (|RegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 #4#) (|ofCategory| *6 #6#) (|ofCategory| *7 #8#) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) #30# (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *5 *6 *7 *8 *3)))) (|subQuasiComponent?| #22# #33=(AND #27# #28# #29# #24# #30# #34=(|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3)) #35=(|ofCategory| *3 #26#))) (|internalSubQuasiComponent?| #22# (|partial| AND #27# #28# #29# #24# #30# #34# #35#)) (|infRittWu?| #22# #36=(AND (|isDomain| *3 #23#) #24# #27# #28# #29# #30# #31# #25#)) (|internalInfRittWu?| #22# #36#) (|internalSubPolSet?| #22# #36#) (|subPolSet?| #22# #36#) (|subTriSet?| #22# #33#) (|moreAlgebraic?| #22# #33#) (|algebraicSort| #15# #32#) (|supDimElseRittWu?| #22# #33#) (|stopTable!| (*1 *2) (AND #18# #19# #20# #16# #37=(|isDomain| *2 (|Void|)) #21# #17#)) (|startTable!| (*1 *2 *3 *3 *3) (AND (|isDomain| *3 (|String|)) #27# #28# #29# #24# #37# #31# #25#)))
+((|stoseSquareFreePart| ((#1=(|List| (|Record| (|:| |val| |#4|) #2=(|:| |tower| |#5|))) |#4| |#5|) 106 T ELT)) (|stosePrepareSubResAlgo| ((#3=(|List| (|Record| (|:| |val| (|List| |#4|)) #2#)) |#4| |#4| |#5|) 79 T ELT)) (|stoseLastSubResultant| (#4=(#1# |#4| |#4| |#5|) 100 T ELT)) (|stoseInvertibleSetsqfreg| (#5=((|List| |#5|) |#4| |#5|) 122 T ELT)) (|stoseInvertibleSetreg| (#5# 129 T ELT)) (|stoseInvertibleSet| (#5# 130 T ELT)) (|stoseInvertible?sqfreg| (#6=((|List| (|Record| (|:| |val| #7=(|Boolean|)) #2#)) |#4| |#5|) 107 T ELT)) (|stoseInvertible?reg| (#6# 128 T ELT)) (|stoseInvertible?| (#6# 47 T ELT) ((#7# |#4| |#5|) 55 T ELT)) (|stoseInternalLastSubResultant| ((#1# #3# |#3| #7#) 91 T ELT) ((#1# |#4| |#4| |#5| #7# #7#) 52 T ELT)) (|stoseIntegralLastSubResultant| (#4# 86 T ELT)) (|stopTableInvSet!| (#8=(#9=(|Void|)) 36 T ELT)) (|stopTableGcd!| (#8# 25 T ELT)) (|startTableInvSet!| (#10=(#9# #11=(|String|) #11# #11#) 32 T ELT)) (|startTableGcd!| (#10# 21 T ELT)))
+(((|SquareFreeRegularTriangularSetGcdPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |startTableGcd!| #1=(#2=(|Void|) #3=(|String|) #3# #3#)) (SIGNATURE |stopTableGcd!| #4=(#2#)) (SIGNATURE |startTableInvSet!| #1#) (SIGNATURE |stopTableInvSet!| #4#) (SIGNATURE |stosePrepareSubResAlgo| (#5=(|List| (|Record| (|:| |val| (|List| |#4|)) #6=(|:| |tower| |#5|))) |#4| |#4| |#5|)) (SIGNATURE |stoseInternalLastSubResultant| (#7=(|List| (|Record| (|:| |val| |#4|) #6#)) |#4| |#4| |#5| #8=(|Boolean|) #8#)) (SIGNATURE |stoseInternalLastSubResultant| (#7# #5# |#3| #8#)) (SIGNATURE |stoseIntegralLastSubResultant| #9=(#7# |#4| |#4| |#5|)) (SIGNATURE |stoseLastSubResultant| #9#) (SIGNATURE |stoseInvertible?| (#8# |#4| |#5|)) (SIGNATURE |stoseInvertible?sqfreg| #10=((|List| (|Record| (|:| |val| #8#) #6#)) |#4| |#5|)) (SIGNATURE |stoseInvertibleSetsqfreg| #11=((|List| |#5|) |#4| |#5|)) (SIGNATURE |stoseInvertible?reg| #10#) (SIGNATURE |stoseInvertibleSetreg| #11#) (SIGNATURE |stoseInvertible?| #10#) (SIGNATURE |stoseInvertibleSet| #11#) (SIGNATURE |stoseSquareFreePart| (#7# |#4| |#5|))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |SquareFreeRegularTriangularSetGcdPackage|))
+((|stoseSquareFreePart| #1=(*1 *2 *3 *4) #2=(AND #3=(|ofCategory| *5 #4=(|GcdDomain|)) #5=(|ofCategory| *6 #6=(|OrderedAbelianMonoidSup|)) #7=(|ofCategory| *7 #8=(|OrderedSet|)) #9=(|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) #10=(|isDomain| *2 (|List| (|Record| (|:| |val| *3) #11=(|:| |tower| *4)))) #12=(|isDomain| *1 (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4)) #13=(|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))) (|stoseInvertibleSet| #1# #14=(AND #3# #5# #7# #9# (|isDomain| *2 (|List| *4)) #12# #13#)) (|stoseInvertible?| #1# #15=(AND #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| (|:| |val| #16=(|Boolean|)) #11#))) #12# #13#)) (|stoseInvertibleSetreg| #1# #14#) (|stoseInvertible?reg| #1# #15#) (|stoseInvertibleSetsqfreg| #1# #14#) (|stoseInvertible?sqfreg| #1# #15#) (|stoseInvertible?| #1# (AND #3# #5# #7# #9# (|isDomain| *2 #16#) #12# #13#)) (|stoseLastSubResultant| #17=(*1 *2 *3 *3 *4) #2#) (|stoseIntegralLastSubResultant| #17# #2#) (|stoseInternalLastSubResultant| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) #18=(|:| |tower| *9)))) #19=(|isDomain| *5 #16#) (|ofCategory| *8 (|RecursivePolynomialCategory| *6 *7 *4)) (|ofCategory| *9 (|RegularTriangularSetCategory| *6 *7 *4 *8)) #20=(|ofCategory| *6 #4#) #21=(|ofCategory| *7 #6#) (|ofCategory| *4 #8#) (|isDomain| *2 (|List| (|Record| (|:| |val| *8) #18#))) (|isDomain| *1 (|SquareFreeRegularTriangularSetGcdPackage| *6 *7 *4 *8 *9)))) (|stoseInternalLastSubResultant| (*1 *2 *3 *3 *4 *5 *5) (AND #19# #20# #21# (|ofCategory| *8 #8#) (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) #10# (|isDomain| *1 (|SquareFreeRegularTriangularSetGcdPackage| *6 *7 *8 *3 *4)) (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3)))) (|stosePrepareSubResAlgo| #17# (AND #3# #5# #7# #9# (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *3)) #11#))) #12# #13#)) (|stopTableInvSet!| #22=(*1 *2) #23=(AND (|ofCategory| *3 #4#) (|ofCategory| *4 #6#) (|ofCategory| *5 #8#) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) #24=(|isDomain| *2 (|Void|)) (|isDomain| *1 (|SquareFreeRegularTriangularSetGcdPackage| *3 *4 *5 *6 *7)) (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)))) (|startTableInvSet!| #25=(*1 *2 *3 *3 *3) #26=(AND (|isDomain| *3 (|String|)) (|ofCategory| *4 #4#) (|ofCategory| *5 #6#) (|ofCategory| *6 #8#) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) #24# (|isDomain| *1 (|SquareFreeRegularTriangularSetGcdPackage| *4 *5 *6 *7 *8)) (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))) (|stopTableGcd!| #22# #23#) (|startTableGcd!| #25# #26#))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 91 T ELT)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 92 T ELT) ((#2=(|List| $) (|List| |#4|) #3=(|Boolean|)) 120 T ELT)) (|variables| (((|List| |#3|) . #4=($)) 39 T ELT)) (|trivialIdeal?| (#5=(#6=(|Boolean|) $) 32 T ELT)) (|triangular?| (#5# 23 (|has| |#1| . #7=((|IntegralDomain|))) ELT)) (|stronglyReduced?| ((#8=(|Boolean|) |#4| . #9=($)) 107 T ELT) (#10=(#8# $) 103 T ELT)) (|stronglyReduce| ((|#4| |#4| . #11=($)) 98 T ELT)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) . #12=(#13=(|:| |tower| $)))) |#4| $) 135 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #14=(|Boolean|) |#4|) . #15=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT) (((|Union| |#4| . #16=(#17="failed")) $ |#3|) 85 T ELT)) (|sample| (#18=($) 59 T CONST)) (|roughUnitIdeal?| (#5# 28 (|has| |#1| . #7#) ELT)) (|roughSubIdeal?| (#19=(#6# $ $) 30 (|has| |#1| . #7#) ELT)) (|roughEqualIdeals?| (#19# 29 (|has| |#1| . #7#) ELT)) (|roughBase?| (#5# 31 (|has| |#1| . #7#) ELT)) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 99 T ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) . #20=($)) 24 (|has| |#1| . #7#) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) . #20#) 25 (|has| |#1| . #7#) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|rest| ((#21=(|Union| $ #17#) $) 88 T ELT)) (|removeZero| ((|#4| |#4| . #11#) 95 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #22=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #22#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #14# |#4|) . #15#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| . #7#) ELT)) (|reduced?| ((#8# |#4| $ (|Mapping| #8# |#4| |#4|)) 108 T ELT)) (|reduceByQuasiMonic| ((|#4| |#4| . #11#) 93 T ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #23=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 100 T ELT)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 111 T ELT)) (|purelyTranscendental?| ((#3# |#4| . #24=($)) 145 T ELT)) (|purelyAlgebraicLeadingMonomial?| ((#3# |#4| . #24#) 142 T ELT)) (|purelyAlgebraic?| ((#3# |#4| . #24#) 146 T ELT) ((#3# $) 143 T ELT)) (|normalized?| ((#8# |#4| . #9#) 110 T ELT) (#10# 109 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#25=(|Boolean|) |#4| $) 53 (|has| |#4| . #23#) ELT)) (|map!| (($ (|Mapping| |#4| |#4|) $) 117 T ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) . #4#) 38 T ELT)) (|mainVariable?| ((#6# |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| #2#) |#4| |#4| $) 137 T ELT)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) . #12#)) |#4| |#4| $) 136 T ELT)) (|last| (((|Union| |#4| . #16#) . #26=($)) 89 T ELT)) (|invertibleSet| ((#2# |#4| . #27=($)) 138 T ELT)) (|invertibleElseSplit?| (((|Union| #3# #2#) |#4| $) 141 T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #13#)) |#4| $) 140 T ELT) ((#3# |#4| . #24#) 139 T ELT)) (|intersect| ((#2# |#4| . #27#) 134 T ELT) ((#2# (|List| |#4|) . #28=($)) 133 T ELT) ((#2# (|List| |#4|) . #29=(#2#)) 132 T ELT) ((#2# |#4| . #30=(#2#)) 131 T ELT)) (|internalAugment| (($ |#4| $) 126 T ELT) (($ (|List| |#4|) $) 125 T ELT)) (|initials| (((|List| |#4|) $) 113 T ELT)) (|initiallyReduced?| ((#8# |#4| . #9#) 105 T ELT) (#10# 101 T ELT)) (|initiallyReduce| ((|#4| |#4| . #11#) 96 T ELT)) (|infRittWu?| ((#8# $ $) 116 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| . #7#) ELT)) (|headReduced?| ((#8# |#4| . #9#) 106 T ELT) (#10# 102 T ELT)) (|headReduce| ((|#4| |#4| . #11#) 97 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| (((|Union| |#4| . #16#) . #26#) 90 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #25# |#4|) $) 51 T ELT)) (|extendIfCan| ((#21# $ |#4|) 84 T ELT)) (|extend| (($ $ |#4|) 83 T ELT) ((#2# |#4| . #27#) 124 T ELT) ((#2# |#4| . #30#) 123 T ELT) ((#2# (|List| |#4|) . #28#) 122 T ELT) ((#2# (|List| |#4|) . #29#) 121 T ELT)) (|every?| ((#25# (|Mapping| #25# |#4|) . #31=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT)) (|eq?| ((#33=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#33# $) 58 T ELT)) (|empty| (#18# 57 T ELT)) (|degree| (#34=((|NonNegativeInteger|) $) 112 T ELT)) (|count| ((#35=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #23#) ELT) ((#35# (|Mapping| #25# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#36=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #36#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collectQuasiMonic| (($ $) 94 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #37=($)) 13 T ELT) (((|List| |#4|) . #37#) 43 T ELT)) (|coHeight| (#34# 82 (|has| |#3| (|Finite|)) ELT)) (|before?| (#1# 6 T ELT)) (|basicSet| (((|Union| (|Record| #38=(|:| |bas| $) (|:| |top| (|List| |#4|))) . #39=(#17#)) (|List| |#4|) (|Mapping| #8# |#4| |#4|)) 115 T ELT) (((|Union| (|Record| #38# (|:| |top| (|List| |#4|))) . #39#) (|List| |#4|) (|Mapping| #8# |#4|) (|Mapping| #8# |#4| |#4|)) 114 T ELT)) (|autoReduced?| ((#8# $ (|Mapping| #8# |#4| (|List| |#4|))) 104 T ELT)) (|augment| ((#2# |#4| . #27#) 130 T ELT) ((#2# |#4| . #30#) 129 T ELT) ((#2# (|List| |#4|) . #28#) 128 T ELT) ((#2# (|List| |#4|) . #29#) 127 T ELT)) (|any?| ((#25# (|Mapping| #25# |#4|) . #31#) 45 T ELT)) (|algebraicVariables| (((|List| |#3|) $) 87 T ELT)) (|algebraicCoefficients?| ((#3# |#4| . #24#) 144 T ELT)) (|algebraic?| ((#8# |#3| $) 86 T ELT)) (= (#1# 8 T ELT)) (|#| ((#35# $) 44 T ELT)))
+(((|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |SquareFreeRegularTriangularSetCategory|))
+NIL
+(|Join| (|RegularTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#4|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T))
+((|unrankImproperPartitions1| (#1=(#2=(|List| #3=(|Integer|)) #3# #3# #3#) 40 T ELT)) (|unrankImproperPartitions0| (#1# 30 T ELT)) (|subSet| (#1# 35 T ELT)) (|numberOfImproperPartitions| ((#3# #3# #3#) 22 T ELT)) (|nextPartition| ((#4=(|Vector| #3#) #2# #4# #3#) 78 T ELT) ((#4# #4# #4# #3#) 73 T ELT)) (|nextLatticePermutation| ((#2# #5=(|List| (|PositiveInteger|)) #2# (|Boolean|)) 56 T ELT)) (|nextColeman| ((#6=(|Matrix| #3#) #2# #2# #6#) 77 T ELT)) (|makeYoungTableau| ((#6# #5# #2#) 61 T ELT)) (|listYoungTableaus| (((|List| #6#) #5#) 66 T ELT)) (|inverseColeman| ((#2# #2# #2# #6#) 81 T ELT)) (|coleman| ((#6# #2# #2# #2#) 91 T ELT)))
+(((|SymmetricGroupCombinatoricFunctions|) (CATEGORY |package| (SIGNATURE |coleman| (#1=(|Matrix| #2=(|Integer|)) #3=(|List| #2#) #3# #3#)) (SIGNATURE |inverseColeman| (#3# #3# #3# #1#)) (SIGNATURE |listYoungTableaus| ((|List| #1#) #4=(|List| (|PositiveInteger|)))) (SIGNATURE |makeYoungTableau| (#1# #4# #3#)) (SIGNATURE |nextColeman| (#1# #3# #3# #1#)) (SIGNATURE |nextLatticePermutation| (#3# #4# #3# (|Boolean|))) (SIGNATURE |nextPartition| (#5=(|Vector| #2#) #5# #5# #2#)) (SIGNATURE |nextPartition| (#5# #3# #5# #2#)) (SIGNATURE |numberOfImproperPartitions| (#2# #2# #2#)) (SIGNATURE |subSet| #6=(#3# #2# #2# #2#)) (SIGNATURE |unrankImproperPartitions0| #6#) (SIGNATURE |unrankImproperPartitions1| #6#))) (T |SymmetricGroupCombinatoricFunctions|))
+((|unrankImproperPartitions1| #1=(*1 *2 *3 *3 *3) #2=(AND #3=(|isDomain| *2 #4=(|List| #5=(|Integer|))) #6=(|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)) #7=(|isDomain| *3 #5#))) (|unrankImproperPartitions0| #1# #2#) (|subSet| #1# #2#) (|numberOfImproperPartitions| (*1 *2 *2 *2) (AND (|isDomain| *2 #5#) #6#)) (|nextPartition| #8=(*1 *2 *3 *2 *4) (AND #9=(|isDomain| *2 (|Vector| #5#)) #10=(|isDomain| *3 #4#) (|isDomain| *4 #5#) #6#)) (|nextPartition| #11=(*1 *2 *2 *2 *3) (AND #9# #7# #6#)) (|nextLatticePermutation| #8# (AND #3# #12=(|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *4 (|Boolean|)) #6#)) (|nextColeman| (*1 *2 *3 *3 *2) (AND #13=(|isDomain| *2 #14=(|Matrix| #5#)) #10# #6#)) (|makeYoungTableau| (*1 *2 *3 *4) (AND #12# (|isDomain| *4 #4#) #13# #6#)) (|listYoungTableaus| (*1 *2 *3) (AND #12# (|isDomain| *2 (|List| #14#)) #6#)) (|inverseColeman| #11# (AND #3# (|isDomain| *3 #14#) #6#)) (|coleman| #1# (AND #10# #13# #6#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| ((|#1| $ |#1| |#1|) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|SemiGroupOperation| |#1|) (|Join| (|SemiGroupOperatorCategory| |#1|) (|SetCategory|) (CATEGORY |domain| (SIGNATURE |semiGroupOperation| ($ (|Mapping| |#1| |#1| |#1|))))) (|BasicType|)) (T |SemiGroupOperation|))
+((|semiGroupOperation| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|)) (|isDomain| *1 (|SemiGroupOperation| *3)))))
+((|elt| ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((|SemiGroupOperatorCategory| |#1|) (|Category|) (|BasicType|)) (T |SemiGroupOperatorCategory|))
+NIL
+(|Join| (|BinaryOperatorCategory| |t#1|) (CATEGORY |domain| (ATTRIBUTE (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (= (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
+(((|BinaryOperatorCategory| |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((|Type|) . T))
+((** (($ $ (|PositiveInteger|)) 10 T ELT)))
+(((|SemiGroup&| |#1|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|SemiGroup|)) (T |SemiGroup&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (** (($ $ (|PositiveInteger|)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
+(((|SemiGroup|) (|Category|)) (T |SemiGroup|))
+((* (*1 *1 *1 *1) (|ofCategory| *1 (|SemiGroup|))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE ** ($ $ (|PositiveInteger|)))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#3| (|BasicType|)) ELT)) (|zero?| (#5=(#3# $) NIL #6=(|has| |#3| (|AbelianMonoid|)) ELT)) (|unitVector| (#7=($ #8=(|PositiveInteger|)) NIL #9=(|has| |#3| (|Ring|)) ELT)) (|swap!| (((|Void|) $ #10=(|Integer|) #10#) NIL #11=(|has| $ (|ShallowlyMutableAggregate| |#3|)) ELT)) (|sup| (#12=($ $ $) NIL #13=(|has| |#3| (|OrderedAbelianMonoidSup|)) ELT)) (|subtractIfCan| ((#14=(|Union| $ #15="failed") $ $) NIL (|has| |#3| (|CancellationAbelianMonoid|)) ELT)) (|size| (#16=(#17=(|NonNegativeInteger|)) NIL #18=(|has| |#3| (|Finite|)) ELT)) (|setelt| #19=(#20=(|#3| $ #10# |#3|) NIL #11# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #10# . #22=(#15#)) . #23=($)) NIL #24=(AND (|has| |#3| (|RetractableTo| #10#)) #25=(|has| |#3| (|SetCategory|))) ELT) (((|Union| #26=(|Fraction| #10#) . #22#) . #23#) NIL #27=(AND (|has| |#3| (|RetractableTo| #26#)) #25#) ELT) ((#28=(|Union| |#3| . #22#) . #23#) NIL #25# ELT)) (|retract| (#29=(#10# . #30=($)) NIL #24# ELT) ((#26# . #30#) NIL #27# ELT) (#31=(|#3| . #30#) NIL #25# ELT)) (|reducedSystem| ((#32=(|Matrix| #10#) . #33=(#34=(|Matrix| $))) NIL #35=(AND (|has| |#3| (|LinearlyExplicitRingOver| #10#)) #9#) ELT) ((#36=(|Record| (|:| |mat| #32#) (|:| |vec| (|Vector| #10#))) . #37=(#34# #38=(|Vector| $))) NIL #35# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| |#3|)) (|:| |vec| #41=(|Vector| |#3|))) . #37#) NIL #9# ELT) ((#40# . #33#) NIL #9# ELT)) (|reduce| ((|#3| #42=(|Mapping| |#3| |#3| |#3|) $ |#3| |#3|) NIL #4# ELT) ((|#3| #42# $ |#3|) NIL T ELT) ((|#3| #42# $) NIL T ELT)) (|recip| ((#14# $) NIL #9# ELT)) (|random| (#21# NIL #18# ELT)) (|qsetelt!| #19#) (|qelt| (#43=(|#3| $ #10#) 12 T ELT)) (|positive?| (#5# NIL #13# ELT)) (|opposite?| (#2# NIL #6# ELT)) (|one?| (#5# NIL #9# ELT)) (|minIndex| #44=(#29# NIL #45=(|has| #10# #46=(|OrderedSet|)) ELT)) (|min| #47=(#12# NIL #48=(|has| |#3| #46#) ELT)) (|members| #49=((#50=(|List| |#3|) $) NIL T ELT)) (|member?| (#51=(#3# |#3| $) NIL #4# ELT)) (|maxIndex| #44#) (|max| #47#) (|map| (($ #52=(|Mapping| |#3| |#3|) $) NIL T ELT)) (|lookup| ((#8# $) NIL #18# ELT)) (|leftReducedSystem| ((#32# . #53=(#38#)) NIL #35# ELT) ((#36# . #54=(#38# $)) NIL #35# ELT) ((#39# . #54#) NIL #9# ELT) ((#40# . #53#) NIL #9# ELT)) (|latex| (((|String|) $) NIL #25# ELT)) (|indices| (((|List| #10#) $) NIL T ELT)) (|index?| ((#3# #10# $) NIL T ELT)) (|index| (#7# NIL #18# ELT)) (|hash| (((|SingleInteger|) $) NIL #25# ELT)) (|first| (#31# NIL #45# ELT)) (|find| ((#28# #55=(|Mapping| #3# |#3|) $) NIL T ELT)) (|fill!| (#56=($ $ |#3|) NIL #11# ELT)) (|every?| #57=((#3# #55# $) NIL T ELT)) (|eval| (($ $ (|List| #58=(|Equation| |#3|))) NIL #59=(AND (|has| |#3| (|Evalable| |#3|)) #25#) ELT) (($ $ #58#) NIL #59# ELT) (($ $ |#3| |#3|) NIL #59# ELT) (($ $ #50# #50#) NIL #59# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#51# NIL (AND (|has| $ (|FiniteAggregate| |#3|)) #4#) ELT)) (|entries| #49#) (|empty?| (#5# NIL T ELT)) (|empty| (#21# NIL T ELT)) (|elt| (#20# NIL T ELT) (#43# NIL T ELT)) (|dot| ((|#3| $ $) NIL #9# ELT)) (|directProduct| (($ #41#) NIL T ELT)) (|dimension| (((|CardinalNumber|)) NIL #60=(|has| |#3| (|Field|)) ELT)) (|differentiate| #61=(#62=($ $ #17#) NIL #63=(AND (|has| |#3| (|DifferentialSpace|)) #9#) ELT) #64=(#65=($ $) NIL #63# ELT) #66=(($ $ #67=(|List| #68=(|Symbol|)) (|List| #17#)) NIL #69=(AND (|has| |#3| (|PartialDifferentialSpace| #68#)) #9#) ELT) #70=(($ $ #68# #17#) NIL #69# ELT) #71=(($ $ #67#) NIL #69# ELT) #72=(($ $ #68#) NIL #69# ELT) #73=(($ $ #52#) NIL #9# ELT) #74=(($ $ #52# #17#) NIL #9# ELT)) (|count| ((#17# |#3| $) NIL #4# ELT) ((#17# #55# $) NIL T ELT)) (|copy| (#65# NIL T ELT)) (|coerce| ((#41# . #75=($)) NIL T ELT) (($ #10#) NIL (OR #24# #9#) ELT) (($ #26#) NIL #27# ELT) (($ |#3|) NIL #25# ELT) ((#76=(|OutputForm|) . #75#) NIL (|has| |#3| (|CoercibleTo| #76#)) ELT)) (|characteristic| (#16# NIL #9# CONST)) (|before?| #1#) (|any?| #57#) (|annihilate?| (#2# NIL #9# ELT)) (|Zero| (#21# NIL #6# CONST)) (|One| (#21# NIL #9# CONST)) (D #61# #64# #66# #70# #71# #72# #73# #74#) (>= #77=(#2# NIL #48# ELT)) (> #77#) (= #1#) (<= #77#) (< (#2# 24 #48# ELT)) (/ (#56# NIL #60# ELT)) (- (#12# NIL #78=(|has| |#3| (|AbelianGroup|)) ELT) (#65# NIL #78# ELT)) (+ (#12# NIL #79=(|has| |#3| (|AbelianSemiGroup|)) ELT)) (** (#62# NIL #9# ELT) (($ $ #8#) NIL #9# ELT)) (* (#12# NIL #9# ELT) (#56# NIL #80=(|has| |#3| (|Monoid|)) ELT) (($ |#3| . #81=($)) NIL #80# ELT) (($ #10# . #81#) NIL #78# ELT) (($ #17# $) NIL #6# ELT) (($ #8# $) NIL #79# ELT)) (|#| ((#17# $) NIL T ELT)))
+(((|SplitHomogeneousDirectProduct| |#1| |#2| |#3|) (|DirectProductCategory| |#1| |#3|) #1=(|NonNegativeInteger|) #1# (|OrderedAbelianMonoidSup|)) (T |SplitHomogeneousDirectProduct|))
+NIL
+((|subresultantSequence| (#1=((|List| #2=(|UnivariatePolynomial| |#2| |#1|)) #2# #2#) 50 T ELT)) (|countRealRootsMultiple| (#3=(#4=(|Integer|) #2#) 95 #5=(|has| |#1| (|GcdDomain|)) ELT)) (|countRealRoots| (#3# 79 T ELT)) (|SturmHabichtSequence| (#1# 58 T ELT)) (|SturmHabichtMultiple| (#6=(#4# #2# #2#) 81 #5# ELT)) (|SturmHabichtCoefficients| (((|List| |#1|) #2# #2#) 61 T ELT)) (|SturmHabicht| (#6# 78 T ELT)))
+(((|SturmHabichtPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |subresultantSequence| #1=((|List| #2=(|UnivariatePolynomial| |#2| |#1|)) #2# #2#)) (SIGNATURE |SturmHabichtSequence| #1#) (SIGNATURE |SturmHabichtCoefficients| ((|List| |#1|) #2# #2#)) (SIGNATURE |SturmHabicht| #3=(#4=(|Integer|) #2# #2#)) (SIGNATURE |countRealRoots| #5=(#4# #2#)) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |SturmHabichtMultiple| #3#) (SIGNATURE |countRealRootsMultiple| #5#)) |%noBranch|)) (|OrderedIntegralDomain|) (|Symbol|)) (T |SturmHabichtPackage|))
+((|countRealRootsMultiple| #1=(*1 *2 *3) #2=(AND #3=(|isDomain| *3 #4=(|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|GcdDomain|)) #5=(|ofCategory| *4 (|OrderedIntegralDomain|)) #6=(|ofType| *5 (|Symbol|)) #7=(|isDomain| *2 (|Integer|)) #8=(|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|SturmHabichtMultiple| #9=(*1 *2 *3 *3) #2#) (|countRealRoots| #1# #10=(AND #3# #5# #6# #7# #8#)) (|SturmHabicht| #9# #10#) (|SturmHabichtCoefficients| #9# (AND #3# #5# #6# (|isDomain| *2 (|List| *4)) #8#)) (|SturmHabichtSequence| #9# #11=(AND #5# #6# (|isDomain| *2 (|List| #4#)) #8# #3#)) (|subresultantSequence| #9# #11#))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|target| ((#3=(|Syntax|) $) 12 T ELT)) (|source| ((#4=(|List| #3#) $) 14 T ELT)) (|signature| (($ #4# #3#) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 29 T ELT)) (|before?| #1#) (= (#2# 17 T ELT)))
+(((|Signature|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |signature| ($ #1=(|List| #2=(|Syntax|)) #2#)) (SIGNATURE |target| (#2# $)) (SIGNATURE |source| (#1# $))))) (T |Signature|))
+((|signature| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|List| #2=(|Syntax|))) (|isDomain| *3 #2#) #3=(|isDomain| *1 (|Signature|)))) (|target| #4=(*1 *2 *1) (AND (|isDomain| *2 #2#) #3#)) (|source| #4# (AND #1# #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|signatureAst| (($ #2=(|Identifier|) #3=(|Signature|)) 14 T ELT)) (|signature| ((#3# $) 20 T ELT)) (|name| ((#2# $) 17 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 27 T ELT) (($ #4=(|Syntax|)) NIL T ELT) ((#4# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|SignatureAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |signatureAst| ($ #1=(|Identifier|) #2=(|Signature|))) (SIGNATURE |name| (#1# $)) (SIGNATURE |signature| (#2# $))))) (T |SignatureAst|))
+((|signatureAst| (*1 *1 *2 *3) (AND #1=(|isDomain| *2 (|Identifier|)) (|isDomain| *3 #2=(|Signature|)) #3=(|isDomain| *1 (|SignatureAst|)))) (|name| #4=(*1 *2 *1) (AND #1# #3#)) (|signature| #4# (AND (|isDomain| *2 #2#) #3#)))
+((|sign| ((#1=(|Union| (|Integer|) "failed") |#2| #2=(|Symbol|) |#2| (|String|)) 19 T ELT) ((#1# |#2| #2# (|OrderedCompletion| |#2|)) 17 T ELT) ((#1# |#2|) 60 T ELT)))
+(((|ElementaryFunctionSign| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sign| (#1=(|Union| #2=(|Integer|) "failed") |#2|)) (SIGNATURE |sign| (#1# |#2| #3=(|Symbol|) (|OrderedCompletion| |#2|))) (SIGNATURE |sign| (#1# |#2| #3# |#2| (|String|)))) (|Join| (|IntegralDomain|) (|RetractableTo| #2#) (|LinearlyExplicitRingOver| #2#) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ElementaryFunctionSign|))
+((|sign| (*1 *2 *3 *4 *3 *5) (|partial| AND #1=(|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|String|)) #2=(|ofCategory| *6 #3=(|Join| (|IntegralDomain|) (|RetractableTo| *2) (|LinearlyExplicitRingOver| *2) (|GcdDomain|))) #4=(|isDomain| *2 (|Integer|)) #5=(|isDomain| *1 (|ElementaryFunctionSign| *6 *3)) #6=(|ofCategory| *3 (|Join| #7=(|AlgebraicallyClosedField|) #8=(|TranscendentalFunctionCategory|) (|FunctionSpace| *6))))) (|sign| (*1 *2 *3 *4 *5) (|partial| AND #1# (|isDomain| *5 (|OrderedCompletion| *3)) #6# #2# #4# #5#)) (|sign| (*1 *2 *3) (|partial| AND (|ofCategory| *4 #3#) #4# (|isDomain| *1 (|ElementaryFunctionSign| *4 *3)) (|ofCategory| *3 (|Join| #7# #8# (|FunctionSpace| *4))))))
+((|sign| ((#1=(|Union| (|Integer|) "failed") #2=(|Fraction| (|Polynomial| |#1|)) #3=(|Symbol|) #2# (|String|)) 38 T ELT) ((#1# #2# #3# (|OrderedCompletion| #2#)) 33 T ELT) ((#1# #2#) 14 T ELT)))
+(((|RationalFunctionSign| |#1|) (CATEGORY |package| (SIGNATURE |sign| (#1=(|Union| (|Integer|) "failed") #2=(|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |sign| (#1# #2# #3=(|Symbol|) (|OrderedCompletion| #2#))) (SIGNATURE |sign| (#1# #2# #3# #2# (|String|)))) (|GcdDomain|)) (T |RationalFunctionSign|))
+((|sign| (*1 *2 *3 *4 *3 *5) (|partial| AND #1=(|isDomain| *3 #2=(|Fraction| (|Polynomial| *6))) #3=(|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|String|)) #4=(|ofCategory| *6 #5=(|GcdDomain|)) #6=(|isDomain| *2 (|Integer|)) #7=(|isDomain| *1 (|RationalFunctionSign| *6)))) (|sign| (*1 *2 *3 *4 *5) (|partial| AND #3# (|isDomain| *5 (|OrderedCompletion| #2#)) #1# #4# #6# #7#)) (|sign| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 #5#) #6# (|isDomain| *1 (|RationalFunctionSign| *4)))))
+((|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) 12 T ELT)))
+(((|SimplifyAlgebraicNumberConvertPackage|) (CATEGORY |package| (SIGNATURE |simplify| ((|Expression| (|Integer|)) (|AlgebraicNumber|))))) (T |SimplifyAlgebraicNumberConvertPackage|))
+((|simplify| (*1 *2 *3) (AND (|isDomain| *3 (|AlgebraicNumber|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|SimplifyAlgebraicNumberConvertPackage|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (~ (#4=($ $) 22 T ELT)) (|zero?| (#5=(#3# $) 49 T ELT)) (|xor| (#6=($ $ $) 28 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 75 T ELT)) (|unitCanonical| #7=(#4# NIL T ELT)) (|unit?| #8=(#5# NIL T ELT)) (|symmetricRemainder| #9=(#6# NIL T ELT)) (|subtractIfCan| #10=((#11=(|Union| $ #12="failed") $ $) NIL T ELT)) (|submod| (#13=($ $ $ $) 59 T ELT)) (|squareFreePart| #7#) (|squareFree| #14=(((|Factored| $) $) NIL T ELT)) (|sizeLess?| #1#) (|size| (#15=(#16=(|NonNegativeInteger|)) 61 T ELT)) (|sign| #17=(#18=(#19=(|Integer|) $) NIL T ELT)) (|shift| (#6# 56 T ELT)) (|sample| #20=(#21=($) NIL T CONST)) (|retractIfCan| (((|Union| #19# #12#) $) NIL T ELT)) (|retract| #17#) (|rem| (#6# 42 T ELT)) (|reducedSystem| ((#22=(|Record| (|:| |mat| #23=(|Matrix| #19#)) (|:| |vec| (|Vector| #19#))) #24=(|Matrix| $) #25=(|Vector| $)) 70 T ELT) ((#23# #24#) 8 T ELT)) (|recip| ((#11# $) NIL T ELT)) (|rationalIfCan| (((|Union| #26=(|Fraction| #19#) #12#) $) NIL T ELT)) (|rational?| #8#) (|rational| ((#26# $) NIL T ELT)) (|random| (#21# 73 T ELT) (#4# 72 T ELT)) (|quo| (#6# 41 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #27=(|List| $)) #28=(|:| |generator| $)) #27#) NIL T ELT)) (|prime?| #8#) (|powmod| (#13# NIL T ELT)) (|positiveRemainder| (#6# 71 T ELT)) (|positive?| (#5# 76 T ELT)) (|permutation| #9#) (|patternMatch| ((#29=(|PatternMatchResult| #19# $) $ #30=(|Pattern| #19#) #29#) NIL T ELT)) (|or| (#6# 27 T ELT)) (|opposite?| #1#) (|one?| (#5# 50 T ELT)) (|odd?| (#5# 47 T ELT)) (|not| (#4# 23 T ELT)) (|nextItem| (((|Maybe| $) $) NIL T ELT)) (|negative?| (#5# 60 T ELT)) (|multiEuclidean| (((|Union| #27# #12#) #27# $) NIL T ELT)) (|mulmod| (#13# 57 T ELT)) (|min| (#6# 52 T ELT) (#21# 19 T CONST)) (|max| (#6# 51 T ELT) (#21# 18 T CONST)) (|mask| #7#) (|lookup| ((#31=(|PositiveInteger|) $) 66 T ELT)) (|length| (#4# 55 T ELT)) (|leftReducedSystem| ((#22# #25# $) NIL T ELT) ((#23# #25#) NIL T ELT)) (|lcm| #9# #32=(($ #27#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|invmod| #9#) (|init| #20#) (|index| (($ #31#) 65 T ELT)) (|inc| (#4# 33 T ELT)) (|hash| (((|SingleInteger|) $) 54 T ELT)) (|gcdPolynomial| ((#33=(|SparseUnivariatePolynomial| $) #33# #33#) NIL T ELT)) (|gcd| (#6# 45 T ELT) #32#) (|factorial| #7#) (|factor| #14#) (|extendedEuclidean| (((|Union| (|Record| #34=(|:| |coef1| $) #35=(|:| |coef2| $)) #12#) $ $ $) NIL T ELT) (((|Record| #34# #35# #28#) $ $) NIL T ELT)) (|exquo| #10#) (|expressIdealMember| (((|Maybe| #27#) #27# $) NIL T ELT)) (|even?| (#5# 48 T ELT)) (|euclideanSize| ((#16# $) NIL T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 44 T ELT)) (|differentiate| #7# #36=(#37=($ $ #16#) NIL T ELT)) (|dec| (#4# 34 T ELT)) (|copy| #7#) (|convert| (#18# 12 T ELT) (((|InputForm|) . #38=($)) NIL T ELT) ((#30# . #38#) NIL T ELT) (((|Float|) . #38#) NIL T ELT) (((|DoubleFloat|) . #38#) NIL T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT) #39=(($ #19#) 13 T ELT) #7# #39#) (|characteristic| (#15# NIL T CONST)) (|bit?| #1#) (|binomial| #9#) (|before?| #1#) (|base| (#21# 17 T ELT)) (|associates?| #1#) (|annihilate?| #1#) (|and| (#6# 26 T ELT)) (|addmod| (#13# 58 T ELT)) (|abs| (#4# 46 T ELT)) (|\\/| (#6# 25 T ELT)) (|Zero| (#21# 15 T CONST)) (|One| (#21# 16 T CONST)) (D #7# #36#) (>= (#2# 32 T ELT)) (> (#2# 30 T ELT)) (= (#2# 21 T ELT)) (<= (#2# 31 T ELT)) (< (#2# 29 T ELT)) (|/\\| (#6# 24 T ELT)) (- (#4# 35 T ELT) (#6# 37 T ELT)) (+ (#6# 36 T ELT)) (** (($ $ #31#) NIL T ELT) (#37# 40 T ELT)) (* (($ #31# $) NIL T ELT) (($ #16# $) NIL T ELT) #40=(($ #19# $) 14 T ELT) (#6# 38 T ELT) #40#))
+(((|SingleInteger|) (|Join| (|IntegerNumberSystem|) (|OrderedFinite|) (|BooleanLogic|) (CATEGORY |domain| (ATTRIBUTE |canonical|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |noetherian|) (SIGNATURE |xor| ($ $ $))))) (T |SingleInteger|))
+((|xor| (*1 *1 *1 *1) (|isDomain| *1 (|SingleInteger|))))
+((|Integer|) (|%ismall?| |#1|))
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|top| ((|#1| $) 42 T ELT)) (|sample| (#3=($) 6 T CONST)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 55 (|has| |#1| . #4=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 50 T ELT)) (|push!| ((|#1| |#1| $) 44 T ELT)) (|pop!| ((|#1| $) 43 T ELT)) (|members| (((|List| |#1|) $) 49 T ELT)) (|member?| ((#5=(|Boolean|) |#1| $) 54 (|has| |#1| . #4#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #6=((|SetCategory|))) ELT)) (|inspect| ((|#1| . #7=($)) 35 T ELT)) (|insert!| (($ |#1| $) 36 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #6#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #5# |#1|) $) 52 T ELT)) (|extract!| ((|#1| . #7#) 37 T ELT)) (|every?| ((#5# (|Mapping| #5# |#1|) . #8=($)) 47 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #6#)) ELT)) (|eq?| ((#9=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#9# $) 7 T ELT)) (|empty| (#3# 8 T ELT)) (|depth| (((|NonNegativeInteger|) $) 41 T ELT)) (|count| ((#10=(|NonNegativeInteger|) |#1| $) 53 (|has| |#1| . #4#) ELT) ((#10# (|Mapping| #5# |#1|) $) 48 T ELT)) (|copy| (($ $) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|bag| (($ (|List| |#1|)) 38 T ELT)) (|any?| ((#5# (|Mapping| #5# |#1|) . #8#) 46 T ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (|#| ((#10# $) 45 T ELT)))
+(((|StackAggregate| |#1|) (|Category|) (|Type|)) (T |StackAggregate|))
+((|push!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|pop!| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|top| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|depth| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|BagAggregate| |t#1|) (|FiniteAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |push!| (|t#1| |t#1| $)) (SIGNATURE |pop!| (|t#1| $)) (SIGNATURE |top| (|t#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $))))
+(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((|sample| (#1=($) 6 T CONST)) (|map!| (($ (|Mapping| |#1| |#1|) $) 12 T ELT)) (|eq?| ((#2=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#2# $) 7 T ELT)) (|empty| (#1# 8 T ELT)) (|copy| (($ $) 9 T ELT)))
+(((|ShallowlyMutableAggregate| |#1|) (|Category|) (|Type|)) (T |ShallowlyMutableAggregate|))
+((|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *3 (|Type|)))))
+(|Join| (|Aggregate|) (CATEGORY |domain| (SIGNATURE |map!| ($ (|Mapping| |t#1| |t#1|) $))))
+(((|Aggregate|) . T) ((|Join|) . T) ((|Type|) . T))
+((|trace| (#1=(|#3| $) 87 T ELT)) (|retractIfCan| (((|Union| #2=(|Integer|) #3="failed") $) NIL T ELT) (((|Union| #4=(|Fraction| #2#) #3#) $) NIL T ELT) (((|Union| |#3| #3#) $) 50 T ELT)) (|retract| ((#2# $) NIL T ELT) ((#4# $) NIL T ELT) (#1# 47 T ELT)) (|reducedSystem| ((#5=(|Matrix| #2#) #6=(|Matrix| $)) NIL T ELT) (((|Record| (|:| |mat| #5#) (|:| |vec| (|Vector| #2#))) #6# #7=(|Vector| $)) NIL T ELT) (((|Record| (|:| |mat| #8=(|Matrix| |#3|)) (|:| |vec| (|Vector| |#3|))) #6# #7#) 84 T ELT) ((#8# #6#) 76 T ELT)) (|differentiate| (($ $ #9=(|Mapping| |#3| |#3|) #10=(|NonNegativeInteger|)) NIL T ELT) (($ $ #9#) 28 T ELT) (($ $) NIL T ELT) (#11=($ $ #10#) NIL T ELT) (($ $ #12=(|Symbol|)) NIL T ELT) (($ $ #13=(|List| #12#)) NIL T ELT) (($ $ #12# #10#) NIL T ELT) (($ $ #13# (|List| #10#)) NIL T ELT)) (|diagonalProduct| (#1# 89 T ELT)) (|diagonal| ((|#4| $) 43 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #2#) NIL T ELT) (($ #4#) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (#11# 24 T ELT) (($ $ #2#) 95 T ELT)))
+(((|SquareMatrixCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |differentiate| (|#1| |#1| #1=(|List| #2=(|Symbol|)) (|List| #3=(|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| #2# #3#)) (SIGNATURE |differentiate| (|#1| |#1| #1#)) (SIGNATURE |differentiate| (|#1| |#1| #2#)) (SIGNATURE |differentiate| #4=(|#1| |#1| #3#)) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| #5=(|Integer|))) (SIGNATURE |diagonalProduct| #6=(|#3| |#1|)) (SIGNATURE |trace| #6#) (SIGNATURE |diagonal| (|#4| |#1|)) (SIGNATURE |reducedSystem| (#7=(|Matrix| |#3|) #8=(|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #7#) (|:| |vec| (|Vector| |#3|))) #8# #9=(|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| #10=(|Matrix| #5#)) (|:| |vec| (|Vector| #5#))) #8# #9#)) (SIGNATURE |reducedSystem| (#10# #8#)) (SIGNATURE |coerce| (|#1| |#3|)) (SIGNATURE |retractIfCan| ((|Union| |#3| #11="failed") |#1|)) (SIGNATURE |retract| #6#) (SIGNATURE |retract| (#12=(|Fraction| #5#) |#1|)) (SIGNATURE |retractIfCan| ((|Union| #12# #11#) |#1|)) (SIGNATURE |coerce| (|#1| #12#)) (SIGNATURE |retract| (#5# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #5# #11#) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| #13=(|Mapping| |#3| |#3|))) (SIGNATURE |differentiate| (|#1| |#1| #13# #3#)) (SIGNATURE |coerce| (|#1| #5#)) (SIGNATURE ** #4#) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|SquareMatrixCategory| |#2| |#3| |#4| |#5|) #3# (|Ring|) #14=(|DirectProductCategory| |#2| |#3|) #14#) (T |SquareMatrixCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|trace| ((|#2| $) 91 T ELT)) (|symmetric?| (#3=((|Boolean|) $) 134 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|square?| (#3# 132 T ELT)) (|scalarMatrix| (($ |#2|) 94 T ELT)) (|sample| (#4=($) 23 T CONST)) (|rowEchelon| (($ $) 151 (|has| |#2| (|EuclideanDomain|)) ELT)) (|row| ((|#3| $ #5=(|Integer|)) 146 T ELT)) (|retractIfCan| (((|Union| #6=(|Integer|) . #7=("failed")) . #8=($)) 110 (|has| |#2| . #9=((|RetractableTo| #6#))) ELT) (((|Union| #10=(|Fraction| #6#) . #7#) . #8#) 107 (|has| |#2| . #11=((|RetractableTo| #10#))) ELT) (((|Union| |#2| . #7#) . #8#) 104 T ELT)) (|retract| ((#6# . #12=($)) 109 (|has| |#2| . #9#) ELT) ((#10# . #12#) 106 (|has| |#2| . #11#) ELT) ((|#2| . #12#) 105 T ELT)) (|reducedSystem| (((|Matrix| #13=(|Integer|)) . #14=(#15=(|Matrix| $))) 100 (|has| |#2| . #16=((|LinearlyExplicitRingOver| #13#))) ELT) (((|Record| (|:| |mat| (|Matrix| #13#)) (|:| |vec| (|Vector| #13#))) . #17=(#15# #18=(|Vector| $))) 99 (|has| |#2| . #16#) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #17#) 98 T ELT) (((|Matrix| |#2|) . #14#) 97 T ELT)) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $) 116 T ELT) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) 115 T ELT) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 111 (|has| |#2| . #19=((|BasicType|))) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rank| (#20=((|NonNegativeInteger|) $) 152 (|has| |#2| . #21=((|IntegralDomain|))) ELT)) (|qelt| ((|#2| . #22=($ #5# #5#)) 144 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nullity| (#20# 153 (|has| |#2| . #21#) ELT)) (|nullSpace| (((|List| |#4|) $) 154 (|has| |#2| . #21#) ELT)) (|nrows| (#20# 140 T ELT)) (|ncols| (#20# 141 T ELT)) (|minordet| ((|#2| $) 86 (|has| |#2| (ATTRIBUTE (|commutative| #23="*"))) ELT)) (|minRowIndex| (#24=(#5# $) 136 T ELT)) (|minColIndex| (#24# 138 T ELT)) (|members| (((|List| |#2|) $) 117 T ELT)) (|member?| ((#25=(|Boolean|) |#2| $) 112 (|has| |#2| . #19#) ELT)) (|maxRowIndex| (#24# 137 T ELT)) (|maxColIndex| (#24# 139 T ELT)) (|matrix| (($ (|List| (|List| |#2|))) 131 T ELT)) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) 148 T ELT) (($ (|Mapping| |#2| |#2|) $) 126 T ELT)) (|listOfLists| (((|List| (|List| |#2|)) $) 142 T ELT)) (|leftReducedSystem| (((|Matrix| #13#) . #26=(#18#)) 102 (|has| |#2| . #16#) ELT) (((|Record| (|:| |mat| (|Matrix| #13#)) (|:| |vec| (|Vector| #13#))) . #27=(#18# $)) 101 (|has| |#2| . #16#) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #27#) 96 T ELT) (((|Matrix| |#2|) . #26#) 95 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inverse| (((|Union| $ "failed") $) 85 (|has| |#2| (|Field|)) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|find| (((|Union| |#2| "failed") (|Mapping| #25# |#2|) $) 114 T ELT)) (|exquo| (((|Union| $ "failed") $ |#2|) 149 (|has| |#2| . #21#) ELT)) (|every?| ((#25# (|Mapping| #25# |#2|) . #28=($)) 119 T ELT)) (|eval| (($ $ (|List| (|Equation| |#2|))) 125 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #29=((|SetCategory|)))) ELT) (($ $ (|Equation| |#2|)) 124 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #29#)) ELT) (($ $ |#2| |#2|) 123 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #29#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 122 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #29#)) ELT)) (|eq?| ((#30=(|Boolean|) $ $) 130 T ELT)) (|empty?| ((#30# $) 127 T ELT)) (|empty| (($) 128 T ELT)) (|elt| ((|#2| $ #5# #5# |#2|) 145 T ELT) ((|#2| . #22#) 143 T ELT)) (|differentiate| (($ $ (|Mapping| |#2| |#2|) . #31=((|NonNegativeInteger|))) 65 T ELT) (($ $ (|Mapping| |#2| |#2|)) 64 T ELT) (($ . #32=($)) 55 (|has| |#2| . #33=((|DifferentialSpace|))) ELT) (#34=($ $ (|NonNegativeInteger|)) 53 (|has| |#2| . #33#) ELT) (($ $ #35=(|Symbol|)) 63 (|has| |#2| . #36=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #35#)) 61 (|has| |#2| . #36#) ELT) (($ $ #35# . #37=(#38=(|NonNegativeInteger|))) 60 (|has| |#2| . #36#) ELT) (($ $ (|List| #35#) . #39=((|List| #38#))) 59 (|has| |#2| . #36#) ELT)) (|diagonalProduct| ((|#2| $) 90 T ELT)) (|diagonalMatrix| (($ (|List| |#2|)) 93 T ELT)) (|diagonal?| (#3# 133 T ELT)) (|diagonal| ((|#3| $) 92 T ELT)) (|determinant| ((|#2| $) 87 (|has| |#2| (ATTRIBUTE (|commutative| #23#))) ELT)) (|count| ((#40=(|NonNegativeInteger|) (|Mapping| #25# |#2|) $) 118 T ELT) ((#40# |#2| $) 113 (|has| |#2| . #19#) ELT)) (|copy| (($ $) 129 T ELT)) (|column| ((|#4| $ #5#) 147 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #10#) 108 (|has| |#2| . #11#) ELT) (($ |#2|) 103 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|any?| ((#25# (|Mapping| #25# |#2|) . #28#) 120 T ELT)) (|antisymmetric?| (#3# 135 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#2| |#2|) . #31#) 67 T ELT) (($ $ (|Mapping| |#2| |#2|)) 66 T ELT) (($ . #32#) 54 (|has| |#2| . #33#) ELT) (#34# 52 (|has| |#2| . #33#) ELT) (($ $ #35#) 62 (|has| |#2| . #36#) ELT) (($ $ (|List| #35#)) 58 (|has| |#2| . #36#) ELT) (($ $ #35# . #37#) 57 (|has| |#2| . #36#) ELT) (($ $ (|List| #35#) . #39#) 56 (|has| |#2| . #36#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#2|) 150 (|has| |#2| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ (|Integer|)) 84 (|has| |#2| (|Field|)) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #41=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 156 T ELT) (($ |#2| . #41#) 155 T ELT) ((|#4| $ |#4|) 89 T ELT) ((|#3| |#3| $) 88 T ELT)) (|#| ((#40# $) 121 T ELT)))
+(((|SquareMatrixCategory| |#1| |#2| |#3| |#4|) (|Category|) (|NonNegativeInteger|) (|Ring|) (|DirectProductCategory| |t#1| |t#2|) (|DirectProductCategory| |t#1| |t#2|)) (T |SquareMatrixCategory|))
+((|scalarMatrix| (*1 *1 *2) (AND (|ofCategory| *2 (|Ring|)) (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5)) (|ofCategory| *4 (|DirectProductCategory| *3 *2)) (|ofCategory| *5 (|DirectProductCategory| *3 *2)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *6)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)) (|ofCategory| *6 (|DirectProductCategory| *3 *4)))) (|diagonal| (*1 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *2 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)) (|ofCategory| *2 (|DirectProductCategory| *3 *4)))) (|trace| (*1 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5)) (|ofCategory| *4 (|DirectProductCategory| *3 *2)) (|ofCategory| *5 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Ring|)))) (|diagonalProduct| (*1 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5)) (|ofCategory| *4 (|DirectProductCategory| *3 *2)) (|ofCategory| *5 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Ring|)))) (* (*1 *2 *1 *2) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)) (|ofCategory| *2 (|DirectProductCategory| *3 *4)))) (* (*1 *2 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *2 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|DirectProductCategory| *3 *4)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)))) (|determinant| (*1 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5)) (|ofCategory| *4 (|DirectProductCategory| *3 *2)) (|ofCategory| *5 (|DirectProductCategory| *3 *2)) (|has| *2 (ATTRIBUTE (|commutative| #1="*"))) (|ofCategory| *2 (|Ring|)))) (|minordet| (*1 *2 *1) (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5)) (|ofCategory| *4 (|DirectProductCategory| *3 *2)) (|ofCategory| *5 (|DirectProductCategory| *3 *2)) (|has| *2 (ATTRIBUTE (|commutative| #1#))) (|ofCategory| *2 (|Ring|)))) (|inverse| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|SquareMatrixCategory| *2 *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|DirectProductCategory| *2 *3)) (|ofCategory| *5 (|DirectProductCategory| *2 *3)) (|ofCategory| *3 (|Field|)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *3 *4)) (|ofCategory| *6 (|DirectProductCategory| *3 *4)) (|ofCategory| *4 (|Field|)))))
+(|Join| (|DifferentialExtension| |t#2|) (|BiModule| |t#2| |t#2|) (|RectangularMatrixCategory| |t#1| |t#1| |t#2| |t#3| |t#4|) (|FullyRetractableTo| |t#2|) (|FullyLinearlyExplicitRingOver| |t#2|) (CATEGORY |domain| (IF (|has| |t#2| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#2|)) |%noBranch|) (SIGNATURE |scalarMatrix| ($ |t#2|)) (SIGNATURE |diagonalMatrix| ($ (|List| |t#2|))) (SIGNATURE |diagonal| (|t#3| $)) (SIGNATURE |trace| (|t#2| $)) (SIGNATURE |diagonalProduct| (|t#2| $)) (SIGNATURE * (|t#4| $ |t#4|)) (SIGNATURE * (|t#3| |t#3| $)) (IF (|has| |t#2| (ATTRIBUTE (|commutative| "*"))) (PROGN (ATTRIBUTE (|Algebra| |t#2|)) (SIGNATURE |determinant| (|t#2| $)) (SIGNATURE |minordet| (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (|Field|)) (PROGN (SIGNATURE |inverse| ((|Union| $ "failed") $)) (SIGNATURE ** ($ $ (|Integer|)))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Aggregate|) . T) ((|Algebra| |#2|) |has| |#2| (ATTRIBUTE (|commutative| #1="*"))) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #2=(|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#2|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialDomain| $) OR (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|DifferentialRing|))) ((|DifferentialExtension| |#2|) . T) ((|DifferentialRing|) |has| |#2| (|DifferentialRing|)) ((|DifferentialSpace|) OR (|has| |#2| (|DifferentialSpace|)) (|has| |#2| (|DifferentialRing|))) ((|DifferentialSpaceExtension| |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|FiniteAggregate| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#2|) . T) ((|FullyRetractableTo| |#2|) . T) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#2|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #3=(|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#2|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (ATTRIBUTE (|commutative| #1#)))) ((|LinearlyExplicitRingOver| #3#) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#2|) . T) ((|Module| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (ATTRIBUTE (|commutative| #1#)))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #4=(|Symbol|)) OR (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #4#) OR (|has| |#2| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) ((|RectangularMatrixCategory| |#1| |#1| |#2| |#3| |#4|) . T) ((|RetractableTo| #2#) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#2|) . T) ((|RightLinearSet| |#2|) . T) ((|RightModule| |#2|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|smith| (#1=(|#4| |#4|) 81 T ELT)) (|hermite| (#1# 76 T ELT)) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) 91 T ELT)) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
+(((|SmithNormalForm| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |hermite| #1=(|#4| |#4|)) (SIGNATURE |completeHermite| ((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (SIGNATURE |smith| #1#) (SIGNATURE |completeSmith| ((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (SIGNATURE |diophantineSystem| ((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|))) (|EuclideanDomain|) #2=(|FiniteLinearAggregate| |#1|) #2# (|MatrixCategory| |#1| |#2| |#3|)) (T |SmithNormalForm|))
+((|diophantineSystem| (*1 *2 *3 *4) (AND (|ofCategory| *5 #1=(|EuclideanDomain|)) (|ofCategory| *6 #2=(|FiniteLinearAggregate| *5)) (|ofCategory| *4 #2#) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|SmithNormalForm| *5 *6 *4 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *4)))) (|completeSmith| #3=(*1 *2 *3) (AND #4=(|ofCategory| *4 #1#) #5=(|ofCategory| *5 #6=(|FiniteLinearAggregate| *4)) #7=(|ofCategory| *6 #6#) (|isDomain| *2 (|Record| (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) #8=(|isDomain| *1 (|SmithNormalForm| *4 *5 *6 *3)) #9=(|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))) (|smith| #10=(*1 *2 *2) #11=(AND (|ofCategory| *3 #1#) (|ofCategory| *4 #12=(|FiniteLinearAggregate| *3)) (|ofCategory| *5 #12#) (|isDomain| *1 (|SmithNormalForm| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|completeHermite| #3# (AND #4# #5# #7# (|isDomain| *2 (|Record| (|:| |Hermite| *3) (|:| |eqMat| *3))) #8# #9#)) (|hermite| #10# #11#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 18 T ELT)) (|variables| ((#5=(|List| |#2|) $) 174 T ELT)) (|univariate| ((#6=(|SparseUnivariatePolynomial| $) $ |#2|) 60 T ELT) ((#7=(|SparseUnivariatePolynomial| |#1|) $) 49 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 116 #8=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| (#9=($ $) 118 #8# ELT)) (|unit?| (#4# 120 #8# ELT)) (|totalDegree| (#10=(#11=(|NonNegativeInteger|) $) NIL T ELT) ((#11# $ #5#) 214 T ELT)) (|subtractIfCan| (#12=(#13=(|Union| $ #14="failed") $ $) NIL T ELT)) (|squareFreePolynomial| #15=(((|Factored| #6#) #6#) NIL #16=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #17=(#9# NIL #18=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#19=((|Factored| $) $) NIL #18# ELT)) (|solveLinearPolynomialEquation| (((|Union| #20=(|List| #6#) #14#) #20# #6#) NIL #16# ELT)) (|sample| (#21=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #22=(#14#)) $) 167 T ELT) (((|Union| #23=(|Fraction| #24=(|Integer|)) . #22#) . #25=($)) NIL #26=(|has| |#1| (|RetractableTo| #23#)) ELT) (((|Union| #24# . #22#) . #25#) NIL #27=(|has| |#1| (|RetractableTo| #24#)) ELT) (#28=((|Union| |#2| . #22#) . #25#) NIL T ELT)) (|retract| (#29=(|#1| $) 165 T ELT) ((#23# . #30=($)) NIL #26# ELT) ((#24# . #30#) NIL #27# ELT) ((|#2| . #30#) NIL T ELT)) (|resultant| (($ $ $ |#2|) NIL #31=(|has| |#1| (|CommutativeRing|)) ELT)) (|reductum| (#9# 218 T ELT)) (|reducedSystem| ((#32=(|Matrix| #24#) . #33=(#34=(|Matrix| $))) NIL #35=(|has| |#1| (|LinearlyExplicitRingOver| #24#)) ELT) ((#36=(|Record| (|:| |mat| #32#) (|:| |vec| (|Vector| #24#))) . #37=(#34# #38=(|Vector| $))) NIL #35# ELT) ((#39=(|Record| (|:| |mat| #40=(|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #37#) NIL T ELT) ((#40# . #33#) NIL T ELT)) (|recip| ((#13# $) 90 T ELT)) (|primitivePart| #17# (#41=($ $ |#2|) NIL #18# ELT)) (|primitiveMonomials| #42=((#43=(|List| $) $) NIL T ELT)) (|prime?| (#4# NIL #16# ELT)) (|pomopo!| (($ $ |#1| #44=(|IndexedExponents| |#2|) $) NIL T ELT)) (|patternMatch| ((#45=(|PatternMatchResult| #46=(|Float|) . #47=($)) $ #48=(|Pattern| #46#) #45#) NIL (AND (|has| |#1| #49=(|PatternMatchable| #46#)) (|has| |#2| #49#)) ELT) ((#50=(|PatternMatchResult| #24# . #47#) $ #51=(|Pattern| #24#) #50#) NIL (AND (|has| |#1| #52=(|PatternMatchable| #24#)) (|has| |#2| #52#)) ELT)) (|opposite?| #1#) (|one?| (#4# 20 T ELT)) (|numberOfMonomials| (#10# 30 T ELT)) (|multivariate| (($ #7# |#2|) 54 T ELT) (($ #6# |#2|) 71 T ELT)) (|monomials| #42#) (|monomial?| (#4# 38 T ELT)) (|monomial| (($ |#1| #44#) 78 T ELT) (#53=($ $ |#2| #11#) 58 T ELT) #54=(($ $ #5# #55=(|List| #11#)) NIL T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#2|) NIL T ELT)) (|minimumDegree| (#56=(#44# $) 205 T ELT) (#57=(#11# $ |#2|) 206 T ELT) (#58=(#55# $ #5#) 207 T ELT)) (|mapExponents| (($ (|Mapping| #44# #44#) $) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 128 T ELT)) (|mainVariable| (#28# 177 T ELT)) (|leftReducedSystem| ((#32# . #59=(#38#)) NIL #35# ELT) ((#36# . #60=(#38# $)) NIL #35# ELT) ((#39# . #60#) NIL T ELT) ((#40# . #59#) NIL T ELT)) (|leadingMonomial| (#9# 217 T ELT)) (|leadingCoefficient| (#29# 43 T ELT)) (|lcm| (#61=($ #43#) NIL #18# ELT) (#62=($ $ $) NIL #18# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|isTimes| #63=(((|Union| #43# #14#) $) NIL T ELT)) (|isPlus| #63#) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| #11#)) #14#) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| (#4# 39 T ELT)) (|ground| (#29# NIL T ELT)) (|gcdPolynomial| ((#6# #6# #6#) 148 #18# ELT)) (|gcd| (#61# 153 #18# ELT) (#62# 138 #18# ELT)) (|factorSquareFreePolynomial| #15#) (|factorPolynomial| #15#) (|factor| (#19# NIL #16# ELT)) (|exquo| ((#13# $ |#1|) NIL #8# ELT) (#12# 126 #8# ELT)) (|eval| (($ $ (|List| #64=(|Equation| $))) NIL T ELT) (($ $ #64#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #43# #43#) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ #5# #65=(|List| |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ #5# #43#) 194 T ELT)) (|discriminant| (#41# NIL #31# ELT)) (|differentiate| #54# #66=(#53# NIL T ELT) #67=(($ $ #5#) NIL T ELT) (#41# 216 T ELT)) (|degree| (#56# 201 T ELT) (#57# 196 T ELT) (#58# 199 T ELT)) (|convert| ((#48# . #68=($)) NIL (AND (|has| |#1| #69=(|ConvertibleTo| #48#)) (|has| |#2| #69#)) ELT) ((#51# . #68#) NIL (AND (|has| |#1| #70=(|ConvertibleTo| #51#)) (|has| |#2| #70#)) ELT) ((#71=(|InputForm|) . #68#) NIL (AND (|has| |#1| #72=(|ConvertibleTo| #71#)) (|has| |#2| #72#)) ELT)) (|content| (#29# 134 #18# ELT) (#41# 137 #18# ELT)) (|conditionP| (((|Union| #38# #14#) #34#) NIL #73=(AND (|has| $ #74=(|CharacteristicNonZero|)) #16#) ELT)) (|coerce| (((|OutputForm|) $) 159 T ELT) (($ #24#) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (#9# NIL #8# ELT) (($ #23#) NIL (OR #75=(|has| |#1| (|Algebra| #23#)) #26#) ELT)) (|coefficients| ((#65# $) 162 T ELT)) (|coefficient| ((|#1| $ #44#) 80 T ELT) #66# #54#) (|charthRoot| (((|Maybe| $) $) NIL (OR #73# (|has| |#1| #74#)) ELT)) (|characteristic| ((#11#) 87 T CONST)) (|binomThmExpt| (($ $ $ #11#) NIL #31# ELT)) (|before?| #1#) (|associates?| (#2# 123 #8# ELT)) (|annihilate?| #1#) (|Zero| (#21# 12 T CONST)) (|One| (#21# 14 T CONST)) (D #54# #66# #67# (#41# NIL T ELT)) (= (#2# 106 T ELT)) (/ (#76=($ $ |#1|) 132 (|has| |#1| (|Field|)) ELT)) (- (#9# 93 T ELT) (#62# 104 T ELT)) (+ (#62# 55 T ELT)) (** (($ $ #77=(|PositiveInteger|)) 110 T ELT) (($ $ #11#) 109 T ELT)) (* (($ #77# $) NIL T ELT) (($ #11# $) NIL T ELT) (($ #24# $) 96 T ELT) (#62# 72 T ELT) (($ $ #23#) NIL #75# ELT) (($ #23# $) NIL #75# ELT) (($ |#1| $) 99 T ELT) (#76# NIL T ELT)))
+(((|SparseMultivariatePolynomial| |#1| |#2|) (|PolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) (|Ring|) (|OrderedSet|)) (T |SparseMultivariatePolynomial|))
+NIL
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| |#2|) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #7=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #8=(#9=($ $) NIL #7# ELT)) (|unit?| (#5# NIL #7# ELT)) (|tanh| (#9# 149 #10=(|has| |#1| (|Algebra| #11=(|Fraction| #12=(|Integer|)))) ELT)) (|tan| (#9# 125 #10# ELT)) (|subtractIfCan| (#13=(#14=(|Union| $ "failed") $ $) NIL T ELT)) (|sqrt| (#9# NIL #10# ELT)) (|sinh| (#9# 145 #10# ELT)) (|sin| (#9# 121 #10# ELT)) (|sech| (#9# 153 #10# ELT)) (|sec| (#9# 129 #10# ELT)) (|sample| (#15=($) NIL T CONST)) (|reductum| #16=(#9# NIL T ELT)) (|recip| ((#14# $) NIL T ELT)) (|polynomial| ((#17=(|Polynomial| |#1|) $ #18=(|NonNegativeInteger|)) NIL T ELT) ((#17# $ #18# #18#) NIL T ELT)) (|pole?| #4#) (|pi| (#15# NIL #10# ELT)) (|order| ((#18# $ |#2|) NIL T ELT) ((#18# $ |#2| #18#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (($ $ #12#) NIL #10# ELT)) (|monomial?| #4#) (|monomial| (($ $ #6# (|List| #19=(|IndexedExponents| |#2|))) NIL T ELT) (($ $ |#2| #19#) NIL T ELT) (($ |#1| #19#) NIL T ELT) (#20=($ $ |#2| #18#) 63 T ELT) #21=(($ $ #6# (|List| #18#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| (#9# 119 #10# ELT)) (|leadingMonomial| #16#) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integrate| (#22=($ $ |#2|) NIL #10# ELT) (($ $ |#2| |#1|) 171 #10# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) 170 #10# ELT)) (|extend| (#23=($ $ #18#) 17 T ELT)) (|exquo| (#13# NIL #7# ELT)) (|exp| (#9# 117 #10# ELT)) (|eval| (($ $ |#2| $) 104 T ELT) (($ $ #6# #24=(|List| $)) 99 T ELT) (($ $ (|List| #25=(|Equation| $))) NIL T ELT) (($ $ #25#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #24# #24#) NIL T ELT)) (|differentiate| #21# #26=(#20# NIL T ELT) #27=(($ $ #6#) NIL T ELT) (#22# 106 T ELT)) (|degree| ((#19# $) NIL T ELT)) (|csubst| (((|Mapping| #28=(|Stream| |#3|) |#3|) #6# (|List| #28#)) 87 T ELT)) (|csch| (#9# 155 #10# ELT)) (|csc| (#9# 131 #10# ELT)) (|coth| (#9# 151 #10# ELT)) (|cot| (#9# 127 #10# ELT)) (|cosh| (#9# 147 #10# ELT)) (|cos| (#9# 123 #10# ELT)) (|complete| (#9# 19 T ELT)) (|coerce| (((|OutputForm|) $) 194 T ELT) (($ #12#) NIL T ELT) (($ |#1|) 45 (|has| |#1| (|CommutativeRing|)) ELT) #8# (($ #11#) NIL #10# ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (|coefficient| ((|#1| $ #19#) NIL T ELT) #26# #21# ((|#3| $ #18#) 43 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#18#) NIL T CONST)) (|before?| #1#) (|atanh| (#9# 161 #10# ELT)) (|atan| (#9# 137 #10# ELT)) (|associates?| (#2# NIL #7# ELT)) (|asinh| (#9# 157 #10# ELT)) (|asin| (#9# 133 #10# ELT)) (|asech| (#9# 165 #10# ELT)) (|asec| (#9# 141 #10# ELT)) (|annihilate?| #1#) (|acsch| (#9# 167 #10# ELT)) (|acsc| (#9# 143 #10# ELT)) (|acoth| (#9# 163 #10# ELT)) (|acot| (#9# 139 #10# ELT)) (|acosh| (#9# 159 #10# ELT)) (|acos| (#9# 135 #10# ELT)) (|Zero| (#15# 52 T CONST)) (|One| (#15# 62 T CONST)) (D #21# #26# #27# (#22# NIL T ELT)) (= #1#) (/ (#29=($ $ |#1|) 196 (|has| |#1| (|Field|)) ELT)) (- #16# (#30=($ $ $) NIL T ELT)) (+ (#30# 66 T ELT)) (** (($ $ #31=(|PositiveInteger|)) NIL T ELT) (#23# 77 T ELT) (#30# NIL #10# ELT) (#32=($ $ #11#) 109 #10# ELT)) (* (($ #31# $) NIL T ELT) (($ #18# $) NIL T ELT) (($ #12# $) NIL T ELT) (#30# 65 T ELT) (#32# 114 #10# ELT) (($ #11# $) 112 #10# ELT) (($ |#1| $) 48 T ELT) (#29# 49 T ELT) (($ |#3| $) 47 T ELT)))
+(((|SparseMultivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|MultivariateTaylorSeriesCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coefficient| (|#3| $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |coerce| ($ |#3|)) (SIGNATURE * ($ |#3| $)) (SIGNATURE |csubst| ((|Mapping| #1=(|Stream| |#3|) |#3|) (|List| |#2|) (|List| #1#))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ |#2| |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) |#2| |#1|))) |%noBranch|))) (|Ring|) (|OrderedSet|) (|PolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|)) (T |SparseMultivariateTaylorSeries|))
+((|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *2 (|PolynomialCategory| *4 (|IndexedExponents| *5) *5)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *4 *5 *2)) #1=(|ofCategory| *4 #2=(|Ring|)) (|ofCategory| *5 #3=(|OrderedSet|)))) (|coerce| #4=(*1 *1 *2) (AND #5=(|ofCategory| *3 #2#) #6=(|ofCategory| *2 #3#) #7=(|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *2 *4)) #8=(|ofCategory| *4 (|PolynomialCategory| *3 (|IndexedExponents| *2) *2)))) (|coerce| #4# #9=(AND #5# (|ofCategory| *4 #3#) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *2)) (|ofCategory| *2 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4)))) (* (*1 *1 *2 *1) #9#) (|csubst| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| #10=(|Stream| *7))) (|ofCategory| *6 #3#) (|ofCategory| *7 (|PolynomialCategory| *5 (|IndexedExponents| *6) *6)) (|ofCategory| *5 #2#) (|isDomain| *2 (|Mapping| #10# *7)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *5 *6 *7)))) (|integrate| (*1 *1 *1 *2 *3) (AND (|ofCategory| *3 #11=(|Algebra| (|Fraction| (|Integer|)))) #5# #6# #7# #8#)) (|fintegrate| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Mapping| #12=(|SparseMultivariateTaylorSeries| *4 *3 *5))) (|ofCategory| *4 #11#) #1# (|ofCategory| *3 #3#) (|isDomain| *1 #12#) (|ofCategory| *5 (|PolynomialCategory| *4 (|IndexedExponents| *3) *3)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 91 T ELT)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 92 T ELT) ((#2=(|List| $) (|List| |#4|) #3=(|Boolean|)) 120 T ELT)) (|variables| (((|List| |#3|) . #4=($)) 39 T ELT)) (|trivialIdeal?| (#5=(#6=(|Boolean|) $) 32 T ELT)) (|triangular?| (#5# 23 (|has| |#1| . #7=((|IntegralDomain|))) ELT)) (|stronglyReduced?| ((#8=(|Boolean|) |#4| . #9=($)) 107 T ELT) (#10=(#8# $) 103 T ELT)) (|stronglyReduce| ((|#4| |#4| . #11=($)) 98 T ELT)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) . #12=(#13=(|:| |tower| $)))) |#4| $) 135 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #14=(|Boolean|) |#4|) . #15=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT) (((|Union| |#4| . #16=(#17="failed")) $ |#3|) 85 T ELT)) (|sample| (#18=($) 59 T CONST)) (|roughUnitIdeal?| (#5# 28 (|has| |#1| . #7#) ELT)) (|roughSubIdeal?| (#19=(#6# $ $) 30 (|has| |#1| . #7#) ELT)) (|roughEqualIdeals?| (#19# 29 (|has| |#1| . #7#) ELT)) (|roughBase?| (#5# 31 (|has| |#1| . #7#) ELT)) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 99 T ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) . #20=($)) 24 (|has| |#1| . #7#) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) . #20#) 25 (|has| |#1| . #7#) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|rest| ((#21=(|Union| $ #17#) $) 88 T ELT)) (|removeZero| ((|#4| |#4| . #11#) 95 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #22=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #22#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #14# |#4|) . #15#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| . #7#) ELT)) (|reduced?| ((#8# |#4| $ (|Mapping| #8# |#4| |#4|)) 108 T ELT)) (|reduceByQuasiMonic| ((|#4| |#4| . #11#) 93 T ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #23=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| #8# |#4| |#4|)) 100 T ELT)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 111 T ELT)) (|purelyTranscendental?| ((#3# |#4| . #24=($)) 145 T ELT)) (|purelyAlgebraicLeadingMonomial?| ((#3# |#4| . #24#) 142 T ELT)) (|purelyAlgebraic?| ((#3# |#4| . #24#) 146 T ELT) ((#3# $) 143 T ELT)) (|normalized?| ((#8# |#4| . #9#) 110 T ELT) (#10# 109 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#25=(|Boolean|) |#4| $) 53 (|has| |#4| . #23#) ELT)) (|map!| (($ (|Mapping| |#4| |#4|) $) 117 T ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) . #4#) 38 T ELT)) (|mainVariable?| ((#6# |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| #2#) |#4| |#4| $) 137 T ELT)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) . #12#)) |#4| |#4| $) 136 T ELT)) (|last| (((|Union| |#4| . #16#) . #26=($)) 89 T ELT)) (|invertibleSet| ((#2# |#4| . #27=($)) 138 T ELT)) (|invertibleElseSplit?| (((|Union| #3# #2#) |#4| $) 141 T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #13#)) |#4| $) 140 T ELT) ((#3# |#4| . #24#) 139 T ELT)) (|intersect| ((#2# |#4| . #27#) 134 T ELT) ((#2# (|List| |#4|) . #28=($)) 133 T ELT) ((#2# (|List| |#4|) . #29=(#2#)) 132 T ELT) ((#2# |#4| . #30=(#2#)) 131 T ELT)) (|internalAugment| (($ |#4| $) 126 T ELT) (($ (|List| |#4|) $) 125 T ELT)) (|initials| (((|List| |#4|) $) 113 T ELT)) (|initiallyReduced?| ((#8# |#4| . #9#) 105 T ELT) (#10# 101 T ELT)) (|initiallyReduce| ((|#4| |#4| . #11#) 96 T ELT)) (|infRittWu?| ((#8# $ $) 116 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| . #7#) ELT)) (|headReduced?| ((#8# |#4| . #9#) 106 T ELT) (#10# 102 T ELT)) (|headReduce| ((|#4| |#4| . #11#) 97 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| (((|Union| |#4| . #16#) . #26#) 90 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #25# |#4|) $) 51 T ELT)) (|extendIfCan| ((#21# $ |#4|) 84 T ELT)) (|extend| (($ $ |#4|) 83 T ELT) ((#2# |#4| . #27#) 124 T ELT) ((#2# |#4| . #30#) 123 T ELT) ((#2# (|List| |#4|) . #28#) 122 T ELT) ((#2# (|List| |#4|) . #29#) 121 T ELT)) (|every?| ((#25# (|Mapping| #25# |#4|) . #31=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #32#)) ELT)) (|eq?| ((#33=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#33# $) 58 T ELT)) (|empty| (#18# 57 T ELT)) (|degree| (#34=((|NonNegativeInteger|) $) 112 T ELT)) (|count| ((#35=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #23#) ELT) ((#35# (|Mapping| #25# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#36=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #36#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collectQuasiMonic| (($ $) 94 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #37=($)) 13 T ELT) (((|List| |#4|) . #37#) 43 T ELT)) (|coHeight| (#34# 82 (|has| |#3| (|Finite|)) ELT)) (|before?| (#1# 6 T ELT)) (|basicSet| (((|Union| (|Record| #38=(|:| |bas| $) (|:| |top| (|List| |#4|))) . #39=(#17#)) (|List| |#4|) (|Mapping| #8# |#4| |#4|)) 115 T ELT) (((|Union| (|Record| #38# (|:| |top| (|List| |#4|))) . #39#) (|List| |#4|) (|Mapping| #8# |#4|) (|Mapping| #8# |#4| |#4|)) 114 T ELT)) (|autoReduced?| ((#8# $ (|Mapping| #8# |#4| (|List| |#4|))) 104 T ELT)) (|augment| ((#2# |#4| . #27#) 130 T ELT) ((#2# |#4| . #30#) 129 T ELT) ((#2# (|List| |#4|) . #28#) 128 T ELT) ((#2# (|List| |#4|) . #29#) 127 T ELT)) (|any?| ((#25# (|Mapping| #25# |#4|) . #31#) 45 T ELT)) (|algebraicVariables| (((|List| |#3|) $) 87 T ELT)) (|algebraicCoefficients?| ((#3# |#4| . #24#) 144 T ELT)) (|algebraic?| ((#8# |#3| $) 86 T ELT)) (= (#1# 8 T ELT)) (|#| ((#35# $) 44 T ELT)))
+(((|SquareFreeNormalizedTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |SquareFreeNormalizedTriangularSetCategory|))
+NIL
+(|Join| (|SquareFreeRegularTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|) (|NormalizedTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|NormalizedTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#4|) . T) ((|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T))
+((|solve| (#1=(#2=(|List| |#2|) |#1|) 15 T ELT)) (|quartic| ((#2# |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (#1# 61 T ELT)) (|quadratic| ((#2# |#2| |#2| |#2|) 45 T ELT) (#1# 59 T ELT)) (|particularSolution| ((|#2| |#1|) 54 T ELT)) (|mapSolve| (((|Record| (|:| |solns| #2#) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) 20 T ELT)) (|linear| ((#2# |#2| |#2|) 42 T ELT) (#1# 58 T ELT)) (|cubic| ((#2# |#2| |#2| |#2| |#2|) 46 T ELT) (#1# 60 T ELT)) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (|aQuadratic| ((|#2| |#2| |#2| |#2|) 51 T ELT)) (|aLinear| ((|#2| |#2| |#2|) 50 T ELT)) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
+(((|PolynomialSolveByFormulas| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solve| #1=(#2=(|List| |#2|) |#1|)) (SIGNATURE |particularSolution| (|#2| |#1|)) (SIGNATURE |mapSolve| ((|Record| (|:| |solns| #2#) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |linear| #1#) (SIGNATURE |quadratic| #1#) (SIGNATURE |cubic| #1#) (SIGNATURE |quartic| #1#) (SIGNATURE |linear| (#2# |#2| |#2|)) (SIGNATURE |quadratic| (#2# |#2| |#2| |#2|)) (SIGNATURE |cubic| (#2# |#2| |#2| |#2| |#2|)) (SIGNATURE |quartic| (#2# |#2| |#2| |#2| |#2| |#2|)) (SIGNATURE |aLinear| (|#2| |#2| |#2|)) (SIGNATURE |aQuadratic| (|#2| |#2| |#2| |#2|)) (SIGNATURE |aCubic| (|#2| |#2| |#2| |#2| |#2|)) (SIGNATURE |aQuartic| (|#2| |#2| |#2| |#2| |#2| |#2|))) (|UnivariatePolynomialCategory| |#2|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE ** ($ $ (|Fraction| (|Integer|))))))) (T |PolynomialSolveByFormulas|))
+((|aQuartic| (*1 *2 *2 *2 *2 *2 *2) #1=(AND (|ofCategory| *2 #2=(|Join| (|Field|) (CATEGORY |domain| (SIGNATURE ** ($ $ (|Fraction| (|Integer|))))))) (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|aCubic| (*1 *2 *2 *2 *2 *2) #1#) (|aQuadratic| (*1 *2 *2 *2 *2) #1#) (|aLinear| (*1 *2 *2 *2) #1#) (|quartic| (*1 *2 *3 *3 *3 *3 *3) #3=(AND (|ofCategory| *3 #2#) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialSolveByFormulas| *4 *3)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (|cubic| (*1 *2 *3 *3 *3 *3) #3#) (|quadratic| (*1 *2 *3 *3 *3) #3#) (|linear| (*1 *2 *3 *3) #3#) (|quartic| #4=(*1 *2 *3) #5=(AND (|ofCategory| *4 #2#) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|cubic| #4# #5#) (|quadratic| #4# #5#) (|linear| #4# #5#) (|mapSolve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 #2#) (|isDomain| *2 (|Record| (|:| |solns| (|List| *5)) (|:| |maps| (|List| (|Record| (|:| |arg| *5) (|:| |res| *5)))))) (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *5)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|particularSolution| #4# #1#) (|solve| #4# #5#))
+((|radicalSolve| ((#1=(|List| #2=(|List| (|Equation| #3=(|Expression| |#1|)))) #4=(|List| #5=(|Equation| #6=(|Fraction| (|Polynomial| |#1|))))) 119 T ELT) ((#1# #4# #7=(|List| #8=(|Symbol|))) 118 T ELT) ((#1# #9=(|List| #6#)) 116 T ELT) ((#1# #9# #7#) 113 T ELT) ((#2# #5#) 97 T ELT) ((#2# #5# #8#) 98 T ELT) ((#2# #6#) 92 T ELT) ((#2# #6# #8#) 82 T ELT)) (|radicalRoots| (((|List| #10=(|List| #3#)) #9# #7#) 111 T ELT) ((#10# #6# #8#) 54 T ELT)) (|contractSolve| ((#11=(|SuchThat| #10# #2#) #6# #8#) 123 T ELT) ((#11# #5# #8#) 122 T ELT)))
+(((|RadicalSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |radicalSolve| (#1=(|List| (|Equation| #2=(|Expression| |#1|))) #3=(|Fraction| (|Polynomial| |#1|)) #4=(|Symbol|))) (SIGNATURE |radicalSolve| (#1# #3#)) (SIGNATURE |radicalSolve| (#1# #5=(|Equation| #3#) #4#)) (SIGNATURE |radicalSolve| (#1# #5#)) (SIGNATURE |radicalSolve| (#6=(|List| #1#) #7=(|List| #3#) #8=(|List| #4#))) (SIGNATURE |radicalSolve| (#6# #7#)) (SIGNATURE |radicalSolve| (#6# #9=(|List| #5#) #8#)) (SIGNATURE |radicalSolve| (#6# #9#)) (SIGNATURE |radicalRoots| (#10=(|List| #2#) #3# #4#)) (SIGNATURE |radicalRoots| ((|List| #10#) #7# #8#)) (SIGNATURE |contractSolve| (#11=(|SuchThat| #10# #1#) #5# #4#)) (SIGNATURE |contractSolve| (#11# #3# #4#))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (T |RadicalSolvePackage|))
+((|contractSolve| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 #3=(|Fraction| (|Polynomial| *5))) #4=(|isDomain| *4 #5=(|Symbol|)) #6=(|ofCategory| *5 #7=(|Join| (|EuclideanDomain|) (|CharacteristicZero|))) #8=(|isDomain| *2 (|SuchThat| #9=(|List| #10=(|Expression| *5)) #11=(|List| (|Equation| #10#)))) #12=(|isDomain| *1 (|RadicalSolvePackage| *5)))) (|contractSolve| #1# (AND #13=(|isDomain| *3 #14=(|Equation| #3#)) #4# #6# #8# #12#)) (|radicalRoots| #1# (AND #15=(|isDomain| *3 (|List| #3#)) #16=(|isDomain| *4 (|List| #5#)) #6# (|isDomain| *2 (|List| #9#)) #12#)) (|radicalRoots| #1# (AND #2# #4# #6# (|isDomain| *2 #9#) #12#)) (|radicalSolve| #17=(*1 *2 *3) (AND (|isDomain| *3 (|List| #18=(|Equation| #19=(|Fraction| (|Polynomial| *4))))) #20=(|ofCategory| *4 #7#) #21=(|isDomain| *2 (|List| #22=(|List| (|Equation| (|Expression| *4))))) #23=(|isDomain| *1 (|RadicalSolvePackage| *4)))) (|radicalSolve| #1# (AND (|isDomain| *3 (|List| #14#)) #16# #6# #24=(|isDomain| *2 (|List| #11#)) #12#)) (|radicalSolve| #17# (AND (|isDomain| *3 (|List| #19#)) #20# #21# #23#)) (|radicalSolve| #1# (AND #15# #16# #6# #24# #12#)) (|radicalSolve| #17# (AND (|isDomain| *3 #18#) #20# #25=(|isDomain| *2 #22#) #23#)) (|radicalSolve| #1# (AND #13# #4# #6# #26=(|isDomain| *2 #11#) #12#)) (|radicalSolve| #17# (AND (|isDomain| *3 #19#) #20# #25# #23#)) (|radicalSolve| #1# (AND #2# #4# #6# #26# #12#)))
+((|unvectorise| ((#1=(|Fraction| (|SparseUnivariatePolynomial| #2=(|Expression| |#1|))) (|Vector| #2#) #1# (|Integer|)) 36 T ELT)) (|decomposeFunc| ((#1# #1# #1# #1#) 48 T ELT)))
+(((|TransSolvePackageService| |#1|) (CATEGORY |package| (SIGNATURE |decomposeFunc| (#1=(|Fraction| (|SparseUnivariatePolynomial| #2=(|Expression| |#1|))) #1# #1# #1#)) (SIGNATURE |unvectorise| (#1# (|Vector| #2#) #1# (|Integer|)))) (|IntegralDomain|)) (T |TransSolvePackageService|))
+((|unvectorise| (*1 *2 *3 *2 *4) (AND (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| #1=(|Expression| *5)))) (|isDomain| *3 (|Vector| #1#)) (|isDomain| *4 (|Integer|)) (|ofCategory| *5 #2=(|IntegralDomain|)) (|isDomain| *1 (|TransSolvePackageService| *5)))) (|decomposeFunc| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| (|Expression| *3)))) (|ofCategory| *3 #2#) (|isDomain| *1 (|TransSolvePackageService| *3)))))
+((|solve| (((|List| #1=(|List| #2=(|Equation| #3=(|Expression| |#1|)))) #1# (|List| #4=(|Symbol|))) 244 T ELT) ((#1# #3# #4#) 23 T ELT) ((#1# #2# #4#) 29 T ELT) ((#1# #2#) 28 T ELT) ((#1# #3#) 24 T ELT)))
+(((|TransSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|List| #2=(|Equation| #3=(|Expression| |#1|))) #3#)) (SIGNATURE |solve| (#1# #2#)) (SIGNATURE |solve| (#1# #2# #4=(|Symbol|))) (SIGNATURE |solve| (#1# #3# #4#)) (SIGNATURE |solve| ((|List| #1#) #1# (|List| #4#)))) (|Join| (|EuclideanDomain|) (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#) (|CharacteristicZero|))) (T |TransSolvePackage|))
+((|solve| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|List| #2=(|Symbol|))) #3=(|ofCategory| *5 #4=(|Join| (|EuclideanDomain|) (|RetractableTo| #5=(|Integer|)) (|LinearlyExplicitRingOver| #5#) (|CharacteristicZero|))) (|isDomain| *2 (|List| #6=(|List| #7=(|Equation| #8=(|Expression| *5))))) #9=(|isDomain| *1 (|TransSolvePackage| *5)) (|isDomain| *3 #6#))) (|solve| #1# (AND #10=(|isDomain| *4 #2#) #3# #11=(|isDomain| *2 #6#) #9# (|isDomain| *3 #8#))) (|solve| #1# (AND #10# #3# #11# #9# (|isDomain| *3 #7#))) (|solve| #12=(*1 *2 *3) (AND #13=(|ofCategory| *4 #4#) #14=(|isDomain| *2 (|List| #15=(|Equation| #16=(|Expression| *4)))) #17=(|isDomain| *1 (|TransSolvePackage| *4)) (|isDomain| *3 #15#))) (|solve| #12# (AND #13# #14# #17# (|isDomain| *3 #16#))))
+((|insertionSort!| (#1=(|#2| |#2|) 28 #2=(|has| |#1| (|OrderedSet|)) ELT) (#3=(|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) 25 T ELT)) (|bubbleSort!| (#1# 27 #2# ELT) (#3# 22 T ELT)))
+(((|SortPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bubbleSort!| #1=(|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |insertionSort!| #1#) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |bubbleSort!| #2=(|#2| |#2|)) (SIGNATURE |insertionSort!| #2#)) |%noBranch|)) (|Type|) (|Join| (|IndexedAggregate| (|Integer|) |#1|) (|FiniteAggregate| |#1|) (|ShallowlyMutableAggregate| |#1|))) (T |SortPackage|))
+((|insertionSort!| #1=(*1 *2 *2) #2=(AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 #3=(|Type|)) (|isDomain| *1 (|SortPackage| *3 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| #4=(|Integer|) *3) (|FiniteAggregate| *3) (|ShallowlyMutableAggregate| *3))))) (|bubbleSort!| #1# #2#) (|insertionSort!| #5=(*1 *2 *2 *3) #6=(AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 #3#) (|isDomain| *1 (|SortPackage| *4 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| #4# *4) (|FiniteAggregate| *4) (|ShallowlyMutableAggregate| *4))))) (|bubbleSort!| #5# #6#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|subspace| ((#3=(|SubSpace| 3 |#1|) $) 141 T ELT)) (|polygon?| (#4=(#2# $) 101 T ELT)) (|polygon| (#5=($ $ #6=(|List| #7=(|Point| |#1|))) 44 T ELT) (#8=($ $ #9=(|List| #10=(|List| |#1|))) 104 T ELT) (#11=($ #6#) 103 T ELT) (#12=(#6# $) 102 T ELT)) (|point?| (#4# 72 T ELT)) (|point| (($ $ #7#) 76 T ELT) (($ $ #10#) 81 T ELT) (($ $ #13=(|NonNegativeInteger|)) 83 T ELT) (($ #7#) 77 T ELT) ((#7# $) 75 T ELT)) (|objects| (((|Record| (|:| |points| #13#) (|:| |curves| #13#) (|:| |polygons| #13#) (|:| |constructs| #13#)) $) 139 T ELT)) (|numberOfComposites| (#14=(#13# $) 53 T ELT)) (|numberOfComponents| (#14# 52 T ELT)) (|modifyPointData| (($ $ #13# #7#) 67 T ELT)) (|mesh?| (#4# 111 T ELT)) (|mesh| (($ $ #15=(|List| #6#) #16=(|List| #17=(|SubSpaceComponentProperty|)) #17#) 118 T ELT) (($ $ #18=(|List| #9#) #16# #17#) 120 T ELT) (($ $ #15# #2# #2#) 115 T ELT) (($ $ #18# #2# #2#) 127 T ELT) (($ #15#) 116 T ELT) (($ #15# #2# #2#) 117 T ELT) ((#15# $) 114 T ELT)) (|merge| (#19=($ #20=(|List| $)) 56 T ELT) (($ $ $) 57 T ELT)) (|lprop| ((#16# $) 133 T ELT)) (|lp| (#12# 130 T ELT)) (|llprop| (((|List| #16#) $) 132 T ELT)) (|lllp| (((|List| #15#) $) NIL T ELT)) (|lllip| (((|List| (|List| (|List| #13#))) $) 131 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|enterPointData| ((#13# $ #6#) 65 T ELT)) (|curve?| (#4# 84 T ELT)) (|curve| (#5# 86 T ELT) (#8# 92 T ELT) (#11# 87 T ELT) (#12# 85 T ELT)) (|create3Space| (($) 48 T ELT) (($ #3#) 49 T ELT)) (|copy| (#21=($ $) 63 T ELT)) (|composites| (#22=(#20# $) 62 T ELT)) (|composite| (#19# 59 T ELT)) (|components| (#22# 61 T ELT)) (|coerce| (((|OutputForm|) $) 146 T ELT)) (|closedCurve?| (#4# 94 T ELT)) (|closedCurve| (#5# 96 T ELT) (#8# 99 T ELT) (#11# 97 T ELT) (#12# 95 T ELT)) (|check| (#21# 140 T ELT)) (|before?| #1#) (= #1#))
+(((|ThreeSpace| |#1|) (|ThreeSpaceCategory| |#1|) (|Ring|)) (T |ThreeSpace|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|subspace| (((|SubSpace| 3 |#1|) $) 17 T ELT)) (|polygon?| (((|Boolean|) $) 33 T ELT)) (|polygon| (($ $ (|List| (|Point| |#1|))) 37 T ELT) (($ $ (|List| (|List| |#1|))) 36 T ELT) (($ (|List| (|Point| |#1|))) 35 T ELT) (((|List| (|Point| |#1|)) $) 34 T ELT)) (|point?| (((|Boolean|) $) 48 T ELT)) (|point| (($ $ (|Point| |#1|)) 53 T ELT) (($ $ (|List| |#1|)) 52 T ELT) (($ $ (|NonNegativeInteger|)) 51 T ELT) (($ (|Point| |#1|)) 50 T ELT) (((|Point| |#1|) $) 49 T ELT)) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) 19 T ELT)) (|numberOfComposites| (((|NonNegativeInteger|) $) 62 T ELT)) (|numberOfComponents| (((|NonNegativeInteger|) $) 63 T ELT)) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) 54 T ELT)) (|mesh?| (((|Boolean|) $) 25 T ELT)) (|mesh| (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 32 T ELT) (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 31 T ELT) (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 30 T ELT) (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) 29 T ELT) (($ (|List| (|List| (|Point| |#1|)))) 28 T ELT) (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 27 T ELT) (((|List| (|List| (|Point| |#1|))) $) 26 T ELT)) (|merge| (($ (|List| $)) 61 T ELT) (($ $ $) 60 T ELT)) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) 20 T ELT)) (|lp| (((|List| (|Point| |#1|)) $) 24 T ELT)) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) 21 T ELT)) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) 22 T ELT)) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) 23 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) 55 T ELT)) (|curve?| (((|Boolean|) $) 43 T ELT)) (|curve| (($ $ (|List| (|Point| |#1|))) 47 T ELT) (($ $ (|List| (|List| |#1|))) 46 T ELT) (($ (|List| (|Point| |#1|))) 45 T ELT) (((|List| (|Point| |#1|)) $) 44 T ELT)) (|create3Space| (($) 65 T ELT) (($ (|SubSpace| 3 |#1|)) 64 T ELT)) (|copy| (($ $) 56 T ELT)) (|composites| (((|List| $) $) 57 T ELT)) (|composite| (($ (|List| $)) 59 T ELT)) (|components| (((|List| $) $) 58 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|closedCurve?| (((|Boolean|) $) 38 T ELT)) (|closedCurve| (($ $ (|List| (|Point| |#1|))) 42 T ELT) (($ $ (|List| (|List| |#1|))) 41 T ELT) (($ (|List| (|Point| |#1|))) 40 T ELT) (((|List| (|Point| |#1|)) $) 39 T ELT)) (|check| (($ $) 18 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|ThreeSpaceCategory| |#1|) (|Category|) (|Ring|)) (T |ThreeSpaceCategory|))
+((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|OutputForm|)))) (|create3Space| (*1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|create3Space| (*1 *1 *2) (AND (|isDomain| *2 (|SubSpace| 3 *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|numberOfComponents| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|numberOfComposites| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|merge| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|composite| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|components| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|composites| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|copy| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|enterPointData| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| (|Point| *4))) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|modifyPointData| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Point| *4)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|point| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Point| *3)))) (|point?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|curve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|curve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|closedCurve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|closedCurve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|polygon| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|polygon?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|Point| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|List| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|List| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| (|Point| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|mesh| (*1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)))) (|mesh| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|Point| *3)))))) (|mesh?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|lp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|lllip| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|NonNegativeInteger|))))))) (|lllp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|Point| *3))))))) (|llprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|SubSpaceComponentProperty|)))))) (|lprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|SubSpaceComponentProperty|))))) (|objects| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|)))))) (|check| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|subspace| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|SubSpace| 3 *3)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |create3Space| ($)) (SIGNATURE |create3Space| ($ (|SubSpace| 3 |t#1|))) (SIGNATURE |numberOfComponents| ((|NonNegativeInteger|) $)) (SIGNATURE |numberOfComposites| ((|NonNegativeInteger|) $)) (SIGNATURE |merge| ($ (|List| $))) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |composite| ($ (|List| $))) (SIGNATURE |components| ((|List| $) $)) (SIGNATURE |composites| ((|List| $) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |enterPointData| ((|NonNegativeInteger|) $ (|List| (|Point| |t#1|)))) (SIGNATURE |modifyPointData| ($ $ (|NonNegativeInteger|) (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|List| |t#1|))) (SIGNATURE |point| ($ $ (|NonNegativeInteger|))) (SIGNATURE |point| ($ (|Point| |t#1|))) (SIGNATURE |point| ((|Point| |t#1|) $)) (SIGNATURE |point?| ((|Boolean|) $)) (SIGNATURE |curve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |curve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |curve?| ((|Boolean|) $)) (SIGNATURE |closedCurve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |closedCurve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |closedCurve?| ((|Boolean|) $)) (SIGNATURE |polygon| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |polygon| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |polygon?| ((|Boolean|) $)) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ((|List| (|List| (|Point| |t#1|))) $)) (SIGNATURE |mesh?| ((|Boolean|) $)) (SIGNATURE |lp| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |lllip| ((|List| (|List| (|List| (|NonNegativeInteger|)))) $)) (SIGNATURE |lllp| ((|List| (|List| (|List| (|Point| |t#1|)))) $)) (SIGNATURE |llprop| ((|List| (|List| (|SubSpaceComponentProperty|))) $)) (SIGNATURE |lprop| ((|List| (|SubSpaceComponentProperty|)) $)) (SIGNATURE |objects| ((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $)) (SIGNATURE |check| ($ $)) (SIGNATURE |subspace| ((|SubSpace| 3 |t#1|) $)) (SIGNATURE |coerce| ((|OutputForm|) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|latex| (#3=(#4=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 185 T ELT) (($ #5=(|Syntax|)) NIL T ELT) ((#5# $) 7 T ELT)) (|case| ((#2# $ (|[\|\|]| #6=(|ImportAst|))) 19 T ELT) ((#2# $ (|[\|\|]| #7=(|DefinitionAst|))) 23 T ELT) ((#2# $ (|[\|\|]| #8=(|MacroAst|))) 27 T ELT) ((#2# $ (|[\|\|]| #9=(|WhereAst|))) 31 T ELT) ((#2# $ (|[\|\|]| #10=(|CategoryAst|))) 35 T ELT) ((#2# $ (|[\|\|]| #11=(|JoinAst|))) 39 T ELT) ((#2# $ (|[\|\|]| #12=(|CapsuleAst|))) 43 T ELT) ((#2# $ (|[\|\|]| #13=(|SignatureAst|))) 47 T ELT) ((#2# $ (|[\|\|]| #14=(|AttributeAst|))) 51 T ELT) ((#2# $ (|[\|\|]| #15=(|MappingAst|))) 55 T ELT) ((#2# $ (|[\|\|]| #16=(|IfAst|))) 59 T ELT) ((#2# $ (|[\|\|]| #17=(|RepeatAst|))) 63 T ELT) ((#2# $ (|[\|\|]| #18=(|WhileAst|))) 67 T ELT) ((#2# $ (|[\|\|]| #19=(|InAst|))) 71 T ELT) ((#2# $ (|[\|\|]| #20=(|StepAst|))) 75 T ELT) ((#2# $ (|[\|\|]| #21=(|CollectAst|))) 79 T ELT) ((#2# $ (|[\|\|]| #22=(|ConstructAst|))) 83 T ELT) ((#2# $ (|[\|\|]| #23=(|ExitAst|))) 87 T ELT) ((#2# $ (|[\|\|]| #24=(|ReturnAst|))) 91 T ELT) ((#2# $ (|[\|\|]| #25=(|CoerceAst|))) 95 T ELT) ((#2# $ (|[\|\|]| #26=(|PretendAst|))) 99 T ELT) ((#2# $ (|[\|\|]| #27=(|RestrictAst|))) 103 T ELT) ((#2# $ (|[\|\|]| #28=(|SegmentAst|))) 107 T ELT) ((#2# $ (|[\|\|]| #29=(|SequenceAst|))) 111 T ELT) ((#2# $ (|[\|\|]| #30=(|LetAst|))) 116 T ELT) ((#2# $ (|[\|\|]| #31=(|SuchThatAst|))) 120 T ELT) ((#2# $ (|[\|\|]| #32=(|ColonAst|))) 124 T ELT) ((#2# $ (|[\|\|]| #33=(|CaseAst|))) 128 T ELT) ((#2# $ (|[\|\|]| #34=(|HasAst|))) 132 T ELT) ((#2# $ (|[\|\|]| #35=(|IsAst|))) 136 T ELT) ((#2# $ (|[\|\|]| #36=(|Identifier|))) 140 T ELT) ((#2# $ (|[\|\|]| #4#)) 144 T ELT) ((#2# $ (|[\|\|]| #37=(|Integer|))) 148 T ELT)) (|before?| #1#) (|autoCoerce| ((#6# $) 20 T ELT) ((#7# $) 24 T ELT) ((#8# $) 28 T ELT) ((#9# $) 32 T ELT) ((#10# $) 36 T ELT) ((#11# $) 40 T ELT) ((#12# $) 44 T ELT) ((#13# $) 48 T ELT) ((#14# $) 52 T ELT) ((#15# $) 56 T ELT) ((#16# $) 60 T ELT) ((#17# $) 64 T ELT) ((#18# $) 68 T ELT) ((#19# $) 72 T ELT) ((#20# $) 76 T ELT) ((#21# $) 80 T ELT) ((#22# $) 84 T ELT) ((#23# $) 88 T ELT) ((#24# $) 92 T ELT) ((#25# $) 96 T ELT) ((#26# $) 100 T ELT) ((#27# $) 104 T ELT) ((#28# $) 108 T ELT) ((#29# $) 112 T ELT) ((#30# $) 117 T ELT) ((#31# $) 121 T ELT) ((#32# $) 125 T ELT) ((#33# $) 129 T ELT) ((#34# $) 133 T ELT) ((#35# $) 137 T ELT) ((#36# $) 141 T ELT) (#3# 145 T ELT) ((#37# $) 149 T ELT)) (= #1#))
+(((|SpadAst|) (|SpadAstExports|)) (T |SpadAst|))
+NIL
+((|parse| (((|List| (|Syntax|)) (|String|)) 9 T ELT)))
+(((|SpadParser|) (CATEGORY |package| (SIGNATURE |parse| ((|List| (|Syntax|)) (|String|))))) (T |SpadParser|))
+((|parse| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|SpadParser|)))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) . #2=($)) 13 T ELT) (($ #3=(|Syntax|)) 20 T ELT) ((#3# . #2#) 19 T ELT)) (|case| (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) 88 T ELT) (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) 86 T ELT) (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) 84 T ELT) (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) 82 T ELT) (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) 80 T ELT) (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) 78 T ELT) (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) 76 T ELT) (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) 74 T ELT) (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) 72 T ELT) (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) 70 T ELT) (((|Boolean|) $ (|[\|\|]| (|IfAst|))) 68 T ELT) (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) 66 T ELT) (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) 64 T ELT) (((|Boolean|) $ (|[\|\|]| (|InAst|))) 62 T ELT) (((|Boolean|) $ (|[\|\|]| (|StepAst|))) 60 T ELT) (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) 58 T ELT) (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) 56 T ELT) (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) 54 T ELT) (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) 52 T ELT) (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) 50 T ELT) (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) 48 T ELT) (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) 46 T ELT) (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) 44 T ELT) (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) 42 T ELT) (((|Boolean|) $ (|[\|\|]| (|LetAst|))) 40 T ELT) (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) 38 T ELT) (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) 36 T ELT) (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) 34 T ELT) (((|Boolean|) $ (|[\|\|]| (|HasAst|))) 32 T ELT) (((|Boolean|) $ (|[\|\|]| (|IsAst|))) 30 T ELT) (((|Boolean|) $ (|[\|\|]| (|Identifier|))) 28 T ELT) (((|Boolean|) $ (|[\|\|]| (|String|))) 26 T ELT) (((|Boolean|) $ (|[\|\|]| (|Integer|))) 24 T ELT)) (|before?| (#1# 6 T ELT)) (|autoCoerce| (((|ImportAst|) $) 87 T ELT) (((|DefinitionAst|) $) 85 T ELT) (((|MacroAst|) $) 83 T ELT) (((|WhereAst|) $) 81 T ELT) (((|CategoryAst|) $) 79 T ELT) (((|JoinAst|) $) 77 T ELT) (((|CapsuleAst|) $) 75 T ELT) (((|SignatureAst|) $) 73 T ELT) (((|AttributeAst|) $) 71 T ELT) (((|MappingAst|) $) 69 T ELT) (((|IfAst|) $) 67 T ELT) (((|RepeatAst|) $) 65 T ELT) (((|WhileAst|) $) 63 T ELT) (((|InAst|) $) 61 T ELT) (((|StepAst|) $) 59 T ELT) (((|CollectAst|) $) 57 T ELT) (((|ConstructAst|) $) 55 T ELT) (((|ExitAst|) $) 53 T ELT) (((|ReturnAst|) $) 51 T ELT) (((|CoerceAst|) $) 49 T ELT) (((|PretendAst|) $) 47 T ELT) (((|RestrictAst|) $) 45 T ELT) (((|SegmentAst|) $) 43 T ELT) (((|SequenceAst|) $) 41 T ELT) (((|LetAst|) $) 39 T ELT) (((|SuchThatAst|) $) 37 T ELT) (((|ColonAst|) $) 35 T ELT) (((|CaseAst|) $) 33 T ELT) (((|HasAst|) $) 31 T ELT) (((|IsAst|) $) 29 T ELT) (((|Identifier|) $) 27 T ELT) (((|String|) $) 25 T ELT) (((|Integer|) $) 23 T ELT)) (= (#1# 8 T ELT)))
+(((|SpadAstExports|) (|Category|)) (T |SpadAstExports|))
+((|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|ImportAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ImportAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|DefinitionAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|DefinitionAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|MacroAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|MacroAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|WhereAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|WhereAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|CategoryAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CategoryAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|JoinAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|JoinAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|CapsuleAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CapsuleAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|SignatureAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SignatureAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|AttributeAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|AttributeAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|MappingAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|MappingAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|IfAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|IfAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|RepeatAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|RepeatAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|WhileAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|WhileAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|InAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|InAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|StepAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|StepAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|CollectAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CollectAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|ConstructAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ConstructAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|ExitAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ExitAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|ReturnAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ReturnAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|CoerceAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CoerceAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|PretendAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|PretendAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|RestrictAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|RestrictAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|SegmentAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SegmentAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|SequenceAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SequenceAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|LetAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|LetAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|SuchThatAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SuchThatAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|ColonAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ColonAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|CaseAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CaseAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|HasAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|HasAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|IsAst|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|IsAst|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|Identifier|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|Identifier|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|String|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|String|)))) (|case| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *3 (|[\|\|]| (|Integer|))) (|isDomain| *2 (|Boolean|)))) (|autoCoerce| (*1 *2 *1) (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|Integer|)))))
+(|Join| (|SpadSyntaxCategory|) (|UnionType|) (CATEGORY |domain| (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|ImportAst|)))) (SIGNATURE |autoCoerce| ((|ImportAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|DefinitionAst|)))) (SIGNATURE |autoCoerce| ((|DefinitionAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|MacroAst|)))) (SIGNATURE |autoCoerce| ((|MacroAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|WhereAst|)))) (SIGNATURE |autoCoerce| ((|WhereAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|CategoryAst|)))) (SIGNATURE |autoCoerce| ((|CategoryAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|JoinAst|)))) (SIGNATURE |autoCoerce| ((|JoinAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|CapsuleAst|)))) (SIGNATURE |autoCoerce| ((|CapsuleAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|SignatureAst|)))) (SIGNATURE |autoCoerce| ((|SignatureAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|AttributeAst|)))) (SIGNATURE |autoCoerce| ((|AttributeAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|MappingAst|)))) (SIGNATURE |autoCoerce| ((|MappingAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|IfAst|)))) (SIGNATURE |autoCoerce| ((|IfAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|RepeatAst|)))) (SIGNATURE |autoCoerce| ((|RepeatAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|WhileAst|)))) (SIGNATURE |autoCoerce| ((|WhileAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|InAst|)))) (SIGNATURE |autoCoerce| ((|InAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|StepAst|)))) (SIGNATURE |autoCoerce| ((|StepAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|CollectAst|)))) (SIGNATURE |autoCoerce| ((|CollectAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|ConstructAst|)))) (SIGNATURE |autoCoerce| ((|ConstructAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|ExitAst|)))) (SIGNATURE |autoCoerce| ((|ExitAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|ReturnAst|)))) (SIGNATURE |autoCoerce| ((|ReturnAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|CoerceAst|)))) (SIGNATURE |autoCoerce| ((|CoerceAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|PretendAst|)))) (SIGNATURE |autoCoerce| ((|PretendAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|RestrictAst|)))) (SIGNATURE |autoCoerce| ((|RestrictAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|SegmentAst|)))) (SIGNATURE |autoCoerce| ((|SegmentAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|SequenceAst|)))) (SIGNATURE |autoCoerce| ((|SequenceAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|LetAst|)))) (SIGNATURE |autoCoerce| ((|LetAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|SuchThatAst|)))) (SIGNATURE |autoCoerce| ((|SuchThatAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|ColonAst|)))) (SIGNATURE |autoCoerce| ((|ColonAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|CaseAst|)))) (SIGNATURE |autoCoerce| ((|CaseAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|HasAst|)))) (SIGNATURE |autoCoerce| ((|HasAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|IsAst|)))) (SIGNATURE |autoCoerce| ((|IsAst|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|Identifier|)))) (SIGNATURE |autoCoerce| ((|Identifier|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|String|)))) (SIGNATURE |autoCoerce| ((|String|) $)) (SIGNATURE |case| ((|Boolean|) $ (|[\|\|]| (|Integer|)))) (SIGNATURE |autoCoerce| ((|Integer|) $))))
+(((|AbstractSyntaxCategory|) . T) ((|BasicType|) . T) ((|CoercibleFrom| #1=(|Syntax|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| #1#) . T) ((|HomotopicTo| #1#) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|SpadSyntaxCategory|) . T) ((|Type|) . T) ((|UnionType|) . T))
+((|outputAsTex| (#1=(#2=(|Void|) (|List| #3=(|OutputForm|))) 22 T ELT) (#4=(#2# #3#) 21 T ELT)) (|outputAsScript| (#1# 20 T ELT) (#4# 19 T ELT)) (|outputAsFortran| (#1# 18 T ELT) (#4# 10 T ELT) ((#2# (|String|) #3#) 16 T ELT)))
+(((|SpecialOutputPackage|) (CATEGORY |package| (SIGNATURE |outputAsFortran| (#1=(|Void|) (|String|) #2=(|OutputForm|))) (SIGNATURE |outputAsFortran| #3=(#1# #2#)) (SIGNATURE |outputAsScript| #3#) (SIGNATURE |outputAsTex| #3#) (SIGNATURE |outputAsFortran| #4=(#1# (|List| #2#))) (SIGNATURE |outputAsScript| #4#) (SIGNATURE |outputAsTex| #4#))) (T |SpecialOutputPackage|))
+((|outputAsTex| #1=(*1 *2 *3) #2=(AND (|isDomain| *3 (|List| #3=(|OutputForm|))) #4=(|isDomain| *2 (|Void|)) #5=(|isDomain| *1 (|SpecialOutputPackage|)))) (|outputAsScript| #1# #2#) (|outputAsFortran| #1# #2#) (|outputAsTex| #1# #6=(AND (|isDomain| *3 #3#) #4# #5#)) (|outputAsScript| #1# #6#) (|outputAsFortran| #1# #6#) (|outputAsFortran| (*1 *2 *3 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 #3#) #4# #5#)))
+((|polygamma| (($ $ $) 10 T ELT)) (|digamma| (($ $) 9 T ELT)) (|besselY| (($ $ $) 13 T ELT)) (|besselK| (($ $ $) 15 T ELT)) (|besselJ| (($ $ $) 12 T ELT)) (|besselI| (($ $ $) 14 T ELT)) (|airyBi| (($ $) 17 T ELT)) (|airyAi| (($ $) 16 T ELT)) (|abs| (($ $) 6 T ELT)) (|Gamma| (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (|Beta| (($ $ $) 8 T ELT)))
+(((|SpecialFunctionCategory|) (|Category|)) (T |SpecialFunctionCategory|))
+((|airyBi| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|airyAi| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselK| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselI| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselY| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselJ| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Gamma| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|polygamma| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|digamma| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Beta| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Gamma| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|abs| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |abs| ($ $)) (SIGNATURE |Gamma| ($ $)) (SIGNATURE |Beta| ($ $ $)) (SIGNATURE |digamma| ($ $)) (SIGNATURE |polygamma| ($ $ $)) (SIGNATURE |Gamma| ($ $ $)) (SIGNATURE |besselJ| ($ $ $)) (SIGNATURE |besselY| ($ $ $)) (SIGNATURE |besselI| ($ $ $)) (SIGNATURE |besselK| ($ $ $)) (SIGNATURE |airyAi| ($ $)) (SIGNATURE |airyBi| ($ $))))
+((~= (#1=(#2=(|Boolean|) $ $) 44 T ELT)) (|value| ((|#1| $) 17 T ELT)) (|subNode?| ((#2# $ $ #3=(|Mapping| #2# |#2| |#2|)) 39 T ELT)) (|status| (#4=(#2# $) 19 T ELT)) (|setValue!| (($ $ |#1|) 30 T ELT)) (|setStatus!| (($ $ #2#) 32 T ELT)) (|setEmpty!| (#5=($ $) 33 T ELT)) (|setCondition!| (($ $ |#2|) 31 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|infLex?| ((#2# $ $ (|Mapping| #2# |#1| |#1|) #3#) 38 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|empty?| (#4# 16 T ELT)) (|empty| (($) 13 T ELT)) (|copy| (#5# 29 T ELT)) (|construct| (($ |#1| |#2| #2#) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ #6=(|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) 23 T ELT) ((#7=(|List| $) (|List| #6#)) 26 T ELT) ((#7# |#1| (|List| |#2|)) 28 T ELT)) (|condition| ((|#2| $) 18 T ELT)) (|coerce| (((|OutputForm|) $) 53 T ELT)) (|before?| (#1# NIL T ELT)) (= (#1# 42 T ELT)))
+(((|SplittingNode| |#1| |#2|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |empty?| #2=(#3=(|Boolean|) $)) (SIGNATURE |value| (|#1| $)) (SIGNATURE |condition| (|#2| $)) (SIGNATURE |status| #2#) (SIGNATURE |construct| ($ |#1| |#2| #3#)) (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |construct| ($ #4=(|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) (SIGNATURE |construct| (#5=(|List| $) (|List| #4#))) (SIGNATURE |construct| (#5# |#1| (|List| |#2|))) (SIGNATURE |copy| #6=($ $)) (SIGNATURE |setValue!| ($ $ |#1|)) (SIGNATURE |setCondition!| ($ $ |#2|)) (SIGNATURE |setStatus!| ($ $ #3#)) (SIGNATURE |setEmpty!| #6#) (SIGNATURE |infLex?| (#3# $ $ (|Mapping| #3# |#1| |#1|) #7=(|Mapping| #3# |#2| |#2|))) (SIGNATURE |subNode?| (#3# $ $ #7#)))) #8=(|Join| #1# (|Aggregate|)) #8#) (T |SplittingNode|))
+((|empty| (*1 *1) #1=(AND #2=(|isDomain| *1 (|SplittingNode| *2 *3)) #3=(|ofCategory| *2 #4=(|Join| (|SetCategory|) (|Aggregate|))) #5=(|ofCategory| *3 #4#))) (|empty?| #6=(*1 *2 *1) #7=(AND #8=(|isDomain| *2 #9=(|Boolean|)) #10=(|isDomain| *1 (|SplittingNode| *3 *4)) #5# #11=(|ofCategory| *4 #4#))) (|value| #6# (AND #3# #2# #5#)) (|condition| #6# (AND #3# #12=(|isDomain| *1 (|SplittingNode| *3 *2)) #5#)) (|status| #6# #7#) (|construct| (*1 *1 *2 *3 *4) (AND (|isDomain| *4 #9#) #2# #3# #5#)) (|construct| (*1 *1 *2 *3) #1#) (|construct| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |val| *3) (|:| |tower| *4))) #5# #11# #10#)) (|construct| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| *4) (|:| |tower| *5)))) #11# #13=(|ofCategory| *5 #4#) (|isDomain| *2 (|List| #14=(|SplittingNode| *4 *5))) #15=(|isDomain| *1 #14#))) (|construct| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *5)) #13# (|isDomain| *2 (|List| #16=(|SplittingNode| *3 *5))) (|isDomain| *1 #16#) #5#)) (|copy| #17=(*1 *1 *1) #1#) (|setValue!| #18=(*1 *1 *1 *2) #1#) (|setCondition!| #18# (AND #12# #5# #3#)) (|setStatus!| #18# #7#) (|setEmpty!| #17# #1#) (|infLex?| (*1 *2 *1 *1 *3 *4) (AND #19=(|isDomain| *3 (|Mapping| #9# *5 *5)) (|isDomain| *4 (|Mapping| #9# *6 *6)) #13# (|ofCategory| *6 #4#) #8# (|isDomain| *1 (|SplittingNode| *5 *6)))) (|subNode?| (*1 *2 *1 *1 *3) (AND #19# #13# #8# #15# #11#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| #5=(|SplittingNode| |#1| |#2|) (|BasicType|)) ELT)) (|value| ((#5# $) 27 T ELT)) (|updateStatus!| (#6=($ $) 91 T ELT)) (|subNodeOf?| ((#3# #5# $ #7=(|Mapping| #3# |#2| |#2|)) 100 T ELT)) (|splitNodeOf!| (($ $ $ #8=(|List| #5#)) 108 T ELT) (($ $ $ #8# #7#) 109 T ELT)) (|setvalue!| ((#5# $ #5#) 46 #9=(|has| $ (|ShallowlyMutableAggregate| #5#)) ELT)) (|setelt| ((#5# $ #10="value" #5#) NIL #9# ELT)) (|setchildren!| (($ $ #11=(|List| $)) 44 #9# ELT)) (|sample| (#12=($) NIL T CONST)) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) 95 T ELT)) (|remove!| (#13=($ #5# $) 42 T ELT)) (|remove| (#13# 34 T ELT)) (|reduce| ((#5# #14=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #14# $ #5#) NIL T ELT) ((#5# #14# $) NIL T ELT)) (|nodes| (#15=(#11# $) 54 T ELT)) (|nodeOf?| (#16=(#3# #5# $) 97 T ELT)) (|node?| #1#) (|members| (#17=(#8# $) 58 T ELT)) (|member?| (#16# NIL #4# ELT)) (|map!| (#18=($ (|Mapping| #5# #5#) $) 50 T ELT)) (|map| (#18# 49 T ELT)) (|leaves| (#17# 56 T ELT)) (|leaf?| (#19=(#3# $) 45 T ELT)) (|latex| (((|String|) $) NIL #20=(|has| #5# (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #20# ELT)) (|find| (((|Union| #5# #21="failed") #22=(|Mapping| #3# #5#) $) NIL T ELT)) (|extractSplittingLeaf| (((|Union| $ #21#) $) 89 T ELT)) (|every?| #23=((#3# #22# $) NIL T ELT)) (|eval| (($ $ (|List| #24=(|Equation| #5#))) NIL #25=(AND (|has| #5# (|Evalable| #5#)) #20#) ELT) (($ $ #24#) NIL #25# ELT) (($ $ #5# #5#) NIL #25# ELT) (($ $ #8# #8#) NIL #25# ELT)) (|eq?| (#2# 53 T ELT)) (|empty?| (#19# 24 T ELT)) (|empty| (#12# 26 T ELT)) (|elt| ((#5# $ #10#) NIL T ELT)) (|distance| (((|Integer|) $ $) NIL T ELT)) (|cyclic?| (#19# 47 T ELT)) (|count| ((#26=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#26# #22# $) NIL T ELT)) (|copy| (#6# 52 T ELT)) (|construct| (($ #5#) 10 T ELT) (($ |#1| |#2| #11#) 13 T ELT) (($ |#1| |#2| #8#) 15 T ELT) (($ |#1| |#2| |#1| #27=(|List| |#2|)) 18 T ELT)) (|conditions| ((#27# $) 96 T ELT)) (|coerce| ((#28=(|OutputForm|) $) 87 (|has| #5# (|CoercibleTo| #28#)) ELT)) (|children| (#15# 31 T ELT)) (|child?| #1#) (|before?| #1#) (|any?| #23#) (= (#2# 70 #4# ELT)) (|#| ((#26# $) 64 T ELT)))
+(((|SplittingTree| |#1| |#2|) (|Join| (|RecursiveAggregate| #1=(|SplittingNode| |#1| |#2|)) (|FiniteAggregate| #1#) (|ShallowlyMutableAggregate| #1#) (CATEGORY |domain| (SIGNATURE |extractSplittingLeaf| ((|Union| $ "failed") $)) (SIGNATURE |updateStatus!| ($ $)) (SIGNATURE |construct| ($ #1#)) (SIGNATURE |construct| ($ |#1| |#2| (|List| $))) (SIGNATURE |construct| ($ |#1| |#2| #2=(|List| #1#))) (SIGNATURE |construct| ($ |#1| |#2| |#1| #3=(|List| |#2|))) (SIGNATURE |conditions| (#3# $)) (SIGNATURE |result| ((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $)) (SIGNATURE |nodeOf?| (#4=(|Boolean|) #1# $)) (SIGNATURE |subNodeOf?| (#4# #1# $ #5=(|Mapping| #4# |#2| |#2|))) (SIGNATURE |remove| #6=($ #1# $)) (SIGNATURE |remove!| #6#) (SIGNATURE |splitNodeOf!| ($ $ $ #2#)) (SIGNATURE |splitNodeOf!| ($ $ $ #2# #5#)))) #7=(|Join| (|SetCategory|) (|Aggregate|)) #7#) (T |SplittingTree|))
+((|extractSplittingLeaf| #1=(*1 *1 *1) (|partial| AND #2=(|isDomain| *1 #3=(|SplittingTree| *2 *3)) #4=(|ofCategory| *2 #5=(|Join| (|SetCategory|) (|Aggregate|))) #6=(|ofCategory| *3 #5#))) (|updateStatus!| #1# (AND #2# #4# #6#)) (|construct| (*1 *1 *2) #7=(AND (|isDomain| *2 #8=(|SplittingNode| *3 *4)) #6# #9=(|ofCategory| *4 #5#) #10=(|isDomain| *1 (|SplittingTree| *3 *4)))) (|construct| #11=(*1 *1 *2 *3 *4) (AND (|isDomain| *4 (|List| #3#)) #2# #4# #6#)) (|construct| #11# (AND (|isDomain| *4 (|List| (|SplittingNode| *2 *3))) #4# #6# #2#)) (|construct| (*1 *1 *2 *3 *2 *4) (AND (|isDomain| *4 (|List| *3)) #6# #2# #4#)) (|conditions| #12=(*1 *2 *1) (AND (|isDomain| *2 (|List| *4)) #10# #6# #9#)) (|result| #12# (AND (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4)))) #10# #6# #9#)) (|nodeOf?| (*1 *2 *3 *1) (AND (|isDomain| *3 #13=(|SplittingNode| *4 *5)) #9# #14=(|ofCategory| *5 #5#) #15=(|isDomain| *2 #16=(|Boolean|)) #17=(|isDomain| *1 (|SplittingTree| *4 *5)))) (|subNodeOf?| (*1 *2 *3 *1 *4) (AND (|isDomain| *3 (|SplittingNode| *5 *6)) (|isDomain| *4 (|Mapping| #16# *6 *6)) #14# (|ofCategory| *6 #5#) #15# (|isDomain| *1 (|SplittingTree| *5 *6)))) (|remove| #18=(*1 *1 *2 *1) #7#) (|remove!| #18# #7#) (|splitNodeOf!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|List| #8#)) #6# #9# #10#)) (|splitNodeOf!| (*1 *1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| #13#)) (|isDomain| *3 (|Mapping| #16# *5 *5)) #9# #14# #17#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|transpose| #4=(#5=($ $) NIL T ELT)) (|trace| #6=(#7=(|#2| $) NIL T ELT)) (|symmetric?| #3#) (|subtractIfCan| ((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|squareMatrix| (($ #10=(|Matrix| |#2|)) 53 T ELT)) (|square?| #3#) (|scalarMatrix| (#11=($ |#2|) 14 T ELT)) (|sample| (#12=($) NIL T CONST)) (|rowEchelon| (#5# 66 (|has| |#2| (|EuclideanDomain|)) ELT)) (|row| (#13=(#14=(|DirectProduct| |#1| |#2|) $ #15=(|Integer|)) 40 T ELT)) (|retractIfCan| (((|Union| #15# . #16=(#9#)) . #17=($)) NIL #18=(|has| |#2| (|RetractableTo| #15#)) ELT) (((|Union| #19=(|Fraction| #15#) . #16#) . #17#) NIL #20=(|has| |#2| (|RetractableTo| #19#)) ELT) ((#21=(|Union| |#2| . #16#) . #17#) NIL T ELT)) (|retract| (#22=(#15# . #23=($)) NIL #18# ELT) ((#19# . #23#) NIL #20# ELT) #6#) (|reducedSystem| ((#24=(|Matrix| #15#) . #25=(#26=(|Matrix| $))) NIL #27=(|has| |#2| (|LinearlyExplicitRingOver| #15#)) ELT) ((#28=(|Record| (|:| |mat| #24#) (|:| |vec| (|Vector| #15#))) . #29=(#26# #30=(|Vector| $))) NIL #27# ELT) ((#31=(|Record| (|:| |mat| #10#) (|:| |vec| (|Vector| |#2|))) . #29#) NIL T ELT) ((#10# . #25#) NIL T ELT)) (|reduce| ((|#2| #32=(|Mapping| |#2| |#2| |#2|) $) NIL T ELT) ((|#2| #32# $ |#2|) NIL T ELT) ((|#2| #32# $ |#2| |#2|) NIL #33=(|has| |#2| (|BasicType|)) ELT)) (|recip| (#34=(#8# $) 80 T ELT)) (|rank| (#35=(#36=(|NonNegativeInteger|) $) 68 #37=(|has| |#2| (|IntegralDomain|)) ELT)) (|qelt| #38=((|#2| $ #15# #15#) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|nullity| (#35# 70 #37# ELT)) (|nullSpace| (((|List| #14#) $) 74 #37# ELT)) (|nrows| #39=(#35# NIL T ELT)) (|new| (#11# 23 T ELT)) (|ncols| #39#) (|minordet| (#7# 64 #40=(|has| |#2| (ATTRIBUTE (|commutative| "*"))) ELT)) (|minRowIndex| #41=(#22# NIL T ELT)) (|minColIndex| #41#) (|members| ((#42=(|List| |#2|) $) NIL T ELT)) (|member?| ((#2# |#2| $) NIL #33# ELT)) (|maxRowIndex| #41#) (|maxColIndex| #41#) (|matrix| (($ #43=(|List| #42#)) 35 T ELT)) (|map| (($ #32# $ $) NIL T ELT) (($ #44=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|listOfLists| ((#43# $) NIL T ELT)) (|leftReducedSystem| ((#24# . #45=(#30#)) NIL #27# ELT) ((#28# . #46=(#30# $)) NIL #27# ELT) ((#31# . #46#) NIL T ELT) ((#10# . #45#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inverse| (#34# 77 #47=(|has| |#2| (|Field|)) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|find| ((#21# #48=(|Mapping| #2# |#2|) $) NIL T ELT)) (|exquo| ((#8# $ |#2|) NIL #37# ELT)) (|every?| #49=((#2# #48# $) NIL T ELT)) (|eval| (($ $ (|List| #50=(|Equation| |#2|))) NIL #51=(AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ELT) (($ $ #50#) NIL #51# ELT) (($ $ |#2| |#2|) NIL #51# ELT) (($ $ #42# #42#) NIL #51# ELT)) (|eq?| #1#) (|empty?| #3#) (|empty| (#12# NIL T ELT)) (|elt| ((|#2| $ #15# #15# |#2|) NIL T ELT) #38#) (|differentiate| #52=(($ $ #44# #36#) NIL T ELT) #53=(($ $ #44#) NIL T ELT) #54=(#5# NIL #55=(|has| |#2| (|DifferentialSpace|)) ELT) #56=(#57=($ $ #36#) NIL #55# ELT) #58=(($ $ #59=(|Symbol|)) NIL #60=(|has| |#2| (|PartialDifferentialSpace| #59#)) ELT) #61=(($ $ #62=(|List| #59#)) NIL #60# ELT) #63=(($ $ #59# #36#) NIL #60# ELT) #64=(($ $ #62# (|List| #36#)) NIL #60# ELT)) (|diagonalProduct| #6#) (|diagonalMatrix| (($ #42#) 48 T ELT)) (|diagonal?| #3#) (|diagonal| ((#14# $) NIL T ELT)) (|determinant| (#7# 62 #40# ELT)) (|count| ((#36# #48# $) NIL T ELT) ((#36# |#2| $) NIL #33# ELT)) (|copy| #4#) (|convert| ((#65=(|InputForm|) $) 87 (|has| |#2| (|ConvertibleTo| #65#)) ELT)) (|column| (#13# 42 T ELT)) (|coerce| (((|OutputForm|) $) 45 T ELT) (($ #15#) NIL T ELT) (($ #19#) NIL #20# ELT) (#11# NIL T ELT) ((#10# $) 50 T ELT)) (|characteristic| ((#36#) 21 T CONST)) (|before?| #1#) (|any?| #49#) (|antisymmetric?| #3#) (|annihilate?| #1#) (|Zero| (#12# 15 T CONST)) (|One| (#12# 19 T CONST)) (D #52# #53# #54# #56# #58# #61# #63# #64#) (= #1#) (/ (#66=($ $ |#2|) NIL #47# ELT)) (- #4# #67=(($ $ $) NIL T ELT)) (+ #67#) (** (($ $ #68=(|PositiveInteger|)) NIL T ELT) (#57# 60 T ELT) (($ $ #15#) 79 #47# ELT)) (* (($ #68# $) NIL T ELT) (($ #36# $) NIL T ELT) (($ #15# . #69=($)) NIL T ELT) #67# (#66# NIL T ELT) (($ |#2| . #69#) NIL T ELT) ((#14# $ #14#) 56 T ELT) ((#14# #14# $) 58 T ELT)) (|#| #39#))
+(((|SquareMatrix| |#1| |#2|) (|Join| (|SquareMatrixCategory| |#1| |#2| #1=(|DirectProduct| |#1| |#2|) #1#) (|CoercibleTo| #2=(|Matrix| |#2|)) (CATEGORY |domain| (SIGNATURE |new| ($ |#2|)) (SIGNATURE |transpose| ($ $)) (SIGNATURE |squareMatrix| ($ #2#)) (IF #3=(|has| |#2| (ATTRIBUTE (|commutative| "*"))) (ATTRIBUTE |central|) |%noBranch|) (IF #3# (IF (|has| |#2| #4=(ATTRIBUTE |unitsKnown|)) #4# |%noBranch|) |%noBranch|) (IF (|has| |#2| #5=(|ConvertibleTo| (|InputForm|))) (ATTRIBUTE #5#) |%noBranch|))) (|NonNegativeInteger|) (|Ring|)) (T |SquareMatrix|))
+((|new| #1=(*1 *1 *2) (AND (|isDomain| *1 (|SquareMatrix| *3 *2)) #2=(|ofType| *3 #3=(|NonNegativeInteger|)) (|ofCategory| *2 #4=(|Ring|)))) (|transpose| (*1 *1 *1) (AND (|isDomain| *1 (|SquareMatrix| *2 *3)) (|ofType| *2 #3#) (|ofCategory| *3 #4#))) (|squareMatrix| #1# (AND (|isDomain| *2 (|Matrix| *4)) (|ofCategory| *4 #4#) (|isDomain| *1 (|SquareMatrix| *3 *4)) #2#)))
+((|upperCase| (#1=($ $) 19 T ELT)) (|trim| (($ $ #2=(|Character|)) 10 T ELT) (($ $ (|CharacterClass|)) 14 T ELT)) (|prefix?| (((|Boolean|) $ $) 24 T ELT)) (|lowerCase| (#1# 17 T ELT)) (|elt| ((#2# $ #3=(|Integer|) #2#) NIL T ELT) ((#2# $ #3#) NIL T ELT) (($ $ (|UniversalSegment| #3#)) NIL T ELT) (($ $ $) 31 T ELT)) (|coerce| (($ #2#) 29 T ELT) (((|OutputForm|) $) NIL T ELT)))
+(((|StringAggregate&| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |trim| (|#1| |#1| (|CharacterClass|))) (SIGNATURE |trim| (|#1| |#1| #1=(|Character|))) (SIGNATURE |coerce| (|#1| #1#)) (SIGNATURE |prefix?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |upperCase| #2=(|#1| |#1|)) (SIGNATURE |lowerCase| #2#) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| #3=(|Integer|)))) (SIGNATURE |elt| (#1# |#1| #3#)) (SIGNATURE |elt| (#1# |#1| #3# #1#))) (|StringAggregate|)) (T |StringAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| #2=(|Character|) . #3=((|BasicType|))) ELT)) (|upperCase!| (($ $) 131 T ELT)) (|upperCase| (($ $) 132 T ELT)) (|trim| (($ $ (|Character|)) 119 T ELT) (($ $ (|CharacterClass|)) 118 T ELT)) (|swap!| (((|Void|) $ #4=(|Integer|) #4#) 35 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|suffix?| (((|Boolean|) $ $) 129 T ELT)) (|substring?| (((|Boolean|) $ $ (|Integer|)) 128 T ELT)) (|split| (((|List| $) $ (|Character|)) 121 T ELT) (((|List| $) $ (|CharacterClass|)) 120 T ELT)) (|sorted?| ((#5=(|Boolean|) (|Mapping| #5# #2# #2#) $) 96 T ELT) ((#5# $) 90 (|has| #2# . #6=((|OrderedSet|))) ELT)) (|sort!| (($ (|Mapping| #5# #2# #2#) . #7=($)) 87 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT) (#8=($ $) 86 (AND (|has| #2# . #6#) (|has| $ (|ShallowlyMutableAggregate| #2#))) ELT)) (|sort| (($ (|Mapping| #5# #2# #2#) . #7#) 97 T ELT) (#8# 91 (|has| #2# . #6#) ELT)) (|setelt| ((#2# $ #4# #2#) 47 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT) ((#2# $ #9=(|UniversalSegment| #4#) #2#) 55 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|select| (($ (|Mapping| #10=(|Boolean|) #2#) . #11=($)) 69 (|has| $ (|FiniteAggregate| #2#)) ELT)) (|sample| (#12=($) 6 T CONST)) (|rightTrim| (($ $ (|Character|)) 115 T ELT) (($ $ (|CharacterClass|)) 114 T ELT)) (|reverse!| (#8# 88 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|reverse| (#8# 98 T ELT)) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) 125 T ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| #2# . #13=((|BasicType|))) (|has| $ (|FiniteAggregate| #2#))) ELT)) (|remove| (($ #2# $) 70 (AND (|has| #2# . #13#) (|has| $ (|FiniteAggregate| #2#))) ELT) (($ (|Mapping| #10# #2#) . #11#) 68 (|has| $ (|FiniteAggregate| #2#)) ELT)) (|reduce| ((#2# (|Mapping| #2# #2# #2#) $ #2# #2#) 110 (|has| #2# . #14=((|BasicType|))) ELT) ((#2# (|Mapping| #2# #2# #2#) $ #2#) 106 T ELT) ((#2# (|Mapping| #2# #2# #2#) $) 105 T ELT)) (|qsetelt!| ((#2# $ #4# #2#) 48 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|qelt| ((#2# $ #4#) 46 T ELT)) (|prefix?| (((|Boolean|) $ $) 130 T ELT)) (|position| ((#15=(|Integer|) (|Mapping| #5# #2#) $) 95 T ELT) ((#15# #2# $) 94 (|has| #2# . #16=((|BasicType|))) ELT) ((#15# #2# $ #15#) 93 (|has| #2# . #16#) ELT) (((|Integer|) $ $ (|Integer|)) 124 T ELT) (((|Integer|) (|CharacterClass|) $ (|Integer|)) 123 T ELT)) (|new| (($ (|NonNegativeInteger|) #2#) 65 T ELT)) (|minIndex| ((#4# . #17=($)) 38 (|has| #4# . #18=((|OrderedSet|))) ELT)) (|min| (#19=($ $ $) 80 (|has| #2# . #6#) ELT)) (|merge| (($ (|Mapping| #5# #2# #2#) $ $) 99 T ELT) (($ $ $) 92 (|has| #2# . #6#) ELT)) (|members| (((|List| #2#) $) 104 T ELT)) (|member?| ((#20=(|Boolean|) #2# $) 109 (|has| #2# . #14#) ELT)) (|maxIndex| ((#4# . #17#) 39 (|has| #4# . #18#) ELT)) (|max| (#19# 81 (|has| #2# . #6#) ELT)) (|match?| (((|Boolean|) $ $ (|Character|)) 126 T ELT)) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) 127 T ELT)) (|map!| (($ (|Mapping| #2# #2#) $) 112 T ELT)) (|map| (($ (|Mapping| #2# #2#) $) 26 T ELT) (($ (|Mapping| #2# #2# #2#) $ $) 60 T ELT)) (|lowerCase!| (($ $) 133 T ELT)) (|lowerCase| (($ $) 134 T ELT)) (|leftTrim| (($ $ (|Character|)) 117 T ELT) (($ $ (|CharacterClass|)) 116 T ELT)) (|latex| (((|String|) $) 21 (|has| #2# . #21=((|SetCategory|))) ELT)) (|insert| (($ #2# $ #4#) 57 T ELT) (($ $ $ #4#) 56 T ELT)) (|indices| (((|List| #4#) $) 41 T ELT)) (|index?| ((#22=(|Boolean|) #4# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| #2# . #21#) ELT)) (|first| ((#2# $) 37 (|has| #4# . #18#) ELT)) (|find| (((|Union| #2# "failed") (|Mapping| #20# #2#) $) 107 T ELT)) (|fill!| (($ $ #2#) 36 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|every?| ((#20# (|Mapping| #20# #2#) . #23=($)) 102 T ELT)) (|eval| (($ $ (|List| (|Equation| #2#))) 25 (AND (|has| #2# (|Evalable| #2#)) (|has| #2# . #21#)) ELT) (($ $ (|Equation| #2#)) 24 (AND (|has| #2# (|Evalable| #2#)) (|has| #2# . #21#)) ELT) (($ $ #2# #2#) 23 (AND (|has| #2# (|Evalable| #2#)) (|has| #2# . #21#)) ELT) (($ $ (|List| #2#) (|List| #2#)) 22 (AND (|has| #2# (|Evalable| #2#)) (|has| #2# . #21#)) ELT)) (|eq?| ((#24=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#22# #2# $) 40 (AND (|has| $ (|FiniteAggregate| #2#)) (|has| #2# (|BasicType|))) ELT)) (|entries| (((|List| #2#) $) 43 T ELT)) (|empty?| ((#24# $) 7 T ELT)) (|empty| (#12# 8 T ELT)) (|elt| ((#2# $ #4# #2#) 45 T ELT) ((#2# $ #4#) 44 T ELT) (($ $ #9#) 66 T ELT) (($ $ $) 113 T ELT)) (|delete| (($ $ #4#) 59 T ELT) (($ $ #9#) 58 T ELT)) (|count| ((#25=(|NonNegativeInteger|) #2# $) 108 (|has| #2# . #14#) ELT) ((#25# (|Mapping| #20# #2#) $) 103 T ELT)) (|copyInto!| (($ $ $ #15#) 89 (|has| $ (|ShallowlyMutableAggregate| #2#)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#26=(|InputForm|) $) 72 (|has| #2# (|ConvertibleTo| #26#)) ELT)) (|construct| (($ (|List| #2#)) 67 T ELT)) (|concat| (($ $ #2#) 64 T ELT) (($ #2# $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (($ (|Character|)) 122 T ELT) (((|OutputForm|) $) 16 (|has| #2# (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| #2# . #3#) ELT)) (|any?| ((#20# (|Mapping| #20# #2#) . #23#) 101 T ELT)) (>= (#27=((|Boolean|) $ $) 82 (|has| #2# . #6#) ELT)) (> (#27# 84 (|has| #2# . #6#) ELT)) (= (#1# 17 (|has| #2# . #3#) ELT)) (<= (#27# 83 (|has| #2# . #6#) ELT)) (< (#27# 85 (|has| #2# . #6#) ELT)) (|#| ((#25# $) 100 T ELT)))
+(((|StringAggregate|) (|Category|)) (T |StringAggregate|))
+((|lowerCase| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|lowerCase!| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|upperCase| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|upperCase!| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|prefix?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))) (|suffix?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))) (|substring?| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|)))) (|match| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|match?| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|)) (|isDomain| *2 (|Boolean|)))) (|replace| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|UniversalSegment| (|Integer|))))) (|position| (*1 *2 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|CharacterClass|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Character|)) (|ofCategory| *1 (|StringAggregate|)))) (|split| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Character|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|StringAggregate|)))) (|split| (*1 *2 *1 *3) (AND (|isDomain| *3 (|CharacterClass|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|StringAggregate|)))) (|trim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|trim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|leftTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|leftTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|rightTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|rightTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|elt| (*1 *1 *1 *1) (|ofCategory| *1 (|StringAggregate|))))
+(|Join| (|OneDimensionalArrayAggregate| (|Character|)) (CATEGORY |domain| (SIGNATURE |lowerCase| ($ $)) (SIGNATURE |lowerCase!| ($ $)) (SIGNATURE |upperCase| ($ $)) (SIGNATURE |upperCase!| ($ $)) (SIGNATURE |prefix?| ((|Boolean|) $ $)) (SIGNATURE |suffix?| ((|Boolean|) $ $)) (SIGNATURE |substring?| ((|Boolean|) $ $ (|Integer|))) (SIGNATURE |match| ((|NonNegativeInteger|) $ $ (|Character|))) (SIGNATURE |match?| ((|Boolean|) $ $ (|Character|))) (SIGNATURE |replace| ($ $ (|UniversalSegment| (|Integer|)) $)) (SIGNATURE |position| ((|Integer|) $ $ (|Integer|))) (SIGNATURE |position| ((|Integer|) (|CharacterClass|) $ (|Integer|))) (SIGNATURE |coerce| ($ (|Character|))) (SIGNATURE |split| ((|List| $) $ (|Character|))) (SIGNATURE |split| ((|List| $) $ (|CharacterClass|))) (SIGNATURE |trim| ($ $ (|Character|))) (SIGNATURE |trim| ($ $ (|CharacterClass|))) (SIGNATURE |leftTrim| ($ $ (|Character|))) (SIGNATURE |leftTrim| ($ $ (|CharacterClass|))) (SIGNATURE |rightTrim| ($ $ (|Character|))) (SIGNATURE |rightTrim| ($ $ (|CharacterClass|))) (SIGNATURE |elt| ($ $ $))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|)) (|has| (|Character|) (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|)) (|has| (|Character|) (|CoercibleTo| (|OutputForm|)))) ((|Collection| #1=(|Character|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Character|) (|ConvertibleTo| (|InputForm|))) ((|Eltable| #2=(|Integer|) #1#) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #2# #1#) . T) ((|Evalable| #1#) AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|))) ((|FiniteAggregate| #1#) . T) ((|FiniteLinearAggregate| #1#) . T) ((|Functorial| #1#) . T) ((|HomogeneousAggregate| #1#) . T) ((|IndexedAggregate| #2# #1#) . T) ((|InnerEvalable| #1# #1#) AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| #1#) . T) ((|OneDimensionalArrayAggregate| #1#) . T) ((|OrderedSet|) |has| (|Character|) (|OrderedSet|)) ((|OrderedType|) |has| (|Character|) (|OrderedSet|)) ((|SetCategory|) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|))) ((|ShallowlyMutableAggregate| #1#) . T) ((|Type|) . T))
+((|upDateBranches| ((#1=(|List| #2=(|Record| (|:| |val| #3=(|List| |#4|)) (|:| |tower| |#5|))) #3# #4=(|List| |#5|) #1# #5=(|Record| (|:| |done| #4#) (|:| |todo| #1#)) #6=(|NonNegativeInteger|)) 112 T ELT)) (|transcendentalDecompose| (#7=(#5# |#4| |#5|) 62 T ELT) (#8=(#5# |#4| |#5| #6#) 61 T ELT)) (|printInfo| (((|Void|) #1# #6#) 97 T ELT)) (|numberOfVariables| (#9=(#6# #3# #4#) 30 T ELT)) (|internalDecompose| (#7# 64 T ELT) (#8# 63 T ELT) ((#5# |#4| |#5| #6# #10=(|Boolean|)) 65 T ELT)) (|decompose| ((#4# #3# #4# #10# #10# #10# #10# #10#) 84 T ELT) ((#4# #3# #4# #10# #10#) 85 T ELT)) (|convert| (((|String|) #2#) 90 T ELT)) (|algebraicDecompose| (#7# 60 T ELT)) (|KrullNumber| (#9# 21 T ELT)))
+(((|SquareFreeRegularSetDecompositionPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |KrullNumber| #1=(#2=(|NonNegativeInteger|) #3=(|List| |#4|) #4=(|List| |#5|))) (SIGNATURE |numberOfVariables| #1#) (SIGNATURE |algebraicDecompose| #5=(#6=(|Record| (|:| |done| #4#) (|:| |todo| #7=(|List| #8=(|Record| (|:| |val| #3#) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |transcendentalDecompose| #9=(#6# |#4| |#5| #2#)) (SIGNATURE |transcendentalDecompose| #5#) (SIGNATURE |internalDecompose| (#6# |#4| |#5| #2# #10=(|Boolean|))) (SIGNATURE |internalDecompose| #9#) (SIGNATURE |internalDecompose| #5#) (SIGNATURE |decompose| (#4# #3# #4# #10# #10#)) (SIGNATURE |decompose| (#4# #3# #4# #10# #10# #10# #10# #10#)) (SIGNATURE |upDateBranches| (#7# #3# #4# #7# #6# #2#)) (SIGNATURE |convert| ((|String|) #8#)) (SIGNATURE |printInfo| ((|Void|) #7# #2#))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |SquareFreeRegularSetDecompositionPackage|))
+((|printInfo| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| #2=(|List| *8)) (|:| |tower| *9)))) (|isDomain| *4 #3=(|NonNegativeInteger|)) #4=(|ofCategory| *8 #5=(|RecursivePolynomialCategory| *5 *6 *7)) #6=(|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) #7=(|ofCategory| *5 #8=(|GcdDomain|)) #9=(|ofCategory| *6 #10=(|OrderedAbelianMonoidSup|)) #11=(|ofCategory| *7 #12=(|OrderedSet|)) (|isDomain| *2 (|Void|)) #13=(|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|convert| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8))) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *8 (|SquareFreeRegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 #8#) (|ofCategory| *5 #10#) (|ofCategory| *6 #12#) (|isDomain| *2 (|String|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *4 *5 *6 *7 *8)))) (|upDateBranches| (*1 *2 *3 *4 *2 *5 *6) (AND (|isDomain| *5 (|Record| (|:| |done| #14=(|List| *11)) (|:| |todo| (|List| (|Record| (|:| |val| *3) #15=(|:| |tower| *11)))))) (|isDomain| *6 #3#) (|isDomain| *2 (|List| (|Record| (|:| |val| #16=(|List| *10)) #15#))) (|isDomain| *3 #16#) (|isDomain| *4 #14#) (|ofCategory| *10 #17=(|RecursivePolynomialCategory| *7 *8 *9)) (|ofCategory| *11 (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *10)) #18=(|ofCategory| *7 #8#) #19=(|ofCategory| *8 #10#) #20=(|ofCategory| *9 #12#) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *10 *11)))) (|decompose| (*1 *2 *3 *2 *4 *4 *4 *4 *4) #21=(AND (|isDomain| *2 #22=(|List| *9)) #23=(|isDomain| *3 #2#) (|isDomain| *4 #24=(|Boolean|)) #4# #6# #7# #9# #11# #13#)) (|decompose| (*1 *2 *3 *2 *4 *4) #21#) (|internalDecompose| #1# #25=(AND #7# #9# #11# (|ofCategory| *3 #5#) #26=(|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))) (|internalDecompose| #27=(*1 *2 *3 *4 *5) #28=(AND #29=(|isDomain| *5 #3#) (|ofCategory| *6 #8#) (|ofCategory| *7 #10#) (|ofCategory| *8 #12#) (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) #26# (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *6 *7 *8 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *6 *7 *8 *3)))) (|internalDecompose| (*1 *2 *3 *4 *5 *6) (AND #29# (|isDomain| *6 #24#) #18# #19# #20# (|ofCategory| *3 #17#) #26# (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *3)))) (|transcendentalDecompose| #1# #25#) (|transcendentalDecompose| #27# #28#) (|algebraicDecompose| #1# #25#) (|numberOfVariables| #1# #30=(AND #23# (|isDomain| *4 #22#) #4# #6# #7# #9# #11# (|isDomain| *2 #3#) #13#)) (|KrullNumber| #1# #30#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) #4=(|:| |open| #5=(|List| |#4|)))) #5#) NIL T ELT)) (|zeroSetSplit| ((#6=(|List| $) #5#) 117 T ELT) ((#6# #5# #3#) 118 T ELT) ((#6# #5# #3# #3#) 116 T ELT) ((#6# #5# #3# #3# #3# #3#) 119 T ELT)) (|variables| #7=(((|List| |#3|) $) NIL T ELT)) (|trivialIdeal?| #8=(#9=(#3# $) NIL T ELT)) (|triangular?| #10=(#9# NIL #11=(|has| |#1| (|IntegralDomain|)) ELT)) (|stronglyReduced?| #12=(#13=(#3# |#4| $) NIL T ELT) #8#) (|stronglyReduce| #14=(#15=(|#4| |#4| $) NIL T ELT)) (|squareFreePart| ((#16=(|List| (|Record| (|:| |val| |#4|) #17=(|:| |tower| $))) |#4| $) 90 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (|select| #18=(($ #19=(|Mapping| #3# |#4|) $) NIL #20=(|has| $ (|FiniteAggregate| |#4|)) ELT) ((#21=(|Union| |#4| #22="failed") $ |#3|) 69 T ELT)) (|sample| (#23=($) NIL T CONST)) (|roughUnitIdeal?| (#9# 28 #11# ELT)) (|roughSubIdeal?| #24=(#2# NIL #11# ELT)) (|roughEqualIdeals?| #24#) (|roughBase?| #10#) (|rewriteSetWithReduction| ((#5# #5# $ #25=(|Mapping| |#4| |#4| |#4|) #26=(|Mapping| #3# |#4| |#4|)) NIL T ELT)) (|rewriteIdealWithRemainder| #27=((#5# #5# $) NIL #11# ELT)) (|rewriteIdealWithHeadRemainder| #27#) (|retractIfCan| ((#28=(|Union| $ #22#) #5#) NIL T ELT)) (|retract| (#29=($ #5#) NIL T ELT)) (|rest| ((#28# $) 44 T ELT)) (|removeZero| (#15# 72 T ELT)) (|removeDuplicates| (#30=($ $) NIL #31=(AND #20# #32=(|has| |#4| (|BasicType|))) ELT)) (|remove| (#33=($ |#4| $) NIL #31# ELT) #18#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) #34=(|:| |den| |#1|)) |#4| $) 84 #11# ELT)) (|reduced?| ((#3# |#4| $ #26#) NIL T ELT)) (|reduceByQuasiMonic| #14#) (|reduce| ((|#4| #25# $ |#4| |#4|) NIL #32# ELT) ((|#4| #25# $ |#4|) NIL T ELT) ((|#4| #25# $) NIL T ELT) ((|#4| |#4| $ #25# #26#) NIL T ELT)) (|quasiComponent| (((|Record| (|:| |close| #5#) #4#) $) NIL T ELT)) (|purelyTranscendental?| #12#) (|purelyAlgebraicLeadingMonomial?| #12#) (|purelyAlgebraic?| #12# #8#) (|preprocess| (((|Record| (|:| |val| #5#) (|:| |towers| #6#)) #5# #3# #3#) 132 T ELT)) (|normalized?| #12# #8#) (|mvar| ((|#3| $) 37 T ELT)) (|members| (#35=(#5# $) 18 T ELT)) (|member?| (#13# 26 #32# ELT)) (|map!| (#36=($ (|Mapping| |#4| |#4|) $) 24 T ELT)) (|map| (#36# 22 T ELT)) (|mainVariables| #7#) (|mainVariable?| (#37=(#3# |#3| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|lastSubResultantElseSplit| (((|Union| |#4| #6#) |#4| |#4| $) NIL T ELT)) (|lastSubResultant| ((#16# |#4| |#4| $) 110 T ELT)) (|last| (#38=(#21# $) 41 T ELT)) (|invertibleSet| (#39=(#6# |#4| $) 95 T ELT)) (|invertibleElseSplit?| (((|Union| #3# #6#) |#4| $) NIL T ELT)) (|invertible?| (((|List| (|Record| (|:| |val| #3#) #17#)) |#4| $) 105 T ELT) (#13# 61 T ELT)) (|intersect| (#39# 114 T ELT) #40=((#6# #5# $) NIL T ELT) (#41=(#6# #5# #6#) 115 T ELT) #42=((#6# |#4| #6#) NIL T ELT)) (|internalZeroSetSplit| ((#6# #5# #3# #3# #3#) 127 T ELT)) (|internalAugment| (#33# 81 T ELT) (($ #5# $) 82 T ELT) ((#6# |#4| $ #3# #3# #3# #3# #3#) 80 T ELT)) (|initials| (#35# NIL T ELT)) (|initiallyReduced?| #12# #8#) (|initiallyReduce| #14#) (|infRittWu?| #1#) (|headRemainder| (((|Record| (|:| |num| |#4|) #34#) |#4| $) NIL #11# ELT)) (|headReduced?| #12# #8#) (|headReduce| #14#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#38# 39 T ELT)) (|find| ((#21# #19# $) NIL T ELT)) (|extendIfCan| ((#28# $ |#4|) 55 T ELT)) (|extend| (($ $ |#4|) NIL T ELT) (#39# 97 T ELT) #42# #40# (#41# 92 T ELT)) (|every?| #43=((#3# #19# $) NIL T ELT)) (|eval| (($ $ #5# #5#) NIL #44=(AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ELT) (($ $ |#4| |#4|) NIL #44# ELT) (($ $ #45=(|Equation| |#4|)) NIL #44# ELT) (($ $ (|List| #45#)) NIL #44# ELT)) (|eq?| #1#) (|empty?| (#9# 17 T ELT)) (|empty| (#23# 14 T ELT)) (|degree| #46=(#47=(#48=(|NonNegativeInteger|) $) NIL T ELT)) (|count| ((#48# |#4| $) NIL #32# ELT) ((#48# #19# $) NIL T ELT)) (|copy| (#30# 13 T ELT)) (|convert| ((#49=(|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| #49#)) ELT)) (|construct| (#29# 21 T ELT)) (|collectUpper| (#50=($ $ |#3|) 48 T ELT)) (|collectUnder| (#50# 50 T ELT)) (|collectQuasiMonic| (#30# NIL T ELT)) (|collect| (#50# NIL T ELT)) (|coerce| (((|OutputForm|) $) 34 T ELT) (#35# 45 T ELT)) (|coHeight| (#47# NIL (|has| |#3| (|Finite|)) ELT)) (|before?| #1#) (|basicSet| ((#51=(|Union| (|Record| (|:| |bas| $) (|:| |top| #5#)) #22#) #5# #26#) NIL T ELT) ((#51# #5# #19# #26#) NIL T ELT)) (|autoReduced?| ((#3# $ (|Mapping| #3# |#4| #5#)) NIL T ELT)) (|augment| (#39# 62 T ELT) #42# #40# (#41# NIL T ELT)) (|any?| #43#) (|algebraicVariables| #7#) (|algebraicCoefficients?| #12#) (|algebraic?| (#37# 68 T ELT)) (= #1#) (|#| #46#))
+(((|SquareFreeRegularTriangularSet| |#1| |#2| |#3| |#4|) (|Join| (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |internalAugment| (#1=(|List| $) |#4| $ #2=(|Boolean|) #2# #2# #2# #2#)) (SIGNATURE |zeroSetSplit| (#1# #3=(|List| |#4|) #2# #2#)) (SIGNATURE |zeroSetSplit| (#1# #3# #2# #2# #2# #2#)) (SIGNATURE |internalZeroSetSplit| (#1# #3# #2# #2# #2#)) (SIGNATURE |preprocess| ((|Record| (|:| |val| #3#) (|:| |towers| #1#)) #3# #2# #2#)))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |SquareFreeRegularTriangularSet|))
+((|internalAugment| (*1 *2 *3 *1 *4 *4 *4 *4 *4) (AND #1=(|isDomain| *4 (|Boolean|)) #2=(|ofCategory| *5 (|GcdDomain|)) #3=(|ofCategory| *6 (|OrderedAbelianMonoidSup|)) #4=(|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| #5=(|SquareFreeRegularTriangularSet| *5 *6 *7 *3))) (|isDomain| *1 #5#) (|ofCategory| *3 #6=(|RecursivePolynomialCategory| *5 *6 *7)))) (|zeroSetSplit| #7=(*1 *2 *3 *4 *4) #8=(AND #9=(|isDomain| *3 #10=(|List| *8)) #1# #11=(|ofCategory| *8 #6#) #2# #3# #4# (|isDomain| *2 #12=(|List| #13=(|SquareFreeRegularTriangularSet| *5 *6 *7 *8))) #14=(|isDomain| *1 #13#))) (|zeroSetSplit| (*1 *2 *3 *4 *4 *4 *4) #8#) (|internalZeroSetSplit| (*1 *2 *3 *4 *4 *4) #8#) (|preprocess| #7# (AND #1# #2# #3# #4# #11# (|isDomain| *2 (|Record| (|:| |val| #10#) (|:| |towers| #12#))) #14# #9#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 32 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 30 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 29 T CONST)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|NonNegativeInteger|)) 31 T ELT) (($ $ (|PositiveInteger|)) 28 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ $ $) 27 T ELT)))
+(((|SemiRing|) (|Category|)) (T |SemiRing|))
+NIL
+(|Join| (|AbelianMonoid|) (|Monoid|))
+(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|Monoid|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|top| (#5=(|#1| $) 38 T ELT)) (|stack| (#6=($ #7=(|List| |#1|)) 46 T ELT)) (|sample| (#8=($) NIL T CONST)) (|reduce| ((|#1| #9=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #9# $ |#1|) NIL T ELT) ((|#1| #9# $) NIL T ELT)) (|push!| ((|#1| |#1| $) 41 T ELT)) (|pop!| (#5# 36 T ELT)) (|members| ((#7# $) 19 T ELT)) (|member?| ((#3# |#1| $) NIL #4# ELT)) (|map!| (#10=($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|map| (#10# 23 T ELT)) (|latex| (((|String|) $) NIL #11=(|has| |#1| (|SetCategory|)) ELT)) (|inspect| (#5# 39 T ELT)) (|insert!| (($ |#1| $) 42 T ELT)) (|hash| (((|SingleInteger|) $) NIL #11# ELT)) (|find| (((|Union| |#1| "failed") #12=(|Mapping| #3# |#1|) $) NIL T ELT)) (|extract!| (#5# 37 T ELT)) (|every?| #13=((#3# #12# $) NIL T ELT)) (|eval| (($ $ (|List| #14=(|Equation| |#1|))) NIL #15=(AND (|has| |#1| (|Evalable| |#1|)) #11#) ELT) (($ $ #14#) NIL #15# ELT) (($ $ |#1| |#1|) NIL #15# ELT) (($ $ #7# #7#) NIL #15# ELT)) (|eq?| (#2# NIL T ELT)) (|empty?| ((#3# $) 33 T ELT)) (|empty| (#8# 44 T ELT)) (|depth| (#16=(#17=(|NonNegativeInteger|) $) 31 T ELT)) (|count| ((#17# |#1| $) NIL #4# ELT) ((#17# #12# $) NIL T ELT)) (|copy| (($ $) 28 T ELT)) (|coerce| ((#18=(|OutputForm|) $) 15 (|has| |#1| (|CoercibleTo| #18#)) ELT)) (|before?| #1#) (|bag| (#6# NIL T ELT)) (|any?| #13#) (= (#2# 18 #4# ELT)) (|#| (#16# 32 T ELT)))
+(((|Stack| |#1|) (|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |stack| ($ (|List| |#1|))))) (|Type|)) (T |Stack|))
+((|stack| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stack| *3)))))
+((|setelt| ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ #5=(|UniversalSegment| #6=(|Integer|)) |#2|) 51 T ELT) (#7=(|#2| $ #6# |#2|) 48 T ELT)) (|possiblyInfinite?| (#8=((|Boolean|) $) 12 T ELT)) (|first| ((|#2| $) NIL T ELT) (($ $ (|NonNegativeInteger|)) 17 T ELT)) (|fill!| (#9=($ $ |#2|) 47 T ELT)) (|explicitlyFinite?| (#8# 11 T ELT)) (|elt| ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ #5#) 36 T ELT) ((|#2| $ #6#) 25 T ELT) (#7# NIL T ELT)) (|concat!| (#10=($ $ $) 54 T ELT) #11=(#9# NIL T ELT)) (|concat| (#10# 38 T ELT) (($ |#2| $) NIL T ELT) (($ (|List| $)) 45 T ELT) #11#))
+(((|StreamAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |possiblyInfinite?| #1=((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| #1#) (SIGNATURE |setelt| #2=(|#2| |#1| #3=(|Integer|) |#2|)) (SIGNATURE |elt| #2#) (SIGNATURE |elt| (|#2| |#1| #3#)) (SIGNATURE |fill!| #4=(|#1| |#1| |#2|)) (SIGNATURE |elt| (|#1| |#1| #5=(|UniversalSegment| #3#))) (SIGNATURE |concat| #4#) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |setelt| (|#2| |#1| #5# |#2|)) (SIGNATURE |setelt| (|#2| |#1| #6="last" |#2|)) (SIGNATURE |setelt| (|#1| |#1| #7="rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| #8="first" |#2|)) (SIGNATURE |concat!| #4#) (SIGNATURE |concat!| #9=(|#1| |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| #6#)) (SIGNATURE |elt| (|#1| |#1| #7#)) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| #8#)) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| #9#) (SIGNATURE |setelt| (|#2| |#1| #10="value" |#2|)) (SIGNATURE |elt| (|#2| |#1| #10#))) (|StreamAggregate| |#2|) (|Type|)) (T |StreamAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|third| ((|#1| . #3=($)) 62 T ELT)) (|tail| (#4=($ $) 64 T ELT)) (|swap!| (((|Void|) $ #5=(|Integer|) #5#) 99 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (($ $ (|Integer|)) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 82 T ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setrest!| (#6=($ $ $) 53 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #7="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #8="first" |#1|) 54 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ #9="rest" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #10="last" |#1|) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #11=(|UniversalSegment| #5#) |#1|) 115 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #5# |#1|) 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #12=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #13=(|Boolean|) |#1|) . #14=($)) 103 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|second| ((|#1| . #3#) 63 T ELT)) (|sample| (#15=($) 6 T CONST)) (|rest| (#4# 70 T ELT) (#16=($ $ #17=(|NonNegativeInteger|)) 68 T ELT)) (|removeDuplicates| (($ $) 101 (AND (|has| |#1| . #18=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ (|Mapping| #13# |#1|) . #14#) 104 (|has| $ (|FiniteAggregate| |#1|)) ELT) (($ |#1| $) 102 (AND (|has| |#1| . #18#) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|qsetelt!| ((|#1| $ #5# |#1|) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #5#) 89 T ELT)) (|possiblyInfinite?| (((|Boolean|) $) 85 T ELT)) (|nodes| (#19=(#12# $) 45 T ELT)) (|node?| (#20=(#21=(|Boolean|) $ $) 37 (|has| |#1| . #22=((|BasicType|))) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 107 T ELT)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 83 T ELT)) (|minIndex| ((#5# . #23=($)) 97 (|has| #5# . #24=((|OrderedSet|))) ELT)) (|maxIndex| ((#5# . #23#) 96 (|has| #5# . #24#) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 110 T ELT)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 84 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#25=(#21# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #26=((|SetCategory|))) ELT)) (|last| ((|#1| . #3#) 67 T ELT) (#16# 65 T ELT)) (|insert| (($ $ $ #5#) 114 T ELT) (($ |#1| $ #5#) 113 T ELT)) (|indices| (((|List| #5#) $) 94 T ELT)) (|index?| ((#27=(|Boolean|) #5# $) 93 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #26#) ELT)) (|first| ((|#1| . #3#) 73 T ELT) (#16# 71 T ELT)) (|fill!| (($ $ |#1|) 98 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|explicitlyFinite?| (((|Boolean|) $) 86 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #26#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #26#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #26#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #26#)) ELT)) (|eq?| ((#28=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#27# |#1| $) 95 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 92 T ELT)) (|empty?| ((#28# $) 7 T ELT)) (|empty| (#15# 8 T ELT)) (|elt| ((|#1| $ #7#) 42 T ELT) ((|#1| $ #8#) 72 T ELT) (($ $ #9#) 69 T ELT) ((|#1| $ #10#) 66 T ELT) (($ $ #11#) 106 T ELT) ((|#1| $ #5#) 91 T ELT) ((|#1| $ #5# |#1|) 90 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|delete| (($ $ #11#) 112 T ELT) (($ $ #5#) 111 T ELT)) (|cyclic?| (#25# 41 T ELT)) (|cycleTail| (#4# 59 T ELT)) (|cycleSplit!| (#4# 56 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|cycleLength| ((#17# $) 60 T ELT)) (|cycleEntry| (#4# 61 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#29=(|InputForm|) $) 100 (|has| |#1| (|ConvertibleTo| #29#)) ELT)) (|construct| (($ (|List| |#1|)) 105 T ELT)) (|concat!| (#6# 58 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|concat| (#6# 75 T ELT) (($ |#1| $) 74 T ELT) (($ (|List| $)) 109 T ELT) (($ $ |#1|) 108 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#19# 46 T ELT)) (|child?| (#20# 38 (|has| |#1| . #22#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|StreamAggregate| |#1|) (|Category|) (|Type|)) (T |StreamAggregate|))
+((|explicitlyFinite?| (*1 *2 *1) (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|possiblyInfinite?| (*1 *2 *1) (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))))
+(|Join| (|UnaryRecursiveAggregate| |t#1|) (|LinearAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |explicitlyFinite?| ((|Boolean|) $)) (SIGNATURE |possiblyInfinite?| ((|Boolean|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|)))))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T) ((|UnaryRecursiveAggregate| |#1|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|table| #8=(#9=($) NIL T ELT) #10=(($ #11=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #12=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| #13=(#14=(|#2| $ |#1| |#2|) NIL #12# ELT)) (|select!| #15=(($ #16=(|Mapping| #3# #5#) $) NIL #17=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #15#) (|search| #18=(((|Union| |#2| #19="failed") |#1| $) NIL T ELT)) (|sample| (#9# NIL T CONST)) (|removeDuplicates| (#20=($ $) NIL #21=(AND #17# #4#) ELT)) (|remove!| (#22=($ #5# $) NIL #17# ELT) #15# #18#) (|remove| (#22# NIL #21# ELT) #15#) (|reduce| ((#5# #23=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #23# $ #5#) NIL T ELT) ((#5# #23# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #24=((|#2| $ |#1|) NIL T ELT)) (|minIndex| #25=((|#1| $) NIL #26=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#11# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #25#) (|map!| #27=(($ (|Mapping| #5# #5#) . #28=($)) NIL T ELT) #29=(($ (|Mapping| |#2| |#2|) . #28#) NIL T ELT)) (|map| #27# #29# #27# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #30=(OR #31=(|has| #5# #32=(|SetCategory|)) #33=(|has| |#2| #32#)) ELT)) (|keys| #34=(((|List| |#1|) $) NIL T ELT)) (|key?| #35=((#3# |#1| $) NIL T ELT)) (|inspect| #36=((#5# $) NIL T ELT)) (|insert!| (#22# NIL T ELT)) (|indices| #34#) (|index?| #35#) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| ((|#2| $) NIL #26# ELT)) (|find| (((|Union| #5# #19#) #16# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #12# ELT)) (|extract!| #36#) (|every?| #37=((#3# #16# $) NIL T ELT)) (|eval| #38=(($ $ (|List| #39=(|Equation| #5#))) NIL #40=(AND (|has| #5# (|Evalable| #5#)) #31#) ELT) #41=(($ $ #39#) NIL #40# ELT) #42=(($ $ #5# #5#) NIL #40# ELT) #43=(($ $ #11# #11#) NIL #40# ELT) (($ $ #44=(|List| |#2|) #44#) NIL #45=(AND (|has| |#2| (|Evalable| |#2|)) #33#) ELT) (($ $ |#2| |#2|) NIL #45# ELT) (($ $ #46=(|Equation| |#2|)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT) #43# #42# #41# #38#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT)) (|entries| ((#44# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #8#) (|elt| #24# (#14# NIL T ELT)) (|dictionary| #8# #10#) (|count| ((#47=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#47# #16# $) NIL T ELT)) (|copy| (#20# NIL T ELT)) (|convert| ((#48=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #48#)) ELT)) (|construct| #10#) (|coerce| ((#49=(|OutputForm|) $) NIL (OR (|has| #5# #50=(|CoercibleTo| #49#)) (|has| |#2| #50#)) ELT)) (|before?| #1#) (|bag| #10#) (|any?| #37#) (= #1#) (|#| ((#47# $) NIL T ELT)))
+(((|SparseTable| |#1| |#2| |#3|) (|TableAggregate| |#1| |#2|) #1=(|SetCategory|) #1# |#2|) (T |SparseTable|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|nextItem| (((|Maybe| $) $) 17 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|init| (($) 18 T CONST)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)))
+(((|StepThrough|) (|Category|)) (T |StepThrough|))
+((|init| (*1 *1) (|ofCategory| *1 (|StepThrough|))) (|nextItem| (*1 *2 *1) (AND (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|StepThrough|)))))
+(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |init| ($) |constant|) (SIGNATURE |nextItem| ((|Maybe| $) $))))
+(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|upperBound| (((|Maybe| #2=(|SpadAst|)) $) 28 T ELT)) (|step| (#3=(#2# $) 16 T ELT)) (|lowerBound| (#3# 18 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|iterationVar| (((|Identifier|) $) 14 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 38 T ELT) (($ #4=(|Syntax|)) NIL T ELT) ((#4# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|StepAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |iterationVar| ((|Identifier|) $)) (SIGNATURE |lowerBound| #1=(#2=(|SpadAst|) $)) (SIGNATURE |upperBound| ((|Maybe| #2#) $)) (SIGNATURE |step| #1#)))) (T |StepAst|))
+((|iterationVar| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) #2=(|isDomain| *1 (|StepAst|)))) (|lowerBound| #1# #3=(AND (|isDomain| *2 #4=(|SpadAst|)) #2#)) (|upperBound| #1# (AND (|isDomain| *2 (|Maybe| #4#)) #2#)) (|step| #1# #3#))
+((|oddInfiniteProduct| (#1=(#2=(|Stream| |#1|) #2#) 17 T ELT)) (|infiniteProduct| (#1# 13 T ELT)) (|generalInfiniteProduct| ((#2# #2# #3=(|Integer|) #3#) 20 T ELT)) (|evenInfiniteProduct| (#1# 15 T ELT)))
+(((|StreamInfiniteProduct| |#1|) (CATEGORY |package| (SIGNATURE |infiniteProduct| #1=(#2=(|Stream| |#1|) #2#)) (SIGNATURE |evenInfiniteProduct| #1#) (SIGNATURE |oddInfiniteProduct| #1#) (SIGNATURE |generalInfiniteProduct| (#2# #2# #3=(|Integer|) #3#))) (|Join| (|IntegralDomain|) (|CharacteristicZero|))) (T |StreamInfiniteProduct|))
+((|generalInfiniteProduct| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 #1=(|Join| (|IntegralDomain|) (|CharacteristicZero|))) (|isDomain| *1 (|StreamInfiniteProduct| *4)))) (|oddInfiniteProduct| #2=(*1 *2 *2) #3=(AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 #1#) (|isDomain| *1 (|StreamInfiniteProduct| *3)))) (|evenInfiniteProduct| #2# #3#) (|infiniteProduct| #2# #3#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| #5=(#6=(|#1| $) NIL T ELT)) (|third| #5#) (|tail| (#7=($ $) 60 T ELT)) (|swap!| ((#8=(|Void|) $ #9=(|Integer|) #9#) 93 #10=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|split!| (#11=($ $ #9#) 122 #10# ELT)) (|size?| #12=((#3# $ #13=(|NonNegativeInteger|)) NIL T ELT)) (|showAllElements| (#14=(#15=(|OutputForm|) $) 46 #16=(|has| |#1| (|SetCategory|)) ELT)) (|showAll?| ((#3#) 49 #16# ELT)) (|setvalue!| (#17=(|#1| $ |#1|) NIL #10# ELT)) (|setrest!| (#18=($ $ $) 109 #10# ELT) (($ $ #9# $) 135 T ELT)) (|setlast!| (#17# 119 #10# ELT)) (|setfirst!| (#17# 114 #10# ELT)) (|setelt| ((|#1| $ #19="value" |#1|) NIL #10# ELT) ((|#1| $ #20="first" |#1|) 116 #10# ELT) (($ $ #21="rest" $) 118 #10# ELT) ((|#1| $ #22="last" |#1|) 121 #10# ELT) ((|#1| $ #23=(|UniversalSegment| #9#) |#1|) 106 #10# ELT) (#24=(|#1| $ #9# |#1|) 72 #10# ELT)) (|setchildren!| (($ $ #25=(|List| $)) NIL #10# ELT)) (|select| (#26=($ (|Mapping| #3# |#1|) $) 75 T ELT)) (|second| #5#) (|sample| (#27=($) NIL T CONST)) (|rst| (#7# 11 T ELT)) (|rest| (#7# 35 T ELT) (#28=($ $ #13#) 105 T ELT)) (|repeating?| ((#3# #29=(|List| |#1|) $) 128 #16# ELT)) (|repeating| (#30=($ #29#) 124 T ELT)) (|removeDuplicates| (#7# NIL #31=(AND (|has| $ (|FiniteAggregate| |#1|)) #4#) ELT)) (|remove| (#32=($ |#1| $) NIL #31# ELT) (#26# 74 T ELT)) (|qsetelt!| (#24# NIL #10# ELT)) (|qelt| (#33=(|#1| $ #9#) NIL T ELT)) (|possiblyInfinite?| #34=(#35=(#3# $) NIL T ELT)) (|output| ((#8# #9# $) 133 #16# ELT)) (|numberOfComputedEntries| (#36=(#13# $) 131 T ELT)) (|nodes| #37=((#25# $) NIL T ELT)) (|node?| #1#) (|new| (($ #13# |#1|) NIL T ELT)) (|more?| #12#) (|minIndex| #38=((#9# $) NIL (|has| #9# (|OrderedSet|)) ELT)) (|maxIndex| #38#) (|map!| (#39=($ #40=(|Mapping| |#1| |#1|) $) 89 T ELT)) (|map| (#39# 80 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 84 T ELT)) (|less?| #12#) (|leaves| #41=((#29# $) NIL T ELT)) (|leaf?| #34#) (|lazyEvaluate| (#7# 107 T ELT)) (|lazy?| (#35# 10 T ELT)) (|latex| (((|String|) $) NIL #16# ELT)) (|last| #5# (#28# NIL T ELT)) (|insert| (($ $ $ #9#) NIL T ELT) (($ |#1| $ #9#) NIL T ELT)) (|indices| (((|List| #9#) $) NIL T ELT)) (|index?| ((#3# #9# $) 90 T ELT)) (|hash| (((|SingleInteger|) $) NIL #16# ELT)) (|generate| (($ (|Mapping| |#1|)) 137 T ELT) (($ #40# |#1|) 138 T ELT)) (|frst| (#6# 7 T ELT)) (|first| (#6# 34 T ELT) (#28# 58 T ELT)) (|findCycle| (((|Record| (|:| |cycle?| #3#) (|:| |prefix| #13#) (|:| |period| #13#)) #13# $) 29 T ELT)) (|filterWhile| (#26# 139 T ELT)) (|filterUntil| (#26# 140 T ELT)) (|fill!| (#42=($ $ |#1|) 85 #10# ELT)) (|extend| (#11# 40 T ELT)) (|explicitlyFinite?| (#35# 88 T ELT)) (|explicitlyEmpty?| (#35# 9 T ELT)) (|explicitEntries?| (#35# 130 T ELT)) (|eval| (($ $ (|List| #43=(|Equation| |#1|))) NIL #44=(AND (|has| |#1| (|Evalable| |#1|)) #16#) ELT) (($ $ #43#) NIL #44# ELT) (($ $ |#1| |#1|) NIL #44# ELT) (($ $ #29# #29#) NIL #44# ELT)) (|eq?| (#2# 25 T ELT)) (|entry?| ((#3# |#1| $) NIL #31# ELT)) (|entries| #41#) (|empty?| (#35# 14 T ELT)) (|empty| (#27# 53 T ELT)) (|elt| ((|#1| $ #19#) NIL T ELT) ((|#1| $ #20#) NIL T ELT) (($ $ #21#) NIL T ELT) ((|#1| $ #22#) NIL T ELT) #45=(($ $ #23#) NIL T ELT) (#33# 70 T ELT) (#24# NIL T ELT)) (|distance| ((#9# $ $) 57 T ELT)) (|delete| #45# (#11# NIL T ELT)) (|delay| (($ (|Mapping| $)) 56 T ELT)) (|cyclic?| (#35# 86 T ELT)) (|cycleTail| (#7# 87 T ELT)) (|cycleSplit!| (#7# 110 #10# ELT)) (|cycleLength| (#36# NIL T ELT)) (|cycleEntry| (#7# NIL T ELT)) (|copy| (#7# 52 T ELT)) (|convert| ((#46=(|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| #46#)) ELT)) (|construct| (#30# 68 T ELT)) (|cons| (#32# 108 T ELT)) (|concat!| (#18# 112 #10# ELT) (#42# 113 #10# ELT)) (|concat| (#18# 95 T ELT) (#32# 54 T ELT) (($ #25#) 100 T ELT) (#42# 94 T ELT)) (|complete| (#7# 59 T ELT)) (|coerce| (#30# 123 T ELT) (#14# 50 (|has| |#1| (|CoercibleTo| #15#)) ELT)) (|children| #37#) (|child?| #1#) (|before?| #1#) (= (#2# 126 #4# ELT)))
+(((|Stream| |#1|) (|Join| (|LazyStreamAggregate| |#1|) (|CoercibleFrom| #1=(|List| |#1|)) (|ShallowlyMutableAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |repeating| ($ #1#)) (IF #2=(|has| |#1| (|SetCategory|)) (SIGNATURE |repeating?| (#3=(|Boolean|) #1# $)) |%noBranch|) (SIGNATURE |findCycle| ((|Record| (|:| |cycle?| #3#) (|:| |prefix| #4=(|NonNegativeInteger|)) (|:| |period| #4#)) #4# $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |cons| ($ |#1| $)) (IF #2# (PROGN (SIGNATURE |output| ((|Void|) #5=(|Integer|) $)) (SIGNATURE |showAllElements| ((|OutputForm|) $)) (SIGNATURE |showAll?| (#3#))) |%noBranch|) (SIGNATURE |setrest!| ($ $ #5# $)) (SIGNATURE |generate| ($ (|Mapping| |#1|))) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |filterWhile| #6=($ (|Mapping| #3# |#1|) $)) (SIGNATURE |filterUntil| #6#))) (|Type|)) (T |Stream|))
+((|repeating| #1=(*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #2=(|ofCategory| *3 #3=(|Type|)) #4=(|isDomain| *1 #5=(|Stream| *3)))) (|repeating?| #6=(*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *4)) #7=(|ofCategory| *4 #8=(|SetCategory|)) #9=(|ofCategory| *4 #3#) #10=(|isDomain| *2 #11=(|Boolean|)) #12=(|isDomain| *1 (|Stream| *4)))) (|findCycle| #6# (AND (|isDomain| *2 (|Record| (|:| |cycle?| #11#) (|:| |prefix| #13=(|NonNegativeInteger|)) (|:| |period| #13#))) #12# #9# (|isDomain| *3 #13#))) (|delay| #1# (AND (|isDomain| *2 (|Mapping| #5#)) #4# #2#)) (|cons| #14=(*1 *1 *2 *1) (AND (|isDomain| *1 (|Stream| *2)) (|ofCategory| *2 #3#))) (|output| #6# (AND (|isDomain| *3 #15=(|Integer|)) (|isDomain| *2 (|Void|)) #12# #7# #9#)) (|showAllElements| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) #4# #16=(|ofCategory| *3 #8#) #2#)) (|showAll?| (*1 *2) (AND #10# #4# #16# #2#)) (|setrest!| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 #15#) #4# #2#)) (|generate| #1# (AND (|isDomain| *2 (|Mapping| *3)) #2# #4#)) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) #2# #4#)) (|filterWhile| #14# #17=(AND (|isDomain| *2 (|Mapping| #11# *3)) #2# #4#)) (|filterUntil| #14# #17#))
+((|concat| ((#1=(|Stream| |#1|) (|Stream| #1#)) 15 T ELT)))
+(((|StreamFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |concat| (#1=(|Stream| |#1|) (|Stream| #1#)))) (|Type|)) (T |StreamFunctions1|))
+((|concat| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| #1=(|Stream| *4))) (|isDomain| *2 #1#) (|isDomain| *1 (|StreamFunctions1| *4)) (|ofCategory| *4 (|Type|)))))
+((|scan| ((#1=(|Stream| |#2|) |#2| #2=(|Mapping| |#2| |#1| |#2|) #3=(|Stream| |#1|)) 25 T ELT)) (|reduce| ((|#2| |#2| #2# #3#) 26 T ELT)) (|map| ((#1# (|Mapping| |#2| |#1|) #3#) 16 T ELT)))
+(((|StreamFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (#1=(|Stream| |#2|) (|Mapping| |#2| |#1|) #2=(|Stream| |#1|))) (SIGNATURE |scan| (#1# |#2| #3=(|Mapping| |#2| |#1| |#2|) #2#)) (SIGNATURE |reduce| (|#2| |#2| #3# #2#))) #4=(|Type|) #4#) (T |StreamFunctions2|))
+((|reduce| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #1=(|isDomain| *4 (|Stream| *5)) #2=(|ofCategory| *5 #3=(|Type|)) (|ofCategory| *2 #3#) (|isDomain| *1 (|StreamFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Mapping| *3 *6 *3)) (|isDomain| *5 #4=(|Stream| *6)) #5=(|ofCategory| *6 #3#) (|ofCategory| *3 #3#) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamFunctions2| *6 *3)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) #1# #2# #5# (|isDomain| *2 #4#) (|isDomain| *1 (|StreamFunctions2| *5 *6)))))
+((|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) 21 T ELT)))
+(((|StreamFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)))) #1=(|Type|) #1# #1#) (T |StreamFunctions3|))
+((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6)) (|isDomain| *5 (|Stream| *7)) (|ofCategory| *6 #1=(|Type|)) (|ofCategory| *7 #1#) (|ofCategory| *8 #1#) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|StreamFunctions3| *6 *7 *8)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| #5=(|Character|) (|BasicType|)) ELT)) (|upperCase!| (#6=($ $) 42 T ELT)) (|upperCase| #7=(#6# NIL T ELT)) (|trim| #8=(#9=($ $ #5#) NIL T ELT) (#10=($ $ #11=(|CharacterClass|)) NIL T ELT)) (|swap!| (((|Void|) $ #12=(|Integer|) #12#) NIL #13=(|has| $ (|ShallowlyMutableAggregate| #5#)) ELT)) (|suffix?| (#2# 67 T ELT)) (|substring?| ((#3# $ $ #12#) 62 T ELT)) (|string| (($ #12#) 7 T ELT) (($ (|DoubleFloat|)) 9 T ELT) (($ (|Identifier|)) 11 T ELT)) (|split| ((#14=(|List| $) $ #5#) 76 T ELT) ((#14# $ #11#) 77 T ELT)) (|sorted?| ((#3# #15=(|Mapping| #3# #5# #5#) $) NIL T ELT) (#16=(#3# $) NIL #17=(|has| #5# #18=(|OrderedSet|)) ELT)) (|sort!| (#19=($ #15# $) NIL #13# ELT) (#6# NIL (AND #13# #17#) ELT)) (|sort| (#19# NIL T ELT) (#6# NIL #17# ELT)) (|setelt| (#20=(#5# $ #12# #5#) 59 #13# ELT) ((#5# $ #21=(|UniversalSegment| #12#) #5#) NIL #13# ELT)) (|select| #22=(($ #23=(|Mapping| #3# #5#) $) NIL #24=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|sample| (#25=($) NIL T CONST)) (|rightTrim| (#9# 80 T ELT) (#10# 81 T ELT)) (|reverse!| (#6# NIL #13# ELT)) (|reverse| #7#) (|replace| (($ $ #21# $) 57 T ELT)) (|removeDuplicates| (#6# NIL #26=(AND #24# #4#) ELT)) (|remove| (#27=($ #5# $) NIL #26# ELT) #22#) (|reduce| ((#5# #28=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #28# $ #5#) NIL T ELT) ((#5# #28# $) NIL T ELT)) (|qsetelt!| (#20# NIL #13# ELT)) (|qelt| (#29=(#5# $ #12#) NIL T ELT)) (|prefix?| (#2# 91 T ELT)) (|position| ((#12# #23# $) NIL T ELT) ((#12# #5# $) NIL #4# ELT) ((#12# #5# $ #12#) 64 #4# ELT) ((#12# $ $ #12#) 63 T ELT) ((#12# #11# $ #12#) 66 T ELT)) (|new| (($ #30=(|NonNegativeInteger|) #5#) 14 T ELT)) (|minIndex| (#31=(#12# $) 36 #32=(|has| #12# #18#) ELT)) (|min| #33=(#34=($ $ $) NIL #17# ELT)) (|merge| (($ #15# $ $) NIL T ELT) #33#) (|members| #35=((#36=(|List| #5#) $) NIL T ELT)) (|member?| (#37=(#3# #5# $) NIL #4# ELT)) (|maxIndex| (#31# 50 #32# ELT)) (|max| #33#) (|match?| ((#3# $ $ #5#) 92 T ELT)) (|match| ((#30# $ $ #5#) 88 T ELT)) (|map!| (#38=($ (|Mapping| #5# #5#) $) 41 T ELT)) (|map| (#38# NIL T ELT) (($ #28# $ $) NIL T ELT)) (|lowerCase!| (#6# 45 T ELT)) (|lowerCase| #7#) (|leftTrim| (#9# 78 T ELT) (#10# 79 T ELT)) (|latex| (((|String|) $) 46 #39=(|has| #5# (|SetCategory|)) ELT)) (|insert| (($ #5# $ #12#) NIL T ELT) (#40=($ $ $ #12#) 31 T ELT)) (|indices| (((|List| #12#) $) NIL T ELT)) (|index?| ((#3# #12# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) 87 #39# ELT)) (|first| ((#5# $) NIL #32# ELT)) (|find| (((|Union| #5# "failed") #23# $) NIL T ELT)) (|fill!| (#9# NIL #13# ELT)) (|every?| #41=((#3# #23# $) NIL T ELT)) (|eval| (($ $ (|List| #42=(|Equation| #5#))) NIL #43=(AND (|has| #5# (|Evalable| #5#)) #39#) ELT) (($ $ #42#) NIL #43# ELT) (($ $ #5# #5#) NIL #43# ELT) (($ $ #36# #36#) NIL #43# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#37# NIL #26# ELT)) (|entries| #35#) (|empty?| (#16# 19 T ELT)) (|empty| (#25# 16 T ELT)) (|elt| (#20# NIL T ELT) (#29# 69 T ELT) (#44=($ $ #21#) 29 T ELT) (#34# NIL T ELT)) (|delete| (($ $ #12#) NIL T ELT) (#44# NIL T ELT)) (|count| ((#30# #5# $) NIL #4# ELT) ((#30# #23# $) NIL T ELT)) (|copyInto!| (#40# 83 #13# ELT)) (|copy| (#6# 24 T ELT)) (|convert| ((#45=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #45#)) ELT)) (|construct| (($ #36#) NIL T ELT)) (|concat| #8# (#27# NIL T ELT) (#34# 23 T ELT) (($ #14#) 84 T ELT)) (|coerce| (($ #5#) NIL T ELT) ((#46=(|OutputForm|) $) 35 (|has| #5# (|CoercibleTo| #46#)) ELT)) (|before?| #1#) (|any?| #41#) (>= #47=(#2# NIL #17# ELT)) (> #47#) (= (#2# 21 #4# ELT)) (<= #47#) (< (#2# 22 #17# ELT)) (|#| ((#30# $) 20 T ELT)))
+(((|String|) (|Join| (|StringAggregate|) (CATEGORY |domain| (SIGNATURE |string| ($ (|Integer|))) (SIGNATURE |string| ($ (|DoubleFloat|))) (SIGNATURE |string| ($ (|Identifier|)))))) (T |String|))
+((|string| #1=(*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) #2=(|isDomain| *1 (|String|)))) (|string| #1# (AND (|isDomain| *2 (|DoubleFloat|)) #2#)) (|string| #1# (AND (|isDomain| *2 (|Identifier|)) #2#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| #6=(|String|)) (|:| |entry| |#1|)) #7=(|BasicType|)) #8=(|has| |#1| #7#)) ELT)) (|table| #9=(#10=($) NIL T ELT) #11=(($ #12=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ #6# #6#) NIL #13=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| #14=(#15=(|#1| $ #6# |#1|) NIL #13# ELT)) (|select!| #16=(($ #17=(|Mapping| #3# #5#) $) NIL #18=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #16#) (|search| #19=(((|Union| |#1| #20="failed") #6# $) NIL T ELT)) (|sample| (#10# NIL T CONST)) (|removeDuplicates| (#21=($ $) NIL #22=(AND #18# #4#) ELT)) (|remove!| (#23=($ #5# $) NIL #18# ELT) #16# #19#) (|remove| (#23# NIL #22# ELT) #16#) (|reduce| ((#5# #24=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #24# $ #5#) NIL T ELT) ((#5# #24# $) NIL T ELT)) (|qsetelt!| #14#) (|qelt| #25=((|#1| $ #6#) NIL T ELT)) (|minIndex| #26=(#27=(#6# $) NIL #28=(|has| #6# (|OrderedSet|)) ELT)) (|members| ((#12# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #26#) (|map!| #29=(($ (|Mapping| #5# #5#) . #30=($)) NIL T ELT) #31=(($ (|Mapping| |#1| |#1|) . #30#) NIL T ELT)) (|map| #29# #31# #29# (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL T ELT)) (|latex| (#27# NIL #32=(OR #33=(|has| #5# #34=(|SetCategory|)) #35=(|has| |#1| #34#)) ELT)) (|keys| #36=(((|List| #6#) $) NIL T ELT)) (|key?| #37=((#3# #6# $) NIL T ELT)) (|inspect| #38=((#5# $) NIL T ELT)) (|insert!| (#23# NIL T ELT)) (|indices| #36#) (|index?| #37#) (|hash| (((|SingleInteger|) $) NIL #32# ELT)) (|first| ((|#1| $) NIL #28# ELT)) (|find| (((|Union| #5# #20#) #17# $) NIL T ELT)) (|fill!| (($ $ |#1|) NIL #13# ELT)) (|extract!| #38#) (|every?| #39=((#3# #17# $) NIL T ELT)) (|eval| #40=(($ $ (|List| #41=(|Equation| #5#))) NIL #42=(AND (|has| #5# (|Evalable| #5#)) #33#) ELT) #43=(($ $ #41#) NIL #42# ELT) #44=(($ $ #5# #5#) NIL #42# ELT) #45=(($ $ #12# #12#) NIL #42# ELT) (($ $ #46=(|List| |#1|) #46#) NIL #47=(AND (|has| |#1| (|Evalable| |#1|)) #35#) ELT) (($ $ |#1| |#1|) NIL #47# ELT) (($ $ #48=(|Equation| |#1|)) NIL #47# ELT) (($ $ (|List| #48#)) NIL #47# ELT) #45# #44# #43# #40#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#1| $) NIL (AND (|has| $ (|FiniteAggregate| |#1|)) #8#) ELT)) (|entries| ((#46# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #9#) (|elt| #25# (#15# NIL T ELT)) (|dictionary| #9# #11#) (|count| ((#49=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#49# #17# $) NIL T ELT)) (|copy| (#21# NIL T ELT)) (|convert| ((#50=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #50#)) ELT)) (|construct| #11#) (|coerce| ((#51=(|OutputForm|) $) NIL (OR (|has| #5# #52=(|CoercibleTo| #51#)) (|has| |#1| #52#)) ELT)) (|before?| #1#) (|bag| #11#) (|any?| #39#) (= #1#) (|#| ((#49# $) NIL T ELT)))
+(((|StringTable| |#1|) (|TableAggregate| (|String|) |#1|) (|SetCategory|)) (T |StringTable|))
+NIL
+((|revert| (#1=(#2=(|Stream| |#1|) #2#) 83 T ELT)) (|recip| ((#3=(|Union| #2# "failed") #2#) 39 T ELT)) (|powern| ((#2# #4=(|Fraction| #5=(|Integer|)) #2#) 131 #6=(|has| |#1| (|Algebra| #4#)) ELT)) (|power| (#7=(#2# |#1| #2#) 135 #8=(|has| |#1| (|Field|)) ELT)) (|oddlambert| (#1# 97 T ELT)) (|oddintegers| (#9=((|Stream| #5#) #5#) 63 T ELT)) (|nlde| (#10=(#2# (|Stream| #2#)) 116 #6# ELT)) (|multisect| (#11=(#2# #5# #5# #2#) 103 T ELT)) (|monom| ((#2# |#1| #5#) 51 T ELT)) (|mapmult| (#12=(#2# #2# #2#) 66 T ELT)) (|mapdiv| (#12# 133 #8# ELT)) (|lazyIntegrate| ((#2# |#1| #13=(|Mapping| #2#)) 115 #6# ELT)) (|lazyGintegrate| ((#2# #14=(|Mapping| |#1| #5#) |#1| #13#) 134 #8# ELT)) (|lambert| (#1# 96 T ELT)) (|lagrange| (#1# 82 T ELT)) (|invmultisect| (#11# 104 T ELT)) (|integrate| (#7# 113 #6# ELT)) (|integers| (#9# 62 T ELT)) (|int| (#15=(#2# |#1|) 65 T ELT)) (|generalLambert| ((#2# #2# #5# #5#) 100 T ELT)) (|gderiv| ((#2# #14# #2#) 72 T ELT)) (|exquo| ((#3# #2# #2#) 37 T ELT)) (|evenlambert| (#1# 98 T ELT)) (|eval| (#16=(#2# #2# |#1|) 77 T ELT)) (|deriv| (#1# 68 T ELT)) (|compose| (#12# 78 T ELT)) (|coerce| (#15# 73 T ELT)) (|addiag| (#10# 88 T ELT)) (/ (#12# 38 T ELT)) (- (#1# 21 T ELT) (#12# 23 T ELT)) (+ (#12# 17 T ELT)) (* (#16# 29 T ELT) (#7# 26 T ELT) (#12# 27 T ELT)))
+(((|StreamTaylorSeriesOperations| |#1|) (CATEGORY |package| (SIGNATURE + #1=(#2=(|Stream| |#1|) #2# #2#)) (SIGNATURE - #1#) (SIGNATURE - #3=(#2# #2#)) (SIGNATURE * #1#) (SIGNATURE * #4=(#2# |#1| #2#)) (SIGNATURE * #5=(#2# #2# |#1|)) (SIGNATURE |exquo| (#6=(|Union| #2# "failed") #2# #2#)) (SIGNATURE / #1#) (SIGNATURE |recip| (#6# #2#)) (SIGNATURE |monom| (#2# |#1| #7=(|Integer|))) (SIGNATURE |integers| #8=((|Stream| #7#) #7#)) (SIGNATURE |oddintegers| #8#) (SIGNATURE |int| #9=(#2# |#1|)) (SIGNATURE |mapmult| #1#) (SIGNATURE |deriv| #3#) (SIGNATURE |gderiv| (#2# #10=(|Mapping| |#1| #7#) #2#)) (SIGNATURE |coerce| #9#) (SIGNATURE |eval| #5#) (SIGNATURE |compose| #1#) (SIGNATURE |lagrange| #3#) (SIGNATURE |revert| #3#) (SIGNATURE |addiag| #11=(#2# (|Stream| #2#))) (SIGNATURE |lambert| #3#) (SIGNATURE |oddlambert| #3#) (SIGNATURE |evenlambert| #3#) (SIGNATURE |generalLambert| (#2# #2# #7# #7#)) (SIGNATURE |multisect| #12=(#2# #7# #7# #2#)) (SIGNATURE |invmultisect| #12#) (IF (|has| |#1| (|Algebra| #13=(|Fraction| #7#))) (PROGN (SIGNATURE |integrate| #4#) (SIGNATURE |lazyIntegrate| (#2# |#1| #14=(|Mapping| #2#))) (SIGNATURE |nlde| #11#) (SIGNATURE |powern| (#2# #13# #2#))) |%noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |mapdiv| #1#) (SIGNATURE |lazyGintegrate| (#2# #10# |#1| #14#)) (SIGNATURE |power| #4#)) |%noBranch|)) (|Ring|)) (T |StreamTaylorSeriesOperations|))
+((|power| #1=(*1 *2 *3 *2) #2=(AND #3=(|isDomain| *2 #4=(|Stream| *3)) (|ofCategory| *3 #5=(|Field|)) #6=(|ofCategory| *3 #7=(|Ring|)) #8=(|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lazyGintegrate| (*1 *2 *3 *4 *5) (AND #9=(|isDomain| *3 (|Mapping| *4 #10=(|Integer|))) (|isDomain| *5 (|Mapping| #11=(|Stream| *4))) (|ofCategory| *4 #5#) #12=(|ofCategory| *4 #7#) #13=(|isDomain| *2 #11#) #14=(|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|mapdiv| #15=(*1 *2 *2 *2) #2#) (|powern| #1# (AND #13# (|ofCategory| *4 (|Algebra| *3)) #12# (|isDomain| *3 #16=(|Fraction| #10#)) #14#)) (|nlde| #17=(*1 *2 *3) (AND #18=(|isDomain| *3 (|Stream| #11#)) #13# #14# (|ofCategory| *4 #19=(|Algebra| #16#)) #12#)) (|lazyIntegrate| #20=(*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| #4#)) #3# #8# #21=(|ofCategory| *3 #19#) #6#)) (|integrate| #1# (AND #3# #21# #6# #8#)) (|invmultisect| #22=(*1 *2 *3 *3 *2) #23=(AND #13# #24=(|isDomain| *3 #10#) #12# #14#)) (|multisect| #22# #23#) (|generalLambert| (*1 *2 *2 *3 *3) #23#) (|evenlambert| #25=(*1 *2 *2) #26=(AND #3# #6# #8#)) (|oddlambert| #25# #26#) (|lambert| #25# #26#) (|addiag| #17# (AND #18# #13# #14# #12#)) (|revert| #25# #26#) (|lagrange| #25# #26#) (|compose| #15# #26#) (|eval| #27=(*1 *2 *2 *3) #26#) (|coerce| #17# #28=(AND #3# #8# #6#)) (|gderiv| #1# (AND #13# #9# #12# #14#)) (|deriv| #25# #26#) (|mapmult| #15# #26#) (|int| #17# #28#) (|oddintegers| #17# #29=(AND (|isDomain| *2 (|Stream| #10#)) #14# #12# #24#)) (|integers| #17# #29#) (|monom| #20# (AND (|isDomain| *4 #10#) #3# #8# #6#)) (|recip| #25# #30=(|partial| AND #3# #6# #8#)) (/ #15# #26#) (|exquo| #15# #30#) (* #27# #26#) (* #1# #26#) (* #15# #26#) (- #25# #26#) (- #15# #26#) (+ #15# #26#))
+((|tanh| (#1=(#2=(|Stream| |#1|) #2#) 102 T ELT)) (|tan| (#1# 59 T ELT)) (|sinhcosh| (((|Record| (|:| |sinh| #2#) (|:| |cosh| #2#)) #2#) 98 T ELT)) (|sinh| (#1# 99 T ELT)) (|sincos| (((|Record| (|:| |sin| #2#) (|:| |cos| #2#)) #2#) 54 T ELT)) (|sin| (#1# 55 T ELT)) (|sech| (#1# 104 T ELT)) (|sec| (#1# 66 T ELT)) (|log| (#1# 40 T ELT)) (|exp| (#1# 37 T ELT)) (|csch| (#1# 105 T ELT)) (|csc| (#1# 67 T ELT)) (|coth| (#1# 103 T ELT)) (|cot| (#1# 62 T ELT)) (|cosh| (#1# 100 T ELT)) (|cos| (#1# 56 T ELT)) (|atanh| (#1# 113 T ELT)) (|atan| (#1# 88 T ELT)) (|asinh| (#1# 107 T ELT)) (|asin| (#1# 84 T ELT)) (|asech| (#1# 117 T ELT)) (|asec| (#1# 92 T ELT)) (|acsch| (#1# 119 T ELT)) (|acsc| (#1# 94 T ELT)) (|acoth| (#1# 115 T ELT)) (|acot| (#1# 90 T ELT)) (|acosh| (#1# 109 T ELT)) (|acos| (#1# 86 T ELT)) (** ((#2# #2# #2#) 41 T ELT)))
+(((|StreamTranscendentalFunctions| |#1|) (CATEGORY |package| (SIGNATURE |exp| #1=(#2=(|Stream| |#1|) #2#)) (SIGNATURE |log| #1#) (SIGNATURE ** (#2# #2# #2#)) (SIGNATURE |sincos| ((|Record| (|:| |sin| #2#) (|:| |cos| #2#)) #2#)) (SIGNATURE |sin| #1#) (SIGNATURE |cos| #1#) (SIGNATURE |tan| #1#) (SIGNATURE |cot| #1#) (SIGNATURE |sec| #1#) (SIGNATURE |csc| #1#) (SIGNATURE |asin| #1#) (SIGNATURE |acos| #1#) (SIGNATURE |atan| #1#) (SIGNATURE |acot| #1#) (SIGNATURE |asec| #1#) (SIGNATURE |acsc| #1#) (SIGNATURE |sinhcosh| ((|Record| (|:| |sinh| #2#) (|:| |cosh| #2#)) #2#)) (SIGNATURE |sinh| #1#) (SIGNATURE |cosh| #1#) (SIGNATURE |tanh| #1#) (SIGNATURE |coth| #1#) (SIGNATURE |sech| #1#) (SIGNATURE |csch| #1#) (SIGNATURE |asinh| #1#) (SIGNATURE |acosh| #1#) (SIGNATURE |atanh| #1#) (SIGNATURE |acoth| #1#) (SIGNATURE |asech| #1#) (SIGNATURE |acsch| #1#)) (|Algebra| (|Fraction| (|Integer|)))) (T |StreamTranscendentalFunctions|))
+((|acsch| #1=(*1 *2 *2) #2=(AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 #3=(|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|asech| #1# #2#) (|acoth| #1# #2#) (|atanh| #1# #2#) (|acosh| #1# #2#) (|asinh| #1# #2#) (|csch| #1# #2#) (|sech| #1# #2#) (|coth| #1# #2#) (|tanh| #1# #2#) (|cosh| #1# #2#) (|sinh| #1# #2#) (|sinhcosh| #4=(*1 *2 *3) (AND #5=(|ofCategory| *4 #3#) (|isDomain| *2 (|Record| (|:| |sinh| #6=(|Stream| *4)) (|:| |cosh| #6#))) #7=(|isDomain| *1 (|StreamTranscendentalFunctions| *4)) #8=(|isDomain| *3 #6#))) (|acsc| #1# #2#) (|asec| #1# #2#) (|acot| #1# #2#) (|atan| #1# #2#) (|acos| #1# #2#) (|asin| #1# #2#) (|csc| #1# #2#) (|sec| #1# #2#) (|cot| #1# #2#) (|tan| #1# #2#) (|cos| #1# #2#) (|sin| #1# #2#) (|sincos| #4# (AND #5# (|isDomain| *2 (|Record| (|:| |sin| #6#) (|:| |cos| #6#))) #7# #8#)) (** (*1 *2 *2 *2) #2#) (|log| #1# #2#) (|exp| #1# #2#))
+((|tanh| (#1=(#2=(|Stream| |#1|) #2#) 60 T ELT)) (|tan| (#1# 42 T ELT)) (|sinh| (#1# 56 T ELT)) (|sin| (#1# 38 T ELT)) (|sech| (#1# 63 T ELT)) (|sec| (#1# 45 T ELT)) (|log| (#1# 34 T ELT)) (|exp| (#1# 29 T ELT)) (|csch| (#1# 64 T ELT)) (|csc| (#1# 46 T ELT)) (|coth| (#1# 61 T ELT)) (|cot| (#1# 43 T ELT)) (|cosh| (#1# 58 T ELT)) (|cos| (#1# 40 T ELT)) (|atanh| (#1# 68 T ELT)) (|atan| (#1# 50 T ELT)) (|asinh| (#1# 66 T ELT)) (|asin| (#1# 48 T ELT)) (|asech| (#1# 71 T ELT)) (|asec| (#1# 53 T ELT)) (|acsch| (#1# 72 T ELT)) (|acsc| (#1# 54 T ELT)) (|acoth| (#1# 70 T ELT)) (|acot| (#1# 52 T ELT)) (|acosh| (#1# 69 T ELT)) (|acos| (#1# 51 T ELT)) (** ((#2# #2# #2#) 36 T ELT)))
+(((|StreamTranscendentalFunctionsNonCommutative| |#1|) (CATEGORY |package| (SIGNATURE |exp| #1=(#2=(|Stream| |#1|) #2#)) (SIGNATURE |log| #1#) (SIGNATURE ** (#2# #2# #2#)) (SIGNATURE |sin| #1#) (SIGNATURE |cos| #1#) (SIGNATURE |tan| #1#) (SIGNATURE |cot| #1#) (SIGNATURE |sec| #1#) (SIGNATURE |csc| #1#) (SIGNATURE |asin| #1#) (SIGNATURE |acos| #1#) (SIGNATURE |atan| #1#) (SIGNATURE |acot| #1#) (SIGNATURE |asec| #1#) (SIGNATURE |acsc| #1#) (SIGNATURE |sinh| #1#) (SIGNATURE |cosh| #1#) (SIGNATURE |tanh| #1#) (SIGNATURE |coth| #1#) (SIGNATURE |sech| #1#) (SIGNATURE |csch| #1#) (SIGNATURE |asinh| #1#) (SIGNATURE |acosh| #1#) (SIGNATURE |atanh| #1#) (SIGNATURE |acoth| #1#) (SIGNATURE |asech| #1#) (SIGNATURE |acsch| #1#)) (|Algebra| (|Fraction| (|Integer|)))) (T |StreamTranscendentalFunctionsNonCommutative|))
+((|acsch| #1=(*1 *2 *2) #2=(AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|asech| #1# #2#) (|acoth| #1# #2#) (|atanh| #1# #2#) (|acosh| #1# #2#) (|asinh| #1# #2#) (|csch| #1# #2#) (|sech| #1# #2#) (|coth| #1# #2#) (|tanh| #1# #2#) (|cosh| #1# #2#) (|sinh| #1# #2#) (|acsc| #1# #2#) (|asec| #1# #2#) (|acot| #1# #2#) (|atan| #1# #2#) (|acos| #1# #2#) (|asin| #1# #2#) (|csc| #1# #2#) (|sec| #1# #2#) (|cot| #1# #2#) (|tan| #1# #2#) (|cos| #1# #2#) (|sin| #1# #2#) (** (*1 *2 *2 *2) #2#) (|log| #1# #2#) (|exp| #1# #2#))
+((|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) 51 T ELT)) (|primitivePart| ((|#2| |#2| |#1|) 19 (|has| |#1| (|EuclideanDomain|)) ELT)))
+(((|SubResultantPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |subresultantVector| ((|PrimitiveArray| |#2|) |#2| |#2|)) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |primitivePart| (|#2| |#2| |#1|)) |%noBranch|)) (|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |SubResultantPackage|))
+((|primitivePart| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 #1=(|IntegralDomain|)) (|isDomain| *1 (|SubResultantPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|subresultantVector| (*1 *2 *3 *3) (AND (|ofCategory| *4 #1#) (|isDomain| *2 (|PrimitiveArray| *3)) (|isDomain| *1 (|SubResultantPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|traverse| (($ $ #4=(|List| #5=(|NonNegativeInteger|))) 79 T ELT)) (|subspace| (#6=($) 33 T ELT)) (|shallowCopy| (#7=($ $) 51 T ELT)) (|separate| (#8=(#9=(|List| $) $) 60 T ELT)) (|root?| (#10=(#3# $) 19 T ELT)) (|pointData| (((|List| #11=(|Point| |#2|)) $) 86 T ELT)) (|parent| (#7# 80 T ELT)) (|numberOfChildren| (#12=(#5# $) 47 T ELT)) (|new| (#6# 32 T ELT)) (|modifyPoint| (#13=($ $ #4# #11#) 72 T ELT) (#14=($ $ #4# #5#) 73 T ELT) (($ $ #5# #11#) 75 T ELT)) (|merge| (($ $ $) 57 T ELT) (($ #9#) 59 T ELT)) (|level| (#12# 87 T ELT)) (|leaf?| (#10# 15 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|internal?| (#10# 22 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|extractProperty| ((#15=(|SubSpaceComponentProperty|) $) 85 T ELT)) (|extractPoint| ((#11# $) 81 T ELT)) (|extractIndex| (#12# 82 T ELT)) (|extractClosed| (#10# 84 T ELT)) (|defineProperty| (($ $ #4# #15#) 78 T ELT)) (|deepCopy| (#7# 52 T ELT)) (|coerce| (((|OutputForm|) $) 99 T ELT)) (|closeComponent| (($ $ #4# #3#) 77 T ELT)) (|children| (#8# 11 T ELT)) (|child| (($ $ #5#) 46 T ELT)) (|birth| (#7# 43 T ELT)) (|before?| #1#) (|addPointLast| (($ $ $ #11# #5#) 68 T ELT)) (|addPoint2| (($ $ #11#) 67 T ELT)) (|addPoint| (#13# 66 T ELT) (#14# 70 T ELT) ((#5# $ #11#) 71 T ELT)) (= (#2# 92 T ELT)))
+(((|SubSpace| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |leaf?| #1=(#2=(|Boolean|) $)) (SIGNATURE |root?| #1#) (SIGNATURE |internal?| #1#) (SIGNATURE |new| #3=($)) (SIGNATURE |subspace| #3#) (SIGNATURE |birth| #4=($ $)) (SIGNATURE |child| ($ $ #5=(|NonNegativeInteger|))) (SIGNATURE |children| #6=(#7=(|List| $) $)) (SIGNATURE |numberOfChildren| #8=(#5# $)) (SIGNATURE |shallowCopy| #4#) (SIGNATURE |deepCopy| #4#) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge| ($ #7#)) (SIGNATURE |separate| #6#) (SIGNATURE |addPoint| #9=($ $ #10=(|List| #5#) #11=(|Point| |#2|))) (SIGNATURE |addPoint2| ($ $ #11#)) (SIGNATURE |addPointLast| ($ $ $ #11# #5#)) (SIGNATURE |modifyPoint| #9#) (SIGNATURE |addPoint| #12=($ $ #10# #5#)) (SIGNATURE |modifyPoint| #12#) (SIGNATURE |addPoint| (#5# $ #11#)) (SIGNATURE |modifyPoint| ($ $ #5# #11#)) (SIGNATURE |closeComponent| ($ $ #10# #2#)) (SIGNATURE |defineProperty| ($ $ #10# #13=(|SubSpaceComponentProperty|))) (SIGNATURE |traverse| ($ $ #10#)) (SIGNATURE |extractPoint| (#11# $)) (SIGNATURE |extractIndex| #8#) (SIGNATURE |extractClosed| #1#) (SIGNATURE |extractProperty| (#13# $)) (SIGNATURE |level| #8#) (SIGNATURE |parent| #4#) (SIGNATURE |pointData| ((|List| #11#) $)))) (|PositiveInteger|) (|Ring|)) (T |SubSpace|))
+((|leaf?| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 #3=(|Boolean|)) #4=(|isDomain| *1 #5=(|SubSpace| *3 *4)) #6=(|ofType| *3 #7=(|PositiveInteger|)) #8=(|ofCategory| *4 #9=(|Ring|)))) (|root?| #1# #2#) (|internal?| #1# #2#) (|new| #10=(*1 *1) #11=(AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 #7#) (|ofCategory| *3 #9#))) (|subspace| #10# #11#) (|birth| #12=(*1 *1 *1) #11#) (|child| #13=(*1 *1 *1 *2) #14=(AND #15=(|isDomain| *2 #16=(|NonNegativeInteger|)) #4# #6# #8#)) (|children| #1# #17=(AND (|isDomain| *2 (|List| #5#)) #4# #6# #8#)) (|numberOfChildren| #1# #14#) (|shallowCopy| #12# #11#) (|deepCopy| #12# #11#) (|merge| (*1 *1 *1 *1) #11#) (|merge| (*1 *1 *2) #17#) (|separate| #1# #17#) (|addPoint| #18=(*1 *1 *1 *2 *3) #19=(AND #20=(|isDomain| *2 (|List| #16#)) #21=(|isDomain| *3 #22=(|Point| *5)) #23=(|ofCategory| *5 #9#) #24=(|isDomain| *1 (|SubSpace| *4 *5)) #25=(|ofType| *4 #7#))) (|addPoint2| #13# (AND #26=(|isDomain| *2 #27=(|Point| *4)) #8# #4# #6#)) (|addPointLast| (*1 *1 *1 *1 *2 *3) (AND (|isDomain| *2 #22#) #28=(|isDomain| *3 #16#) #23# #24# #25#)) (|modifyPoint| #18# #19#) (|addPoint| #18# #29=(AND #20# #28# #24# #25# #23#)) (|modifyPoint| #18# #29#) (|addPoint| (*1 *2 *1 *3) (AND #21# #23# #15# #24# #25#)) (|modifyPoint| #18# (AND #15# #21# #23# #24# #25#)) (|closeComponent| #18# (AND #20# (|isDomain| *3 #3#) #24# #25# #23#)) (|defineProperty| #18# (AND #20# (|isDomain| *3 #30=(|SubSpaceComponentProperty|)) #24# #25# #23#)) (|traverse| #13# (AND #20# #4# #6# #8#)) (|extractPoint| #1# (AND #26# #4# #6# #8#)) (|extractIndex| #1# #14#) (|extractClosed| #1# #2#) (|extractProperty| #1# (AND (|isDomain| *2 #30#) #4# #6# #8#)) (|level| #1# #14#) (|parent| #12# #11#) (|pointData| #1# (AND (|isDomain| *2 (|List| #27#)) #4# #6# #8#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|rhs| ((|#2| $) 11 T ELT)) (|lhs| ((|#1| $) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|construct| (($ |#1| |#2|) 9 T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT)) (|before?| #1#) (= #1#))
+(((|SuchThat| |#1| |#2|) (|Join| #1=(|SetCategory|) (CATEGORY |domain| (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |lhs| (|#1| $)) (SIGNATURE |rhs| (|#2| $)))) #1# #1#) (T |SuchThat|))
+((|construct| (*1 *1 *2 *3) (AND #1=(|isDomain| *1 (|SuchThat| *2 *3)) #2=(|ofCategory| *2 #3=(|SetCategory|)) #4=(|ofCategory| *3 #3#))) (|lhs| #5=(*1 *2 *1) (AND #2# #1# #4#)) (|rhs| #5# (AND #2# (|isDomain| *1 (|SuchThat| *3 *2)) #4#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|predicate| (((|SpadAst|) $) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 16 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|SuchThatAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |predicate| ((|SpadAst|) $))))) (T |SuchThatAst|))
+((|predicate| (*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|SuchThatAst|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) $) NIL #8=(AND (|has| #7# (|EuclideanDomain|)) #9=(|has| |#1| (|Field|))) ELT)) (|variables| ((#10=(|List| #11=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| (#12=(#13=(|Symbol|) $) 11 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #14=(OR #15=(AND #16=(|has| #7# (|PolynomialFactorizationExplicit|)) #9#) #17=(AND (|has| #7# (|OrderedIntegralDomain|)) #9#) #18=(|has| |#1| (|IntegralDomain|))) ELT)) (|unitCanonical| #19=(#20=($ $) NIL #14# ELT)) (|unit?| (#5# NIL #14# ELT)) (|truncate| (#21=($ $ #22=(|Integer|)) NIL T ELT) (($ $ #22# #22#) 75 T ELT)) (|terms| ((#23=(|Stream| (|Record| (|:| |k| #22#) (|:| |c| |#1|))) $) NIL T ELT)) (|taylorRep| (#6# 42 T ELT)) (|taylorIfCan| (#24=((|Union| #7# #25="failed") $) 32 T ELT)) (|taylor| (#6# 33 T ELT)) (|tanh| (#20# 116 #26=(|has| |#1| (|Algebra| #27=(|Fraction| #22#))) ELT)) (|tan| (#20# 92 #26# ELT)) (|subtractIfCan| (#28=(#29=(|Union| $ #25#) $ $) NIL T ELT)) (|squareFreePolynomial| #30=(((|Factored| #31=(|SparseUnivariatePolynomial| $)) #31#) NIL #15# ELT)) (|squareFreePart| #32=(#20# NIL #9# ELT)) (|squareFree| #33=(((|Factored| $) $) NIL #9# ELT)) (|sqrt| (#20# NIL #26# ELT)) (|solveLinearPolynomialEquation| (((|Union| #34=(|List| #31#) #25#) #34# #31#) NIL #15# ELT)) (|sizeLess?| (#2# NIL #9# ELT)) (|sinh| (#20# 112 #26# ELT)) (|sin| (#20# 88 #26# ELT)) (|sign| (#35=(#22# $) NIL #17# ELT)) (|series| (($ #23#) NIL T ELT)) (|sech| (#20# 120 #26# ELT)) (|sec| (#20# 96 #26# ELT)) (|sample| (#36=($) NIL T CONST)) (|retractIfCan| (#24# 34 T ELT) (((|Union| #13# . #37=(#25#)) . #38=($)) NIL #39=(AND (|has| #7# (|RetractableTo| #13#)) #9#) ELT) (((|Union| #27# . #37#) . #38#) NIL #40=(AND (|has| #7# (|RetractableTo| #22#)) #9#) ELT) (((|Union| #22# . #37#) . #38#) NIL #40# ELT)) (|retract| (#6# 140 T ELT) (#12# NIL #39# ELT) ((#27# $) NIL #40# ELT) (#35# NIL #40# ELT)) (|removeZeroes| (#20# 37 T ELT) (#41=($ #22# $) 38 T ELT)) (|rem| #42=(#43=($ $ $) NIL #9# ELT)) (|reductum| #44=(#20# NIL T ELT)) (|reducedSystem| ((#45=(|Matrix| #7#) . #46=(#47=(|Matrix| $))) NIL #9# ELT) ((#48=(|Record| (|:| |mat| #45#) (|:| |vec| (|Vector| #7#))) . #49=(#47# #50=(|Vector| $))) NIL #9# ELT) ((#51=(|Record| (|:| |mat| #52=(|Matrix| #22#)) (|:| |vec| (|Vector| #22#))) . #49#) NIL #53=(AND (|has| #7# (|LinearlyExplicitRingOver| #22#)) #9#) ELT) ((#52# . #46#) NIL #53# ELT)) (|recip| ((#29# $) 54 T ELT)) (|rationalFunction| ((#54=(|Fraction| (|Polynomial| |#1|)) $ #22#) 74 #18# ELT) ((#54# $ #22# #22#) 76 #18# ELT)) (|random| (#36# NIL #55=(AND (|has| #7# (|IntegerNumberSystem|)) #9#) ELT)) (|quo| #42#) (|principalIdeal| (((|Record| (|:| |coef| #56=(|List| $)) #57=(|:| |generator| $)) #56#) NIL #9# ELT)) (|prime?| (#5# NIL #9# ELT)) (|positive?| #58=(#5# NIL #17# ELT)) (|pole?| (#5# 28 T ELT)) (|pi| (#36# NIL #26# ELT)) (|patternMatch| ((#59=(|PatternMatchResult| #60=(|Float|) . #61=($)) $ #62=(|Pattern| #60#) #59#) NIL (AND (|has| #7# (|PatternMatchable| #60#)) #9#) ELT) ((#63=(|PatternMatchResult| #22# . #61#) $ #64=(|Pattern| #22#) #63#) NIL (AND (|has| #7# (|PatternMatchable| #22#)) #9#) ELT)) (|order| (#35# NIL T ELT) ((#22# $ #22#) 26 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #32#) (|numer| (#6# 44 #9# ELT)) (|nthRoot| (#21# NIL #26# ELT)) (|nextItem| (#65=((|Maybe| $) $) NIL #66=(AND (|has| #7# (|StepThrough|)) #9#) ELT)) (|negative?| #58#) (|multiplyExponents| #67=(($ $ #68=(|PositiveInteger|)) NIL T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #22#) $) NIL T ELT)) (|multiEuclidean| (((|Union| #56# #25#) #56# $) NIL #9# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #22#) 19 T ELT) (($ $ #11# #22#) NIL T ELT) (($ $ #10# (|List| #22#)) NIL T ELT)) (|min| #69=(#43# NIL #70=(OR #17# (AND (|has| #7# (|OrderedSet|)) #9#)) ELT)) (|max| #69#) (|map| (($ (|Mapping| |#1| |#1|) . #71=($)) NIL T ELT) (($ #72=(|Mapping| #7# #7#) . #71#) NIL #9# ELT)) (|log| (#20# 81 #26# ELT)) (|leftReducedSystem| ((#45# . #73=(#50#)) NIL #9# ELT) ((#48# . #74=(#50# $)) NIL #9# ELT) ((#51# . #74#) NIL #53# ELT) ((#52# . #73#) NIL #53# ELT)) (|leadingMonomial| #44#) (|leadingCoefficient| (#75=(|#1| $) NIL T ELT)) (|lcm| #76=(($ #56#) NIL #9# ELT) #42#) (|laurent| (($ #22# #7#) 36 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #32#) (|integrate| (#20# 79 #26# ELT) (#77=($ $ #13#) NIL (OR (AND #26# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #22#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #26# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #13#))) (|has| |#1| (SIGNATURE |variables| (#78=(|List| #13#) |#1|))))) ELT) (#79=($ $ #80=(|Variable| |#2|)) 80 #26# ELT)) (|init| (#36# NIL #66# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#31# #31# #31#) NIL #9# ELT)) (|gcd| #76# #42#) (|fractionPart| (#20# NIL #8# ELT)) (|floor| #81=(#6# NIL #55# ELT)) (|factorSquareFreePolynomial| #30#) (|factorPolynomial| #30#) (|factor| #33#) (|extendedEuclidean| (((|Union| (|Record| #82=(|:| |coef1| $) #83=(|:| |coef2| $)) #25#) $ $ $) NIL #9# ELT) (((|Record| #82# #83# #57#) $ $) NIL #9# ELT)) (|extend| (#21# 158 T ELT)) (|exquo| (#28# 55 #14# ELT)) (|expressIdealMember| (((|Maybe| #56#) #56# $) NIL #9# ELT)) (|exp| (#20# 82 #26# ELT)) (|eval| (((|Stream| |#1|) $ |#1|) NIL #84=(|has| |#1| (SIGNATURE ** (|#1| |#1| #22#))) ELT) (($ $ #13# #7#) NIL #85=(AND (|has| #7# (|InnerEvalable| #13# #7#)) #9#) ELT) (($ $ #78# #86=(|List| #7#)) NIL #85# ELT) (($ $ (|List| #87=(|Equation| #7#))) NIL #88=(AND (|has| #7# (|Evalable| #7#)) #9#) ELT) (($ $ #87#) NIL #88# ELT) (($ $ #7# #7#) NIL #88# ELT) (($ $ #86# #86#) NIL #88# ELT)) (|euclideanSize| ((#89=(|NonNegativeInteger|) $) NIL #9# ELT)) (|elt| (#90=(|#1| $ #22#) NIL T ELT) (#43# 61 (|has| #22# (|SemiGroup|)) ELT) (#91=($ $ #7#) NIL (AND (|has| #7# (|Eltable| #7# #7#)) #9#) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #9# ELT)) (|differentiate| #92=(($ $ #72# #89#) NIL #9# ELT) #93=(($ $ #72#) NIL #9# ELT) (#79# 57 T ELT) (#20# 56 #94=(OR (AND (|has| #7# (|DifferentialRing|)) #9#) (AND (|has| #7# (|DifferentialSpace|)) #9#) #95=(|has| |#1| (SIGNATURE * (|#1| #22# |#1|)))) ELT) #96=(#97=($ $ #89#) NIL #94# ELT) #98=(#77# NIL #99=(OR (AND (|has| #7# #100=(|PartialDifferentialRing| #13#)) #9#) (AND (|has| #7# (|PartialDifferentialSpace| #13#)) #9#) (AND (|has| |#1| #100#) #95#)) ELT) #101=(($ $ #78#) NIL #99# ELT) #102=(($ $ #13# #89#) NIL #99# ELT) #103=(($ $ #78# (|List| #89#)) NIL #99# ELT)) (|denominator| #32#) (|denom| (#6# 46 #9# ELT)) (|degree| (#35# 43 T ELT)) (|csch| (#20# 122 #26# ELT)) (|csc| (#20# 98 #26# ELT)) (|coth| (#20# 118 #26# ELT)) (|cot| (#20# 94 #26# ELT)) (|cosh| (#20# 114 #26# ELT)) (|cos| (#20# 90 #26# ELT)) (|convert| ((#104=(|InputForm|) . #105=($)) NIL (AND (|has| #7# (|ConvertibleTo| #104#)) #9#) ELT) ((#60# . #105#) NIL #106=(AND (|has| #7# (|RealConstant|)) #9#) ELT) (((|DoubleFloat|) . #105#) NIL #106# ELT) ((#62# . #105#) NIL (AND (|has| #7# (|ConvertibleTo| #62#)) #9#) ELT) ((#64# . #105#) NIL (AND (|has| #7# (|ConvertibleTo| #64#)) #9#) ELT)) (|conditionP| (((|Union| #50# #25#) #47#) NIL #107=(AND (|has| $ #108=(|CharacteristicNonZero|)) #16# #9#) ELT)) (|complete| #44#) (|coerce| (((|OutputForm|) $) 162 T ELT) (($ #22#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #7#) 30 T ELT) (($ #80#) 25 T ELT) (($ #13#) NIL #39# ELT) #19# (($ #27#) NIL (OR #40# #26#) ELT)) (|coefficient| (#90# 77 T ELT)) (|charthRoot| (#65# NIL (OR #107# (AND (|has| #7# #108#) #9#) (|has| |#1| #108#)) ELT)) (|characteristic| ((#89#) NIL T CONST)) (|center| (#75# 12 T ELT)) (|ceiling| #81#) (|before?| #1#) (|atanh| (#20# 128 #26# ELT)) (|atan| (#20# 104 #26# ELT)) (|associates?| (#2# NIL #14# ELT)) (|asinh| (#20# 124 #26# ELT)) (|asin| (#20# 100 #26# ELT)) (|asech| (#20# 132 #26# ELT)) (|asec| (#20# 108 #26# ELT)) (|approximate| (#90# NIL (AND #84# (|has| |#1| (SIGNATURE |coerce| (|#1| #13#)))) ELT)) (|annihilate?| #1#) (|acsch| (#20# 134 #26# ELT)) (|acsc| (#20# 110 #26# ELT)) (|acoth| (#20# 130 #26# ELT)) (|acot| (#20# 106 #26# ELT)) (|acosh| (#20# 126 #26# ELT)) (|acos| (#20# 102 #26# ELT)) (|abs| (#20# NIL #17# ELT)) (|Zero| (#36# 21 T CONST)) (|One| (#36# 16 T CONST)) (D #92# #93# (#79# NIL T ELT) (#20# NIL #94# ELT) #96# #98# #101# #102# #103#) (>= #109=(#2# NIL #70# ELT)) (> #109#) (= #1#) (<= #109#) (< #109#) (/ (#110=($ $ |#1|) NIL #9# ELT) (#43# 49 #9# ELT) (($ #7# #7#) 50 #9# ELT)) (- #44# (#43# NIL T ELT)) (+ (#43# 23 T ELT)) (** #67# (#97# 60 T ELT) (#21# NIL #9# ELT) (#43# 83 #26# ELT) (#111=($ $ #27#) 137 #26# ELT)) (* (($ #68# $) NIL T ELT) (($ #89# $) NIL T ELT) (#41# NIL T ELT) (#43# 35 T ELT) (#110# NIL T ELT) (($ |#1| . #112=($)) NIL T ELT) (#91# 48 #9# ELT) (($ #7# $) 47 #9# ELT) (($ #27# . #112#) NIL #26# ELT) (#111# NIL #26# ELT)))
+(((|SparseUnivariateLaurentSeries| |#1| |#2| |#3|) (|Join| (|UnivariateLaurentSeriesConstructorCategory| |#1| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1#)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |SparseUnivariateLaurentSeries|))
+((|coerce| (*1 *1 *2) (AND #1=(|isDomain| *2 (|Variable| *4)) #2=(|ofType| *4 (|Symbol|)) #3=(|isDomain| *1 (|SparseUnivariateLaurentSeries| *3 *4 *5)) #4=(|ofCategory| *3 (|Ring|)) #5=(|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND #1# #2# #3# (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) #4# #5#)))
+((|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) 26 T ELT) ((|#2| |#2| (|Symbol|)) 28 T ELT)))
+(((|FunctionSpaceSum| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sum| (|#2| |#2| (|Symbol|))) (SIGNATURE |sum| (|#2| |#2| (|SegmentBinding| |#2|)))) (|Join| (|IntegralDomain|) (|RetractableTo| #1=(|Integer|)) (|LinearlyExplicitRingOver| #1#)) (|Join| (|FunctionSpace| |#1|) (|CombinatorialOpsCategory|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (T |FunctionSpaceSum|))
+((|sum| #1=(*1 *2 *2 *3) (AND (|isDomain| *3 (|SegmentBinding| *2)) #2=(|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|CombinatorialOpsCategory|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) #3=(|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#))) #5=(|isDomain| *1 (|FunctionSpaceSum| *4 *2)))) (|sum| #1# (AND (|isDomain| *3 (|Symbol|)) #3# #5# #2#)))
+((|sum| ((#1=(|Union| #2=(|Fraction| #3=(|Polynomial| |#1|)) (|Expression| |#1|)) #2# (|SegmentBinding| #2#)) 31 T ELT) ((#2# #3# (|SegmentBinding| #3#)) 44 T ELT) ((#1# #2# #4=(|Symbol|)) 33 T ELT) ((#2# #3# #4#) 36 T ELT)))
+(((|RationalFunctionSum| |#1|) (CATEGORY |package| (SIGNATURE |sum| (#1=(|Fraction| #2=(|Polynomial| |#1|)) #2# #3=(|Symbol|))) (SIGNATURE |sum| (#4=(|Union| #1# (|Expression| |#1|)) #1# #3#)) (SIGNATURE |sum| (#1# #2# (|SegmentBinding| #2#))) (SIGNATURE |sum| (#4# #1# (|SegmentBinding| #1#)))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (T |RationalFunctionSum|))
+((|sum| #1=(*1 *2 *3 *4) (AND (|isDomain| *4 (|SegmentBinding| #2=(|Fraction| #3=(|Polynomial| *5)))) #4=(|isDomain| *3 #2#) #5=(|ofCategory| *5 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Union| *3 #6=(|Expression| *5))) #7=(|isDomain| *1 (|RationalFunctionSum| *5)))) (|sum| #1# (AND (|isDomain| *4 (|SegmentBinding| #3#)) #8=(|isDomain| *3 #3#) #5# (|isDomain| *2 (|Fraction| *3)) #7#)) (|sum| #1# (AND #9=(|isDomain| *4 (|Symbol|)) #5# (|isDomain| *2 (|Union| #2# #6#)) #7# #4#)) (|sum| #1# (AND #9# #5# (|isDomain| *2 #2#) #7# #8#)))
+((~= (#1=(#2=(|Boolean|) $ $) 172 T ELT)) (|zero?| (#3=(#2# $) 44 T ELT)) (|vectorise| ((#4=(|Vector| |#1|) $ #5=(|NonNegativeInteger|)) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|unmakeSUP| (($ #8=(|SparseUnivariatePolynomial| |#1|)) NIL T ELT)) (|univariate| ((#9=(|SparseUnivariatePolynomial| $) $ #7#) 83 T ELT) (#10=(#8# $) 72 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #11=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| (#12=($ $) 166 #11# ELT)) (|unit?| (#3# NIL #11# ELT)) (|totalDegree| #13=(#14=(#5# $) NIL T ELT) ((#5# $ #6#) NIL T ELT)) (|subtractIfCan| (#15=(#16=(|Union| $ #17="failed") $ $) NIL T ELT)) (|subResultantGcd| (#18=($ $ $) 160 #11# ELT)) (|squareFreePolynomial| (#19=((|Factored| #9#) #9#) 97 #20=(|has| |#1| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| (#12# NIL #21=(|has| |#1| (|GcdDomain|)) ELT)) (|squareFree| (#22=((|Factored| $) $) NIL #21# ELT)) (|solveLinearPolynomialEquation| (((|Union| #23=(|List| #9#) #17#) #23# #9#) 117 #20# ELT)) (|sizeLess?| (#1# NIL #24=(|has| |#1| (|Field|)) ELT)) (|shiftRight| (#25=($ $ #5#) 62 T ELT)) (|shiftLeft| (#25# 64 T ELT)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL #21# ELT)) (|sample| (#26=($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| . #27=(#17#)) . #28=($)) NIL T ELT) (((|Union| #29=(|Fraction| #30=(|Integer|)) . #27#) . #28#) NIL #31=(|has| |#1| (|RetractableTo| #29#)) ELT) (((|Union| #30# . #27#) . #28#) NIL #32=(|has| |#1| (|RetractableTo| #30#)) ELT) #33=(((|Union| #7# . #27#) . #28#) NIL T ELT)) (|retract| #34=(#35=(|#1| . #36=($)) NIL T ELT) ((#29# . #36#) NIL #31# ELT) ((#30# . #36#) NIL #32# ELT) ((#7# . #36#) NIL T ELT)) (|resultant| (($ $ $ #7#) NIL #37=(|has| |#1| (|CommutativeRing|)) ELT) ((|#1| $ $) 162 #37# ELT)) (|rem| #38=(#18# NIL #24# ELT)) (|reductum| (#12# 81 T ELT)) (|reducedSystem| ((#39=(|Matrix| #30#) . #40=(#41=(|Matrix| $))) NIL #42=(|has| |#1| (|LinearlyExplicitRingOver| #30#)) ELT) ((#43=(|Record| (|:| |mat| #39#) (|:| |vec| (|Vector| #30#))) . #44=(#41# #45=(|Vector| $))) NIL #42# ELT) ((#46=(|Record| (|:| |mat| #47=(|Matrix| |#1|)) (|:| |vec| #4#)) . #44#) NIL T ELT) ((#47# . #40#) NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|quo| #38#) (|pseudoRemainder| (#18# 133 T ELT)) (|pseudoQuotient| (#18# NIL #11# ELT)) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) #48=(|:| |quotient| $) #49=(|:| |remainder| $)) $ $) NIL #11# ELT)) (|principalIdeal| (((|Record| (|:| |coef| #50=(|List| $)) #51=(|:| |generator| $)) #50#) NIL #24# ELT)) (|primitivePart| (#12# 167 #21# ELT) #52=(#53=($ $ #7#) NIL #21# ELT)) (|primitiveMonomials| #54=((#50# $) NIL T ELT)) (|prime?| (#3# NIL #20# ELT)) (|pomopo!| (($ $ |#1| #5# $) 70 T ELT)) (|patternMatch| ((#55=(|PatternMatchResult| #56=(|Float|) . #57=($)) $ #58=(|Pattern| #56#) #55#) NIL (AND (|has| #7# #59=(|PatternMatchable| #56#)) (|has| |#1| #59#)) ELT) ((#60=(|PatternMatchResult| #30# . #57#) $ #61=(|Pattern| #30#) #60#) NIL (AND (|has| #7# #62=(|PatternMatchable| #30#)) (|has| |#1| #62#)) ELT)) (|outputForm| ((#63=(|OutputForm|) $ #63#) 150 T ELT)) (|order| ((#5# $ $) NIL #11# ELT)) (|opposite?| #64=(#1# NIL T ELT)) (|one?| (#3# 49 T ELT)) (|numberOfMonomials| #13#) (|nextItem| (#65=((|Maybe| $) $) NIL #66=(|has| |#1| (|StepThrough|)) ELT)) (|multivariate| (($ #8# #7#) 74 T ELT) (($ #9# #7#) 91 T ELT)) (|multiplyExponents| (#25# 52 T ELT)) (|multiEuclidean| ((#67=(|Union| #50# #17#) #50# $) NIL #24# ELT)) (|monomials| #54#) (|monomial?| (#3# NIL T ELT)) (|monomial| (($ |#1| #5#) 89 T ELT) #68=(($ $ #7# #5#) NIL T ELT) #69=(($ $ #6# #70=(|List| #5#)) NIL T ELT)) (|monicDivide| ((#71=(|Record| #48# #49#) $ $ #7#) NIL T ELT) (#72=(#71# $ $) 155 T ELT)) (|minimumDegree| #13# #73=((#5# $ #7#) NIL T ELT) #74=((#70# $ #6#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #5# #5#) $) NIL T ELT)) (|map| (($ #75=(|Mapping| |#1| |#1|) $) NIL T ELT)) (|makeSUP| (#10# NIL T ELT)) (|mainVariable| #33#) (|leftReducedSystem| ((#39# . #76=(#45#)) NIL #42# ELT) ((#43# . #77=(#45# $)) NIL #42# ELT) ((#46# . #77#) NIL T ELT) ((#47# . #76#) NIL T ELT)) (|leadingMonomial| #78=(#12# NIL T ELT)) (|leadingCoefficient| (#35# 77 T ELT)) (|lcm| #79=(($ #50#) NIL #21# ELT) (#18# NIL #21# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|karatsubaDivide| ((#71# $ #5#) 61 T ELT)) (|isTimes| #80=((#67# $) NIL T ELT)) (|isPlus| #80#) (|isExpt| (((|Union| (|Record| (|:| |var| #7#) (|:| |exponent| #5#)) #17#) $) NIL T ELT)) (|integrate| (#12# NIL #81=(|has| |#1| (|Algebra| #29#)) ELT)) (|init| (#26# NIL #66# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| (#3# 51 T ELT)) (|ground| #34#) (|gcdPolynomial| ((#9# #9# #9#) 105 #21# ELT)) (|gcd| #79# (#18# 169 #21# ELT)) (|fmecg| (($ $ #5# |#1| $) 125 T ELT)) (|factorSquareFreePolynomial| (#19# 103 #20# ELT)) (|factorPolynomial| (#19# 102 #20# ELT)) (|factor| (#22# 110 #20# ELT)) (|extendedEuclidean| (((|Union| (|Record| #82=(|:| |coef1| $) #83=(|:| |coef2| $)) #17#) $ $ $) NIL #24# ELT) (((|Record| #82# #83# #51#) $ $) NIL #24# ELT)) (|exquo| ((#16# $ |#1|) 165 #11# ELT) (#15# 126 #11# ELT)) (|expressIdealMember| (((|Maybe| #50#) #50# $) NIL #24# ELT)) (|eval| (($ $ (|List| #84=(|Equation| $))) NIL T ELT) (($ $ #84#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #50# #50#) NIL T ELT) (($ $ #7# |#1|) NIL T ELT) (($ $ #6# #85=(|List| |#1|)) NIL T ELT) (($ $ #7# $) NIL T ELT) (($ $ #6# #50#) NIL T ELT)) (|euclideanSize| (#14# NIL #24# ELT)) (|elt| ((|#1| $ |#1|) 152 T ELT) (#18# 153 T ELT) ((#86=(|Fraction| $) #86# #86#) NIL #11# ELT) ((|#1| #86# |#1|) NIL #24# ELT) ((#86# $ #86#) NIL #11# ELT)) (|divideExponents| ((#16# $ #5#) 55 T ELT)) (|divide| (#72# 173 #24# ELT)) (|discriminant| (#53# NIL #37# ELT) (#35# 158 #37# ELT)) (|differentiate| #69# #68# #87=(($ $ #6#) NIL T ELT) #88=(#53# NIL T ELT) #78# #89=(#25# NIL T ELT) #90=(($ $ #75#) NIL T ELT) #91=(($ $ #75# #5#) NIL T ELT) (($ $ #75# $) NIL T ELT) #92=(($ $ #93=(|Symbol|)) NIL #94=(|has| |#1| (|PartialDifferentialSpace| #93#)) ELT) #95=(($ $ #96=(|List| #93#)) NIL #94# ELT) #97=(($ $ #93# #5#) NIL #94# ELT) #98=(($ $ #96# #70#) NIL #94# ELT)) (|degree| (#14# 79 T ELT) #73# #74#) (|convert| ((#58# . #99=($)) NIL (AND (|has| #7# #100=(|ConvertibleTo| #58#)) (|has| |#1| #100#)) ELT) ((#61# . #99#) NIL (AND (|has| #7# #101=(|ConvertibleTo| #61#)) (|has| |#1| #101#)) ELT) ((#102=(|InputForm|) . #99#) NIL (AND (|has| #7# #103=(|ConvertibleTo| #102#)) (|has| |#1| #103#)) ELT)) (|content| (#35# 164 #21# ELT) #52#) (|conditionP| (((|Union| #45# #17#) #41#) NIL #104=(AND (|has| $ #105=(|CharacteristicNonZero|)) #20#) ELT)) (|composite| (#15# NIL #11# ELT) (((|Union| #86# #17#) #86# $) NIL #11# ELT)) (|coerce| ((#63# $) 151 T ELT) (($ #30#) NIL T ELT) (($ |#1|) 78 T ELT) (($ #7#) NIL T ELT) (($ #29#) NIL (OR #81# #31#) ELT) (#12# NIL #11# ELT)) (|coefficients| ((#85# $) NIL T ELT)) (|coefficient| ((|#1| $ #5#) NIL T ELT) #68# #69#) (|charthRoot| (#65# NIL (OR #104# (|has| |#1| #105#)) ELT)) (|characteristic| ((#5#) NIL T CONST)) (|binomThmExpt| (($ $ $ #5#) 42 #37# ELT)) (|before?| #64#) (|associates?| (#1# NIL #11# ELT)) (|annihilate?| #64#) (|Zero| (#26# 18 T CONST)) (|One| (#26# 20 T CONST)) (D #69# #68# #87# #88# #78# #89# #90# #91# #92# #95# #97# #98#) (= (#1# 122 T ELT)) (/ (#106=($ $ |#1|) 174 #24# ELT)) (- #78# (#18# NIL T ELT)) (+ (#18# 92 T ELT)) (** (($ $ #107=(|PositiveInteger|)) 14 T ELT) (#25# 12 T ELT)) (* (($ #107# $) NIL T ELT) (($ #5# $) NIL T ELT) (($ #30# . #108=($)) NIL T ELT) (#18# 40 T ELT) (($ $ #29#) NIL #81# ELT) (($ #29# . #108#) NIL #81# ELT) (($ |#1| . #108#) 131 T ELT) (#106# NIL T ELT)))
+(((|SparseUnivariatePolynomial| |#1|) (|Join| (|UnivariatePolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| (#1=(|OutputForm|) $ #1#)) (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#1| $)))) (|Ring|)) (T |SparseUnivariatePolynomial|))
+((|outputForm| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) #1=(|isDomain| *1 (|SparseUnivariatePolynomial| *3)) #2=(|ofCategory| *3 (|Ring|)))) (|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) #1# #2#)))
+((|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) 13 T ELT)))
+(((|SparseUnivariatePolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)))) #1=(|Ring|) #1#) (T |SparseUnivariatePolynomialFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|isDomain| *1 (|SparseUnivariatePolynomialFunctions2| *5 *6)))))
+((|squareFree| (#1=((|Factored| #2=(|SparseUnivariatePolynomial| (|Fraction| |#4|))) #2#) 51 T ELT)) (|factor| (#1# 52 T ELT)))
+(((|SupFractionFactorizer| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| #1=((|Factored| #2=(|SparseUnivariatePolynomial| (|Fraction| |#4|))) #2#)) (SIGNATURE |squareFree| #1#)) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|GcdDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |SupFractionFactorizer|))
+((|squareFree| #1=(*1 *2 *3) #2=(AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|GcdDomain|)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)) (|isDomain| *2 (|Factored| #3=(|SparseUnivariatePolynomial| (|Fraction| *7)))) (|isDomain| *1 (|SupFractionFactorizer| *4 *5 *6 *7)) (|isDomain| *3 #3#))) (|factor| #1# #2#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#8=(|Symbol|) $) 11 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #9# ELT)) (|unit?| (#5# NIL #9# ELT)) (|truncate| #12=(#13=($ $ #14=(|Fraction| #15=(|Integer|))) NIL T ELT) (($ $ #14# #14#) NIL T ELT)) (|terms| ((#16=(|Stream| (|Record| (|:| |k| #14#) (|:| |c| |#1|))) $) NIL T ELT)) (|tanh| #17=(#11# NIL #18=(|has| |#1| (|Algebra| #14#)) ELT)) (|tan| #17#) (|subtractIfCan| (#19=(#20=(|Union| $ #21="failed") $ $) NIL T ELT)) (|squareFreePart| #22=(#11# NIL #23=(|has| |#1| (|Field|)) ELT)) (|squareFree| #24=(((|Factored| $) $) NIL #23# ELT)) (|sqrt| #17#) (|sizeLess?| (#2# NIL #23# ELT)) (|sinh| #17#) (|sin| #17#) (|series| (($ #25=(|NonNegativeInteger|) #16#) NIL T ELT)) (|sech| #17#) (|sec| #17#) (|sample| (#26=($) NIL T CONST)) (|retractIfCan| (#27=((|Union| #28=(|SparseUnivariateLaurentSeries| |#1| |#2| |#3|) . #29=(#21#)) $) 33 T ELT) (((|Union| #30=(|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) . #29#) $) 36 T ELT)) (|retract| #31=(#32=(#28# . #33=($)) NIL T ELT) ((#30# . #33#) NIL T ELT)) (|rem| #34=(#35=($ $ $) NIL #23# ELT)) (|reductum| #36=(#11# NIL T ELT)) (|recip| ((#20# $) NIL T ELT)) (|rationalPower| (#37=(#14# $) 59 T ELT)) (|quo| #34#) (|puiseux| (($ #14# #28#) NIL T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #38=(|List| $)) #39=(|:| |generator| $)) #38#) NIL #23# ELT)) (|prime?| (#5# NIL #23# ELT)) (|pole?| #4#) (|pi| (#26# NIL #18# ELT)) (|order| #40=(#37# NIL T ELT) ((#14# $ #14#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (#41=($ $ #15#) NIL #18# ELT)) (|multiplyExponents| #42=(($ $ #43=(|PositiveInteger|)) NIL T ELT) #12#) (|multiEuclidean| (((|Union| #38# #21#) #38# $) NIL #23# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #14#) 20 T ELT) (($ $ #7# #14#) NIL T ELT) (($ $ #6# (|List| #14#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| #17#) (|leadingMonomial| #36#) (|leadingCoefficient| (#44=(|#1| $) NIL T ELT)) (|lcm| #45=(($ #38#) NIL #23# ELT) #34#) (|laurentRep| (#32# 41 T ELT)) (|laurentIfCan| (#27# NIL T ELT)) (|laurent| #31#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #22#) (|integrate| (#11# 39 #18# ELT) (#46=($ $ #8#) NIL (OR (AND #18# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #15#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #18# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #8#))) (|has| |#1| (SIGNATURE |variables| (#47=(|List| #8#) |#1|))))) ELT) (#48=($ $ #49=(|Variable| |#2|)) 40 #18# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#50=(|SparseUnivariatePolynomial| $) #50# #50#) NIL #23# ELT)) (|gcd| #45# #34#) (|factor| #24#) (|extendedEuclidean| (((|Union| (|Record| #51=(|:| |coef1| $) #52=(|:| |coef2| $)) #21#) $ $ $) NIL #23# ELT) (((|Record| #51# #52# #39#) $ $) NIL #23# ELT)) (|extend| #12#) (|exquo| (#19# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #38#) #38# $) NIL #23# ELT)) (|exp| #17#) (|eval| (((|Stream| |#1|) $ |#1|) NIL #53=(|has| |#1| (SIGNATURE ** (|#1| |#1| #14#))) ELT)) (|euclideanSize| ((#25# $) NIL #23# ELT)) (|elt| #54=(#55=(|#1| $ #14#) NIL T ELT) (#35# NIL (|has| #14# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #23# ELT)) (|differentiate| #56=(#46# NIL #57=(AND (|has| |#1| (|PartialDifferentialRing| #8#)) #58=(|has| |#1| (SIGNATURE * (|#1| #14# |#1|)))) ELT) #59=(($ $ #47#) NIL #57# ELT) #60=(($ $ #8# #25#) NIL #57# ELT) #61=(($ $ #47# (|List| #25#)) NIL #57# ELT) (#11# 37 #58# ELT) #62=(#63=($ $ #25#) NIL #58# ELT) (#48# 38 T ELT)) (|degree| #40#) (|csch| #17#) (|csc| #17#) (|coth| #17#) (|cot| #17#) (|cosh| #17#) (|cos| #17#) (|complete| #36#) (|coerce| (((|OutputForm|) $) 62 T ELT) (($ #15#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #28#) 30 T ELT) (($ #30#) 31 T ELT) (($ #49#) 26 T ELT) (($ #14#) NIL #18# ELT) #10#) (|coefficient| #54#) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#25#) NIL T CONST)) (|center| (#44# 12 T ELT)) (|before?| #1#) (|atanh| #17#) (|atan| #17#) (|associates?| (#2# NIL #9# ELT)) (|asinh| #17#) (|asin| #17#) (|asech| #17#) (|asec| #17#) (|approximate| (#55# NIL (AND #53# (|has| |#1| (SIGNATURE |coerce| (|#1| #8#)))) ELT)) (|annihilate?| #1#) (|acsch| #17#) (|acsc| #17#) (|acoth| #17#) (|acot| #17#) (|acosh| #17#) (|acos| #17#) (|Zero| (#26# 22 T CONST)) (|One| (#26# 16 T CONST)) (D #56# #59# #60# #61# (#11# NIL #58# ELT) #62# (#48# NIL T ELT)) (= #1#) (/ (#64=($ $ |#1|) NIL #23# ELT) #34#) (- #36# #65=(#35# NIL T ELT)) (+ (#35# 24 T ELT)) (** #42# (#63# NIL T ELT) (#41# NIL #23# ELT) (#35# NIL #18# ELT) #66=(#13# NIL #18# ELT)) (* (($ #43# $) NIL T ELT) (($ #25# $) NIL T ELT) (($ #15# . #67=($)) NIL T ELT) #65# (#64# NIL T ELT) (($ |#1| . #67#) NIL T ELT) (($ #14# . #67#) NIL #18# ELT) #66#))
+(((|SparseUnivariatePuiseuxSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesConstructorCategory| |#1| (|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (|RetractableTo| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) (|CoercibleFrom| #1#) (CATEGORY |domain| (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |SparseUnivariatePuiseuxSeries|))
+((|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|SparseUnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 129 T ELT)) (|variables| ((#5=(|List| #6=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#7=(|Symbol|) $) 119 T ELT)) (|univariatePolynomial| ((#8=(|UnivariatePolynomial| |#2| |#1|) $ #9=(|NonNegativeInteger|)) 69 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #10=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #11=(#12=($ $) NIL #10# ELT)) (|unit?| (#4# NIL #10# ELT)) (|truncate| (#13=($ $ #9#) 85 T ELT) (($ $ #9# #9#) 82 T ELT)) (|terms| ((#14=(|Stream| (|Record| (|:| |k| #9#) (|:| |c| |#1|))) $) 105 T ELT)) (|tanh| (#12# 173 #15=(|has| |#1| (|Algebra| #16=(|Fraction| #17=(|Integer|)))) ELT)) (|tan| (#12# 149 #15# ELT)) (|subtractIfCan| (#18=(#19=(|Union| $ "failed") $ $) NIL T ELT)) (|sqrt| (#12# NIL #15# ELT)) (|sinh| (#12# 169 #15# ELT)) (|sin| (#12# 145 #15# ELT)) (|series| (($ #14#) 118 T ELT) (($ #20=(|Stream| |#1|)) 113 T ELT)) (|sech| (#12# 177 #15# ELT)) (|sec| (#12# 153 #15# ELT)) (|sample| (#21=($) NIL T CONST)) (|reductum| #22=(#12# NIL T ELT)) (|recip| ((#19# $) 25 T ELT)) (|quoByVar| (#12# 28 T ELT)) (|polynomial| ((#23=(|Polynomial| |#1|) $ #9#) 81 T ELT) ((#23# $ #9# #9#) 83 T ELT)) (|pole?| (#4# 124 T ELT)) (|pi| (#21# NIL #15# ELT)) (|order| (#24=(#9# $) 126 T ELT) ((#9# $ #9#) 128 T ELT)) (|opposite?| #1#) (|one?| #25=(#4# NIL T ELT)) (|nthRoot| (($ $ #17#) NIL #15# ELT)) (|multiplyExponents| #26=(($ $ #27=(|PositiveInteger|)) NIL T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #17#) $) NIL T ELT)) (|monomial?| #25#) (|monomial| (($ |#1| #9#) 13 T ELT) (($ $ #6# #9#) NIL T ELT) (($ $ #5# #28=(|List| #9#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| (#12# 135 #15# ELT)) (|leadingMonomial| #22#) (|leadingCoefficient| (#29=(|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integrate| (#12# 133 #15# ELT) (#30=($ $ #7#) NIL (OR (AND #15# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #17#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #15# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |variables| (#31=(|List| #7#) |#1|))))) ELT) (#32=($ $ #33=(|Variable| |#2|)) 134 #15# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|extend| (#13# 15 T ELT)) (|exquo| (#18# 26 #10# ELT)) (|exp| (#12# 137 #15# ELT)) (|eval| ((#20# $ |#1|) NIL #34=(|has| |#1| (SIGNATURE ** (|#1| |#1| #9#))) ELT)) (|elt| (#35=(|#1| $ #9#) 122 T ELT) (#36=($ $ $) 132 (|has| #9# (|SemiGroup|)) ELT)) (|differentiate| #37=(#30# NIL #38=(AND (|has| |#1| (|PartialDifferentialRing| #7#)) #39=(|has| |#1| (SIGNATURE * (|#1| #9# |#1|)))) ELT) #40=(($ $ #31#) NIL #38# ELT) #41=(($ $ #7# #9#) NIL #38# ELT) #42=(($ $ #31# #28#) NIL #38# ELT) (#12# 29 #39# ELT) #43=(#13# NIL #39# ELT) (#32# 31 T ELT)) (|degree| (#24# NIL T ELT)) (|csch| (#12# 179 #15# ELT)) (|csc| (#12# 155 #15# ELT)) (|coth| (#12# 175 #15# ELT)) (|cot| (#12# 151 #15# ELT)) (|cosh| (#12# 171 #15# ELT)) (|cos| (#12# 147 #15# ELT)) (|complete| #22#) (|coerce| (((|OutputForm|) $) 206 T ELT) (($ #17#) NIL T ELT) (($ #16#) NIL #15# ELT) #11# (($ |#1|) 130 (|has| |#1| (|CommutativeRing|)) ELT) (($ #8#) 55 T ELT) (($ #33#) 36 T ELT)) (|coefficients| ((#20# $) 101 T ELT)) (|coefficient| (#35# 121 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#9#) NIL T CONST)) (|center| (#29# 58 T ELT)) (|before?| #1#) (|atanh| (#12# 185 #15# ELT)) (|atan| (#12# 161 #15# ELT)) (|associates?| (#2# NIL #10# ELT)) (|asinh| (#12# 181 #15# ELT)) (|asin| (#12# 157 #15# ELT)) (|asech| (#12# 189 #15# ELT)) (|asec| (#12# 165 #15# ELT)) (|approximate| (#35# NIL (AND #34# (|has| |#1| (SIGNATURE |coerce| (|#1| #7#)))) ELT)) (|annihilate?| #1#) (|acsch| (#12# 191 #15# ELT)) (|acsc| (#12# 167 #15# ELT)) (|acoth| (#12# 187 #15# ELT)) (|acot| (#12# 163 #15# ELT)) (|acosh| (#12# 183 #15# ELT)) (|acos| (#12# 159 #15# ELT)) (|Zero| (#21# 17 T CONST)) (|One| (#21# 20 T CONST)) (D #37# #40# #41# #42# (#12# NIL #39# ELT) #43# (#32# NIL T ELT)) (= #1#) (/ (#44=($ $ |#1|) NIL #45=(|has| |#1| (|Field|)) ELT)) (- #22# (#36# 198 T ELT)) (+ (#36# 35 T ELT)) (** #26# (#13# NIL T ELT) (#44# 203 #45# ELT) (#36# 138 #15# ELT) (#46=($ $ #16#) 141 #15# ELT)) (* (($ #27# $) NIL T ELT) (($ #9# $) NIL T ELT) (($ #17# . #47=($)) NIL T ELT) (#36# 136 T ELT) (#44# NIL T ELT) (($ |#1| . #47#) NIL T ELT) (($ #16# . #47#) NIL #15# ELT) (#46# NIL #15# ELT)))
+(((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #2=(|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| (#2# $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ #1#)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |SparseUnivariateTaylorSeries|))
+((|coerce| #1=(*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3)) #2=(|ofCategory| *3 #3=(|Ring|)) #4=(|ofType| *4 #5=(|Symbol|)) #6=(|ofType| *5 *3) #7=(|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| *5 *4)) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *4 *5 *6)) (|ofCategory| *4 #3#) (|ofType| *5 #5#) (|ofType| *6 *4))) (|coerce| #1# (AND #8=(|isDomain| *2 (|Variable| *4)) #4# #7# #2# #6#)) (|integrate| (*1 *1 *1 *2) (AND #8# #4# #7# (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) #2# #6#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|superscript| (#4=($ $ #5=(|List| #6=(|OutputForm|))) 48 T ELT)) (|subscript| (#4# 46 T ELT)) (|string| (#7=(#8=(|String|) $) 88 T ELT)) (|scripts| ((#9=(|Record| (|:| |sub| #5#) (|:| |sup| #5#) (|:| |presup| #5#) (|:| |presub| #5#) (|:| |args| #5#)) $) 95 T ELT)) (|scripted?| ((#3# $) 86 T ELT)) (|script| (($ $ (|List| #5#)) 45 T ELT) (($ $ #9#) 85 T ELT)) (|sample| (#10=($) 151 T CONST)) (|retractIfCan| (((|Union| #11=(|Identifier|) "failed") $) 155 T ELT)) (|retract| ((#11# $) NIL T ELT)) (|resetNew| (((|Void|)) 123 T ELT)) (|patternMatch| ((#12=(|PatternMatchResult| #13=(|Integer|) . #14=($)) $ #15=(|Pattern| #13#) #12#) 55 T ELT) ((#16=(|PatternMatchResult| #17=(|Float|) . #14#) $ #18=(|Pattern| #17#) #16#) 62 T ELT)) (|new| (#10# 109 T ELT) (#19=($ $) 118 T ELT)) (|name| (#19# 87 T ELT)) (|min| #20=(($ $ $) NIL T ELT)) (|max| #20#) (|list| (((|List| $) $) 124 T ELT)) (|latex| (#7# 101 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|elt| (#4# 47 T ELT)) (|convert| (((|InputForm|) $) 33 T ELT) (((|Symbol|) $) 34 T ELT) ((#15# $) 66 T ELT) ((#18# $) 64 T ELT)) (|coerce| ((#6# $) 41 T ELT) (($ #8#) 35 T ELT) (($ #11#) 153 T ELT)) (|before?| #1#) (|argscript| (#4# 49 T ELT)) (>= #1#) (> #1#) (= (#2# 37 T ELT)) (<= #1#) (< (#2# 38 T ELT)))
+((#1=(|Symbol|) (|Join| (|OrderedSet|) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| #1#) (|CoercibleFrom| #2=(|String|)) (|RetractableTo| (|Identifier|)) (|ConvertibleTo| (|Pattern| #3=(|Integer|))) (|ConvertibleTo| (|Pattern| #4=(|Float|))) (|PatternMatchable| #3#) (|PatternMatchable| #4#) (CATEGORY |domain| (SIGNATURE |new| #5=($)) (SIGNATURE |new| #6=($ $)) (SIGNATURE |resetNew| ((|Void|))) (SIGNATURE |name| #6#) (SIGNATURE |scripted?| ((|Boolean|) $)) (SIGNATURE |scripts| (#7=(|Record| (|:| |sub| #8=(|List| (|OutputForm|))) (|:| |sup| #8#) (|:| |presup| #8#) (|:| |presub| #8#) (|:| |args| #8#)) $)) (SIGNATURE |script| ($ $ (|List| #8#))) (SIGNATURE |script| ($ $ #7#)) (SIGNATURE |subscript| #9=($ $ #8#)) (SIGNATURE |superscript| #9#) (SIGNATURE |argscript| #9#) (SIGNATURE |elt| #9#) (SIGNATURE |string| (#2# $)) (SIGNATURE |list| ((|List| $) $)) (SIGNATURE |sample| #5# |constant|)))) (T |Symbol|))
+((|new| #1=(*1 *1) #2=(|isDomain| *1 #3=(|Symbol|))) (|new| #4=(*1 *1 *1) #2#) (|resetNew| (*1 *2) (AND (|isDomain| *2 (|Void|)) #2#)) (|name| #4# #2#) (|scripted?| #5=(*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #2#)) (|scripts| #5# #6=(AND (|isDomain| *2 (|Record| (|:| |sub| #7=(|List| (|OutputForm|))) (|:| |sup| #7#) (|:| |presup| #7#) (|:| |presub| #7#) (|:| |args| #7#))) #2#)) (|script| #8=(*1 *1 *1 *2) (AND (|isDomain| *2 (|List| #7#)) #2#)) (|script| #8# #6#) (|subscript| #8# #9=(AND (|isDomain| *2 #7#) #2#)) (|superscript| #8# #9#) (|argscript| #8# #9#) (|elt| #8# #9#) (|string| #5# (AND (|isDomain| *2 (|String|)) #2#)) (|list| #5# (AND (|isDomain| *2 (|List| #3#)) #2#)) (|sample| #1# #2#))
+((|symFunc| ((#1=(|Vector| |#1|) |#1| (|PositiveInteger|)) 18 T ELT) ((#1# (|List| |#1|)) 25 T ELT)))
+(((|SymmetricFunctions| |#1|) (CATEGORY |package| (SIGNATURE |symFunc| (#1=(|Vector| |#1|) (|List| |#1|))) (SIGNATURE |symFunc| (#1# |#1| (|PositiveInteger|)))) (|Ring|)) (T |SymmetricFunctions|))
+((|symFunc| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Vector| *3)) (|isDomain| *1 (|SymmetricFunctions| *3)) (|ofCategory| *3 #1=(|Ring|)))) (|symFunc| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 #1#) (|isDomain| *2 (|Vector| *4)) (|isDomain| *1 (|SymmetricFunctions| *4)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #6=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #7=(#8=($ $) NIL #6# ELT)) (|unit?| (#5# NIL #6# ELT)) (|subtractIfCan| (#9=(#10=(|Union| $ #11="failed") $ $) NIL T ELT)) (|sample| #12=(#13=($) NIL T CONST)) (|retractIfCan| (((|Union| #14=(|Integer|) . #15=(#11#)) . #16=($)) NIL #17=(|has| |#1| (|RetractableTo| #14#)) ELT) (((|Union| #18=(|Fraction| #14#) . #15#) . #16#) NIL #19=(|has| |#1| (|RetractableTo| #18#)) ELT) (((|Union| |#1| . #15#) . #16#) NIL T ELT)) (|retract| ((#14# . #20=($)) NIL #17# ELT) ((#18# . #20#) NIL #19# ELT) #21=(#22=(|#1| . #20#) NIL T ELT)) (|reductum| #23=(#8# NIL T ELT)) (|recip| ((#10# $) NIL T ELT)) (|primitivePart| (#8# NIL #24=(|has| |#1| (|GcdDomain|)) ELT)) (|pomopo!| (($ $ |#1| #25=(|Partition|) $) NIL T ELT)) (|opposite?| #1#) (|one?| (#5# 18 T ELT)) (|numberOfMonomials| ((#26=(|NonNegativeInteger|) $) NIL T ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #25#) NIL T ELT)) (|minimumDegree| #27=((#25# $) NIL T ELT)) (|mapExponents| (($ (|Mapping| #25# #25#) $) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingMonomial| #23#) (|leadingCoefficient| #21#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #21#) (|fmecg| (($ $ #25# |#1| $) NIL (AND (|has| #25# (|CancellationAbelianMonoid|)) #6#) ELT)) (|exquo| (#9# NIL #6# ELT) ((#10# $ |#1|) NIL #6# ELT)) (|degree| #27#) (|content| (#22# NIL #24# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) NIL T ELT) #7# (($ |#1|) NIL T ELT) (($ #18#) NIL (OR #28=(|has| |#1| (|Algebra| #18#)) #19#) ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| ((|#1| $ #25#) NIL T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#26#) NIL T CONST)) (|binomThmExpt| (($ $ $ #26#) NIL (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| #1#) (|associates?| (#2# NIL #6# ELT)) (|annihilate?| #1#) (|Zero| (#13# 13 T CONST)) (|One| #12#) (= #1#) (/ (#29=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #23# (#30=($ $ $) NIL T ELT)) (+ (#30# 22 T ELT)) (** (($ $ #31=(|PositiveInteger|)) NIL T ELT) (($ $ #26#) NIL T ELT)) (* (($ #31# $) NIL T ELT) (($ #26# $) NIL T ELT) (($ #14# . #32=($)) NIL T ELT) (#30# 23 T ELT) (#29# NIL T ELT) (($ |#1| . #32#) 17 T ELT) (($ #18# . #32#) NIL #28# ELT) (($ $ #18#) NIL #28# ELT)))
+(((|SymmetricPolynomial| |#1|) (|Join| (|FiniteAbelianMonoidRing| |#1| #1=(|Partition|)) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| #1# (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| #2=(ATTRIBUTE |canonicalUnitNormal|)) #2# |%noBranch|))) (|Ring|)) (T |SymmetricPolynomial|))
+((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|Partition|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)) (|isDomain| *1 (|SymmetricPolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))))
+((|symbolTableOf| (((|SymbolTable|) #1=(|Symbol|) $) 26 T ELT)) (|showTheSymbolTable| (#2=($) 30 T ELT)) (|returnTypeOf| ((#3=(|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) #1# $) 23 T ELT)) (|returnType!| ((#4=(|Void|) #1# #3# $) 42 T ELT) ((#4# #1# #3#) 43 T ELT) ((#4# #3#) 44 T ELT)) (|printTypes| (#5=(#4# #1#) 59 T ELT)) (|printHeader| ((#4# #1# $) 56 T ELT) (#5# 57 T ELT) (#6=(#4#) 58 T ELT)) (|newSubProgram| (#5# 38 T ELT)) (|endSubProgram| (#7=(#1#) 37 T ELT)) (|empty| (#2# 35 T ELT)) (|declare!| ((#8=(|FortranType|) #1# #8# #1# $) 46 T ELT) ((#8# #9=(|List| #1#) #8# #1# $) 50 T ELT) ((#8# #1# #8#) 47 T ELT) ((#8# #1# #8# #1#) 51 T ELT)) (|currentSubProgram| (#7# 36 T ELT)) (|coerce| (((|OutputForm|) $) 29 T ELT)) (|clearTheSymbolTable| (#6# 31 T ELT) (#5# 34 T ELT)) (|argumentListOf| ((#9# #1# $) 25 T ELT)) (|argumentList!| ((#4# #1# #9# $) 39 T ELT) ((#4# #1# #9#) 40 T ELT) ((#4# #9#) 41 T ELT)))
+(((|TheSymbolTable|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |showTheSymbolTable| #1=($)) (SIGNATURE |clearTheSymbolTable| #2=(#3=(|Void|))) (SIGNATURE |clearTheSymbolTable| #4=(#3# #5=(|Symbol|))) (SIGNATURE |declare!| (#6=(|FortranType|) #5# #6# #5# $)) (SIGNATURE |declare!| (#6# #7=(|List| #5#) #6# #5# $)) (SIGNATURE |declare!| (#6# #5# #6#)) (SIGNATURE |declare!| (#6# #5# #6# #5#)) (SIGNATURE |newSubProgram| #4#) (SIGNATURE |currentSubProgram| #8=(#5#)) (SIGNATURE |endSubProgram| #8#) (SIGNATURE |argumentList!| (#3# #5# #7# $)) (SIGNATURE |argumentList!| (#3# #5# #7#)) (SIGNATURE |argumentList!| (#3# #7#)) (SIGNATURE |returnType!| (#3# #5# #9=(|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $)) (SIGNATURE |returnType!| (#3# #5# #9#)) (SIGNATURE |returnType!| (#3# #9#)) (SIGNATURE |printHeader| (#3# #5# $)) (SIGNATURE |printHeader| #4#) (SIGNATURE |printHeader| #2#) (SIGNATURE |printTypes| #4#) (SIGNATURE |empty| #1#) (SIGNATURE |returnTypeOf| (#9# #5# $)) (SIGNATURE |argumentListOf| (#7# #5# $)) (SIGNATURE |symbolTableOf| ((|SymbolTable|) #5# $))))) (T |TheSymbolTable|))
+((|showTheSymbolTable| #1=(*1 *1) #2=(|isDomain| *1 (|TheSymbolTable|))) (|clearTheSymbolTable| #3=(*1 *2) #4=(AND #5=(|isDomain| *2 (|Void|)) #2#)) (|clearTheSymbolTable| #6=(*1 *2 *3) #7=(AND #8=(|isDomain| *3 #9=(|Symbol|)) #5# #2#)) (|declare!| (*1 *2 *3 *2 *3 *1) #10=(AND #11=(|isDomain| *2 (|FortranType|)) #8# #2#)) (|declare!| (*1 *2 *3 *2 *4 *1) (AND #11# #12=(|isDomain| *3 #13=(|List| #9#)) (|isDomain| *4 #9#) #2#)) (|declare!| (*1 *2 *3 *2) #10#) (|declare!| (*1 *2 *3 *2 *3) #10#) (|newSubProgram| #6# #7#) (|currentSubProgram| #3# #14=(AND (|isDomain| *2 #9#) #2#)) (|endSubProgram| #3# #14#) (|argumentList!| #15=(*1 *2 *3 *4 *1) #16=(AND (|isDomain| *4 #13#) #8# #5# #2#)) (|argumentList!| #17=(*1 *2 *3 *4) #16#) (|argumentList!| #6# (AND #12# #5# #2#)) (|returnType!| #15# #18=(AND #8# (|isDomain| *4 #19=(|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) #5# #2#)) (|returnType!| #17# #18#) (|returnType!| #6# (AND (|isDomain| *3 #19#) #5# #2#)) (|printHeader| #20=(*1 *2 *3 *1) #7#) (|printHeader| #6# #7#) (|printHeader| #3# #4#) (|printTypes| #6# #7#) (|empty| #1# #2#) (|returnTypeOf| #20# (AND #8# (|isDomain| *2 #19#) #2#)) (|argumentListOf| #20# (AND (|isDomain| *2 #13#) #2# #8#)) (|symbolTableOf| #20# (AND #8# (|isDomain| *2 (|SymbolTable|)) #2#)))
+((|typeLists| (((|List| #1=(|List| (|Union| (|:| |name| #2=(|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S #2#) (|:| P (|Polynomial| (|Integer|))))))))) $) 66 T ELT)) (|typeList| ((#1# (|FortranScalarType|) $) 47 T ELT)) (|symbolTable| (($ (|List| (|Record| (|:| |key| #2#) (|:| |entry| #3=(|FortranType|))))) 17 T ELT)) (|printTypes| (((|Void|) $) 73 T ELT)) (|parametersOf| (#4=(#5=(|List| #2#) $) 22 T ELT)) (|newTypeLists| (((|SExpression|) $) 60 T ELT)) (|fortranTypeOf| ((#3# #2# $) 27 T ELT)) (|externalList| (#4# 30 T ELT)) (|empty| (($) 19 T ELT)) (|declare!| ((#3# #5# #3# $) 25 T ELT) ((#3# #2# #3# $) 24 T ELT)) (|coerce| (((|OutputForm|) $) 12 T ELT) (((|Table| #2# #3#) $) 13 T ELT)))
+(((|SymbolTable|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |coerce| ((|Table| #1=(|Symbol|) #2=(|FortranType|)) $)) (SIGNATURE |empty| ($)) (SIGNATURE |declare!| (#2# #3=(|List| #1#) #2# $)) (SIGNATURE |declare!| (#2# #1# #2# $)) (SIGNATURE |fortranTypeOf| (#2# #1# $)) (SIGNATURE |parametersOf| #4=(#3# $)) (SIGNATURE |typeList| (#5=(|List| (|Union| (|:| |name| #1#) (|:| |bounds| (|List| (|Union| (|:| S #1#) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $)) (SIGNATURE |externalList| #4#) (SIGNATURE |typeLists| ((|List| #5#) $)) (SIGNATURE |newTypeLists| ((|SExpression|) $)) (SIGNATURE |printTypes| ((|Void|) $)) (SIGNATURE |symbolTable| ($ (|List| (|Record| (|:| |key| #1#) (|:| |entry| #2#)))))))) (T |SymbolTable|))
+((|coerce| #1=(*1 *2 *1) (AND (|isDomain| *2 (|Table| #2=(|Symbol|) #3=(|FortranType|))) #4=(|isDomain| *1 (|SymbolTable|)))) (|empty| (*1 *1) #4#) (|declare!| #5=(*1 *2 *3 *2 *1) (AND #6=(|isDomain| *2 #3#) (|isDomain| *3 #7=(|List| #2#)) #4#)) (|declare!| #5# (AND #6# #8=(|isDomain| *3 #2#) #4#)) (|fortranTypeOf| #9=(*1 *2 *3 *1) (AND #8# #6# #4#)) (|parametersOf| #1# #10=(AND (|isDomain| *2 #7#) #4#)) (|typeList| #9# (AND (|isDomain| *3 (|FortranScalarType|)) (|isDomain| *2 #11=(|List| (|Union| (|:| |name| #2#) (|:| |bounds| (|List| (|Union| (|:| S #2#) (|:| P (|Polynomial| (|Integer|))))))))) #4#)) (|externalList| #1# #10#) (|typeLists| #1# (AND (|isDomain| *2 (|List| #11#)) #4#)) (|newTypeLists| #1# (AND (|isDomain| *2 (|SExpression|)) #4#)) (|printTypes| #1# (AND (|isDomain| *2 (|Void|)) #4#)) (|symbolTable| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| #2#) (|:| |entry| #3#)))) #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|retractIfCan| (((|Union| #4=(|Integer|) . #5=("failed")) $) 29 T ELT) (((|Union| #6=(|DoubleFloat|) . #5#) $) 35 T ELT) (((|Union| #7=(|Identifier|) . #5#) $) 43 T ELT) (((|Union| #8=(|String|) . #5#) $) 47 T ELT)) (|retract| (#9=(#4# $) 30 T ELT) (#10=(#6# $) 36 T ELT) (#11=(#7# $) 40 T ELT) (#12=(#8# $) 48 T ELT)) (|nil?| (#13=(#3# $) 53 T ELT)) (|latex| (#12# NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|getOperator| (((|Union| #4# #6# #7# #8# $) $) 56 T ELT)) (|getOperands| ((#14=(|List| $) $) 58 T ELT)) (|convert| ((#15=(|SExpression|) $) 24 T ELT) (($ #15#) 25 T ELT)) (|compound?| (#13# 57 T ELT)) (|coerce| (((|OutputForm|) $) 23 T ELT) (($ #4#) 26 T ELT) (($ #6#) 32 T ELT) (($ #7#) 38 T ELT) (($ #8#) 44 T ELT) (((|InputForm|) $) 60 T ELT) (#9# 31 T ELT) (#10# 37 T ELT) (#11# 41 T ELT) (#12# 49 T ELT)) (|case| ((#3# $ (|[\|\|]| #4#)) 10 T ELT) ((#3# $ (|[\|\|]| #6#)) 13 T ELT) ((#3# $ (|[\|\|]| #7#)) 19 T ELT) ((#3# $ (|[\|\|]| #8#)) 16 T ELT)) (|buildSyntax| (($ #7# #14#) 51 T ELT) (($ $ #14#) 52 T ELT)) (|before?| #1#) (|autoCoerce| (#9# 27 T ELT) (#10# 33 T ELT) (#11# 39 T ELT) (#12# 45 T ELT)) (= (#2# 7 T ELT)))
+(((|Syntax|) (|Join| (|UnionType|) (|SetCategory|) (|RetractableTo| #1=(|Integer|)) (|RetractableTo| #2=(|DoubleFloat|)) (|RetractableTo| #3=(|Identifier|)) (|RetractableTo| #4=(|String|)) (|CoercibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE |convert| (#5=(|SExpression|) $)) (SIGNATURE |convert| ($ #5#)) (SIGNATURE |coerce| #6=(#1# $)) (SIGNATURE |autoCoerce| #6#) (SIGNATURE |coerce| #7=(#2# $)) (SIGNATURE |autoCoerce| #7#) (SIGNATURE |coerce| #8=(#3# $)) (SIGNATURE |autoCoerce| #8#) (SIGNATURE |coerce| #9=(#4# $)) (SIGNATURE |autoCoerce| #9#) (SIGNATURE |buildSyntax| ($ #3# #10=(|List| $))) (SIGNATURE |buildSyntax| ($ $ #10#)) (SIGNATURE |nil?| #11=(#12=(|Boolean|) $)) (SIGNATURE |getOperator| ((|Union| #1# #2# #3# #4# $) $)) (SIGNATURE |getOperands| (#10# $)) (SIGNATURE |compound?| #11#) (SIGNATURE |case| (#12# $ (|[\|\|]| #1#))) (SIGNATURE |case| (#12# $ (|[\|\|]| #2#))) (SIGNATURE |case| (#12# $ (|[\|\|]| #3#))) (SIGNATURE |case| (#12# $ (|[\|\|]| #4#)))))) (T |Syntax|))
+((|convert| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SExpression|)) #3=(|isDomain| *1 #4=(|Syntax|)))) (|convert| (*1 *1 *2) #2#) (|coerce| #1# #5=(AND (|isDomain| *2 #6=(|Integer|)) #3#)) (|autoCoerce| #1# #5#) (|coerce| #1# #7=(AND (|isDomain| *2 #8=(|DoubleFloat|)) #3#)) (|autoCoerce| #1# #7#) (|coerce| #1# #9=(AND #10=(|isDomain| *2 #11=(|Identifier|)) #3#)) (|autoCoerce| #1# #9#) (|coerce| #1# #12=(AND (|isDomain| *2 #13=(|String|)) #3#)) (|autoCoerce| #1# #12#) (|buildSyntax| (*1 *1 *2 *3) (AND #10# (|isDomain| *3 #14=(|List| #4#)) #3#)) (|buildSyntax| (*1 *1 *1 *2) #15=(AND (|isDomain| *2 #14#) #3#)) (|nil?| #1# #16=(AND #17=(|isDomain| *2 (|Boolean|)) #3#)) (|getOperator| #1# (AND (|isDomain| *2 (|Union| #6# #8# #11# #13# #4#)) #3#)) (|getOperands| #1# #15#) (|compound?| #1# #16#) (|case| #18=(*1 *2 *1 *3) (AND (|isDomain| *3 (|[\|\|]| #6#)) #17# #3#)) (|case| #18# (AND (|isDomain| *3 (|[\|\|]| #8#)) #17# #3#)) (|case| #18# (AND (|isDomain| *3 (|[\|\|]| #11#)) #17# #3#)) (|case| #18# (AND (|isDomain| *3 (|[\|\|]| #13#)) #17# #3#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) 21 T ELT)) (|sample| (#2=($) 10 T CONST)) (|random| (#2# 25 T ELT)) (|min| #3=(($ $ $) NIL T ELT) (#2# 18 T CONST)) (|max| #3# (#2# 19 T CONST)) (|lookup| ((#4=(|PositiveInteger|) $) 23 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #4#) 22 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#))
+(((|SystemInteger| |#1|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |sample| ($) |constant|))) (|PositiveInteger|)) (T |SystemInteger|))
+((|sample| (*1 *1) (AND (|isDomain| *1 (|SystemInteger| *2)) (|ofType| *2 (|PositiveInteger|)))))
+((|Integer|) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) 24 T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| (#2=($) 18 T CONST)) (|random| (#2# NIL T ELT)) (|min| #3=(#4=($ $ $) NIL T ELT) (#2# 11 T CONST)) (|max| #3# (#2# 17 T CONST)) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bitior| (#4# 20 T ELT)) (|bitand| (#4# 19 T ELT)) (|before?| #1#) (|\\/| (#4# 22 T ELT)) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| (#4# 21 T ELT)))
+(((|SystemNonNegativeInteger| |#1|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|))) (|PositiveInteger|)) (T |SystemNonNegativeInteger|))
+((|bitand| #1=(*1 *1 *1 *1) #2=(AND (|isDomain| *1 (|SystemNonNegativeInteger| *2)) (|ofType| *2 (|PositiveInteger|)))) (|bitior| #1# #2#) (|sample| (*1 *1) #2#))
+((|NonNegativeInteger|) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 9 T ELT)) (|before?| #1#) (= (#2# 7 T ELT)))
+(((|SystemPointer|) (|SetCategory|)) (T |SystemPointer|))
+NIL
+((|triangularSystems| (((|List| (|List| #1=(|Polynomial| |#1|))) #2=(|List| #3=(|Fraction| #1#)) #4=(|List| #5=(|Symbol|))) 69 T ELT)) (|solve| ((#6=(|List| #7=(|Equation| #3#)) #7#) 81 T ELT) ((#6# #3#) 77 T ELT) ((#6# #7# #5#) 82 T ELT) ((#6# #3# #5#) 76 T ELT) ((#8=(|List| #6#) #6#) 108 T ELT) ((#8# #2#) 107 T ELT) ((#8# #6# #4#) 109 T ELT) ((#8# #2# #4#) 106 T ELT)))
+(((|SystemSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solve| (#1=(|List| #2=(|List| #3=(|Equation| #4=(|Fraction| #5=(|Polynomial| |#1|))))) #6=(|List| #4#) #7=(|List| #8=(|Symbol|)))) (SIGNATURE |solve| (#1# #2# #7#)) (SIGNATURE |solve| (#1# #6#)) (SIGNATURE |solve| (#1# #2#)) (SIGNATURE |solve| (#2# #4# #8#)) (SIGNATURE |solve| (#2# #3# #8#)) (SIGNATURE |solve| (#2# #4#)) (SIGNATURE |solve| (#2# #3#)) (SIGNATURE |triangularSystems| ((|List| (|List| #5#)) #6# #7#))) (|IntegralDomain|)) (T |SystemSolvePackage|))
+((|triangularSystems| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|List| #3=(|Fraction| #4=(|Polynomial| *5)))) #5=(|isDomain| *4 (|List| #6=(|Symbol|))) #7=(|ofCategory| *5 #8=(|IntegralDomain|)) (|isDomain| *2 (|List| (|List| #4#))) #9=(|isDomain| *1 (|SystemSolvePackage| *5)))) (|solve| #10=(*1 *2 *3) (AND #11=(|ofCategory| *4 #8#) #12=(|isDomain| *2 #13=(|List| #14=(|Equation| #15=(|Fraction| (|Polynomial| *4))))) #16=(|isDomain| *1 (|SystemSolvePackage| *4)) (|isDomain| *3 #14#))) (|solve| #10# (AND #11# #12# #16# (|isDomain| *3 #15#))) (|solve| #1# (AND #17=(|isDomain| *4 #6#) #7# #18=(|isDomain| *2 #19=(|List| #20=(|Equation| #3#))) #9# (|isDomain| *3 #20#))) (|solve| #1# (AND #17# #7# #18# #9# (|isDomain| *3 #3#))) (|solve| #10# (AND #11# #21=(|isDomain| *2 (|List| #13#)) #16# (|isDomain| *3 #13#))) (|solve| #10# (AND (|isDomain| *3 (|List| #15#)) #11# #21# #16#)) (|solve| #1# (AND #5# #7# #22=(|isDomain| *2 (|List| #19#)) #9# (|isDomain| *3 #19#))) (|solve| #1# (AND #2# #5# #7# #22# #9#)))
+((|rootDirectory| (#1=(#2=(|String|)) 7 T ELT)) (|nativeModuleExtension| (#1# 11 T CONST)) (|loadNativeModule| (((|Void|) #2#) 13 T ELT)) (|hostPlatform| (#1# 8 T CONST)) (|hostByteOrder| (((|ByteOrder|)) 10 T CONST)))
+(((|System|) (|Join| (|Type|) (CATEGORY |package| (SIGNATURE |rootDirectory| #1=(#2=(|String|))) (SIGNATURE |hostPlatform| #1# |constant|) (SIGNATURE |hostByteOrder| ((|ByteOrder|)) |constant|) (SIGNATURE |nativeModuleExtension| #1# |constant|) (SIGNATURE |loadNativeModule| ((|Void|) #2#))))) (T |System|))
+((|rootDirectory| #1=(*1 *2) #2=(AND (|isDomain| *2 #3=(|String|)) #4=(|isDomain| *1 (|System|)))) (|hostPlatform| #1# #2#) (|hostByteOrder| #1# (AND (|isDomain| *2 (|ByteOrder|)) #4#)) (|nativeModuleExtension| #1# #2#) (|loadNativeModule| (*1 *2 *3) (AND (|isDomain| *3 #3#) (|isDomain| *2 (|Void|)) #4#)))
+((|untab| ((#1=(|List| #2=(|List| |#1|)) #1# #3=(|List| #1#)) 56 T ELT)) (|tab1| ((#3# #1#) 38 T ELT)) (|tab| ((#4=(|Tableau| #2#) #2#) 49 T ELT)) (|slex| ((#1# #2#) 45 T ELT)) (|mr| ((#5=(|Record| (|:| |f1| #2#) (|:| |f2| #3#) (|:| |f3| #1#) (|:| |f4| #3#)) #3#) 53 T ELT)) (|maxrow| ((#5# #2# #3# #1# #3# #3# #3#) 52 T ELT)) (|lex| ((#1# #1#) 43 T ELT)) (|inverse| ((#2# #2#) 46 T ELT)) (|bumptab1| ((#3# #2# #3#) 32 T ELT)) (|bumptab| ((#3# #6=(|Mapping| #7=(|Boolean|) |#1| |#1|) #2# #3#) 29 T ELT)) (|bumprow| (((|Record| (|:| |fs| #7#) (|:| |sd| #2#) (|:| |td| #1#)) #6# #2# #1#) 24 T ELT)) (|bat1| ((#1# #3#) 58 T ELT)) (|bat| ((#1# #4#) 60 T ELT)))
+(((|TableauxBumpers| |#1|) (CATEGORY |package| (SIGNATURE |bumprow| ((|Record| (|:| |fs| #1=(|Boolean|)) (|:| |sd| #2=(|List| |#1|)) (|:| |td| #3=(|List| #2#))) #4=(|Mapping| #1# |#1| |#1|) #2# #3#)) (SIGNATURE |bumptab| (#5=(|List| #3#) #4# #2# #5#)) (SIGNATURE |bumptab1| (#5# #2# #5#)) (SIGNATURE |untab| (#3# #3# #5#)) (SIGNATURE |bat1| (#3# #5#)) (SIGNATURE |bat| (#3# #6=(|Tableau| #2#))) (SIGNATURE |tab1| (#5# #3#)) (SIGNATURE |tab| (#6# #2#)) (SIGNATURE |lex| (#3# #3#)) (SIGNATURE |slex| (#3# #2#)) (SIGNATURE |inverse| (#2# #2#)) (SIGNATURE |maxrow| (#7=(|Record| (|:| |f1| #2#) (|:| |f2| #5#) (|:| |f3| #3#) (|:| |f4| #5#)) #2# #5# #3# #5# #5# #5#)) (SIGNATURE |mr| (#7# #5#))) (|OrderedSet|)) (T |TableauxBumpers|))
+((|mr| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |f1| #4=(|List| *4)) (|:| |f2| #5=(|List| #6=(|List| #4#))) (|:| |f3| #6#) (|:| |f4| #5#))) #7=(|isDomain| *1 (|TableauxBumpers| *4)) #8=(|isDomain| *3 #5#))) (|maxrow| (*1 *2 *3 *4 *5 *4 *4 *4) (AND #9=(|ofCategory| *6 #3#) (|isDomain| *3 #10=(|List| *6)) (|isDomain| *5 #11=(|List| *3)) (|isDomain| *2 (|Record| (|:| |f1| *3) (|:| |f2| #12=(|List| *5)) (|:| |f3| *5) (|:| |f4| #12#))) #13=(|isDomain| *1 (|TableauxBumpers| *6)) #14=(|isDomain| *4 #12#))) (|inverse| #15=(*1 *2 *2) (AND (|isDomain| *2 #11#) #16=(|ofCategory| *3 #3#) #17=(|isDomain| *1 (|TableauxBumpers| *3)))) (|slex| #1# (AND #2# #18=(|isDomain| *2 #6#) #7# #19=(|isDomain| *3 #4#))) (|lex| #15# (AND (|isDomain| *2 (|List| #11#)) #16# #17#)) (|tab| #1# (AND #2# (|isDomain| *2 #20=(|Tableau| #4#)) #7# #19#)) (|tab1| #1# (AND #2# #21=(|isDomain| *2 #5#) #7# (|isDomain| *3 #6#))) (|bat| #1# (AND (|isDomain| *3 #20#) #2# #18# #7#)) (|bat1| #1# (AND #8# #18# #7# #2#)) (|untab| (*1 *2 *2 *3) (AND #8# #18# #2# #7#)) (|bumptab1| (*1 *2 *3 *2) (AND #21# #19# #2# #7#)) (|bumptab| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|List| (|List| #12#))) (|isDomain| *3 (|Mapping| #22=(|Boolean|) *5 *5)) #14# (|ofCategory| *5 #3#) (|isDomain| *1 (|TableauxBumpers| *5)))) (|bumprow| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| #22# *6 *6)) #9# (|isDomain| *4 #10#) (|isDomain| *2 (|Record| (|:| |fs| #22#) (|:| |sd| *4) (|:| |td| #4#))) #13# (|isDomain| *5 #4#))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL (OR #4=(|has| #5=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) #6=(|BasicType|)) #7=(|has| |#2| #6#)) ELT)) (|table| #8=(#9=($) NIL T ELT) #10=(($ #11=(|List| #5#)) NIL T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) NIL #12=(|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| #13=(#14=(|#2| $ |#1| |#2|) NIL #12# ELT)) (|select!| #15=(($ #16=(|Mapping| #3# #5#) $) NIL #17=(|has| $ (|FiniteAggregate| #5#)) ELT)) (|select| #15#) (|search| #18=(((|Union| |#2| #19="failed") |#1| $) NIL T ELT)) (|sample| (#9# NIL T CONST)) (|removeDuplicates| (#20=($ $) NIL #21=(AND #17# #4#) ELT)) (|remove!| (#22=($ #5# $) NIL #17# ELT) #15# #18#) (|remove| (#22# NIL #21# ELT) #15#) (|reduce| ((#5# #23=(|Mapping| #5# #5# #5#) $ #5# #5#) NIL #4# ELT) ((#5# #23# $ #5#) NIL T ELT) ((#5# #23# $) NIL T ELT)) (|qsetelt!| #13#) (|qelt| #24=((|#2| $ |#1|) NIL T ELT)) (|minIndex| #25=((|#1| $) NIL #26=(|has| |#1| (|OrderedSet|)) ELT)) (|members| ((#11# $) NIL T ELT)) (|member?| ((#3# #5# $) NIL #4# ELT)) (|maxIndex| #25#) (|map!| #27=(($ (|Mapping| #5# #5#) . #28=($)) NIL T ELT) #29=(($ (|Mapping| |#2| |#2|) . #28#) NIL T ELT)) (|map| #27# #29# #27# (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL #30=(OR #31=(|has| #5# #32=(|SetCategory|)) #33=(|has| |#2| #32#)) ELT)) (|keys| #34=(((|List| |#1|) $) NIL T ELT)) (|key?| #35=((#3# |#1| $) NIL T ELT)) (|inspect| #36=((#5# $) NIL T ELT)) (|insert!| (#22# NIL T ELT)) (|indices| #34#) (|index?| #35#) (|hash| (((|SingleInteger|) $) NIL #30# ELT)) (|first| ((|#2| $) NIL #26# ELT)) (|find| (((|Union| #5# #19#) #16# $) NIL T ELT)) (|fill!| (($ $ |#2|) NIL #12# ELT)) (|extract!| #36#) (|every?| #37=((#3# #16# $) NIL T ELT)) (|eval| #38=(($ $ (|List| #39=(|Equation| #5#))) NIL #40=(AND (|has| #5# (|Evalable| #5#)) #31#) ELT) #41=(($ $ #39#) NIL #40# ELT) #42=(($ $ #5# #5#) NIL #40# ELT) #43=(($ $ #11# #11#) NIL #40# ELT) (($ $ #44=(|List| |#2|) #44#) NIL #45=(AND (|has| |#2| (|Evalable| |#2|)) #33#) ELT) (($ $ |#2| |#2|) NIL #45# ELT) (($ $ #46=(|Equation| |#2|)) NIL #45# ELT) (($ $ (|List| #46#)) NIL #45# ELT) #43# #42# #41# #38#) (|eq?| (#2# NIL T ELT)) (|entry?| ((#3# |#2| $) NIL (AND (|has| $ (|FiniteAggregate| |#2|)) #7#) ELT)) (|entries| ((#44# $) NIL T ELT)) (|empty?| ((#3# $) NIL T ELT)) (|empty| #8#) (|elt| #24# (#14# NIL T ELT)) (|dictionary| #8# #10#) (|count| ((#47=(|NonNegativeInteger|) #5# $) NIL #4# ELT) ((#47# #16# $) NIL T ELT)) (|copy| (#20# NIL T ELT)) (|convert| ((#48=(|InputForm|) $) NIL (|has| #5# (|ConvertibleTo| #48#)) ELT)) (|construct| #10#) (|coerce| ((#49=(|OutputForm|) $) NIL (OR (|has| #5# #50=(|CoercibleTo| #49#)) (|has| |#2| #50#)) ELT)) (|before?| #1#) (|bag| #10#) (|any?| #37#) (= #1#) (|#| ((#47# $) NIL T ELT)))
+(((|Table| |#1| |#2|) (|TableAggregate| |#1| |#2|) #1=(|SetCategory|) #1#) (T |Table|))
+NIL
+((|tableau| (($ #1=(|List| (|List| |#1|))) 10 T ELT)) (|listOfLists| ((#1# $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 33 T ELT)))
+(((|Tableau| |#1|) (CATEGORY |domain| (SIGNATURE |tableau| ($ #1=(|List| (|List| |#1|)))) (SIGNATURE |listOfLists| (#1# $)) (SIGNATURE |coerce| ((|OutputForm|) $))) (|SetCategory|)) (T |Tableau|))
+((|coerce| #1=(*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) #2=(|isDomain| *1 (|Tableau| *3)) #3=(|ofCategory| *3 (|SetCategory|)))) (|listOfLists| #1# (AND #4=(|isDomain| *2 (|List| (|List| *3))) #2# #3#)) (|tableau| (*1 *1 *2) (AND #4# #3# #2#)))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|operator| (($ |#1| #3=(|Arity|)) 11 T ELT)) (|name| ((|#1| $) 13 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|is?| ((#2# $ |#1|) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|before?| #1#) (|arity| ((#3# $) 15 T ELT)) (= #1#))
+(((|TermAlgebraOperator| |#1|) (|Join| (|OperatorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |operator| ($ |#1| (|Arity|))))) (|SetCategory|)) (T |TermAlgebraOperator|))
+((|operator| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Arity|)) (|isDomain| *1 (|TermAlgebraOperator| *2)) (|ofCategory| *2 (|SetCategory|)))))
+((|tanSum| ((|#1| (|List| |#1|)) 46 T ELT)) (|tanNa| ((|#1| |#1| (|Integer|)) 24 T ELT)) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) 20 T ELT)))
+(((|TangentExpansions| |#1|) (CATEGORY |package| (SIGNATURE |tanSum| (|#1| (|List| |#1|))) (SIGNATURE |tanAn| ((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|))) (SIGNATURE |tanNa| (|#1| |#1| (|Integer|)))) (|Field|)) (T |TangentExpansions|))
+((|tanNa| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) #1=(|isDomain| *1 (|TangentExpansions| *2)) #2=(|ofCategory| *2 #3=(|Field|)))) (|tanAn| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|isDomain| *1 (|TangentExpansions| *3)) (|ofCategory| *3 #3#))) (|tanSum| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) #1# #2#)))
+((|table| (($) 10 T ELT) (($ #1=(|List| #2=(|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (|remove!| (#3=($ #2# $) 63 T ELT) (($ #4=(|Mapping| #5=(|Boolean|) #2#) $) NIL T ELT) (((|Union| |#3| #6="failed") |#2| $) NIL T ELT)) (|members| ((#1# $) 35 T ELT)) (|map!| (#7=($ (|Mapping| #2# #2#) $) 53 T ELT) (#8=($ (|Mapping| |#3| |#3|) $) 29 T ELT)) (|map| #9=(#7# 49 T ELT) (#8# NIL T ELT) #9# (($ (|Mapping| |#3| |#3| |#3|) $ $) 34 T ELT)) (|inspect| (#10=(#2# $) 56 T ELT)) (|insert!| (#3# 16 T ELT)) (|indices| (((|List| |#2|) $) 19 T ELT)) (|index?| ((#5# |#2| $) 61 T ELT)) (|find| (((|Union| #2# #6#) #4# $) 60 T ELT)) (|extract!| (#10# 65 T ELT)) (|entries| (((|List| |#3|) $) 37 T ELT)) (|coerce| (((|OutputForm|) $) 27 T ELT)) (= ((#5# $ $) 47 T ELT)))
+(((|TableAggregate&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE = (#1=(|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3| |#3|) |#1| |#1|)) (SIGNATURE |table| (|#1| #2=(|List| #3=(|Record| (|:| |key| |#2|) (|:| |entry| |#3|))))) (SIGNATURE |table| (|#1|)) #4=(SIGNATURE |map| #5=(|#1| (|Mapping| #3# #3#) |#1|)) (SIGNATURE |members| (#2# |#1|)) (SIGNATURE |find| ((|Union| #3# #6="failed") #7=(|Mapping| #1# #3#) |#1|)) (SIGNATURE |remove!| ((|Union| |#3| #6#) |#2| |#1|)) (SIGNATURE |map!| #8=(|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map| #8#) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |index?| (#1# |#2| |#1|)) (SIGNATURE |indices| ((|List| |#2|) |#1|)) (SIGNATURE |remove!| (|#1| #7# |#1|)) (SIGNATURE |remove!| #9=(|#1| #3# |#1|)) (SIGNATURE |inspect| #10=(#3# |#1|)) (SIGNATURE |insert!| #9#) (SIGNATURE |extract!| #10#) (SIGNATURE |map!| #5#) #4#) (|TableAggregate| |#2| |#3|) #11=(|SetCategory|) #11#) (T |TableAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2=((|BasicType|))) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|table| (($) 95 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 94 T ELT)) (|swap!| (((|Void|) $ |#1| |#1|) 82 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|setelt| ((|#2| $ |#1| |#2|) 70 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|select!| (($ (|Mapping| #3=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #4=($)) 42 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|select| (($ (|Mapping| #5=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #6=($)) 49 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|search| (((|Union| |#2| . #7=("failed")) |#1| . #8=($)) 59 T ELT)) (|sample| (#9=($) 6 T CONST)) (|removeDuplicates| (($ $) 51 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #10=((|BasicType|))) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT)) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (($ (|Mapping| #3# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #4#) 43 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT) (((|Union| |#2| . #7#) |#1| . #8#) 60 T ELT)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 50 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #10#) (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) ELT) (($ (|Mapping| #5# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #6#) 48 (|has| $ (|FiniteAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ELT)) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 111 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #11=((|BasicType|))) ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 107 T ELT) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 106 T ELT)) (|qsetelt!| ((|#2| $ |#1| |#2|) 69 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|qelt| ((|#2| $ |#1|) 71 T ELT)) (|minIndex| ((|#1| . #12=($)) 79 (|has| |#1| . #13=((|OrderedSet|))) ELT)) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 105 T ELT)) (|member?| ((#14=(|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 110 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #11#) ELT)) (|maxIndex| ((|#1| . #12#) 78 (|has| |#1| . #13#) ELT)) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #15=($)) 39 T ELT) (($ (|Mapping| |#2| |#2|) . #15#) 63 T ELT)) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #16=($)) 26 T ELT) (($ (|Mapping| |#2| |#2|) . #16#) 64 T ELT) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #16#) 96 T ELT) (($ (|Mapping| |#2| |#2| |#2|) $ $) 93 T ELT)) (|latex| (((|String|) $) 21 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17=((|SetCategory|))) (|has| |#2| . #17#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT)) (|keys| (((|List| |#1|) $) 61 T ELT)) (|key?| (((|Boolean|) |#1| $) 62 T ELT)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #18=($)) 35 T ELT)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (|indices| (((|List| |#1|) $) 76 T ELT)) (|index?| ((#19=(|Boolean|) |#1| $) 75 T ELT)) (|hash| (((|SingleInteger|) $) 20 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#) (|has| |#2| . #17#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT)) (|first| ((|#2| $) 80 (|has| |#1| . #13#) ELT)) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| #14# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 108 T ELT)) (|fill!| (($ $ |#2|) 81 (|has| $ (|ShallowlyMutableAggregate| |#2|)) ELT)) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #18#) 37 T ELT)) (|every?| ((#14# (|Mapping| #14# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #20=($)) 103 T ELT)) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 25 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 24 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 23 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 22 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 68 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #17#)) ELT) (($ $ |#2| |#2|) 67 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #17#)) ELT) (($ $ (|Equation| |#2|)) 66 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #17#)) ELT) (($ $ (|List| (|Equation| |#2|))) 65 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| . #17#)) ELT) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 100 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 99 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 98 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT) (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 97 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #17#)) ELT)) (|eq?| ((#21=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#19# |#2| $) 77 (AND (|has| $ (|FiniteAggregate| |#2|)) (|has| |#2| (|BasicType|))) ELT)) (|entries| (((|List| |#2|) $) 74 T ELT)) (|empty?| ((#21# $) 7 T ELT)) (|empty| (#9# 8 T ELT)) (|elt| ((|#2| $ |#1|) 73 T ELT) ((|#2| $ |#1| |#2|) 72 T ELT)) (|dictionary| (($) 46 T ELT) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (|count| ((#22=(|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 109 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #11#) ELT) ((#22# (|Mapping| #14# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 104 T ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#23=(|InputForm|) $) 52 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| #23#)) ELT)) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 47 T ELT)) (|coerce| (((|OutputForm|) $) 16 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #24=((|CoercibleTo| (|OutputForm|)))) (|has| |#2| . #24#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #24#)) ELT)) (|before?| (#1# 19 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 38 T ELT)) (|any?| ((#14# (|Mapping| #14# (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . #20#) 102 T ELT)) (= (#1# 17 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#) (|has| |#2| . #2#) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) . #2#)) ELT)) (|#| ((#22# $) 101 T ELT)))
+(((|TableAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |TableAggregate|))
+((|table| (*1 *1) (AND (|ofCategory| *1 (|TableAggregate| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|table| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| *3) (|:| |entry| *4)))) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *1 (|TableAggregate| *3 *4)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *4 *4 *4)) (|ofCategory| *1 (|TableAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
+(|Join| (|KeyedDictionary| |t#1| |t#2|) (|FiniteAggregate| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))) (CATEGORY |domain| (SIGNATURE |table| ($)) (SIGNATURE |table| ($ (|List| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))))) (SIGNATURE |map| ($ (|Mapping| |t#2| |t#2| |t#2|) $ $))))
+(((|Aggregate|) . T) ((|BagAggregate| #1=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|BasicType|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|BasicType|)) (|has| |#2| (|SetCategory|)) (|has| |#2| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|CoercibleTo| (|OutputForm|))) (|has| |#2| (|SetCategory|)) (|has| |#2| (|CoercibleTo| (|OutputForm|)))) ((|Collection| #1#) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) ((|Dictionary| #1#) . T) ((|DictionaryOperations| #1#) . T) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| #2=(|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|FiniteAggregate| #2#) . T) ((|Functorial| #2#) . T) ((|Functorial| |#2|) . T) ((|HomogeneousAggregate| #2#) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| |#1| |#2|) . T) ((|InnerEvalable| #2# #2#) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Join|) . T) ((|KeyedDictionary| |#1| |#2|) . T) ((|SetCategory|) OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))) ((|ShallowlyMutableAggregate| #1#) . T) ((|ShallowlyMutableAggregate| |#2|) . T) ((|Type|) . T))
+((|usingTable?| (#1=((|Boolean|)) 29 T ELT)) (|startStats!| ((#2=(|Void|) #3=(|String|)) 31 T ELT)) (|printingInfo?| (#1# 41 T ELT)) (|printStats!| (#4=(#2#) 39 T ELT)) (|printInfo!| ((#2# #3# #3#) 30 T ELT)) (|makingStats?| (#1# 42 T ELT)) (|insert!| ((#2# |#1| |#2|) 53 T ELT)) (|initTable!| (#4# 26 T ELT)) (|extractIfCan| (((|Union| |#2| "failed") |#1|) 51 T ELT)) (|clearTable!| (#4# 40 T ELT)))
+(((|TabulatedComputationPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |initTable!| #1=(#2=(|Void|))) (SIGNATURE |printInfo!| (#2# #3=(|String|) #3#)) (SIGNATURE |startStats!| (#2# #3#)) (SIGNATURE |printStats!| #1#) (SIGNATURE |clearTable!| #1#) (SIGNATURE |usingTable?| #4=((|Boolean|))) (SIGNATURE |printingInfo?| #4#) (SIGNATURE |makingStats?| #4#) (SIGNATURE |extractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |insert!| (#2# |#1| |#2|))) #5=(|SetCategory|) #5#) (T |TabulatedComputationPackage|))
+((|insert!| (*1 *2 *3 *4) #1=(AND #2=(|isDomain| *2 (|Void|)) #3=(|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) #4=(|ofCategory| *3 #5=(|SetCategory|)) #6=(|ofCategory| *4 #5#))) (|extractIfCan| #7=(*1 *2 *3) (|partial| AND (|ofCategory| *2 #5#) (|isDomain| *1 (|TabulatedComputationPackage| *3 *2)) #4#)) (|makingStats?| #8=(*1 *2) #9=(AND (|isDomain| *2 (|Boolean|)) #3# #4# #6#)) (|printingInfo?| #8# #9#) (|usingTable?| #8# #9#) (|clearTable!| #8# #1#) (|printStats!| #8# #1#) (|startStats!| #7# #10=(AND (|isDomain| *3 (|String|)) #2# (|isDomain| *1 (|TabulatedComputationPackage| *4 *5)) #6# (|ofCategory| *5 #5#))) (|printInfo!| (*1 *2 *3 *3) #10#) (|initTable!| #8# #1#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|tex| (#2=(#3=(|List| #4=(|String|)) $) 37 T ELT)) (|setTex!| (#5=(#3# $ #3#) 40 T ELT)) (|setPrologue!| (#5# 39 T ELT)) (|setEpilogue!| (#5# 41 T ELT)) (|prologue| (#2# 36 T ELT)) (|new| (($) 26 T ELT)) (|latex| ((#4# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|epilogue| (#2# 38 T ELT)) (|display| ((#6=(|Void|) $ #7=(|Integer|)) 33 T ELT) ((#6# $) 34 T ELT)) (|convert| (($ #8=(|OutputForm|) #7#) 31 T ELT) (($ #8# #7# #8#) NIL T ELT)) (|coerce| ((#8# $) 47 T ELT) (($ #8#) 30 T ELT)) (|before?| #1#) (= #1#))
+(((|TexFormat|) (|Join| (|SetCategory|) (|CoercibleFrom| #1=(|OutputForm|)) (CATEGORY |domain| (SIGNATURE |convert| ($ #1# #2=(|Integer|))) (SIGNATURE |convert| ($ #1# #2# #1#)) (SIGNATURE |display| (#3=(|Void|) $ #2#)) (SIGNATURE |display| (#3# $)) (SIGNATURE |epilogue| #4=(#5=(|List| (|String|)) $)) (SIGNATURE |tex| #4#) (SIGNATURE |new| ($)) (SIGNATURE |prologue| #4#) (SIGNATURE |setEpilogue!| #6=(#5# $ #5#)) (SIGNATURE |setTex!| #6#) (SIGNATURE |setPrologue!| #6#)))) (T |TexFormat|))
+((|convert| (*1 *1 *2 *3) #1=(AND (|isDomain| *2 (|OutputForm|)) #2=(|isDomain| *3 (|Integer|)) #3=(|isDomain| *1 (|TexFormat|)))) (|convert| (*1 *1 *2 *3 *2) #1#) (|display| (*1 *2 *1 *3) (AND #2# #4=(|isDomain| *2 (|Void|)) #3#)) (|display| #5=(*1 *2 *1) (AND #4# #3#)) (|epilogue| #5# #6=(AND (|isDomain| *2 (|List| (|String|))) #3#)) (|tex| #5# #6#) (|new| (*1 *1) #3#) (|prologue| #5# #6#) (|setEpilogue!| #7=(*1 *2 *1 *2) #6#) (|setTex!| #7# #6#) (|setPrologue!| #7# #6#))
+((|coerce| (((|TexFormat|) |#1|) 11 T ELT)))
+(((|TexFormat1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|TexFormat|) |#1|))) (|SetCategory|)) (T |TexFormat1|))
+((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|TexFormat|)) (|isDomain| *1 (|TexFormat1| *3)) (|ofCategory| *3 (|SetCategory|)))))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|writeLine!| (#3=(#4=(|String|) $ #4#) 21 T ELT) (#5=(#4# $) 20 T ELT)) (|write!| (#3# 19 T ELT)) (|reopen!| (($ $ #4#) NIL T ELT)) (|readLineIfCan!| (#6=((|Union| #4# "failed") $) 11 T ELT)) (|readLine!| (#5# 8 T ELT)) (|readIfCan!| (#6# 12 T ELT)) (|read!| (#5# 9 T ELT)) (|open| (($ #7=(|FileName|)) NIL T ELT) (($ #7# #4#) NIL T ELT)) (|name| ((#7# $) NIL T ELT)) (|latex| #8=(#5# NIL T ELT)) (|iomode| #8#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|endOfFile?| ((#2# $) 25 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|close!| (($ $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|TextFile|) (|Join| (|FileCategory| (|FileName|) #1=(|String|)) (CATEGORY |domain| (SIGNATURE |writeLine!| (#1# $ #1#)) (SIGNATURE |writeLine!| #2=(#1# $)) (SIGNATURE |readLine!| #2#) (SIGNATURE |readLineIfCan!| #3=((|Union| #1# "failed") $)) (SIGNATURE |readIfCan!| #3#) (SIGNATURE |endOfFile?| ((|Boolean|) $))))) (T |TextFile|))
+((|writeLine!| (*1 *2 *1 *2) #1=(AND #2=(|isDomain| *2 (|String|)) #3=(|isDomain| *1 (|TextFile|)))) (|writeLine!| #4=(*1 *2 *1) #1#) (|readLine!| #4# #1#) (|readLineIfCan!| #4# #5=(|partial| AND #2# #3#)) (|readIfCan!| #4# #5#) (|endOfFile?| #4# (AND (|isDomain| *2 (|Boolean|)) #3#)))
+((|sign| (#1=((|Union| #2=(|Integer|) "failed") |#1|) 19 T ELT)) (|nonQsign| (#1# 14 T ELT)) (|direction| ((#2# (|String|)) 33 T ELT)))
+(((|ToolsForSign| |#1|) (CATEGORY |package| (SIGNATURE |sign| #1=((|Union| #2=(|Integer|) "failed") |#1|)) (SIGNATURE |nonQsign| #1#) (SIGNATURE |direction| (#2# (|String|)))) (|Ring|)) (T |ToolsForSign|))
+((|direction| #1=(*1 *2 *3) (AND (|isDomain| *3 (|String|)) #2=(|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ToolsForSign| *4)) (|ofCategory| *4 #3=(|Ring|)))) (|nonQsign| #1# #4=(|partial| AND #2# (|isDomain| *1 (|ToolsForSign| *3)) (|ofCategory| *3 #3#))) (|sign| #1# #4#))
+((|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) 9 T ELT)))
+(((|TopLevelThreeSpace|) (CATEGORY |package| (SIGNATURE |createThreeSpace| ((|ThreeSpace| (|DoubleFloat|)))))) (T |TopLevelThreeSpace|))
+((|createThreeSpace| (*1 *2) (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelThreeSpace|)))))
+((|pi| (($) 12 T ELT)) (|atanh| (#1=($ $) 36 T ELT)) (|asinh| (#1# 34 T ELT)) (|asin| (#1# 26 T ELT)) (|asech| (#1# 18 T ELT)) (|acsch| (#1# 16 T ELT)) (|acoth| (#1# 20 T ELT)) (|acot| (#1# 31 T ELT)) (|acosh| (#1# 35 T ELT)) (|acos| (#1# 30 T ELT)))
+(((|TranscendentalFunctionCategory&| |#1|) (CATEGORY |package| (SIGNATURE |pi| (|#1|)) (SIGNATURE |atanh| #1=(|#1| |#1|)) (SIGNATURE |asinh| #1#) (SIGNATURE |asech| #1#) (SIGNATURE |acsch| #1#) (SIGNATURE |acoth| #1#) (SIGNATURE |acosh| #1#) (SIGNATURE |asin| #1#) (SIGNATURE |acot| #1#) (SIGNATURE |acos| #1#)) (|TranscendentalFunctionCategory|)) (T |TranscendentalFunctionCategory&|))
+NIL
+((|tanh| (#1=($ $) 26 T ELT)) (|tan| (#2=($ $) 11 T ELT)) (|sinh| (#1# 27 T ELT)) (|sin| (#2# 10 T ELT)) (|sech| (#1# 28 T ELT)) (|sec| (#2# 9 T ELT)) (|pi| (($) 16 T ELT)) (|log| (#3=($ $) 19 T ELT)) (|exp| (#3# 18 T ELT)) (|csch| (#1# 29 T ELT)) (|csc| (#2# 8 T ELT)) (|coth| (#1# 30 T ELT)) (|cot| (#2# 7 T ELT)) (|cosh| (#1# 31 T ELT)) (|cos| (#2# 6 T ELT)) (|atanh| (#4=($ $) 20 T ELT)) (|atan| (#5=($ $) 32 T ELT)) (|asinh| (#4# 21 T ELT)) (|asin| (#5# 33 T ELT)) (|asech| (#4# 22 T ELT)) (|asec| (#5# 34 T ELT)) (|acsch| (#4# 23 T ELT)) (|acsc| (#5# 35 T ELT)) (|acoth| (#4# 24 T ELT)) (|acot| (#5# 36 T ELT)) (|acosh| (#4# 25 T ELT)) (|acos| (#5# 37 T ELT)) (** (($ $ $) 17 T ELT)))
+(((|TranscendentalFunctionCategory|) (|Category|)) (T |TranscendentalFunctionCategory|))
+((|pi| (*1 *1) (|ofCategory| *1 (|TranscendentalFunctionCategory|))))
+(|Join| (|TrigonometricFunctionCategory|) (|ArcTrigonometricFunctionCategory|) (|HyperbolicFunctionCategory|) (|ArcHyperbolicFunctionCategory|) (|ElementaryFunctionCategory|) (CATEGORY |domain| (SIGNATURE |pi| ($))))
+(((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|ElementaryFunctionCategory|) . T) ((|HyperbolicFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|value| ((|#1| $) 19 T ELT)) (|tree| (($ |#1| #5=(|List| $)) 28 T ELT) (($ #6=(|List| |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (|setvalue!| ((|#1| $ |#1|) 14 #7=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #8="value" |#1|) NIL #7# ELT)) (|setchildren!| (($ $ #5#) 13 #7# ELT)) (|sample| (#9=($) NIL T CONST)) (|reduce| ((|#1| #10=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #10# $ |#1|) NIL T ELT) ((|#1| #10# $) NIL T ELT)) (|nodes| (#11=(#5# $) 59 T ELT)) (|node?| (#2# 50 #4# ELT)) (|members| (#12=(#6# $) 70 T ELT)) (|member?| ((#3# |#1| $) 69 #4# ELT)) (|map!| (#13=($ (|Mapping| |#1| |#1|) $) 29 T ELT)) (|map| (#13# 27 T ELT)) (|leaves| (#12# 55 T ELT)) (|leaf?| (#14=(#3# $) 53 T ELT)) (|latex| (((|String|) $) NIL #15=(|has| |#1| (|SetCategory|)) ELT)) (|hash| (((|SingleInteger|) $) NIL #15# ELT)) (|find| (((|Union| |#1| "failed") #16=(|Mapping| #3# |#1|) $) NIL T ELT)) (|every?| (#17=(#3# #16# $) 67 T ELT)) (|eval| (($ $ (|List| #18=(|Equation| |#1|))) NIL #19=(AND (|has| |#1| (|Evalable| |#1|)) #15#) ELT) (($ $ #18#) NIL #19# ELT) (($ $ |#1| |#1|) NIL #19# ELT) (($ $ #6# #6#) NIL #19# ELT)) (|eq?| (#2# 101 T ELT)) (|empty?| (#14# 9 T ELT)) (|empty| (#9# 10 T ELT)) (|elt| ((|#1| $ #8#) NIL T ELT)) (|distance| (((|Integer|) $ $) 48 T ELT)) (|cyclicParents| (#11# 83 T ELT)) (|cyclicEqual?| (#2# 104 T ELT)) (|cyclicEntries| (#11# 99 T ELT)) (|cyclicCopy| (#20=($ $) 100 T ELT)) (|cyclic?| (#14# 76 T ELT)) (|count| ((#21=(|NonNegativeInteger|) |#1| $) 17 #4# ELT) ((#21# #16# $) 25 T ELT)) (|copy| (#20# 82 T ELT)) (|coerce| ((#22=(|OutputForm|) $) 85 (|has| |#1| (|CoercibleTo| #22#)) ELT)) (|children| (#11# 12 T ELT)) (|child?| (#2# 39 #4# ELT)) (|before?| #1#) (|any?| (#17# 66 T ELT)) (= (#2# 37 #4# ELT)) (|#| ((#21# $) 80 T ELT)))
+(((|Tree| |#1|) (|Join| (|RecursiveAggregate| |#1|) (|FiniteAggregate| |#1|) (|ShallowlyMutableAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |tree| ($ |#1| #1=(|List| $))) (SIGNATURE |tree| ($ (|List| |#1|))) (SIGNATURE |tree| ($ |#1|)) (SIGNATURE |cyclic?| (#2=(|Boolean|) $)) (SIGNATURE |cyclicCopy| ($ $)) (SIGNATURE |cyclicEntries| #3=(#1# $)) (SIGNATURE |cyclicEqual?| (#2# $ $)) (SIGNATURE |cyclicParents| #3#))) (|SetCategory|)) (T |Tree|))
+((|cyclic?| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|Boolean|)) #3=(|isDomain| *1 #4=(|Tree| *3)) #5=(|ofCategory| *3 #6=(|SetCategory|)))) (|tree| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| #7=(|Tree| *2))) #8=(|isDomain| *1 #7#) #9=(|ofCategory| *2 #6#))) (|tree| #10=(*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) #5# #3#)) (|tree| #10# #11=(AND #8# #9#)) (|cyclicCopy| (*1 *1 *1) #11#) (|cyclicEntries| #1# #12=(AND (|isDomain| *2 (|List| #4#)) #3# #5#)) (|cyclicEqual?| (*1 *2 *1 *1) #2#) (|cyclicParents| #1# #12#))
+((|tan| (#1=($ $) 15 T ELT)) (|sec| (#1# 12 T ELT)) (|csc| (#1# 10 T ELT)) (|cot| (#1# 17 T ELT)))
+(((|TrigonometricFunctionCategory&| |#1|) (CATEGORY |package| (SIGNATURE |cot| #1=(|#1| |#1|)) (SIGNATURE |csc| #1#) (SIGNATURE |sec| #1#) (SIGNATURE |tan| #1#)) (|TrigonometricFunctionCategory|)) (T |TrigonometricFunctionCategory&|))
+NIL
+((|tan| (($ $) 11 T ELT)) (|sin| (($ $) 10 T ELT)) (|sec| (($ $) 9 T ELT)) (|csc| (($ $) 8 T ELT)) (|cot| (($ $) 7 T ELT)) (|cos| (($ $) 6 T ELT)))
+(((|TrigonometricFunctionCategory|) (|Category|)) (T |TrigonometricFunctionCategory|))
+((|tan| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sin| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sec| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|csc| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cot| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cos| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
+(|Join| (CATEGORY |domain| (SIGNATURE |cos| ($ $)) (SIGNATURE |cot| ($ $)) (SIGNATURE |csc| ($ $)) (SIGNATURE |sec| ($ $)) (SIGNATURE |sin| ($ $)) (SIGNATURE |tan| ($ $))))
+((|trigs| (#1=(|#2| |#2|) 95 T ELT)) (|real?| (((|Boolean|) |#2|) 29 T ELT)) (|real| (#1# 33 T ELT)) (|imag| (#1# 35 T ELT)) (|complexNormalize| (#2=(|#2| |#2| (|Symbol|)) 89 T ELT) (#1# 90 T ELT)) (|complexForm| (((|Complex| |#2|) |#2|) 31 T ELT)) (|complexElementary| (#2# 91 T ELT) (#1# 92 T ELT)))
+(((|TrigonometricManipulations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexNormalize| #1=(|#2| |#2|)) (SIGNATURE |complexNormalize| #2=(|#2| |#2| (|Symbol|))) (SIGNATURE |complexElementary| #1#) (SIGNATURE |complexElementary| #2#) (SIGNATURE |trigs| #1#) (SIGNATURE |real| #1#) (SIGNATURE |imag| #1#) (SIGNATURE |real?| ((|Boolean|) |#2|)) (SIGNATURE |complexForm| ((|Complex| |#2|) |#2|))) (|Join| (|GcdDomain|) (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |TrigonometricManipulations|))
+((|complexForm| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|Join| (|GcdDomain|) (|RetractableTo| #4=(|Integer|)) (|LinearlyExplicitRingOver| #4#))) (|isDomain| *2 (|Complex| *3)) #5=(|isDomain| *1 (|TrigonometricManipulations| *4 *3)) #6=(|ofCategory| *3 #7=(|Join| #8=(|AlgebraicallyClosedField|) #9=(|TranscendentalFunctionCategory|) (|FunctionSpace| *4))))) (|real?| #1# (AND #2# (|isDomain| *2 (|Boolean|)) #5# #6#)) (|imag| #10=(*1 *2 *2) #11=(AND (|ofCategory| *3 #3#) (|isDomain| *1 (|TrigonometricManipulations| *3 *2)) (|ofCategory| *2 (|Join| #8# #9# (|FunctionSpace| *3))))) (|real| #10# #11#) (|trigs| #10# #11#) (|complexElementary| #12=(*1 *2 *2 *3) #13=(AND (|isDomain| *3 (|Symbol|)) #2# (|isDomain| *1 (|TrigonometricManipulations| *4 *2)) (|ofCategory| *2 #7#))) (|complexElementary| #10# #11#) (|complexNormalize| #12# #13#) (|complexNormalize| #10# #11#))
+((|UpTriBddDenomInv| (#1=(|#4| |#4| |#1|) 31 T ELT)) (|LowTriBddDenomInv| (#1# 32 T ELT)))
+(((|TriangularMatrixOperations| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |UpTriBddDenomInv| #1=(|#4| |#4| |#1|)) (SIGNATURE |LowTriBddDenomInv| #1#)) (|IntegralDomain|) #2=(|FiniteLinearAggregate| |#1|) #2# (|MatrixCategory| |#1| |#2| |#3|)) (T |TriangularMatrixOperations|))
+((|LowTriBddDenomInv| #1=(*1 *2 *2 *3) #2=(AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 #3=(|FiniteLinearAggregate| *3)) (|ofCategory| *5 #3#) (|isDomain| *1 (|TriangularMatrixOperations| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|UpTriBddDenomInv| #1# #2#))
+((|tanh2trigh| (#1=(|#2| |#2|) 148 T ELT)) (|tanh2coth| (#1# 145 T ELT)) (|tan2trig| (#1# 136 T ELT)) (|tan2cot| (#1# 133 T ELT)) (|sinh2csch| (#1# 141 T ELT)) (|sin2csc| (#1# 129 T ELT)) (|simplifyLog| (#1# 44 T ELT)) (|simplifyExp| (#1# 105 T ELT)) (|simplify| (#1# 88 T ELT)) (|sech2cosh| (#1# 143 T ELT)) (|sec2cos| (#1# 131 T ELT)) (|removeSinhSq| (#1# 153 T ELT)) (|removeSinSq| (#1# 151 T ELT)) (|removeCoshSq| (#1# 152 T ELT)) (|removeCosSq| (#1# 150 T ELT)) (|htrigs| (#1# 163 T ELT)) (|expandTrigProducts| (#1# 30 (AND (|has| |#2| #2=(|ConvertibleTo| (|Pattern| |#1|))) (|has| |#2| #3=(|PatternMatchable| |#1|)) (|has| |#1| #2#) (|has| |#1| #3#)) ELT)) (|expandPower| (#1# 89 T ELT)) (|expandLog| (#1# 154 T ELT)) (|expand| (#1# 155 T ELT)) (|csch2sinh| (#1# 142 T ELT)) (|csc2sin| (#1# 130 T ELT)) (|coth2trigh| (#1# 149 T ELT)) (|coth2tanh| (#1# 147 T ELT)) (|cot2trig| (#1# 137 T ELT)) (|cot2tan| (#1# 135 T ELT)) (|cosh2sech| (#1# 139 T ELT)) (|cos2sec| (#1# 127 T ELT)))
+(((|TranscendentalManipulations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |expand| #1=(|#2| |#2|)) (SIGNATURE |simplify| #1#) (SIGNATURE |htrigs| #1#) (SIGNATURE |simplifyExp| #1#) (SIGNATURE |simplifyLog| #1#) (SIGNATURE |expandPower| #1#) (SIGNATURE |expandLog| #1#) (SIGNATURE |cos2sec| #1#) (SIGNATURE |cosh2sech| #1#) (SIGNATURE |cot2trig| #1#) (SIGNATURE |coth2trigh| #1#) (SIGNATURE |csc2sin| #1#) (SIGNATURE |csch2sinh| #1#) (SIGNATURE |sec2cos| #1#) (SIGNATURE |sech2cosh| #1#) (SIGNATURE |sin2csc| #1#) (SIGNATURE |sinh2csch| #1#) (SIGNATURE |tan2trig| #1#) (SIGNATURE |tanh2trigh| #1#) (SIGNATURE |tan2cot| #1#) (SIGNATURE |tanh2coth| #1#) (SIGNATURE |cot2tan| #1#) (SIGNATURE |coth2tanh| #1#) (SIGNATURE |removeCosSq| #1#) (SIGNATURE |removeSinSq| #1#) (SIGNATURE |removeCoshSq| #1#) (SIGNATURE |removeSinhSq| #1#) (IF (|has| |#1| #2=(|PatternMatchable| |#1|)) (IF (|has| |#1| #3=(|ConvertibleTo| (|Pattern| |#1|))) (IF (|has| |#2| #3#) (IF (|has| |#2| #2#) (SIGNATURE |expandTrigProducts| #1#) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (|GcdDomain|) (|Join| (|FunctionSpace| |#1|) (|TranscendentalFunctionCategory|))) (T |TranscendentalManipulations|))
+((|expandTrigProducts| #1=(*1 *2 *2) (AND (|ofCategory| *3 #2=(|ConvertibleTo| (|Pattern| *3))) (|ofCategory| *3 #3=(|PatternMatchable| *3)) #4=(|ofCategory| *3 (|GcdDomain|)) #5=(|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 #2#) (|ofCategory| *2 #3#) #6=(|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|removeSinhSq| #1# #7=(AND #4# #5# #6#)) (|removeCoshSq| #1# #7#) (|removeSinSq| #1# #7#) (|removeCosSq| #1# #7#) (|coth2tanh| #1# #7#) (|cot2tan| #1# #7#) (|tanh2coth| #1# #7#) (|tan2cot| #1# #7#) (|tanh2trigh| #1# #7#) (|tan2trig| #1# #7#) (|sinh2csch| #1# #7#) (|sin2csc| #1# #7#) (|sech2cosh| #1# #7#) (|sec2cos| #1# #7#) (|csch2sinh| #1# #7#) (|csc2sin| #1# #7#) (|coth2trigh| #1# #7#) (|cot2trig| #1# #7#) (|cosh2sech| #1# #7#) (|cos2sec| #1# #7#) (|expandLog| #1# #7#) (|expandPower| #1# #7#) (|simplifyLog| #1# #7#) (|simplifyExp| #1# #7#) (|htrigs| #1# #7#) (|simplify| #1# #7#) (|expand| #1# #7#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|Symbol|)) $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #8=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #9=(#10=($ $) NIL #8# ELT)) (|unit?| (#5# NIL #8# ELT)) (|tanh| #11=(#10# NIL #12=(|has| |#1| (|Algebra| #13=(|Fraction| #14=(|Integer|)))) ELT)) (|tan| #11#) (|subtractIfCan| (#15=(#16=(|Union| $ "failed") $ $) NIL T ELT)) (|sqrt| #11#) (|sinh| #11#) (|sin| #11#) (|sech| #11#) (|sec| #11#) (|sample| #17=(#18=($) NIL T CONST)) (|reductum| #19=(#10# NIL T ELT)) (|recip| ((#16# $) NIL T ELT)) (|polynomial| (#20=(#21=(|Polynomial| |#1|) $ #22=(|NonNegativeInteger|)) 18 T ELT) ((#21# $ #22# #22#) NIL T ELT)) (|pole?| #4#) (|pi| (#18# NIL #12# ELT)) (|order| ((#22# $ #7#) NIL T ELT) ((#22# $ #7# #22#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (($ $ #14#) NIL #12# ELT)) (|monomial?| #4#) (|monomial| (($ $ #6# (|List| #23=(|IndexedExponents| #7#))) NIL T ELT) (($ $ #7# #23#) NIL T ELT) (($ |#1| #23#) NIL T ELT) #24=(($ $ #7# #22#) NIL T ELT) #25=(($ $ #6# (|List| #22#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| #11#) (|leadingMonomial| #19#) (|leadingCoefficient| ((|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|integrate| (#26=($ $ #7#) NIL #12# ELT) (($ $ #7# |#1|) NIL #12# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|fintegrate| (($ (|Mapping| $) #7# |#1|) NIL #12# ELT)) (|extend| #27=(($ $ #22#) NIL T ELT)) (|exquo| (#15# NIL #8# ELT)) (|exp| #11#) (|eval| (($ $ #7# $) NIL T ELT) (($ $ #6# #28=(|List| $)) NIL T ELT) (($ $ (|List| #29=(|Equation| $))) NIL T ELT) (($ $ #29#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #28# #28#) NIL T ELT)) (|differentiate| #25# #24# #30=(($ $ #6#) NIL T ELT) #31=(#26# NIL T ELT)) (|degree| ((#23# $) NIL T ELT)) (|csch| #11#) (|csc| #11#) (|coth| #11#) (|cot| #11#) (|cosh| #11#) (|cos| #11#) (|complete| #19#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) #9# (($ #13#) NIL #12# ELT) (($ #7#) NIL T ELT) (($ #21#) NIL T ELT)) (|coefficient| ((|#1| $ #23#) NIL T ELT) #24# #25# (#20# NIL T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#22#) NIL T CONST)) (|before?| #1#) (|atanh| #11#) (|atan| #11#) (|associates?| (#2# NIL #8# ELT)) (|asinh| #11#) (|asin| #11#) (|asech| #11#) (|asec| #11#) (|annihilate?| #1#) (|acsch| #11#) (|acsc| #11#) (|acoth| #11#) (|acot| #11#) (|acosh| #11#) (|acos| #11#) (|Zero| #17#) (|One| #17#) (D #25# #24# #30# #31#) (= #1#) (/ (#32=($ $ |#1|) NIL (|has| |#1| (|Field|)) ELT)) (- #19# #33=(#34=($ $ $) NIL T ELT)) (+ #33#) (** (($ $ #35=(|PositiveInteger|)) NIL T ELT) #27# (#34# NIL #12# ELT) #36=(($ $ #13#) NIL #12# ELT)) (* (($ #35# $) NIL T ELT) (($ #22# $) NIL T ELT) (($ #14# . #37=($)) NIL T ELT) #33# #36# (($ #13# . #37#) NIL #12# ELT) (($ |#1| . #37#) NIL T ELT) (#32# NIL T ELT)))
+(((|TaylorSeries| |#1|) (|Join| (|MultivariateTaylorSeriesCategory| |#1| #1=(|Symbol|)) (CATEGORY |domain| (SIGNATURE |coefficient| (#2=(|Polynomial| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ #1#)) (SIGNATURE |coerce| ($ #2#)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ #1# |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) #1# |#1|))) |%noBranch|))) (|Ring|)) (T |TaylorSeries|))
+((|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Polynomial| *4)) #1=(|isDomain| *1 #2=(|TaylorSeries| *4)) #3=(|ofCategory| *4 #4=(|Ring|)))) (|coerce| #5=(*1 *1 *2) (AND #6=(|isDomain| *2 #7=(|Symbol|)) #8=(|isDomain| *1 (|TaylorSeries| *3)) #9=(|ofCategory| *3 #4#))) (|coerce| #5# (AND (|isDomain| *2 (|Polynomial| *3)) #9# #8#)) (|integrate| (*1 *1 *1 *2 *3) (AND #6# #8# (|ofCategory| *3 #10=(|Algebra| (|Fraction| (|Integer|)))) #9#)) (|fintegrate| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Mapping| #2#)) (|isDomain| *3 #7#) #1# (|ofCategory| *4 #10#) #3#)))
+((|stronglyReduced?| (#1=(#2=(|Boolean|) |#5| $) 68 T ELT) (#3=(#2# $) 109 T ELT)) (|stronglyReduce| (#4=(|#5| |#5| $) 83 T ELT)) (|select| (($ #5=(|Mapping| #2# |#5|) $) NIL T ELT) ((#6=(|Union| |#5| #7="failed") $ |#4|) 126 T ELT)) (|rewriteSetWithReduction| ((#8=(|List| |#5|) #8# $ #9=(|Mapping| |#5| |#5| |#5|) #10=(|Mapping| #2# |#5| |#5|)) 81 T ELT)) (|retractIfCan| ((#11=(|Union| $ #7#) #8#) 134 T ELT)) (|rest| ((#11# $) 119 T ELT)) (|removeZero| (#4# 101 T ELT)) (|reduced?| ((#2# |#5| $ #10#) 36 T ELT)) (|reduceByQuasiMonic| (#4# 105 T ELT)) (|reduce| ((|#5| #9# $ |#5| |#5|) NIL T ELT) ((|#5| #9# $ |#5|) NIL T ELT) ((|#5| #9# $) NIL T ELT) ((|#5| |#5| $ #9# #10#) 77 T ELT)) (|quasiComponent| (((|Record| (|:| |close| #8#) (|:| |open| #8#)) $) 63 T ELT)) (|normalized?| (#1# 66 T ELT) (#3# 110 T ELT)) (|mvar| ((|#4| $) 115 T ELT)) (|last| (#12=(#6# $) 117 T ELT)) (|initials| (#13=(#8# $) 55 T ELT)) (|initiallyReduced?| (#1# 75 T ELT) (#3# 114 T ELT)) (|initiallyReduce| (#4# 89 T ELT)) (|infRittWu?| (#14=(#2# $ $) 29 T ELT)) (|headReduced?| (#1# 71 T ELT) (#3# 112 T ELT)) (|headReduce| (#4# 86 T ELT)) (|first| (#12# 116 T ELT)) (|extend| (($ $ |#5|) 135 T ELT)) (|degree| (#15=((|NonNegativeInteger|) $) 60 T ELT)) (|construct| (($ #8#) 132 T ELT)) (|collectUpper| (#16=($ $ |#4|) 130 T ELT)) (|collectUnder| (#16# 128 T ELT)) (|collectQuasiMonic| (($ $) 127 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (#13# 120 T ELT)) (|coHeight| (#15# 139 T ELT)) (|basicSet| ((#17=(|Union| (|Record| (|:| |bas| $) (|:| |top| #8#)) #7#) #8# #10#) 49 T ELT) ((#17# #8# #5# #10#) 51 T ELT)) (|autoReduced?| ((#2# $ (|Mapping| #2# |#5| #8#)) 107 T ELT)) (|algebraicVariables| (((|List| |#4|) $) 122 T ELT)) (|algebraic?| ((#2# |#4| $) 125 T ELT)) (= (#14# 20 T ELT)))
+(((|TriangularSetCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |coHeight| #1=((|NonNegativeInteger|) |#1|)) (SIGNATURE |extend| (|#1| |#1| |#5|)) (SIGNATURE |select| (#2=(|Union| |#5| #3="failed") |#1| |#4|)) (SIGNATURE |algebraic?| (#4=(|Boolean|) |#4| |#1|)) (SIGNATURE |algebraicVariables| ((|List| |#4|) |#1|)) (SIGNATURE |rest| (#5=(|Union| |#1| #3#) |#1|)) (SIGNATURE |last| #6=(#2# |#1|)) (SIGNATURE |first| #6#) (SIGNATURE |reduceByQuasiMonic| #7=(|#5| |#5| |#1|)) (SIGNATURE |collectQuasiMonic| (|#1| |#1|)) (SIGNATURE |removeZero| #7#) (SIGNATURE |initiallyReduce| #7#) (SIGNATURE |headReduce| #7#) (SIGNATURE |stronglyReduce| #7#) (SIGNATURE |rewriteSetWithReduction| (#8=(|List| |#5|) #8# |#1| #9=(|Mapping| |#5| |#5| |#5|) #10=(|Mapping| #4# |#5| |#5|))) (SIGNATURE |reduce| (|#5| |#5| |#1| #9# #10#)) (SIGNATURE |initiallyReduced?| #11=(#4# |#1|)) (SIGNATURE |headReduced?| #11#) (SIGNATURE |stronglyReduced?| #11#) (SIGNATURE |autoReduced?| (#4# |#1| (|Mapping| #4# |#5| #8#))) (SIGNATURE |initiallyReduced?| #12=(#4# |#5| |#1|)) (SIGNATURE |headReduced?| #12#) (SIGNATURE |stronglyReduced?| #12#) (SIGNATURE |reduced?| (#4# |#5| |#1| #10#)) (SIGNATURE |normalized?| #11#) (SIGNATURE |normalized?| #12#) (SIGNATURE |quasiComponent| ((|Record| (|:| |close| #8#) (|:| |open| #8#)) |#1|)) (SIGNATURE |degree| #1#) (SIGNATURE |initials| #13=(#8# |#1|)) (SIGNATURE |basicSet| (#14=(|Union| (|Record| (|:| |bas| |#1|) (|:| |top| #8#)) #3#) #8# #15=(|Mapping| #4# |#5|) #10#)) (SIGNATURE |basicSet| (#14# #8# #10#)) (SIGNATURE |infRittWu?| #16=(#4# |#1| |#1|)) (SIGNATURE |collectUpper| #17=(|#1| |#1| |#4|)) (SIGNATURE |collectUnder| #17#) (SIGNATURE |mvar| (|#4| |#1|)) (SIGNATURE |retractIfCan| (#5# #8#)) (SIGNATURE |coerce| #13#) (SIGNATURE |reduce| (|#5| #9# |#1|)) (SIGNATURE |reduce| (|#5| #9# |#1| |#5|)) (SIGNATURE |reduce| (|#5| #9# |#1| |#5| |#5|)) (SIGNATURE |construct| (|#1| #8#)) (SIGNATURE |select| (|#1| #15# |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = #16#)) (|TriangularSetCategory| |#2| |#3| |#4| |#5|) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#2| |#3| |#4|)) (T |TriangularSetCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 91 T ELT)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 92 T ELT)) (|variables| (((|List| |#3|) . #2=($)) 39 T ELT)) (|trivialIdeal?| (#3=(#4=(|Boolean|) $) 32 T ELT)) (|triangular?| (#3# 23 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|stronglyReduced?| (((|Boolean|) |#4| $) 107 T ELT) (((|Boolean|) $) 103 T ELT)) (|stronglyReduce| ((|#4| |#4| $) 98 T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 33 T ELT)) (|select| (($ (|Mapping| #6=(|Boolean|) |#4|) . #7=($)) 67 (|has| $ (|FiniteAggregate| |#4|)) ELT) (((|Union| |#4| "failed") $ |#3|) 85 T ELT)) (|sample| (#8=($) 59 T CONST)) (|roughUnitIdeal?| (#3# 28 (|has| |#1| . #5#) ELT)) (|roughSubIdeal?| (#9=(#4# $ $) 30 (|has| |#1| . #5#) ELT)) (|roughEqualIdeals?| (#9# 29 (|has| |#1| . #5#) ELT)) (|roughBase?| (#3# 31 (|has| |#1| . #5#) ELT)) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 99 T ELT)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) . #10=($)) 24 (|has| |#1| . #5#) ELT)) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) . #10#) 25 (|has| |#1| . #5#) ELT)) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 42 T ELT)) (|retract| (($ (|List| |#4|)) 41 T ELT)) (|rest| (((|Union| $ "failed") $) 88 T ELT)) (|removeZero| ((|#4| |#4| $) 95 T ELT)) (|removeDuplicates| (($ $) 69 (AND (|has| |#4| . #11=((|BasicType|))) (|has| $ (|FiniteAggregate| |#4|))) ELT)) (|remove| (($ |#4| $) 68 (AND (|has| |#4| . #11#) (|has| $ (|FiniteAggregate| |#4|))) ELT) (($ (|Mapping| #6# |#4|) . #7#) 66 (|has| $ (|FiniteAggregate| |#4|)) ELT)) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| . #5#) ELT)) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) 108 T ELT)) (|reduceByQuasiMonic| ((|#4| |#4| $) 93 T ELT)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 54 (|has| |#4| . #12=((|BasicType|))) ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 50 T ELT) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 49 T ELT) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 100 T ELT)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 111 T ELT)) (|normalized?| (((|Boolean|) |#4| $) 110 T ELT) (((|Boolean|) $) 109 T ELT)) (|mvar| ((|#3| $) 40 T ELT)) (|members| (((|List| |#4|) $) 48 T ELT)) (|member?| ((#13=(|Boolean|) |#4| $) 53 (|has| |#4| . #12#) ELT)) (|map!| (($ (|Mapping| |#4| |#4|) $) 117 T ELT)) (|map| (($ (|Mapping| |#4| |#4|) $) 60 T ELT)) (|mainVariables| (((|List| |#3|) . #2#) 38 T ELT)) (|mainVariable?| ((#4# |#3| $) 37 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|last| (((|Union| |#4| "failed") $) 89 T ELT)) (|initials| (((|List| |#4|) $) 113 T ELT)) (|initiallyReduced?| (((|Boolean|) |#4| $) 105 T ELT) (((|Boolean|) $) 101 T ELT)) (|initiallyReduce| ((|#4| |#4| $) 96 T ELT)) (|infRittWu?| (((|Boolean|) $ $) 116 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 27 (|has| |#1| . #5#) ELT)) (|headReduced?| (((|Boolean|) |#4| $) 106 T ELT) (((|Boolean|) $) 102 T ELT)) (|headReduce| ((|#4| |#4| $) 97 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|first| (((|Union| |#4| "failed") $) 90 T ELT)) (|find| (((|Union| |#4| "failed") (|Mapping| #13# |#4|) $) 51 T ELT)) (|extendIfCan| (((|Union| $ "failed") $ |#4|) 84 T ELT)) (|extend| (($ $ |#4|) 83 T ELT)) (|every?| ((#13# (|Mapping| #13# |#4|) . #14=($)) 46 T ELT)) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 64 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #15=((|SetCategory|)))) ELT) (($ $ |#4| |#4|) 63 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #15#)) ELT) (($ $ (|Equation| |#4|)) 62 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #15#)) ELT) (($ $ (|List| (|Equation| |#4|))) 61 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| . #15#)) ELT)) (|eq?| ((#16=(|Boolean|) $ $) 55 T ELT)) (|empty?| ((#16# $) 58 T ELT)) (|empty| (#8# 57 T ELT)) (|degree| (((|NonNegativeInteger|) $) 112 T ELT)) (|count| ((#17=(|NonNegativeInteger|) |#4| $) 52 (|has| |#4| . #12#) ELT) ((#17# (|Mapping| #13# |#4|) $) 47 T ELT)) (|copy| (($ $) 56 T ELT)) (|convert| ((#18=(|InputForm|) $) 70 (|has| |#4| (|ConvertibleTo| #18#)) ELT)) (|construct| (($ (|List| |#4|)) 65 T ELT)) (|collectUpper| (($ $ |#3|) 34 T ELT)) (|collectUnder| (($ $ |#3|) 36 T ELT)) (|collectQuasiMonic| (($ $) 94 T ELT)) (|collect| (($ $ |#3|) 35 T ELT)) (|coerce| (((|OutputForm|) . #19=($)) 13 T ELT) (((|List| |#4|) . #19#) 43 T ELT)) (|coHeight| (((|NonNegativeInteger|) $) 82 (|has| |#3| (|Finite|)) ELT)) (|before?| (#1# 6 T ELT)) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 115 T ELT) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 114 T ELT)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) 104 T ELT)) (|any?| ((#13# (|Mapping| #13# |#4|) . #14#) 45 T ELT)) (|algebraicVariables| (((|List| |#3|) $) 87 T ELT)) (|algebraic?| (((|Boolean|) |#3| $) 86 T ELT)) (= (#1# 8 T ELT)) (|#| ((#17# $) 44 T ELT)))
+(((|TriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |TriangularSetCategory|))
+((|infRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|basicSet| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *8)))) (|isDomain| *3 (|List| *8)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8)))) (|basicSet| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *9)) (|isDomain| *5 (|Mapping| (|Boolean|) *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *9)))) (|isDomain| *3 (|List| *9)) (|ofCategory| *1 (|TriangularSetCategory| *6 *7 *8 *9)))) (|initials| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *6)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|NonNegativeInteger|)))) (|quasiComponent| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Record| (|:| |close| (|List| *6)) (|:| |open| (|List| *6)))))) (|normalized?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *3 *1 *4) (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *3)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Boolean|)))) (|stronglyReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|autoReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *7 (|List| *7))) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|stronglyReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|reduce| (*1 *2 *2 *1 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *2)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *5 *6 *7)))) (|rewriteSetWithReduction| (*1 *2 *2 *1 *3 *4) (AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| *8 *8 *8)) (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)))) (|stronglyReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|headReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|initiallyReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|removeZero| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|collectQuasiMonic| (*1 *1 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4)))) (|reduceByQuasiMonic| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|zeroSetSplit| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))) (|zeroSetSplitIntoTriangularSystems| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| (|Record| (|:| |close| *1) (|:| |open| (|List| *7))))) (|isDomain| *3 (|List| *7)) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))) (|first| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|last| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|rest| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4)))) (|algebraicVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|algebraic?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Boolean|)))) (|select| (*1 *2 *1 *3) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *2)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *3)))) (|extendIfCan| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|coHeight| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *5 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(|Join| (|PolynomialSetCategory| |t#1| |t#2| |t#3| |t#4|) (|ShallowlyMutableAggregate| |t#4|) (CATEGORY |domain| (SIGNATURE |infRittWu?| ((|Boolean|) $ $)) (SIGNATURE |basicSet| ((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |t#4|))) "failed") (|List| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |basicSet| ((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |t#4|))) "failed") (|List| |t#4|) (|Mapping| (|Boolean|) |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |initials| ((|List| |t#4|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |quasiComponent| ((|Record| (|:| |close| (|List| |t#4|)) (|:| |open| (|List| |t#4|))) $)) (SIGNATURE |normalized?| ((|Boolean|) |t#4| $)) (SIGNATURE |normalized?| ((|Boolean|) $)) (SIGNATURE |reduced?| ((|Boolean|) |t#4| $ (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |stronglyReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |headReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |autoReduced?| ((|Boolean|) $ (|Mapping| (|Boolean|) |t#4| (|List| |t#4|)))) (SIGNATURE |stronglyReduced?| ((|Boolean|) $)) (SIGNATURE |headReduced?| ((|Boolean|) $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) $)) (SIGNATURE |reduce| (|t#4| |t#4| $ (|Mapping| |t#4| |t#4| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |rewriteSetWithReduction| ((|List| |t#4|) (|List| |t#4|) $ (|Mapping| |t#4| |t#4| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |stronglyReduce| (|t#4| |t#4| $)) (SIGNATURE |headReduce| (|t#4| |t#4| $)) (SIGNATURE |initiallyReduce| (|t#4| |t#4| $)) (SIGNATURE |removeZero| (|t#4| |t#4| $)) (SIGNATURE |collectQuasiMonic| ($ $)) (SIGNATURE |reduceByQuasiMonic| (|t#4| |t#4| $)) (SIGNATURE |zeroSetSplit| ((|List| $) (|List| |t#4|))) (SIGNATURE |zeroSetSplitIntoTriangularSystems| ((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |t#4|)))) (|List| |t#4|))) (SIGNATURE |first| ((|Union| |t#4| "failed") $)) (SIGNATURE |last| ((|Union| |t#4| "failed") $)) (SIGNATURE |rest| ((|Union| $ "failed") $)) (SIGNATURE |algebraicVariables| ((|List| |t#3|) $)) (SIGNATURE |algebraic?| ((|Boolean|) |t#3| $)) (SIGNATURE |select| ((|Union| |t#4| "failed") $ |t#3|)) (SIGNATURE |extendIfCan| ((|Union| $ "failed") $ |t#4|)) (SIGNATURE |extend| ($ $ |t#4|)) (IF (|has| |t#3| (|Finite|)) (SIGNATURE |coHeight| ((|NonNegativeInteger|) $)) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|FiniteAggregate| |#4|) . T) ((|Functorial| |#4|) . T) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|Join|) . T) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|ShallowlyMutableAggregate| |#4|) . T) ((|Type|) . T))
+((|tube| (($ |#1| #1=(|List| (|List| (|Point| (|DoubleFloat|)))) #2=(|Boolean|)) 19 T ELT)) (|setClosed| ((#2# $ #2#) 18 T ELT)) (|open?| (#3=(#2# $) 17 T ELT)) (|listLoops| ((#1# $) 13 T ELT)) (|getCurve| ((|#1| $) 8 T ELT)) (|closed?| (#3# 15 T ELT)))
+(((|TubePlot| |#1|) (CATEGORY |domain| (SIGNATURE |getCurve| (|#1| $)) (SIGNATURE |listLoops| (#1=(|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |closed?| #2=(#3=(|Boolean|) $)) (SIGNATURE |open?| #2#) (SIGNATURE |setClosed| (#3# $ #3#)) (SIGNATURE |tube| ($ |#1| #1# #3#))) (|PlottableSpaceCurveCategory|)) (T |TubePlot|))
+((|tube| (*1 *1 *2 *3 *4) (AND (|isDomain| *3 #1=(|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 #2=(|Boolean|)) #3=(|isDomain| *1 (|TubePlot| *2)) #4=(|ofCategory| *2 #5=(|PlottableSpaceCurveCategory|)))) (|setClosed| (*1 *2 *1 *2) #6=(AND (|isDomain| *2 #2#) #7=(|isDomain| *1 (|TubePlot| *3)) #8=(|ofCategory| *3 #5#))) (|open?| #9=(*1 *2 *1) #6#) (|closed?| #9# #6#) (|listLoops| #9# (AND (|isDomain| *2 #1#) #7# #8#)) (|getCurve| #9# (AND #3# #4#)))
+((|unitVector| ((#1=(|Point| #2=(|DoubleFloat|)) #1#) 31 T ELT)) (|point| ((#1# #2# #2# #2# #2#) 10 T ELT)) (|loopPoints| (((|List| #1#) #1# #1# #1# #2# #3=(|List| (|List| #2#))) 57 T ELT)) (|dot| ((#2# #1# #1#) 27 T ELT)) (|cross| (#4=(#1# #1# #1#) 28 T ELT)) (|cosSinInfo| ((#3# (|Integer|)) 45 T ELT)) (- (#4# 26 T ELT)) (+ (#4# 24 T ELT)) (* ((#1# #2# #1#) 22 T ELT)))
+(((|TubePlotTools|) (CATEGORY |package| (SIGNATURE |point| (#1=(|Point| #2=(|DoubleFloat|)) #2# #2# #2# #2#)) (SIGNATURE * (#1# #2# #1#)) (SIGNATURE + #3=(#1# #1# #1#)) (SIGNATURE - #3#) (SIGNATURE |dot| (#2# #1# #1#)) (SIGNATURE |cross| #3#) (SIGNATURE |unitVector| (#1# #1#)) (SIGNATURE |cosSinInfo| (#4=(|List| (|List| #2#)) (|Integer|))) (SIGNATURE |loopPoints| ((|List| #1#) #1# #1# #1# #2# #4#)))) (T |TubePlotTools|))
+((|loopPoints| (*1 *2 *3 *3 *3 *4 *5) (AND (|isDomain| *5 #1=(|List| (|List| #2=(|DoubleFloat|)))) (|isDomain| *4 #2#) (|isDomain| *2 (|List| #3=(|Point| *4))) #4=(|isDomain| *1 (|TubePlotTools|)) (|isDomain| *3 #3#))) (|cosSinInfo| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 #1#) #4#)) (|unitVector| (*1 *2 *2) #5=(AND #6=(|isDomain| *2 #7=(|Point| #2#)) #4#)) (|cross| #8=(*1 *2 *2 *2) #5#) (|dot| (*1 *2 *3 *3) (AND (|isDomain| *3 #7#) (|isDomain| *2 #2#) #4#)) (- #8# #5#) (+ #8# #5#) (* (*1 *2 *3 *2) (AND #6# #9=(|isDomain| *3 #2#) #4#)) (|point| (*1 *2 *3 *3 *3 *3) (AND #6# #4# #9#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL #3=(|has| |#1| (|SetCategory|)) ELT)) (|select| ((|#1| $ #4=(|NonNegativeInteger|)) 18 T ELT)) (|length| ((#4# $) 13 T ELT)) (|latex| (((|String|) $) NIL #3# ELT)) (|hash| (((|SingleInteger|) $) NIL #3# ELT)) (|coerce| ((#5=(|PrimitiveArray| |#1|) $) 12 T ELT) (($ #5#) 11 T ELT) ((#6=(|OutputForm|) $) 29 (|has| |#1| (|CoercibleTo| #6#)) ELT)) (|before?| #1#) (= (#2# 22 #3# ELT)))
+(((|Tuple| |#1|) (|Join| (|HomotopicTo| (|PrimitiveArray| |#1|)) (CATEGORY |domain| (SIGNATURE |select| (|#1| $ #1=(|NonNegativeInteger|))) (SIGNATURE |length| (#1# $)) (IF (|has| |#1| #2=(|CoercibleTo| (|OutputForm|))) (ATTRIBUTE #2#) |%noBranch|) (IF (|has| |#1| #3=(|SetCategory|)) (ATTRIBUTE #3#) |%noBranch|))) (|Type|)) (T |Tuple|))
+((|select| (*1 *2 *1 *3) (AND (|isDomain| *3 #1=(|NonNegativeInteger|)) (|isDomain| *1 (|Tuple| *2)) (|ofCategory| *2 #2=(|Type|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 #1#) (|isDomain| *1 (|Tuple| *3)) (|ofCategory| *3 #2#))))
+((|twoFactor| ((#1=(|Factored| #2=(|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) #2# (|Integer|)) 92 T ELT)) (|generalTwoFactor| (#3=(#1# #2#) 84 T ELT)) (|generalSqFr| (#3# 68 T ELT)))
+(((|TwoFactorize| |#1|) (CATEGORY |package| (SIGNATURE |generalTwoFactor| #1=(#2=(|Factored| #3=(|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) #3#)) (SIGNATURE |generalSqFr| #1#) (SIGNATURE |twoFactor| (#2# #3# (|Integer|)))) (|FiniteFieldCategory|)) (T |TwoFactorize|))
+((|twoFactor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *5 #1=(|FiniteFieldCategory|)) (|isDomain| *2 (|Factored| #2=(|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *5)))) (|isDomain| *1 (|TwoFactorize| *5)) (|isDomain| *3 #2#))) (|generalSqFr| #3=(*1 *2 *3) #4=(AND (|ofCategory| *4 #1#) (|isDomain| *2 (|Factored| #5=(|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4)))) (|isDomain| *1 (|TwoFactorize| *4)) (|isDomain| *3 #5#))) (|generalTwoFactor| #3# #4#))
+NIL
+(((|Type|) (|Category|)) (T |Type|))
+NIL
+(|Join|)
+(((|Join|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 9 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|TypeAst|) (|SpadSyntaxCategory|)) (T |TypeAst|))
+NIL
+((|userOrdered?| ((#1=(|Boolean|)) 18 T ELT)) (|setOrder| ((#2=(|Void|) #3=(|List| |#1|) #3#) 22 T ELT) ((#2# #3#) 23 T ELT)) (|more?| ((#1# |#1| |#1|) 37 #4=(|has| |#1| (|OrderedSet|)) ELT)) (|less?| ((#1# |#1| |#1| #5=(|Mapping| #1# |#1| |#1|)) 29 T ELT) (((|Union| #1# "failed") |#1| |#1|) 27 T ELT)) (|largest| ((|#1| #3#) 38 #4# ELT) ((|#1| #3# #5#) 32 T ELT)) (|getOrder| (((|Record| (|:| |low| #3#) (|:| |high| #3#))) 20 T ELT)))
+(((|UserDefinedPartialOrdering| |#1|) (CATEGORY |package| (SIGNATURE |setOrder| (#1=(|Void|) #2=(|List| |#1|))) (SIGNATURE |setOrder| (#1# #2# #2#)) (SIGNATURE |getOrder| ((|Record| (|:| |low| #2#) (|:| |high| #2#)))) (SIGNATURE |less?| ((|Union| #3=(|Boolean|) "failed") |#1| |#1|)) (SIGNATURE |less?| (#3# |#1| |#1| #4=(|Mapping| #3# |#1| |#1|))) (SIGNATURE |largest| (|#1| #2# #4#)) (SIGNATURE |userOrdered?| (#3#)) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |largest| (|#1| #2#)) (SIGNATURE |more?| (#3# |#1| |#1|))) |%noBranch|)) (|SetCategory|)) (T |UserDefinedPartialOrdering|))
+((|more?| #1=(*1 *2 *3 *3) (AND #2=(|isDomain| *2 #3=(|Boolean|)) #4=(|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 #5=(|OrderedSet|)) #6=(|ofCategory| *3 #7=(|SetCategory|)))) (|largest| #8=(*1 *2 *3) (AND #9=(|isDomain| *3 (|List| *2)) #10=(|ofCategory| *2 #7#) (|ofCategory| *2 #5#) #11=(|isDomain| *1 (|UserDefinedPartialOrdering| *2)))) (|userOrdered?| #12=(*1 *2) (AND #2# #4# #6#)) (|largest| (*1 *2 *3 *4) (AND #9# (|isDomain| *4 (|Mapping| #3# *2 *2)) #11# #10#)) (|less?| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Mapping| #3# *3 *3)) #6# #2# #4#)) (|less?| #1# (|partial| AND #2# #4# #6#)) (|getOrder| #12# (AND (|isDomain| *2 (|Record| (|:| |low| #13=(|List| *3)) (|:| |high| #13#))) #4# #6#)) (|setOrder| #1# #14=(AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 #7#) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *4)))) (|setOrder| #8# #14#))
+((|setVariableOrder| ((#1=(|Void|) #2=(|List| (|Symbol|)) #2#) 14 T ELT) ((#1# #2#) 12 T ELT)) (|resetVariableOrder| ((#1#) 16 T ELT)) (|getVariableOrder| (((|Record| (|:| |high| #2#) (|:| |low| #2#))) 20 T ELT)))
+(((|UserDefinedVariableOrdering|) (CATEGORY |package| (SIGNATURE |setVariableOrder| (#1=(|Void|) #2=(|List| (|Symbol|)))) (SIGNATURE |setVariableOrder| (#1# #2# #2#)) (SIGNATURE |getVariableOrder| ((|Record| (|:| |high| #2#) (|:| |low| #2#)))) (SIGNATURE |resetVariableOrder| (#1#)))) (T |UserDefinedVariableOrdering|))
+((|resetVariableOrder| #1=(*1 *2) (AND #2=(|isDomain| *2 (|Void|)) #3=(|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|getVariableOrder| #1# (AND (|isDomain| *2 (|Record| (|:| |high| #4=(|List| (|Symbol|))) (|:| |low| #4#))) #3#)) (|setVariableOrder| (*1 *2 *3 *3) #5=(AND (|isDomain| *3 #4#) #2# #3#)) (|setVariableOrder| (*1 *2 *3) #5#))
+((|squareFreePart| (($ $) 17 T ELT)) (|prime?| (((|Boolean|) $) 27 T ELT)))
+(((|UniqueFactorizationDomain&| |#1|) (CATEGORY |package| (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |prime?| ((|Boolean|) |#1|))) (|UniqueFactorizationDomain|)) (T |UniqueFactorizationDomain&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 66 T ELT)) (|squareFree| (((|Factored| $) $) 67 T ELT)) (|sample| (#4=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|prime?| (((|Boolean|) $) 68 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|lcm| (#5=($ $ $) 60 T ELT) (#6=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#7=(|SparseUnivariatePolynomial| $) #7# #7#) 58 T ELT)) (|gcd| (#5# 62 T ELT) (#6# 61 T ELT)) (|factor| (((|Factored| $) $) 65 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#4# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((|UniqueFactorizationDomain|) (|Category|)) (T |UniqueFactorizationDomain|))
+((|prime?| (*1 *2 *1) (AND (|ofCategory| *1 (|UniqueFactorizationDomain|)) (|isDomain| *2 (|Boolean|)))) (|squareFree| (*1 *2 *1) (AND (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|UniqueFactorizationDomain|)))) (|squareFreePart| (*1 *1 *1) (|ofCategory| *1 (|UniqueFactorizationDomain|))) (|factor| (*1 *2 *1) (AND (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|UniqueFactorizationDomain|)))))
+(|Join| (|GcdDomain|) (CATEGORY |domain| (SIGNATURE |prime?| ((|Boolean|) $)) (SIGNATURE |squareFree| ((|Factored| $) $)) (SIGNATURE |squareFreePart| ($ $)) (SIGNATURE |factor| ((|Factored| $) $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| $) . T) ((|LinearSet| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightLinearSet| $) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bitior| #4#) (|bitand| #4#) (|before?| #1#) (|\\/| #4#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| #4#))
+(((|UInt16|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|)))) (T |UInt16|))
+((|bitand| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|UInt16|))) (|bitior| #1# #2#) (|sample| (*1 *1) #2#))
+((|NonNegativeInteger|) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bitior| #4#) (|bitand| #4#) (|before?| #1#) (|\\/| #4#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| #4#))
+(((|UInt32|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|)))) (T |UInt32|))
+((|bitand| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|UInt32|))) (|bitior| #1# #2#) (|sample| (*1 *1) #2#))
+((|NonNegativeInteger|) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bitior| #4#) (|bitand| #4#) (|before?| #1#) (|\\/| #4#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| #4#))
+(((|UInt64|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|)))) (T |UInt64|))
+((|bitand| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|UInt64|))) (|bitior| #1# #2#) (|sample| (*1 *1) #2#))
+((|NonNegativeInteger|) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (~ (($ $) NIL T ELT)) (|size| (((|NonNegativeInteger|)) NIL T ELT)) (|sample| #2=(#3=($) NIL T CONST)) (|random| (#3# NIL T ELT)) (|min| #4=(($ $ $) NIL T ELT) #2#) (|max| #4# #2#) (|lookup| ((#5=(|PositiveInteger|) $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|index| (($ #5#) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT)) (|bitior| #4#) (|bitand| #4#) (|before?| #1#) (|\\/| #4#) (>= #1#) (> #1#) (= #1#) (<= #1#) (< #1#) (|/\\| #4#))
+(((|UInt8|) (|Join| (|OrderedFinite|) (|Logic|) (CATEGORY |domain| (SIGNATURE |bitand| #1=($ $ $)) (SIGNATURE |bitior| #1#) (SIGNATURE |sample| ($) |constant|)))) (T |UInt8|))
+((|bitand| #1=(*1 *1 *1 *1) #2=(|isDomain| *1 (|UInt8|))) (|bitior| #1# #2#) (|sample| (*1 *1) #2#))
+((|NonNegativeInteger|) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|wholePart| (#6=(#7=(|UnivariateTaylorSeries| |#1| |#2| |#3|) $) NIL #8=(AND (|has| #7# (|EuclideanDomain|)) #9=(|has| |#1| (|Field|))) ELT)) (|variables| ((#10=(|List| #11=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| (#12=(#13=(|Symbol|) $) 10 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #14=(OR #15=(AND (|has| #7# (|OrderedIntegralDomain|)) #9#) #16=(AND #17=(|has| #7# (|PolynomialFactorizationExplicit|)) #9#) #18=(|has| |#1| (|IntegralDomain|))) ELT)) (|unitCanonical| #19=(#20=($ $) NIL #14# ELT)) (|unit?| (#5# NIL #14# ELT)) (|truncate| #21=(#22=($ $ #23=(|Integer|)) NIL T ELT) (($ $ #23# #23#) NIL T ELT)) (|terms| ((#24=(|Stream| (|Record| (|:| |k| #23#) (|:| |c| |#1|))) $) NIL T ELT)) (|taylorRep| #25=(#6# NIL T ELT)) (|taylorIfCan| #26=(((|Union| #7# #27="failed") $) NIL T ELT)) (|taylor| #25#) (|tanh| #28=(#20# NIL #29=(|has| |#1| (|Algebra| #30=(|Fraction| #23#))) ELT)) (|tan| #28#) (|subtractIfCan| (#31=(#32=(|Union| $ #27#) $ $) NIL T ELT)) (|squareFreePolynomial| #33=(((|Factored| #34=(|SparseUnivariatePolynomial| $)) #34#) NIL #16# ELT)) (|squareFreePart| #35=(#20# NIL #9# ELT)) (|squareFree| #36=(((|Factored| $) $) NIL #9# ELT)) (|sqrt| #28#) (|solveLinearPolynomialEquation| (((|Union| #37=(|List| #34#) #27#) #37# #34#) NIL #16# ELT)) (|sizeLess?| (#2# NIL #9# ELT)) (|sinh| #28#) (|sin| #28#) (|sign| (#38=(#23# $) NIL #15# ELT)) (|series| (($ #24#) NIL T ELT)) (|sech| #28#) (|sec| #28#) (|sample| (#39=($) NIL T CONST)) (|retractIfCan| #26# (((|Union| #13# . #40=(#27#)) . #41=($)) NIL #42=(AND (|has| #7# (|RetractableTo| #13#)) #9#) ELT) (((|Union| #30# . #40#) . #41#) NIL #43=(AND (|has| #7# (|RetractableTo| #23#)) #9#) ELT) (((|Union| #23# . #40#) . #41#) NIL #43# ELT)) (|retract| #25# (#12# NIL #42# ELT) ((#30# $) NIL #43# ELT) (#38# NIL #43# ELT)) (|removeZeroes| #44=(#20# NIL T ELT) #45=(($ #23# $) NIL T ELT)) (|rem| #46=(#47=($ $ $) NIL #9# ELT)) (|reductum| #44#) (|reducedSystem| ((#48=(|Matrix| #7#) . #49=(#50=(|Matrix| $))) NIL #9# ELT) ((#51=(|Record| (|:| |mat| #48#) (|:| |vec| (|Vector| #7#))) . #52=(#50# #53=(|Vector| $))) NIL #9# ELT) ((#54=(|Record| (|:| |mat| #55=(|Matrix| #23#)) (|:| |vec| (|Vector| #23#))) . #52#) NIL #56=(AND (|has| #7# (|LinearlyExplicitRingOver| #23#)) #9#) ELT) ((#55# . #49#) NIL #56# ELT)) (|recip| ((#32# $) NIL T ELT)) (|rationalFunction| ((#57=(|Fraction| (|Polynomial| |#1|)) $ #23#) NIL #18# ELT) ((#57# $ #23# #23#) NIL #18# ELT)) (|random| (#39# NIL #58=(AND (|has| #7# (|IntegerNumberSystem|)) #9#) ELT)) (|quo| #46#) (|principalIdeal| (((|Record| (|:| |coef| #59=(|List| $)) #60=(|:| |generator| $)) #59#) NIL #9# ELT)) (|prime?| (#5# NIL #9# ELT)) (|positive?| #61=(#5# NIL #15# ELT)) (|pole?| #4#) (|pi| (#39# NIL #29# ELT)) (|patternMatch| ((#62=(|PatternMatchResult| #63=(|Float|) . #64=($)) $ #65=(|Pattern| #63#) #62#) NIL (AND (|has| #7# (|PatternMatchable| #63#)) #9#) ELT) ((#66=(|PatternMatchResult| #23# . #64#) $ #67=(|Pattern| #23#) #66#) NIL (AND (|has| #7# (|PatternMatchable| #23#)) #9#) ELT)) (|order| #68=(#38# NIL T ELT) ((#23# $ #23#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|numerator| #35#) (|numer| #69=(#6# NIL #9# ELT)) (|nthRoot| (#22# NIL #29# ELT)) (|nextItem| (#70=((|Maybe| $) $) NIL #71=(AND (|has| #7# (|StepThrough|)) #9#) ELT)) (|negative?| #61#) (|multiplyExponents| #72=(($ $ #73=(|PositiveInteger|)) NIL T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #23#) $) NIL T ELT)) (|multiEuclidean| (((|Union| #59# #27#) #59# $) NIL #9# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #23#) 18 T ELT) (($ $ #11# #23#) NIL T ELT) (($ $ #10# (|List| #23#)) NIL T ELT)) (|min| #74=(#47# NIL #75=(OR #15# (AND (|has| #7# (|OrderedSet|)) #9#)) ELT)) (|max| #74#) (|map| (($ (|Mapping| |#1| |#1|) . #76=($)) NIL T ELT) (($ #77=(|Mapping| #7# #7#) . #76#) NIL #9# ELT)) (|log| #28#) (|leftReducedSystem| ((#48# . #78=(#53#)) NIL #9# ELT) ((#51# . #79=(#53# $)) NIL #9# ELT) ((#54# . #79#) NIL #56# ELT) ((#55# . #78#) NIL #56# ELT)) (|leadingMonomial| #44#) (|leadingCoefficient| (#80=(|#1| $) NIL T ELT)) (|lcm| #81=(($ #59#) NIL #9# ELT) #46#) (|laurent| (($ #23# #7#) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| #35#) (|integrate| (#20# 27 #29# ELT) (#82=($ $ #13#) NIL (OR (AND #29# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #23#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #29# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #13#))) (|has| |#1| (SIGNATURE |variables| (#83=(|List| #13#) |#1|))))) ELT) (#84=($ $ #85=(|Variable| |#2|)) 28 #29# ELT)) (|init| (#39# NIL #71# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#34# #34# #34#) NIL #9# ELT)) (|gcd| #81# #46#) (|fractionPart| (#20# NIL #8# ELT)) (|floor| #86=(#6# NIL #58# ELT)) (|factorSquareFreePolynomial| #33#) (|factorPolynomial| #33#) (|factor| #36#) (|extendedEuclidean| (((|Union| (|Record| #87=(|:| |coef1| $) #88=(|:| |coef2| $)) #27#) $ $ $) NIL #9# ELT) (((|Record| #87# #88# #60#) $ $) NIL #9# ELT)) (|extend| #21#) (|exquo| (#31# NIL #14# ELT)) (|expressIdealMember| (((|Maybe| #59#) #59# $) NIL #9# ELT)) (|exp| #28#) (|eval| (((|Stream| |#1|) $ |#1|) NIL #89=(|has| |#1| (SIGNATURE ** (|#1| |#1| #23#))) ELT) (($ $ #13# #7#) NIL #90=(AND (|has| #7# (|InnerEvalable| #13# #7#)) #9#) ELT) (($ $ #83# #91=(|List| #7#)) NIL #90# ELT) (($ $ (|List| #92=(|Equation| #7#))) NIL #93=(AND (|has| #7# (|Evalable| #7#)) #9#) ELT) (($ $ #92#) NIL #93# ELT) (($ $ #7# #7#) NIL #93# ELT) (($ $ #91# #91#) NIL #93# ELT)) (|euclideanSize| ((#94=(|NonNegativeInteger|) $) NIL #9# ELT)) (|elt| #95=(#96=(|#1| $ #23#) NIL T ELT) (#47# NIL (|has| #23# (|SemiGroup|)) ELT) (#97=($ $ #7#) NIL (AND (|has| #7# (|Eltable| #7# #7#)) #9#) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #9# ELT)) (|differentiate| #98=(($ $ #77# #94#) NIL #9# ELT) #99=(($ $ #77#) NIL #9# ELT) (#84# 26 T ELT) (#20# 25 #100=(OR (AND (|has| #7# (|DifferentialRing|)) #9#) (AND (|has| #7# (|DifferentialSpace|)) #9#) #101=(|has| |#1| (SIGNATURE * (|#1| #23# |#1|)))) ELT) #102=(#103=($ $ #94#) NIL #100# ELT) #104=(#82# NIL #105=(OR (AND (|has| #7# #106=(|PartialDifferentialRing| #13#)) #9#) (AND (|has| #7# (|PartialDifferentialSpace| #13#)) #9#) (AND (|has| |#1| #106#) #101#)) ELT) #107=(($ $ #83#) NIL #105# ELT) #108=(($ $ #13# #94#) NIL #105# ELT) #109=(($ $ #83# (|List| #94#)) NIL #105# ELT)) (|denominator| #35#) (|denom| #69#) (|degree| #68#) (|csch| #28#) (|csc| #28#) (|coth| #28#) (|cot| #28#) (|cosh| #28#) (|cos| #28#) (|convert| ((#110=(|InputForm|) . #111=($)) NIL (AND (|has| #7# (|ConvertibleTo| #110#)) #9#) ELT) ((#63# . #111#) NIL #112=(AND (|has| #7# (|RealConstant|)) #9#) ELT) (((|DoubleFloat|) . #111#) NIL #112# ELT) ((#65# . #111#) NIL (AND (|has| #7# (|ConvertibleTo| #65#)) #9#) ELT) ((#67# . #111#) NIL (AND (|has| #7# (|ConvertibleTo| #67#)) #9#) ELT)) (|conditionP| (((|Union| #53# #27#) #50#) NIL #113=(AND (|has| $ #114=(|CharacteristicNonZero|)) #17# #9#) ELT)) (|complete| #44#) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #23#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #7#) NIL T ELT) (($ #85#) 24 T ELT) (($ #13#) NIL #42# ELT) #19# (($ #30#) NIL (OR #43# #29#) ELT)) (|coefficient| #95#) (|charthRoot| (#70# NIL (OR #113# (AND (|has| #7# #114#) #9#) (|has| |#1| #114#)) ELT)) (|characteristic| ((#94#) NIL T CONST)) (|center| (#80# 11 T ELT)) (|ceiling| #86#) (|before?| #1#) (|atanh| #28#) (|atan| #28#) (|associates?| (#2# NIL #14# ELT)) (|asinh| #28#) (|asin| #28#) (|asech| #28#) (|asec| #28#) (|approximate| (#96# NIL (AND #89# (|has| |#1| (SIGNATURE |coerce| (|#1| #13#)))) ELT)) (|annihilate?| #1#) (|acsch| #28#) (|acsc| #28#) (|acoth| #28#) (|acot| #28#) (|acosh| #28#) (|acos| #28#) (|abs| (#20# NIL #15# ELT)) (|Zero| (#39# 20 T CONST)) (|One| (#39# 15 T CONST)) (D #98# #99# (#84# NIL T ELT) (#20# NIL #100# ELT) #102# #104# #107# #108# #109#) (>= #115=(#2# NIL #75# ELT)) (> #115#) (= #1#) (<= #115#) (< #115#) (/ (#116=($ $ |#1|) NIL #9# ELT) #46# (($ #7# #7#) NIL #9# ELT)) (- #44# #117=(#47# NIL T ELT)) (+ (#47# 22 T ELT)) (** #72# (#103# NIL T ELT) (#22# NIL #9# ELT) (#47# NIL #29# ELT) #118=(($ $ #30#) NIL #29# ELT)) (* (($ #73# $) NIL T ELT) (($ #94# $) NIL T ELT) #45# #117# (#116# NIL T ELT) (($ |#1| . #119=($)) NIL T ELT) (#97# NIL #9# ELT) (($ #7# . #119#) NIL #9# ELT) (($ #30# . #119#) NIL #29# ELT) #118#))
+(((|UnivariateLaurentSeries| |#1| |#2| |#3|) (|Join| (|UnivariateLaurentSeriesConstructorCategory| |#1| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1#)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |UnivariateLaurentSeries|))
+((|coerce| (*1 *1 *2) (AND #1=(|isDomain| *2 (|Variable| *4)) #2=(|ofType| *4 (|Symbol|)) #3=(|isDomain| *1 (|UnivariateLaurentSeries| *3 *4 *5)) #4=(|ofCategory| *3 (|Ring|)) #5=(|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND #1# #2# #3# (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) #4# #5#)))
+((|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) 23 T ELT)))
+(((|UnivariateLaurentSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)))) #1=(|Ring|) #1# #2=(|Symbol|) #2# |#1| |#2|) (T |UnivariateLaurentSeriesFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariateLaurentSeries| *5 *7 *9)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofType| *7 #2=(|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariateLaurentSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariateLaurentSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 #2#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| ((#4=(|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #5#) ELT)) (|unit?| ((#6=(|Boolean|) $) 75 (|has| |#1| . #5#) ELT)) (|truncate| (($ $ #7=(|Integer|)) 125 T ELT) (($ $ #7# #7#) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| #7#) (|:| |c| |#1|))) $) 131 T ELT)) (|tanh| (#8=($ $) 164 (|has| |#1| . #9=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|tan| (#10=($ $) 147 (|has| |#1| . #9#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 191 (|has| |#1| . #11=((|Field|))) ELT)) (|squareFree| (#12=((|Factored| $) $) 192 (|has| |#1| . #11#) ELT)) (|sqrt| (($ $) 146 (|has| |#1| . #13=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|sizeLess?| (((|Boolean|) $ $) 182 (|has| |#1| . #11#) ELT)) (|sinh| (#8# 163 (|has| |#1| . #9#) ELT)) (|sin| (#10# 148 (|has| |#1| . #9#) ELT)) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) 202 T ELT)) (|sech| (#8# 162 (|has| |#1| . #9#) ELT)) (|sec| (#10# 149 (|has| |#1| . #9#) ELT)) (|sample| (#14=($) 23 T CONST)) (|rem| (#15=($ $ $) 186 (|has| |#1| . #11#) ELT)) (|reductum| (#16=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) 200 (|has| |#1| (|IntegralDomain|)) ELT) (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) 199 (|has| |#1| (|IntegralDomain|)) ELT)) (|quo| (#15# 185 (|has| |#1| . #11#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #17=(|List| $)) (|:| |generator| $)) #17#) 180 (|has| |#1| . #11#) ELT)) (|prime?| (((|Boolean|) $) 193 (|has| |#1| . #11#) ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|pi| (($) 174 (|has| |#1| . #9#) ELT)) (|order| ((#7# $) 127 T ELT) ((#7# $ #7#) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #18=(|Integer|)) 145 (|has| |#1| . #13#) ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 201 T ELT)) (|multiEuclidean| (((|Union| #19=(|List| $) #20="failed") #19# $) 189 (|has| |#1| . #11#) ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| #7#) 82 T ELT) (($ $ #3# #7#) 98 T ELT) (($ $ (|List| #3#) (|List| #7#)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|log| (#21=($ $) 171 (|has| |#1| . #9#) ELT)) (|leadingMonomial| (#16# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|lcm| (#22=($ (|List| $)) 178 (|has| |#1| . #11#) ELT) (#23=($ $ $) 177 (|has| |#1| . #11#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 194 (|has| |#1| . #11#) ELT)) (|integrate| (($ $) 198 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT) (($ $ (|Symbol|)) 197 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#24=(|SparseUnivariatePolynomial| $) #24# #24#) 179 (|has| |#1| . #11#) ELT)) (|gcd| (#22# 176 (|has| |#1| . #11#) ELT) (#23# 175 (|has| |#1| . #11#) ELT)) (|factor| (#12# 190 (|has| |#1| . #11#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #25=(|:| |coef1| $) #26=(|:| |coef2| $)) #20#) $ $ $) 188 (|has| |#1| . #11#) ELT) (((|Record| #25# #26# (|:| |generator| $)) $ $) 187 (|has| |#1| . #11#) ELT)) (|extend| (($ $ #7#) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #5#) ELT)) (|expressIdealMember| (((|Maybe| #17#) #17# $) 181 (|has| |#1| . #11#) ELT)) (|exp| (#21# 172 (|has| |#1| . #9#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 183 (|has| |#1| . #11#) ELT)) (|elt| ((|#1| $ #7#) 132 T ELT) (($ $ $) 108 (|has| #7# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 184 (|has| |#1| . #11#) ELT)) (|differentiate| (($ $ #4#) 120 (AND (|has| |#1| . #27=((|PartialDifferentialRing| #4#))) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 118 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #28=(#29=(|NonNegativeInteger|))) 117 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #30=((|List| #29#))) 116 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #31=($)) 112 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#32=($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (|degree| ((#7# $) 84 T ELT)) (|csch| (#8# 161 (|has| |#1| . #9#) ELT)) (|csc| (#10# 150 (|has| |#1| . #9#) ELT)) (|coth| (#8# 160 (|has| |#1| . #9#) ELT)) (|cot| (#10# 151 (|has| |#1| . #9#) ELT)) (|cosh| (#8# 159 (|has| |#1| . #9#) ELT)) (|cos| (#10# 152 (|has| |#1| . #9#) ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT) (($ #33=(|Fraction| #34=(|Integer|))) 78 (|has| |#1| . #35=((|Algebra| (|Fraction| (|Integer|))))) ELT) (($ $) 70 (|has| |#1| . #5#) ELT)) (|coefficient| ((|#1| $ #7#) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|before?| (#1# 6 T ELT)) (|atanh| (#36=($ $) 170 (|has| |#1| . #9#) ELT)) (|atan| (#37=($ $) 158 (|has| |#1| . #9#) ELT)) (|associates?| ((#6# $ $) 74 (|has| |#1| . #5#) ELT)) (|asinh| (#36# 169 (|has| |#1| . #9#) ELT)) (|asin| (#37# 157 (|has| |#1| . #9#) ELT)) (|asech| (#36# 168 (|has| |#1| . #9#) ELT)) (|asec| (#37# 156 (|has| |#1| . #9#) ELT)) (|approximate| ((|#1| $ #7#) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |coerce| (|#1| #4#)))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#36# 167 (|has| |#1| . #9#) ELT)) (|acsc| (#37# 155 (|has| |#1| . #9#) ELT)) (|acoth| (#36# 166 (|has| |#1| . #9#) ELT)) (|acot| (#37# 154 (|has| |#1| . #9#) ELT)) (|acosh| (#36# 165 (|has| |#1| . #9#) ELT)) (|acos| (#37# 153 (|has| |#1| . #9#) ELT)) (|Zero| (#14# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ #4#) 119 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 115 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #28#) 114 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #30#) 113 (AND (|has| |#1| . #27#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #31#) 111 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#32# 109 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT) (($ $ $) 196 (|has| |#1| . #11#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #34#) 195 (|has| |#1| . #11#) ELT) (($ $ $) 173 (|has| |#1| . #9#) ELT) (($ $ (|Fraction| #18#)) 144 (|has| |#1| . #13#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #38=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #38#) 88 T ELT) (($ #33# . #38#) 77 (|has| |#1| . #35#) ELT) (($ $ #33#) 76 (|has| |#1| . #35#) ELT)))
+(((|UnivariateLaurentSeriesCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariateLaurentSeriesCategory|))
+((|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3)))) (|multiplyCoefficients| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|Integer|))) (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|rationalFunction| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| (|Polynomial| *4))))) (|rationalFunction| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| (|Polynomial| *4))))) (|integrate| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))) (|integrate| (*1 *1 *1 *2) (OR (AND #1=(|isDomain| *2 (|Symbol|)) #2=(|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3)) #3=(|ofCategory| *3 (|Ring|)) (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|ofCategory| *3 (|PrimitiveFunctionCategory|)) (|ofCategory| *3 (|TranscendentalFunctionCategory|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))) (AND #1# #2# #3# (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3))) (|has| *3 (SIGNATURE |integrate| (*3 *3 *2))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))))))
+(|Join| (|UnivariatePowerSeriesCategory| |t#1| (|Integer|)) (CATEGORY |domain| (SIGNATURE |series| ($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |t#1|))))) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |t#1| (|Integer|)) $)) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |rationalFunction| ((|Fraction| (|Polynomial| |t#1|)) $ (|Integer|))) (SIGNATURE |rationalFunction| ((|Fraction| (|Polynomial| |t#1|)) $ (|Integer|) (|Integer|)))) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (IF (|has| |t#1| (SIGNATURE |integrate| (|t#1| |t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |t#1|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|TranscendentalFunctionCategory|)) (IF (|has| |t#1| (|PrimitiveFunctionCategory|)) (IF (|has| |t#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) |%noBranch|) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |%noBranch|) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|Field|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|Integer|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialDomain| $) |has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) ((|DifferentialSpace|) |has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) ((|DivisionRing|) |has| |#1| (|Field|)) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| #1# |#1|) . T) ((|Eltable| $ $) |has| (|Integer|) (|SemiGroup|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Field|) |has| |#1| (|Field|)) ((|Functorial| |#1|) . T) ((|GcdDomain|) |has| |#1| (|Field|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Module| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) ((|PartialDifferentialRing| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) ((|PartialDifferentialSpace| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) ((|PowerSeriesCategory| |#1| #1# (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|Field|)) ((|UnivariatePowerSeriesCategory| |#1| #1#) . T))
+((|zero?| (((|Boolean|) $) 12 T ELT)) (|retractIfCan| (((|Union| |#3| #1="failed") $) 17 T ELT) (((|Union| #2=(|Symbol|) #1#) $) NIL T ELT) (((|Union| #3=(|Fraction| #4=(|Integer|)) #1#) $) NIL T ELT) (((|Union| #4# #1#) $) NIL T ELT)) (|retract| ((|#3| $) 14 T ELT) ((#2# $) NIL T ELT) ((#3# $) NIL T ELT) ((#4# $) NIL T ELT)))
+(((|UnivariateLaurentSeriesConstructorCategory&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |retractIfCan| ((|Union| #1=(|Integer|) #2="failed") |#1|)) (SIGNATURE |retract| (#1# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #3=(|Fraction| #1#) #2#) |#1|)) (SIGNATURE |retract| (#3# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #4=(|Symbol|) #2#) |#1|)) (SIGNATURE |retract| (#4# |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#3| #2#) |#1|)) (SIGNATURE |retract| (|#3| |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|))) (|UnivariateLaurentSeriesConstructorCategory| |#2| |#3|) (|Ring|) (|UnivariateTaylorSeriesCategory| |#2|)) (T |UnivariateLaurentSeriesConstructorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|wholePart| ((|#2| . #3=($)) 267 (|and| (|has| |#2| . #4=((|EuclideanDomain|))) (|has| |#1| . #5=((|Field|)))) ELT)) (|variables| (((|List| #6=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| ((#7=(|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #8=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #8#) ELT)) (|unit?| ((#9=(|Boolean|) $) 75 (|has| |#1| . #8#) ELT)) (|truncate| (($ $ #10=(|Integer|)) 125 T ELT) (($ $ #10# #10#) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| #10#) (|:| |c| |#1|))) $) 131 T ELT)) (|taylorRep| ((|#2| $) 303 T ELT)) (|taylorIfCan| (((|Union| |#2| "failed") $) 299 T ELT)) (|taylor| ((|#2| $) 300 T ELT)) (|tanh| (#11=($ $) 164 (|has| |#1| . #12=((|Algebra| (|Fraction| #10#)))) ELT)) (|tan| (#13=($ $) 147 (|has| |#1| . #12#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePolynomial| (#14=((|Factored| #15=(|SparseUnivariatePolynomial| $)) #15#) 276 (|and| (|has| |#2| . #16=((|PolynomialFactorizationExplicit|))) (|has| |#1| . #5#)) ELT)) (|squareFreePart| (($ $) 191 (|has| |#1| . #17=((|Field|))) ELT)) (|squareFree| (#18=((|Factored| $) $) 192 (|has| |#1| . #17#) ELT)) (|sqrt| (($ $) 146 (|has| |#1| . #12#) ELT)) (|solveLinearPolynomialEquation| (((|Union| #19=(|List| #15#) #20="failed") #19# #15#) 273 (|and| (|has| |#2| . #16#) (|has| |#1| . #5#)) ELT)) (|sizeLess?| (((|Boolean|) $ $) 182 (|has| |#1| . #17#) ELT)) (|sinh| (#11# 163 (|has| |#1| . #12#) ELT)) (|sin| (#13# 148 (|has| |#1| . #12#) ELT)) (|sign| (((|Integer|) $) 285 (|and| (|has| |#2| . #21=((|OrderedIntegralDomain|))) (|has| |#1| . #5#)) ELT)) (|series| (($ (|Stream| (|Record| (|:| |k| #10#) (|:| |c| |#1|)))) 202 T ELT)) (|sech| (#11# 162 (|has| |#1| . #12#) ELT)) (|sec| (#13# 149 (|has| |#1| . #12#) ELT)) (|sample| (#22=($) 23 T CONST)) (|retractIfCan| (((|Union| |#2| . #23=("failed")) . #24=($)) 306 T ELT) (((|Union| #25=(|Integer|) . #23#) . #24#) 296 (|and| (|has| |#2| . #26=((|RetractableTo| #25#))) (|has| |#1| . #5#)) ELT) (((|Union| #27=(|Fraction| #25#) . #23#) . #24#) 294 (|and| (|has| |#2| . #26#) (|has| |#1| . #5#)) ELT) (((|Union| #28=(|Symbol|) . #23#) . #24#) 278 (|and| (|has| |#2| . #29=((|RetractableTo| #28#))) (|has| |#1| . #5#)) ELT)) (|retract| ((|#2| . #30=($)) 307 T ELT) ((#25# . #30#) 295 (|and| (|has| |#2| . #26#) (|has| |#1| . #5#)) ELT) ((#27# . #30#) 293 (|and| (|has| |#2| . #26#) (|has| |#1| . #5#)) ELT) ((#28# . #30#) 277 (|and| (|has| |#2| . #29#) (|has| |#1| . #5#)) ELT)) (|removeZeroes| (($ $) 302 T ELT) (($ (|Integer|) $) 301 T ELT)) (|rem| (#31=($ $ $) 186 (|has| |#1| . #17#) ELT)) (|reductum| (#32=($ $) 81 T ELT)) (|reducedSystem| (((|Matrix| |#2|) . #33=(#34=(|Matrix| $))) 255 (|has| |#1| . #5#) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #35=(#34# #36=(|Vector| $))) 254 (|has| |#1| . #5#) ELT) (((|Record| (|:| |mat| (|Matrix| #37=(|Integer|))) (|:| |vec| (|Vector| #37#))) . #35#) 253 (|and| (|has| |#2| . #38=((|LinearlyExplicitRingOver| #37#))) (|has| |#1| . #5#)) ELT) (((|Matrix| #37#) . #33#) 252 (|and| (|has| |#2| . #38#) (|has| |#1| . #5#)) ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ #10#) 200 (|has| |#1| . #39=((|IntegralDomain|))) ELT) (((|Fraction| (|Polynomial| |#1|)) $ #10# #10#) 199 (|has| |#1| . #39#) ELT)) (|random| (($) 269 (|and| (|has| |#2| . #40=((|IntegerNumberSystem|))) (|has| |#1| . #5#)) ELT)) (|quo| (#31# 185 (|has| |#1| . #17#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #41=(|List| $)) (|:| |generator| $)) #41#) 180 (|has| |#1| . #17#) ELT)) (|prime?| (((|Boolean|) $) 193 (|has| |#1| . #17#) ELT)) (|positive?| (((|Boolean|) $) 283 (|and| (|has| |#2| . #21#) (|has| |#1| . #5#)) ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|pi| (($) 174 (|has| |#1| . #12#) ELT)) (|patternMatch| (((|PatternMatchResult| #42=(|Float|) . #43=($)) $ (|Pattern| #42#) (|PatternMatchResult| #42# . #43#)) 261 (|and| (|has| |#2| (|PatternMatchable| #42#)) (|has| |#1| . #5#)) ELT) (((|PatternMatchResult| #44=(|Integer|) . #43#) $ (|Pattern| #44#) (|PatternMatchResult| #44# . #43#)) 260 (|and| (|has| |#2| (|PatternMatchable| #44#)) (|has| |#1| . #5#)) ELT)) (|order| ((#10# $) 127 T ELT) ((#10# $ #10#) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numerator| (#45=($ $) 265 (|has| |#1| . #5#) ELT)) (|numer| ((|#2| . #3#) 263 (|has| |#1| . #5#) ELT)) (|nthRoot| (($ $ #46=(|Integer|)) 145 (|has| |#1| . #12#) ELT)) (|nextItem| (((|Maybe| $) $) 297 (|and| (|has| |#2| . #47=((|StepThrough|))) (|has| |#1| . #5#)) ELT)) (|negative?| (((|Boolean|) $) 284 (|and| (|has| |#2| . #21#) (|has| |#1| . #5#)) ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #10#) $) 201 T ELT)) (|multiEuclidean| (((|Union| #48=(|List| $) #49="failed") #48# $) 189 (|has| |#1| . #17#) ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| #10#) 82 T ELT) (($ $ #6# #10#) 98 T ELT) (($ $ (|List| #6#) (|List| #10#)) 97 T ELT)) (|min| (#50=($ $ $) 292 (|and| (|has| |#2| . #51=((|OrderedSet|))) (|has| |#1| . #5#)) ELT)) (|max| (#50# 291 (|and| (|has| |#2| . #51#) (|has| |#1| . #5#)) ELT)) (|map| (($ (|Mapping| |#1| |#1|) . #52=($)) 87 T ELT) (($ (|Mapping| |#2| |#2|) . #52#) 245 (|has| |#1| . #5#) ELT)) (|log| (#53=($ $) 171 (|has| |#1| . #12#) ELT)) (|leftReducedSystem| (((|Matrix| |#2|) . #54=(#36#)) 257 (|has| |#1| . #5#) ELT) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) . #55=(#36# $)) 256 (|has| |#1| . #5#) ELT) (((|Record| (|:| |mat| (|Matrix| #37#)) (|:| |vec| (|Vector| #37#))) . #55#) 251 (|and| (|has| |#2| . #38#) (|has| |#1| . #5#)) ELT) (((|Matrix| #37#) . #54#) 250 (|and| (|has| |#2| . #38#) (|has| |#1| . #5#)) ELT)) (|leadingMonomial| (#32# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|lcm| (#56=($ (|List| $)) 178 (|has| |#1| . #17#) ELT) (#57=($ $ $) 177 (|has| |#1| . #17#) ELT)) (|laurent| (($ (|Integer|) |#2|) 304 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 194 (|has| |#1| . #17#) ELT)) (|integrate| (($ $) 198 (|has| |#1| . #12#) ELT) (($ $ #58=(|Symbol|)) 197 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #10#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| . #12#)) (AND (|has| |#1| (SIGNATURE |variables| ((|List| #58#) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #58#))) (|has| |#1| . #12#))) ELT)) (|init| (($) 298 (|and| (|has| |#2| . #47#) (|has| |#1| . #5#)) CONST)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#59=(|SparseUnivariatePolynomial| $) #59# #59#) 179 (|has| |#1| . #17#) ELT)) (|gcd| (#56# 176 (|has| |#1| . #17#) ELT) (#57# 175 (|has| |#1| . #17#) ELT)) (|fractionPart| (#45# 268 (|and| (|has| |#2| . #4#) (|has| |#1| . #5#)) ELT)) (|floor| ((|#2| . #3#) 271 (|and| (|has| |#2| . #40#) (|has| |#1| . #5#)) ELT)) (|factorSquareFreePolynomial| (#14# 274 (|and| (|has| |#2| . #16#) (|has| |#1| . #5#)) ELT)) (|factorPolynomial| (#14# 275 (|and| (|has| |#2| . #16#) (|has| |#1| . #5#)) ELT)) (|factor| (#18# 190 (|has| |#1| . #17#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #60=(|:| |coef1| $) #61=(|:| |coef2| $)) #49#) $ $ $) 188 (|has| |#1| . #17#) ELT) (((|Record| #60# #61# (|:| |generator| $)) $ $) 187 (|has| |#1| . #17#) ELT)) (|extend| (($ $ #10#) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #8#) ELT)) (|expressIdealMember| (((|Maybe| #41#) #41# $) 181 (|has| |#1| . #17#) ELT)) (|exp| (#53# 172 (|has| |#1| . #12#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| #10#))) ELT) (($ $ #62=(|Symbol|) |#2|) 244 (|and| (|has| |#2| (|InnerEvalable| #62# |#2|)) (|has| |#1| . #5#)) ELT) (($ $ (|List| #62#) (|List| |#2|)) 243 (|and| (|has| |#2| (|InnerEvalable| #62# |#2|)) (|has| |#1| . #5#)) ELT) (($ $ (|List| (|Equation| |#2|))) 242 (|and| (|has| |#2| (|Evalable| |#2|)) (|has| |#1| . #5#)) ELT) (($ $ (|Equation| |#2|)) 241 (|and| (|has| |#2| (|Evalable| |#2|)) (|has| |#1| . #5#)) ELT) (($ $ |#2| |#2|) 240 (|and| (|has| |#2| (|Evalable| |#2|)) (|has| |#1| . #5#)) ELT) (($ $ (|List| |#2|) (|List| |#2|)) 239 (|and| (|has| |#2| (|Evalable| |#2|)) (|has| |#1| . #5#)) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 183 (|has| |#1| . #17#) ELT)) (|elt| ((|#1| $ #10#) 132 T ELT) (($ $ $) 108 (|has| #10# (|SemiGroup|)) ELT) (($ $ |#2|) 238 (|and| (|has| |#2| (|Eltable| |#2| |#2|)) (|has| |#1| . #5#)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 184 (|has| |#1| . #17#) ELT)) (|differentiate| (($ $ (|Mapping| |#2| |#2|) . #63=((|NonNegativeInteger|))) 247 (|has| |#1| . #5#) ELT) (($ $ (|Mapping| |#2| |#2|)) 246 (|has| |#1| . #5#) ELT) (($ . #64=($)) 112 (OR (|and| (|has| |#2| . #65=((|DifferentialSpace|))) (|has| |#1| . #5#)) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|)))) ELT) (#66=($ $ (|NonNegativeInteger|)) 110 (OR (|and| (|has| |#2| . #65#) (|has| |#1| . #5#)) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|)))) ELT) (($ $ #7#) 120 (OR (|and| (|has| |#2| . #67=((|PartialDifferentialSpace| (|Symbol|)))) (|has| |#1| . #5#)) (AND (|has| |#1| . #68=((|PartialDifferentialRing| #7#))) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ (|List| #7#)) 118 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ #7# . #69=(#70=(|NonNegativeInteger|))) 117 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ (|List| #7#) . #71=((|List| #70#))) 116 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT)) (|denominator| (#45# 266 (|has| |#1| . #5#) ELT)) (|denom| ((|#2| . #3#) 264 (|has| |#1| . #5#) ELT)) (|degree| ((#10# $) 84 T ELT)) (|csch| (#11# 161 (|has| |#1| . #12#) ELT)) (|csc| (#13# 150 (|has| |#1| . #12#) ELT)) (|coth| (#11# 160 (|has| |#1| . #12#) ELT)) (|cot| (#13# 151 (|has| |#1| . #12#) ELT)) (|cosh| (#11# 159 (|has| |#1| . #12#) ELT)) (|cos| (#13# 152 (|has| |#1| . #12#) ELT)) (|convert| (((|DoubleFloat|) . #72=($)) 282 (|and| (|has| |#2| . #73=((|RealConstant|))) (|has| |#1| . #5#)) ELT) (((|Float|) . #72#) 281 (|and| (|has| |#2| . #73#) (|has| |#1| . #5#)) ELT) ((#74=(|InputForm|) . #72#) 280 (|and| (|has| |#2| (|ConvertibleTo| #74#)) (|has| |#1| . #5#)) ELT) ((#75=(|Pattern| (|Float|)) . #72#) 259 (|and| (|has| |#2| (|ConvertibleTo| #75#)) (|has| |#1| . #5#)) ELT) ((#76=(|Pattern| (|Integer|)) . #72#) 258 (|and| (|has| |#2| (|ConvertibleTo| #76#)) (|has| |#1| . #5#)) ELT)) (|conditionP| (((|Union| (|Vector| $) #20#) (|Matrix| $)) 272 (|and| (|and| #77=(|has| $ (|CharacteristicNonZero|)) (|has| |#2| . #16#)) (|has| |#1| . #5#)) ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#2|) 305 T ELT) (($ #28#) 279 (|and| (|has| |#2| . #29#) (|has| |#1| . #5#)) ELT) (($ #78=(|Fraction| #79=(|Integer|))) 78 (|has| |#1| . #80=((|Algebra| (|Fraction| (|Integer|))))) ELT) (($ $) 70 (|has| |#1| . #8#) ELT)) (|coefficient| ((|#1| $ #10#) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (OR (|and| (OR (|has| |#2| (|CharacteristicNonZero|)) (|and| #77# (|has| |#2| . #16#))) (|has| |#1| . #5#)) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|ceiling| ((|#2| . #3#) 270 (|and| (|has| |#2| . #40#) (|has| |#1| . #5#)) ELT)) (|before?| (#1# 6 T ELT)) (|atanh| (#81=($ $) 170 (|has| |#1| . #12#) ELT)) (|atan| (#82=($ $) 158 (|has| |#1| . #12#) ELT)) (|associates?| ((#9# $ $) 74 (|has| |#1| . #8#) ELT)) (|asinh| (#81# 169 (|has| |#1| . #12#) ELT)) (|asin| (#82# 157 (|has| |#1| . #12#) ELT)) (|asech| (#81# 168 (|has| |#1| . #12#) ELT)) (|asec| (#82# 156 (|has| |#1| . #12#) ELT)) (|approximate| ((|#1| $ #10#) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| #10#))) (|has| |#1| (SIGNATURE |coerce| (|#1| #7#)))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#81# 167 (|has| |#1| . #12#) ELT)) (|acsc| (#82# 155 (|has| |#1| . #12#) ELT)) (|acoth| (#81# 166 (|has| |#1| . #12#) ELT)) (|acot| (#82# 154 (|has| |#1| . #12#) ELT)) (|acosh| (#81# 165 (|has| |#1| . #12#) ELT)) (|acos| (#82# 153 (|has| |#1| . #12#) ELT)) (|abs| (($ $) 286 (|and| (|has| |#2| . #21#) (|has| |#1| . #5#)) ELT)) (|Zero| (#22# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|Mapping| |#2| |#2|) . #63#) 249 (|has| |#1| . #5#) ELT) (($ $ (|Mapping| |#2| |#2|)) 248 (|has| |#1| . #5#) ELT) (($ . #64#) 111 (OR (|and| (|has| |#2| . #65#) (|has| |#1| . #5#)) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|)))) ELT) (#66# 109 (OR (|and| (|has| |#2| . #65#) (|has| |#1| . #5#)) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|)))) ELT) (($ $ #7#) 119 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ (|List| #7#)) 115 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ #7# . #69#) 114 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT) (($ $ (|List| #7#) . #71#) 113 (OR (|and| (|has| |#2| . #67#) (|has| |#1| . #5#)) (AND (|has| |#1| . #68#) (|has| |#1| (SIGNATURE * (|#1| #10# |#1|))))) ELT)) (>= (#83=((|Boolean|) $ $) 290 (|and| (|has| |#2| . #51#) (|has| |#1| . #5#)) ELT)) (> (#83# 288 (|and| (|has| |#2| . #51#) (|has| |#1| . #5#)) ELT)) (= (#1# 8 T ELT)) (<= (#83# 289 (|and| (|has| |#2| . #51#) (|has| |#1| . #5#)) ELT)) (< (#83# 287 (|and| (|has| |#2| . #51#) (|has| |#1| . #5#)) ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT) (($ $ $) 196 (|has| |#1| . #17#) ELT) (($ |#2| |#2|) 262 (|has| |#1| . #5#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #79#) 195 (|has| |#1| . #17#) ELT) (($ $ $) 173 (|has| |#1| . #12#) ELT) (($ $ (|Fraction| #46#)) 144 (|has| |#1| . #12#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #84=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #84#) 88 T ELT) (($ $ |#2|) 237 (|has| |#1| . #5#) ELT) (($ |#2| . #84#) 236 (|has| |#1| . #5#) ELT) (($ #78# . #84#) 77 (|has| |#1| . #80#) ELT) (($ $ #78#) 76 (|has| |#1| . #80#) ELT)))
+(((|UnivariateLaurentSeriesConstructorCategory| |#1| |#2|) (|Category|) (|Ring|) (|UnivariateTaylorSeriesCategory| |t#1|)) (T |UnivariateLaurentSeriesConstructorCategory|))
+((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3)) (|isDomain| *2 (|Integer|)))) (|laurent| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *4 *3)) (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *4)))) (|taylorRep| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|removeZeroes| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *2)))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3)))) (|taylor| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|taylorIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(|Join| (|UnivariateLaurentSeriesCategory| |t#1|) (|RetractableTo| |t#2|) (|CoercibleFrom| |t#2|) (CATEGORY |domain| (SIGNATURE |laurent| ($ (|Integer|) |t#2|)) (SIGNATURE |degree| ((|Integer|) $)) (SIGNATURE |taylorRep| (|t#2| $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ (|Integer|) $)) (SIGNATURE |taylor| (|t#2| $)) (SIGNATURE |taylorIfCan| ((|Union| |t#2| "failed") $)) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|QuotientFieldCategory| |t#2|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|Integer|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| |#2|) |has| |#1| (|Field|)) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| |#2| |#2|) |has| |#1| (|Field|)) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicNonZero|))) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicZero|))) (|has| |#1| (|CharacteristicZero|))) ((|CoercibleFrom| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #3=(|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Symbol|)))) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| |#2|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|DoubleFloat|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) ((|ConvertibleTo| (|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|DifferentialDomain| $) OR (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialSpace|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|)))) ((|DifferentialExtension| |#2|) |has| |#1| (|Field|)) ((|DifferentialRing|) OR (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|)))) ((|DifferentialSpace|) OR (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialSpace|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|)))) ((|DifferentialSpaceExtension| |#2|) |has| |#1| (|Field|)) ((|DivisionRing|) |has| |#1| (|Field|)) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| #1# |#1|) . T) ((|Eltable| |#2| $) AND (|has| |#1| (|Field|)) (|has| |#2| (|Eltable| |#2| |#2|))) ((|Eltable| $ $) |has| (|Integer|) (|SemiGroup|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Evalable| |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|))) ((|Field|) |has| |#1| (|Field|)) ((|FullyEvalableOver| |#2|) |has| |#1| (|Field|)) ((|FullyLinearlyExplicitRingOver| |#2|) |has| |#1| (|Field|)) ((|FullyPatternMatchable| |#2|) |has| |#1| (|Field|)) ((|Functorial| |#1|) . T) ((|Functorial| |#2|) |has| |#1| (|Field|)) ((|GcdDomain|) |has| |#1| (|Field|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|InnerEvalable| (|Symbol|) |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|InnerEvalable| (|Symbol|) |#2|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|))) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| |#2|) |has| |#1| (|Field|)) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftModule| #4=(|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| |#2|) |has| |#1| (|Field|)) ((|LeftModule| $) . T) ((|LinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| |#2|) |has| |#1| (|Field|)) ((|LinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|LinearlyExplicitRingOver| #4#) AND (|has| |#1| (|Field|)) (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) ((|LinearlyExplicitRingOver| |#2|) |has| |#1| (|Field|)) ((|Module| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#2|) |has| |#1| (|Field|)) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|OrderedAbelianGroup|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedAbelianMonoid|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedAbelianSemiGroup|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedCancellationAbelianMonoid|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedIntegralDomain|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedRing|) AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) ((|OrderedSet|) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedSet|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))) ((|OrderedType|) OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedSet|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|)))) ((|PartialDifferentialDomain| $ #5=(|Symbol|)) OR (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|))))) ((|PartialDifferentialRing| (|Symbol|)) OR (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|))))) ((|PartialDifferentialSpace| #5#) OR (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialSpace| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|))))) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Integer|)))) ((|Patternable| |#2|) |has| |#1| (|Field|)) ((|PolynomialFactorizationExplicit|) AND (|has| |#1| (|Field|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|PowerSeriesCategory| |#1| #1# (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|QuotientFieldCategory| |#2|) |has| |#1| (|Field|)) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RealConstant|) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) ((|RetractableTo| (|Fraction| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|)))) ((|RetractableTo| (|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|)))) ((|RetractableTo| #3#) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Symbol|)))) ((|RetractableTo| |#2|) . T) ((|RightLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| |#2|) |has| |#1| (|Field|)) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightModule| |#1|) . T) ((|RightModule| |#2|) |has| |#1| (|Field|)) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) AND (|has| |#1| (|Field|)) (|has| |#2| (|StepThrough|))) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|Field|)) ((|UnivariateLaurentSeriesCategory| |#1|) . T) ((|UnivariatePowerSeriesCategory| |#1| #1#) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 83 T ELT)) (|wholePart| (#5=(|#2| $) NIL #6=(AND #7=(|has| |#1| (|Field|)) (|has| |#2| (|EuclideanDomain|))) ELT)) (|variables| ((#8=(|List| #9=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| (#10=(#11=(|Symbol|) $) 102 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #12=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #13=(#14=($ $) NIL #12# ELT)) (|unit?| (#4# NIL #12# ELT)) (|truncate| (#15=($ $ #16=(|Integer|)) 111 T ELT) (($ $ #16# #16#) 114 T ELT)) (|terms| ((#17=(|Stream| (|Record| (|:| |k| #16#) (|:| |c| |#1|))) $) 51 T ELT)) (|taylorRep| (#5# 11 T ELT)) (|taylorIfCan| (#18=((|Union| |#2| #19="failed") $) 35 T ELT)) (|taylor| (#5# 36 T ELT)) (|tanh| (#14# 208 #20=(|has| |#1| (|Algebra| #21=(|Fraction| #16#))) ELT)) (|tan| (#14# 184 #20# ELT)) (|subtractIfCan| (#22=(#23=(|Union| $ #19#) $ $) NIL T ELT)) (|squareFreePolynomial| #24=(((|Factored| #25=(|SparseUnivariatePolynomial| $)) #25#) NIL #26=(AND #7# #27=(|has| |#2| (|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| #28=(#14# NIL #7# ELT)) (|squareFree| #29=(((|Factored| $) $) NIL #7# ELT)) (|sqrt| (#14# NIL #20# ELT)) (|solveLinearPolynomialEquation| (((|Union| #30=(|List| #25#) #19#) #30# #25#) NIL #26# ELT)) (|sizeLess?| (#2# NIL #7# ELT)) (|sinh| (#14# 204 #20# ELT)) (|sin| (#14# 180 #20# ELT)) (|sign| (#31=(#16# $) NIL #32=(AND #7# (|has| |#2| (|OrderedIntegralDomain|))) ELT)) (|series| (($ #17#) 59 T ELT)) (|sech| (#14# 212 #20# ELT)) (|sec| (#14# 188 #20# ELT)) (|sample| (#33=($) NIL T CONST)) (|retractIfCan| (#18# 159 T ELT) (((|Union| #16# . #34=(#19#)) . #35=($)) NIL #36=(AND #7# (|has| |#2| (|RetractableTo| #16#))) ELT) (((|Union| #21# . #34#) . #35#) NIL #36# ELT) (((|Union| #11# . #34#) . #35#) NIL #37=(AND #7# (|has| |#2| (|RetractableTo| #11#))) ELT)) (|retract| (#5# 158 T ELT) (#31# NIL #36# ELT) ((#21# $) NIL #36# ELT) (#10# NIL #37# ELT)) (|removeZeroes| (#14# 65 T ELT) (#38=($ #16# $) 28 T ELT)) (|rem| #39=(#40=($ $ $) NIL #7# ELT)) (|reductum| #41=(#14# NIL T ELT)) (|reducedSystem| ((#42=(|Matrix| |#2|) . #43=(#44=(|Matrix| $))) NIL #7# ELT) ((#45=(|Record| (|:| |mat| #42#) (|:| |vec| (|Vector| |#2|))) . #46=(#44# #47=(|Vector| $))) NIL #7# ELT) ((#48=(|Record| (|:| |mat| #49=(|Matrix| #16#)) (|:| |vec| (|Vector| #16#))) . #46#) NIL #50=(AND #7# (|has| |#2| (|LinearlyExplicitRingOver| #16#))) ELT) ((#49# . #43#) NIL #50# ELT)) (|recip| ((#23# $) 90 T ELT)) (|rationalFunction| ((#51=(|Fraction| (|Polynomial| |#1|)) $ #16#) 126 #12# ELT) ((#51# $ #16# #16#) 128 #12# ELT)) (|random| (#33# NIL #52=(AND #7# (|has| |#2| (|IntegerNumberSystem|))) ELT)) (|quo| #39#) (|principalIdeal| (((|Record| (|:| |coef| #53=(|List| $)) #54=(|:| |generator| $)) #53#) NIL #7# ELT)) (|prime?| (#4# NIL #7# ELT)) (|positive?| #55=(#4# NIL #32# ELT)) (|pole?| (#4# 76 T ELT)) (|pi| (#33# NIL #20# ELT)) (|patternMatch| ((#56=(|PatternMatchResult| #57=(|Float|) . #58=($)) $ #59=(|Pattern| #57#) #56#) NIL (AND #7# (|has| |#2| (|PatternMatchable| #57#))) ELT) ((#60=(|PatternMatchResult| #16# . #58#) $ #61=(|Pattern| #16#) #60#) NIL (AND #7# (|has| |#2| (|PatternMatchable| #16#))) ELT)) (|order| (#31# 107 T ELT) ((#16# $ #16#) 109 T ELT)) (|opposite?| #1#) (|one?| #62=(#4# NIL T ELT)) (|numerator| #28#) (|numer| (#5# 167 #7# ELT)) (|nthRoot| (#15# NIL #20# ELT)) (|nextItem| (#63=((|Maybe| $) $) NIL #64=(AND #7# (|has| |#2| (|StepThrough|))) ELT)) (|negative?| #55#) (|multiplyExponents| (#65=($ $ #66=(|PositiveInteger|)) 150 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #16#) $) 146 T ELT)) (|multiEuclidean| (((|Union| #53# #19#) #53# $) NIL #7# ELT)) (|monomial?| #62#) (|monomial| (($ |#1| #16#) 20 T ELT) (($ $ #9# #16#) NIL T ELT) (($ $ #8# (|List| #16#)) NIL T ELT)) (|min| #67=(#40# NIL #68=(AND #7# (|has| |#2| (|OrderedSet|))) ELT)) (|max| #67#) (|map| (($ (|Mapping| |#1| |#1|) $) 143 T ELT) (($ #69=(|Mapping| |#2| |#2|) $) NIL #7# ELT)) (|log| (#14# 178 #20# ELT)) (|leftReducedSystem| ((#42# . #70=(#47#)) NIL #7# ELT) ((#45# . #71=(#47# $)) NIL #7# ELT) ((#48# . #71#) NIL #50# ELT) ((#49# . #70#) NIL #50# ELT)) (|leadingMonomial| #41#) (|leadingCoefficient| (#72=(|#1| $) NIL T ELT)) (|lcm| #73=(($ #53#) NIL #7# ELT) #39#) (|laurent| (($ #16# |#2|) 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#14# 161 #7# ELT)) (|integrate| (#14# 230 #20# ELT) (#74=($ $ #11#) 235 (OR (AND #20# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #16#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #20# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #11#))) (|has| |#1| (SIGNATURE |variables| (#75=(|List| #11#) |#1|))))) ELT)) (|init| (#33# NIL #64# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#25# #25# #25#) NIL #7# ELT)) (|gcd| #73# #39#) (|fractionPart| (#14# NIL #6# ELT)) (|floor| #76=(#5# NIL #52# ELT)) (|factorSquareFreePolynomial| #24#) (|factorPolynomial| #24#) (|factor| #29#) (|extendedEuclidean| (((|Union| (|Record| #77=(|:| |coef1| $) #78=(|:| |coef2| $)) #19#) $ $ $) NIL #7# ELT) (((|Record| #77# #78# #54#) $ $) NIL #7# ELT)) (|extend| (#15# 140 T ELT)) (|exquo| (#22# 130 #12# ELT)) (|expressIdealMember| (((|Maybe| #53#) #53# $) NIL #7# ELT)) (|exp| (#14# 176 #20# ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 99 #79=(|has| |#1| (SIGNATURE ** (|#1| |#1| #16#))) ELT) (($ $ #11# |#2|) NIL #80=(AND #7# (|has| |#2| (|InnerEvalable| #11# |#2|))) ELT) (($ $ #75# #81=(|List| |#2|)) NIL #80# ELT) (($ $ (|List| #82=(|Equation| |#2|))) NIL #83=(AND #7# (|has| |#2| (|Evalable| |#2|))) ELT) (($ $ #82#) NIL #83# ELT) (($ $ |#2| |#2|) NIL #83# ELT) (($ $ #81# #81#) NIL #83# ELT)) (|euclideanSize| ((#84=(|NonNegativeInteger|) $) NIL #7# ELT)) (|elt| (#85=(|#1| $ #16#) 105 T ELT) (#40# 92 (|has| #16# (|SemiGroup|)) ELT) (#86=($ $ |#2|) NIL (AND #7# (|has| |#2| (|Eltable| |#2| |#2|))) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #7# ELT)) (|differentiate| #87=(($ $ #69# #84#) NIL #7# ELT) #88=(($ $ #69#) NIL #7# ELT) (#14# 151 #89=(OR (AND #7# (|has| |#2| (|DifferentialSpace|))) #90=(|has| |#1| (SIGNATURE * (|#1| #16# |#1|)))) ELT) #91=(#92=($ $ #84#) NIL #89# ELT) (#74# 155 #93=(OR (AND (|has| |#1| (|PartialDifferentialRing| #11#)) #90#) (AND #7# (|has| |#2| (|PartialDifferentialSpace| #11#)))) ELT) #94=(($ $ #75#) NIL #93# ELT) #95=(($ $ #11# #84#) NIL #93# ELT) #96=(($ $ #75# (|List| #84#)) NIL #93# ELT)) (|denominator| #28#) (|denom| (#5# 168 #7# ELT)) (|degree| (#31# 12 T ELT)) (|csch| (#14# 214 #20# ELT)) (|csc| (#14# 190 #20# ELT)) (|coth| (#14# 210 #20# ELT)) (|cot| (#14# 186 #20# ELT)) (|cosh| (#14# 206 #20# ELT)) (|cos| (#14# 182 #20# ELT)) (|convert| (((|DoubleFloat|) . #97=($)) NIL #98=(AND #7# (|has| |#2| (|RealConstant|))) ELT) ((#57# . #97#) NIL #98# ELT) ((#99=(|InputForm|) . #97#) NIL (AND #7# (|has| |#2| (|ConvertibleTo| #99#))) ELT) ((#59# . #97#) NIL (AND #7# (|has| |#2| (|ConvertibleTo| #59#))) ELT) ((#61# . #97#) NIL (AND #7# (|has| |#2| (|ConvertibleTo| #61#))) ELT)) (|conditionP| (((|Union| #47# #19#) #44#) NIL #100=(AND (|has| $ #101=(|CharacteristicNonZero|)) #7# #27#) ELT)) (|complete| (#14# 138 T ELT)) (|coerce| (((|OutputForm|) $) 268 T ELT) (($ #16#) 24 T ELT) (($ |#1|) 22 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#2|) 21 T ELT) (($ #11#) NIL #37# ELT) (($ #21#) 171 #20# ELT) #13#) (|coefficient| (#85# 87 T ELT)) (|charthRoot| (#63# NIL (OR #100# (|has| |#1| #101#) (AND #7# (|has| |#2| #101#))) ELT)) (|characteristic| ((#84#) 157 T CONST)) (|center| (#72# 104 T ELT)) (|ceiling| #76#) (|before?| #1#) (|atanh| (#14# 220 #20# ELT)) (|atan| (#14# 196 #20# ELT)) (|associates?| (#2# NIL #12# ELT)) (|asinh| (#14# 216 #20# ELT)) (|asin| (#14# 192 #20# ELT)) (|asech| (#14# 224 #20# ELT)) (|asec| (#14# 200 #20# ELT)) (|approximate| (#85# 136 (AND #79# (|has| |#1| (SIGNATURE |coerce| (|#1| #11#)))) ELT)) (|annihilate?| #1#) (|acsch| (#14# 226 #20# ELT)) (|acsc| (#14# 202 #20# ELT)) (|acoth| (#14# 222 #20# ELT)) (|acot| (#14# 198 #20# ELT)) (|acosh| (#14# 218 #20# ELT)) (|acos| (#14# 194 #20# ELT)) (|abs| (#14# NIL #32# ELT)) (|Zero| (#33# 13 T CONST)) (|One| (#33# 18 T CONST)) (D #87# #88# (#14# NIL #89# ELT) #91# (#74# NIL #93# ELT) #94# #95# #96#) (>= #102=(#2# NIL #68# ELT)) (> #102#) (= (#2# 74 T ELT)) (<= #102#) (< #102#) (/ (#103=($ $ |#1|) NIL #7# ELT) (#40# 165 #7# ELT) (($ |#2| |#2|) 166 #7# ELT)) (- (#14# 229 T ELT) (#40# 80 T ELT)) (+ (#40# 78 T ELT)) (** (#65# NIL T ELT) (#92# 86 T ELT) (#15# 162 #7# ELT) (#40# NIL #20# ELT) (#104=($ $ #21#) 174 #20# ELT)) (* (($ #66# $) NIL T ELT) (($ #84# $) NIL T ELT) (#38# NIL T ELT) (#40# 81 T ELT) (#103# NIL T ELT) (($ |#1| . #105=($)) 154 T ELT) (#86# 164 #7# ELT) (($ |#2| $) 163 #7# ELT) (($ #21# . #105#) NIL #20# ELT) (#104# NIL #20# ELT)))
+(((|UnivariateLaurentSeriesConstructor| |#1| |#2|) (|UnivariateLaurentSeriesConstructorCategory| |#1| |#2|) (|Ring|) (|UnivariateTaylorSeriesCategory| |#1|)) (T |UnivariateLaurentSeriesConstructor|))
+NIL
+((|henselFact| (((|Record| (|:| |contp| #1=(|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| #1#))))) |#1| (|Boolean|)) 13 T ELT)) (|factorSquareFree| (#2=((|Factored| |#1|) |#1|) 26 T ELT)) (|factor| (#2# 24 T ELT)))
+(((|UnivariateFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| #1=((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| #1#) (SIGNATURE |henselFact| ((|Record| (|:| |contp| #2=(|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| #2#))))) |#1| (|Boolean|)))) (|UnivariatePolynomialCategory| #2#)) (T |UnivariateFactorize|))
+((|henselFact| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *2 (|Record| (|:| |contp| #1=(|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *3) (|:| |pow| #1#)))))) #2=(|isDomain| *1 (|UnivariateFactorize| *3)) #3=(|ofCategory| *3 (|UnivariatePolynomialCategory| #1#)))) (|factorSquareFree| #4=(*1 *2 *3) #5=(AND (|isDomain| *2 (|Factored| *3)) #2# #3#)) (|factor| #4# #5#))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|SetCategory|)) ELT)) (|segment| (#5=($ |#1| |#1|) 11 T ELT) (#6=($ |#1|) 10 T ELT)) (|map| ((#7=(|Stream| |#1|) (|Mapping| |#1| |#1|) $) 44 #8=(|has| |#1| (|OrderedRing|)) ELT)) (|low| (#9=(|#1| $) 15 T ELT)) (|lo| (#9# 12 T ELT)) (|latex| (((|String|) $) NIL #4# ELT)) (|incr| ((#10=(|Integer|) $) 19 T ELT)) (|high| (#9# 18 T ELT)) (|hi| (#9# 13 T ELT)) (|hash| (((|SingleInteger|) $) NIL #4# ELT)) (|hasHi| ((#3# $) 17 T ELT)) (|expand| ((#7# $) 41 #8# ELT) ((#7# (|List| $)) 40 #8# ELT)) (|convert| (#6# 26 T ELT)) (|coerce| (($ (|Segment| |#1|)) 25 T ELT) (((|OutputForm|) $) 37 #4# ELT)) (|before?| #1#) (SEGMENT (#5# 21 T ELT) (#6# 20 T ELT)) (BY (($ $ #10#) 14 T ELT)) (= (#2# 30 #4# ELT)))
+(((|UniversalSegment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |domain| (SIGNATURE SEGMENT #1=($ |#1|)) (SIGNATURE |segment| #1#) (SIGNATURE |coerce| ($ (|Segment| |#1|))) (SIGNATURE |hasHi| ((|Boolean|) $)) (IF (|has| |#1| #2=(|SetCategory|)) (ATTRIBUTE #2#) |%noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|Stream| |#1|))) |%noBranch|))) (|Type|)) (T |UniversalSegment|))
+((SEGMENT #1=(*1 *1 *2) #2=(AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 #3=(|Type|)))) (|segment| #1# #2#) (|coerce| #1# (AND (|isDomain| *2 (|Segment| *3)) #4=(|ofCategory| *3 #3#) #5=(|isDomain| *1 (|UniversalSegment| *3)))) (|hasHi| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) #5# #4#)))
+((|map| (((|Stream| |#2|) #1=(|Mapping| |#2| |#1|) #2=(|UniversalSegment| |#1|)) 23 (|has| |#1| (|OrderedRing|)) ELT) (((|UniversalSegment| |#2|) #1# #2#) 17 T ELT)))
+(((|UniversalSegmentFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|UniversalSegment| |#2|) #1=(|Mapping| |#2| |#1|) #2=(|UniversalSegment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|Stream| |#2|) #1# #2#)) |%noBranch|)) #3=(|Type|) #3#) (T |UniversalSegmentFunctions2|))
+((|map| #1=(*1 *2 *3 *4) (AND #2=(|isDomain| *3 (|Mapping| *6 *5)) #3=(|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|OrderedRing|)) #4=(|ofCategory| *5 #5=(|Type|)) #6=(|ofCategory| *6 #5#) (|isDomain| *2 (|Stream| *6)) #7=(|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6)))) (|map| #1# (AND #2# #3# #4# #6# (|isDomain| *2 (|UniversalSegment| *6)) #7#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|vectorise| ((#6=(|Vector| |#2|) $ #7=(|NonNegativeInteger|)) NIL T ELT)) (|variables| ((#8=(|List| #9=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|unmakeSUP| (($ #10=(|SparseUnivariatePolynomial| |#2|)) NIL T ELT)) (|univariate| ((#11=(|SparseUnivariatePolynomial| $) $ #9#) NIL T ELT) #12=((#10# $) NIL T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #13=(|has| |#2| (|IntegralDomain|)) ELT)) (|unitCanonical| #14=(#15=($ $) NIL #13# ELT)) (|unit?| (#5# NIL #13# ELT)) (|totalDegree| #16=(#17=(#7# $) NIL T ELT) ((#7# $ #8#) NIL T ELT)) (|subtractIfCan| (#18=(#19=(|Union| $ #20="failed") $ $) NIL T ELT)) (|subResultantGcd| #21=(#22=($ $ $) NIL #13# ELT)) (|squareFreePolynomial| #23=(((|Factored| #11#) #11#) NIL #24=(|has| |#2| (|PolynomialFactorizationExplicit|)) ELT)) (|squareFreePart| #25=(#15# NIL #26=(|has| |#2| (|GcdDomain|)) ELT)) (|squareFree| (#27=((|Factored| $) $) NIL #26# ELT)) (|solveLinearPolynomialEquation| (((|Union| #28=(|List| #11#) #20#) #28# #11#) NIL #24# ELT)) (|sizeLess?| (#2# NIL #29=(|has| |#2| (|Field|)) ELT)) (|shiftRight| #30=(($ $ #7#) NIL T ELT)) (|shiftLeft| #30#) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL #26# ELT)) (|sample| #31=(#32=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| . #33=(#20#)) . #34=($)) NIL T ELT) (((|Union| #35=(|Fraction| #36=(|Integer|)) . #33#) . #34#) NIL #37=(|has| |#2| (|RetractableTo| #35#)) ELT) (((|Union| #36# . #33#) . #34#) NIL #38=(|has| |#2| (|RetractableTo| #36#)) ELT) #39=(((|Union| #9# . #33#) . #34#) NIL T ELT)) (|retract| #40=(#41=(|#2| . #42=($)) NIL T ELT) ((#35# . #42#) NIL #37# ELT) ((#36# . #42#) NIL #38# ELT) ((#9# . #42#) NIL T ELT)) (|resultant| (($ $ $ #9#) NIL #43=(|has| |#2| (|CommutativeRing|)) ELT) ((|#2| $ $) NIL #43# ELT)) (|rem| #44=(#22# NIL #29# ELT)) (|reductum| #45=(#15# NIL T ELT)) (|reducedSystem| ((#46=(|Matrix| #36#) . #47=(#48=(|Matrix| $))) NIL #49=(|has| |#2| (|LinearlyExplicitRingOver| #36#)) ELT) ((#50=(|Record| (|:| |mat| #46#) (|:| |vec| (|Vector| #36#))) . #51=(#48# #52=(|Vector| $))) NIL #49# ELT) ((#53=(|Record| (|:| |mat| #54=(|Matrix| |#2|)) (|:| |vec| #6#)) . #51#) NIL T ELT) ((#54# . #47#) NIL T ELT)) (|recip| ((#19# $) NIL T ELT)) (|quo| #44#) (|pseudoRemainder| #55=(#22# NIL T ELT)) (|pseudoQuotient| #21#) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) #56=(|:| |quotient| $) #57=(|:| |remainder| $)) $ $) NIL #13# ELT)) (|principalIdeal| (((|Record| (|:| |coef| #58=(|List| $)) #59=(|:| |generator| $)) #58#) NIL #29# ELT)) (|primitivePart| #25# #60=(#61=($ $ #9#) NIL #26# ELT)) (|primitiveMonomials| #62=((#58# $) NIL T ELT)) (|prime?| (#5# NIL #24# ELT)) (|pomopo!| (($ $ |#2| #7# $) NIL T ELT)) (|patternMatch| ((#63=(|PatternMatchResult| #64=(|Float|) . #65=($)) $ #66=(|Pattern| #64#) #63#) NIL (AND (|has| #9# #67=(|PatternMatchable| #64#)) (|has| |#2| #67#)) ELT) ((#68=(|PatternMatchResult| #36# . #65#) $ #69=(|Pattern| #36#) #68#) NIL (AND (|has| #9# #70=(|PatternMatchable| #36#)) (|has| |#2| #70#)) ELT)) (|order| ((#7# $ $) NIL #13# ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| #16#) (|nextItem| (#71=((|Maybe| $) $) NIL #72=(|has| |#2| (|StepThrough|)) ELT)) (|multivariate| (($ #10# #9#) NIL T ELT) (($ #11# #9#) NIL T ELT)) (|multiplyExponents| #30#) (|multiEuclidean| ((#73=(|Union| #58# #20#) #58# $) NIL #29# ELT)) (|monomials| #62#) (|monomial?| #4#) (|monomial| (($ |#2| #7#) 18 T ELT) #74=(($ $ #9# #7#) NIL T ELT) #75=(($ $ #8# #76=(|List| #7#)) NIL T ELT)) (|monicDivide| ((#77=(|Record| #56# #57#) $ $ #9#) NIL T ELT) (#78=(#77# $ $) NIL T ELT)) (|minimumDegree| #16# #79=((#7# $ #9#) NIL T ELT) #80=((#76# $ #8#) NIL T ELT)) (|mapExponents| (($ (|Mapping| #7# #7#) $) NIL T ELT)) (|map| (($ #81=(|Mapping| |#2| |#2|) $) NIL T ELT)) (|makeSUP| #12#) (|mainVariable| #39#) (|leftReducedSystem| ((#46# . #82=(#52#)) NIL #49# ELT) ((#50# . #83=(#52# $)) NIL #49# ELT) ((#53# . #83#) NIL T ELT) ((#54# . #82#) NIL T ELT)) (|leadingMonomial| #45#) (|leadingCoefficient| #40#) (|lcm| #84=(($ #58#) NIL #26# ELT) #85=(#22# NIL #26# ELT)) (|latex| (((|String|) $) NIL T ELT)) (|karatsubaDivide| ((#77# $ #7#) NIL T ELT)) (|isTimes| #86=((#73# $) NIL T ELT)) (|isPlus| #86#) (|isExpt| (((|Union| (|Record| (|:| |var| #9#) (|:| |exponent| #7#)) #20#) $) NIL T ELT)) (|integrate| (#15# NIL #87=(|has| |#2| (|Algebra| #35#)) ELT)) (|init| (#32# NIL #72# CONST)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #4#) (|ground| #40#) (|gcdPolynomial| ((#11# #11# #11#) NIL #26# ELT)) (|gcd| #84# #85#) (|fmecg| (($ $ #7# |#2| $) NIL T ELT)) (|factorSquareFreePolynomial| #23#) (|factorPolynomial| #23#) (|factor| (#27# NIL #24# ELT)) (|extendedEuclidean| (((|Union| (|Record| #88=(|:| |coef1| $) #89=(|:| |coef2| $)) #20#) $ $ $) NIL #29# ELT) (((|Record| #88# #89# #59#) $ $) NIL #29# ELT)) (|exquo| ((#19# $ |#2|) NIL #13# ELT) #90=(#18# NIL #13# ELT)) (|expressIdealMember| (((|Maybe| #58#) #58# $) NIL #29# ELT)) (|eval| (($ $ (|List| #91=(|Equation| $))) NIL T ELT) (($ $ #91#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #58# #58#) NIL T ELT) (($ $ #9# |#2|) NIL T ELT) (($ $ #8# #92=(|List| |#2|)) NIL T ELT) (($ $ #9# $) NIL T ELT) (($ $ #8# #58#) NIL T ELT)) (|euclideanSize| (#17# NIL #29# ELT)) (|elt| ((|#2| $ |#2|) NIL T ELT) #55# ((#93=(|Fraction| $) #93# #93#) NIL #13# ELT) ((|#2| #93# |#2|) NIL #29# ELT) ((#93# $ #93#) NIL #13# ELT)) (|divideExponents| ((#19# $ #7#) NIL T ELT)) (|divide| (#78# NIL #29# ELT)) (|discriminant| (#61# NIL #43# ELT) (#41# NIL #43# ELT)) (|differentiate| #75# #74# #94=(($ $ #8#) NIL T ELT) #95=(#61# NIL T ELT) #45# #30# #96=(($ $ #81#) NIL T ELT) #97=(($ $ #81# #7#) NIL T ELT) (($ $ #81# $) NIL T ELT) #98=(($ $ #99=(|Symbol|)) NIL #100=(|has| |#2| (|PartialDifferentialSpace| #99#)) ELT) #101=(($ $ #102=(|List| #99#)) NIL #100# ELT) #103=(($ $ #99# #7#) NIL #100# ELT) #104=(($ $ #102# #76#) NIL #100# ELT)) (|degree| #16# #79# #80#) (|convert| ((#66# . #105=($)) NIL (AND (|has| #9# #106=(|ConvertibleTo| #66#)) (|has| |#2| #106#)) ELT) ((#69# . #105#) NIL (AND (|has| #9# #107=(|ConvertibleTo| #69#)) (|has| |#2| #107#)) ELT) ((#108=(|InputForm|) . #105#) NIL (AND (|has| #9# #109=(|ConvertibleTo| #108#)) (|has| |#2| #109#)) ELT)) (|content| (#41# NIL #26# ELT) #60#) (|conditionP| (((|Union| #52# #20#) #48#) NIL #110=(AND (|has| $ #111=(|CharacteristicNonZero|)) #24#) ELT)) (|composite| #90# (((|Union| #93# #20#) #93# $) NIL #13# ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ #36#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #9#) NIL T ELT) (($ (|Variable| |#1|)) 20 T ELT) (($ #35#) NIL (OR #87# #37#) ELT) #14#) (|coefficients| ((#92# $) NIL T ELT)) (|coefficient| ((|#2| $ #7#) NIL T ELT) #74# #75#) (|charthRoot| (#71# NIL (OR #110# (|has| |#2| #111#)) ELT)) (|characteristic| ((#7#) NIL T CONST)) (|binomThmExpt| (($ $ $ #7#) NIL #43# ELT)) (|before?| #1#) (|associates?| (#2# NIL #13# ELT)) (|annihilate?| #1#) (|Zero| #31#) (|One| (#32# 14 T CONST)) (D #75# #74# #94# #95# #45# #30# #96# #97# #98# #101# #103# #104#) (= #1#) (/ (#112=($ $ |#2|) NIL #29# ELT)) (- #45# #55#) (+ #55#) (** (($ $ #113=(|PositiveInteger|)) NIL T ELT) #30#) (* (($ #113# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #36# . #114=($)) NIL T ELT) #55# (($ $ #35#) NIL #87# ELT) (($ #35# . #114#) NIL #87# ELT) (($ |#2| . #114#) NIL T ELT) (#112# NIL T ELT)))
+(((|UnivariatePolynomial| |#1| |#2|) (|Join| (|UnivariatePolynomialCategory| |#2|) (|CoercibleFrom| (|Variable| |#1|)) (CATEGORY |domain| (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#2| $)))) (|Symbol|) (|Ring|)) (T |UnivariatePolynomial|))
+((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|UnivariatePolynomial| *4 *3)) (|ofType| *4 (|Symbol|)) (|ofCategory| *3 (|Ring|)))))
+((|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) 15 T ELT)))
+(((|UnivariatePolynomialFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)))) #1=(|Symbol|) #2=(|Ring|) #1# #2#) (T |UnivariatePolynomialFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *6)) (|isDomain| *4 (|UnivariatePolynomial| *5 *6)) (|ofType| *5 #1=(|Symbol|)) (|ofCategory| *6 #2=(|Ring|)) (|ofCategory| *8 #2#) (|isDomain| *2 (|UnivariatePolynomial| *7 *8)) (|isDomain| *1 (|UnivariatePolynomialFunctions2| *5 *6 *7 *8)) (|ofType| *7 #1#))))
+((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (|commonDenominator| ((|#1| |#3|) 13 T ELT)) (|clearDenominator| ((|#3| |#3|) 19 T ELT)))
+(((|UnivariatePolynomialCommonDenominator| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |UnivariatePolynomialCommonDenominator|))
+((|splitDenominator| #1=(*1 *2 *3) (AND (|ofCategory| *4 #2=(|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *4 *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|clearDenominator| (*1 *2 *2) (AND (|ofCategory| *3 #2#) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *3 *4 *2)) (|ofCategory| *2 #3=(|UnivariatePolynomialCategory| *4)))) (|commonDenominator| #1# (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 #2#) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *2 *4 *3)) (|ofCategory| *3 #3#))))
+((|rightFactorIfCan| ((#1=(|Union| |#2| #2="failed") |#2| #3=(|NonNegativeInteger|) |#1|) 35 T ELT)) (|monicRightFactorIfCan| ((#1# |#2| #3#) 36 T ELT)) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) #2#) |#2|) 50 T ELT)) (|monicCompleteDecompose| (((|List| |#2|) |#2|) 52 T ELT)) (|leftFactorIfCan| ((#1# |#2| |#2|) 46 T ELT)))
+(((|UnivariatePolynomialDecompositionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monicRightFactorIfCan| (#1=(|Union| |#2| #2="failed") |#2| #3=(|NonNegativeInteger|))) (SIGNATURE |rightFactorIfCan| (#1# |#2| #3# |#1|)) (SIGNATURE |leftFactorIfCan| (#1# |#2| |#2|)) (SIGNATURE |monicDecomposeIfCan| ((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) #2#) |#2|)) (SIGNATURE |monicCompleteDecompose| ((|List| |#2|) |#2|))) (|Join| (|IntegralDomain|) (|CharacteristicZero|)) (|UnivariatePolynomialCategory| |#1|)) (T |UnivariatePolynomialDecompositionPackage|))
+((|monicCompleteDecompose| #1=(*1 *2 *3) (AND #2=(|ofCategory| *4 #3=(|Join| (|IntegralDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|List| *3)) #4=(|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *3)) #5=(|ofCategory| *3 #6=(|UnivariatePolynomialCategory| *4)))) (|monicDecomposeIfCan| #1# (|partial| AND #2# (|isDomain| *2 (|Record| (|:| |left| *3) (|:| |right| *3))) #4# #5#)) (|leftFactorIfCan| (*1 *2 *2 *2) (|partial| AND (|ofCategory| *3 #3#) (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|rightFactorIfCan| (*1 *2 *2 *3 *4) #7=(|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) #2# (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *2)) (|ofCategory| *2 #6#))) (|monicRightFactorIfCan| (*1 *2 *2 *3) #7#))
+((|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) 30 T ELT)))
+(((|UnivariatePolynomialDivisionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |divideIfCan| ((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|))) (|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |UnivariatePolynomialDivisionPackage|))
+((|divideIfCan| (*1 *2 *3 *3) (|partial| AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariatePolynomialDivisionPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+((|noKaratsuba| (#1=(|#2| |#2| |#2|) 22 T ELT)) (|karatsubaOnce| (#1# 36 T ELT)) (|karatsuba| ((|#2| |#2| |#2| #2=(|NonNegativeInteger|) #2#) 44 T ELT)))
+(((|UnivariatePolynomialMultiplicationPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |noKaratsuba| #1=(|#2| |#2| |#2|)) (SIGNATURE |karatsubaOnce| #1#) (SIGNATURE |karatsuba| (|#2| |#2| |#2| #2=(|NonNegativeInteger|) #2#))) (|Ring|) (|UnivariatePolynomialCategory| |#1|)) (T |UnivariatePolynomialMultiplicationPackage|))
+((|karatsuba| (*1 *2 *2 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 #1=(|Ring|)) (|isDomain| *1 (|UnivariatePolynomialMultiplicationPackage| *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|karatsubaOnce| #2=(*1 *2 *2 *2) #3=(AND (|ofCategory| *3 #1#) (|isDomain| *1 (|UnivariatePolynomialMultiplicationPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|noKaratsuba| #2# #3#))
+((|vectorise| (((|Vector| |#2|) $ #1=(|NonNegativeInteger|)) 129 T ELT)) (|variables| ((#2=(|List| #3=(|SingletonAsOrderedSet|)) $) 16 T ELT)) (|unmakeSUP| (($ #4=(|SparseUnivariatePolynomial| |#2|)) 80 T ELT)) (|totalDegree| #5=(#6=(#1# $) NIL T ELT) ((#1# $ #2#) 21 T ELT)) (|squareFreePolynomial| (#7=((|Factored| #8=(|SparseUnivariatePolynomial| $)) #8#) 217 T ELT)) (|squareFreePart| (#9=($ $) 207 T ELT)) (|squareFree| (#10=((|Factored| $) $) 205 T ELT)) (|solveLinearPolynomialEquation| (((|Union| #11=(|List| #8#) #12="failed") #11# #8#) 95 T ELT)) (|shiftRight| (#13=($ $ #1#) 84 T ELT)) (|shiftLeft| (#13# 86 T ELT)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (|retractIfCan| (((|Union| |#2| #12#) $) 132 T ELT) (((|Union| #14=(|Fraction| #15=(|Integer|)) #12#) $) NIL T ELT) (((|Union| #15# #12#) $) NIL T ELT) (#16=((|Union| #3# #12#) $) NIL T ELT)) (|retract| (#17=(|#2| $) 130 T ELT) ((#14# $) NIL T ELT) ((#15# $) NIL T ELT) ((#3# $) NIL T ELT)) (|pseudoQuotient| (#18=($ $ $) 182 T ELT)) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) #19=(|:| |quotient| $) #20=(|:| |remainder| $)) $ $) 185 T ELT)) (|order| ((#1# $ $) 202 T ELT)) (|nextItem| (((|Maybe| $) $) 149 T ELT)) (|monomial| (($ |#2| #1#) NIL T ELT) (#21=($ $ #3# #1#) 59 T ELT) #22=(($ $ #2# #23=(|List| #1#)) NIL T ELT)) (|minimumDegree| #5# (#24=(#1# $ #3#) 54 T ELT) (#25=(#23# $ #2#) 55 T ELT)) (|makeSUP| ((#4# $) 72 T ELT)) (|mainVariable| (#16# 52 T ELT)) (|karatsubaDivide| ((#26=(|Record| #19# #20#) $ #1#) 83 T ELT)) (|integrate| (#9# 232 T ELT)) (|init| (($) 134 T CONST)) (|gcdPolynomial| ((#8# #8# #8#) 214 T ELT)) (|factorSquareFreePolynomial| (#7# 101 T ELT)) (|factorPolynomial| (#7# 99 T ELT)) (|factor| (#10# 120 T ELT)) (|eval| (($ $ (|List| #27=(|Equation| $))) 51 T ELT) (($ $ #27#) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ #28=(|List| $) #28#) NIL T ELT) (($ $ #3# |#2|) 39 T ELT) (($ $ #2# (|List| |#2|)) 36 T ELT) (($ $ #3# $) 32 T ELT) (($ $ #2# #28#) 30 T ELT)) (|euclideanSize| (#6# 220 T ELT)) (|elt| ((|#2| $ |#2|) NIL T ELT) (#18# NIL T ELT) ((#29=(|Fraction| $) #29# #29#) 176 T ELT) ((|#2| #29# |#2|) 219 T ELT) ((#29# $ #29#) 201 T ELT)) (|divide| ((#26# $ $) 225 T ELT)) (|differentiate| #22# (#21# NIL T ELT) (($ $ #2#) NIL T ELT) (#30=($ $ #3#) 169 T ELT) (#9# 167 T ELT) (#13# NIL T ELT) (($ $ #31=(|Mapping| |#2| |#2|)) 166 T ELT) (($ $ #31# #1#) NIL T ELT) (($ $ #31# $) 161 T ELT) (($ $ #32=(|Symbol|)) NIL T ELT) (($ $ #33=(|List| #32#)) NIL T ELT) (($ $ #32# #1#) NIL T ELT) (($ $ #33# #23#) NIL T ELT)) (|degree| #5# (#24# 17 T ELT) (#25# 23 T ELT)) (|content| (#17# NIL T ELT) (#30# 151 T ELT)) (|composite| (((|Union| $ #12#) $ $) 193 T ELT) (((|Union| #29# #12#) #29# $) 189 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #15#) NIL T ELT) (($ |#2|) NIL T ELT) (($ #3#) 64 T ELT) (($ #14#) NIL T ELT) (#9# NIL T ELT)))
+(((|UnivariatePolynomialCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |coerce| #1=(|#1| |#1|)) (SIGNATURE |gcdPolynomial| (#2=(|SparseUnivariatePolynomial| |#1|) #2# #2#)) (SIGNATURE |differentiate| (|#1| |#1| #3=(|List| #4=(|Symbol|)) #5=(|List| #6=(|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| #4# #6#)) (SIGNATURE |differentiate| (|#1| |#1| #3#)) (SIGNATURE |differentiate| (|#1| |#1| #4#)) (SIGNATURE |squareFree| #7=((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| #1#) (SIGNATURE |coerce| (|#1| #8=(|Fraction| #9=(|Integer|)))) (SIGNATURE |init| (|#1|) |constant|) (SIGNATURE |nextItem| ((|Maybe| |#1|) |#1|)) (SIGNATURE |elt| (#10=(|Fraction| |#1|) |#1| #10#)) (SIGNATURE |euclideanSize| #11=(#6# |#1|)) (SIGNATURE |divide| (#12=(|Record| #13=(|:| |quotient| |#1|) #14=(|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |integrate| #1#) (SIGNATURE |elt| (|#2| #10# |#2|)) (SIGNATURE |separate| ((|Record| (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#2|) #13# #14#) |#1| |#1|)) (SIGNATURE |pseudoQuotient| #15=(|#1| |#1| |#1|)) (SIGNATURE |composite| ((|Union| #10# #16="failed") #10# |#1|)) (SIGNATURE |composite| ((|Union| |#1| #16#) |#1| |#1|)) (SIGNATURE |order| (#6# |#1| |#1|)) (SIGNATURE |elt| (#10# #10# #10#)) (SIGNATURE |differentiate| (|#1| |#1| #17=(|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |shiftLeft| #18=(|#1| |#1| #6#)) (SIGNATURE |shiftRight| #18#) (SIGNATURE |karatsubaDivide| (#12# |#1| #6#)) (SIGNATURE |unmakeSUP| (|#1| #19=(|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |makeSUP| (#19# |#1|)) (SIGNATURE |vectorise| ((|Vector| |#2|) |#1| #6#)) (SIGNATURE |differentiate| (|#1| |#1| #17# #6#)) (SIGNATURE |differentiate| (|#1| |#1| #17#)) (SIGNATURE |differentiate| #18#) (SIGNATURE |differentiate| #1#) (SIGNATURE |elt| #15#) (SIGNATURE |elt| (|#2| |#1| |#2|)) (SIGNATURE |factor| #7#) (SIGNATURE |squareFreePolynomial| #20=((|Factored| #2#) #2#)) (SIGNATURE |factorPolynomial| #20#) (SIGNATURE |factorSquareFreePolynomial| #20#) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| #21=(|List| #2#) #16#) #21# #2#)) (SIGNATURE |content| #22=(|#1| |#1| #23=(|SingletonAsOrderedSet|))) (SIGNATURE |variables| (#24=(|List| #23#) |#1|)) (SIGNATURE |totalDegree| (#6# |#1| #24#)) (SIGNATURE |totalDegree| #11#) (SIGNATURE |monomial| #25=(|#1| |#1| #24# #5#)) (SIGNATURE |monomial| #26=(|#1| |#1| #23# #6#)) (SIGNATURE |minimumDegree| #27=(#5# |#1| #24#)) (SIGNATURE |minimumDegree| #28=(#6# |#1| #23#)) (SIGNATURE |mainVariable| #29=((|Union| #23# #16#) |#1|)) (SIGNATURE |degree| #27#) (SIGNATURE |degree| #28#) (SIGNATURE |coerce| (|#1| #23#)) (SIGNATURE |retractIfCan| #29#) (SIGNATURE |retract| (#23# |#1|)) (SIGNATURE |eval| (|#1| |#1| #24# #30=(|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| #23# |#1|)) (SIGNATURE |eval| (|#1| |#1| #24# (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| #23# |#2|)) (SIGNATURE |eval| (|#1| |#1| #30# #30#)) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| #31=(|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| #31#))) (SIGNATURE |degree| #11#) (SIGNATURE |monomial| (|#1| |#2| #6#)) (SIGNATURE |retractIfCan| ((|Union| #9# #16#) |#1|)) (SIGNATURE |retract| (#9# |#1|)) (SIGNATURE |retractIfCan| ((|Union| #8# #16#) |#1|)) (SIGNATURE |retract| (#8# |#1|)) (SIGNATURE |retract| #32=(|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| #16#) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |minimumDegree| #11#) (SIGNATURE |content| #32#) (SIGNATURE |differentiate| #22#) (SIGNATURE |differentiate| (|#1| |#1| #24#)) (SIGNATURE |differentiate| #26#) (SIGNATURE |differentiate| #25#) (SIGNATURE |coerce| (|#1| #9#)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariatePolynomialCategory| |#2|) (|Ring|)) (T |UnivariatePolynomialCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) 272 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 124 T ELT)) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) 270 T ELT)) (|univariate| ((#4=(|SparseUnivariatePolynomial| $) $ #3#) 139 T ELT) (((|SparseUnivariatePolynomial| |#1|) $) 138 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 101 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 102 (|has| |#1| . #5#) ELT)) (|unit?| ((#6=(|Boolean|) $) 104 (|has| |#1| . #5#) ELT)) (|totalDegree| ((#7=(|NonNegativeInteger|) $) 126 T ELT) ((#7# $ (|List| #3#)) 125 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|subResultantGcd| (($ $ $) 257 (|has| |#1| (|IntegralDomain|)) ELT)) (|squareFreePolynomial| (#8=((|Factored| #9=(|SparseUnivariatePolynomial| $)) #9#) 114 (|has| |#1| . #10=((|PolynomialFactorizationExplicit|))) ELT)) (|squareFreePart| (($ $) 112 (|has| |#1| . #11=((|GcdDomain|))) ELT)) (|squareFree| (#12=((|Factored| $) $) 111 (|has| |#1| . #11#) ELT)) (|solveLinearPolynomialEquation| (((|Union| #13=(|List| #9#) #14="failed") #13# #9#) 117 (|has| |#1| . #10#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 242 (|has| |#1| . #15=((|Field|))) ELT)) (|shiftRight| (($ $ (|NonNegativeInteger|)) 265 T ELT)) (|shiftLeft| (($ $ (|NonNegativeInteger|)) 264 T ELT)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) 252 (|has| |#1| (|GcdDomain|)) ELT)) (|sample| (#16=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| . #17=("failed")) . #18=($)) 182 T ELT) (((|Union| #19=(|Fraction| #20=(|Integer|)) . #17#) . #18#) 179 (|has| |#1| . #21=((|RetractableTo| #19#))) ELT) (((|Union| #20# . #17#) . #18#) 177 (|has| |#1| . #22=((|RetractableTo| #20#))) ELT) (((|Union| #3# . #17#) . #18#) 154 T ELT)) (|retract| ((|#1| . #23=($)) 181 T ELT) ((#19# . #23#) 180 (|has| |#1| . #21#) ELT) ((#20# . #23#) 178 (|has| |#1| . #22#) ELT) ((#3# . #23#) 155 T ELT)) (|resultant| (($ $ $ #3#) 122 (|has| |#1| . #24=((|CommutativeRing|))) ELT) ((|#1| $ $) 260 (|has| |#1| (|CommutativeRing|)) ELT)) (|rem| (#25=($ $ $) 246 (|has| |#1| . #15#) ELT)) (|reductum| (#26=($ $) 172 T ELT)) (|reducedSystem| (((|Matrix| #27=(|Integer|)) . #28=(#29=(|Matrix| $))) 150 (|has| |#1| . #30=((|LinearlyExplicitRingOver| #27#))) ELT) (((|Record| (|:| |mat| (|Matrix| #27#)) (|:| |vec| (|Vector| #27#))) . #31=(#29# #32=(|Vector| $))) 149 (|has| |#1| . #30#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #31#) 148 T ELT) (((|Matrix| |#1|) . #28#) 147 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#25# 245 (|has| |#1| . #15#) ELT)) (|pseudoRemainder| (($ $ $) 263 T ELT)) (|pseudoQuotient| (($ $ $) 254 (|has| |#1| (|IntegralDomain|)) ELT)) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) 253 (|has| |#1| (|IntegralDomain|)) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #33=(|List| $)) (|:| |generator| $)) #33#) 240 (|has| |#1| . #15#) ELT)) (|primitivePart| (($ $) 194 (|has| |#1| . #34=((|GcdDomain|))) ELT) (($ $ #3#) 119 (|has| |#1| . #11#) ELT)) (|primitiveMonomials| (#35=(#36=(|List| $) $) 123 T ELT)) (|prime?| (((|Boolean|) $) 110 (|has| |#1| . #10#) ELT)) (|pomopo!| (($ $ |#1| #37=(|NonNegativeInteger|) $) 190 T ELT)) (|patternMatch| (((|PatternMatchResult| #38=(|Float|) . #39=($)) $ (|Pattern| #38#) (|PatternMatchResult| #38# . #39#)) 98 (AND (|has| #3# #40=(|PatternMatchable| #38#)) (|has| |#1| #40#)) ELT) (((|PatternMatchResult| #41=(|Integer|) . #39#) $ (|Pattern| #41#) (|PatternMatchResult| #41# . #39#)) 97 (AND (|has| #3# #42=(|PatternMatchable| #41#)) (|has| |#1| #42#)) ELT)) (|order| (((|NonNegativeInteger|) $ $) 258 (|has| |#1| (|IntegralDomain|)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|numberOfMonomials| ((#43=(|NonNegativeInteger|) $) 187 T ELT)) (|nextItem| (((|Maybe| $) $) 238 (|has| |#1| . #44=((|StepThrough|))) ELT)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) #3#) 131 T ELT) (($ #4# #3#) 130 T ELT)) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) 269 T ELT)) (|multiEuclidean| (((|Union| #45=(|List| $) #46="failed") #45# $) 249 (|has| |#1| . #15#) ELT)) (|monomials| (#35# 140 T ELT)) (|monomial?| (((|Boolean|) $) 170 T ELT)) (|monomial| (($ |#1| #37#) 171 T ELT) (($ $ #3# . #47=(#7#)) 133 T ELT) (($ $ (|List| #3#) . #48=(#49=(|List| #7#))) 132 T ELT)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ #3#) 134 T ELT) (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 267 T ELT)) (|minimumDegree| ((#37# $) 188 T ELT) ((#7# $ #3#) 136 T ELT) ((#49# $ (|List| #3#)) 135 T ELT)) (|mapExponents| (($ (|Mapping| #37# #37#) $) 189 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 166 T ELT)) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) 271 T ELT)) (|mainVariable| (((|Union| #3# #50="failed") $) 137 T ELT)) (|leftReducedSystem| (((|Matrix| #27#) . #51=(#32#)) 152 (|has| |#1| . #30#) ELT) (((|Record| (|:| |mat| (|Matrix| #27#)) (|:| |vec| (|Vector| #27#))) . #52=(#32# $)) 151 (|has| |#1| . #30#) ELT) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) . #52#) 146 T ELT) (((|Matrix| |#1|) . #51#) 145 T ELT)) (|leadingMonomial| (#26# 168 T ELT)) (|leadingCoefficient| ((|#1| $) 167 T ELT)) (|lcm| (#53=($ (|List| $)) 108 (|has| |#1| . #11#) ELT) (#54=($ $ $) 107 (|has| |#1| . #11#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) 266 T ELT)) (|isTimes| (#55=((|Union| #36# #50#) $) 128 T ELT)) (|isPlus| (#55# 129 T ELT)) (|isExpt| (((|Union| (|Record| (|:| |var| #3#) (|:| |exponent| #7#)) #50#) $) 127 T ELT)) (|integrate| (($ $) 250 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT)) (|init| (($) 237 (|has| |#1| . #44#) CONST)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|ground?| (((|Boolean|) $) 184 T ELT)) (|ground| ((|#1| . #56=($)) 185 T ELT)) (|gcdPolynomial| ((#57=(|SparseUnivariatePolynomial| $) #57# #57#) 109 (|has| |#1| . #11#) ELT)) (|gcd| (#53# 106 (|has| |#1| . #11#) ELT) (#54# 105 (|has| |#1| . #11#) ELT)) (|factorSquareFreePolynomial| (#8# 116 (|has| |#1| . #10#) ELT)) (|factorPolynomial| (#8# 115 (|has| |#1| . #10#) ELT)) (|factor| (#12# 113 (|has| |#1| . #10#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #58=(|:| |coef1| $) #59=(|:| |coef2| $)) #46#) $ $ $) 248 (|has| |#1| . #15#) ELT) (((|Record| #58# #59# (|:| |generator| $)) $ $) 247 (|has| |#1| . #15#) ELT)) (|exquo| (((|Union| $ "failed") $ |#1|) 192 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| $ "failed") $ $) 100 (|has| |#1| . #5#) ELT)) (|expressIdealMember| (((|Maybe| #33#) #33# $) 241 (|has| |#1| . #15#) ELT)) (|eval| (($ $ (|List| (|Equation| $))) 163 T ELT) (($ $ (|Equation| $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (|List| $) (|List| $)) 160 T ELT) (($ $ #3# |#1|) 159 T ELT) (($ $ (|List| #3#) (|List| |#1|)) 158 T ELT) (($ $ #3# $) 157 T ELT) (($ $ (|List| #3#) (|List| $)) 156 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 243 (|has| |#1| . #15#) ELT)) (|elt| ((|#1| $ |#1|) 282 T ELT) (($ $ $) 281 T ELT) (((|Fraction| $) (|Fraction| $) (|Fraction| $)) 259 (|has| |#1| (|IntegralDomain|)) ELT) ((|#1| (|Fraction| $) |#1|) 251 (|has| |#1| (|Field|)) ELT) (((|Fraction| $) $ (|Fraction| $)) 239 (|has| |#1| (|IntegralDomain|)) ELT)) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) 268 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 244 (|has| |#1| . #15#) ELT)) (|discriminant| (($ $ #3#) 121 (|has| |#1| . #24#) ELT) ((|#1| $) 261 (|has| |#1| (|CommutativeRing|)) ELT)) (|differentiate| (($ $ (|List| #3#) . #60=((|List| #61=(|NonNegativeInteger|)))) 52 T ELT) (($ $ #3# . #62=(#61#)) 51 T ELT) (($ $ (|List| #3#)) 50 T ELT) (($ $ #3#) 48 T ELT) (($ . #63=($)) 280 T ELT) (#64=($ $ (|NonNegativeInteger|)) 278 T ELT) (($ $ (|Mapping| |#1| |#1|)) 276 T ELT) (($ $ (|Mapping| |#1| |#1|) . #65=((|NonNegativeInteger|))) 275 T ELT) (($ $ (|Mapping| |#1| |#1|) $) 262 T ELT) (($ $ #66=(|Symbol|)) 236 (|has| |#1| . #67=((|PartialDifferentialSpace| (|Symbol|)))) ELT) (($ $ (|List| #66#)) 234 (|has| |#1| . #67#) ELT) (($ $ #66# . #62#) 233 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#) . #60#) 232 (|has| |#1| . #67#) ELT)) (|degree| ((#37# $) 169 T ELT) ((#7# $ #3#) 144 T ELT) ((#49# $ (|List| #3#)) 143 T ELT)) (|convert| ((#68=(|Pattern| #38#) . #69=($)) 96 (AND (|has| #3# #70=(|ConvertibleTo| #68#)) (|has| |#1| #70#)) ELT) ((#71=(|Pattern| #41#) . #69#) 95 (AND (|has| #3# #72=(|ConvertibleTo| #71#)) (|has| |#1| #72#)) ELT) ((#73=(|InputForm|) . #69#) 94 (AND (|has| #3# #74=(|ConvertibleTo| #73#)) (|has| |#1| #74#)) ELT)) (|content| ((|#1| . #56#) 193 (|has| |#1| . #34#) ELT) (($ $ #3#) 120 (|has| |#1| . #11#) ELT)) (|conditionP| (((|Union| (|Vector| $) #14#) (|Matrix| $)) 118 (|and| #75=(|has| $ (|CharacteristicNonZero|)) (|has| |#1| . #10#)) ELT)) (|composite| (((|Union| $ "failed") $ $) 256 (|has| |#1| (|IntegralDomain|)) ELT) (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) 255 (|has| |#1| (|IntegralDomain|)) ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 183 T ELT) (($ #3#) 153 T ELT) (($ #76=(|Fraction| (|Integer|))) 92 (OR (|has| |#1| . #21#) (|has| |#1| . #77=((|Algebra| #76#)))) ELT) (($ $) 99 (|has| |#1| . #5#) ELT)) (|coefficients| (((|List| |#1|) $) 186 T ELT)) (|coefficient| ((|#1| $ #37#) 173 T ELT) (($ $ #3# . #47#) 142 T ELT) (($ $ (|List| #3#) . #48#) 141 T ELT)) (|charthRoot| (((|Maybe| $) $) 93 (OR (|and| #75# (|has| |#1| . #10#)) (|has| |#1| (|CharacteristicNonZero|))) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|binomThmExpt| (($ $ $ #43#) 191 (|has| |#1| (|CommutativeRing|)) ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#6# $ $) 103 (|has| |#1| . #5#) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#16# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ (|List| #3#) . #60#) 55 T ELT) (($ $ #3# . #62#) 54 T ELT) (($ $ (|List| #3#)) 53 T ELT) (($ $ #3#) 49 T ELT) (($ . #63#) 279 T ELT) (#64# 277 T ELT) (($ $ (|Mapping| |#1| |#1|)) 274 T ELT) (($ $ (|Mapping| |#1| |#1|) . #65#) 273 T ELT) (($ $ #66#) 235 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#)) 231 (|has| |#1| . #67#) ELT) (($ $ #66# . #62#) 230 (|has| |#1| . #67#) ELT) (($ $ (|List| #66#) . #60#) 229 (|has| |#1| . #67#) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 174 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #78=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #76#) 176 (|has| |#1| . #77#) ELT) (($ #76# . #78#) 175 (|has| |#1| . #77#) ELT) (($ |#1| . #78#) 165 T ELT) (($ $ |#1|) 164 T ELT)))
+(((|UnivariatePolynomialCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariatePolynomialCategory|))
+((|vectorise| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Vector| *4)))) (|makeSUP| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|unmakeSUP| (*1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))) (|multiplyExponents| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|divideExponents| (*1 *1 *1 *2) (|partial| AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|monicDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))) (|karatsubaDivide| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariatePolynomialCategory| *4)))) (|shiftRight| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|shiftLeft| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|pseudoRemainder| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|differentiate| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|discriminant| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|CommutativeRing|)))) (|resultant| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|CommutativeRing|)))) (|elt| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Fraction| *1)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|)))) (|order| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|subResultantGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))) (|composite| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))) (|composite| (*1 *2 *2 *1) (|partial| AND (|isDomain| *2 (|Fraction| *1)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|)))) (|pseudoQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))) (|pseudoDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |coef| *3) (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))) (|separate| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |primePart| *1) (|:| |commonPart| *1))) (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))) (|elt| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Fraction| *1)) (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|integrate| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))))
+(|Join| (|PolynomialCategory| |t#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) (|Eltable| |t#1| |t#1|) (|Eltable| $ $) (|DifferentialRing|) (|DifferentialExtension| |t#1|) (CATEGORY |domain| (SIGNATURE |vectorise| ((|Vector| |t#1|) $ (|NonNegativeInteger|))) (SIGNATURE |makeSUP| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |unmakeSUP| ($ (|SparseUnivariatePolynomial| |t#1|))) (SIGNATURE |multiplyExponents| ($ $ (|NonNegativeInteger|))) (SIGNATURE |divideExponents| ((|Union| $ "failed") $ (|NonNegativeInteger|))) (SIGNATURE |monicDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |karatsubaDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|))) (SIGNATURE |shiftRight| ($ $ (|NonNegativeInteger|))) (SIGNATURE |shiftLeft| ($ $ (|NonNegativeInteger|))) (SIGNATURE |pseudoRemainder| ($ $ $)) (SIGNATURE |differentiate| ($ $ (|Mapping| |t#1| |t#1|) $)) (IF (|has| |t#1| (|StepThrough|)) (ATTRIBUTE (|StepThrough|)) |%noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (PROGN (SIGNATURE |discriminant| (|t#1| $)) (SIGNATURE |resultant| (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (ATTRIBUTE (|Eltable| (|Fraction| $) (|Fraction| $))) (SIGNATURE |elt| ((|Fraction| $) (|Fraction| $) (|Fraction| $))) (SIGNATURE |order| ((|NonNegativeInteger|) $ $)) (SIGNATURE |subResultantGcd| ($ $ $)) (SIGNATURE |composite| ((|Union| $ "failed") $ $)) (SIGNATURE |composite| ((|Union| (|Fraction| $) "failed") (|Fraction| $) $)) (SIGNATURE |pseudoQuotient| ($ $ $)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |t#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $))) |%noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (SIGNATURE |separate| ((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (ATTRIBUTE (|EuclideanDomain|)) (ATTRIBUTE |additiveValuation|) (SIGNATURE |elt| (|t#1| (|Fraction| $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|NonNegativeInteger|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|BasicType|) . T) ((|BiModule| #2# #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #3=(|SingletonAsOrderedSet|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|DifferentialDomain| $) . T) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) . T) ((|DifferentialSpace|) . T) ((|DifferentialSpaceExtension| |#1|) . T) ((|Eltable| (|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) ((|Eltable| |#1| |#1|) . T) ((|Eltable| $ $) . T) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| #1#) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|Functorial| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|InnerEvalable| #3# |#1|) . T) ((|InnerEvalable| #3# $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| #4=(|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|LinearlyExplicitRingOver| #4#) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3#) . T) ((|PartialDifferentialDomain| $ #5=(|Symbol|)) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PartialDifferentialRing| #3#) . T) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialSpace| #3#) . T) ((|PartialDifferentialSpace| #5#) OR (|has| |#1| (|PartialDifferentialSpace| (|Symbol|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Integer|)))) ((|PolynomialCategory| |#1| #1# #3#) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| #3#) . T) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|StepThrough|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|)))
+((|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 22 T ELT)))
+(((|UnivariatePolynomialCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|))) #1=(|Ring|) (|UnivariatePolynomialCategory| |#1|) #1# (|UnivariatePolynomialCategory| |#3|)) (T |UnivariatePolynomialCategoryFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|UnivariatePolynomialCategory| *6)) (|isDomain| *1 (|UnivariatePolynomialCategoryFunctions2| *5 *4 *6 *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *5)))))
+((|variables| ((#1=(|List| #2=(|SingletonAsOrderedSet|)) $) 34 T ELT)) (|reductum| (#3=($ $) 31 T ELT)) (|monomial| (($ |#2| |#3|) NIL T ELT) (($ $ #2# |#3|) 28 T ELT) (($ $ #1# (|List| |#3|)) 27 T ELT)) (|leadingMonomial| (#3# 14 T ELT)) (|leadingCoefficient| ((|#2| $) 12 T ELT)) (|degree| ((|#3| $) 10 T ELT)))
+(((|UnivariatePowerSeriesCategory&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |variables| (#1=(|List| #2=(|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |monomial| (|#1| |#1| #1# (|List| |#3|))) (SIGNATURE |monomial| (|#1| |#1| #2# |#3|)) (SIGNATURE |reductum| #3=(|#1| |#1|)) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |degree| (|#3| |#1|)) (SIGNATURE |leadingMonomial| #3#) (SIGNATURE |leadingCoefficient| (|#2| |#1|))) (|UnivariatePowerSeriesCategory| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| (((|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #4=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #4#) ELT)) (|unit?| ((#5=(|Boolean|) $) 75 (|has| |#1| . #4#) ELT)) (|truncate| (($ $ |#2|) 125 T ELT) (($ $ |#2| |#2|) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 131 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#6=($) 23 T CONST)) (|reductum| (#7=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|order| ((|#2| $) 127 T ELT) ((|#2| $ |#2|) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| |#2|) 82 T ELT) (($ $ #3# |#2|) 98 T ELT) (($ $ (|List| #3#) (|List| |#2|)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|leadingMonomial| (#7# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|extend| (($ $ |#2|) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #4#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))) ELT)) (|elt| ((|#1| $ |#2|) 132 T ELT) (($ $ $) 108 (|has| |#2| (|SemiGroup|)) ELT)) (|differentiate| (($ $ #8=(|Symbol|)) 120 (AND (|has| |#1| . #9=((|PartialDifferentialRing| (|Symbol|)))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ (|List| #8#)) 118 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ #8# . #10=(#11=(|NonNegativeInteger|))) 117 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ (|List| #8#) . #12=((|List| #11#))) 116 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ . #13=($)) 112 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ELT) (#14=($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ELT)) (|degree| ((|#2| $) 84 T ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #15=(|Fraction| (|Integer|))) 78 (|has| |#1| . #16=((|Algebra| #15#))) ELT) (($ $) 70 (|has| |#1| . #4#) ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficient| ((|#1| $ |#2|) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|before?| (#1# 6 T ELT)) (|associates?| ((#5# $ $) 74 (|has| |#1| . #4#) ELT)) (|approximate| ((|#1| $ |#2|) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#6# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ #8#) 119 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ (|List| #8#)) 115 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ #8# . #10#) 114 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ $ (|List| #8#) . #12#) 113 (AND (|has| |#1| . #9#) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ELT) (($ . #13#) 111 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ELT) (#14# 109 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #17=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #17#) 88 T ELT) (($ #15# . #17#) 77 (|has| |#1| . #16#) ELT) (($ $ #15#) 76 (|has| |#1| . #16#) ELT)))
+(((|UnivariatePowerSeriesCategory| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory|))
+((|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Stream| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Symbol|)))) (|center| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|multiplyExponents| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|approximate| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|has| *2 (SIGNATURE ** (*2 *2 *3))) (|has| *2 (SIGNATURE |coerce| (*2 (|Symbol|)))) (|ofCategory| *2 (|Ring|)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|eval| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|has| *3 (SIGNATURE ** (*3 *3 *4))) (|isDomain| *2 (|Stream| *3)))))
+(|Join| (|PowerSeriesCategory| |t#1| |t#2| (|SingletonAsOrderedSet|)) (|Eltable| |t#2| |t#1|) (CATEGORY |domain| (SIGNATURE |terms| ((|Stream| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |center| (|t#1| $)) (SIGNATURE |multiplyExponents| ($ $ (|PositiveInteger|))) (SIGNATURE |order| (|t#2| $)) (SIGNATURE |order| (|t#2| $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (SIGNATURE |coerce| (|t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |approximate| (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (SIGNATURE |extend| ($ $ |t#2|)) (IF (|has| |t#2| (|SemiGroup|)) (ATTRIBUTE (|Eltable| $ $)) |%noBranch|) (IF (|has| |t#1| (SIGNATURE * (|t#1| |t#2| |t#1|))) (PROGN (ATTRIBUTE (|DifferentialRing|)) (IF (|has| |t#1| (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |eval| ((|Stream| |t#1|) $ |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| #1# #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialDomain| $) |has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ((|DifferentialSpace|) |has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ((|Eltable| |#2| |#1|) . T) ((|Eltable| $ $) |has| |#2| (|SemiGroup|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Functorial| |#1|) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #2=(|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ((|PartialDifferentialRing| #2#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ((|PartialDifferentialSpace| #2#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) ((|PowerSeriesCategory| |#1| |#2| (|SingletonAsOrderedSet|)) . T) ((|RightLinearSet| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #1#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|squareFreePart| ((|#2| |#2|) 12 T ELT)) (|squareFree| (((|Factored| |#2|) |#2|) 14 T ELT)) (|BumInSepFFE| ((#1=(|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) #1#) 30 T ELT)))
+(((|UnivariatePolynomialSquareFree| |#1| |#2|) (CATEGORY |package| (SIGNATURE |squareFree| ((|Factored| |#2|) |#2|)) (SIGNATURE |squareFreePart| (|#2| |#2|)) (SIGNATURE |BumInSepFFE| (#1=(|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) #1#))) #2=(|IntegralDomain|) (|Join| (|UnivariatePolynomialCategory| |#1|) #2# (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $))))) (T |UnivariatePolynomialSquareFree|))
+((|BumInSepFFE| #1=(*1 *2 *2) (AND (|isDomain| *2 (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (|Integer|)))) (|ofCategory| *4 #2=(|Join| (|UnivariatePolynomialCategory| *3) #3=(|IntegralDomain|) #4=(CATEGORY |domain| (SIGNATURE |gcd| ($ $ $))))) #5=(|ofCategory| *3 #3#) (|isDomain| *1 (|UnivariatePolynomialSquareFree| *3 *4)))) (|squareFreePart| #1# (AND #5# (|isDomain| *1 (|UnivariatePolynomialSquareFree| *3 *2)) (|ofCategory| *2 #2#))) (|squareFree| (*1 *2 *3) (AND (|ofCategory| *4 #3#) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|UnivariatePolynomialSquareFree| *4 *3)) (|ofCategory| *3 (|Join| (|UnivariatePolynomialCategory| *4) #3# #4#)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#8=(|Symbol|) $) 11 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #9# ELT)) (|unit?| (#5# NIL #9# ELT)) (|truncate| #12=(#13=($ $ #14=(|Fraction| #15=(|Integer|))) NIL T ELT) (($ $ #14# #14#) NIL T ELT)) (|terms| ((#16=(|Stream| (|Record| (|:| |k| #14#) (|:| |c| |#1|))) $) NIL T ELT)) (|tanh| #17=(#11# NIL #18=(|has| |#1| (|Algebra| #14#)) ELT)) (|tan| #17#) (|subtractIfCan| (#19=(#20=(|Union| $ #21="failed") $ $) NIL T ELT)) (|squareFreePart| #22=(#11# NIL #23=(|has| |#1| (|Field|)) ELT)) (|squareFree| #24=(((|Factored| $) $) NIL #23# ELT)) (|sqrt| #17#) (|sizeLess?| (#2# NIL #23# ELT)) (|sinh| #17#) (|sin| #17#) (|series| (($ #25=(|NonNegativeInteger|) #16#) NIL T ELT)) (|sech| #17#) (|sec| #17#) (|sample| (#26=($) NIL T CONST)) (|retractIfCan| (#27=((|Union| #28=(|UnivariateLaurentSeries| |#1| |#2| |#3|) . #29=(#21#)) $) 19 T ELT) (((|Union| #30=(|UnivariateTaylorSeries| |#1| |#2| |#3|) . #29#) $) 22 T ELT)) (|retract| #31=(#32=(#28# . #33=($)) NIL T ELT) ((#30# . #33#) NIL T ELT)) (|rem| #34=(#35=($ $ $) NIL #23# ELT)) (|reductum| #36=(#11# NIL T ELT)) (|recip| ((#20# $) NIL T ELT)) (|rationalPower| (#37=(#14# $) 68 T ELT)) (|quo| #34#) (|puiseux| (($ #14# #28#) NIL T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #38=(|List| $)) #39=(|:| |generator| $)) #38#) NIL #23# ELT)) (|prime?| (#5# NIL #23# ELT)) (|pole?| #4#) (|pi| (#26# NIL #18# ELT)) (|order| #40=(#37# NIL T ELT) ((#14# $ #14#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (#41=($ $ #15#) NIL #18# ELT)) (|multiplyExponents| #42=(($ $ #43=(|PositiveInteger|)) NIL T ELT) #12#) (|multiEuclidean| (((|Union| #38# #21#) #38# $) NIL #23# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #14#) 30 T ELT) (($ $ #7# #14#) NIL T ELT) (($ $ #6# (|List| #14#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|log| #17#) (|leadingMonomial| #36#) (|leadingCoefficient| (#44=(|#1| $) NIL T ELT)) (|lcm| #45=(($ #38#) NIL #23# ELT) #34#) (|laurentRep| (#32# 71 T ELT)) (|laurentIfCan| (#27# NIL T ELT)) (|laurent| #31#) (|latex| (((|String|) $) NIL T ELT)) (|inv| #22#) (|integrate| (#11# 39 #18# ELT) (#46=($ $ #8#) NIL (OR (AND #18# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #15#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #18# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #8#))) (|has| |#1| (SIGNATURE |variables| (#47=(|List| #8#) |#1|))))) ELT) (#48=($ $ #49=(|Variable| |#2|)) 40 #18# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#50=(|SparseUnivariatePolynomial| $) #50# #50#) NIL #23# ELT)) (|gcd| #45# #34#) (|factor| #24#) (|extendedEuclidean| (((|Union| (|Record| #51=(|:| |coef1| $) #52=(|:| |coef2| $)) #21#) $ $ $) NIL #23# ELT) (((|Record| #51# #52# #39#) $ $) NIL #23# ELT)) (|extend| #12#) (|exquo| (#19# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #38#) #38# $) NIL #23# ELT)) (|exp| #17#) (|eval| (((|Stream| |#1|) $ |#1|) NIL #53=(|has| |#1| (SIGNATURE ** (|#1| |#1| #14#))) ELT)) (|euclideanSize| ((#25# $) NIL #23# ELT)) (|elt| #54=(#55=(|#1| $ #14#) NIL T ELT) (#35# NIL (|has| #14# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #23# ELT)) (|differentiate| #56=(#46# NIL #57=(AND (|has| |#1| (|PartialDifferentialRing| #8#)) #58=(|has| |#1| (SIGNATURE * (|#1| #14# |#1|)))) ELT) #59=(($ $ #47#) NIL #57# ELT) #60=(($ $ #8# #25#) NIL #57# ELT) #61=(($ $ #47# (|List| #25#)) NIL #57# ELT) (#11# 37 #58# ELT) #62=(#63=($ $ #25#) NIL #58# ELT) (#48# 38 T ELT)) (|degree| #40#) (|csch| #17#) (|csc| #17#) (|coth| #17#) (|cot| #17#) (|cosh| #17#) (|cos| #17#) (|complete| #36#) (|coerce| (((|OutputForm|) $) 107 T ELT) (($ #15#) NIL T ELT) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)) ELT) (($ #28#) 16 T ELT) (($ #30#) 17 T ELT) (($ #49#) 36 T ELT) (($ #14#) NIL #18# ELT) #10#) (|coefficient| #54#) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#25#) NIL T CONST)) (|center| (#44# 12 T ELT)) (|before?| #1#) (|atanh| #17#) (|atan| #17#) (|associates?| (#2# NIL #9# ELT)) (|asinh| #17#) (|asin| #17#) (|asech| #17#) (|asec| #17#) (|approximate| (#55# 73 (AND #53# (|has| |#1| (SIGNATURE |coerce| (|#1| #8#)))) ELT)) (|annihilate?| #1#) (|acsch| #17#) (|acsc| #17#) (|acoth| #17#) (|acot| #17#) (|acosh| #17#) (|acos| #17#) (|Zero| (#26# 32 T CONST)) (|One| (#26# 26 T CONST)) (D #56# #59# #60# #61# (#11# NIL #58# ELT) #62# (#48# NIL T ELT)) (= #1#) (/ (#64=($ $ |#1|) NIL #23# ELT) #34#) (- #36# #65=(#35# NIL T ELT)) (+ (#35# 34 T ELT)) (** #42# (#63# NIL T ELT) (#41# NIL #23# ELT) (#35# NIL #18# ELT) #66=(#13# NIL #18# ELT)) (* (($ #43# $) NIL T ELT) (($ #25# $) NIL T ELT) (($ #15# . #67=($)) NIL T ELT) #65# (#64# NIL T ELT) (($ |#1| . #67#) NIL T ELT) (($ #14# . #67#) NIL #18# ELT) #66#))
+(((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesConstructorCategory| |#1| (|UnivariateLaurentSeries| |#1| |#2| |#3|)) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (|RetractableTo| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) (|CoercibleFrom| #1#) (CATEGORY |domain| (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |UnivariatePuiseuxSeries|))
+((|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))))
+((|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) 24 T ELT)))
+(((|UnivariatePuiseuxSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)))) #1=(|Ring|) #1# #2=(|Symbol|) #2# |#1| |#2|) (T |UnivariatePuiseuxSeriesFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariatePuiseuxSeries| *5 *7 *9)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofType| *7 #2=(|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariatePuiseuxSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariatePuiseuxSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 #2#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| ((#4=(|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #5#) ELT)) (|unit?| ((#6=(|Boolean|) $) 75 (|has| |#1| . #5#) ELT)) (|truncate| (($ $ #7=(|Fraction| (|Integer|))) 125 T ELT) (($ $ #7# #7#) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| #7#) (|:| |c| |#1|))) $) 131 T ELT)) (|tanh| (#8=($ $) 164 (|has| |#1| . #9=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|tan| (#10=($ $) 147 (|has| |#1| . #9#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 191 (|has| |#1| . #11=((|Field|))) ELT)) (|squareFree| (#12=((|Factored| $) $) 192 (|has| |#1| . #11#) ELT)) (|sqrt| (($ $) 146 (|has| |#1| . #13=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|sizeLess?| (((|Boolean|) $ $) 182 (|has| |#1| . #11#) ELT)) (|sinh| (#8# 163 (|has| |#1| . #9#) ELT)) (|sin| (#10# 148 (|has| |#1| . #9#) ELT)) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) 200 T ELT)) (|sech| (#8# 162 (|has| |#1| . #9#) ELT)) (|sec| (#10# 149 (|has| |#1| . #9#) ELT)) (|sample| (#14=($) 23 T CONST)) (|rem| (#15=($ $ $) 186 (|has| |#1| . #11#) ELT)) (|reductum| (#16=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#15# 185 (|has| |#1| . #11#) ELT)) (|principalIdeal| (((|Record| (|:| |coef| #17=(|List| $)) (|:| |generator| $)) #17#) 180 (|has| |#1| . #11#) ELT)) (|prime?| (((|Boolean|) $) 193 (|has| |#1| . #11#) ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|pi| (($) 174 (|has| |#1| . #9#) ELT)) (|order| ((#7# $) 127 T ELT) ((#7# $ #7#) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #18=(|Integer|)) 145 (|has| |#1| . #13#) ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT) (($ $ (|Fraction| (|Integer|))) 199 T ELT)) (|multiEuclidean| (((|Union| #19=(|List| $) #20="failed") #19# $) 189 (|has| |#1| . #11#) ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| #7#) 82 T ELT) (($ $ #3# #7#) 98 T ELT) (($ $ (|List| #3#) (|List| #7#)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|log| (#21=($ $) 171 (|has| |#1| . #9#) ELT)) (|leadingMonomial| (#16# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|lcm| (#22=($ (|List| $)) 178 (|has| |#1| . #11#) ELT) (#23=($ $ $) 177 (|has| |#1| . #11#) ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 194 (|has| |#1| . #11#) ELT)) (|integrate| (($ $) 198 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT) (($ $ (|Symbol|)) 197 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#24=(|SparseUnivariatePolynomial| $) #24# #24#) 179 (|has| |#1| . #11#) ELT)) (|gcd| (#22# 176 (|has| |#1| . #11#) ELT) (#23# 175 (|has| |#1| . #11#) ELT)) (|factor| (#12# 190 (|has| |#1| . #11#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #25=(|:| |coef1| $) #26=(|:| |coef2| $)) #20#) $ $ $) 188 (|has| |#1| . #11#) ELT) (((|Record| #25# #26# (|:| |generator| $)) $ $) 187 (|has| |#1| . #11#) ELT)) (|extend| (($ $ #7#) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #5#) ELT)) (|expressIdealMember| (((|Maybe| #17#) #17# $) 181 (|has| |#1| . #11#) ELT)) (|exp| (#21# 172 (|has| |#1| . #9#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 183 (|has| |#1| . #11#) ELT)) (|elt| ((|#1| $ #7#) 132 T ELT) (($ $ $) 108 (|has| #7# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 184 (|has| |#1| . #11#) ELT)) (|differentiate| (($ $ #27=(|Symbol|)) 120 (AND (|has| |#1| . #28=((|PartialDifferentialRing| #4#))) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #27#)) 118 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #27# . #29=(#30=(|NonNegativeInteger|))) 117 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #27#) . #31=((|List| #30#))) 116 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #32=($)) 112 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#33=($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (|degree| ((#7# $) 84 T ELT)) (|csch| (#8# 161 (|has| |#1| . #9#) ELT)) (|csc| (#10# 150 (|has| |#1| . #9#) ELT)) (|coth| (#8# 160 (|has| |#1| . #9#) ELT)) (|cot| (#10# 151 (|has| |#1| . #9#) ELT)) (|cosh| (#8# 159 (|has| |#1| . #9#) ELT)) (|cos| (#10# 152 (|has| |#1| . #9#) ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT) (($ #34=(|Fraction| #35=(|Integer|))) 78 (|has| |#1| . #36=((|Algebra| (|Fraction| (|Integer|))))) ELT) (($ $) 70 (|has| |#1| . #5#) ELT)) (|coefficient| ((|#1| $ #7#) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|before?| (#1# 6 T ELT)) (|atanh| (#37=($ $) 170 (|has| |#1| . #9#) ELT)) (|atan| (#38=($ $) 158 (|has| |#1| . #9#) ELT)) (|associates?| ((#6# $ $) 74 (|has| |#1| . #5#) ELT)) (|asinh| (#37# 169 (|has| |#1| . #9#) ELT)) (|asin| (#38# 157 (|has| |#1| . #9#) ELT)) (|asech| (#37# 168 (|has| |#1| . #9#) ELT)) (|asec| (#38# 156 (|has| |#1| . #9#) ELT)) (|approximate| ((|#1| $ #7#) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |coerce| (|#1| #4#)))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#37# 167 (|has| |#1| . #9#) ELT)) (|acsc| (#38# 155 (|has| |#1| . #9#) ELT)) (|acoth| (#37# 166 (|has| |#1| . #9#) ELT)) (|acot| (#38# 154 (|has| |#1| . #9#) ELT)) (|acosh| (#37# 165 (|has| |#1| . #9#) ELT)) (|acos| (#38# 153 (|has| |#1| . #9#) ELT)) (|Zero| (#14# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ #27#) 119 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #27#)) 115 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #27# . #29#) 114 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #27#) . #31#) 113 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #32#) 111 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#33# 109 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT) (($ $ $) 196 (|has| |#1| . #11#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #35#) 195 (|has| |#1| . #11#) ELT) (($ $ $) 173 (|has| |#1| . #9#) ELT) (($ $ (|Fraction| #18#)) 144 (|has| |#1| . #13#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #39=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #39#) 88 T ELT) (($ #34# . #39#) 77 (|has| |#1| . #36#) ELT) (($ $ #34#) 76 (|has| |#1| . #36#) ELT)))
+(((|UnivariatePuiseuxSeriesCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariatePuiseuxSeriesCategory|))
+((|series| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| *4)))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *4)))) (|multiplyExponents| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|integrate| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))) (|integrate| (*1 *1 *1 *2) (OR (AND #1=(|isDomain| *2 (|Symbol|)) #2=(|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *3)) #3=(|ofCategory| *3 (|Ring|)) (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|ofCategory| *3 (|PrimitiveFunctionCategory|)) (|ofCategory| *3 (|TranscendentalFunctionCategory|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))) (AND #1# #2# #3# (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3))) (|has| *3 (SIGNATURE |integrate| (*3 *3 *2))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))))))
+(|Join| (|UnivariatePowerSeriesCategory| |t#1| (|Fraction| (|Integer|))) (CATEGORY |domain| (SIGNATURE |series| ($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |t#1|))))) (SIGNATURE |multiplyExponents| ($ $ (|Fraction| (|Integer|)))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (IF (|has| |t#1| (SIGNATURE |integrate| (|t#1| |t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |t#1|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|TranscendentalFunctionCategory|)) (IF (|has| |t#1| (|PrimitiveFunctionCategory|)) (IF (|has| |t#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) |%noBranch|) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |%noBranch|) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|Field|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|Fraction| (|Integer|))) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialDomain| $) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DifferentialSpace|) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DivisionRing|) |has| |#1| (|Field|)) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| #1# |#1|) . T) ((|Eltable| $ $) |has| (|Fraction| (|Integer|)) (|SemiGroup|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Field|) |has| |#1| (|Field|)) ((|Functorial| |#1|) . T) ((|GcdDomain|) |has| |#1| (|Field|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Module| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PartialDifferentialRing| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PartialDifferentialSpace| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PowerSeriesCategory| |#1| #1# (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|Field|)) ((|UnivariatePowerSeriesCategory| |#1| #1#) . T))
+((|zero?| (((|Boolean|) $) 12 T ELT)) (|retractIfCan| (((|Union| |#3| "failed") $) 17 T ELT)) (|retract| ((|#3| $) 14 T ELT)))
+(((|UnivariatePuiseuxSeriesConstructorCategory&| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |retractIfCan| ((|Union| |#3| "failed") |#1|)) (SIGNATURE |retract| (|#3| |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|))) (|UnivariatePuiseuxSeriesConstructorCategory| |#2| |#3|) (|Ring|) (|UnivariateLaurentSeriesCategory| |#2|)) (T |UnivariatePuiseuxSeriesConstructorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| ((#4=(|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #5#) ELT)) (|unit?| ((#6=(|Boolean|) $) 75 (|has| |#1| . #5#) ELT)) (|truncate| (($ $ #7=(|Fraction| #8=(|Integer|))) 125 T ELT) (($ $ #7# #7#) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| #7#) (|:| |c| |#1|))) $) 131 T ELT)) (|tanh| (#9=($ $) 164 (|has| |#1| . #10=((|Algebra| #7#))) ELT)) (|tan| (#11=($ $) 147 (|has| |#1| . #10#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 191 (|has| |#1| . #12=((|Field|))) ELT)) (|squareFree| (#13=((|Factored| $) $) 192 (|has| |#1| . #12#) ELT)) (|sqrt| (($ $) 146 (|has| |#1| . #10#) ELT)) (|sizeLess?| (((|Boolean|) $ $) 182 (|has| |#1| . #12#) ELT)) (|sinh| (#9# 163 (|has| |#1| . #10#) ELT)) (|sin| (#11# 148 (|has| |#1| . #10#) ELT)) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| #7#) (|:| |c| |#1|)))) 200 T ELT)) (|sech| (#9# 162 (|has| |#1| . #10#) ELT)) (|sec| (#11# 149 (|has| |#1| . #10#) ELT)) (|sample| (#14=($) 23 T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 213 T ELT)) (|retract| ((|#2| $) 214 T ELT)) (|rem| (#15=($ $ $) 186 (|has| |#1| . #12#) ELT)) (|reductum| (#16=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|rationalPower| (((|Fraction| (|Integer|)) $) 210 T ELT)) (|quo| (#15# 185 (|has| |#1| . #12#) ELT)) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) 211 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #17=(|List| $)) (|:| |generator| $)) #17#) 180 (|has| |#1| . #12#) ELT)) (|prime?| (((|Boolean|) $) 193 (|has| |#1| . #12#) ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|pi| (($) 174 (|has| |#1| . #10#) ELT)) (|order| ((#7# $) 127 T ELT) ((#7# $ #7#) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #18=(|Integer|)) 145 (|has| |#1| . #10#) ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT) (($ $ #7#) 199 T ELT)) (|multiEuclidean| (((|Union| #19=(|List| $) #20="failed") #19# $) 189 (|has| |#1| . #12#) ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| #7#) 82 T ELT) (($ $ #3# #7#) 98 T ELT) (($ $ (|List| #3#) (|List| #7#)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|log| (#21=($ $) 171 (|has| |#1| . #10#) ELT)) (|leadingMonomial| (#16# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|lcm| (#22=($ (|List| $)) 178 (|has| |#1| . #12#) ELT) (#23=($ $ $) 177 (|has| |#1| . #12#) ELT)) (|laurentRep| ((|#2| $) 209 T ELT)) (|laurentIfCan| (((|Union| |#2| "failed") $) 207 T ELT)) (|laurent| ((|#2| $) 208 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 194 (|has| |#1| . #12#) ELT)) (|integrate| (($ $) 198 (|has| |#1| . #10#) ELT) (($ $ #24=(|Symbol|)) 197 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #8#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| . #10#)) (AND (|has| |#1| (SIGNATURE |variables| ((|List| #24#) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #24#))) (|has| |#1| . #10#))) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#25=(|SparseUnivariatePolynomial| $) #25# #25#) 179 (|has| |#1| . #12#) ELT)) (|gcd| (#22# 176 (|has| |#1| . #12#) ELT) (#23# 175 (|has| |#1| . #12#) ELT)) (|factor| (#13# 190 (|has| |#1| . #12#) ELT)) (|extendedEuclidean| (((|Union| (|Record| #26=(|:| |coef1| $) #27=(|:| |coef2| $)) #20#) $ $ $) 188 (|has| |#1| . #12#) ELT) (((|Record| #26# #27# (|:| |generator| $)) $ $) 187 (|has| |#1| . #12#) ELT)) (|extend| (($ $ #7#) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #5#) ELT)) (|expressIdealMember| (((|Maybe| #17#) #17# $) 181 (|has| |#1| . #12#) ELT)) (|exp| (#21# 172 (|has| |#1| . #10#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 183 (|has| |#1| . #12#) ELT)) (|elt| ((|#1| $ #7#) 132 T ELT) (($ $ $) 108 (|has| #7# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 184 (|has| |#1| . #12#) ELT)) (|differentiate| (($ $ #4#) 120 (AND (|has| |#1| . #28=((|PartialDifferentialRing| #4#))) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 118 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #29=(#30=(|NonNegativeInteger|))) 117 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #31=((|List| #30#))) 116 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #32=($)) 112 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#33=($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (|degree| ((#7# $) 84 T ELT)) (|csch| (#9# 161 (|has| |#1| . #10#) ELT)) (|csc| (#11# 150 (|has| |#1| . #10#) ELT)) (|coth| (#9# 160 (|has| |#1| . #10#) ELT)) (|cot| (#11# 151 (|has| |#1| . #10#) ELT)) (|cosh| (#9# 159 (|has| |#1| . #10#) ELT)) (|cos| (#11# 152 (|has| |#1| . #10#) ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#2|) 212 T ELT) (($ #34=(|Fraction| #35=(|Integer|))) 78 (|has| |#1| . #36=((|Algebra| (|Fraction| (|Integer|))))) ELT) (($ $) 70 (|has| |#1| . #5#) ELT)) (|coefficient| ((|#1| $ #7#) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|before?| (#1# 6 T ELT)) (|atanh| (#37=($ $) 170 (|has| |#1| . #10#) ELT)) (|atan| (#38=($ $) 158 (|has| |#1| . #10#) ELT)) (|associates?| ((#6# $ $) 74 (|has| |#1| . #5#) ELT)) (|asinh| (#37# 169 (|has| |#1| . #10#) ELT)) (|asin| (#38# 157 (|has| |#1| . #10#) ELT)) (|asech| (#37# 168 (|has| |#1| . #10#) ELT)) (|asec| (#38# 156 (|has| |#1| . #10#) ELT)) (|approximate| ((|#1| $ #7#) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |coerce| (|#1| #4#)))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#37# 167 (|has| |#1| . #10#) ELT)) (|acsc| (#38# 155 (|has| |#1| . #10#) ELT)) (|acoth| (#37# 166 (|has| |#1| . #10#) ELT)) (|acot| (#38# 154 (|has| |#1| . #10#) ELT)) (|acosh| (#37# 165 (|has| |#1| . #10#) ELT)) (|acos| (#38# 153 (|has| |#1| . #10#) ELT)) (|Zero| (#14# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ #4#) 119 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 115 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #29#) 114 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #31#) 113 (AND (|has| |#1| . #28#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #32#) 111 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#33# 109 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT) (($ $ $) 196 (|has| |#1| . #12#) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #35#) 195 (|has| |#1| . #12#) ELT) (($ $ $) 173 (|has| |#1| . #10#) ELT) (($ $ (|Fraction| #18#)) 144 (|has| |#1| . #10#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #39=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #39#) 88 T ELT) (($ #34# . #39#) 77 (|has| |#1| . #36#) ELT) (($ $ #34#) 76 (|has| |#1| . #36#) ELT)))
+(((|UnivariatePuiseuxSeriesConstructorCategory| |#1| |#2|) (|Category|) (|Ring|) (|UnivariateLaurentSeriesCategory| |t#1|)) (T |UnivariatePuiseuxSeriesConstructorCategory|))
+((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|puiseux| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *4 *3)) (|ofCategory| *3 (|UnivariateLaurentSeriesCategory| *4)))) (|rationalPower| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|laurentRep| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))) (|laurent| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))) (|laurentIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))))
+(|Join| (|UnivariatePuiseuxSeriesCategory| |t#1|) (|RetractableTo| |t#2|) (|CoercibleFrom| |t#2|) (CATEGORY |domain| (SIGNATURE |puiseux| ($ (|Fraction| (|Integer|)) |t#2|)) (SIGNATURE |rationalPower| ((|Fraction| (|Integer|)) $)) (SIGNATURE |laurentRep| (|t#2| $)) (SIGNATURE |degree| ((|Fraction| (|Integer|)) $)) (SIGNATURE |laurent| (|t#2| $)) (SIGNATURE |laurentIfCan| ((|Union| |t#2| "failed") $))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|Fraction| (|Integer|))) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| |#2|) . T) ((|CoercibleFrom| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialDomain| $) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DifferentialSpace|) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DivisionRing|) |has| |#1| (|Field|)) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| #1# |#1|) . T) ((|Eltable| $ $) |has| (|Fraction| (|Integer|)) (|SemiGroup|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Field|) |has| |#1| (|Field|)) ((|Functorial| |#1|) . T) ((|GcdDomain|) |has| |#1| (|Field|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Join|) . T) ((|LeftLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Module| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PartialDifferentialRing| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PartialDifferentialSpace| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) ((|PowerSeriesCategory| |#1| #1# (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RetractableTo| |#2|) . T) ((|RightLinearSet| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|Field|)) ((|UnivariatePowerSeriesCategory| |#1| #1#) . T) ((|UnivariatePuiseuxSeriesCategory| |#1|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#8=(|Symbol|) $) 104 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #9=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #10=(#11=($ $) NIL #9# ELT)) (|unit?| (#5# NIL #9# ELT)) (|truncate| (#12=($ $ #13=(|Fraction| #14=(|Integer|))) 116 T ELT) (($ $ #13# #13#) 118 T ELT)) (|terms| ((#15=(|Stream| (|Record| (|:| |k| #13#) (|:| |c| |#1|))) $) 54 T ELT)) (|tanh| (#11# 192 #16=(|has| |#1| (|Algebra| #13#)) ELT)) (|tan| (#11# 168 #16# ELT)) (|subtractIfCan| (#17=(#18=(|Union| $ #19="failed") $ $) NIL T ELT)) (|squareFreePart| (#11# NIL #20=(|has| |#1| (|Field|)) ELT)) (|squareFree| #21=(((|Factored| $) $) NIL #20# ELT)) (|sqrt| (#11# NIL #16# ELT)) (|sizeLess?| (#2# NIL #20# ELT)) (|sinh| (#11# 188 #16# ELT)) (|sin| (#11# 164 #16# ELT)) (|series| (($ #22=(|NonNegativeInteger|) #15#) 65 T ELT)) (|sech| (#11# 196 #16# ELT)) (|sec| (#11# 172 #16# ELT)) (|sample| (#23=($) NIL T CONST)) (|retractIfCan| (#24=((|Union| |#2| #19#) $) NIL T ELT)) (|retract| (#25=(|#2| $) NIL T ELT)) (|rem| #26=(#27=($ $ $) NIL #20# ELT)) (|reductum| #28=(#11# NIL T ELT)) (|recip| ((#18# $) 85 T ELT)) (|rationalPower| (#29=(#13# $) 13 T ELT)) (|quo| #26#) (|puiseux| (($ #13# |#2|) 11 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #30=(|List| $)) #31=(|:| |generator| $)) #30#) NIL #20# ELT)) (|prime?| (#5# NIL #20# ELT)) (|pole?| (#5# 74 T ELT)) (|pi| (#23# NIL #16# ELT)) (|order| (#29# 113 T ELT) ((#13# $ #13#) 114 T ELT)) (|opposite?| #1#) (|one?| #4#) (|nthRoot| (#32=($ $ #14#) NIL #16# ELT)) (|multiplyExponents| (#33=($ $ #34=(|PositiveInteger|)) 130 T ELT) (#12# 128 T ELT)) (|multiEuclidean| (((|Union| #30# #19#) #30# $) NIL #20# ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #13#) 33 T ELT) (($ $ #7# #13#) NIL T ELT) (($ $ #6# (|List| #13#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 125 T ELT)) (|log| (#11# 162 #16# ELT)) (|leadingMonomial| #28#) (|leadingCoefficient| (#35=(|#1| $) NIL T ELT)) (|lcm| #36=(($ #30#) NIL #20# ELT) #26#) (|laurentRep| (#25# 12 T ELT)) (|laurentIfCan| (#24# 44 T ELT)) (|laurent| (#25# 45 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|inv| (#11# 101 #20# ELT)) (|integrate| (#11# 146 #16# ELT) (#37=($ $ #8#) 151 (OR (AND #16# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #14#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #16# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #8#))) (|has| |#1| (SIGNATURE |variables| (#38=(|List| #8#) |#1|))))) ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|gcdPolynomial| ((#39=(|SparseUnivariatePolynomial| $) #39# #39#) NIL #20# ELT)) (|gcd| #36# #26#) (|factor| #21#) (|extendedEuclidean| (((|Union| (|Record| #40=(|:| |coef1| $) #41=(|:| |coef2| $)) #19#) $ $ $) NIL #20# ELT) (((|Record| #40# #41# #31#) $ $) NIL #20# ELT)) (|extend| (#12# 122 T ELT)) (|exquo| (#17# NIL #9# ELT)) (|expressIdealMember| (((|Maybe| #30#) #30# $) NIL #20# ELT)) (|exp| (#11# 160 #16# ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 98 #42=(|has| |#1| (SIGNATURE ** (|#1| |#1| #13#))) ELT)) (|euclideanSize| ((#22# $) NIL #20# ELT)) (|elt| (#43=(|#1| $ #13#) 108 T ELT) (#27# 94 (|has| #13# (|SemiGroup|)) ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL #20# ELT)) (|differentiate| (#37# 138 #44=(AND (|has| |#1| (|PartialDifferentialRing| #8#)) #45=(|has| |#1| (SIGNATURE * (|#1| #13# |#1|)))) ELT) #46=(($ $ #38#) NIL #44# ELT) #47=(($ $ #8# #22#) NIL #44# ELT) #48=(($ $ #38# (|List| #22#)) NIL #44# ELT) (#11# 134 #45# ELT) #49=(#50=($ $ #22#) NIL #45# ELT)) (|degree| (#29# 16 T ELT)) (|csch| (#11# 198 #16# ELT)) (|csc| (#11# 174 #16# ELT)) (|coth| (#11# 194 #16# ELT)) (|cot| (#11# 170 #16# ELT)) (|cosh| (#11# 190 #16# ELT)) (|cos| (#11# 166 #16# ELT)) (|complete| (#11# 120 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #14#) 37 T ELT) (($ |#1|) 27 (|has| |#1| (|CommutativeRing|)) ELT) (($ |#2|) 34 T ELT) (($ #13#) 139 #16# ELT) #10#) (|coefficient| (#43# 107 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#22#) 127 T CONST)) (|center| (#35# 106 T ELT)) (|before?| #1#) (|atanh| (#11# 204 #16# ELT)) (|atan| (#11# 180 #16# ELT)) (|associates?| (#2# NIL #9# ELT)) (|asinh| (#11# 200 #16# ELT)) (|asin| (#11# 176 #16# ELT)) (|asech| (#11# 208 #16# ELT)) (|asec| (#11# 184 #16# ELT)) (|approximate| (#43# NIL (AND #42# (|has| |#1| (SIGNATURE |coerce| (|#1| #8#)))) ELT)) (|annihilate?| #1#) (|acsch| (#11# 210 #16# ELT)) (|acsc| (#11# 186 #16# ELT)) (|acoth| (#11# 206 #16# ELT)) (|acot| (#11# 182 #16# ELT)) (|acosh| (#11# 202 #16# ELT)) (|acos| (#11# 178 #16# ELT)) (|Zero| (#23# 21 T CONST)) (|One| (#23# 17 T CONST)) (D (#37# NIL #44# ELT) #46# #47# #48# (#11# NIL #45# ELT) #49#) (= (#2# 72 T ELT)) (/ (#51=($ $ |#1|) NIL #20# ELT) (#27# 100 #20# ELT)) (- (#11# 142 T ELT) (#27# 78 T ELT)) (+ (#27# 76 T ELT)) (** (#33# NIL T ELT) (#50# 82 T ELT) (#32# 157 #20# ELT) (#27# NIL #16# ELT) (#12# 158 #16# ELT)) (* (($ #34# $) NIL T ELT) (($ #22# $) NIL T ELT) (($ #14# . #52=($)) NIL T ELT) (#27# 80 T ELT) (#51# NIL T ELT) (($ |#1| . #52#) 137 T ELT) (($ #13# . #52#) NIL #16# ELT) (#12# NIL #16# ELT)))
+(((|UnivariatePuiseuxSeriesConstructor| |#1| |#2|) (|UnivariatePuiseuxSeriesConstructorCategory| |#1| |#2|) (|Ring|) (|UnivariateLaurentSeriesCategory| |#1|)) (T |UnivariatePuiseuxSeriesConstructor|))
+NIL
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#3=(#2# $) 37 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL T ELT)) (|unitCanonical| #4=(#5=($ $) NIL T ELT)) (|unit?| #6=(#3# NIL T ELT)) (|subtractIfCan| #7=((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|sample| #10=(($) NIL T CONST)) (|retractIfCan| (((|Union| #11=(|Integer|) . #12=(#9#)) . #13=($)) NIL #14=(|has| #15=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| #11#)) ELT) (((|Union| #16=(|Fraction| #11#) . #12#) . #13#) NIL #17=(|has| #15# (|RetractableTo| #16#)) ELT) (((|Union| #15# . #12#) $) 22 T ELT)) (|retract| ((#11# . #18=($)) NIL #14# ELT) ((#16# . #18#) NIL #17# ELT) #19=(#20=(#15# . #18#) NIL T ELT)) (|reductum| (#5# 41 T ELT)) (|recip| ((#8# $) 27 T ELT)) (|primitivePart| (#5# NIL #21=(|has| #15# (|GcdDomain|)) ELT)) (|pomopo!| (($ $ #15# #22=(|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL T ELT)) (|opposite?| #1#) (|one?| #6#) (|numberOfMonomials| ((#23=(|NonNegativeInteger|) $) 11 T ELT)) (|monomial?| #6#) (|monomial| (($ #15# #22#) 25 T ELT)) (|minimumDegree| (#24=(#22# $) NIL T ELT)) (|mapExponents| (($ (|Mapping| #22# #22#) $) NIL T ELT)) (|map| (($ (|Mapping| #15# #15#) $) NIL T ELT)) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) #9#) $) 91 T ELT)) (|leadingMonomial| #4#) (|leadingCoefficient| (#20# 20 T ELT)) (|latex| ((#25=(|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|ground?| #6#) (|ground| #19#) (|exquo| ((#8# $ #15#) NIL (|has| #15# (|IntegralDomain|)) ELT) #7#) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| #15#) (|:| |%expon| #22#) (|:| |%expTerms| (|List| (|Record| (|:| |k| #16#) (|:| |c| |#2|)))))) (|:| |%type| #25#)) #9#) $) 74 T ELT)) (|degree| (#24# 17 T ELT)) (|content| (#20# NIL #21# ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #11#) NIL T ELT) (($ #15#) NIL T ELT) #4# (($ #16#) NIL (OR #17# #26=(|has| #15# (|Algebra| #16#))) ELT)) (|coefficients| (((|List| #15#) $) NIL T ELT)) (|coefficient| ((#15# $ #22#) NIL T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| #15# (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#23#) NIL T CONST)) (|binomThmExpt| (($ $ $ #23#) NIL (|has| #15# (|CommutativeRing|)) ELT)) (|before?| #1#) (|associates?| #1#) (|annihilate?| #1#) (|Zero| #10#) (|One| #10#) (= #1#) (/ (#27=($ $ #15#) NIL (|has| #15# (|Field|)) ELT)) (- #4# #28=(($ $ $) NIL T ELT)) (+ #28#) (** (($ $ #29=(|PositiveInteger|)) NIL T ELT) (($ $ #23#) NIL T ELT)) (* (($ #29# $) NIL T ELT) (($ #23# $) NIL T ELT) (($ #11# . #30=($)) NIL T ELT) #28# (#27# NIL T ELT) (($ #15# . #30#) NIL T ELT) (($ #16# . #30#) NIL #26# ELT) (($ $ #16#) NIL #26# ELT)))
+(((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Join| (|FiniteAbelianMonoidRing| #1=(|UnivariatePuiseuxSeries| |#2| |#3| |#4|) #2=(|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|IntegralDomain|) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) #3="failed") $)) (SIGNATURE |dominantTerm| ((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| #1#) (|:| |%expon| #2#) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| #4=(|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) #3#) $)))) (|Join| (|RetractableTo| #4#) (|LinearlyExplicitRingOver| #4#) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |UnivariatePuiseuxSeriesWithExponentialSingularity|))
+((|limitPlus| #1=(*1 *2 *1) (|partial| AND #2=(|ofCategory| *3 (|Join| (|RetractableTo| #3=(|Integer|)) (|LinearlyExplicitRingOver| #3#) (|GcdDomain|))) (|isDomain| *2 (|OrderedCompletion| *4)) #4=(|isDomain| *1 (|UnivariatePuiseuxSeriesWithExponentialSingularity| *3 *4 *5 *6)) #5=(|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) #6=(|ofType| *5 (|Symbol|)) #7=(|ofType| *6 *4))) (|dominantTerm| #1# (|partial| AND #2# (|isDomain| *2 (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| *4 *5 *6)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| *4 *5 *6)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| #3#)) (|:| |c| *4)))))) (|:| |%type| (|String|)))) #4# #5# #6# #7#)))
+((|value| (#1=(|#2| $) 34 T ELT)) (|third| (#1# 18 T ELT)) (|tail| (#2=($ $) 43 T ELT)) (|split!| (($ $ (|Integer|)) 78 T ELT)) (|setvalue!| (#3=(|#2| $ |#2|) 75 T ELT)) (|setlast!| (#3# 71 T ELT)) (|setelt| ((|#2| $ #4="value" |#2|) NIL T ELT) ((|#2| $ #5="first" |#2|) 64 T ELT) (($ $ #6="rest" $) 68 T ELT) ((|#2| $ #7="last" |#2|) 66 T ELT)) (|setchildren!| (($ $ #8=(|List| $)) 74 T ELT)) (|second| (#1# 17 T ELT)) (|rest| (#2# NIL T ELT) (#9=($ $ #10=(|NonNegativeInteger|)) 51 T ELT)) (|nodes| (#11=(#8# $) 31 T ELT)) (|node?| (#12=(#13=(|Boolean|) $ $) 62 T ELT)) (|leaf?| (#14=(#13# $) 33 T ELT)) (|last| (#1# 25 T ELT) (#9# 57 T ELT)) (|elt| ((|#2| $ #4#) NIL T ELT) ((|#2| $ #5#) 10 T ELT) (($ $ #6#) 16 T ELT) ((|#2| $ #7#) 13 T ELT)) (|cyclic?| (#14# 23 T ELT)) (|cycleTail| (#2# 46 T ELT)) (|cycleSplit!| (#2# 79 T ELT)) (|cycleLength| ((#10# $) 50 T ELT)) (|cycleEntry| (#2# 49 T ELT)) (|concat| (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (|children| (#11# 32 T ELT)) (= (#12# 60 T ELT)))
+(((|UnaryRecursiveAggregate&| |#1| |#2|) (CATEGORY |package| (SIGNATURE = #1=(#2=(|Boolean|) |#1| |#1|)) (SIGNATURE |split!| (|#1| |#1| (|Integer|))) (SIGNATURE |setelt| (|#2| |#1| #3="last" |#2|)) (SIGNATURE |setlast!| #4=(|#2| |#1| |#2|)) (SIGNATURE |setelt| (|#1| |#1| #5="rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| #6="first" |#2|)) (SIGNATURE |cycleSplit!| #7=(|#1| |#1|)) (SIGNATURE |cycleTail| #7#) (SIGNATURE |cycleLength| (#8=(|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| #7#) (SIGNATURE |third| #9=(|#2| |#1|)) (SIGNATURE |second| #9#) (SIGNATURE |tail| #7#) (SIGNATURE |last| #10=(|#1| |#1| #8#)) (SIGNATURE |elt| (|#2| |#1| #3#)) (SIGNATURE |last| #9#) (SIGNATURE |rest| #10#) (SIGNATURE |elt| (|#1| |#1| #5#)) (SIGNATURE |rest| #7#) (SIGNATURE |elt| (|#2| |#1| #6#)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |setvalue!| #4#) (SIGNATURE |setelt| (|#2| |#1| #11="value" |#2|)) (SIGNATURE |setchildren!| (|#1| |#1| #12=(|List| |#1|))) (SIGNATURE |node?| #1#) (SIGNATURE |cyclic?| #13=(#2# |#1|)) (SIGNATURE |elt| (|#2| |#1| #11#)) (SIGNATURE |value| #9#) (SIGNATURE |leaf?| #13#) (SIGNATURE |nodes| #14=(#12# |#1|)) (SIGNATURE |children| #14#)) (|UnaryRecursiveAggregate| |#2|) (|Type|)) (T |UnaryRecursiveAggregate&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|value| ((|#1| $) 43 T ELT)) (|third| ((|#1| $) 62 T ELT)) (|tail| (($ $) 64 T ELT)) (|split!| (($ $ (|Integer|)) 49 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setvalue!| ((|#1| $ |#1|) 34 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setrest!| (($ $ $) 53 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setelt| ((|#1| $ #3="value" |#1|) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|setchildren!| (($ $ #4=(|List| $)) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|second| ((|#1| $) 63 T ELT)) (|sample| (#5=($) 6 T CONST)) (|rest| (($ $) 70 T ELT) (($ $ (|NonNegativeInteger|)) 68 T ELT)) (|nodes| (#6=(#4# $) 45 T ELT)) (|node?| (#7=(#8=(|Boolean|) $ $) 37 (|has| |#1| . #9=((|BasicType|))) ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT)) (|leaves| (((|List| |#1|) $) 40 T ELT)) (|leaf?| (#10=(#8# $) 44 T ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #11=((|SetCategory|))) ELT)) (|last| ((|#1| $) 67 T ELT) (($ $ (|NonNegativeInteger|)) 65 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #11#) ELT)) (|first| ((|#1| $) 73 T ELT) (($ $ (|NonNegativeInteger|)) 71 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #11#)) ELT)) (|eq?| ((#12=(|Boolean|) $ $) 10 T ELT)) (|empty?| ((#12# $) 7 T ELT)) (|empty| (#5# 8 T ELT)) (|elt| ((|#1| $ #3#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (|distance| (((|Integer|) $ $) 39 T ELT)) (|cyclic?| (#10# 41 T ELT)) (|cycleTail| (($ $) 59 T ELT)) (|cycleSplit!| (($ $) 56 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|cycleLength| (((|NonNegativeInteger|) $) 60 T ELT)) (|cycleEntry| (($ $) 61 T ELT)) (|copy| (($ $) 9 T ELT)) (|concat!| (($ $ $) 58 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|concat| (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|children| (#6# 46 T ELT)) (|child?| (#7# 38 (|has| |#1| . #9#) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)))
+(((|UnaryRecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |UnaryRecursiveAggregate|))
+((|concat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|first| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "first") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|first| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|rest| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "rest") (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|rest| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|last| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "last") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|last| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|second| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|third| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleEntry| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleLength| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|cycleTail| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleSplit!| (*1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setfirst!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 "first") (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setrest!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "rest") (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setlast!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 "last") (|ofCategory| *1 (|ShallowlyMutableAggregate| *2)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|split!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ShallowlyMutableAggregate| *3)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))))
+(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |concat| ($ $ $)) (SIGNATURE |concat| ($ |t#1| $)) (SIGNATURE |first| (|t#1| $)) (SIGNATURE |elt| (|t#1| $ "first")) (SIGNATURE |first| ($ $ (|NonNegativeInteger|))) (SIGNATURE |rest| ($ $)) (SIGNATURE |elt| ($ $ "rest")) (SIGNATURE |rest| ($ $ (|NonNegativeInteger|))) (SIGNATURE |last| (|t#1| $)) (SIGNATURE |elt| (|t#1| $ "last")) (SIGNATURE |last| ($ $ (|NonNegativeInteger|))) (SIGNATURE |tail| ($ $)) (SIGNATURE |second| (|t#1| $)) (SIGNATURE |third| (|t#1| $)) (SIGNATURE |cycleEntry| ($ $)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) $)) (SIGNATURE |cycleTail| ($ $)) (IF (|has| $ (|ShallowlyMutableAggregate| |t#1|)) (PROGN (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |concat!| ($ $ |t#1|)) (SIGNATURE |cycleSplit!| ($ $)) (SIGNATURE |setfirst!| (|t#1| $ |t#1|)) (SIGNATURE |setelt| (|t#1| $ "first" |t#1|)) (SIGNATURE |setrest!| ($ $ $)) (SIGNATURE |setelt| ($ $ "rest" $)) (SIGNATURE |setlast!| (|t#1| $ |t#1|)) (SIGNATURE |setelt| (|t#1| $ "last" |t#1|)) (SIGNATURE |split!| ($ $ (|Integer|)))) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|variables| ((#6=(|List| #7=(|SingletonAsOrderedSet|)) $) NIL T ELT)) (|variable| ((#8=(|Symbol|) $) 87 T ELT)) (|univariatePolynomial| ((#9=(|UnivariatePolynomial| |#2| |#1|) $ #10=(|NonNegativeInteger|)) 70 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL #11=(|has| |#1| (|IntegralDomain|)) ELT)) (|unitCanonical| #12=(#13=($ $) NIL #11# ELT)) (|unit?| (#5# 139 #11# ELT)) (|truncate| (#14=($ $ #10#) 125 T ELT) (($ $ #10# #10#) 127 T ELT)) (|terms| ((#15=(|Stream| (|Record| (|:| |k| #10#) (|:| |c| |#1|))) $) 42 T ELT)) (|tanh| #16=(#13# NIL #17=(|has| |#1| (|Algebra| #18=(|Fraction| #19=(|Integer|)))) ELT)) (|tan| #16#) (|subtractIfCan| (#20=(#21=(|Union| $ "failed") $ $) NIL T ELT)) (|sqrt| #16#) (|sinh| #16#) (|sin| #16#) (|series| (($ #15#) 49 T ELT) (($ #22=(|Stream| |#1|)) NIL T ELT)) (|sech| #16#) (|sec| #16#) (|sample| (#23=($) NIL T CONST)) (|revert| (#13# 131 T ELT)) (|reductum| #24=(#13# NIL T ELT)) (|recip| ((#21# $) NIL T ELT)) (|quoByVar| (#13# 137 T ELT)) (|polynomial| ((#25=(|Polynomial| |#1|) $ #10#) 60 T ELT) ((#25# $ #10# #10#) 62 T ELT)) (|pole?| #4#) (|pi| (#23# NIL #17# ELT)) (|order| #26=((#10# $) NIL T ELT) ((#10# $ #10#) NIL T ELT)) (|opposite?| #1#) (|one?| #4#) (|oddlambert| (#13# 115 T ELT)) (|nthRoot| (($ $ #19#) NIL #17# ELT)) (|multisect| (#27=($ #19# #19# $) 133 T ELT)) (|multiplyExponents| (#28=($ $ #29=(|PositiveInteger|)) 136 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| #19#) $) 109 T ELT)) (|monomial?| #4#) (|monomial| (($ |#1| #10#) 16 T ELT) (($ $ #7# #10#) NIL T ELT) (($ $ #6# #30=(|List| #10#)) NIL T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 96 T ELT)) (|log| #16#) (|leadingMonomial| #24#) (|leadingCoefficient| (#31=(|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|lambert| (#13# 113 T ELT)) (|lagrange| (#13# 111 T ELT)) (|invmultisect| (#27# 135 T ELT)) (|integrate| (#13# 147 #17# ELT) (#32=($ $ #8#) 153 (OR (AND #17# (|has| |#1| (|AlgebraicallyClosedFunctionSpace| #19#)) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))) (AND #17# (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| #8#))) (|has| |#1| (SIGNATURE |variables| (#33=(|List| #8#) |#1|))))) ELT) (#34=($ $ #35=(|Variable| |#2|)) 148 #17# ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|generalLambert| (($ $ #19# #19#) 119 T ELT)) (|extend| (#14# 121 T ELT)) (|exquo| (#20# NIL #11# ELT)) (|exp| #16#) (|evenlambert| (#13# 117 T ELT)) (|eval| ((#22# $ |#1|) 98 #36=(|has| |#1| (SIGNATURE ** (|#1| |#1| #10#))) ELT)) (|elt| (#37=(|#1| $ #10#) 93 T ELT) (#38=($ $ $) 129 (|has| #10# (|SemiGroup|)) ELT)) (|differentiate| (#32# 106 #39=(AND (|has| |#1| (|PartialDifferentialRing| #8#)) #40=(|has| |#1| (SIGNATURE * (|#1| #10# |#1|)))) ELT) #41=(($ $ #33#) NIL #39# ELT) #42=(($ $ #8# #10#) NIL #39# ELT) #43=(($ $ #33# #30#) NIL #39# ELT) (#13# 100 #40# ELT) #44=(#14# NIL #40# ELT) (#34# 101 T ELT)) (|degree| #26#) (|csch| #16#) (|csc| #16#) (|coth| #16#) (|cot| #16#) (|cosh| #16#) (|cos| #16#) (|complete| (#13# 123 T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #19#) 26 T ELT) (($ #18#) 145 #17# ELT) #12# (($ |#1|) 25 (|has| |#1| (|CommutativeRing|)) ELT) (($ #9#) 78 T ELT) (($ #35#) 22 T ELT)) (|coefficients| ((#22# $) NIL T ELT)) (|coefficient| (#37# 92 T ELT)) (|charthRoot| (((|Maybe| $) $) NIL (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| ((#10#) NIL T CONST)) (|center| (#31# 88 T ELT)) (|before?| #1#) (|atanh| #16#) (|atan| #16#) (|associates?| (#2# NIL #11# ELT)) (|asinh| #16#) (|asin| #16#) (|asech| #16#) (|asec| #16#) (|approximate| (#37# 86 (AND #36# (|has| |#1| (SIGNATURE |coerce| (|#1| #8#)))) ELT)) (|annihilate?| #1#) (|acsch| #16#) (|acsc| #16#) (|acoth| #16#) (|acot| #16#) (|acosh| #16#) (|acos| #16#) (|Zero| (#23# 18 T CONST)) (|One| (#23# 13 T CONST)) (D (#32# NIL #39# ELT) #41# #42# #43# (#13# NIL #40# ELT) #44# (#34# NIL T ELT)) (= #1#) (/ (#45=($ $ |#1|) NIL #46=(|has| |#1| (|Field|)) ELT)) (- #24# (#38# 105 T ELT)) (+ (#38# 20 T ELT)) (** (#28# NIL T ELT) (#14# NIL T ELT) (#45# 142 #46# ELT) (#38# NIL #17# ELT) #47=(($ $ #18#) NIL #17# ELT)) (* (($ #29# $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #19# . #48=($)) NIL T ELT) (#38# NIL T ELT) (#45# NIL T ELT) (($ |#1| . #48#) 104 T ELT) (($ #18# . #48#) NIL #17# ELT) #47#))
+(((|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (|PartialDifferentialDomain| $ #1=(|Variable| |#2|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #2=(|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| (#2# $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ #1#)) (SIGNATURE |lagrange| #3=($ $)) (SIGNATURE |lambert| #3#) (SIGNATURE |oddlambert| #3#) (SIGNATURE |evenlambert| #3#) (SIGNATURE |generalLambert| ($ $ #4=(|Integer|) #4#)) (SIGNATURE |revert| #3#) (SIGNATURE |multisect| #5=($ #4# #4# $)) (SIGNATURE |invmultisect| #5#) (IF (|has| |#1| (|Algebra| (|Fraction| #4#))) (SIGNATURE |integrate| ($ $ #1#)) |%noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |UnivariateTaylorSeries|))
+((|coerce| #1=(*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3)) #2=(|ofCategory| *3 #3=(|Ring|)) #4=(|ofType| *4 #5=(|Symbol|)) #6=(|ofType| *5 *3) #7=(|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| *5 *4)) (|isDomain| *1 (|UnivariateTaylorSeries| *4 *5 *6)) (|ofCategory| *4 #3#) (|ofType| *5 #5#) (|ofType| *6 *4))) (|coerce| #1# (AND #8=(|isDomain| *2 (|Variable| *4)) #4# #7# #2# #6#)) (|lagrange| #9=(*1 *1 *1) #10=(AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 #3#) (|ofType| *3 #5#) (|ofType| *4 *2))) (|lambert| #9# #10#) (|oddlambert| #9# #10#) (|evenlambert| #9# #10#) (|generalLambert| (*1 *1 *1 *2 *2) #11=(AND (|isDomain| *2 #12=(|Integer|)) #7# #2# #4# #6#)) (|revert| #9# #10#) (|multisect| #13=(*1 *1 *2 *2 *1) #11#) (|invmultisect| #13# #11#) (|integrate| (*1 *1 *1 *2) (AND #8# #4# #7# (|ofCategory| *3 (|Algebra| (|Fraction| #12#))) #2# #6#)))
+((|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) 17 T ELT)))
+(((|UnivariateTaylorSeriesFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#2| |#1|) |#3|))) #1=(|Ring|) #1# (|UnivariateTaylorSeriesCategory| |#1|) (|UnivariateTaylorSeriesCategory| |#2|)) (T |UnivariateTaylorSeriesFunctions2|))
+((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 #1=(|Ring|)) (|ofCategory| *6 #1#) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *6)) (|isDomain| *1 (|UnivariateTaylorSeriesFunctions2| *5 *6 *4 *2)) (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *5)))))
+((|zero?| (((|Boolean|) $) 17 T ELT)) (|tanh| (#1=($ $) 105 T ELT)) (|tan| (#1# 81 T ELT)) (|sinh| (#1# 101 T ELT)) (|sin| (#1# 77 T ELT)) (|sech| (#1# 109 T ELT)) (|sec| (#1# 85 T ELT)) (|log| (#1# 75 T ELT)) (|exp| (#1# 73 T ELT)) (|csch| (#1# 111 T ELT)) (|csc| (#1# 87 T ELT)) (|coth| (#1# 107 T ELT)) (|cot| (#1# 83 T ELT)) (|cosh| (#1# 103 T ELT)) (|cos| (#1# 79 T ELT)) (|coerce| (((|OutputForm|) $) 61 T ELT) (($ #2=(|Integer|)) NIL T ELT) (($ #3=(|Fraction| #2#)) NIL T ELT) (#1# NIL T ELT) (($ |#2|) NIL T ELT)) (|atanh| (#1# 117 T ELT)) (|atan| (#1# 93 T ELT)) (|asinh| (#1# 113 T ELT)) (|asin| (#1# 89 T ELT)) (|asech| (#1# 121 T ELT)) (|asec| (#1# 97 T ELT)) (|acsch| (#1# 123 T ELT)) (|acsc| (#1# 99 T ELT)) (|acoth| (#1# 119 T ELT)) (|acot| (#1# 95 T ELT)) (|acosh| (#1# 115 T ELT)) (|acos| (#1# 91 T ELT)) (** (($ $ (|PositiveInteger|)) NIL T ELT) (($ $ (|NonNegativeInteger|)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ #3#) 71 T ELT)))
+(((|UnivariateTaylorSeriesCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| #1=(|Fraction| #2=(|Integer|)))) (SIGNATURE |tan| #3=(|#1| |#1|)) (SIGNATURE |sin| #3#) (SIGNATURE |sec| #3#) (SIGNATURE |csc| #3#) (SIGNATURE |cot| #3#) (SIGNATURE |cos| #3#) (SIGNATURE |acos| #3#) (SIGNATURE |acot| #3#) (SIGNATURE |acsc| #3#) (SIGNATURE |asec| #3#) (SIGNATURE |asin| #3#) (SIGNATURE |atan| #3#) (SIGNATURE |cosh| #3#) (SIGNATURE |coth| #3#) (SIGNATURE |csch| #3#) (SIGNATURE |sech| #3#) (SIGNATURE |sinh| #3#) (SIGNATURE |tanh| #3#) (SIGNATURE |acosh| #3#) (SIGNATURE |acoth| #3#) (SIGNATURE |acsch| #3#) (SIGNATURE |asech| #3#) (SIGNATURE |asinh| #3#) (SIGNATURE |atanh| #3#) (SIGNATURE |log| #3#) (SIGNATURE |exp| #3#) (SIGNATURE ** (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| #3#) (SIGNATURE |coerce| (|#1| #1#)) (SIGNATURE |coerce| (|#1| #2#)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariateTaylorSeriesCategory| |#2|) (|Ring|)) (T |UnivariateTaylorSeriesCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|variables| (((|List| #3=(|SingletonAsOrderedSet|)) $) 96 T ELT)) (|variable| ((#4=(|Symbol|) $) 130 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 72 (|has| |#1| . #5=((|IntegralDomain|))) ELT)) (|unitCanonical| (($ $) 73 (|has| |#1| . #5#) ELT)) (|unit?| ((#6=(|Boolean|) $) 75 (|has| |#1| . #5#) ELT)) (|truncate| (($ $ #7=(|NonNegativeInteger|)) 125 T ELT) (($ $ #7# #7#) 124 T ELT)) (|terms| (((|Stream| (|Record| (|:| |k| #7#) (|:| |c| |#1|))) $) 131 T ELT)) (|tanh| (#8=($ $) 164 (|has| |#1| . #9=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|tan| (#10=($ $) 147 (|has| |#1| . #9#) ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sqrt| (($ $) 146 (|has| |#1| . #11=((|Algebra| (|Fraction| (|Integer|))))) ELT)) (|sinh| (#8# 163 (|has| |#1| . #9#) ELT)) (|sin| (#10# 148 (|has| |#1| . #9#) ELT)) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) 184 T ELT) (($ (|Stream| |#1|)) 182 T ELT)) (|sech| (#8# 162 (|has| |#1| . #9#) ELT)) (|sec| (#10# 149 (|has| |#1| . #9#) ELT)) (|sample| (#12=($) 23 T CONST)) (|reductum| (#13=($ $) 81 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quoByVar| (($ $) 181 T ELT)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 179 T ELT) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 178 T ELT)) (|pole?| (((|Boolean|) $) 95 T ELT)) (|pi| (($) 174 (|has| |#1| . #9#) ELT)) (|order| ((#7# $) 127 T ELT) ((#7# $ #7#) 126 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|nthRoot| (($ $ #14=(|Integer|)) 145 (|has| |#1| . #11#) ELT)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 128 T ELT)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 180 T ELT)) (|monomial?| (((|Boolean|) $) 83 T ELT)) (|monomial| (($ |#1| #7#) 82 T ELT) (($ $ #3# #7#) 98 T ELT) (($ $ (|List| #3#) (|List| #7#)) 97 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 87 T ELT)) (|log| (#15=($ $) 171 (|has| |#1| . #9#) ELT)) (|leadingMonomial| (#13# 85 T ELT)) (|leadingCoefficient| ((|#1| $) 86 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|integrate| (($ $) 176 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ELT) (($ $ (|Symbol|)) 175 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|extend| (($ $ #7#) 122 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 71 (|has| |#1| . #5#) ELT)) (|exp| (#15# 172 (|has| |#1| . #9#) ELT)) (|eval| (((|Stream| |#1|) $ |#1|) 121 (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) ELT)) (|elt| ((|#1| $ #7#) 132 T ELT) (($ $ $) 108 (|has| #7# (|SemiGroup|)) ELT)) (|differentiate| (($ $ #4#) 120 (AND (|has| |#1| . #16=((|PartialDifferentialRing| #4#))) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 118 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #17=(#18=(|NonNegativeInteger|))) 117 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #19=((|List| #18#))) 116 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #20=($)) 112 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#21=($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (|degree| ((#7# $) 84 T ELT)) (|csch| (#8# 161 (|has| |#1| . #9#) ELT)) (|csc| (#10# 150 (|has| |#1| . #9#) ELT)) (|coth| (#8# 160 (|has| |#1| . #9#) ELT)) (|cot| (#10# 151 (|has| |#1| . #9#) ELT)) (|cosh| (#8# 159 (|has| |#1| . #9#) ELT)) (|cos| (#10# 152 (|has| |#1| . #9#) ELT)) (|complete| (($ $) 94 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ #22=(|Fraction| (|Integer|))) 78 (|has| |#1| . #23=((|Algebra| #22#))) ELT) (($ $) 70 (|has| |#1| . #5#) ELT) (($ |#1|) 68 (|has| |#1| (|CommutativeRing|)) ELT)) (|coefficients| (((|Stream| |#1|) $) 183 T ELT)) (|coefficient| ((|#1| $ #7#) 80 T ELT)) (|charthRoot| (((|Maybe| $) $) 69 (|has| |#1| (|CharacteristicNonZero|)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|center| ((|#1| $) 129 T ELT)) (|before?| (#1# 6 T ELT)) (|atanh| (#24=($ $) 170 (|has| |#1| . #9#) ELT)) (|atan| (#25=($ $) 158 (|has| |#1| . #9#) ELT)) (|associates?| ((#6# $ $) 74 (|has| |#1| . #5#) ELT)) (|asinh| (#24# 169 (|has| |#1| . #9#) ELT)) (|asin| (#25# 157 (|has| |#1| . #9#) ELT)) (|asech| (#24# 168 (|has| |#1| . #9#) ELT)) (|asec| (#25# 156 (|has| |#1| . #9#) ELT)) (|approximate| ((|#1| $ #7#) 123 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| #7#))) (|has| |#1| (SIGNATURE |coerce| (|#1| #4#)))) ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|acsch| (#24# 167 (|has| |#1| . #9#) ELT)) (|acsc| (#25# 155 (|has| |#1| . #9#) ELT)) (|acoth| (#24# 166 (|has| |#1| . #9#) ELT)) (|acot| (#25# 154 (|has| |#1| . #9#) ELT)) (|acosh| (#24# 165 (|has| |#1| . #9#) ELT)) (|acos| (#25# 153 (|has| |#1| . #9#) ELT)) (|Zero| (#12# 24 T CONST)) (|One| (($) 45 T CONST)) (D (($ $ #4#) 119 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#)) 115 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ #4# . #17#) 114 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ $ (|List| #4#) . #19#) 113 (AND (|has| |#1| . #16#) (|has| |#1| (SIGNATURE * (|#1| #7# |#1|)))) ELT) (($ . #20#) 111 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT) (#21# 109 (|has| |#1| (SIGNATURE * (|#1| #7# |#1|))) ELT)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 79 (|has| |#1| (|Field|)) ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ |#1|) 177 (|has| |#1| (|Field|)) ELT) (($ $ $) 173 (|has| |#1| . #9#) ELT) (($ $ (|Fraction| #14#)) 144 (|has| |#1| . #11#) ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #26=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 89 T ELT) (($ |#1| . #26#) 88 T ELT) (($ #22# . #26#) 77 (|has| |#1| . #23#) ELT) (($ $ #22#) 76 (|has| |#1| . #23#) ELT)))
+(((|UnivariateTaylorSeriesCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariateTaylorSeriesCategory|))
+((|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Stream| *3)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)))) (|quoByVar| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|multiplyCoefficients| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|Integer|))) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4)))) (|polynomial| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|integrate| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))) (|integrate| (*1 *1 *1 *2) (OR (AND #1=(|isDomain| *2 (|Symbol|)) #2=(|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) #3=(|ofCategory| *3 (|Ring|)) (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|ofCategory| *3 (|PrimitiveFunctionCategory|)) (|ofCategory| *3 (|TranscendentalFunctionCategory|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))) (AND #1# #2# #3# (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3))) (|has| *3 (SIGNATURE |integrate| (*3 *3 *2))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))))))
+(|Join| (|UnivariatePowerSeriesCategory| |t#1| (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |series| ($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |t#1|))))) (SIGNATURE |coefficients| ((|Stream| |t#1|) $)) (SIGNATURE |series| ($ (|Stream| |t#1|))) (SIGNATURE |quoByVar| ($ $)) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |t#1| (|Integer|)) $)) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|Field|)) (SIGNATURE ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (IF (|has| |t#1| (SIGNATURE |integrate| (|t#1| |t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |t#1|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (|TranscendentalFunctionCategory|)) (IF (|has| |t#1| (|PrimitiveFunctionCategory|)) (IF (|has| |t#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |%noBranch|) |%noBranch|) |%noBranch|) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| #1=(|NonNegativeInteger|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #2=(|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| #2# #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) |has| |#1| (|CommutativeRing|)) ((|CoercibleFrom| $) |has| |#1| (|IntegralDomain|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialDomain| $) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) ((|DifferentialSpace|) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| #1# |#1|) . T) ((|Eltable| $ $) |has| (|NonNegativeInteger|) (|SemiGroup|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Functorial| |#1|) . T) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|Join|) . T) ((|LeftLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|LinearSet| $) |has| |#1| (|IntegralDomain|)) ((|Module| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialDomain| $ #3=(|Symbol|)) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) ((|PartialDifferentialRing| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) ((|PartialDifferentialSpace| #3#) AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) ((|PowerSeriesCategory| |#1| #1# (|SingletonAsOrderedSet|)) . T) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|RightModule| #2#) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Type|) . T) ((|UnivariatePowerSeriesCategory| |#1| #1#) . T))
+((|stFuncN| (((|Mapping| #1=(|Stream| |#1|) (|List| #1#)) #2=(|Mapping| |#2| #3=(|List| |#2|))) 24 T ELT)) (|stFunc2| (((|Mapping| #1# #1# #1#) #4=(|Mapping| |#2| |#2| |#2|)) 16 T ELT)) (|stFunc1| (((|Mapping| #1# #1#) #5=(|Mapping| |#2| |#2|)) 13 T ELT)) (|ode2| ((|#2| #4# |#1| |#1|) 48 T ELT)) (|ode1| ((|#2| #5# |#1|) 46 T ELT)) (|ode| ((|#2| #2# #6=(|List| |#1|)) 60 T ELT)) (|mpsode| ((#3# #6# (|List| #2#)) 66 T ELT)) (|fixedPointExquo| ((|#2| |#2| |#2|) 43 T ELT)))
+(((|UnivariateTaylorSeriesODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |stFunc1| ((|Mapping| #1=(|Stream| |#1|) #1#) #2=(|Mapping| |#2| |#2|))) (SIGNATURE |stFunc2| ((|Mapping| #1# #1# #1#) #3=(|Mapping| |#2| |#2| |#2|))) (SIGNATURE |stFuncN| ((|Mapping| #1# (|List| #1#)) #4=(|Mapping| |#2| #5=(|List| |#2|)))) (SIGNATURE |fixedPointExquo| (|#2| |#2| |#2|)) (SIGNATURE |ode1| (|#2| #2# |#1|)) (SIGNATURE |ode2| (|#2| #3# |#1| |#1|)) (SIGNATURE |ode| (|#2| #4# #6=(|List| |#1|))) (SIGNATURE |mpsode| (#5# #6# (|List| #4#)))) (|Algebra| (|Fraction| (|Integer|))) (|UnivariateTaylorSeriesCategory| |#1|)) (T |UnivariateTaylorSeriesODESolver|))
+((|mpsode| #1=(*1 *2 *3 *4) (AND (|isDomain| *3 #2=(|List| *5)) (|isDomain| *4 (|List| (|Mapping| *6 #3=(|List| *6)))) #4=(|ofCategory| *5 #5=(|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *6 #6=(|UnivariateTaylorSeriesCategory| *5)) (|isDomain| *2 #3#) (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *5 *6)))) (|ode| #1# (AND (|isDomain| *3 (|Mapping| *2 (|List| *2))) (|isDomain| *4 #2#) #4# (|ofCategory| *2 #6#) (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *5 *2)))) (|ode2| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) #7=(|ofCategory| *2 #8=(|UnivariateTaylorSeriesCategory| *4)) #9=(|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *2)) #10=(|ofCategory| *4 #5#))) (|ode1| #1# (AND (|isDomain| *3 (|Mapping| *2 *2)) #7# #9# #10#)) (|fixedPointExquo| (*1 *2 *2 *2) (AND (|ofCategory| *3 #5#) (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|stFuncN| #11=(*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5 #2#)) #12=(|ofCategory| *5 #8#) #10# (|isDomain| *2 (|Mapping| #13=(|Stream| *4) (|List| #13#))) #14=(|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *5)))) (|stFunc2| #11# (AND (|isDomain| *3 (|Mapping| *5 *5 *5)) #12# #10# (|isDomain| *2 (|Mapping| #13# #13# #13#)) #14#)) (|stFunc1| #11# (AND (|isDomain| *3 (|Mapping| *5 *5)) #12# #10# (|isDomain| *2 (|Mapping| #13# #13#)) #14#)))
+((UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) 31 T ELT)) (UP2UTS ((|#4| |#2|) 26 T ELT)) (RF2UTS ((|#4| (|Fraction| |#2|)) 49 (|has| |#1| (|IntegralDomain|)) ELT)) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) 43 T ELT)))
+(((|UTSodetools| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE UP2UTS (|#4| |#2|)) (SIGNATURE UTS2UP (|#2| |#4| (|NonNegativeInteger|))) (SIGNATURE LODO2FUN ((|Mapping| |#4| (|List| |#4|)) |#3|)) (IF (|has| |#1| (|IntegralDomain|)) (SIGNATURE RF2UTS (|#4| (|Fraction| |#2|))) |%noBranch|)) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|UnivariateTaylorSeriesCategory| |#1|)) (T |UTSodetools|))
+((RF2UTS #1=(*1 *2 *3) (AND (|isDomain| *3 (|Fraction| *5)) #2=(|ofCategory| *5 #3=(|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|IntegralDomain|)) #4=(|ofCategory| *4 #5=(|Ring|)) #6=(|ofCategory| *2 #7=(|UnivariateTaylorSeriesCategory| *4)) (|isDomain| *1 (|UTSodetools| *4 *5 *6 *2)) (|ofCategory| *6 #8=(|LinearOrdinaryDifferentialOperatorCategory| *5)))) (LODO2FUN #1# (AND #4# #2# (|isDomain| *2 (|Mapping| *6 (|List| *6))) (|isDomain| *1 (|UTSodetools| *4 *5 *3 *6)) (|ofCategory| *3 #8#) (|ofCategory| *6 #7#))) (UTS2UP (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 #5#) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|isDomain| *1 (|UTSodetools| *5 *2 *6 *3)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *5)))) (UP2UTS #1# (AND #4# (|ofCategory| *3 #3#) #6# (|isDomain| *1 (|UTSodetools| *4 *3 *5 *2)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *3)))))
+NIL
+(((|UnionType|) (|Category|)) (T |UnionType|))
+NIL
+(|Join| (CATEGORY |package| (ATTRIBUTE |nil|)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|variable| ((#3=(|Symbol|)) 12 T ELT)) (|latex| (((|String|) $) 18 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 11 T ELT) ((#3# $) 8 T ELT)) (|before?| #1#) (= (#2# 15 T ELT)))
+(((|Variable| |#1|) (|Join| (|SetCategory|) (|CoercibleTo| #1=(|Symbol|)) (CATEGORY |domain| (SIGNATURE |coerce| (#1# $)) (SIGNATURE |variable| (#1#)))) #1#) (T |Variable|))
+((|coerce| (*1 *2 *1) #1=(AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Variable| *3)) (|ofType| *3 *2))) (|variable| (*1 *2) #1#))
+((|zero| (($ (|NonNegativeInteger|)) 19 T ELT)) (|outerProduct| (((|Matrix| |#2|) $ $) 41 T ELT)) (|magnitude| (#1=(|#2| $) 51 T ELT)) (|length| (#1# 50 T ELT)) (|dot| ((|#2| $ $) 36 T ELT)) (|cross| (#2=($ $ $) 47 T ELT)) (- (($ $) 23 T ELT) (#2# 29 T ELT)) (+ (#2# 15 T ELT)) (* (($ (|Integer|) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
+(((|VectorCategory&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |magnitude| #1=(|#2| |#1|)) (SIGNATURE |length| #1#) (SIGNATURE |cross| #2=(|#1| |#1| |#1|)) (SIGNATURE |outerProduct| ((|Matrix| |#2|) |#1| |#1|)) (SIGNATURE |dot| (|#2| |#1| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - #2#) (SIGNATURE - (|#1| |#1|)) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|))) (SIGNATURE + #2#)) (|VectorCategory| |#2|) (|Type|)) (T |VectorCategory&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 18 (|has| |#1| . #2=((|BasicType|))) ELT)) (|zero| (($ (|NonNegativeInteger|)) 123 (|has| |#1| (|AbelianMonoid|)) ELT)) (|swap!| (((|Void|) $ #3=(|Integer|) #3#) 35 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#4=(|Boolean|) (|Mapping| #4# |#1| |#1|) $) 96 T ELT) ((#4# $) 90 (|has| |#1| . #5=((|OrderedSet|))) ELT)) (|sort!| (($ (|Mapping| #4# |#1| |#1|) . #6=($)) 87 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) (#7=($ $) 86 (AND (|has| |#1| . #5#) (|has| $ (|ShallowlyMutableAggregate| |#1|))) ELT)) (|sort| (($ (|Mapping| #4# |#1| |#1|) . #6#) 97 T ELT) (#7# 91 (|has| |#1| . #5#) ELT)) (|setelt| ((|#1| $ #3# |#1|) 47 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT) ((|#1| $ #8=(|UniversalSegment| #3#) |#1|) 55 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|select| (($ (|Mapping| #9=(|Boolean|) |#1|) . #10=($)) 69 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#11=($) 6 T CONST)) (|reverse!| (#7# 88 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|reverse| (#7# 98 T ELT)) (|removeDuplicates| (($ $) 71 (AND (|has| |#1| . #12=((|BasicType|))) (|has| $ (|FiniteAggregate| |#1|))) ELT)) (|remove| (($ |#1| $) 70 (AND (|has| |#1| . #12#) (|has| $ (|FiniteAggregate| |#1|))) ELT) (($ (|Mapping| #9# |#1|) . #10#) 68 (|has| $ (|FiniteAggregate| |#1|)) ELT)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| . #13=((|BasicType|))) ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 106 T ELT) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 105 T ELT)) (|qsetelt!| ((|#1| $ #3# |#1|) 48 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|qelt| ((|#1| $ #3#) 46 T ELT)) (|position| ((#14=(|Integer|) (|Mapping| #4# |#1|) $) 95 T ELT) ((#14# |#1| $) 94 (|has| |#1| . #15=((|BasicType|))) ELT) ((#14# |#1| $ #14#) 93 (|has| |#1| . #15#) ELT)) (|outerProduct| (((|Matrix| |#1|) $ $) 116 (|has| |#1| (|Ring|)) ELT)) (|new| (($ (|NonNegativeInteger|) |#1|) 65 T ELT)) (|minIndex| ((#3# . #16=($)) 38 (|has| #3# . #17=((|OrderedSet|))) ELT)) (|min| (#18=($ $ $) 80 (|has| |#1| . #5#) ELT)) (|merge| (($ (|Mapping| #4# |#1| |#1|) $ $) 99 T ELT) (($ $ $) 92 (|has| |#1| . #5#) ELT)) (|members| (((|List| |#1|) $) 104 T ELT)) (|member?| ((#19=(|Boolean|) |#1| $) 109 (|has| |#1| . #13#) ELT)) (|maxIndex| ((#3# . #16#) 39 (|has| #3# . #17#) ELT)) (|max| (#18# 81 (|has| |#1| . #5#) ELT)) (|map!| (($ (|Mapping| |#1| |#1|) $) 112 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) 26 T ELT) (($ (|Mapping| |#1| |#1| |#1|) $ $) 60 T ELT)) (|magnitude| ((|#1| $) 113 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))) ELT)) (|length| ((|#1| $) 114 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))) ELT)) (|latex| (((|String|) $) 21 (|has| |#1| . #20=((|SetCategory|))) ELT)) (|insert| (($ |#1| $ #3#) 57 T ELT) (($ $ $ #3#) 56 T ELT)) (|indices| (((|List| #3#) $) 41 T ELT)) (|index?| ((#21=(|Boolean|) #3# $) 42 T ELT)) (|hash| (((|SingleInteger|) $) 20 (|has| |#1| . #20#) ELT)) (|first| ((|#1| $) 37 (|has| #3# . #17#) ELT)) (|find| (((|Union| |#1| "failed") (|Mapping| #19# |#1|) $) 107 T ELT)) (|fill!| (($ $ |#1|) 36 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|every?| ((#19# (|Mapping| #19# |#1|) . #22=($)) 102 T ELT)) (|eval| (($ $ (|List| (|Equation| |#1|))) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ (|Equation| |#1|)) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ |#1| |#1|) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT) (($ $ (|List| |#1|) (|List| |#1|)) 22 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| . #20#)) ELT)) (|eq?| ((#23=(|Boolean|) $ $) 10 T ELT)) (|entry?| ((#21# |#1| $) 40 (AND (|has| $ (|FiniteAggregate| |#1|)) (|has| |#1| (|BasicType|))) ELT)) (|entries| (((|List| |#1|) $) 43 T ELT)) (|empty?| ((#23# $) 7 T ELT)) (|empty| (#11# 8 T ELT)) (|elt| ((|#1| $ #3# |#1|) 45 T ELT) ((|#1| $ #3#) 44 T ELT) (($ $ #8#) 66 T ELT)) (|dot| ((|#1| $ $) 117 (|has| |#1| (|Ring|)) ELT)) (|delete| (($ $ #3#) 59 T ELT) (($ $ #8#) 58 T ELT)) (|cross| (($ $ $) 115 (|has| |#1| (|Ring|)) ELT)) (|count| ((#24=(|NonNegativeInteger|) |#1| $) 108 (|has| |#1| . #13#) ELT) ((#24# (|Mapping| #19# |#1|) $) 103 T ELT)) (|copyInto!| (($ $ $ #14#) 89 (|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|copy| (($ $) 9 T ELT)) (|convert| ((#25=(|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| #25#)) ELT)) (|construct| (($ (|List| |#1|)) 67 T ELT)) (|concat| (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (|List| $)) 61 T ELT)) (|coerce| (((|OutputForm|) $) 16 (|has| |#1| (|CoercibleTo| (|OutputForm|))) ELT)) (|before?| (#1# 19 (|has| |#1| . #2#) ELT)) (|any?| ((#19# (|Mapping| #19# |#1|) . #22#) 101 T ELT)) (>= (#26=((|Boolean|) $ $) 82 (|has| |#1| . #5#) ELT)) (> (#26# 84 (|has| |#1| . #5#) ELT)) (= (#1# 17 (|has| |#1| . #2#) ELT)) (<= (#26# 83 (|has| |#1| . #5#) ELT)) (< (#26# 85 (|has| |#1| . #5#) ELT)) (- (($ $) 122 (|has| |#1| (|AbelianGroup|)) ELT) (($ $ $) 121 (|has| |#1| (|AbelianGroup|)) ELT)) (+ (($ $ $) 124 (|has| |#1| (|AbelianSemiGroup|)) ELT)) (* (($ (|Integer|) $) 120 (|has| |#1| (|AbelianGroup|)) ELT) (($ |#1| $) 119 (|has| |#1| (|Monoid|)) ELT) (($ $ |#1|) 118 (|has| |#1| (|Monoid|)) ELT)) (|#| ((#24# $) 100 T ELT)))
+(((|VectorCategory| |#1|) (|Category|) (|Type|)) (T |VectorCategory|))
+((+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianSemiGroup|)))) (|zero| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofCategory| *3 (|Type|)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianGroup|)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianGroup|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|AbelianGroup|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|)))) (|dot| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))) (|outerProduct| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Matrix| *3)))) (|cross| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))) (|length| (*1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|)))) (|magnitude| (*1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|)))))
+(|Join| (|OneDimensionalArrayAggregate| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|AbelianSemiGroup|)) (SIGNATURE + ($ $ $)) |%noBranch|) (IF (|has| |t#1| (|AbelianMonoid|)) (SIGNATURE |zero| ($ (|NonNegativeInteger|))) |%noBranch|) (IF (|has| |t#1| (|AbelianGroup|)) (PROGN (SIGNATURE - ($ $)) (SIGNATURE - ($ $ $)) (SIGNATURE * ($ (|Integer|) $))) |%noBranch|) (IF (|has| |t#1| (|Monoid|)) (PROGN (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (|Ring|)) (PROGN (SIGNATURE |dot| (|t#1| $ $)) (SIGNATURE |outerProduct| ((|Matrix| |t#1|) $ $)) (SIGNATURE |cross| ($ $ $))) |%noBranch|) (IF (|has| |t#1| (|RadicalCategory|)) (IF (|has| |t#1| (|Ring|)) (PROGN (SIGNATURE |length| (|t#1| $)) (SIGNATURE |magnitude| (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|BasicType|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|)) (|has| |#1| (|CoercibleTo| (|OutputForm|)))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| #1=(|Integer|) |#1|) . T) ((|Eltable| (|UniversalSegment| (|Integer|)) $) . T) ((|EltableAggregate| #1# |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteAggregate| |#1|) . T) ((|FiniteLinearAggregate| |#1|) . T) ((|Functorial| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| #1# |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|Join|) . T) ((|LinearAggregate| |#1|) . T) ((|OneDimensionalArrayAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|OrderedType|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|ShallowlyMutableAggregate| |#1|) . T) ((|Type|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL #4=(|has| |#1| (|BasicType|)) ELT)) (|zero| (($ #5=(|NonNegativeInteger|)) NIL (|has| |#1| (|AbelianMonoid|)) ELT)) (|vector| (#6=($ #7=(|List| |#1|)) 9 T ELT)) (|swap!| (((|Void|) $ #8=(|Integer|) #8#) NIL #9=(|has| $ (|ShallowlyMutableAggregate| |#1|)) ELT)) (|sorted?| ((#3# #10=(|Mapping| #3# |#1| |#1|) $) NIL T ELT) (#11=(#3# $) NIL #12=(|has| |#1| #13=(|OrderedSet|)) ELT)) (|sort!| (#14=($ #10# $) NIL #9# ELT) (#15=($ $) NIL (AND #9# #12#) ELT)) (|sort| (#14# NIL T ELT) (#15# NIL #12# ELT)) (|setelt| #16=(#17=(|#1| $ #8# |#1|) NIL #9# ELT) ((|#1| $ #18=(|UniversalSegment| #8#) |#1|) NIL #9# ELT)) (|select| #19=(($ #20=(|Mapping| #3# |#1|) $) NIL #21=(|has| $ (|FiniteAggregate| |#1|)) ELT)) (|sample| (#22=($) NIL T CONST)) (|reverse!| (#15# NIL #9# ELT)) (|reverse| #23=(#15# NIL T ELT)) (|removeDuplicates| (#15# NIL #24=(AND #21# #4#) ELT)) (|remove| (#25=($ |#1| $) NIL #24# ELT) #19#) (|reduce| ((|#1| #26=(|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL #4# ELT) ((|#1| #26# $ |#1|) NIL T ELT) ((|#1| #26# $) NIL T ELT)) (|qsetelt!| #16#) (|qelt| #27=((|#1| $ #8#) NIL T ELT)) (|position| ((#8# #20# $) NIL T ELT) ((#8# |#1| $) NIL #4# ELT) ((#8# |#1| $ #8#) NIL #4# ELT)) (|outerProduct| (((|Matrix| |#1|) $ $) NIL #28=(|has| |#1| (|Ring|)) ELT)) (|new| (($ #5# |#1|) NIL T ELT)) (|minIndex| (#29=(#8# $) NIL #30=(|has| #8# #13#) ELT)) (|min| #31=(#32=($ $ $) NIL #12# ELT)) (|merge| (($ #10# $ $) NIL T ELT) #31#) (|members| (#33=(#7# $) 15 T ELT)) (|member?| (#34=(#3# |#1| $) NIL #4# ELT)) (|maxIndex| (#29# 11 #30# ELT)) (|max| #31#) (|map!| #35=(($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|map| #35# (($ #26# $ $) NIL T ELT)) (|magnitude| #36=(#37=(|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) #28#) ELT)) (|length| #36#) (|latex| (((|String|) $) NIL #38=(|has| |#1| (|SetCategory|)) ELT)) (|insert| (($ |#1| $ #8#) NIL T ELT) (#39=($ $ $ #8#) NIL T ELT)) (|indices| (((|List| #8#) $) NIL T ELT)) (|index?| ((#3# #8# $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL #38# ELT)) (|first| (#37# NIL #30# ELT)) (|find| (((|Union| |#1| "failed") #20# $) NIL T ELT)) (|fill!| (#40=($ $ |#1|) NIL #9# ELT)) (|every?| #41=((#3# #20# $) NIL T ELT)) (|eval| (($ $ (|List| #42=(|Equation| |#1|))) NIL #43=(AND (|has| |#1| (|Evalable| |#1|)) #38#) ELT) (($ $ #42#) NIL #43# ELT) (($ $ |#1| |#1|) NIL #43# ELT) (($ $ #7# #7#) NIL #43# ELT)) (|eq?| (#2# NIL T ELT)) (|entry?| (#34# NIL #24# ELT)) (|entries| (#33# NIL T ELT)) (|empty?| (#11# NIL T ELT)) (|empty| (#22# NIL T ELT)) (|elt| (#17# NIL T ELT) #27# #44=(($ $ #18#) NIL T ELT)) (|dot| ((|#1| $ $) NIL #28# ELT)) (|delete| (($ $ #8#) NIL T ELT) #44#) (|cross| (#32# NIL #28# ELT)) (|count| ((#5# |#1| $) NIL #4# ELT) ((#5# #20# $) NIL T ELT)) (|copyInto!| (#39# NIL #9# ELT)) (|copy| #23#) (|convert| ((#45=(|InputForm|) $) 19 (|has| |#1| (|ConvertibleTo| #45#)) ELT)) (|construct| (#6# 8 T ELT)) (|concat| (#40# NIL T ELT) (#25# NIL T ELT) (#32# NIL T ELT) (($ (|List| $)) NIL T ELT)) (|coerce| ((#46=(|OutputForm|) $) NIL (|has| |#1| (|CoercibleTo| #46#)) ELT)) (|before?| #1#) (|any?| #41#) (>= #47=(#2# NIL #12# ELT)) (> #47#) (= #1#) (<= #47#) (< #47#) (- (#15# NIL #48=(|has| |#1| (|AbelianGroup|)) ELT) (#32# NIL #48# ELT)) (+ (#32# NIL (|has| |#1| (|AbelianSemiGroup|)) ELT)) (* (($ #8# $) NIL #48# ELT) (#25# NIL #49=(|has| |#1| (|Monoid|)) ELT) (#40# NIL #49# ELT)) (|#| ((#5# $) NIL T ELT)))
+(((|Vector| |#1|) (|Join| (|VectorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |vector| ($ (|List| |#1|))))) (|Type|)) (T |Vector|))
+((|vector| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Vector| *3)))))
+((|scan| ((#1=(|Vector| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|Vector| |#1|) |#2|) 13 T ELT)) (|reduce| ((|#2| #2# #3# |#2|) 15 T ELT)) (|map| (((|Union| #1# #4="failed") (|Mapping| (|Union| |#2| #4#) |#1|) #3#) 30 T ELT) ((#1# (|Mapping| |#2| |#1|) #3#) 18 T ELT)))
+(((|VectorFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| (#1=(|Vector| |#2|) #2=(|Mapping| |#2| |#1| |#2|) #3=(|Vector| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| #2# #3# |#2|)) (SIGNATURE |map| (#1# (|Mapping| |#2| |#1|) #3#)) (SIGNATURE |map| ((|Union| #1# #4="failed") (|Mapping| (|Union| |#2| #4#) |#1|) #3#))) #5=(|Type|) #5#) (T |VectorFunctions2|))
+((|map| #1=(*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *6 "failed") *5)) #2=(|isDomain| *4 #3=(|Vector| *5)) #4=(|ofCategory| *5 #5=(|Type|)) #6=(|ofCategory| *6 #5#) #7=(|isDomain| *2 #8=(|Vector| *6)) #9=(|isDomain| *1 (|VectorFunctions2| *5 *6)))) (|map| #1# (AND (|isDomain| *3 (|Mapping| *6 *5)) #2# #4# #6# #7# #9#)) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) #2# #4# (|ofCategory| *2 #5#) (|isDomain| *1 (|VectorFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 #8#) #6# #4# (|isDomain| *2 #3#) (|isDomain| *1 (|VectorFunctions2| *6 *5)))))
+((|graphCurves| ((#1=(|GraphImage|) #2=(|List| (|List| (|Point| (|DoubleFloat|)))) #3=(|List| (|DrawOption|))) 22 T ELT) ((#1# #2#) 21 T ELT) ((#1# #2# #4=(|Palette|) #4# #5=(|PositiveInteger|) #3#) 20 T ELT)) (|drawCurves| ((#6=(|TwoDimensionalViewport|) #2# #3#) 30 T ELT) ((#6# #2# #4# #4# #5# #3#) 29 T ELT)) (|coerce| ((#6# #1#) 46 T ELT)))
+(((|ViewportPackage|) (CATEGORY |package| (SIGNATURE |graphCurves| (#1=(|GraphImage|) #2=(|List| (|List| (|Point| (|DoubleFloat|)))) #3=(|Palette|) #3# #4=(|PositiveInteger|) #5=(|List| (|DrawOption|)))) (SIGNATURE |graphCurves| (#1# #2#)) (SIGNATURE |graphCurves| (#1# #2# #5#)) (SIGNATURE |drawCurves| (#6=(|TwoDimensionalViewport|) #2# #3# #3# #4# #5#)) (SIGNATURE |drawCurves| (#6# #2# #5#)) (SIGNATURE |coerce| (#6# #1#)))) (T |ViewportPackage|))
+((|coerce| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|GraphImage|)) #3=(|isDomain| *2 (|TwoDimensionalViewport|)) #4=(|isDomain| *1 (|ViewportPackage|)))) (|drawCurves| #5=(*1 *2 *3 *4) (AND #6=(|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) #7=(|isDomain| *4 #8=(|List| (|DrawOption|))) #3# #4#)) (|drawCurves| #9=(*1 *2 *3 *4 *4 *5 *6) (AND #6# #10=(|isDomain| *4 (|Palette|)) #11=(|isDomain| *5 (|PositiveInteger|)) #12=(|isDomain| *6 #8#) #3# #4#)) (|graphCurves| #5# (AND #6# #7# #13=(|isDomain| *2 #2#) #4#)) (|graphCurves| #1# (AND #6# #13# #4#)) (|graphCurves| #9# (AND #6# #10# #11# #12# #13# #4#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|write| ((#2=(|String|) $ #2#) 107 T ELT) ((#2# $ #2# #2#) 105 T ELT) ((#2# $ #2# (|List| #2#)) 104 T ELT)) (|viewport2D| (($) 69 T ELT)) (|update| (#3=(#4=(|Void|) $ #5=(|GraphImage|) #6=(|PositiveInteger|)) 54 T ELT)) (|units| (#7=(#4# $ #6# #2#) 89 T ELT) (#8=(#4# $ #6# #9=(|Palette|)) 90 T ELT)) (|translate| (#10=(#4# $ #6# #11=(|Float|) #11#) 57 T ELT)) (|title| (#12=(#4# $ #2#) 84 T ELT)) (|show| (#7# 94 T ELT)) (|scale| (#10# 58 T ELT)) (|resize| ((#4# $ #6# #6#) 55 T ELT)) (|reset| (#13=(#4# $) 85 T ELT)) (|region| (#7# 93 T ELT)) (|putGraph| (#3# 41 T ELT)) (|points| (#7# 92 T ELT)) (|options| ((#14=(|List| (|DrawOption|)) $) 29 T ELT) (($ $ #14#) 30 T ELT)) (|move| ((#4# $ #15=(|NonNegativeInteger|) #15#) 52 T ELT)) (|makeViewport2D| (($ $) 70 T ELT) (($ #5# #14#) 71 T ELT)) (|latex| ((#2# $) NIL T ELT)) (|key| ((#16=(|Integer|) $) 48 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|graphs| (((|Vector| (|Union| #5# "undefined")) $) 47 T ELT)) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| #17=(|DoubleFloat|)) (|:| |scaleY| #17#) (|:| |deltaX| #17#) (|:| |deltaY| #17#) (|:| |points| #16#) (|:| |connect| #16#) (|:| |spline| #16#) (|:| |axes| #16#) (|:| |axesColor| #9#) (|:| |units| #16#) (|:| |unitsColor| #9#) (|:| |showing| #16#))) $) 46 T ELT)) (|graphState| ((#4# $ #6# #17# #17# #17# #17# #16# #16# #16# #16# #9# #16# #9# #16#) 83 T ELT)) (|getPickedPoints| (((|List| (|Point| #17#)) $) NIL T ELT)) (|getGraph| ((#5# $ #6#) 43 T ELT)) (|dimensions| ((#4# $ #15# #15# #6# #6#) 50 T ELT)) (|controlPanel| (#12# 95 T ELT)) (|connect| (#7# 91 T ELT)) (|coerce| (((|OutputForm|) $) 102 T ELT)) (|close| (#13# 96 T ELT)) (|before?| #1#) (|axes| (#7# 87 T ELT) (#8# 88 T ELT)) (= #1#))
+(((|TwoDimensionalViewport|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |getPickedPoints| ((|List| (|Point| #1=(|DoubleFloat|))) $)) (SIGNATURE |viewport2D| ($)) (SIGNATURE |makeViewport2D| ($ $)) (SIGNATURE |options| (#2=(|List| (|DrawOption|)) $)) (SIGNATURE |options| ($ $ #2#)) (SIGNATURE |makeViewport2D| ($ #3=(|GraphImage|) #2#)) (SIGNATURE |graphState| (#4=(|Void|) $ #5=(|PositiveInteger|) #1# #1# #1# #1# #6=(|Integer|) #6# #6# #6# #7=(|Palette|) #6# #7# #6#)) (SIGNATURE |graphStates| ((|Vector| (|Record| (|:| |scaleX| #1#) (|:| |scaleY| #1#) (|:| |deltaX| #1#) (|:| |deltaY| #1#) (|:| |points| #6#) (|:| |connect| #6#) (|:| |spline| #6#) (|:| |axes| #6#) (|:| |axesColor| #7#) (|:| |units| #6#) (|:| |unitsColor| #7#) (|:| |showing| #6#))) $)) (SIGNATURE |graphs| ((|Vector| (|Union| #3# "undefined")) $)) (SIGNATURE |title| #8=(#4# $ #9=(|String|))) (SIGNATURE |putGraph| #10=(#4# $ #3# #5#)) (SIGNATURE |getGraph| (#3# $ #5#)) (SIGNATURE |axes| #11=(#4# $ #5# #9#)) (SIGNATURE |axes| #12=(#4# $ #5# #7#)) (SIGNATURE |units| #11#) (SIGNATURE |units| #12#) (SIGNATURE |points| #11#) (SIGNATURE |region| #11#) (SIGNATURE |connect| #11#) (SIGNATURE |controlPanel| #8#) (SIGNATURE |close| #13=(#4# $)) (SIGNATURE |dimensions| (#4# $ #14=(|NonNegativeInteger|) #14# #5# #5#)) (SIGNATURE |scale| #15=(#4# $ #5# #16=(|Float|) #16#)) (SIGNATURE |translate| #15#) (SIGNATURE |show| #11#) (SIGNATURE |move| (#4# $ #14# #14#)) (SIGNATURE |update| #10#) (SIGNATURE |resize| (#4# $ #5# #5#)) (SIGNATURE |write| (#9# $ #9#)) (SIGNATURE |write| (#9# $ #9# #9#)) (SIGNATURE |write| (#9# $ #9# (|List| #9#))) (SIGNATURE |reset| #13#) (SIGNATURE |key| (#6# $)) (SIGNATURE |coerce| ((|OutputForm|) $))))) (T |TwoDimensionalViewport|))
+((|coerce| #1=(*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) #2=(|isDomain| *1 (|TwoDimensionalViewport|)))) (|getPickedPoints| #1# (AND (|isDomain| *2 (|List| (|Point| #3=(|DoubleFloat|)))) #2#)) (|viewport2D| (*1 *1) #2#) (|makeViewport2D| (*1 *1 *1) #2#) (|options| #1# #4=(AND (|isDomain| *2 #5=(|List| (|DrawOption|))) #2#)) (|options| (*1 *1 *1 *2) #4#) (|makeViewport2D| (*1 *1 *2 *3) (AND #6=(|isDomain| *2 #7=(|GraphImage|)) (|isDomain| *3 #5#) #2#)) (|graphState| (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (AND #8=(|isDomain| *3 #9=(|PositiveInteger|)) (|isDomain| *4 #3#) (|isDomain| *5 #10=(|Integer|)) (|isDomain| *6 #11=(|Palette|)) #12=(|isDomain| *2 (|Void|)) #2#)) (|graphStates| #1# (AND (|isDomain| *2 (|Vector| (|Record| (|:| |scaleX| #3#) (|:| |scaleY| #3#) (|:| |deltaX| #3#) (|:| |deltaY| #3#) (|:| |points| #10#) (|:| |connect| #10#) (|:| |spline| #10#) (|:| |axes| #10#) (|:| |axesColor| #11#) (|:| |units| #10#) (|:| |unitsColor| #11#) (|:| |showing| #10#)))) #2#)) (|graphs| #1# (AND (|isDomain| *2 (|Vector| (|Union| #7# "undefined"))) #2#)) (|title| #13=(*1 *2 *1 *3) #14=(AND (|isDomain| *3 #15=(|String|)) #12# #2#)) (|putGraph| #16=(*1 *2 *1 *3 *4) #17=(AND (|isDomain| *3 #7#) #18=(|isDomain| *4 #9#) #12# #2#)) (|getGraph| #13# (AND #8# #6# #2#)) (|axes| #16# #19=(AND #8# (|isDomain| *4 #15#) #12# #2#)) (|axes| #16# #20=(AND #8# (|isDomain| *4 #11#) #12# #2#)) (|units| #16# #19#) (|units| #16# #20#) (|points| #16# #19#) (|region| #16# #19#) (|connect| #16# #19#) (|controlPanel| #13# #14#) (|close| #1# #21=(AND #12# #2#)) (|dimensions| (*1 *2 *1 *3 *3 *4 *4) (AND #22=(|isDomain| *3 (|NonNegativeInteger|)) #18# #12# #2#)) (|scale| #23=(*1 *2 *1 *3 *4 *4) #24=(AND #8# (|isDomain| *4 (|Float|)) #12# #2#)) (|translate| #23# #24#) (|show| #16# #19#) (|move| #25=(*1 *2 *1 *3 *3) (AND #22# #12# #2#)) (|update| #16# #17#) (|resize| #25# (AND #8# #12# #2#)) (|write| (*1 *2 *1 *2) #26=(AND #27=(|isDomain| *2 #15#) #2#)) (|write| (*1 *2 *1 *2 *2) #26#) (|write| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|List| #15#)) #27# #2#)) (|reset| #1# #21#) (|key| #1# (AND (|isDomain| *2 #10#) #2#)))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|zoom| (#2=(#3=(|Void|) $ #4=(|Float|)) 168 T ELT) (#5=(#3# $ #4# #4# #4#) 169 T ELT)) (|write| ((#6=(|String|) $ #6#) 177 T ELT) ((#6# $ #6# #6#) 175 T ELT) ((#6# $ #6# (|List| #6#)) 174 T ELT)) (|viewport3D| (($) 67 T ELT)) (|viewpoint| ((#3# $ #4# #4# #4# #4# #4#) 140 T ELT) ((#7=(|Record| (|:| |theta| #8=(|DoubleFloat|)) (|:| |phi| #8#) (|:| |scale| #8#) (|:| |scaleX| #8#) (|:| |scaleY| #8#) (|:| |scaleZ| #8#) (|:| |deltaX| #8#) (|:| |deltaY| #8#)) $) 138 T ELT) ((#3# $ #7#) 139 T ELT) ((#3# $ #9=(|Integer|) #9# #4# #4# #4#) 143 T ELT) (#10=(#3# $ #4# #4#) 144 T ELT) (#5# 151 T ELT)) (|viewZoomDefault| (#11=(#4#) 121 T ELT) (#12=(#4# #4#) 122 T ELT)) (|viewThetaDefault| (#11# 116 T ELT) (#12# 118 T ELT)) (|viewPhiDefault| (#11# 119 T ELT) (#12# 120 T ELT)) (|viewDeltaYDefault| (#11# 125 T ELT) (#12# 126 T ELT)) (|viewDeltaXDefault| (#11# 123 T ELT) (#12# 124 T ELT)) (|translate| (#10# 170 T ELT)) (|title| (#13=(#3# $ #6#) 152 T ELT)) (|subspace| ((#14=(|ThreeSpace| #8#) $) 68 T ELT) (($ $ #14#) 69 T ELT)) (|showRegion| (#13# 186 T ELT)) (|showClipRegion| (#13# 187 T ELT)) (|rotate| (#10# 150 T ELT) ((#3# $ #9# #9#) 167 T ELT)) (|resize| ((#3# $ #15=(|PositiveInteger|) #15#) 159 T ELT)) (|reset| (#16=(#3# $) 136 T ELT)) (|perspective| (#13# 185 T ELT)) (|outlineRender| (#13# 133 T ELT)) (|options| ((#17=(|List| (|DrawOption|)) $) 70 T ELT) (($ $ #17#) 71 T ELT)) (|move| ((#3# $ #18=(|NonNegativeInteger|) #18#) 158 T ELT)) (|modifyPointData| ((#3# $ #18# (|Point| #8#)) 192 T ELT)) (|makeViewport3D| (($ $) 73 T ELT) (($ #14# #6#) 74 T ELT) (($ #14# #17#) 75 T ELT)) (|lighting| (#5# 130 T ELT)) (|latex| ((#6# $) NIL T ELT)) (|key| ((#9# $) 127 T ELT)) (|intensity| (#2# 172 T ELT)) (|hitherPlane| (#2# 190 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|eyeDistance| (#2# 189 T ELT)) (|drawStyle| (#13# 135 T ELT)) (|dimensions| ((#3# $ #18# #18# #15# #15#) 157 T ELT)) (|diagonals| (#13# 132 T ELT)) (|controlPanel| (#13# 134 T ELT)) (|colorDef| ((#3# $ #19=(|Color|) #19#) 156 T ELT)) (|coerce| (((|OutputForm|) $) 165 T ELT)) (|close| (#16# 137 T ELT)) (|clipSurface| (#13# 188 T ELT)) (|before?| #1#) (|axes| (#13# 131 T ELT)) (= #1#))
+(((|ThreeDimensionalViewport|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |viewThetaDefault| #1=(#2=(|Float|))) (SIGNATURE |viewThetaDefault| #3=(#2# #2#)) (SIGNATURE |viewPhiDefault| #1#) (SIGNATURE |viewPhiDefault| #3#) (SIGNATURE |viewZoomDefault| #1#) (SIGNATURE |viewZoomDefault| #3#) (SIGNATURE |viewDeltaXDefault| #1#) (SIGNATURE |viewDeltaXDefault| #3#) (SIGNATURE |viewDeltaYDefault| #1#) (SIGNATURE |viewDeltaYDefault| #3#) (SIGNATURE |viewport3D| ($)) (SIGNATURE |makeViewport3D| ($ $)) (SIGNATURE |makeViewport3D| ($ #4=(|ThreeSpace| #5=(|DoubleFloat|)) #6=(|String|))) (SIGNATURE |makeViewport3D| ($ #4# #7=(|List| (|DrawOption|)))) (SIGNATURE |subspace| (#4# $)) (SIGNATURE |subspace| ($ $ #4#)) (SIGNATURE |modifyPointData| (#8=(|Void|) $ #9=(|NonNegativeInteger|) (|Point| #5#))) (SIGNATURE |options| (#7# $)) (SIGNATURE |options| ($ $ #7#)) (SIGNATURE |move| (#8# $ #9# #9#)) (SIGNATURE |resize| (#8# $ #10=(|PositiveInteger|) #10#)) (SIGNATURE |title| #11=(#8# $ #6#)) (SIGNATURE |dimensions| (#8# $ #9# #9# #10# #10#)) (SIGNATURE |viewpoint| (#8# $ #2# #2# #2# #2# #2#)) (SIGNATURE |viewpoint| (#12=(|Record| (|:| |theta| #5#) (|:| |phi| #5#) (|:| |scale| #5#) (|:| |scaleX| #5#) (|:| |scaleY| #5#) (|:| |scaleZ| #5#) (|:| |deltaX| #5#) (|:| |deltaY| #5#)) $)) (SIGNATURE |viewpoint| (#8# $ #12#)) (SIGNATURE |viewpoint| (#8# $ #13=(|Integer|) #13# #2# #2# #2#)) (SIGNATURE |viewpoint| #14=(#8# $ #2# #2#)) (SIGNATURE |viewpoint| #15=(#8# $ #2# #2# #2#)) (SIGNATURE |controlPanel| #11#) (SIGNATURE |axes| #11#) (SIGNATURE |diagonals| #11#) (SIGNATURE |outlineRender| #11#) (SIGNATURE |drawStyle| #11#) (SIGNATURE |rotate| #14#) (SIGNATURE |rotate| (#8# $ #13# #13#)) (SIGNATURE |zoom| #16=(#8# $ #2#)) (SIGNATURE |zoom| #15#) (SIGNATURE |translate| #14#) (SIGNATURE |perspective| #11#) (SIGNATURE |eyeDistance| #16#) (SIGNATURE |hitherPlane| #16#) (SIGNATURE |showRegion| #11#) (SIGNATURE |showClipRegion| #11#) (SIGNATURE |clipSurface| #11#) (SIGNATURE |lighting| #15#) (SIGNATURE |intensity| #16#) (SIGNATURE |reset| #17=(#8# $)) (SIGNATURE |colorDef| (#8# $ #18=(|Color|) #18#)) (SIGNATURE |write| (#6# $ #6#)) (SIGNATURE |write| (#6# $ #6# #6#)) (SIGNATURE |write| (#6# $ #6# (|List| #6#))) (SIGNATURE |close| #17#) (SIGNATURE |key| (#13# $))))) (T |ThreeDimensionalViewport|))
+((|viewThetaDefault| #1=(*1 *2) #2=(AND (|isDomain| *2 #3=(|Float|)) #4=(|isDomain| *1 (|ThreeDimensionalViewport|)))) (|viewThetaDefault| #5=(*1 *2 *2) #2#) (|viewPhiDefault| #1# #2#) (|viewPhiDefault| #5# #2#) (|viewZoomDefault| #1# #2#) (|viewZoomDefault| #5# #2#) (|viewDeltaXDefault| #1# #2#) (|viewDeltaXDefault| #5# #2#) (|viewDeltaYDefault| #1# #2#) (|viewDeltaYDefault| #5# #2#) (|viewport3D| (*1 *1) #4#) (|makeViewport3D| (*1 *1 *1) #4#) (|makeViewport3D| #6=(*1 *1 *2 *3) (AND #7=(|isDomain| *2 (|ThreeSpace| #8=(|DoubleFloat|))) #9=(|isDomain| *3 #10=(|String|)) #4#)) (|makeViewport3D| #6# (AND #7# (|isDomain| *3 #11=(|List| (|DrawOption|))) #4#)) (|subspace| #12=(*1 *2 *1) #13=(AND #7# #4#)) (|subspace| #14=(*1 *1 *1 *2) #13#) (|modifyPointData| (*1 *2 *1 *3 *4) (AND #15=(|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Point| #8#)) #16=(|isDomain| *2 (|Void|)) #4#)) (|options| #12# #17=(AND (|isDomain| *2 #11#) #4#)) (|options| #14# #17#) (|move| #18=(*1 *2 *1 *3 *3) (AND #15# #16# #4#)) (|resize| #18# (AND (|isDomain| *3 #19=(|PositiveInteger|)) #16# #4#)) (|title| #20=(*1 *2 *1 *3) #21=(AND #9# #16# #4#)) (|dimensions| (*1 *2 *1 *3 *3 *4 *4) (AND #15# (|isDomain| *4 #19#) #16# #4#)) (|viewpoint| (*1 *2 *1 *3 *3 *3 *3 *3) #22=(AND (|isDomain| *3 #3#) #16# #4#)) (|viewpoint| #12# (AND (|isDomain| *2 #23=(|Record| (|:| |theta| #8#) (|:| |phi| #8#) (|:| |scale| #8#) (|:| |scaleX| #8#) (|:| |scaleY| #8#) (|:| |scaleZ| #8#) (|:| |deltaX| #8#) (|:| |deltaY| #8#))) #4#)) (|viewpoint| #20# (AND (|isDomain| *3 #23#) #16# #4#)) (|viewpoint| (*1 *2 *1 *3 *3 *4 *4 *4) (AND #24=(|isDomain| *3 #25=(|Integer|)) (|isDomain| *4 #3#) #16# #4#)) (|viewpoint| #18# #22#) (|viewpoint| #26=(*1 *2 *1 *3 *3 *3) #22#) (|controlPanel| #20# #21#) (|axes| #20# #21#) (|diagonals| #20# #21#) (|outlineRender| #20# #21#) (|drawStyle| #20# #21#) (|rotate| #18# #22#) (|rotate| #18# (AND #24# #16# #4#)) (|zoom| #20# #22#) (|zoom| #26# #22#) (|translate| #18# #22#) (|perspective| #20# #21#) (|eyeDistance| #20# #22#) (|hitherPlane| #20# #22#) (|showRegion| #20# #21#) (|showClipRegion| #20# #21#) (|clipSurface| #20# #21#) (|lighting| #26# #22#) (|intensity| #20# #22#) (|reset| #12# #27=(AND #16# #4#)) (|colorDef| #18# (AND (|isDomain| *3 (|Color|)) #16# #4#)) (|write| (*1 *2 *1 *2) #28=(AND #29=(|isDomain| *2 #10#) #4#)) (|write| (*1 *2 *1 *2 *2) #28#) (|write| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|List| #10#)) #29# #4#)) (|close| #12# #27#) (|key| #12# (AND (|isDomain| *2 #25#) #4#)))
+((|viewWriteDefault| ((#1=(|List| (|String|)) #1#) 103 T ELT) (#2=(#1#) 96 T ELT)) (|viewWriteAvailable| (#2# 94 T ELT)) (|viewSizeDefault| ((#3=(|List| #4=(|PositiveInteger|)) #3#) 69 T ELT) ((#3#) 64 T ELT)) (|viewPosDefault| ((#5=(|List| (|NonNegativeInteger|)) #5#) 61 T ELT) ((#5#) 55 T ELT)) (|viewDefaults| (((|Void|)) 71 T ELT)) (|var2StepsDefault| (#6=(#4# #4#) 87 T ELT) (#7=(#4#) 86 T ELT)) (|var1StepsDefault| (#6# 85 T ELT) (#7# 84 T ELT)) (|unitsColorDefault| (#8=(#9=(|Palette|) #9#) 81 T ELT) (#10=(#9#) 80 T ELT)) (|tubeRadiusDefault| ((#11=(|DoubleFloat|)) 91 T ELT) ((#11# (|Float|)) 93 T ELT)) (|tubePointsDefault| (#7# 88 T ELT) (#6# 89 T ELT)) (|pointSizeDefault| (#6# 83 T ELT) (#7# 82 T ELT)) (|pointColorDefault| (#8# 75 T ELT) (#10# 73 T ELT)) (|lineColorDefault| (#8# 77 T ELT) (#10# 76 T ELT)) (|axesColorDefault| (#8# 79 T ELT) (#10# 78 T ELT)))
+(((|ViewDefaultsPackage|) (CATEGORY |package| (SIGNATURE |pointColorDefault| #1=(#2=(|Palette|))) (SIGNATURE |pointColorDefault| #3=(#2# #2#)) (SIGNATURE |lineColorDefault| #1#) (SIGNATURE |lineColorDefault| #3#) (SIGNATURE |axesColorDefault| #1#) (SIGNATURE |axesColorDefault| #3#) (SIGNATURE |unitsColorDefault| #1#) (SIGNATURE |unitsColorDefault| #3#) (SIGNATURE |pointSizeDefault| #4=(#5=(|PositiveInteger|))) (SIGNATURE |pointSizeDefault| #6=(#5# #5#)) (SIGNATURE |viewPosDefault| (#7=(|List| (|NonNegativeInteger|)))) (SIGNATURE |viewPosDefault| (#7# #7#)) (SIGNATURE |viewSizeDefault| (#8=(|List| #5#))) (SIGNATURE |viewSizeDefault| (#8# #8#)) (SIGNATURE |viewDefaults| ((|Void|))) (SIGNATURE |viewWriteDefault| #9=(#10=(|List| (|String|)))) (SIGNATURE |viewWriteDefault| (#10# #10#)) (SIGNATURE |viewWriteAvailable| #9#) (SIGNATURE |var1StepsDefault| #4#) (SIGNATURE |var2StepsDefault| #4#) (SIGNATURE |var1StepsDefault| #6#) (SIGNATURE |var2StepsDefault| #6#) (SIGNATURE |tubePointsDefault| #6#) (SIGNATURE |tubePointsDefault| #4#) (SIGNATURE |tubeRadiusDefault| (#11=(|DoubleFloat|) (|Float|))) (SIGNATURE |tubeRadiusDefault| (#11#)))) (T |ViewDefaultsPackage|))
+((|tubeRadiusDefault| #1=(*1 *2) (AND #2=(|isDomain| *2 (|DoubleFloat|)) #3=(|isDomain| *1 (|ViewDefaultsPackage|)))) (|tubeRadiusDefault| (*1 *2 *3) (AND (|isDomain| *3 (|Float|)) #2# #3#)) (|tubePointsDefault| #1# #4=(AND (|isDomain| *2 #5=(|PositiveInteger|)) #3#)) (|tubePointsDefault| #6=(*1 *2 *2) #4#) (|var2StepsDefault| #6# #4#) (|var1StepsDefault| #6# #4#) (|var2StepsDefault| #1# #4#) (|var1StepsDefault| #1# #4#) (|viewWriteAvailable| #1# #7=(AND (|isDomain| *2 (|List| (|String|))) #3#)) (|viewWriteDefault| #6# #7#) (|viewWriteDefault| #1# #7#) (|viewDefaults| #1# (AND (|isDomain| *2 (|Void|)) #3#)) (|viewSizeDefault| #6# #8=(AND (|isDomain| *2 (|List| #5#)) #3#)) (|viewSizeDefault| #1# #8#) (|viewPosDefault| #6# #9=(AND (|isDomain| *2 (|List| (|NonNegativeInteger|))) #3#)) (|viewPosDefault| #1# #9#) (|pointSizeDefault| #6# #4#) (|pointSizeDefault| #1# #4#) (|unitsColorDefault| #6# #10=(AND (|isDomain| *2 (|Palette|)) #3#)) (|unitsColorDefault| #1# #10#) (|axesColorDefault| #6# #10#) (|axesColorDefault| #1# #10#) (|lineColorDefault| #6# #10#) (|lineColorDefault| #1# #10#) (|pointColorDefault| #6# #10#) (|pointColorDefault| #1# #10#))
+((|void| (($) 6 T ELT)) (|coerce| (((|OutputForm|) $) 9 T ELT)))
+(((|Void|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |void| ($))))) (T |Void|))
+((|void| (*1 *1) (|isDomain| *1 (|Void|))))
+((/ (($ $ |#2|) 10 T ELT)))
+(((|VectorSpace&| |#1| |#2|) (CATEGORY |package| (SIGNATURE / (|#1| |#1| |#2|))) (|VectorSpace| |#2|) (|Field|)) (T |VectorSpace&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|opposite?| ((#2# $ $) 20 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|dimension| (((|CardinalNumber|)) 39 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (|Zero| (#3# 24 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ |#1|) 40 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ |#1| . #4#) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((|VectorSpace| |#1|) (|Category|) (|Field|)) (T |VectorSpace|))
+((/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|VectorSpace| *2)) (|ofCategory| *2 (|Field|)))) (|dimension| (*1 *2) (AND (|ofCategory| *1 (|VectorSpace| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|CardinalNumber|)))))
+(|Join| (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE / ($ $ |t#1|)) (SIGNATURE |dimension| ((|CardinalNumber|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LinearSet| |#1|) . T) ((|Module| |#1|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((|weierstrass| (((|List| #1=(|TaylorSeries| |#1|)) #2=(|Symbol|) #1#) 83 T ELT)) (|sts2stst| (((|Stream| #3=(|Stream| #4=(|Polynomial| |#1|))) #2# #3#) 63 T ELT)) (|qqq| (((|Mapping| #5=(|Stream| #1#) #5#) #6=(|NonNegativeInteger|) #1# #5#) 74 T ELT)) (|crest| (#7=((|Mapping| #3# #3#) #6#) 65 T ELT)) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| #4#) #4#) #2#) 32 T ELT)) (|cfirst| (#7# 64 T ELT)))
+(((|WeierstrassPreparation| |#1|) (CATEGORY |package| (SIGNATURE |crest| #1=((|Mapping| #2=(|Stream| #3=(|Polynomial| |#1|)) #2#) #4=(|NonNegativeInteger|))) (SIGNATURE |cfirst| #1#) (SIGNATURE |sts2stst| ((|Stream| #2#) #5=(|Symbol|) #2#)) (SIGNATURE |clikeUniv| ((|Mapping| (|SparseUnivariatePolynomial| #3#) #3#) #5#)) (SIGNATURE |weierstrass| ((|List| #6=(|TaylorSeries| |#1|)) #5# #6#)) (SIGNATURE |qqq| ((|Mapping| #7=(|Stream| #6#) #7#) #4# #6# #7#))) (|Field|)) (T |WeierstrassPreparation|))
+((|qqq| (*1 *2 *3 *4 *5) (AND #1=(|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *6 #2=(|Field|)) (|isDomain| *4 (|TaylorSeries| *6)) (|isDomain| *2 (|Mapping| #3=(|Stream| *4) #3#)) (|isDomain| *1 (|WeierstrassPreparation| *6)) (|isDomain| *5 #3#))) (|weierstrass| #4=(*1 *2 *3 *4) (AND #5=(|isDomain| *3 (|Symbol|)) #6=(|ofCategory| *5 #2#) (|isDomain| *2 (|List| #7=(|TaylorSeries| *5))) #8=(|isDomain| *1 (|WeierstrassPreparation| *5)) (|isDomain| *4 #7#))) (|clikeUniv| #9=(*1 *2 *3) (AND #5# (|isDomain| *2 (|Mapping| (|SparseUnivariatePolynomial| #10=(|Polynomial| *4)) #10#)) #11=(|isDomain| *1 (|WeierstrassPreparation| *4)) #12=(|ofCategory| *4 #2#))) (|sts2stst| #4# (AND #5# #6# (|isDomain| *2 (|Stream| #13=(|Stream| (|Polynomial| *5)))) #8# (|isDomain| *4 #13#))) (|cfirst| #9# #14=(AND #1# (|isDomain| *2 (|Mapping| #15=(|Stream| #10#) #15#)) #11# #12#)) (|crest| #9# #14#))
+((|localIntegralBasis| ((#1=(|Record| (|:| |basis| #2=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #2#)) |#2|) 80 T ELT)) (|integralBasis| ((#1#) 79 T ELT)))
+(((|WildFunctionFieldIntegralBasis| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |integralBasis| (#1=(|Record| (|:| |basis| #2=(|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| #2#)))) (SIGNATURE |localIntegralBasis| (#1# |#2|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|FramedAlgebra| |#2| |#3|)) (T |WildFunctionFieldIntegralBasis|))
+((|localIntegralBasis| (*1 *2 *3) (AND (|ofCategory| *4 #1=(|FiniteFieldCategory|)) (|ofCategory| *3 #2=(|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 #3=(|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|Record| (|:| |basis| #4=(|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| #4#))) (|isDomain| *1 (|WildFunctionFieldIntegralBasis| *4 *3 *5 *6)) (|ofCategory| *6 (|FramedAlgebra| *3 *5)))) (|integralBasis| (*1 *2) (AND (|ofCategory| *3 #1#) (|ofCategory| *4 #3#) (|ofCategory| *5 #2#) (|isDomain| *2 (|Record| (|:| |basis| #5=(|Matrix| *4)) (|:| |basisDen| *4) (|:| |basisInv| #5#))) (|isDomain| *1 (|WildFunctionFieldIntegralBasis| *3 *4 *5 *6)) (|ofCategory| *6 (|FramedAlgebra| *4 *5)))))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|qualifier| (#2=((|SpadAst|) $) 12 T ELT)) (|mainExpression| (#2# 10 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 18 T ELT) (($ #3=(|Syntax|)) NIL T ELT) ((#3# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|WhereAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |mainExpression| #1=((|SpadAst|) $)) (SIGNATURE |qualifier| #1#)))) (T |WhereAst|))
+((|mainExpression| #1=(*1 *2 *1) #2=(AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|WhereAst|)))) (|qualifier| #1# #2#))
+((~= #1=(((|Boolean|) $ $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|condition| (((|SpadAst|) $) 11 T ELT)) (|coerce| (((|OutputForm|) $) 17 T ELT) (($ #2=(|Syntax|)) NIL T ELT) ((#2# $) NIL T ELT)) (|before?| #1#) (= #1#))
+(((|WhileAst|) (|Join| (|SpadSyntaxCategory|) (CATEGORY |domain| (SIGNATURE |condition| ((|SpadAst|) $))))) (T |WhileAst|))
+((|condition| (*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|WhileAst|)))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 59 T ELT)) (|subtractIfCan| (#5=(#6=(|Union| $ "failed") $ $) NIL T ELT)) (|sample| (#7=($) NIL T CONST)) (|recip| ((#6# $) NIL T ELT)) (|opposite?| #1#) (|one?| (#4# NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 82 T ELT) (($ #8=(|Integer|)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL #9=(|has| |#1| (|CommutativeRing|)) ELT)) (|characteristic| ((#10=(|NonNegativeInteger|)) NIL T CONST)) (|changeWeightLevel| (((|Void|) #10#) 16 T ELT)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#7# 36 T CONST)) (|One| (#7# 85 T CONST)) (= (#2# 88 T ELT)) (/ (#5# NIL (|has| |#1| (|Field|)) ELT)) (- (($ $) 90 T ELT) (#11=($ $ $) NIL T ELT)) (+ (#11# 64 T ELT)) (** (($ $ #12=(|PositiveInteger|)) NIL T ELT) (($ $ #10#) NIL T ELT)) (* (($ #12# $) NIL T ELT) (($ #10# $) NIL T ELT) (($ #8# . #13=($)) NIL T ELT) (#11# 92 T ELT) (($ |#1| . #13#) NIL #9# ELT) (($ $ |#1|) NIL #9# ELT)))
+(((|WeightedPolynomials| |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (|Join| #1=(|Ring|) (|HomotopicTo| |#4|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |%noBranch|) (IF (|has| |#1| (|Field|)) (SIGNATURE / ((|Union| $ "failed") $ $)) |%noBranch|) (SIGNATURE |changeWeightLevel| ((|Void|) #2=(|NonNegativeInteger|))))) #1# (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| |#1| |#3| |#2|) (|List| |#2|) (|List| #2#) #2#) (T |WeightedPolynomials|))
+((/ (*1 *1 *1 *1) (|partial| AND (|ofCategory| *2 (|Field|)) (|ofCategory| *2 #1=(|Ring|)) (|ofCategory| *3 #2=(|OrderedSet|)) (|ofCategory| *4 #3=(|OrderedAbelianMonoidSup|)) (|ofType| *6 #4=(|List| *3)) (|isDomain| *1 (|WeightedPolynomials| *2 *3 *4 *5 *6 *7 *8)) (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3)) (|ofType| *7 (|List| #5=(|NonNegativeInteger|))) (|ofType| *8 #5#))) (|changeWeightLevel| (*1 *2 *3) (AND (|isDomain| *3 #5#) (|ofCategory| *4 #1#) (|ofCategory| *5 #2#) (|ofCategory| *6 #3#) (|ofType| *8 (|List| *5)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|WeightedPolynomials| *4 *5 *6 *7 *8 *9 *10)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofType| *9 #4#) (|ofType| *10 *3))))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) #4=(|:| |open| #5=(|List| |#4|)))) #5#) NIL T ELT)) (|zeroSetSplit| (#6=(#7=(|List| $) #5#) 95 T ELT)) (|variables| #8=(((|List| |#3|) $) NIL T ELT)) (|trivialIdeal?| #9=(#10=(#3# $) NIL T ELT)) (|triangular?| #11=(#10# NIL #12=(|has| |#1| (|IntegralDomain|)) ELT)) (|stronglyReduced?| #13=(#14=(#3# |#4| $) NIL T ELT) #9#) (|stronglyReduce| #15=(#16=(|#4| |#4| $) NIL T ELT)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (|select| #17=(($ #18=(|Mapping| #3# |#4|) $) NIL #19=(|has| $ (|FiniteAggregate| |#4|)) ELT) ((#20=(|Union| |#4| #21="failed") $ |#3|) NIL T ELT)) (|sample| (#22=($) NIL T CONST)) (|roughUnitIdeal?| #11#) (|roughSubIdeal?| #23=(#2# NIL #12# ELT)) (|roughEqualIdeals?| #23#) (|roughBase?| #11#) (|rewriteSetWithReduction| ((#5# #5# $ #24=(|Mapping| |#4| |#4| |#4|) #25=(|Mapping| #3# |#4| |#4|)) 31 T ELT)) (|rewriteIdealWithRemainder| (#26=(#5# #5# $) 28 #12# ELT)) (|rewriteIdealWithHeadRemainder| (#26# NIL #12# ELT)) (|retractIfCan| (#27=(#28=(|Union| $ #21#) #5#) NIL T ELT)) (|retract| #29=(($ #5#) NIL T ELT)) (|rest| ((#28# $) 77 T ELT)) (|removeZero| (#16# 82 T ELT)) (|removeDuplicates| (#30=($ $) NIL #31=(AND #19# #32=(|has| |#4| (|BasicType|))) ELT)) (|remove| (($ |#4| $) NIL #31# ELT) #17#) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) #33=(|:| |den| |#1|)) |#4| $) NIL #12# ELT)) (|reduced?| ((#3# |#4| $ #25#) NIL T ELT)) (|reduceByQuasiMonic| #15#) (|reduce| ((|#4| #24# $ |#4| |#4|) NIL #32# ELT) ((|#4| #24# $ |#4|) NIL T ELT) ((|#4| #24# $) NIL T ELT) ((|#4| |#4| $ #24# #25#) NIL T ELT)) (|quasiComponent| (((|Record| (|:| |close| #5#) #4#) $) NIL T ELT)) (|normalized?| #13# #9#) (|mvar| ((|#3| $) 83 T ELT)) (|members| (#34=(#5# $) 32 T ELT)) (|member?| (#14# NIL #32# ELT)) (|medialSet| (#35=(#28# #5# #25# #24#) 35 T ELT) (#27# 38 T ELT)) (|map!| #36=(($ (|Mapping| |#4| |#4|) $) NIL T ELT)) (|map| #36#) (|mainVariables| #8#) (|mainVariable?| #37=((#3# |#3| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|last| (#38=(#20# $) NIL T ELT)) (|initials| (#34# 53 T ELT)) (|initiallyReduced?| #13# #9#) (|initiallyReduce| (#16# 81 T ELT)) (|infRittWu?| (#2# 92 T ELT)) (|headRemainder| (((|Record| (|:| |num| |#4|) #33#) |#4| $) NIL #12# ELT)) (|headReduced?| #13# #9#) (|headReduce| #15#) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|first| (#38# 76 T ELT)) (|find| ((#20# #18# $) NIL T ELT)) (|extendIfCan| ((#28# $ |#4|) NIL T ELT)) (|extend| (($ $ |#4|) NIL T ELT)) (|every?| #39=((#3# #18# $) NIL T ELT)) (|eval| (($ $ #5# #5#) NIL #40=(AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ELT) (($ $ |#4| |#4|) NIL #40# ELT) (($ $ #41=(|Equation| |#4|)) NIL #40# ELT) (($ $ (|List| #41#)) NIL #40# ELT)) (|eq?| #1#) (|empty?| (#10# 74 T ELT)) (|empty| (#22# 45 T ELT)) (|degree| #42=(#43=(#44=(|NonNegativeInteger|) $) NIL T ELT)) (|count| ((#44# |#4| $) NIL #32# ELT) ((#44# #18# $) NIL T ELT)) (|copy| #45=(#30# NIL T ELT)) (|convert| ((#46=(|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| #46#)) ELT)) (|construct| #29#) (|collectUpper| #47=(($ $ |#3|) NIL T ELT)) (|collectUnder| #47#) (|collectQuasiMonic| #45#) (|collect| #47#) (|coerce| (((|OutputForm|) $) NIL T ELT) (#34# 62 T ELT)) (|coHeight| (#43# NIL (|has| |#3| (|Finite|)) ELT)) (|characteristicSet| (#35# 43 T ELT) (#27# 44 T ELT)) (|characteristicSerie| ((#7# #5# #25# #24#) 72 T ELT) (#6# 73 T ELT)) (|before?| #1#) (|basicSet| ((#48=(|Union| (|Record| (|:| |bas| $) (|:| |top| #5#)) #21#) #5# #25#) 27 T ELT) ((#48# #5# #18# #25#) NIL T ELT)) (|autoReduced?| ((#3# $ (|Mapping| #3# |#4| #5#)) NIL T ELT)) (|any?| #39#) (|algebraicVariables| #8#) (|algebraic?| #37#) (= #1#) (|#| #42#))
+(((|WuWenTsunTriangularSet| |#1| |#2| |#3| |#4|) (|Join| (|TriangularSetCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |medialSet| #1=(#2=(|Union| $ "failed") #3=(|List| |#4|) #4=(|Mapping| (|Boolean|) |#4| |#4|) #5=(|Mapping| |#4| |#4| |#4|))) (SIGNATURE |medialSet| #6=(#2# #3#)) (SIGNATURE |characteristicSet| #1#) (SIGNATURE |characteristicSet| #6#) (SIGNATURE |characteristicSerie| (#7=(|List| $) #3# #4# #5#)) (SIGNATURE |characteristicSerie| (#7# #3#)))) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |WuWenTsunTriangularSet|))
+((|medialSet| #1=(*1 *1 *2 *3 *4) #2=(|partial| AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| #3=(|Boolean|) *8 *8)) (|isDomain| *4 (|Mapping| *8 *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 #4=(|IntegralDomain|)) (|ofCategory| *6 #5=(|OrderedAbelianMonoidSup|)) (|ofCategory| *7 #6=(|OrderedSet|)) (|isDomain| *1 (|WuWenTsunTriangularSet| *5 *6 *7 *8)))) (|medialSet| #7=(*1 *1 *2) #8=(|partial| AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 #4#) (|ofCategory| *4 #5#) (|ofCategory| *5 #6#) (|isDomain| *1 (|WuWenTsunTriangularSet| *3 *4 *5 *6)))) (|characteristicSet| #1# #2#) (|characteristicSet| #7# #8#) (|characteristicSerie| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *9)) (|isDomain| *4 (|Mapping| #3# *9 *9)) (|isDomain| *5 (|Mapping| *9 *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 #4#) (|ofCategory| *7 #5#) (|ofCategory| *8 #6#) (|isDomain| *2 (|List| #9=(|WuWenTsunTriangularSet| *6 *7 *8 *9))) (|isDomain| *1 #9#))) (|characteristicSerie| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 #4#) (|ofCategory| *5 #5#) (|ofCategory| *6 #6#) (|isDomain| *2 (|List| #10=(|WuWenTsunTriangularSet| *4 *5 *6 *7))) (|isDomain| *1 #10#))))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sample| (#3=($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#1|) 53 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| . #4#) 54 T ELT)))
+(((|XAlgebra| |#1|) (|Category|) (|Ring|)) (T |XAlgebra|))
+NIL
+(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (|CoercibleFrom| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightLinearSet| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T))
+((~= (#1=(#2=(|Boolean|) $ $) 69 T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|varList| (((|List| |#1|) $) 54 T ELT)) (|trunc| (#5=($ $ #6=(|NonNegativeInteger|)) 47 T ELT)) (|subtractIfCan| ((#7=(|Union| $ #8="failed") $ $) NIL T ELT)) (|sh| (#5# 25 #9=(|has| |#2| (|CommutativeRing|)) ELT) (#10=($ $ $) 26 #9# ELT)) (|sample| (#11=($) NIL T CONST)) (|rquo| (#10# 72 T ELT) (#12=($ $ #13=(|OrderedFreeMonoid| |#1|)) 58 T ELT) (#14=($ $ |#1|) 62 T ELT)) (|retractIfCan| (((|Union| #13# #8#) $) NIL T ELT)) (|retract| #15=(#16=(#13# $) NIL T ELT)) (|reductum| (#17=($ $) 40 T ELT)) (|recip| ((#7# $) NIL T ELT)) (|quasiRegular?| #3#) (|quasiRegular| #18=(#17# NIL T ELT)) (|opposite?| #19=(#1# NIL T ELT)) (|one?| #3#) (|numberOfMonomials| (#20=(#6# $) NIL T ELT)) (|monomials| (((|List| $) $) NIL T ELT)) (|monomial?| #3#) (|monom| (($ #13# |#2|) 39 T ELT)) (|mirror| (#17# 41 T ELT)) (|mindegTerm| (#21=(#22=(|Record| (|:| |k| #13#) (|:| |c| |#2|)) $) 13 T ELT)) (|mindeg| #15#) (|maxdeg| (#16# 42 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|lquo| (#10# 71 T ELT) (#12# 60 T ELT) (#14# 64 T ELT)) (|leadingTerm| (#21# NIL T ELT)) (|leadingMonomial| (#16# 36 T ELT)) (|leadingCoefficient| (#23=(|#2| $) 38 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|degree| (#20# 44 T ELT)) (|constant?| (#4# 48 T ELT)) (|constant| (#23# NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #13#) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ #24=(|Integer|)) NIL T ELT)) (|coefficients| (((|List| |#2|) $) NIL T ELT)) (|coefficient| #25=((|#2| $ #13#) NIL T ELT)) (|coef| ((|#2| $ $) 78 T ELT) #25#) (|characteristic| ((#6#) NIL T CONST)) (|before?| #19#) (|annihilate?| #19#) (|Zero| (#11# 14 T CONST)) (|One| (#11# 20 T CONST)) (|ListOfTerms| (((|List| #22#) $) NIL T ELT)) (= (#1# 45 T ELT)) (- #26=(#10# NIL T ELT) #18#) (+ (#10# 29 T ELT)) (** (#5# NIL T ELT) (($ $ #27=(|PositiveInteger|)) NIL T ELT)) (* (($ $ |#2|) 70 T ELT) (($ |#2| . #28=($)) 28 T ELT) (($ #24# . #28#) NIL T ELT) (($ #6# $) NIL T ELT) (($ #27# $) NIL T ELT) (($ |#2| #13#) NIL T ELT) (($ |#1| $) 34 T ELT) #26#))
+(((|XDistributedPolynomial| |#1| |#2|) (|Join| (|FreeModuleCat| |#2| (|OrderedFreeMonoid| |#1|)) (|XPolynomialsCat| |#1| |#2|)) (|OrderedSet|) (|Ring|)) (T |XDistributedPolynomial|))
+NIL
+((|log| (#1=(|#3| |#3| #2=(|NonNegativeInteger|)) 28 T ELT)) (|exp| (#1# 34 T ELT)) (|Hausdorff| ((|#3| |#3| |#3| #2#) 35 T ELT)))
+(((|XExponentialPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |exp| #1=(|#3| |#3| #2=(|NonNegativeInteger|))) (SIGNATURE |log| #1#) (SIGNATURE |Hausdorff| (|#3| |#3| |#3| #2#))) (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))) (|OrderedSet|) (|XPolynomialsCat| |#2| |#1|)) (T |XExponentialPackage|))
+((|Hausdorff| (*1 *2 *2 *2 *3) #1=(AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))) (|log| #2=(*1 *2 *2 *3) #1#) (|exp| #2# #1#))
+((|transcendent?| (#1=((|Boolean|) $) 15 T ELT)) (|algebraic?| (#1# 14 T ELT)) (|Frobenius| (($ $) 19 T ELT) (($ $ (|NonNegativeInteger|)) 21 T ELT)))
+(((|ExtensionField&| |#1| |#2|) (CATEGORY |package| (SIGNATURE |Frobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)) (SIGNATURE |transcendent?| #1=((|Boolean|) |#1|)) (SIGNATURE |algebraic?| #1#)) (|ExtensionField| |#2|) (|Field|)) (T |ExtensionField&|))
+NIL
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 55 T ELT)) (|unitCanonical| (($ $) 54 T ELT)) (|unit?| ((#3=(|Boolean|) $) 52 T ELT)) (|transcendent?| (((|Boolean|) $) 114 T ELT)) (|transcendenceDegree| (((|NonNegativeInteger|)) 110 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|squareFreePart| (($ $) 91 T ELT)) (|squareFree| (#4=((|Factored| $) $) 90 T ELT)) (|sizeLess?| (((|Boolean|) $ $) 75 T ELT)) (|sample| (#5=($) 23 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 121 T ELT)) (|retract| ((|#1| $) 122 T ELT)) (|rem| (#6=($ $ $) 71 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quo| (#6# 72 T ELT)) (|principalIdeal| (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 66 T ELT)) (|primeFrobenius| (($ $ #8=(|NonNegativeInteger|)) 107 (OR (|has| |#1| . #9=((|CharacteristicNonZero|))) (|has| |#1| . #10=((|Finite|)))) ELT) (($ $) 106 (OR (|has| |#1| . #9#) (|has| |#1| . #10#)) ELT)) (|prime?| (((|Boolean|) $) 89 T ELT)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 104 (OR (|has| |#1| . #9#) (|has| |#1| . #10#)) ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|multiEuclidean| (((|Union| #11=(|List| $) #12="failed") #11# $) 68 T ELT)) (|lcm| (#13=($ $ $) 60 T ELT) (#14=($ (|List| $)) 59 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 88 T ELT)) (|inGroundField?| (((|Boolean|) $) 113 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|gcdPolynomial| ((#15=(|SparseUnivariatePolynomial| $) #15# #15#) 58 T ELT)) (|gcd| (#13# 62 T ELT) (#14# 61 T ELT)) (|factor| (#4# 92 T ELT)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 111 T ELT)) (|extendedEuclidean| (((|Record| #16=(|:| |coef1| $) #17=(|:| |coef2| $) (|:| |generator| $)) $ $) 70 T ELT) (((|Union| (|Record| #16# #17#) #12#) $ $ $) 69 T ELT)) (|exquo| (((|Union| $ "failed") $ $) 56 T ELT)) (|expressIdealMember| (((|Maybe| #7#) #7# $) 65 T ELT)) (|euclideanSize| (((|NonNegativeInteger|) $) 74 T ELT)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 73 T ELT)) (|discreteLog| (((|Union| #8# "failed") $ $) 105 (OR (|has| |#1| . #9#) (|has| |#1| . #10#)) ELT)) (|dimension| (((|CardinalNumber|)) 119 T ELT)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 112 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ $) 57 T ELT) (($ #18=(|Fraction| #19=(|Integer|))) 84 T ELT) (($ |#1|) 120 T ELT)) (|charthRoot| (((|Maybe| $) $) 103 (OR (|has| |#1| . #9#) (|has| |#1| . #10#)) ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 53 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|algebraic?| (((|Boolean|) $) 115 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (|Frobenius| (($ $) 109 (|has| |#1| (|Finite|)) ELT) (($ $ (|NonNegativeInteger|)) 108 (|has| |#1| (|Finite|)) ELT)) (= (#1# 8 T ELT)) (/ (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT) (($ $ #19#) 87 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #20=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ $ #18#) 86 T ELT) (($ #18# . #20#) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| . #20#) 116 T ELT)))
+(((|ExtensionField| |#1|) (|Category|) (|Field|)) (T |ExtensionField|))
+((|algebraic?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|transcendent?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|inGroundField?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|extensionDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|transcendenceDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|Frobenius| (*1 *1 *1) (AND (|ofCategory| *1 (|ExtensionField| *2)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Finite|)))) (|Frobenius| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)))))
+(|Join| (|Field|) (|RetractableTo| |t#1|) (|VectorSpace| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |%noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) |%noBranch|) (SIGNATURE |algebraic?| ((|Boolean|) $)) (SIGNATURE |transcendent?| ((|Boolean|) $)) (SIGNATURE |inGroundField?| ((|Boolean|) $)) (SIGNATURE |degree| ((|OnePointCompletion| (|PositiveInteger|)) $)) (SIGNATURE |extensionDegree| ((|OnePointCompletion| (|PositiveInteger|)))) (SIGNATURE |transcendenceDegree| ((|NonNegativeInteger|))) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) (SIGNATURE |Frobenius| ($ $)) (SIGNATURE |Frobenius| ($ $ (|NonNegativeInteger|)))) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleFrom| #1#) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| |#1|) . T) ((|CoercibleFrom| $) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|Join|) . T) ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#1|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| #1#) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| |#1|) . T) ((|LinearSet| $) . T) ((|Module| #1#) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RetractableTo| |#1|) . T) ((|RightLinearSet| #1#) . T) ((|RightLinearSet| |#1|) . T) ((|RightLinearSet| $) . T) ((|RightModule| #1#) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| |#1|) . T))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|varList| (((|List| |#1|) $) 56 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sh| (($ $ $) 58 (|has| |#2| (|CommutativeRing|)) ELT) (($ $ (|NonNegativeInteger|)) 57 (|has| |#2| (|CommutativeRing|)) ELT)) (|sample| (#3=($) 23 T CONST)) (|rquo| (($ $ |#1|) 69 T ELT) (($ $ (|OrderedFreeMonoid| |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) 79 T ELT)) (|retract| (((|OrderedFreeMonoid| |#1|) $) 80 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quasiRegular?| (((|Boolean|) $) 60 T ELT)) (|quasiRegular| (($ $) 59 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial?| (((|Boolean|) $) 65 T ELT)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 66 T ELT)) (|mirror| (($ $) 64 T ELT)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 76 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 81 T ELT)) (|lquo| (($ $ |#1|) 72 T ELT) (($ $ (|OrderedFreeMonoid| |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|constant?| (((|Boolean|) $) 62 T ELT)) (|constant| ((|#2| $) 61 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (|OrderedFreeMonoid| |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#3# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #4=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| . #4#) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT)))
+(((|XFreeAlgebra| |#1| |#2|) (|Category|) (|OrderedSet|) (|Ring|)) (T |XFreeAlgebra|))
+((* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|mindeg| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|OrderedFreeMonoid| *3)))) (|mindegTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |k| (|OrderedFreeMonoid| *3)) (|:| |c| *4))))) (|coef| (*1 *2 *1 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *1 (|XFreeAlgebra| *4 *2)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|coef| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|lquo| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|lquo| (*1 *1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|lquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|rquo| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|rquo| (*1 *1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|rquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|monom| (*1 *1 *2 *3) (AND (|isDomain| *2 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *1 (|XFreeAlgebra| *4 *3)) (|ofCategory| *3 (|Ring|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|mirror| (*1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|constant?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|constant| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|quasiRegular?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|quasiRegular| (*1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|sh| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|CommutativeRing|)))) (|sh| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|CommutativeRing|)))) (|varList| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|List| *3)))))
+(|Join| (|Ring|) (|XAlgebra| |t#2|) (|Functorial| |t#2|) (|RetractableTo| (|OrderedFreeMonoid| |t#1|)) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#2|)) (SIGNATURE |mindeg| ((|OrderedFreeMonoid| |t#1|) $)) (SIGNATURE |mindegTerm| ((|Record| (|:| |k| (|OrderedFreeMonoid| |t#1|)) (|:| |c| |t#2|)) $)) (SIGNATURE |coef| (|t#2| $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |coef| (|t#2| $ $)) (SIGNATURE |lquo| ($ $ |t#1|)) (SIGNATURE |lquo| ($ $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |lquo| ($ $ $)) (SIGNATURE |rquo| ($ $ |t#1|)) (SIGNATURE |rquo| ($ $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |rquo| ($ $ $)) (SIGNATURE |monom| ($ (|OrderedFreeMonoid| |t#1|) |t#2|)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |constant?| ((|Boolean|) $)) (SIGNATURE |constant| (|t#2| $)) (SIGNATURE |quasiRegular?| ((|Boolean|) $)) (SIGNATURE |quasiRegular| ($ $)) (IF (|has| |t#2| (|CommutativeRing|)) (PROGN (SIGNATURE |sh| ($ $ $)) (SIGNATURE |sh| ($ $ (|NonNegativeInteger|)))) |%noBranch|) (SIGNATURE |varList| ((|List| |t#1|) $)) (IF (|has| |t#2| (ATTRIBUTE |noZeroDivisors|)) (ATTRIBUTE |noZeroDivisors|) |%noBranch|)))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#2|) |has| |#2| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #1=(|OrderedFreeMonoid| |#1|)) . T) ((|CoercibleFrom| |#2|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Functorial| |#2|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#2|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#2|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#2|) |has| |#2| (|CommutativeRing|)) ((|Module| |#2|) |has| |#2| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| #1#) . T) ((|RightLinearSet| |#2|) . T) ((|RightModule| |#2|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|XAlgebra| |#2|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|varList| (((|List| |#1|) $) 99 T ELT)) (|trunc| (#6=($ $ #7=(|NonNegativeInteger|)) 103 T ELT)) (|subtractIfCan| ((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|sh| (#10=($ $ $) NIL #11=(|has| |#2| (|CommutativeRing|)) ELT) (#6# NIL #11# ELT)) (|sample| (#12=($) NIL T CONST)) (|rquo| #13=(($ $ |#1|) NIL T ELT) #14=(($ $ #15=(|OrderedFreeMonoid| |#1|)) NIL T ELT) #16=(#10# NIL T ELT)) (|retractIfCan| (((|Union| #15# . #17=(#9#)) . #18=($)) NIL T ELT) (((|Union| #19=(|PoincareBirkhoffWittLyndonBasis| |#1|) . #17#) . #18#) NIL T ELT)) (|retract| #20=((#15# . #21=($)) NIL T ELT) (#22=(#19# . #21#) NIL T ELT)) (|reductum| (#23=($ $) 102 T ELT)) (|recip| ((#8# $) NIL T ELT)) (|quasiRegular?| (#5# 90 T ELT)) (|quasiRegular| (#23# 93 T ELT)) (|product| (($ $ $ #7#) 104 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| (#24=(#7# $) NIL T ELT)) (|monomials| (((|List| $) $) NIL T ELT)) (|monomial?| #4#) (|monom| (($ #15# |#2|) NIL T ELT) (($ #19# |#2|) 28 T ELT)) (|mirror| (#23# 120 T ELT)) (|mindegTerm| (((|Record| (|:| |k| #15#) #25=(|:| |c| |#2|)) $) NIL T ELT)) (|mindeg| #20#) (|maxdeg| #20#) (|map| (($ (|Mapping| |#2| |#2|) $) NIL T ELT)) (|lquo| #13# #14# #16#) (|log| (#6# 113 #26=(|has| |#2| (|Module| (|Fraction| #27=(|Integer|)))) ELT)) (|leadingTerm| ((#28=(|Record| (|:| |k| #19#) #25#) $) NIL T ELT)) (|leadingMonomial| (#22# 84 T ELT)) (|leadingCoefficient| (#29=(|#2| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|exp| (#6# 110 #26# ELT)) (|degree| (#24# 100 T ELT)) (|constant?| (#5# 85 T ELT)) (|constant| (#29# 88 T ELT)) (|coerce| (((|OutputForm|) $) 70 T ELT) (($ #27#) NIL T ELT) (($ |#2|) 59 T ELT) (($ #15#) NIL T ELT) (($ |#1|) 72 T ELT) (($ #19#) NIL T ELT) (($ #30=(|LiePolynomial| |#1| |#2|)) 47 T ELT) (((|XDistributedPolynomial| |#1| |#2|) $) 77 T ELT) (((|XRecursivePolynomial| |#1| |#2|) $) 82 T ELT)) (|coefficients| (((|List| |#2|) $) NIL T ELT)) (|coefficient| ((|#2| $ #19#) NIL T ELT)) (|coef| ((|#2| $ #15#) NIL T ELT) ((|#2| $ $) NIL T ELT)) (|characteristic| ((#7#) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#12# 21 T CONST)) (|One| (#12# 27 T CONST)) (|ListOfTerms| (((|List| #28#) $) NIL T ELT)) (|LiePolyIfCan| (((|Union| #30# #9#) $) 119 T ELT)) (= (#2# 78 T ELT)) (- (#23# 112 T ELT) (#10# 111 T ELT)) (+ (#10# 20 T ELT)) (** (($ $ #31=(|PositiveInteger|)) NIL T ELT) (#6# NIL T ELT)) (* (($ #31# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #27# . #32=($)) NIL T ELT) (#10# 48 T ELT) (($ |#2| . #32#) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| #19#) NIL T ELT)))
+(((|XPBWPolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (|FreeModuleCat| |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ #1=(|LiePolynomial| |#1| |#2|))) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |#1| |#2|) $)) (SIGNATURE |LiePolyIfCan| ((|Union| #1# "failed") $)) (SIGNATURE |product| ($ $ $ #2=(|NonNegativeInteger|))) (IF (|has| |#2| (|Module| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |exp| #3=($ $ #2#)) (SIGNATURE |log| #3#)) |%noBranch|))) (|OrderedSet|) (|CommutativeRing|)) (T |XPBWPolynomial|))
+((|coerce| (*1 *1 *2) (AND #1=(|isDomain| *2 (|LiePolynomial| *3 *4)) #2=(|ofCategory| *3 (|OrderedSet|)) #3=(|ofCategory| *4 (|CommutativeRing|)) #4=(|isDomain| *1 (|XPBWPolynomial| *3 *4)))) (|coerce| #5=(*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) #4# #2# #3#)) (|coerce| #5# (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) #4# #2# #3#)) (|LiePolyIfCan| #5# (|partial| AND #1# #4# #2# #3#)) (|product| (*1 *1 *1 *1 *2) (AND #6=(|isDomain| *2 (|NonNegativeInteger|)) #4# #2# #3#)) (|exp| #7=(*1 *1 *1 *2) #8=(AND #6# #4# (|ofCategory| *4 (|Module| (|Fraction| (|Integer|)))) #2# #3#)) (|log| #7# #8#))
+((~= #1=((#2=(|Boolean|) $ $) NIL T ELT)) (|zero?| #3=((#2# $) NIL T ELT)) (|varList| (((|List| #4=(|Symbol|)) $) NIL T ELT)) (|unexpand| (($ #5=(|XDistributedPolynomial| #4# |#1|)) NIL T ELT)) (|trunc| #6=(#7=($ $ #8=(|NonNegativeInteger|)) NIL T ELT)) (|subtractIfCan| ((#9=(|Union| $ #10="failed") $ $) NIL T ELT)) (|sh| (#11=($ $ $) NIL #12=(|has| |#1| (|CommutativeRing|)) ELT) (#7# NIL #12# ELT)) (|sample| #13=(($) NIL T CONST)) (|rquo| #14=(($ $ #4#) NIL T ELT) #15=(($ $ #16=(|OrderedFreeMonoid| #4#)) NIL T ELT) #17=(#11# NIL T ELT)) (|retractIfCan| (((|Union| #16# #10#) $) NIL T ELT)) (|retract| #18=((#16# $) NIL T ELT)) (|recip| ((#9# $) NIL T ELT)) (|quasiRegular?| #3#) (|quasiRegular| #19=(($ $) NIL T ELT)) (|opposite?| #1#) (|one?| #3#) (|monomial?| #3#) (|monom| (($ #16# |#1|) NIL T ELT)) (|mirror| #19#) (|mindegTerm| (((|Record| (|:| |k| #16#) (|:| |c| |#1|)) $) NIL T ELT)) (|mindeg| #18#) (|maxdeg| #18#) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|lquo| #14# #15# #17#) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expand| ((#5# $) NIL T ELT)) (|degree| ((#8# $) NIL T ELT)) (|constant?| #3#) (|constant| ((|#1| $) NIL T ELT)) (|coerce| (((|OutputForm|) $) NIL T ELT) (($ #20=(|Integer|)) NIL T ELT) (($ |#1|) NIL T ELT) (($ #16#) NIL T ELT) (($ #4#) NIL T ELT)) (|coef| ((|#1| $ #16#) NIL T ELT) ((|#1| $ $) NIL T ELT)) (|characteristic| ((#8#) NIL T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| #13#) (|RemainderList| (((|List| (|Record| (|:| |k| #4#) (|:| |c| $))) $) NIL T ELT)) (|One| #13#) (= #1#) (- #19# #17#) (+ #17#) (** (($ $ #21=(|PositiveInteger|)) NIL T ELT) #6#) (* (($ #21# $) NIL T ELT) (($ #8# $) NIL T ELT) (($ #20# . #22=($)) NIL T ELT) #17# (($ |#1| . #22#) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ #4# $) NIL T ELT)))
+(((|XPolynomial| |#1|) (|Join| (|XPolynomialsCat| #1=(|Symbol|) |#1|) (CATEGORY |domain| (SIGNATURE |expand| (#2=(|XDistributedPolynomial| #1# |#1|) $)) (SIGNATURE |unexpand| ($ #2#)) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| #1#) (|:| |c| $))) $)))) (|Ring|)) (T |XPolynomial|))
+((|expand| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|XDistributedPolynomial| #3=(|Symbol|) *3)) #4=(|isDomain| *1 #5=(|XPolynomial| *3)) #6=(|ofCategory| *3 (|Ring|)))) (|unexpand| (*1 *1 *2) (AND #2# #6# #4#)) (|RemainderList| #1# (AND (|isDomain| *2 (|List| (|Record| (|:| |k| #3#) (|:| |c| #5#)))) #4# #6#)))
+((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|zero?| ((#2=(|Boolean|) $) 22 T ELT)) (|varList| (((|List| |#1|) $) 56 T ELT)) (|trunc| (($ $ (|NonNegativeInteger|)) 90 T ELT)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26 T ELT)) (|sh| (#3=($ $ $) 58 (|has| |#2| . #4=((|CommutativeRing|))) ELT) (($ $ (|NonNegativeInteger|)) 57 (|has| |#2| . #4#) ELT)) (|sample| (#5=($) 23 T CONST)) (|rquo| (($ $ |#1|) 69 T ELT) (($ $ (|OrderedFreeMonoid| |#1|)) 68 T ELT) (#3# 67 T ELT)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) 79 T ELT)) (|retract| (((|OrderedFreeMonoid| |#1|) $) 80 T ELT)) (|recip| (((|Union| $ "failed") $) 42 T ELT)) (|quasiRegular?| (#6=((|Boolean|) $) 60 T ELT)) (|quasiRegular| (#7=($ $) 59 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT)) (|one?| (((|Boolean|) $) 44 T ELT)) (|monomial?| (#6# 65 T ELT)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 66 T ELT)) (|mirror| (#7# 64 T ELT)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 76 T ELT)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) 92 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 81 T ELT)) (|lquo| (($ $ |#1|) 72 T ELT) (($ $ (|OrderedFreeMonoid| |#1|)) 71 T ELT) (#3# 70 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|degree| (((|NonNegativeInteger|) $) 91 T ELT)) (|constant?| (#6# 62 T ELT)) (|constant| ((|#2| $) 61 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 41 T ELT) (($ |#2|) 84 T ELT) (($ (|OrderedFreeMonoid| |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (|characteristic| (((|NonNegativeInteger|)) 40 T CONST)) (|before?| (#1# 6 T ELT)) (|annihilate?| (((|Boolean|) $ $) 33 T ELT)) (|Zero| (#5# 24 T CONST)) (|One| (($) 45 T CONST)) (= (#1# 8 T ELT)) (- (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (+ (($ $ $) 18 T ELT)) (** (($ $ (|PositiveInteger|)) 35 T ELT) (($ $ (|NonNegativeInteger|)) 43 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT) (($ (|NonNegativeInteger|) $) 21 T ELT) (($ (|Integer|) . #8=($)) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| . #8#) 83 T ELT) (($ $ |#2|) 82 T ELT) (($ |#1| $) 77 T ELT)))
+(((|XPolynomialsCat| |#1| |#2|) (|Category|) (|OrderedSet|) (|Ring|)) (T |XPolynomialsCat|))
+((|maxdeg| (*1 *2 *1) (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|OrderedFreeMonoid| *3)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|trunc| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))))
+(|Join| (|XFreeAlgebra| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |maxdeg| ((|OrderedFreeMonoid| |t#1|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |trunc| ($ $ (|NonNegativeInteger|)))))
+(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#2|) |has| |#2| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| (|Integer|)) . T) ((|CoercibleFrom| #1=(|OrderedFreeMonoid| |#1|)) . T) ((|CoercibleFrom| |#2|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Functorial| |#2|) . T) ((|Join|) . T) ((|LeftLinearSet| (|Integer|)) . T) ((|LeftLinearSet| |#2|) . T) ((|LeftLinearSet| $) . T) ((|LeftModule| |#2|) . T) ((|LeftModule| $) . T) ((|LinearSet| |#2|) |has| |#2| (|CommutativeRing|)) ((|Module| |#2|) |has| |#2| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| #1#) . T) ((|RightLinearSet| |#2|) . T) ((|RightModule| |#2|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|XAlgebra| |#2|) . T) ((|XFreeAlgebra| |#1| |#2|) . T))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| #4=(#5=(#3# $) NIL T ELT)) (|subtractIfCan| ((#6=(|Union| $ #7="failed") $ $) NIL T ELT)) (|sample| (#8=($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| #7#) $) NIL T ELT)) (|retract| #9=(#10=(|#2| $) NIL T ELT)) (|reductum| #11=(#12=($ $) NIL T ELT)) (|recip| ((#6# $) 43 T ELT)) (|quasiRegular?| (#5# 37 T ELT)) (|quasiRegular| (#12# 38 T ELT)) (|opposite?| #1#) (|one?| #4#) (|numberOfMonomials| (#13=(#14=(|NonNegativeInteger|) $) NIL T ELT)) (|monomials| (((|List| $) $) NIL T ELT)) (|monomial?| #4#) (|monom| (($ |#2| |#1|) NIL T ELT)) (|mindeg| (#10# 25 T ELT)) (|maxdeg| (#10# 23 T ELT)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL T ELT)) (|leadingTerm| ((#15=(|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (|leadingMonomial| #9#) (|leadingCoefficient| (#16=(|#1| $) NIL T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|constant?| (#5# 33 T ELT)) (|constant| (#16# 34 T ELT)) (|coerce| (((|OutputForm|) $) 66 T ELT) (($ #17=(|Integer|)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (|coefficients| (((|List| |#1|) $) NIL T ELT)) (|coefficient| (#18=(|#1| $ |#2|) NIL T ELT)) (|coef| (#18# 29 T ELT)) (|characteristic| ((#14#) 14 T CONST)) (|before?| #1#) (|annihilate?| #1#) (|Zero| (#8# 30 T CONST)) (|One| (#8# 11 T CONST)) (|ListOfTerms| (((|List| #15#) $) NIL T ELT)) (= (#2# 31 T ELT)) (/ (#19=($ $ |#1|) 68 (|has| |#1| (|Field|)) ELT)) (- #11# (#20=($ $ $) NIL T ELT)) (+ (#20# 51 T ELT)) (** (($ $ #21=(|PositiveInteger|)) NIL T ELT) (($ $ #14#) 53 T ELT)) (* (($ #21# $) NIL T ELT) (($ #14# $) NIL T ELT) (($ #17# . #22=($)) NIL T ELT) (#20# 52 T ELT) (($ |#1| . #22#) 48 T ELT) (#19# NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (|#| (#13# 18 T ELT)))
+(((|XPolynomialRing| |#1| |#2|) (|Join| #1=(|Ring|) (|XAlgebra| |#1|) (|FreeModuleCat| |#1| |#2|) (|CoercibleFrom| |#2|) (|Functorial| |#1|) (CATEGORY |domain| (SIGNATURE * #2=($ $ |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |maxdeg| #3=(|#2| $)) (SIGNATURE |mindeg| #3#) (SIGNATURE |reductum| #4=($ $)) (SIGNATURE |coef| (|#1| $ |#2|)) (SIGNATURE |constant?| #5=((|Boolean|) $)) (SIGNATURE |constant| (|#1| $)) (SIGNATURE |quasiRegular?| #5#) (SIGNATURE |quasiRegular| #4#) (IF (|has| |#1| (|Field|)) (SIGNATURE / #2#) |%noBranch|) (IF (|has| |#1| #6=(ATTRIBUTE |noZeroDivisors|)) #6# |%noBranch|) (IF (|has| |#1| #7=(ATTRIBUTE |unitsKnown|)) #7# |%noBranch|) (IF (|has| |#1| #8=(ATTRIBUTE |canonicalUnitNormal|)) #8# |%noBranch|))) #1# (|OrderedMonoid|)) (T |XPolynomialRing|))
+((* #1=(*1 *1 *1 *2) #2=(AND #3=(|isDomain| *1 (|XPolynomialRing| *2 *3)) #4=(|ofCategory| *2 #5=(|Ring|)) #6=(|ofCategory| *3 #7=(|OrderedMonoid|)))) (|reductum| #8=(*1 *1 *1) #2#) (|#| #9=(*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) #10=(|isDomain| *1 (|XPolynomialRing| *3 *4)) #11=(|ofCategory| *3 #5#) #12=(|ofCategory| *4 #7#))) (|maxdeg| #9# #13=(AND (|ofCategory| *2 #7#) (|isDomain| *1 (|XPolynomialRing| *3 *2)) #11#)) (|mindeg| #9# #13#) (|coef| (*1 *2 *1 *3) #14=(AND #4# #3# #6#)) (|constant?| #9# #15=(AND (|isDomain| *2 (|Boolean|)) #10# #11# #12#)) (|constant| #9# #14#) (|quasiRegular?| #9# #15#) (|quasiRegular| #8# #2#) (/ #1# (AND #3# (|ofCategory| *2 (|Field|)) #4# #6#)))
+((~= (#1=(#2=(|Boolean|) $ $) 27 T ELT)) (|zero?| #3=(#4=(#2# $) NIL T ELT)) (|varList| (((|List| |#1|) $) 132 T ELT)) (|unexpand| (($ #5=(|XDistributedPolynomial| |#1| |#2|)) 50 T ELT)) (|trunc| (#6=($ $ #7=(|NonNegativeInteger|)) 38 T ELT)) (|subtractIfCan| ((#8=(|Union| $ #9="failed") $ $) NIL T ELT)) (|sh| (#10=($ $ $) 54 #11=(|has| |#2| (|CommutativeRing|)) ELT) (#6# 52 #11# ELT)) (|sample| (#12=($) NIL T CONST)) (|rquo| (#13=($ $ |#1|) 114 T ELT) (#14=($ $ #15=(|OrderedFreeMonoid| |#1|)) 115 T ELT) (#10# 26 T ELT)) (|retractIfCan| (((|Union| #15# #9#) $) NIL T ELT)) (|retract| (#16=(#15# $) NIL T ELT)) (|recip| ((#8# $) 122 T ELT)) (|quasiRegular?| (#4# 117 T ELT)) (|quasiRegular| (#17=($ $) 118 T ELT)) (|opposite?| #18=(#1# NIL T ELT)) (|one?| #3#) (|monomial?| #3#) (|monom| (($ #15# |#2|) 20 T ELT)) (|mirror| (#17# NIL T ELT)) (|mindegTerm| (((|Record| (|:| |k| #15#) (|:| |c| |#2|)) $) NIL T ELT)) (|mindeg| (#16# 123 T ELT)) (|maxdeg| (#16# 126 T ELT)) (|map| (($ (|Mapping| |#2| |#2|) $) 131 T ELT)) (|lquo| (#13# 112 T ELT) (#14# 113 T ELT) (#10# 62 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|expand| ((#5# $) 94 T ELT)) (|degree| ((#7# $) 129 T ELT)) (|constant?| (#4# 81 T ELT)) (|constant| ((|#2| $) 32 T ELT)) (|coerce| (((|OutputForm|) $) 73 T ELT) (($ #19=(|Integer|)) 87 T ELT) (($ |#2|) 85 T ELT) (($ #15#) 18 T ELT) (($ |#1|) 84 T ELT)) (|coef| ((|#2| $ #15#) 116 T ELT) ((|#2| $ $) 28 T ELT)) (|characteristic| ((#7#) 120 T CONST)) (|before?| #18#) (|annihilate?| #18#) (|Zero| (#12# 15 T CONST)) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (|One| (#12# 33 T CONST)) (= (#1# 14 T ELT)) (- (#17# 98 T ELT) (#10# 101 T ELT)) (+ (#10# 61 T ELT)) (** (($ $ #20=(|PositiveInteger|)) NIL T ELT) (#6# 55 T ELT)) (* (($ #20# $) NIL T ELT) (($ #7# $) 53 T ELT) (($ #19# $) 106 T ELT) (#10# 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
+(((|XRecursivePolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |expand| (#1=(|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |unexpand| ($ #1#)) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $)))) (|OrderedSet|) (|Ring|)) (T |XRecursivePolynomial|))
+((|expand| #1=(*1 *2 *1) (AND #2=(|isDomain| *2 (|XDistributedPolynomial| *3 *4)) #3=(|isDomain| *1 #4=(|XRecursivePolynomial| *3 *4)) #5=(|ofCategory| *3 (|OrderedSet|)) #6=(|ofCategory| *4 (|Ring|)))) (|unexpand| (*1 *1 *2) (AND #2# #5# #6# #3#)) (|RemainderList| #1# (AND (|isDomain| *2 (|List| (|Record| (|:| |k| *3) (|:| |c| #4#)))) #3# #5# #6#)))
+((~= #1=(#2=((|Boolean|) $ $) NIL T ELT)) (|youngDiagram| (($ (|List| (|PositiveInteger|))) 11 T ELT)) (|shape| (#3=(#4=(|Partition|) $) 12 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|coerce| (((|OutputForm|) $) 25 T ELT) (($ #4#) 14 T ELT) (#3# 13 T ELT)) (|before?| #1#) (= (#2# 17 T ELT)))
+(((|YoungDiagram|) (|Join| (|SetCategory|) (|HomotopicTo| #1=(|Partition|)) (CATEGORY |domain| (SIGNATURE |youngDiagram| ($ (|List| (|PositiveInteger|)))) (SIGNATURE |shape| (#1# $))))) (T |YoungDiagram|))
+((|youngDiagram| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|PositiveInteger|))) #1=(|isDomain| *1 (|YoungDiagram|)))) (|shape| (*1 *2 *1) (AND (|isDomain| *2 (|Partition|)) #1#)))
+((Y ((#1=(|List| #2=(|Stream| |#1|)) (|Mapping| #1# #1#) (|Integer|)) 16 T ELT) ((#2# (|Mapping| #2# #2#)) 13 T ELT)))
+(((|ParadoxicalCombinatorsForStreams| |#1|) (CATEGORY |package| (SIGNATURE Y (#1=(|Stream| |#1|) (|Mapping| #1# #1#))) (SIGNATURE Y (#2=(|List| #1#) (|Mapping| #2# #2#) (|Integer|)))) (|Type|)) (T |ParadoxicalCombinatorsForStreams|))
+((Y (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| #1=(|List| (|Stream| *5)) #1#)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 #1#) (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *5)) (|ofCategory| *5 #2=(|Type|)))) (Y (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| #3=(|Stream| *4) #3#)) (|isDomain| *2 #3#) (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *4)) (|ofCategory| *4 #2#))))
+((|univariateSolve| ((#1=(|List| (|Record| (|:| |complexRoots| #2=(|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| #3=(|List| #4=(|Polynomial| |#1|))))) #3#) 174 T ELT) ((#1# #3# #5=(|Boolean|)) 173 T ELT) ((#1# #3# #5# #5#) 172 T ELT) ((#1# #3# #5# #5# #5#) 171 T ELT) ((#1# #6=(|RegularChain| |#1| |#2|)) 156 T ELT)) (|triangSolve| ((#7=(|List| #6#) #3#) 85 T ELT) ((#7# #3# #5#) 84 T ELT) ((#7# #3# #5# #5#) 83 T ELT)) (|squareFree| (((|List| #8=(|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| #9=(|OrderedVariableList| |#3|)) #9# #10=(|NewSparseMultivariatePolynomial| |#1| #9#))) #6#) 73 T ELT)) (|realSolve| (#11=(#12=(|List| (|List| #13=(|RealClosure| (|Fraction| |#1|)))) #3#) 140 T ELT) (#14=(#12# #3# #5#) 139 T ELT) (#15=(#12# #3# #5# #5#) 138 T ELT) ((#12# #3# #5# #5# #5#) 137 T ELT) (#16=(#12# #6#) 132 T ELT)) (|positiveSolve| (#11# 145 T ELT) (#14# 144 T ELT) (#15# 143 T ELT) (#16# 142 T ELT)) (|convert| (((|List| #10#) #8#) 111 T ELT) (((|SparseUnivariatePolynomial| #13#) #2#) 102 T ELT) ((#17=(|Polynomial| #13#) #10#) 109 T ELT) ((#17# #4#) 107 T ELT) ((#10# (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) 33 T ELT)))
+(((|ZeroDimensionalSolvePackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |triangSolve| (#1=(|List| #2=(|RegularChain| |#1| |#2|)) #3=(|List| #4=(|Polynomial| |#1|)) #5=(|Boolean|) #5#)) (SIGNATURE |triangSolve| (#1# #3# #5#)) (SIGNATURE |triangSolve| (#1# #3#)) (SIGNATURE |univariateSolve| (#6=(|List| (|Record| (|:| |complexRoots| #7=(|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| #3#))) #2#)) (SIGNATURE |univariateSolve| (#6# #3# #5# #5# #5#)) (SIGNATURE |univariateSolve| (#6# #3# #5# #5#)) (SIGNATURE |univariateSolve| (#6# #3# #5#)) (SIGNATURE |univariateSolve| (#6# #3#)) (SIGNATURE |realSolve| #8=(#9=(|List| (|List| #10=(|RealClosure| (|Fraction| |#1|)))) #2#)) (SIGNATURE |realSolve| (#9# #3# #5# #5# #5#)) (SIGNATURE |realSolve| #11=(#9# #3# #5# #5#)) (SIGNATURE |realSolve| #12=(#9# #3# #5#)) (SIGNATURE |realSolve| #13=(#9# #3#)) (SIGNATURE |positiveSolve| #8#) (SIGNATURE |positiveSolve| #11#) (SIGNATURE |positiveSolve| #12#) (SIGNATURE |positiveSolve| #13#) (SIGNATURE |squareFree| ((|List| #14=(|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| #15=(|OrderedVariableList| |#3|)) #15# #16=(|NewSparseMultivariatePolynomial| |#1| #15#))) #2#)) (SIGNATURE |convert| (#16# (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (SIGNATURE |convert| (#17=(|Polynomial| #10#) #4#)) (SIGNATURE |convert| (#17# #16#)) (SIGNATURE |convert| ((|SparseUnivariatePolynomial| #10#) #7#)) (SIGNATURE |convert| ((|List| #16#) #14#))) (|Join| (|OrderedRing|) (|EuclideanDomain|) (|CharacteristicZero|) (|RealConstant|)) #18=(|List| (|Symbol|)) #18#) (T |ZeroDimensionalSolvePackage|))
+((|convert| #1=(*1 *2 *3) (AND (|isDomain| *3 #2=(|SquareFreeRegularTriangularSet| *4 (|IndexedExponents| #3=(|OrderedVariableList| *6)) #3# #4=(|NewSparseMultivariatePolynomial| *4 #3#))) #5=(|ofCategory| *4 #6=(|Join| (|OrderedRing|) (|EuclideanDomain|) (|CharacteristicZero|) (|RealConstant|))) #7=(|ofType| *6 #8=(|List| (|Symbol|))) (|isDomain| *2 (|List| #4#)) #9=(|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6)) #10=(|ofType| *5 #8#))) (|convert| #1# (AND (|isDomain| *3 #11=(|SparseUnivariatePolynomial| *4)) #5# (|isDomain| *2 (|SparseUnivariatePolynomial| #12=(|RealClosure| (|Fraction| *4)))) #9# #10# #7#)) (|convert| #1# (AND (|isDomain| *3 #4#) #5# #7# #13=(|isDomain| *2 (|Polynomial| #12#)) #9# #10#)) (|convert| #1# (AND (|isDomain| *3 #14=(|Polynomial| *4)) #5# #13# #9# #10# #7#)) (|convert| #1# (AND (|isDomain| *3 (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *5))) #5# #10# (|isDomain| *2 #4#) #9# #7#)) (|squareFree| #1# (AND #15=(|isDomain| *3 #16=(|RegularChain| *4 *5)) #5# #10# (|isDomain| *2 (|List| #2#)) #9# #7#)) (|positiveSolve| #1# #17=(AND #18=(|isDomain| *3 #19=(|List| #14#)) #5# #20=(|isDomain| *2 (|List| (|List| #12#))) #9# #10# #7#)) (|positiveSolve| #21=(*1 *2 *3 *4) #22=(AND #23=(|isDomain| *3 #24=(|List| (|Polynomial| *5))) #25=(|isDomain| *4 (|Boolean|)) #26=(|ofCategory| *5 #6#) (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5))))) #27=(|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7)) #7# #28=(|ofType| *7 #8#))) (|positiveSolve| #29=(*1 *2 *3 *4 *4) #22#) (|positiveSolve| #1# #30=(AND #15# #5# #10# #20# #9# #7#)) (|realSolve| #1# #17#) (|realSolve| #21# #22#) (|realSolve| #29# #22#) (|realSolve| #31=(*1 *2 *3 *4 *4 *4) #22#) (|realSolve| #1# #30#) (|univariateSolve| #1# (AND #5# #32=(|isDomain| *2 (|List| (|Record| (|:| |complexRoots| #11#) (|:| |coordinates| #19#)))) #9# #18# #10# #7#)) (|univariateSolve| #21# #33=(AND #25# #26# (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5)) (|:| |coordinates| #24#)))) #27# #23# #7# #28#)) (|univariateSolve| #29# #33#) (|univariateSolve| #31# #33#) (|univariateSolve| #1# (AND #15# #5# #10# #32# #9# #7#)) (|triangSolve| #1# (AND #18# #5# (|isDomain| *2 (|List| #16#)) #9# #10# #7#)) (|triangSolve| #21# #34=(AND #23# #25# #26# (|isDomain| *2 (|List| (|RegularChain| *5 *6))) #27# #7# #28#)) (|triangSolve| #29# #34#))
+((|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| #1=(|Integer|))) #2="failed") #3=(|Vector| |#1|) |#1|) 21 T ELT)) (|linearlyDependentOverZ?| (((|Boolean|) #3#) 12 T ELT)) (|linearDependenceOverZ| (((|Union| (|Vector| #1#) #2#) #3#) 16 T ELT)))
+(((|IntegerLinearDependence| |#1|) (CATEGORY |package| (SIGNATURE |linearlyDependentOverZ?| ((|Boolean|) #1=(|Vector| |#1|))) (SIGNATURE |linearDependenceOverZ| ((|Union| (|Vector| #2=(|Integer|)) #3="failed") #1#)) (SIGNATURE |solveLinearlyOverQ| ((|Union| (|Vector| (|Fraction| #2#)) #3#) #1# |#1|))) (|Join| (|Ring|) (|LinearlyExplicitRingOver| #2#))) (T |IntegerLinearDependence|))
+((|solveLinearlyOverQ| (*1 *2 *3 *4) (|partial| AND #1=(|isDomain| *3 (|Vector| *4)) #2=(|ofCategory| *4 (|Join| (|Ring|) (|LinearlyExplicitRingOver| #3=(|Integer|)))) (|isDomain| *2 (|Vector| (|Fraction| #3#))) #4=(|isDomain| *1 (|IntegerLinearDependence| *4)))) (|linearDependenceOverZ| #5=(*1 *2 *3) (|partial| AND #1# #2# (|isDomain| *2 (|Vector| #3#)) #4#)) (|linearlyDependentOverZ?| #5# (AND #1# #2# (|isDomain| *2 (|Boolean|)) #4#)))
+((~= #1=(#2=(#3=(|Boolean|) $ $) NIL T ELT)) (|zero?| (#4=(#3# $) 12 T ELT)) (|subtractIfCan| ((#5=(|Union| $ "failed") $ $) NIL T ELT)) (|size| (#6=(#7=(|NonNegativeInteger|)) 9 T ELT)) (|sample| (#8=($) NIL T CONST)) (|recip| ((#5# $) 57 T ELT)) (|random| (#8# 46 T ELT)) (|opposite?| #1#) (|one?| (#4# 38 T ELT)) (|nextItem| (((|Maybe| $) $) 36 T ELT)) (|lookup| ((#9=(|PositiveInteger|) $) 14 T ELT)) (|latex| (((|String|) $) NIL T ELT)) (|init| (#8# 26 T CONST)) (|index| (($ #9#) 47 T ELT)) (|hash| (((|SingleInteger|) $) NIL T ELT)) (|convert| ((#10=(|Integer|) $) 16 T ELT)) (|coerce| (((|OutputForm|) $) 21 T ELT) (($ #10#) 18 T ELT)) (|characteristic| (#6# 10 T CONST)) (|before?| (#2# 59 T ELT)) (|annihilate?| #1#) (|Zero| (#8# 23 T CONST)) (|One| (#8# 25 T CONST)) (= (#2# 31 T ELT)) (- (($ $) 50 T ELT) (#11=($ $ $) 44 T ELT)) (+ (#11# 29 T ELT)) (** (($ $ #9#) NIL T ELT) (($ $ #7#) 52 T ELT)) (* (($ #9# $) NIL T ELT) (($ #7# $) NIL T ELT) (($ #10# $) 41 T ELT) (#11# 40 T ELT)))
+(((|IntegerMod| |#1|) (|Join| (|CommutativeRing|) (|Finite|) (|ConvertibleTo| (|Integer|)) (|StepThrough|)) (|PositiveInteger|)) (T |IntegerMod|))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((|Union| 2994614 2994619 2994624 NIL NIL NIL (NIL) |domain| NIL NIL NIL) (|Record| 2994599 2994604 2994609 NIL NIL NIL (NIL) |domain| NIL NIL NIL) (|Mapping| 2994584 2994589 2994594 NIL NIL NIL (NIL) |domain| NIL NIL NIL) (|Enumeration| 2994569 2994574 2994579 NIL NIL NIL (NIL) |domain| NIL NIL NIL) (|IntegerMod| 2993419 2994416 2994564 "ZMOD" NIL ZMOD (NIL NIL) |domain| NIL NIL NIL) (|IntegerLinearDependence| 2992336 2992589 2992976 "ZLINDEP" NIL ZLINDEP (NIL T) |package| NIL NIL NIL) (|ZeroDimensionalSolvePackage| 2987126 2988309 2989937 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) |package| NIL NIL NIL) (|ParadoxicalCombinatorsForStreams| 2986384 2986504 2986739 "YSTREAM" NIL YSTREAM (NIL T) |package| NIL NIL NIL) (|YoungDiagram| 2985658 2985998 2986205 "YDIAGRAM" NIL YDIAGRAM (NIL) |domain| NIL NIL NIL) (|XRecursivePolynomial| 2983002 2984979 2985304 "XRPOLY" NIL XRPOLY (NIL T T) |domain| NIL NIL NIL) (|XPolynomialRing| 2979727 2981499 2982297 "XPR" NIL XPR (NIL T T) |domain| NIL NIL NIL) (|XPolynomialsCat| 2975772 2977990 2978084 "XPOLYC" 2978604 XPOLYC (NIL T T) |category| NIL 2978813 NIL) (|XPolynomial| 2973354 2975168 2975462 "XPOLY" NIL XPOLY (NIL T) |domain| NIL NIL NIL) (|XPBWPolynomial| 2969403 2972097 2972725 "XPBWPOLY" NIL XPBWPOLY (NIL T T) |domain| NIL NIL NIL) (|XFreeAlgebra| 2961633 2963731 2963819 "XFALG" 2967322 XFALG (NIL T T) |category| NIL 2968522 NIL) (|ExtensionField| 2954543 2958032 2958105 "XF" 2959258 XF (NIL T) |category| NIL 2960041 NIL) (|ExtensionField&| 2954100 2954252 2954538 "XF-" NIL XF- (NIL T T) |package| NIL NIL NIL) (|XExponentialPackage| 2953327 2953459 2953775 "XEXPPKG" NIL XEXPPKG (NIL T T T) |package| NIL NIL NIL) (|XDistributedPolynomial| 2950988 2953138 2953322 "XDPOLY" NIL XDPOLY (NIL T T) |domain| NIL NIL NIL) (|XAlgebra| 2949029 2950004 2950064 "XALG" 2950069 XALG (NIL T) |category| NIL 2950239 NIL) (|WuWenTsunTriangularSet| 2943238 2947043 2947660 "WUTSET" NIL WUTSET (NIL T T T T) |domain| NIL NIL NIL) (|WeightedPolynomials| 2940992 2942030 2942527 "WP" NIL WP (NIL T T T T NIL NIL NIL) |domain| NIL NIL NIL) (|WhileAst| 2940499 2940776 2940901 "WHILEAST" NIL WHILEAST (NIL) |domain| NIL NIL NIL) (|WhereAst| 2939900 2940214 2940375 "WHEREAST" NIL WHEREAST (NIL) |domain| NIL NIL NIL) (|WildFunctionFieldIntegralBasis| 2938613 2938782 2939192 "WFFINTBS" NIL WFFINTBS (NIL T T T T) |package| NIL NIL NIL) (|WeierstrassPreparation| 2936803 2937216 2937717 "WEIER" NIL WEIER (NIL T) |package| NIL NIL NIL) (|VectorSpace| 2935262 2935952 2936019 "VSPACE" 2936239 VSPACE (NIL T) |category| NIL 2936357 NIL) (|VectorSpace&| 2935094 2935123 2935257 "VSPACE-" NIL VSPACE- (NIL T T) |package| NIL NIL NIL) (|Void| 2934875 2934941 2935049 "VOID" NIL VOID (NIL) |domain| NIL NIL NIL) (|ViewDefaultsPackage| 2931664 2932540 2933714 "VIEWDEF" NIL VIEWDEF (NIL) |package| NIL NIL NIL) (|ThreeDimensionalViewport| 2924627 2926841 2929154 "VIEW3D" NIL VIEW3D (NIL) |domain| NIL NIL NIL) (|TwoDimensionalViewport| 2918992 2920752 2922494 "VIEW2D" NIL VIEW2D (NIL) |domain| NIL NIL NIL) (|ViewportPackage| 2917574 2917921 2918374 "VIEW" NIL VIEW (NIL) |package| NIL NIL NIL) (|VectorFunctions2| 2916288 2916558 2916925 "VECTOR2" NIL VECTOR2 (NIL T T) |package| NIL NIL NIL) (|Vector| 2912627 2916037 2916172 "VECTOR" NIL VECTOR (NIL T) |domain| NIL NIL NIL) (|VectorCategory| 2903699 2908943 2909015 "VECTCAT" 2910689 VECTCAT (NIL T) |category| NIL 2911479 NIL) (|VectorCategory&| 2902821 2903178 2903694 "VECTCAT-" NIL VECTCAT- (NIL T T) |package| NIL NIL NIL) (|Variable| 2902254 2902511 2902686 "VARIABLE" NIL VARIABLE (NIL NIL) |domain| NIL NIL NIL) (|UnionType| 2902147 2902152 2902200 "UTYPE" 2902205 UTYPE (NIL) |category| NIL NIL NIL) (|UTSodetools| 2900462 2900687 2901143 "UTSODETL" NIL UTSODETL (NIL T T T T) |package| NIL NIL NIL) (|UnivariateTaylorSeriesODESolver| 2897941 2898416 2899067 "UTSODE" NIL UTSODE (NIL T T) |package| NIL NIL NIL) (|UnivariateTaylorSeriesCategory| 2884312 2890781 2890885 "UTSCAT" 2892909 UTSCAT (NIL T) |category| NIL 2894162 NIL) (|UnivariateTaylorSeriesCategory&| 2882148 2883118 2884307 "UTSCAT-" NIL UTSCAT- (NIL T T) |package| NIL NIL NIL) (|UnivariateTaylorSeriesFunctions2| 2881528 2881584 2881854 "UTS2" NIL UTS2 (NIL T T T T) |package| NIL NIL NIL) (|UnivariateTaylorSeries| 2875345 2879755 2880497 "UTS" NIL UTS (NIL T NIL NIL) |domain| NIL NIL NIL) (|UnaryRecursiveAggregate| 2867010 2869897 2869987 "URAGG" 2873696 URAGG (NIL T) |category| NIL 2874789 NIL) (|UnaryRecursiveAggregate&| 2864714 2865719 2867005 "URAGG-" NIL URAGG- (NIL T T) |package| NIL NIL NIL) (|UnivariatePuiseuxSeriesWithExponentialSingularity| 2860403 2863123 2863940 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) |domain| NIL NIL NIL) (|UnivariatePuiseuxSeriesConstructor| 2854845 2860196 2860398 "UPXSCONS" NIL UPXSCONS (NIL T T) |domain| NIL NIL NIL) (|UnivariatePuiseuxSeriesConstructorCategory| 2840532 2848341 2848516 "UPXSCCA" 2849772 UPXSCCA (NIL T T) |category| NIL 2850179 NIL) (|UnivariatePuiseuxSeriesConstructorCategory&| 2840022 2840150 2840527 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) |package| NIL NIL NIL) (|UnivariatePuiseuxSeriesCategory| 2825582 2833231 2833337 "UPXSCAT" 2834482 UPXSCAT (NIL T) |category| NIL 2835461 NIL) (|UnivariatePuiseuxSeriesFunctions2| 2824766 2824898 2825204 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) |package| NIL NIL NIL) (|UnivariatePuiseuxSeries| 2818961 2824057 2824520 "UPXS" NIL UPXS (NIL T NIL NIL) |domain| NIL NIL NIL) (|UnivariatePolynomialSquareFree| 2817563 2817800 2818258 "UPSQFREE" NIL UPSQFREE (NIL T T) |package| NIL NIL NIL) (|UnivariatePowerSeriesCategory| 2807239 2811292 2811424 "UPSCAT" 2813463 UPSCAT (NIL T T) |category| NIL 2814550 NIL) (|UnivariatePowerSeriesCategory&| 2806369 2806684 2807234 "UPSCAT-" NIL UPSCAT- (NIL T T T) |package| NIL NIL NIL) (|UnivariatePolynomialCategoryFunctions2| 2805739 2805795 2806073 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) |package| NIL NIL NIL) (|UnivariatePolynomialCategory| 2782518 2793496 2793596 "UPOLYC" 2797569 UPOLYC (NIL T) |category| NIL 2799621 NIL) (|UnivariatePolynomialCategory&| 2775806 2778691 2782513 "UPOLYC-" NIL UPOLYC- (NIL T T) |package| NIL NIL NIL) (|UnivariatePolynomialMultiplicationPackage| 2774879 2775034 2775360 "UPMP" NIL UPMP (NIL T T) |package| NIL NIL NIL) (|UnivariatePolynomialDivisionPackage| 2774204 2774321 2774609 "UPDIVP" NIL UPDIVP (NIL T T) |package| NIL NIL NIL) (|UnivariatePolynomialDecompositionPackage| 2772440 2772805 2773379 "UPDECOMP" NIL UPDECOMP (NIL T T) |package| NIL NIL NIL) (|UnivariatePolynomialCommonDenominator| 2771149 2771325 2771710 "UPCDEN" NIL UPCDEN (NIL T T T) |package| NIL NIL NIL) (|UnivariatePolynomialFunctions2| 2770449 2770565 2770829 "UP2" NIL UP2 (NIL NIL T NIL T) |package| NIL NIL NIL) (|UnivariatePolynomial| 2762600 2770026 2770272 "UP" NIL UP (NIL NIL T) |domain| NIL NIL NIL) (|UniversalSegmentFunctions2| 2761756 2761924 2762230 "UNISEG2" NIL UNISEG2 (NIL T T) |package| NIL NIL NIL) (|UniversalSegment| 2760267 2761021 2761447 "UNISEG" NIL UNISEG (NIL T) |domain| NIL NIL NIL) (|UnivariateFactorize| 2759273 2759516 2759871 "UNIFACT" NIL UNIFACT (NIL T) |package| NIL NIL NIL) (|UnivariateLaurentSeriesConstructor| 2750210 2759067 2759268 "ULSCONS" NIL ULSCONS (NIL T T) |domain| NIL NIL NIL) (|UnivariateLaurentSeriesConstructorCategory| 2724221 2738930 2739104 "ULSCCAT" 2740502 ULSCCAT (NIL T T) |category| NIL 2740986 NIL) (|UnivariateLaurentSeriesConstructorCategory&| 2723215 2723545 2724216 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) |package| NIL NIL NIL) (|UnivariateLaurentSeriesCategory| 2708084 2715910 2716016 "ULSCAT" 2717588 ULSCAT (NIL T) |category| NIL 2718758 NIL) (|UnivariateLaurentSeriesFunctions2| 2707268 2707400 2707706 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) |package| NIL NIL NIL) (|UnivariateLaurentSeries| 2698016 2706550 2706959 "ULS" NIL ULS (NIL T NIL NIL) |domain| NIL NIL NIL) (|UInt8| 2697137 2697673 2697850 "UINT8" NIL UINT8 (NIL) |domain| NIL NIL 2697952) (|UInt64| 2696254 2696790 2696969 "UINT64" NIL UINT64 (NIL) |domain| NIL NIL 2697072) (|UInt32| 2695371 2695907 2696086 "UINT32" NIL UINT32 (NIL) |domain| NIL NIL 2696189) (|UInt16| 2694488 2695024 2695203 "UINT16" NIL UINT16 (NIL) |domain| NIL NIL 2695306) (|UniqueFactorizationDomain| 2691617 2693122 2693202 "UFD" 2693607 UFD (NIL) |category| NIL 2693807 NIL) (|UniqueFactorizationDomain&| 2691329 2691406 2691612 "UFD-" NIL UFD- (NIL T) |package| NIL NIL NIL) (|UserDefinedVariableOrdering| 2690449 2690664 2690985 "UDVO" NIL UDVO (NIL) |package| NIL NIL NIL) (|UserDefinedPartialOrdering| 2688518 2688956 2689550 "UDPO" NIL UDPO (NIL T) |package| NIL NIL NIL) (|TypeAst| 2688224 2688459 2688513 "TYPEAST" NIL TYPEAST (NIL) |domain| NIL NIL NIL) (|Type| 2688148 2688153 2688191 "TYPE" 2688196 TYPE (NIL) |category| NIL 2688206 NIL) (|TwoFactorize| 2687141 2687349 2687642 "TWOFACT" NIL TWOFACT (NIL T) |package| NIL NIL NIL) (|Tuple| 2686149 2686567 2686907 "TUPLE" NIL TUPLE (NIL T) |domain| NIL NIL NIL) (|TubePlotTools| 2684739 2685113 2685539 "TUBETOOL" NIL TUBETOOL (NIL) |package| NIL NIL NIL) (|TubePlot| 2683679 2683934 2684271 "TUBE" NIL TUBE (NIL T) |domain| NIL NIL NIL) (|TriangularSetCategory| 2664279 2669671 2669875 "TSETCAT" 2680654 TSETCAT (NIL T T T T) |category| NIL 2683044 NIL) (|TriangularSetCategory&| 2660281 2662060 2664274 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) |package| NIL NIL NIL) (|TaylorSeries| 2656190 2659234 2659674 "TS" NIL TS (NIL T) |domain| NIL NIL NIL) (|TranscendentalManipulations| 2653049 2654036 2655215 "TRMANIP" NIL TRMANIP (NIL T T) |package| NIL NIL NIL) (|TriangularMatrixOperations| 2652375 2652467 2652755 "TRIMAT" NIL TRIMAT (NIL T T T T) |package| NIL NIL NIL) (|TrigonometricManipulations| 2650576 2650879 2651498 "TRIGMNIP" NIL TRIGMNIP (NIL T T) |package| NIL NIL NIL) (|TrigonometricFunctionCategory| 2649736 2649885 2649973 "TRIGCAT" 2650402 TRIGCAT (NIL) |category| NIL NIL NIL) (|TrigonometricFunctionCategory&| 2649395 2649495 2649731 "TRIGCAT-" NIL TRIGCAT- (NIL T) |package| NIL NIL NIL) (|Tree| 2646558 2648428 2648878 "TREE" NIL TREE (NIL T) |domain| NIL NIL NIL) (|TranscendentalFunctionCategory| 2645287 2645979 2646069 "TRANFUN" 2646140 TRANFUN (NIL) |category| NIL 2646358 NIL) (|TranscendentalFunctionCategory&| 2644642 2644894 2645282 "TRANFUN-" NIL TRANFUN- (NIL T) |package| NIL NIL NIL) (|TopLevelThreeSpace| 2644313 2644380 2644518 "TOPSP" NIL TOPSP (NIL) |package| NIL NIL NIL) (|ToolsForSign| 2643693 2643830 2644037 "TOOLSIGN" NIL TOOLSIGN (NIL T) |package| NIL NIL NIL) (|TextFile| 2642440 2643069 2643405 "TEXTFILE" NIL TEXTFILE (NIL) |domain| NIL NIL NIL) (|TexFormat1| 2642144 2642190 2642311 "TEX1" NIL TEX1 (NIL T) |package| NIL NIL NIL) (|TexFormat| 2640600 2641170 2641664 "TEX" NIL TEX (NIL) |domain| NIL NIL NIL) (|TabulatedComputationPackage| 2638996 2639398 2639912 "TBCMPPK" NIL TBCMPPK (NIL T T) |package| NIL NIL NIL) (|TableAggregate| 2626914 2636126 2636226 "TBAGG" 2636749 TBAGG (NIL T T) |category| NIL 2637042 NIL) (|TableAggregate&| 2625120 2625895 2626909 "TBAGG-" NIL TBAGG- (NIL T T T) |package| NIL NIL NIL) (|TangentExpansions| 2624307 2624482 2624738 "TANEXP" NIL TANEXP (NIL T) |package| NIL NIL NIL) (|TermAlgebraOperator| 2623668 2623995 2624168 "TALGOP" NIL TALGOP (NIL T) |domain| NIL NIL NIL) (|Tableau| 2623087 2623219 2623417 "TABLEAU" NIL TABLEAU (NIL T) |domain| NIL NIL NIL) (|Table| 2620221 2622993 2623082 "TABLE" NIL TABLE (NIL T T) |domain| NIL NIL NIL) (|TableauxBumpers| 2617312 2617970 2618700 "TABLBUMP" NIL TABLBUMP (NIL T) |package| NIL NIL NIL) (|System| 2616474 2616694 2617003 "SYSTEM" NIL SYSTEM (NIL) |package| NIL NIL NIL) (|SystemSolvePackage| 2614560 2614935 2615462 "SYSSOLP" NIL SYSSOLP (NIL T) |package| NIL NIL NIL) (|SystemPointer| 2614298 2614496 2614555 "SYSPTR" NIL SYSPTR (NIL) |domain| NIL NIL NIL) (|SystemNonNegativeInteger| 2613225 2613829 2614069 "SYSNNI" NIL SYSNNI (NIL NIL) |domain| NIL NIL 2614233) (|SystemInteger| 2612443 2612921 2613072 "SYSINT" NIL SYSINT (NIL NIL) |domain| NIL NIL 2613171) (|Syntax| 2609191 2610390 2611388 "SYNTAX" NIL SYNTAX (NIL) |domain| NIL NIL NIL) (|SymbolTable| 2606800 2607502 2608271 "SYMTAB" NIL SYMTAB (NIL) |domain| NIL NIL NIL) (|TheSymbolTable| 2603431 2604368 2605505 "SYMS" NIL SYMS (NIL) |domain| NIL NIL NIL) (|SymmetricPolynomial| 2600309 2602843 2603207 "SYMPOLY" NIL SYMPOLY (NIL T) |domain| NIL NIL NIL) (|SymmetricFunctions| 2599684 2599787 2599985 "SYMFUNC" NIL SYMFUNC (NIL T) |package| NIL NIL NIL) (|Symbol| 2596745 2598057 2598976 "SYMBOL" NIL SYMBOL (NIL) |domain| NIL NIL NIL) (|SparseUnivariateTaylorSeries| 2591082 2595598 2596092 "SUTS" NIL SUTS (NIL T NIL NIL) |domain| NIL NIL NIL) (|SparseUnivariatePuiseuxSeries| 2585235 2590343 2590830 "SUPXS" NIL SUPXS (NIL T NIL NIL) |domain| NIL NIL NIL) (|SupFractionFactorizer| 2584413 2584542 2584861 "SUPFRACF" NIL SUPFRACF (NIL T T T T) |package| NIL NIL NIL) (|SparseUnivariatePolynomialFunctions2| 2583765 2583883 2584133 "SUP2" NIL SUP2 (NIL T T) |package| NIL NIL NIL) (|SparseUnivariatePolynomial| 2575586 2583273 2583530 "SUP" NIL SUP (NIL T) |domain| NIL NIL NIL) (|RationalFunctionSum| 2574404 2574631 2575014 "SUMRF" NIL SUMRF (NIL T) |package| NIL NIL NIL) (|FunctionSpaceSum| 2573484 2573576 2573970 "SUMFS" NIL SUMFS (NIL T T) |package| NIL NIL NIL) (|SparseUnivariateLaurentSeries| 2563738 2572742 2573169 "SULS" NIL SULS (NIL T NIL NIL) |domain| NIL NIL NIL) (|SuchThatAst| 2563236 2563513 2563644 "SUCHTAST" NIL SUCHTAST (NIL) |domain| NIL NIL NIL) (|SuchThat| 2562524 2562804 2562995 "SUCH" NIL SUCH (NIL T T) |domain| NIL NIL NIL) (|SubSpace| 2558154 2559475 2560753 "SUBSPACE" NIL SUBSPACE (NIL NIL T) |domain| NIL NIL NIL) (|SubResultantPackage| 2557275 2557425 2557732 "SUBRESP" NIL SUBRESP (NIL T T) |package| NIL NIL NIL) (|StreamTranscendentalFunctionsNonCommutative| 2555148 2555827 2556642 "STTFNC" NIL STTFNC (NIL T) |package| NIL NIL NIL) (|StreamTranscendentalFunctions| 2552456 2553292 2554223 "STTF" NIL STTF (NIL T) |package| NIL NIL NIL) (|StreamTaylorSeriesOperations| 2548046 2549338 2550731 "STTAYLOR" NIL STTAYLOR (NIL T) |package| NIL NIL NIL) (|StringTable| 2545178 2547946 2548041 "STRTBL" NIL STRTBL (NIL T) |domain| NIL NIL NIL) (|String| 2541158 2544777 2544973 "STRING" NIL STRING (NIL) |domain| NIL NIL NIL) (|StreamFunctions3| 2540578 2540677 2540877 "STREAM3" NIL STREAM3 (NIL T T T) |package| NIL NIL NIL) (|StreamFunctions2| 2539542 2539733 2540014 "STREAM2" NIL STREAM2 (NIL T T) |package| NIL NIL NIL) (|StreamFunctions1| 2539178 2539239 2539380 "STREAM1" NIL STREAM1 (NIL T) |package| NIL NIL NIL) (|Stream| 2533147 2537129 2537994 "STREAM" NIL STREAM (NIL T) |domain| NIL NIL NIL) (|StreamInfiniteProduct| 2532175 2532381 2532716 "STINPROD" NIL STINPROD (NIL T) |package| NIL NIL NIL) (|StepAst| 2531293 2531692 2531934 "STEPAST" NIL STEPAST (NIL) |domain| NIL NIL NIL) (|StepThrough| 2530595 2530863 2530915 "STEP" 2531062 STEP (NIL) |category| NIL 2531181 NIL) (|SparseTable| 2527707 2530479 2530590 "STBL" NIL STBL (NIL T T NIL) |domain| NIL NIL NIL) (|StreamAggregate| 2520812 2525610 2525684 "STAGG" 2526452 STAGG (NIL T) |category| NIL 2526815 NIL) (|StreamAggregate&| 2518987 2519734 2520807 "STAGG-" NIL STAGG- (NIL T T) |package| NIL NIL NIL) (|Stack| 2517320 2518741 2518873 "STACK" NIL STACK (NIL T) |domain| NIL NIL NIL) (|SemiRing| 2516384 2517030 2517076 "SRING" 2517081 SRING (NIL) |category| NIL 2517120 NIL) (|SquareFreeRegularTriangularSet| 2510180 2514948 2515578 "SREGSET" NIL SREGSET (NIL T T T T) |domain| NIL NIL NIL) (|SquareFreeRegularSetDecompositionPackage| 2505433 2506135 2507216 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) |package| NIL NIL NIL) (|StringAggregate| 2495412 2500758 2500818 "SRAGG" 2503062 SRAGG (NIL) |category| |String| 2504133 NIL) (|StringAggregate&| 2494475 2494855 2495407 "SRAGG-" NIL SRAGG- (NIL T) |package| NIL NIL NIL) (|SquareMatrix| 2489301 2493540 2494100 "SQMATRIX" NIL SQMATRIX (NIL NIL T) |domain| NIL NIL NIL) (|SplittingTree| 2484740 2486958 2487854 "SPLTREE" NIL SPLTREE (NIL T T) |domain| NIL NIL NIL) (|SplittingNode| 2481648 2482512 2483350 "SPLNODE" NIL SPLNODE (NIL T T) |domain| NIL NIL NIL) (|SpecialFunctionCategory| 2480022 2480362 2480438 "SPFCAT" 2481279 SPFCAT (NIL) |category| NIL NIL NIL) (|SpecialOutputPackage| 2479002 2479231 2479603 "SPECOUT" NIL SPECOUT (NIL) |package| NIL NIL NIL) (|SpadAstExports| 2464559 2467501 2467559 "SPADXPT" 2475268 SPADXPT (NIL) |category| |SpadAst| 2478718 NIL) (|SpadParser| 2464268 2464324 2464435 "SPADPRSR" NIL SPADPRSR (NIL) |package| NIL NIL NIL) (|SpadAst| 2461708 2464213 2464263 "SPADAST" NIL SPADAST (NIL) |domain| NIL NIL NIL) (|ThreeSpaceCategory| 2448482 2451274 2451354 "SPACEC" 2458705 SPACEC (NIL T) |category| |ThreeSpace| 2461596 NIL) (|ThreeSpace| 2446526 2448398 2448477 "SPACE3" NIL SPACE3 (NIL T) |domain| NIL NIL NIL) (|SortPackage| 2445342 2445527 2445948 "SORTPAK" NIL SORTPAK (NIL T T) |package| NIL NIL NIL) (|TransSolvePackage| 2443947 2444153 2444585 "SOLVETRA" NIL SOLVETRA (NIL T) |package| NIL NIL NIL) (|TransSolvePackageService| 2443023 2443203 2443488 "SOLVESER" NIL SOLVESER (NIL T) |package| NIL NIL NIL) (|RadicalSolvePackage| 2440286 2440828 2441635 "SOLVERAD" NIL SOLVERAD (NIL T) |package| NIL NIL NIL) (|PolynomialSolveByFormulas| 2437399 2438083 2439017 "SOLVEFOR" NIL SOLVEFOR (NIL T T) |package| NIL NIL NIL) (|SquareFreeNormalizedTriangularSetCategory| 2429524 2436141 2436380 "SNTSCAT" 2436385 SNTSCAT (NIL T T T T) |category| NIL 2436522 NIL) (|SparseMultivariateTaylorSeries| 2423915 2427497 2428145 "SMTS" NIL SMTS (NIL T T T) |domain| NIL NIL NIL) (|SparseMultivariatePolynomial| 2418028 2423744 2423910 "SMP" NIL SMP (NIL T T) |domain| NIL NIL NIL) (|SmithNormalForm| 2416032 2416427 2416994 "SMITH" NIL SMITH (NIL T T T T) |package| NIL NIL NIL) (|SquareMatrixCategory| 2404128 2409939 2410137 "SMATCAT" 2412682 SMATCAT (NIL NIL T T T) |category| NIL 2413525 NIL) (|SquareMatrixCategory&| 2401462 2402523 2404123 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) |package| NIL NIL NIL) (|ShallowlyMutableAggregate| 2400879 2401078 2401172 "SMAGG" 2401316 SMAGG (NIL T) |category| NIL 2401409 NIL) (|StackAggregate| 2397653 2399548 2399620 "SKAGG" 2400038 SKAGG (NIL T) |category| NIL 2400257 NIL) (|SingleInteger| 2393665 2397324 2397561 "SINT" NIL SINT (NIL) |domain| NIL NIL 2397620) (|SimplifyAlgebraicNumberConvertPackage| 2393235 2393311 2393495 "SIMPAN" NIL SIMPAN (NIL) |package| NIL NIL NIL) (|RationalFunctionSign| 2392203 2392399 2392704 "SIGNRF" NIL SIGNRF (NIL T) |package| NIL NIL NIL) (|ElementaryFunctionSign| 2390867 2391036 2391505 "SIGNEF" NIL SIGNEF (NIL T T) |package| NIL NIL NIL) (|SignatureAst| 2390057 2390421 2390639 "SIGAST" NIL SIGAST (NIL) |domain| NIL NIL NIL) (|Signature| 2389326 2389645 2389841 "SIG" NIL SIG (NIL) |domain| NIL NIL NIL) (|SturmHabichtPackage| 2387744 2388158 2388707 "SHP" NIL SHP (NIL T NIL) |package| NIL NIL NIL) (|SplitHomogeneousDirectProduct| 2382993 2387555 2387739 "SHDP" NIL SHDP (NIL NIL NIL T) |domain| NIL NIL NIL) (|SemiGroup| 2382311 2382578 2382626 "SGROUP" 2382772 SGROUP (NIL) |category| NIL 2382881 NIL) (|SemiGroup&| 2382137 2382182 2382306 "SGROUP-" NIL SGROUP- (NIL T) |package| NIL NIL NIL) (|SemiGroupOperatorCategory| 2381657 2381697 2381796 "SGPOPC" 2381801 SGPOPC (NIL T) |category| NIL 2382040 NIL) (|SemiGroupOperation| 2380995 2381287 2381503 "SGPOP" NIL SGPOP (NIL T) |domain| NIL NIL NIL) (|SymmetricGroupCombinatoricFunctions| 2378636 2379279 2380033 "SGCF" NIL SGCF (NIL) |package| NIL NIL NIL) (|SquareFreeRegularTriangularSetCategory| 2370968 2377585 2377818 "SFRTCAT" 2377823 SFRTCAT (NIL T T T T) |category| |SquareFreeRegularTriangularSet| 2377890 NIL) (|SquareFreeRegularTriangularSetGcdPackage| 2366012 2366992 2368301 "SFRGCD" NIL SFRGCD (NIL T T T T T) |package| NIL NIL NIL) (|SquareFreeQuasiComponentPackage| 2360975 2361959 2363225 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) |package| NIL NIL NIL) (|SExpressionOf| 2359906 2360818 2360970 "SEXOF" NIL SEXOF (NIL T T T T T) |domain| NIL NIL NIL) (|SExpressionCategory| 2352586 2353616 2353744 "SEXCAT" 2358633 SEXCAT (NIL T T T T T) |category| NIL 2359529 NIL) (|SExpression| 2351646 2352453 2352581 "SEX" NIL SEX (NIL) |domain| NIL NIL NIL) (|SetOfMIntegersInOneToN| 2349817 2350477 2350940 "SETMN" NIL SETMN (NIL NIL NIL) |domain| NIL NIL NIL) (|SetCategory| 2349168 2349370 2349422 "SETCAT" 2349576 SETCAT (NIL) |category| NIL 2349727 NIL) (|SetCategory&| 2348918 2348998 2349163 "SETCAT-" NIL SETCAT- (NIL T) |package| NIL NIL NIL) (|SetAggregate| 2344700 2346382 2346457 "SETAGG" 2347906 SETAGG (NIL T) |category| NIL 2348443 NIL) (|SetAggregate&| 2344211 2344370 2344695 "SETAGG-" NIL SETAGG- (NIL T T) |package| NIL NIL NIL) (|Set| 2341914 2344134 2344206 "SET" NIL SET (NIL T) |domain| NIL NIL NIL) (|SequenceAst| 2341287 2341599 2341764 "SEQAST" NIL SEQAST (NIL) |domain| NIL NIL NIL) (|SegmentExpansionCategory| 2339971 2340380 2340510 "SEGXCAT" 2341043 SEGXCAT (NIL T T) |category| NIL 2341222 NIL) (|SegmentCategory| 2338454 2338739 2338813 "SEGCAT" 2339628 SEGCAT (NIL T) |category| NIL 2339937 NIL) (|SegmentBindingFunctions2| 2337914 2338008 2338210 "SEGBIND2" NIL SEGBIND2 (NIL T T) |package| NIL NIL NIL) (|SegmentBinding| 2336954 2337304 2337585 "SEGBIND" NIL SEGBIND (NIL T) |domain| NIL NIL NIL) (|SegmentAst| 2336437 2336720 2336855 "SEGAST" NIL SEGAST (NIL) |domain| NIL NIL NIL) (|SegmentFunctions2| 2335680 2335828 2336096 "SEG2" NIL SEG2 (NIL T T) |package| NIL NIL NIL) (|Segment| 2334751 2335404 2335675 "SEG" NIL SEG (NIL T) |domain| NIL NIL NIL) (|SequentialDifferentialVariable| 2333994 2334611 2334746 "SDVAR" NIL SDVAR (NIL T) |domain| NIL NIL NIL) (|SequentialDifferentialPolynomial| 2327055 2333704 2333989 "SDPOL" NIL SDPOL (NIL T) |domain| NIL NIL NIL) (|StructuralConstantsPackage| 2325633 2325923 2326359 "SCPKG" NIL SCPKG (NIL T) |package| NIL NIL NIL) (|Scope| 2324632 2324935 2325276 "SCOPE" NIL SCOPE (NIL) |domain| NIL NIL NIL) (|SortedCache| 2323714 2323917 2324211 "SCACHE" NIL SCACHE (NIL T) |package| NIL NIL NIL) (|SpadSyntaxCategory| 2323110 2323371 2323437 "SASTCAT" 2323442 SASTCAT (NIL) |category| NIL 2323479 NIL) (|SingletonAsOrderedSet| 2322529 2322889 2323046 "SAOS" NIL SAOS (NIL) |domain| NIL NIL NIL) (|SAERationalFunctionAlgFactor| 2321781 2321831 2322172 "SAERFFC" NIL SAERFFC (NIL T T T) |package| NIL NIL NIL) (|SimpleAlgebraicExtensionAlgFactor| 2321048 2321098 2321434 "SAEFACT" NIL SAEFACT (NIL T T T) |package| NIL NIL NIL) (|SimpleAlgebraicExtension| 2315644 2320869 2321043 "SAE" NIL SAE (NIL T T NIL) |domain| NIL NIL NIL) (|RationalUnivariateRepresentationPackage| 2314266 2314491 2314924 "RURPK" NIL RURPK (NIL T NIL) |package| NIL NIL NIL) (|Ruleset| 2312839 2313216 2313610 "RULESET" NIL RULESET (NIL T T T) |domain| NIL NIL NIL) (|RuleCalled| 2312371 2312604 2312732 "RULECOLD" NIL RULECOLD (NIL NIL) |domain| NIL NIL NIL) (|RewriteRule| 2309854 2310541 2311165 "RULE" NIL RULE (NIL T T T) |domain| NIL NIL NIL) (|RuntimeValue| 2309611 2309649 2309763 "RTVALUE" NIL RTVALUE (NIL) |domain| NIL NIL NIL) (|RestrictAst| 2308972 2309288 2309457 "RSTRCAST" NIL RSTRCAST (NIL) |domain| NIL NIL NIL) (|RegularTriangularSetGcdPackage| 2304659 2305440 2306530 "RSETGCD" NIL RSETGCD (NIL T T T T T) |package| NIL NIL NIL) (|RegularTriangularSetCategory| 2286900 2293624 2293837 "RSETCAT" 2302271 RSETCAT (NIL T T T T) |category| NIL 2303972 NIL) (|RegularTriangularSetCategory&| 2285440 2285947 2286895 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) |package| NIL NIL NIL) (|RegularSetDecompositionPackage| 2280734 2281453 2282514 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) |package| NIL NIL NIL) (|RealRootCharacterizationCategory| 2277009 2277692 2277870 "RRCC" 2280090 RRCC (NIL T T) |category| |RightOpenIntervalRootCharacterization| 2280622 NIL) (|RealRootCharacterizationCategory&| 2276308 2276536 2277004 "RRCC-" NIL RRCC- (NIL T T T) |package| NIL NIL NIL) (|RepeatAst| 2275672 2275989 2276155 "RPTAST" NIL RPTAST (NIL) |domain| NIL NIL NIL) (|RecursivePolynomialCategory| 2231132 2245105 2245256 "RPOLCAT" 2265319 RPOLCAT (NIL T T T) |category| NIL 2270485 NIL) (|RecursivePolynomialCategory&| 2224421 2227356 2231127 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) |package| NIL NIL NIL) (|RomanNumeral| 2220928 2224001 2224273 "ROMAN" NIL ROMAN (NIL) |domain| NIL NIL NIL) (|RightOpenIntervalRootCharacterization| 2219117 2219914 2220392 "ROIRC" NIL ROIRC (NIL T T) |domain| NIL NIL NIL) (|RealNumberSystem| 2213109 2216557 2216619 "RNS" 2217091 RNS (NIL) |category| NIL 2217535 NIL) (|RealNumberSystem&| 2211704 2212243 2212954 "RNS-" NIL RNS- (NIL T) |package| NIL NIL NIL) (|RangeBinding| 2210703 2211052 2211346 "RNGBIND" NIL RNGBIND (NIL T T) |domain| NIL NIL NIL) (|Rng| 2209522 2210191 2210227 "RNG" 2210320 RNG (NIL) |category| NIL 2210425 NIL) (|Rng&| 2209360 2209408 2209517 "RNG-" NIL RNG- (NIL T) |package| NIL NIL NIL) (|RightModule| 2208365 2208950 2209015 "RMODULE" 2209020 RMODULE (NIL T) |category| NIL 2209072 NIL) (|RectangularMatrixCategoryFunctions2| 2206674 2206797 2207374 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) |package| NIL NIL NIL) (|RectangularMatrix| 2203600 2206006 2206470 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) |domain| NIL NIL NIL) (|RectangularMatrixCategory| 2191925 2194971 2195191 "RMATCAT" 2201371 RMATCAT (NIL NIL NIL T T T) |category| NIL 2202809 NIL) (|RectangularMatrixCategory&| 2191228 2191442 2191920 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) |package| NIL NIL NIL) (|RightLinearSet| 2190640 2190868 2190945 "RLINSET" 2191044 RLINSET (NIL T) |category| NIL 2191116 NIL) (|RationalInterpolation| 2190041 2190157 2190380 "RINTERP" NIL RINTERP (NIL NIL T) |package| NIL NIL NIL) (|Ring| 2188399 2189299 2189337 "RING" 2189439 RING (NIL) |category| NIL 2189628 NIL) (|Ring&| 2188177 2188249 2188394 "RING-" NIL RING- (NIL T) |package| NIL NIL NIL) (|RandomIntegerDistributions| 2187198 2187438 2187769 "RIDIST" NIL RIDIST (NIL) |package| NIL NIL NIL) (|RegularChain| 2182195 2186570 2186899 "RGCHAIN" NIL RGCHAIN (NIL T NIL) |domain| NIL NIL NIL) (|RGBColorSpace| 2181107 2181723 2181802 "RGBCSPC" 2181909 RGBCSPC (NIL T) |category| NIL 2182003 NIL) (|RGBColorModel| 2179689 2180258 2180337 "RGBCMDL" 2180756 RGBCMDL (NIL T) |category| NIL 2180944 NIL) (|RationalFunctionFactorizer| 2179153 2179254 2179466 "RFFACTOR" NIL RFFACTOR (NIL T) |package| NIL NIL NIL) (|RationalFunctionFactor| 2178697 2178747 2178953 "RFFACT" NIL RFFACT (NIL T) |package| NIL NIL NIL) (|RandomFloatDistributions| 2177355 2177752 2178221 "RFDIST" NIL RFDIST (NIL) |package| NIL NIL NIL) (|RationalFunction| 2175237 2175699 2176270 "RF" NIL RF (NIL T) |package| NIL NIL NIL) (|RetractSolvePackage| 2174507 2174640 2174913 "RETSOL" NIL RETSOL (NIL T T) |package| NIL NIL NIL) (|RetractableTo| 2173936 2174055 2174125 "RETRACT" 2174333 RETRACT (NIL T) |category| NIL 2174475 NIL) (|RetractableTo&| 2173754 2173789 2173931 "RETRACT-" NIL RETRACT- (NIL T T) |package| NIL NIL NIL) (|ReturnAst| 2173255 2173533 2173661 "RETAST" NIL RETAST (NIL) |domain| NIL NIL NIL) (|ResidueRing| 2171665 2172580 2172901 "RESRING" NIL RESRING (NIL T T T T NIL) |domain| NIL NIL NIL) (|ResolveLatticeCompletion| 2171171 2171238 2171412 "RESLATC" NIL RESLATC (NIL T) |package| NIL NIL NIL) (|RepeatedSquaring| 2170730 2170785 2170978 "REPSQ" NIL REPSQ (NIL T) |package| NIL NIL NIL) (|RepeatedDoubling| 2170283 2170340 2170535 "REPDB" NIL REPDB (NIL T) |package| NIL NIL NIL) (|RepresentationPackage2| 2166374 2167227 2168320 "REP2" NIL REP2 (NIL T) |package| NIL NIL NIL) (|RepresentationPackage1| 2163387 2164029 2164979 "REP1" NIL REP1 (NIL T) |package| NIL NIL NIL) (|RadicalEigenPackage| 2161664 2162155 2162712 "REP" NIL REP (NIL) |package| NIL NIL NIL) (|RegularTriangularSet| 2155510 2160278 2160878 "REGSET" NIL REGSET (NIL T T T T) |domain| NIL NIL NIL) (|Reference| 2154745 2155038 2155255 "REF" NIL REF (NIL T) |domain| NIL NIL NIL) (|ReductionOfOrder| 2153907 2154031 2154308 "REDORDER" NIL REDORDER (NIL T T) |package| NIL NIL NIL) (|RealClosure| 2149442 2152889 2153326 "RECLOS" NIL RECLOS (NIL T) |domain| NIL NIL NIL) (|RealSolvePackage| 2148505 2148723 2149015 "REALSOLV" NIL REALSOLV (NIL) |package| NIL NIL NIL) (|RealZeroPackageQ| 2146949 2147241 2147689 "REAL0Q" NIL REAL0Q (NIL T) |package| NIL NIL NIL) (|RealZeroPackage| 2145165 2145535 2146060 "REAL0" NIL REAL0 (NIL T) |package| NIL NIL NIL) (|RealConstant| 2144877 2144957 2145011 "REAL" 2145016 REAL (NIL) |category| NIL 2145088 NIL) (|ReduceAst| 2144296 2144611 2144763 "RDUCEAST" NIL RDUCEAST (NIL) |domain| NIL NIL NIL) (|ReducedDivisor| 2143362 2143476 2143844 "RDIV" NIL RDIV (NIL T T T T T) |package| NIL NIL NIL) (|RandomDistributions| 2142311 2142535 2142850 "RDIST" NIL RDIST (NIL T) |package| NIL NIL NIL) (|TranscendentalRischDESystem| 2140883 2141155 2141634 "RDETRS" NIL RDETRS (NIL T T) |package| NIL NIL NIL) (|TranscendentalRischDE| 2138672 2139144 2139802 "RDETR" NIL RDETR (NIL T T) |package| NIL NIL NIL) (|ElementaryRischDESystem| 2137046 2137376 2137996 "RDEEFS" NIL RDEEFS (NIL T T) |package| NIL NIL NIL) (|ElementaryRischDE| 2135307 2135680 2136331 "RDEEF" NIL RDEEF (NIL T T) |package| NIL NIL NIL) (|RealClosedField| 2125372 2129808 2129868 "RCFIELD" 2132191 RCFIELD (NIL) |category| NIL 2133601 NIL) (|RealClosedField&| 2123569 2124266 2125219 "RCFIELD-" NIL RCFIELD- (NIL T) |package| NIL NIL NIL) (|RecursiveAggregate| 2118824 2120444 2120524 "RCAGG" 2122362 RCAGG (NIL T) |category| NIL 2123047 NIL) (|RecursiveAggregate&| 2118446 2118568 2118819 "RCAGG-" NIL RCAGG- (NIL T T) |package| NIL NIL NIL) (|RationalRetractions| 2117702 2117867 2118129 "RATRET" NIL RATRET (NIL T) |package| NIL NIL NIL) (|RationalFactorize| 2117179 2117268 2117487 "RATFACT" NIL RATFACT (NIL T) |package| NIL NIL NIL) (|RandomNumberSource| 2116551 2116703 2116933 "RANDSRC" NIL RANDSRC (NIL) |package| NIL NIL NIL) (|RadixUtilities| 2116202 2116267 2116395 "RADUTIL" NIL RADUTIL (NIL) |package| NIL NIL NIL) (|RadixExpansion| 2109926 2115393 2115813 "RADIX" NIL RADIX (NIL NIL) |domain| NIL NIL NIL) (|RadicalFunctionField| 2102700 2109649 2109921 "RADFF" NIL RADFF (NIL T T T NIL NIL) |domain| NIL NIL NIL) (|RadicalCategory| 2102122 2102236 2102296 "RADCAT" 2102559 RADCAT (NIL) |category| NIL NIL NIL) (|RadicalCategory&| 2101875 2101945 2102117 "RADCAT-" NIL RADCAT- (NIL T) |package| NIL NIL NIL) (|Queue| 2100143 2101615 2101754 "QUEUE" NIL QUEUE (NIL T) |domain| NIL NIL NIL) (|QuaternionCategoryFunctions2| 2099561 2099617 2099866 "QUATCT2" NIL QUATCT2 (NIL T T T T) |package| NIL NIL NIL) (|QuaternionCategory| 2088647 2093463 2093554 "QUATCAT" 2095067 QUATCAT (NIL T) |category| |Quaternion| 2096290 NIL) (|QuaternionCategory&| 2085378 2086675 2088444 "QUATCAT-" NIL QUATCAT- (NIL T T) |package| NIL NIL NIL) (|Quaternion| 2081917 2085283 2085373 "QUAT" NIL QUAT (NIL T) |domain| NIL NIL NIL) (|QueueAggregate| 2078357 2080320 2080392 "QUAGG" 2081009 QUAGG (NIL T) |category| NIL 2081295 NIL) (|QuasiquoteAst| 2077846 2078124 2078260 "QQUTAST" NIL QQUTAST (NIL) |domain| NIL NIL NIL) (|QuadraticForm| 2076691 2077346 2077611 "QFORM" NIL QFORM (NIL NIL T) |domain| NIL NIL NIL) (|QuotientFieldCategoryFunctions2| 2076090 2076146 2076406 "QFCAT2" NIL QFCAT2 (NIL T T T T) |package| NIL NIL NIL) (|QuotientFieldCategory| 2060955 2068577 2068673 "QFCAT" 2070006 QFCAT (NIL T) |category| NIL 2071663 NIL) (|QuotientFieldCategory&| 2056991 2058556 2060747 "QFCAT-" NIL QFCAT- (NIL T T) |package| NIL NIL NIL) (|QueryEquation| 2056395 2056556 2056773 "QEQUAT" NIL QEQUAT (NIL) |domain| NIL NIL NIL) (|QuasiComponentPackage| 2051438 2052422 2053668 "QCMPACK" NIL QCMPACK (NIL T T T T T) |package| NIL NIL NIL) (|QuasiAlgebraicSet2| 2050579 2050794 2051116 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) |package| NIL NIL NIL) (|QuasiAlgebraicSet| 2047980 2048593 2049291 "QALGSET" NIL QALGSET (NIL T T T T) |domain| NIL NIL NIL) (|PAdicWildFunctionFieldIntegralBasis| 2046337 2046554 2047023 "PWFFINTB" NIL PWFFINTB (NIL T T T T) |package| NIL NIL NIL) (|PushVariables| 2044929 2045125 2045632 "PUSHVAR" NIL PUSHVAR (NIL T T T T) |package| NIL NIL NIL) (|PartialTranscendentalFunctions| 2037579 2039109 2039239 "PTRANFN" 2043335 PTRANFN (NIL T) |category| NIL NIL NIL) (|PointPackage| 2036715 2036974 2037297 "PTPACK" NIL PTPACK (NIL T) |package| NIL NIL NIL) (|PointFunctions2| 2036256 2036332 2036498 "PTFUNC2" NIL PTFUNC2 (NIL T T) |package| NIL NIL NIL) (|PointCategory| 2028853 2034243 2034313 "PTCAT" 2034791 PTCAT (NIL T) |category| |Point| 2035038 NIL) (|PolynomialSquareFree| 2028275 2028329 2028572 "PSQFR" NIL PSQFR (NIL T T T T) |package| NIL NIL NIL) (|PseudoLinearNormalForm| 2026910 2027212 2027605 "PSEUDLIN" NIL PSEUDLIN (NIL T) |package| NIL NIL NIL) (|PolynomialSetUtilitiesPackage| 2018395 2020437 2022861 "PSETPK" NIL PSETPK (NIL T T T T) |package| NIL NIL NIL) (|PolynomialSetCategory| 2007013 2010329 2010523 "PSETCAT" 2016586 PSETCAT (NIL T T T T) |category| NIL 2017853 NIL) (|PolynomialSetCategory&| 2005035 2005885 2007008 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) |package| NIL NIL NIL) (|PlottableSpaceCurveCategory| 2003824 2004103 2004187 "PSCURVE" 2004700 PSCURVE (NIL) |category| |Plot3D| 2004995 NIL) (|PowerSeriesCategory| 1997264 1999439 1999571 "PSCAT" 2001183 PSCAT (NIL T T T) |category| NIL 2001565 NIL) (|PowerSeriesCategory&| 1996410 1996700 1997259 "PSCAT-" NIL PSCAT- (NIL T T T T) |package| NIL NIL NIL) (|Partition| 1994691 1995563 1995973 "PRTITION" NIL PRTITION (NIL) |domain| NIL NIL NIL) (|PretendAst| 1994055 1994371 1994538 "PRTDAST" NIL PRTDAST (NIL) |domain| NIL NIL NIL) (|PseudoRemainderSequence| 1985865 1988198 1990644 "PRS" NIL PRS (NIL T T) |package| NIL NIL NIL) (|PriorityQueueAggregate| 1982811 1984653 1984747 "PRQAGG" 1985079 PRQAGG (NIL T) |category| |Heap| 1985243 NIL) (|PropositionalLogic| 1981687 1982152 1982218 "PROPLOG" 1982470 PROPLOG (NIL) |category| NIL 1982660 NIL) (|PropositionalFormulaFunctions2| 1981061 1981167 1981418 "PROPFUN2" NIL PROPFUN2 (NIL T T) |package| NIL NIL NIL) (|PropositionalFormulaFunctions1| 1980299 1980432 1980696 "PROPFUN1" NIL PROPFUN1 (NIL T) |package| NIL NIL NIL) (|PropositionalFormula| 1978676 1979400 1979823 "PROPFRML" NIL PROPFRML (NIL T) |domain| NIL NIL NIL) (|Property| 1978080 1978246 1978458 "PROPERTY" NIL PROPERTY (NIL) |domain| NIL NIL NIL) (|Product| 1974970 1976816 1977825 "PRODUCT" NIL PRODUCT (NIL T T) |domain| NIL NIL NIL) (|PrintPackage| 1974694 1974743 1974851 "PRINT" NIL PRINT (NIL) |package| NIL NIL NIL) (|IntegerPrimesPackage| 1973926 1974087 1974348 "PRIMES" NIL PRIMES (NIL T) |package| NIL NIL NIL) (|PrimitiveElement| 1972262 1972601 1973093 "PRIMELT" NIL PRIMELT (NIL T) |package| NIL NIL NIL) (|PrimitiveFunctionCategory| 1971752 1971832 1971912 "PRIMCAT" 1972142 PRIMCAT (NIL) |category| NIL NIL NIL) (|PrimitiveArrayFunctions2| 1970653 1970860 1971173 "PRIMARR2" NIL PRIMARR2 (NIL T T) |package| NIL NIL NIL) (|PrimitiveArray| 1967662 1970551 1970648 "PRIMARR" NIL PRIMARR (NIL T) |domain| NIL NIL NIL) (|PrecomputedAssociatedEquations| 1966996 1967098 1967375 "PREASSOC" NIL PREASSOC (NIL T T) |package| NIL NIL NIL) (|PolynomialRing| 1963832 1966387 1966761 "PR" NIL PR (NIL T T) |domain| NIL NIL NIL) (|PlottablePlaneCurveCategory| 1962850 1963075 1963159 "PPCURVE" 1963550 PPCURVE (NIL) |category| NIL 1963792 NIL) (|PortNumber| 1962362 1962610 1962756 "PORTNUM" NIL PORTNUM (NIL) |domain| NIL NIL NIL) (|PolynomialRoots| 1959857 1960204 1960881 "POLYROOT" NIL POLYROOT (NIL T T T T T) |package| NIL NIL NIL) (|PolynomialCategoryLifting| 1958901 1958979 1959388 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) |package| NIL NIL NIL) (|PolynomialCategoryQuotientFunctions| 1955715 1956260 1957156 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) |package| NIL NIL NIL) (|PolynomialCategory| 1932712 1940625 1940758 "POLYCAT" 1947654 POLYCAT (NIL T T T) |category| NIL 1950850 NIL) (|PolynomialCategory&| 1927292 1929669 1932707 "POLYCAT-" NIL POLYCAT- (NIL T T T T) |package| NIL NIL NIL) (|PolynomialToUnivariatePolynomial| 1926686 1926792 1927026 "POLY2UP" NIL POLY2UP (NIL NIL T) |package| NIL NIL NIL) (|PolynomialFunctions2| 1926182 1926268 1926454 "POLY2" NIL POLY2 (NIL T T) |package| NIL NIL NIL) (|Polynomial| 1920210 1925754 1926002 "POLY" NIL POLY (NIL T) |domain| NIL NIL NIL) (|RealPolynomialUtilitiesPackage| 1918486 1918803 1919288 "POLUTIL" NIL POLUTIL (NIL T T) |package| NIL NIL NIL) (|PolToPol| 1917152 1917479 1917890 "POLTOPOL" NIL POLTOPOL (NIL NIL T) |package| NIL NIL NIL) (|Point| 1913592 1917083 1917147 "POINT" NIL POINT (NIL T) |domain| NIL NIL NIL) (|PolynomialNumberTheoryFunctions| 1912274 1912649 1913112 "PNTHEORY" NIL PNTHEORY (NIL) |package| NIL NIL NIL) (|PatternMatchTools| 1910834 1911064 1911462 "PMTOOLS" NIL PMTOOLS (NIL T T T) |package| NIL NIL NIL) (|PatternMatchSymbol| 1910311 1910414 1910608 "PMSYM" NIL PMSYM (NIL T) |package| NIL NIL NIL) (|PatternMatchQuotientFieldCategory| 1909526 1909621 1909957 "PMQFCAT" NIL PMQFCAT (NIL T T T) |package| NIL NIL NIL) (|FunctionSpaceAttachPredicates| 1908821 1908928 1909202 "PMPREDFS" NIL PMPREDFS (NIL T T T) |package| NIL NIL NIL) (|AttachPredicates| 1908149 1908288 1908519 "PMPRED" NIL PMPRED (NIL T) |package| NIL NIL NIL) (|PatternMatchPolynomialCategory| 1906558 1906752 1907253 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) |package| NIL NIL NIL) (|PatternMatchListAggregate| 1905890 1905994 1906262 "PMLSAGG" NIL PMLSAGG (NIL T T T) |package| NIL NIL NIL) (|PatternMatchKernel| 1905146 1905252 1905552 "PMKERNEL" NIL PMKERNEL (NIL T T) |package| NIL NIL NIL) (|PatternMatchIntegerNumberSystem| 1904584 1904688 1904917 "PMINS" NIL PMINS (NIL T) |package| NIL NIL NIL) (|PatternMatchFunctionSpace| 1903745 1903840 1904199 "PMFS" NIL PMFS (NIL T T T) |package| NIL NIL NIL) (|PatternMatchPushDown| 1902639 1902817 1903164 "PMDOWN" NIL PMDOWN (NIL T T T) |package| NIL NIL NIL) (|FunctionSpaceAssertions| 1901839 1901986 1902259 "PMASSFS" NIL PMASSFS (NIL T T) |package| NIL NIL NIL) (|PatternMatchAssertions| 1901129 1901308 1901562 "PMASS" NIL PMASS (NIL) |package| NIL NIL NIL) (|PlotTools| 1900702 1900805 1900960 "PLOTTOOL" NIL PLOTTOOL (NIL) |package| NIL NIL NIL) (|Plot3D| 1897829 1898838 1899758 "PLOT3D" NIL PLOT3D (NIL) |domain| NIL NIL NIL) (|PlotFunctions1| 1897008 1897188 1897487 "PLOT1" NIL PLOT1 (NIL T) |package| NIL NIL NIL) (|Plot| 1893720 1894829 1895919 "PLOT" NIL PLOT (NIL) |domain| NIL NIL NIL) (|ParametricLinearEquations| 1882894 1884871 1887219 "PLEQN" NIL PLEQN (NIL T T T T) |package| NIL NIL NIL) (|PolynomialInterpolationAlgorithms| 1882381 1882449 1882675 "PINTERPA" NIL PINTERPA (NIL T T) |package| NIL NIL NIL) (|PolynomialInterpolation| 1881617 1881769 1882047 "PINTERP" NIL PINTERP (NIL NIL T) |package| NIL NIL NIL) (|PrincipalIdealDomain| 1878808 1880321 1880391 "PID" 1880726 PID (NIL) |category| NIL 1880936 NIL) (|PiCoercions| 1878460 1878514 1878648 "PICOERCE" NIL PICOERCE (NIL T) |package| NIL NIL NIL) (|PositiveInteger| 1877660 1878184 1878357 "PI" NIL PI (NIL) |domain| NIL NIL 1878418) (|PolyGroebner| 1877118 1877242 1877442 "PGROEB" NIL PGROEB (NIL T) |package| NIL NIL NIL) (|PermutationGroupExamples| 1874657 1875340 1876252 "PGE" NIL PGE (NIL) |package| NIL NIL NIL) (|PolynomialGcdPackage| 1872986 1873222 1873701 "PGCD" NIL PGCD (NIL T T T T) |package| NIL NIL NIL) (|PartialFractionPackage| 1872083 1872222 1872515 "PFRPAC" NIL PFRPAC (NIL T) |package| NIL NIL NIL) (|PartialFraction| 1868272 1870697 1871316 "PFR" NIL PFR (NIL T) |domain| NIL NIL NIL) (|PointsOfFiniteOrderTools| 1866618 1866892 1867365 "PFOTOOLS" NIL PFOTOOLS (NIL T T) |package| NIL NIL NIL) (|PointsOfFiniteOrderRational| 1865237 1865513 1866021 "PFOQ" NIL PFOQ (NIL T T T) |package| NIL NIL NIL) (|PointsOfFiniteOrder| 1863714 1863970 1864532 "PFO" NIL PFO (NIL T T T T T) |package| NIL NIL NIL) (|PolynomialFactorizationExplicit| 1858438 1860650 1860742 "PFECAT" 1862102 PFECAT (NIL) |category| NIL 1862997 NIL) (|PolynomialFactorizationExplicit&| 1857867 1858077 1858433 "PFECAT-" NIL PFECAT- (NIL T) |package| NIL NIL NIL) (|PolynomialFactorizationByRecursionUnivariate| 1856350 1856664 1857177 "PFBRU" NIL PFBRU (NIL T T) |package| NIL NIL NIL) (|PolynomialFactorizationByRecursion| 1853993 1854385 1855006 "PFBR" NIL PFBR (NIL T T T T) |package| NIL NIL NIL) (|PrimeField| 1850184 1853827 1853988 "PF" NIL PF (NIL NIL) |domain| NIL NIL NIL) (|PermutationGroup| 1846390 1847520 1848611 "PERMGRP" NIL PERMGRP (NIL T) |domain| NIL NIL NIL) (|PermutationCategory| 1843687 1844870 1844959 "PERMCAT" 1845642 PERMCAT (NIL T) |category| |Permutation| 1846052 NIL) (|Permanent| 1843178 1843240 1843455 "PERMAN" NIL PERMAN (NIL NIL T) |package| NIL NIL NIL) (|Permutation| 1839962 1841450 1842296 "PERM" NIL PERM (NIL T) |domain| NIL NIL NIL) (|PendantTree| 1838169 1839622 1839832 "PENDTREE" NIL PENDTREE (NIL T) |domain| NIL NIL NIL) (|PartialDifferentialSpace| 1836260 1836605 1836702 "PDSPC" 1837681 PDSPC (NIL T) |category| NIL 1838093 NIL) (|PartialDifferentialSpace&| 1835559 1835795 1836255 "PDSPC-" NIL PDSPC- (NIL T T) |package| NIL NIL NIL) (|PartialDifferentialRing| 1833695 1834894 1834989 "PDRING" 1834994 PDRING (NIL T) |category| NIL 1835048 NIL) (|PartialDifferentialModule| 1831906 1832823 1832936 "PDMOD" 1832941 PDMOD (NIL T T) |category| NIL 1833112 NIL) (|PolynomialDecomposition| 1830415 1830691 1831116 "PDECOMP" NIL PDECOMP (NIL T T) |package| NIL NIL NIL) (|PartialDifferentialDomain| 1829807 1829880 1829988 "PDDOM" 1830269 PDDOM (NIL T T) |category| NIL 1830382 NIL) (|PartialDifferentialDomain&| 1829578 1829610 1829802 "PDDOM-" NIL PDDOM- (NIL T T T) |package| NIL NIL NIL) (|PolynomialComposition| 1829195 1829238 1829414 "PCOMP" NIL PCOMP (NIL T T) |package| NIL NIL NIL) (|PoincareBirkhoffWittLyndonBasis| 1827310 1828036 1828554 "PBWLB" NIL PBWLB (NIL T) |domain| NIL NIL NIL) (|PatternFunctions2| 1826819 1826899 1827080 "PATTERN2" NIL PATTERN2 (NIL T T) |package| NIL NIL NIL) (|PatternFunctions1| 1824892 1825264 1825771 "PATTERN1" NIL PATTERN1 (NIL T T) |package| NIL NIL NIL) (|Pattern| 1819113 1821107 1822831 "PATTERN" NIL PATTERN (NIL T) |domain| NIL NIL NIL) (|PatternMatchResultFunctions2| 1818463 1818575 1818819 "PATRES2" NIL PATRES2 (NIL T T T) |package| NIL NIL NIL) (|PatternMatchResult| 1816220 1816913 1817522 "PATRES" NIL PATRES (NIL T T) |domain| NIL NIL NIL) (|PatternMatch| 1814372 1814808 1815385 "PATMATCH" NIL PATMATCH (NIL T T T) |package| NIL NIL NIL) (|PatternMatchable| 1813514 1813825 1813908 "PATMAB" 1814103 PATMAB (NIL T) |category| NIL 1814260 NIL) (|PatternMatchListResult| 1811875 1812321 1812721 "PATLRES" NIL PATLRES (NIL T T T) |domain| NIL NIL NIL) (|Patternable| 1811126 1811330 1811396 "PATAB" 1811401 PATAB (NIL T) |category| NIL 1811682 NIL) (|PartitionsAndPermutations| 1809921 1810241 1810653 "PARTPERM" NIL PARTPERM (NIL) |package| NIL NIL NIL) (|ParametricSurface| 1809442 1809544 1809727 "PARSURF" NIL PARSURF (NIL T) |domain| NIL NIL NIL) (|ParametricSurfaceFunctions2| 1808875 1808975 1809189 "PARSU2" NIL PARSU2 (NIL T T) |package| NIL NIL NIL) (|Parser| 1808545 1808618 1808738 "PARSER" NIL PARSER (NIL) |package| NIL NIL NIL) (|ParametricSpaceCurve| 1808063 1808163 1808350 "PARSCURV" NIL PARSCURV (NIL T) |domain| NIL NIL NIL) (|ParametricSpaceCurveFunctions2| 1807469 1807575 1807801 "PARSC2" NIL PARSC2 (NIL T T) |package| NIL NIL NIL) (|ParametricPlaneCurve| 1807000 1807095 1807277 "PARPCURV" NIL PARPCURV (NIL T) |domain| NIL NIL NIL) (|ParametricPlaneCurveFunctions2| 1806406 1806512 1806738 "PARPC2" NIL PARPC2 (NIL T T) |package| NIL NIL NIL) (|ParameterAst| 1805393 1805791 1806083 "PARAMAST" NIL PARAMAST (NIL) |domain| NIL NIL NIL) (|PolynomialAN2Expression| 1804802 1804931 1805150 "PAN2EXPR" NIL PAN2EXPR (NIL) |package| NIL NIL NIL) (|Palette| 1803860 1804265 1804560 "PALETTE" NIL PALETTE (NIL) |domain| NIL NIL NIL) (|Pair| 1802729 1803186 1803606 "PAIR" NIL PAIR (NIL T T) |domain| NIL NIL NIL) (|PAdicRationalConstructor| 1796114 1801710 1802076 "PADICRC" NIL PADICRC (NIL NIL T) |domain| NIL NIL NIL) (|PAdicRational| 1789840 1795322 1795648 "PADICRAT" NIL PADICRAT (NIL NIL) |domain| NIL NIL NIL) (|PAdicIntegerCategory| 1785005 1787421 1787508 "PADICCT" 1788562 PADICCT (NIL NIL) |category| NIL 1789073 NIL) (|PAdicInteger| 1783033 1784912 1785000 "PADIC" NIL PADIC (NIL NIL) |domain| NIL NIL NIL) (|PadeApproximantPackage| 1782146 1782349 1782679 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) |package| NIL NIL NIL) (|PadeApproximants| 1781189 1781377 1781733 "PADE" NIL PADE (NIL T T T) |package| NIL NIL NIL) (|OrdinaryWeightedPolynomials| 1779264 1780265 1780703 "OWP" NIL OWP (NIL T NIL NIL NIL) |domain| NIL NIL NIL) (|OverloadSet| 1778614 1778912 1779092 "OVERSET" NIL OVERSET (NIL) |domain| NIL NIL NIL) (|OrderedVariableList| 1777497 1778159 1778475 "OVAR" NIL OVAR (NIL NIL) |domain| NIL NIL NIL) (|OutputForm| 1769558 1772301 1775077 "OUTFORM" NIL OUTFORM (NIL) |domain| NIL NIL NIL) (|OutputBinaryFile| 1768631 1769059 1769322 "OUTBFILE" NIL OUTBFILE (NIL) |domain| NIL NIL NIL) (|OutputByteConduit| 1767432 1767705 1767769 "OUTBCON" 1768326 OUTBCON (NIL) |category| NIL 1768610 NIL) (|OutputByteConduit&| 1766951 1767137 1767427 "OUTBCON-" NIL OUTBCON- (NIL T) |package| NIL NIL NIL) (|OutputPackage| 1766228 1766389 1766630 "OUT" NIL OUT (NIL) |package| NIL NIL NIL) (|OrdSetInts| 1765614 1765961 1766110 "OSI" NIL OSI (NIL) |domain| NIL NIL NIL) (|OrderedSemiGroup| 1764918 1765333 1765395 "OSGROUP" 1765400 OSGROUP (NIL) |category| NIL 1765439 NIL) (|OrthogonalPolynomialFunctions| 1763868 1764133 1764543 "ORTHPOL" NIL ORTHPOL (NIL T) |package| NIL NIL NIL) (|UnivariateSkewPolynomial| 1761360 1763627 1763863 "OREUP" NIL OREUP (NIL NIL T NIL NIL) |domain| NIL NIL NIL) (|SparseUnivariateSkewPolynomial| 1758564 1760871 1761138 "ORESUP" NIL ORESUP (NIL T NIL NIL) |domain| NIL NIL NIL) (|UnivariateSkewPolynomialCategoryOps| 1756622 1757028 1757638 "OREPCTO" NIL OREPCTO (NIL T T) |package| NIL NIL NIL) (|UnivariateSkewPolynomialCategory| 1745965 1749222 1749330 "OREPCAT" 1753808 OREPCAT (NIL T) |category| NIL 1755557 NIL) (|UnivariateSkewPolynomialCategory&| 1743533 1744592 1745960 "OREPCAT-" NIL OREPCAT- (NIL T T) |package| NIL NIL NIL) (|OrderedType| 1742470 1742741 1742793 "ORDTYPE" 1743254 ORDTYPE (NIL) |category| NIL 1743480 NIL) (|OrderedType&| 1742022 1742199 1742465 "ORDTYPE-" NIL ORDTYPE- (NIL T) |package| NIL NIL NIL) (|OrderedStructure| 1741498 1741768 1742017 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) |domain| NIL NIL NIL) (|OrderedSet| 1740917 1741267 1741317 "ORDSET" 1741322 ORDSET (NIL) |category| NIL 1741364 NIL) (|OrderedRing| 1738963 1740154 1740206 "ORDRING" 1740211 ORDRING (NIL) |category| NIL 1740279 NIL) (|OrderedMonoid| 1738048 1738641 1738697 "ORDMON" 1738702 ORDMON (NIL) |category| NIL 1738744 NIL) (|OrderingFunctions| 1737409 1737533 1737781 "ORDFUNS" NIL ORDFUNS (NIL NIL T) |package| NIL NIL NIL) (|OrderedFinite| 1736419 1736952 1737008 "ORDFIN" 1737115 ORDFIN (NIL) |category| NIL 1737237 NIL) (|OrderedCompletionFunctions2| 1735671 1735813 1736083 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) |package| NIL NIL NIL) (|OrderedCompletion| 1732646 1734434 1735085 "ORDCOMP" NIL ORDCOMP (NIL T) |domain| NIL NIL NIL) (|OperatorSignature| 1731856 1732249 1732449 "OPSIG" NIL OPSIG (NIL) |domain| NIL NIL NIL) (|OperationsQuery| 1731511 1731580 1731714 "OPQUERY" NIL OPQUERY (NIL) |package| NIL NIL NIL) (|OperatorCategory| 1730495 1730801 1730884 "OPERCAT" 1731250 OPERCAT (NIL T) |category| NIL 1731399 NIL) (|OperatorCategory&| 1730197 1730281 1730490 "OPERCAT-" NIL OPERCAT- (NIL T T) |package| NIL NIL NIL) (|Operator| 1727312 1728791 1729519 "OP" NIL OP (NIL T) |domain| NIL NIL NIL) (|OnePointCompletionFunctions2| 1726566 1726706 1726976 "ONECOMP2" NIL ONECOMP2 (NIL T T) |package| NIL NIL NIL) (|OnePointCompletion| 1723816 1725520 1726085 "ONECOMP" NIL ONECOMP (NIL T) |domain| NIL NIL NIL) (|OrderedMultisetAggregate| 1719645 1722747 1722845 "OMSAGG" 1722956 OMSAGG (NIL T) |category| NIL 1723075 NIL) (|OppositeMonogenicLinearOperator| 1717939 1719150 1719439 "OMLO" NIL OMLO (NIL T T) |domain| NIL NIL NIL) (|OrderedIntegralDomain| 1715460 1716924 1716996 "OINTDOM" 1717001 OINTDOM (NIL) |category| NIL 1717046 NIL) (|OrderedFreeMonoid| 1712890 1714356 1714864 "OFMONOID" NIL OFMONOID (NIL T) |domain| NIL NIL NIL) (|OrderlyDifferentialVariable| 1712153 1712756 1712885 "ODVAR" NIL ODVAR (NIL T) |domain| NIL NIL NIL) (|OrdinaryDifferentialRing| 1709769 1711866 1712148 "ODR" NIL ODR (NIL T T NIL) |domain| NIL NIL NIL) (|OrderlyDifferentialPolynomial| 1702842 1709488 1709764 "ODPOL" NIL ODPOL (NIL T) |domain| NIL NIL NIL) (|OrderedDirectProduct| 1698080 1702631 1702837 "ODP" NIL ODP (NIL NIL T NIL) |domain| NIL NIL NIL) (|ODETools| 1696426 1696724 1697161 "ODETOOLS" NIL ODETOOLS (NIL T T) |package| NIL NIL NIL) (|SystemODESolver| 1693755 1694414 1695220 "ODESYS" NIL ODESYS (NIL T T) |package| NIL NIL NIL) (|RationalRicDE| 1690304 1690925 1691867 "ODERTRIC" NIL ODERTRIC (NIL T T) |package| NIL NIL NIL) (|ReduceLODE| 1689400 1689508 1689878 "ODERED" NIL ODERED (NIL T T T T T) |package| NIL NIL NIL) (|RationalLODE| 1687086 1687517 1688228 "ODERAT" NIL ODERAT (NIL T T) |package| NIL NIL NIL) (|PrimitiveRatRicDE| 1683232 1683874 1684835 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) |package| NIL NIL NIL) (|PrimitiveRatDE| 1679721 1680185 1681048 "ODEPRIM" NIL ODEPRIM (NIL T T T T) |package| NIL NIL NIL) (|PureAlgebraicLODE| 1678527 1678689 1679179 "ODEPAL" NIL ODEPAL (NIL T T T T) |package| NIL NIL NIL) (|ODEIntegration| 1677441 1677566 1677995 "ODEINT" NIL ODEINT (NIL T T) |package| NIL NIL NIL) (|ElementaryFunctionODESolver| 1674144 1674697 1675649 "ODEEF" NIL ODEEF (NIL T T) |package| NIL NIL NIL) (|ConstantLODE| 1673031 1673147 1673622 "ODECONST" NIL ODECONST (NIL T T T) |package| NIL NIL NIL) (|OctonionCategoryFunctions2| 1672463 1672519 1672760 "OCTCT2" NIL OCTCT2 (NIL T T T T) |package| NIL NIL NIL) (|Octonion| 1669306 1672135 1672326 "OCT" NIL OCT (NIL T) |domain| NIL NIL NIL) (|OrderedCancellationAbelianMonoid| 1668152 1668835 1668929 "OCAMON" 1668934 OCAMON (NIL) |category| NIL 1668999 NIL) (|OctonionCategory| 1659747 1663114 1663201 "OC" 1665263 OC (NIL T) |category| |Octonion| 1666543 NIL) (|OctonionCategory&| 1657287 1658263 1659548 "OC-" NIL OC- (NIL T T) |package| NIL NIL NIL) (|OrderedAbelianSemiGroup| 1656564 1656978 1657054 "OASGP" 1657059 OASGP (NIL) |category| NIL 1657105 NIL) (|OrderedAbelianMonoidSup| 1655264 1655974 1656050 "OAMONS" 1656121 OAMONS (NIL) |category| NIL 1656214 NIL) (|OrderedAbelianMonoid| 1654106 1654733 1654803 "OAMON" 1654908 OAMON (NIL) |category| NIL 1655024 NIL) (|OrderedAbelianMonoid&| 1653904 1653948 1654101 "OAMON-" NIL OAMON- (NIL T) |package| NIL NIL NIL) (|OrderedAbelianGroup| 1652129 1652983 1653051 "OAGROUP" 1653312 OAGROUP (NIL) |category| NIL 1653495 NIL) (|OrderedAbelianGroup&| 1651801 1651906 1652124 "OAGROUP-" NIL OAGROUP- (NIL T) |package| NIL NIL NIL) (|NumericTubePlot| 1651332 1651408 1651585 "NUMTUBE" NIL NUMTUBE (NIL T) |package| NIL NIL NIL) (|NumericalQuadrature| 1649821 1650289 1650821 "NUMQUAD" NIL NUMQUAD (NIL) |package| NIL NIL NIL) (|NumericalOrdinaryDifferentialEquations| 1648097 1648567 1649160 "NUMODE" NIL NUMODE (NIL) |package| NIL NIL NIL) (|NumberFormats| 1647038 1647337 1647691 "NUMFMT" NIL NUMFMT (NIL) |package| NIL NIL NIL) (|Numeric| 1639510 1641019 1643412 "NUMERIC" NIL NUMERIC (NIL T) |package| NIL NIL NIL) (|NormalizedTriangularSetCategory| 1631856 1638473 1638692 "NTSCAT" 1638697 NTSCAT (NIL T T T T) |category| NIL 1638764 NIL) (|NumberTheoreticPolynomialFunctions| 1631058 1631234 1631557 "NTPOLFN" NIL NTPOLFN (NIL T) |package| NIL NIL NIL) (|NewSparseUnivariatePolynomialFunctions2| 1630383 1630507 1630769 "NSUP2" NIL NSUP2 (NIL T T) |package| NIL NIL NIL) (|NewSparseUnivariatePolynomial| 1619353 1627731 1628954 "NSUP" NIL NSUP (NIL T) |domain| NIL NIL NIL) (|NewSparseMultivariatePolynomial| 1610505 1619074 1619348 "NSMP" NIL NSMP (NIL T T) |domain| NIL NIL NIL) (|NumericRealEigenPackage| 1609032 1609376 1609866 "NREP" NIL NREP (NIL T) |package| NIL NIL NIL) (|NPCoef| 1607296 1607615 1608143 "NPCOEF" NIL NPCOEF (NIL T T T T T) |package| NIL NIL NIL) (|NormRetractPackage| 1605839 1606048 1606509 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) |package| NIL NIL NIL) (|NormalizationPackage| 1603540 1603925 1604562 "NORMPK" NIL NORMPK (NIL T T T T T) |package| NIL NIL NIL) (|NormInMonogenicAlgebra| 1602982 1603017 1603271 "NORMMA" NIL NORMMA (NIL T T T T) |package| NIL NIL NIL) (|NoneFunctions1| 1602704 1602744 1602861 "NONE1" NIL NONE1 (NIL T) |package| NIL NIL NIL) (|None| 1602460 1602658 1602699 "NONE" NIL NONE (NIL) |domain| NIL NIL NIL) (|NonLinearFirstOrderODESolver| 1601515 1601604 1602027 "NODE1" NIL NODE1 (NIL T T) |package| NIL NIL NIL) (|NonNegativeInteger| 1599816 1600718 1601133 "NNI" NIL NNI (NIL) |domain| NIL NIL 1601475) (|NonLinearSolvePackage| 1598750 1598956 1599286 "NLINSOL" NIL NLINSOL (NIL T) |package| NIL NIL NIL) (|NumberFieldIntegralBasis| 1597419 1597630 1597995 "NFINTBAS" NIL NFINTBAS (NIL T T) |package| NIL NIL NIL) (|NetworkClientSocket| 1595958 1596745 1596834 "NETCLT" 1597151 NETCLT (NIL T) |category| NIL 1597310 NIL) (|NonCommutativeOperatorDivision| 1594671 1594972 1595415 "NCODIV" NIL NCODIV (NIL T T) |package| NIL NIL NIL) (|NumericContinuedFraction| 1594224 1594301 1594489 "NCNTFRAC" NIL NCNTFRAC (NIL T) |package| NIL NIL NIL) (|NumericComplexEigenPackage| 1592642 1593017 1593544 "NCEP" NIL NCEP (NIL T) |package| NIL NIL NIL) (|NonAssociativeRing| 1590746 1591865 1591931 "NASRING" 1592144 NASRING (NIL) |category| NIL 1592316 NIL) (|NonAssociativeRing&| 1590482 1590554 1590741 "NASRING-" NIL NASRING- (NIL T) |package| NIL NIL NIL) (|NonAssociativeRng| 1588971 1589765 1589829 "NARNG" 1590046 NARNG (NIL) |category| NIL 1590208 NIL) (|NonAssociativeRng&| 1588631 1588740 1588966 "NARNG-" NIL NARNG- (NIL T) |package| NIL NIL NIL) (|NonAssociativeAlgebra| 1586859 1587761 1587858 "NAALG" 1588019 NAALG (NIL T) |category| NIL 1588141 NIL) (|NonAssociativeAlgebra&| 1586595 1586652 1586854 "NAALG-" NIL NAALG- (NIL T T) |package| NIL NIL NIL) (|MultivariateSquareFree| 1581561 1582576 1583786 "MULTSQFR" NIL MULTSQFR (NIL T T T T) |package| NIL NIL NIL) (|MultivariateFactorize| 1580558 1580677 1581035 "MULTFACT" NIL MULTFACT (NIL T T T T) |package| NIL NIL NIL) (|MultivariateTaylorSeriesCategory| 1569333 1574236 1574364 "MTSCAT" 1576476 MTSCAT (NIL T T) |category| NIL 1577457 NIL) (|MergeThing| 1568999 1569060 1569195 "MTHING" NIL MTHING (NIL T) |package| NIL NIL NIL) (|MoreSystemCommands| 1568693 1568746 1568870 "MSYSCMD" NIL MSYSCMD (NIL) |package| NIL NIL NIL) (|MultisetAggregate| 1565556 1567905 1567990 "MSETAGG" 1567995 MSETAGG (NIL T) |category| |Multiset| 1568054 NIL) (|Multiset| 1562244 1564546 1565013 "MSET" NIL MSET (NIL T) |domain| NIL NIL NIL) (|MonoidRing| 1558396 1560251 1561276 "MRING" NIL MRING (NIL T T) |domain| NIL NIL NIL) (|MonoidRingFunctions2| 1557818 1557914 1558126 "MRF2" NIL MRF2 (NIL T T T) |package| NIL NIL NIL) (|MRationalFactorize| 1557156 1557206 1557492 "MRATFAC" NIL MRATFAC (NIL T T T T) |package| NIL NIL NIL) (|MPolyCatRationalFunctionFactorizer| 1554768 1555183 1555882 "MPRFF" NIL MPRFF (NIL T T T T) |package| NIL NIL NIL) (|MultivariatePolynomial| 1549054 1554578 1554763 "MPOLY" NIL MPOLY (NIL NIL T) |domain| NIL NIL NIL) (|MPolyCatPolyFactorizer| 1548202 1548252 1548635 "MPCPF" NIL MPCPF (NIL T T T T) |package| NIL NIL NIL) (|MPolyCatFunctions3| 1547462 1547518 1547821 "MPC3" NIL MPC3 (NIL T T T T T T T) |package| NIL NIL NIL) (|MPolyCatFunctions2| 1546511 1546617 1546968 "MPC2" NIL MPC2 (NIL T T T T T T T) |package| NIL NIL NIL) (|MonomialExtensionTools| 1544796 1545175 1545687 "MONOTOOL" NIL MONOTOOL (NIL T T) |package| NIL NIL NIL) (|MonoidOperatorCategory| 1544085 1544161 1544254 "MONOPC" 1544371 MONOPC (NIL T) |category| |MonoidOperation| 1544658 NIL) (|MonoidOperation| 1543309 1543681 1543934 "MONOP" NIL MONOP (NIL T) |domain| NIL NIL NIL) (|Monoid| 1542124 1542566 1542608 "MONOID" 1542940 MONOID (NIL) |category| NIL 1543177 NIL) (|Monoid&| 1541630 1541826 1542119 "MONOID-" NIL MONOID- (NIL T) |package| NIL NIL NIL) (|MonogenicAlgebra| 1526397 1534585 1534716 "MONOGEN" 1536092 MONOGEN (NIL T T) |category| NIL 1536852 NIL) (|MonogenicAlgebra&| 1523714 1524705 1526148 "MONOGEN-" NIL MONOGEN- (NIL T T T) |package| NIL NIL NIL) (|MonadWithUnit| 1521796 1522453 1522509 "MONADWU" 1523183 MONADWU (NIL) |category| NIL 1523586 NIL) (|MonadWithUnit&| 1521252 1521447 1521791 "MONADWU-" NIL MONADWU- (NIL T) |package| NIL NIL NIL) (|Monad| 1520185 1520555 1520595 "MONAD" 1520930 MONAD (NIL) |category| NIL 1521140 NIL) (|Monad&| 1519901 1520008 1520180 "MONAD-" NIL MONAD- (NIL T) |package| NIL NIL NIL) (|MoebiusTransform| 1518264 1519087 1519491 "MOEBIUS" NIL MOEBIUS (NIL T) |domain| NIL NIL NIL) (|Module| 1517095 1517713 1517780 "MODULE" 1517785 MODULE (NIL T) |category| NIL 1517840 NIL) (|Module&| 1516637 1516797 1517090 "MODULE-" NIL MODULE- (NIL T T) |package| NIL NIL NIL) (|ModularRing| 1514525 1515448 1515903 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) |domain| NIL NIL NIL) (|ModuleOperator| 1511304 1512810 1513575 "MODOP" NIL MODOP (NIL T T) |domain| NIL NIL NIL) (|ModuleMonomial| 1510000 1510469 1510798 "MODMONOM" NIL MODMONOM (NIL T T NIL) |domain| NIL NIL NIL) (|ModMonic| 1500655 1508653 1509248 "MODMON" NIL MODMON (NIL T T) |domain| NIL NIL NIL) (|ModularField| 1497657 1499570 1499973 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) |domain| NIL NIL NIL) (|MathMLFormat| 1496802 1497137 1497393 "MMLFORM" NIL MMLFORM (NIL) |domain| NIL NIL NIL) (|MultipleMap| 1495981 1496037 1496383 "MMAP" NIL MMAP (NIL T T T T T T) |package| NIL NIL NIL) (|MonogenicLinearOperator| 1492564 1493863 1493953 "MLO" 1494770 MLO (NIL T) |category| NIL 1495205 NIL) (|MultivariateLifting| 1489869 1490320 1490961 "MLIFT" NIL MLIFT (NIL T T T T) |package| NIL NIL NIL) (|MakeUnaryCompiledFunction| 1489062 1489182 1489448 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) |package| NIL NIL NIL) (|MakeRecord| 1488615 1488704 1488874 "MKRECORD" NIL MKRECORD (NIL T T) |package| NIL NIL NIL) (|MakeFunction| 1487862 1488017 1488303 "MKFUNC" NIL MKFUNC (NIL T) |package| NIL NIL NIL) (|MakeFloatCompiledFunction| 1487108 1487250 1487534 "MKFLCFN" NIL MKFLCFN (NIL T) |package| NIL NIL NIL) (|MakeBinaryCompiledFunction| 1486226 1486356 1486643 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) |package| NIL NIL NIL) (|ModularHermitianRowReduction| 1485185 1485461 1485848 "MHROWRED" NIL MHROWRED (NIL T) |package| NIL NIL NIL) (|MultFiniteFactorize| 1484245 1484365 1484691 "MFINFACT" NIL MFINFACT (NIL T T T T) |package| NIL NIL NIL) (|MeshCreationRoutinesForThreeDimensions| 1482221 1482731 1483377 "MESH" NIL MESH (NIL) |package| NIL NIL NIL) (|ModularDistinctDegreeFactorizer| 1480663 1480994 1481458 "MDDFACT" NIL MDDFACT (NIL T) |package| NIL NIL NIL) (|MultiDictionary| 1477002 1479127 1479208 "MDAGG" 1479671 MDAGG (NIL T) |category| NIL 1479933 NIL) (|MatrixCommonDenominator| 1475931 1476131 1476470 "MCDEN" NIL MCDEN (NIL T T) |package| NIL NIL NIL) (|Maybe| 1474874 1475209 1475546 "MAYBE" NIL MAYBE (NIL T) |domain| NIL NIL NIL) (|StorageEfficientMatrixOperations| 1473479 1473847 1474330 "MATSTOR" NIL MATSTOR (NIL T) |package| NIL NIL NIL) (|Matrix| 1469661 1472907 1473231 "MATRIX" NIL MATRIX (NIL T) |domain| NIL NIL NIL) (|MatrixLinearAlgebraFunctions| 1465885 1466669 1467695 "MATLIN" NIL MATLIN (NIL T T T T) |package| NIL NIL NIL) (|MatrixCategoryFunctions2| 1464311 1464514 1465005 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) |package| NIL NIL NIL) (|MatrixCategory| 1447148 1451594 1451740 "MATCAT" 1461416 MATCAT (NIL T T T) |category| NIL 1463664 NIL) (|MatrixCategory&| 1444171 1445470 1447143 "MATCAT-" NIL MATCAT- (NIL T T T T) |package| NIL NIL NIL) (|MappingPackage3| 1442598 1442928 1443359 "MAPPKG3" NIL MAPPKG3 (NIL T T T) |package| NIL NIL NIL) (|MappingPackage2| 1441618 1441813 1442102 "MAPPKG2" NIL MAPPKG2 (NIL T T) |package| NIL NIL NIL) (|MappingPackage1| 1440100 1440435 1440866 "MAPPKG1" NIL MAPPKG1 (NIL T) |package| NIL NIL NIL) (|MappingAst| 1439149 1439553 1439819 "MAPPAST" NIL MAPPAST (NIL) |domain| NIL NIL NIL) (|MappingPackageInternalHacks3| 1438617 1438696 1438907 "MAPHACK3" NIL MAPHACK3 (NIL T T T) |package| NIL NIL NIL) (|MappingPackageInternalHacks2| 1438099 1438174 1438373 "MAPHACK2" NIL MAPHACK2 (NIL T T) |package| NIL NIL NIL) (|MappingPackageInternalHacks1| 1437419 1437564 1437820 "MAPHACK1" NIL MAPHACK1 (NIL T) |package| NIL NIL NIL) (|Magma| 1435663 1436407 1436878 "MAGMA" NIL MAGMA (NIL T) |domain| NIL NIL NIL) (|MacroAst| 1435057 1435365 1435520 "MACROAST" NIL MACROAST (NIL) |domain| NIL NIL NIL) (|LazyStreamAggregate| 1427132 1432145 1432227 "LZSTAGG" 1433615 LZSTAGG (NIL T) |category| |Stream| 1434134 NIL) (|LazyStreamAggregate&| 1424157 1425512 1427127 "LZSTAGG-" NIL LZSTAGG- (NIL T T) |package| NIL NIL NIL) (|LyndonWord| 1421341 1422304 1423003 "LWORD" NIL LWORD (NIL T) |domain| NIL NIL NIL) (|ConstructAst| 1420812 1421097 1421238 "LSTAST" NIL LSTAST (NIL) |domain| NIL NIL NIL) (|LieSquareMatrix| 1414478 1420562 1420807 "LSQM" NIL LSQM (NIL NIL T) |domain| NIL NIL NIL) (|LinearSystemPolynomialPackage| 1413494 1413659 1414036 "LSPP" NIL LSPP (NIL T T T T) |package| NIL NIL NIL) (|LinearSystemMatrixPackage1| 1411705 1412118 1412656 "LSMP1" NIL LSMP1 (NIL T) |package| NIL NIL NIL) (|LinearSystemMatrixPackage| 1409709 1410028 1410583 "LSMP" NIL LSMP (NIL T T T T) |package| NIL NIL NIL) (|ListAggregate| 1401147 1408142 1408212 "LSAGG" 1408307 LSAGG (NIL T) |category| NIL 1408460 NIL) (|ListAggregate&| 1398699 1399751 1401142 "LSAGG-" NIL LSAGG- (NIL T T) |package| NIL NIL NIL) (|LiePolynomial| 1396047 1397953 1398336 "LPOLY" NIL LPOLY (NIL T T) |domain| NIL NIL NIL) (|LinearPolynomialEquationByFractions| 1395351 1395490 1395774 "LPEFRAC" NIL LPEFRAC (NIL T) |package| NIL NIL NIL) (|Logic| 1394946 1395021 1395061 "LOGIC" 1395207 LOGIC (NIL) |category| NIL 1395318 NIL) (|Logic&| 1394812 1394841 1394941 "LOGIC-" NIL LOGIC- (NIL T) |package| NIL NIL NIL) (|LinearOrdinaryDifferentialOperatorsOps| 1393733 1393911 1394269 "LODOOPS" NIL LODOOPS (NIL T T) |package| NIL NIL NIL) (|LinearOrdinaryDifferentialOperatorFactorizer| 1392171 1392402 1392944 "LODOF" NIL LODOF (NIL T T) |package| NIL NIL NIL) (|LinearOrdinaryDifferentialOperatorCategory| 1386379 1389623 1389751 "LODOCAT" 1390673 LODOCAT (NIL T) |category| NIL 1391030 NIL) (|LinearOrdinaryDifferentialOperatorCategory&| 1385998 1386087 1386374 "LODOCAT-" NIL LODOCAT- (NIL T T) |package| NIL NIL NIL) (|LinearOrdinaryDifferentialOperator2| 1383271 1385709 1385993 "LODO2" NIL LODO2 (NIL T T) |domain| NIL NIL NIL) (|LinearOrdinaryDifferentialOperator1| 1380688 1383101 1383266 "LODO1" NIL LODO1 (NIL T) |domain| NIL NIL NIL) (|LinearOrdinaryDifferentialOperator| 1378043 1380505 1380683 "LODO" NIL LODO (NIL T NIL) |domain| NIL NIL NIL) (|ElementaryFunctionLODESolver| 1376456 1376650 1377243 "LODEEF" NIL LODEEF (NIL T T T) |package| NIL NIL NIL) (|Localize| 1374621 1375595 1375934 "LO" NIL LO (NIL T T T) |domain| NIL NIL NIL) (|LinearAggregate| 1368847 1371634 1371708 "LNAGG" 1373140 LNAGG (NIL T) |category| NIL 1373833 NIL) (|LinearAggregate&| 1368066 1368357 1368842 "LNAGG-" NIL LNAGG- (NIL T T) |package| NIL NIL NIL) (|ListMonoidOps| 1364666 1365695 1366588 "LMOPS" NIL LMOPS (NIL T T NIL) |domain| NIL NIL NIL) (|LeftModule| 1363664 1364260 1364323 "LMODULE" 1364328 LMODULE (NIL T) |category| NIL 1364379 NIL) (|ListMultiDictionary| 1361256 1363179 1363417 "LMDICT" NIL LMDICT (NIL T) |domain| NIL NIL NIL) (|LeftLinearSet| 1360671 1360899 1360974 "LLINSET" 1361072 LLINSET (NIL T) |category| NIL 1361144 NIL) (|Literal| 1360306 1360561 1360666 "LITERAL" NIL LITERAL (NIL T) |domain| NIL NIL NIL) (|ListFunctions3| 1359750 1359843 1360033 "LIST3" NIL LIST3 (NIL T T T) |package| NIL NIL NIL) (|ListToMap| 1358367 1358613 1358991 "LIST2MAP" NIL LIST2MAP (NIL T T) |package| NIL NIL NIL) (|ListFunctions2| 1357378 1357565 1357838 "LIST2" NIL LIST2 (NIL T T) |package| NIL NIL NIL) (|List| 1352173 1356633 1357001 "LIST" NIL LIST (NIL T) |domain| NIL NIL NIL) (|LinearSet| 1351621 1351871 1351938 "LINSET" 1351943 LINSET (NIL T) |category| NIL 1352002 NIL) (|LinearForm| 1350323 1351114 1351375 "LINFORM" NIL LINFORM (NIL T NIL) |domain| NIL NIL NIL) (|LinearlyExplicitRingOver| 1347746 1348667 1348759 "LINEXP" 1349592 LINEXP (NIL T) |category| NIL 1350010 NIL) (|LinearElement| 1346117 1347185 1347494 "LINELT" NIL LINELT (NIL T NIL) |domain| NIL NIL NIL) (|LinearDependence| 1344641 1344931 1345375 "LINDEP" NIL LINDEP (NIL T T) |package| NIL NIL NIL) (|LinearBasis| 1343780 1344310 1344510 "LINBASIS" NIL LINBASIS (NIL NIL) |domain| NIL NIL NIL) (|RationalFunctionLimitPackage| 1341669 1342114 1342701 "LIMITRF" NIL LIMITRF (NIL T) |package| NIL NIL NIL) (|PowerSeriesLimitPackage| 1339839 1340171 1340783 "LIMITPS" NIL LIMITPS (NIL T T) |package| NIL NIL NIL) (|LieAlgebra| 1338183 1338881 1338956 "LIECAT" 1339193 LIECAT (NIL T) |category| NIL 1339393 NIL) (|LieAlgebra&| 1338008 1338037 1338178 "LIECAT-" NIL LIECAT- (NIL T T) |package| NIL NIL NIL) (|AssociatedLieAlgebra| 1334321 1337464 1337845 "LIE" NIL LIE (NIL T T) |domain| NIL NIL NIL) (|Library| 1331008 1333882 1334115 "LIB" NIL LIB (NIL) |domain| NIL NIL NIL) (|LinGroebnerPackage| 1327856 1328554 1329363 "LGROBP" NIL LGROBP (NIL NIL T) |package| NIL NIL NIL) (|LiouvillianFunctionCategory| 1325922 1326843 1326927 "LFCAT" 1327342 LFCAT (NIL) |category| NIL 1327579 NIL) (|LiouvillianFunction| 1324180 1324516 1325044 "LF" NIL LF (NIL T T) |package| NIL NIL NIL) (|LexTriangularPackage| 1321983 1322472 1323088 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) |package| NIL NIL NIL) (|LieExponentials| 1318792 1319927 1320709 "LEXP" NIL LEXP (NIL T T NIL) |domain| NIL NIL NIL) (|LetAst| 1318250 1318547 1318687 "LETAST" NIL LETAST (NIL) |domain| NIL NIL NIL) (|LeadingCoefDetermination| 1316354 1316748 1317344 "LEADCDET" NIL LEADCDET (NIL T T T T) |package| NIL NIL NIL) (|LazardSetSolvingPackage| 1314932 1315047 1315491 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) |package| NIL NIL NIL) (|LaurentPolynomial| 1309912 1313084 1313960 "LAUPOL" NIL LAUPOL (NIL T T) |domain| NIL NIL NIL) (|LaplaceTransform| 1309114 1309170 1309536 "LAPLACE" NIL LAPLACE (NIL T T) |package| NIL NIL NIL) (|LeftAlgebra| 1307426 1308379 1308445 "LALG" 1308540 LALG (NIL T) |category| NIL 1308631 NIL) (|LeftAlgebra&| 1307110 1307203 1307421 "LALG-" NIL LALG- (NIL T T) |package| NIL NIL NIL) (|LocalAlgebra| 1305044 1306234 1306574 "LA" NIL LA (NIL T T T) |domain| NIL NIL NIL) (|ConvertibleFrom| 1304774 1304808 1304882 "KVTFROM" 1304982 KVTFROM (NIL T) |category| NIL NIL NIL) (|KleeneTrivalentLogic| 1303421 1304173 1304480 "KTVLOGIC" NIL KTVLOGIC (NIL) |domain| NIL NIL NIL) (|CoercibleFrom| 1303160 1303193 1303263 "KRCFROM" 1303360 KRCFROM (NIL T) |category| NIL NIL NIL) (|Kovacic| 1301905 1302083 1302497 "KOVACIC" NIL KOVACIC (NIL T T) |package| NIL NIL NIL) (|ConvertibleTo| 1301641 1301675 1301745 "KONVERT" 1301843 KONVERT (NIL T) |category| NIL NIL NIL) (|CoercibleTo| 1301386 1301419 1301485 "KOERCE" 1301580 KOERCE (NIL T) |category| NIL NIL NIL) (|KernelFunctions2| 1300745 1300863 1301079 "KERNEL2" NIL KERNEL2 (NIL T T) |package| NIL NIL NIL) (|Kernel| 1298540 1299458 1300013 "KERNEL" NIL KERNEL (NIL T) |domain| NIL NIL NIL) (|KeyedDictionary| 1289916 1295596 1295698 "KDAGG" 1296343 KDAGG (NIL T T) |category| NIL 1296698 NIL) (|KeyedDictionary&| 1289470 1289615 1289911 "KDAGG-" NIL KDAGG- (NIL T T T) |package| NIL NIL NIL) (|KeyedAccessFile| 1286190 1289130 1289367 "KAFILE" NIL KAFILE (NIL T) |domain| NIL NIL NIL) (|JVMOpcode| 1285782 1286068 1286185 "JVMOP" NIL JVMOP (NIL) |domain| NIL NIL NIL) (|JVMMethodAccess| 1284518 1285061 1285528 "JVMMDACC" NIL JVMMDACC (NIL) |domain| NIL NIL NIL) (|JVMFieldAccess| 1283450 1283928 1284312 "JVMFDACC" NIL JVMFDACC (NIL) |domain| NIL NIL NIL) (|JVMConstantTag| 1281645 1282347 1283029 "JVMCSTTG" NIL JVMCSTTG (NIL) |domain| NIL NIL NIL) (|JVMClassFileAccess| 1280764 1281175 1281484 "JVMCFACC" NIL JVMCFACC (NIL) |domain| NIL NIL NIL) (|JVMBytecode| 1280439 1280670 1280759 "JVMBCODE" NIL JVMBCODE (NIL) |domain| NIL NIL NIL) (|AssociatedJordanAlgebra| 1276756 1279886 1280273 "JORDAN" NIL JORDAN (NIL T T) |domain| NIL NIL NIL) (|JoinAst| 1276096 1276439 1276627 "JOINAST" NIL JOINAST (NIL) |domain| NIL NIL NIL) (|IndexedAggregate| 1271364 1273136 1273231 "IXAGG" 1274851 IXAGG (NIL T T) |category| NIL 1275509 NIL) (|IndexedAggregate&| 1270455 1270823 1271359 "IXAGG-" NIL IXAGG- (NIL T T T) |package| NIL NIL NIL) (|InfiniteTuple| 1269458 1269756 1270110 "ITUPLE" NIL ITUPLE (NIL T) |domain| NIL NIL NIL) (|InnerTrigonometricManipulations| 1267684 1267920 1268426 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) |package| NIL NIL NIL) (|InfiniteTupleFunctions3| 1266587 1266813 1267168 "ITFUN3" NIL ITFUN3 (NIL T T T) |package| NIL NIL NIL) (|InfiniteTupleFunctions2| 1266043 1266135 1266346 "ITFUN2" NIL ITFUN2 (NIL T T) |package| NIL NIL NIL) (|InternalTypeForm| 1265087 1265506 1265833 "ITFORM" NIL ITFORM (NIL) |domain| NIL NIL NIL) (|InnerTaylorSeries| 1262981 1264265 1264686 "ITAYLOR" NIL ITAYLOR (NIL T) |domain| NIL NIL NIL) (|InnerSparseUnivariatePowerSeries| 1255451 1259589 1261078 "ISUPS" NIL ISUPS (NIL T) |domain| NIL NIL NIL) (|InnerPolySum| 1254471 1254604 1254922 "ISUMP" NIL ISUMP (NIL T T T T) |package| NIL NIL NIL) (|IsAst| 1253932 1254229 1254367 "ISAST" NIL ISAST (NIL) |domain| NIL NIL NIL) (|InternalRationalUnivariateRepresentationPackage| 1252810 1252910 1253367 "IRURPK" NIL IRURPK (NIL T T T T T) |package| NIL NIL NIL) (|IrrRepSymNatPackage| 1251625 1251903 1252310 "IRSN" NIL IRSN (NIL) |package| NIL NIL NIL) (|IntegrationResultRFToFunction| 1249804 1250145 1250690 "IRRF2F" NIL IRRF2F (NIL T) |package| NIL NIL NIL) (|IrredPolyOverFiniteField| 1249287 1249381 1249586 "IRREDFFX" NIL IRREDFFX (NIL T) |package| NIL NIL NIL) (|IntegerRoots| 1247798 1248179 1248660 "IROOT" NIL IROOT (NIL T) |package| NIL NIL NIL) (|InternalRepresentationForm| 1246961 1247325 1247594 "IRFORM" NIL IRFORM (NIL) |domain| NIL NIL NIL) (|IntegrationResultToFunction| 1245664 1245806 1246219 "IR2F" NIL IR2F (NIL T T) |package| NIL NIL NIL) (|IntegrationResultFunctions2| 1243494 1244052 1244746 "IR2" NIL IR2 (NIL T T) |package| NIL NIL NIL) (|IntegrationResult| 1240363 1241635 1242428 "IR" NIL IR (NIL T) |domain| NIL NIL NIL) (|InternalPrintPackage| 1240071 1240118 1240239 "IPRNTPK" NIL IPRNTPK (NIL) |package| NIL NIL NIL) (|InnerPrimeField| 1236085 1239895 1240066 "IPF" NIL IPF (NIL NIL) |domain| NIL NIL NIL) (|InnerPAdicInteger| 1233940 1235965 1236080 "IPADIC" NIL IPADIC (NIL NIL NIL) |domain| NIL NIL NIL) (|IP4Address| 1233120 1233457 1233677 "IP4ADDR" NIL IP4ADDR (NIL) |domain| NIL NIL NIL) (|IOMode| 1232473 1232785 1233007 "IOMODE" NIL IOMODE (NIL) |domain| NIL NIL NIL) (|InputOutputBinaryFile| 1231155 1231934 1232222 "IOBFILE" NIL IOBFILE (NIL) |domain| NIL NIL NIL) (|InputOutputByteConduit| 1230263 1230947 1231021 "IOBCON" 1231026 IOBCON (NIL) |category| NIL 1231079 NIL) (|InverseLaplaceTransform| 1229319 1229401 1229835 "INVLAPLA" NIL INVLAPLA (NIL T T) |package| NIL NIL NIL) (|TranscendentalIntegration| 1223148 1224608 1226182 "INTTR" NIL INTTR (NIL T T) |package| NIL NIL NIL) (|IntegrationTools| 1219632 1220429 1221440 "INTTOOLS" NIL INTTOOLS (NIL T T) |package| NIL NIL NIL) (|IntegerSolveLinearPolynomialEquation| 1219041 1219176 1219417 "INTSLPE" NIL INTSLPE (NIL) |package| NIL NIL NIL) (|Interval| 1216488 1218904 1219036 "INTRVL" NIL INTRVL (NIL T) |domain| NIL NIL NIL) (|RationalFunctionIntegration| 1214408 1214867 1215497 "INTRF" NIL INTRF (NIL T) |package| NIL NIL NIL) (|IntegerRetractions| 1213716 1213864 1214108 "INTRET" NIL INTRET (NIL T) |package| NIL NIL NIL) (|RationalIntegration| 1211751 1212143 1212724 "INTRAT" NIL INTRAT (NIL T T) |package| NIL NIL NIL) (|PatternMatchIntegration| 1209357 1209903 1210780 "INTPM" NIL INTPM (NIL T T) |package| NIL NIL NIL) (|PureAlgebraicIntegration| 1206115 1206766 1207749 "INTPAF" NIL INTPAF (NIL T T T) |package| NIL NIL NIL) (|TranscendentalHermiteIntegration| 1205252 1205425 1205754 "INTHERTR" NIL INTHERTR (NIL T T) |package| NIL NIL NIL) (|AlgebraicHermiteIntegration| 1204368 1204484 1204848 "INTHERAL" NIL INTHERAL (NIL T T T T) |package| NIL NIL NIL) (|IntegerNumberTheoryFunctions| 1202647 1203163 1203757 "INTHEORY" NIL INTHEORY (NIL) |package| NIL NIL NIL) (|GenusZeroIntegration| 1196851 1198029 1199596 "INTG0" NIL INTG0 (NIL T T T) |package| NIL NIL NIL) (|IntegerFactorizationPackage| 1196044 1196223 1196516 "INTFACT" NIL INTFACT (NIL T) |package| NIL NIL NIL) (|ElementaryIntegration| 1193435 1193935 1194723 "INTEF" NIL INTEF (NIL T T) |package| NIL NIL NIL) (|IntegralDomain| 1190741 1191919 1191977 "INTDOM" 1192464 INTDOM (NIL) |category| NIL 1192799 NIL) (|IntegralDomain&| 1190106 1190362 1190736 "INTDOM-" NIL INTDOM- (NIL T) |package| NIL NIL NIL) (|IntervalCategory| 1183892 1186693 1186828 "INTCAT" 1188536 INTCAT (NIL T) |category| |Interval| 1189082 NIL) (|IntegerBits| 1183357 1183488 1183674 "INTBIT" NIL INTBIT (NIL) |package| NIL NIL NIL) (|AlgebraicIntegrate| 1181711 1181905 1182438 "INTALG" NIL INTALG (NIL T T T T T) |package| NIL NIL NIL) (|AlgebraicIntegration| 1180932 1181069 1181370 "INTAF" NIL INTAF (NIL T T) |package| NIL NIL NIL) (|InnerTable| 1178044 1180816 1180927 "INTABL" NIL INTABL (NIL T T T) |domain| NIL NIL NIL) (|Int8| 1177376 1177836 1177944 "INT8" NIL INT8 (NIL) |domain| NIL NIL 1177991) (|Int64| 1176704 1177164 1177274 "INT64" NIL INT64 (NIL) |domain| NIL NIL 1177322) (|Int32| 1176032 1176492 1176602 "INT32" NIL INT32 (NIL) |domain| NIL NIL 1176650) (|Int16| 1175360 1175820 1175930 "INT16" NIL INT16 (NIL) |domain| NIL NIL 1175978) (|Integer| 1171771 1175190 1175355 "INT" NIL INT (NIL) |domain| NIL NIL NIL) (|IntegerNumberSystem| 1163048 1167353 1167421 "INS" 1169122 INS (NIL) |category| NIL 1170248 NIL) (|IntegerNumberSystem&| 1160450 1161546 1162887 "INS-" NIL INS- (NIL T) |package| NIL NIL NIL) (|InnerPolySign| 1159460 1159627 1159939 "INPSIGN" NIL INPSIGN (NIL T T) |package| NIL NIL NIL) (|InfiniteProductPrimeField| 1158349 1158544 1158922 "INPRODPF" NIL INPRODPF (NIL T T) |package| NIL NIL NIL) (|InfiniteProductFiniteField| 1156945 1157140 1157599 "INPRODFF" NIL INPRODFF (NIL T T T T) |package| NIL NIL NIL) (|InnerMultFact| 1155731 1155926 1156343 "INNMFACT" NIL INNMFACT (NIL T T T T) |package| NIL NIL NIL) (|InnerModularGcd| 1154743 1154877 1155201 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) |package| NIL NIL NIL) (|InnerNumericFloatSolvePackage| 1153107 1153406 1153880 "INFSP" NIL INFSP (NIL T T T) |package| NIL NIL NIL) (|InfiniteProductCharacteristicZero| 1152006 1152201 1152594 "INFPROD0" NIL INFPROD0 (NIL T T) |package| NIL NIL NIL) (|InputFormFunctions1| 1151448 1151544 1151725 "INFORM1" NIL INFORM1 (NIL T) |package| NIL NIL NIL) (|InputForm| 1148457 1149904 1150650 "INFORM" NIL INFORM (NIL) |domain| NIL NIL NIL) (|Infinity| 1147871 1148029 1148236 "INFINITY" NIL INFINITY (NIL) |package| NIL NIL NIL) (|InetClientStreamSocket| 1146654 1147472 1147698 "INETCLTS" NIL INETCLTS (NIL) |domain| NIL NIL NIL) (|InnerNumericEigenPackage| 1145022 1145343 1145803 "INEP" NIL INEP (NIL T T T) |package| NIL NIL NIL) (|IndexedExponents| 1144007 1144850 1145017 "INDE" NIL INDE (NIL T) |domain| NIL NIL NIL) (|IncrementingMaps| 1143512 1143605 1143809 "INCRMAPS" NIL INCRMAPS (NIL T) |package| NIL NIL NIL) (|InputBinaryFile| 1142069 1142792 1143160 "INBFILE" NIL INBFILE (NIL) |domain| NIL NIL NIL) (|InnerNormalBasisFieldFunctions| 1138786 1139661 1140629 "INBFF" NIL INBFF (NIL T) |package| NIL NIL NIL) (|InputByteConduit| 1136910 1137355 1137417 "INBCON" 1138313 INBCON (NIL) |category| NIL 1138765 NIL) (|InputByteConduit&| 1136050 1136423 1136905 "INBCON-" NIL INBCON- (NIL T) |package| NIL NIL NIL) (|InAst| 1135408 1135731 1135895 "INAST" NIL INAST (NIL) |domain| NIL NIL NIL) (|ImportAst| 1134808 1135114 1135280 "IMPTAST" NIL IMPTAST (NIL) |domain| NIL NIL NIL) (|InnerMatrixQuotientFieldFunctions| 1133307 1133494 1134032 "IMATQF" NIL IMATQF (NIL T T T T T T T T) |package| NIL NIL NIL) (|InnerMatrixLinearAlgebraFunctions| 1131357 1131704 1132266 "IMATLIN" NIL IMATLIN (NIL T T T T) |package| NIL NIL NIL) (|InnerFiniteField| 1127197 1131207 1131352 "IFF" NIL IFF (NIL NIL NIL) |domain| NIL NIL NIL) (|IfAst| 1126537 1126877 1127057 "IFAST" NIL IFAST (NIL) |domain| NIL NIL NIL) (|IndexedFlexibleArray| 1122408 1125734 1126115 "IFARRAY" NIL IFARRAY (NIL T NIL) |domain| NIL NIL NIL) (|InnerFreeAbelianMonoid| 1121198 1122236 1122403 "IFAMON" NIL IFAMON (NIL T T NIL) |domain| NIL NIL NIL) (|InnerEvalable| 1120574 1120656 1120747 "IEVALAB" 1121076 IEVALAB (NIL T T) |category| NIL NIL NIL) (|InnerEvalable&| 1120250 1120335 1120569 "IEVALAB-" NIL IEVALAB- (NIL T T T) |package| NIL NIL NIL) (|IndexedProductTerm| 1119465 1119674 1119935 "IDPT" NIL IDPT (NIL T T) |domain| NIL NIL NIL) (|IndexedDirectProductOrderedAbelianMonoidSup| 1118386 1119245 1119460 "IDPOAMS" NIL IDPOAMS (NIL T T) |domain| NIL NIL NIL) (|IndexedDirectProductOrderedAbelianMonoid| 1117384 1118174 1118381 "IDPOAM" NIL IDPOAM (NIL T T) |domain| NIL NIL NIL) (|IndexedDirectProductObject| 1116206 1116857 1117135 "IDPO" NIL IDPO (NIL T T) |domain| NIL NIL NIL) (|IndexedDirectProductCategory| 1113756 1114451 1114577 "IDPC" 1115415 IDPC (NIL T T) |category| NIL 1115884 NIL) (|IndexedDirectProductAbelianMonoid| 1112852 1113565 1113751 "IDPAM" NIL IDPAM (NIL T T) |domain| NIL NIL NIL) (|IndexedDirectProductAbelianGroup| 1111832 1112664 1112847 "IDPAG" NIL IDPAG (NIL T T) |domain| NIL NIL NIL) (|Identifier| 1111448 1111672 1111779 "IDENT" NIL IDENT (NIL) |domain| NIL NIL NIL) (|IdempotentOperatorCategory| 1111030 1111070 1111171 "IDEMOPC" 1111176 IDEMOPC (NIL T) |category| NIL 1111351 NIL) (|IdealDecompositionPackage| 1109223 1109644 1110175 "IDECOMP" NIL IDECOMP (NIL NIL NIL) |package| NIL NIL NIL) (|PolynomialIdeals| 1104141 1105439 1106799 "IDEAL" NIL IDEAL (NIL T T T T) |domain| NIL NIL NIL) (|InnerCommonDenominator| 1102887 1103063 1103447 "ICDEN" NIL ICDEN (NIL T T T T) |package| NIL NIL NIL) (|IndexCard| 1102047 1102465 1102681 "ICARD" NIL ICARD (NIL) |domain| NIL NIL NIL) (|IntegralBasisPolynomialTools| 1099768 1100176 1100800 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) |package| NIL NIL NIL) (|IndexedBits| 1096795 1099690 1099763 "IBITS" NIL IBITS (NIL NIL) |domain| NIL NIL NIL) (|IntegralBasisTools| 1094505 1094949 1095644 "IBATOOL" NIL IBATOOL (NIL T T T) |package| NIL NIL NIL) (|ChineseRemainderToolsForIntegralBases| 1092561 1092887 1093433 "IBACHIN" NIL IBACHIN (NIL T T T) |package| NIL NIL NIL) (|InnerTwoDimensionalArray| 1090609 1092382 1092556 "IARRAY2" NIL IARRAY2 (NIL T T T) |domain| NIL NIL NIL) (|IndexedOneDimensionalArray| 1087590 1090466 1090604 "IARRAY1" NIL IARRAY1 (NIL T NIL) |domain| NIL NIL NIL) (|InnerAlgebraicNumber| 1081644 1086311 1087050 "IAN" NIL IAN (NIL) |domain| NIL NIL NIL) (|InnerAlgFactor| 1080856 1080941 1081264 "IALGFACT" NIL IALGFACT (NIL T T T T) |package| NIL NIL NIL) (|HyperbolicFunctionCategory| 1080022 1080177 1080259 "HYPCAT" 1080676 HYPCAT (NIL) |category| NIL NIL NIL) (|HyperbolicFunctionCategory&| 1079588 1079740 1080017 "HYPCAT-" NIL HYPCAT- (NIL T) |package| NIL NIL NIL) (|Hostname| 1079120 1079368 1079503 "HOSTNAME" NIL HOSTNAME (NIL) |domain| NIL NIL NIL) (|HomotopicTo| 1078882 1078934 1079000 "HOMOTOP" 1079005 HOMOTOP (NIL T) |category| NIL 1079061 NIL) (|HomogeneousAggregate| 1076910 1077862 1077946 "HOAGG" 1077951 HOAGG (NIL T) |category| NIL 1078396 NIL) (|HomogeneousAggregate&| 1076439 1076587 1076905 "HOAGG-" NIL HOAGG- (NIL T T) |package| NIL NIL NIL) (|HexadecimalExpansion| 1070829 1076032 1076294 "HEXADEC" NIL HEXADEC (NIL) |domain| NIL NIL NIL) (|HeuGcd| 1069693 1069929 1070248 "HEUGCD" NIL HEUGCD (NIL T) |package| NIL NIL NIL) (|HyperellipticFiniteDivisor| 1068451 1069413 1069688 "HELLFDIV" NIL HELLFDIV (NIL T T T T) |domain| NIL NIL NIL) (|Heap| 1066819 1068190 1068333 "HEAP" NIL HEAP (NIL T) |domain| NIL NIL NIL) (|HeadAst| 1066000 1066372 1066588 "HEADAST" NIL HEADAST (NIL) |domain| NIL NIL NIL) (|HomogeneousDirectProduct| 1061271 1065833 1065995 "HDP" NIL HDP (NIL NIL T) |domain| NIL NIL NIL) (|HomogeneousDistributedMultivariatePolynomial| 1055137 1060725 1061067 "HDMP" NIL HDMP (NIL NIL T) |domain| NIL NIL NIL) (|HallBasis| 1054405 1054592 1054829 "HB" NIL HB (NIL) |package| NIL NIL NIL) (|HashTable| 1051455 1054287 1054400 "HASHTBL" NIL HASHTBL (NIL T T NIL) |domain| NIL NIL NIL) (|HasAst| 1050913 1051210 1051350 "HASAST" NIL HASAST (NIL) |domain| NIL NIL NIL) (|Pi| 1048294 1050527 1050872 "HACKPI" NIL HACKPI (NIL) |domain| NIL NIL NIL) (|GeneralTriangularSet| 1044445 1048057 1048289 "GTSET" NIL GTSET (NIL T T T T) |domain| NIL NIL NIL) (|GeneralSparseTable| 1041500 1044303 1044440 "GSTBL" NIL GSTBL (NIL T T T NIL) |domain| NIL NIL NIL) (|GeneralUnivariatePowerSeries| 1035975 1040659 1041093 "GSERIES" NIL GSERIES (NIL T NIL NIL) |domain| NIL NIL NIL) (|Group| 1034697 1035286 1035326 "GROUP" 1035616 GROUP (NIL) |category| NIL 1035826 NIL) (|Group&| 1034103 1034349 1034692 "GROUP-" NIL GROUP- (NIL T) |package| NIL NIL NIL) (|GroebnerSolve| 1032489 1032866 1033355 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) |package| NIL NIL NIL) (|GradedModule| 1030702 1031072 1031174 "GRMOD" 1032150 GRMOD (NIL T T) |category| NIL 1032377 NIL) (|GradedModule&| 1030452 1030496 1030697 "GRMOD-" NIL GRMOD- (NIL T T T) |package| NIL NIL NIL) (|GraphImage| 1027111 1028120 1029142 "GRIMAGE" NIL GRIMAGE (NIL) |domain| NIL NIL NIL) (|GraphicsDefaults| 1025864 1026197 1026685 "GRDEF" NIL GRDEF (NIL) |package| NIL NIL NIL) (|GrayCode| 1025320 1025460 1025649 "GRAY" NIL GRAY (NIL) |package| NIL NIL NIL) (|GradedAlgebra| 1024045 1024578 1024682 "GRALG" 1024971 GRALG (NIL T T) |category| NIL 1025117 NIL) (|GradedAlgebra&| 1023653 1023758 1024040 "GRALG-" NIL GRALG- (NIL T T T) |package| NIL NIL NIL) (|GeneralPolynomialSet| 1020712 1023049 1023375 "GPOLSET" NIL GPOLSET (NIL T T T T) |domain| NIL NIL NIL) (|GosperSummationMethod| 1019683 1019768 1020222 "GOSPER" NIL GOSPER (NIL T T T T T) |package| NIL NIL NIL) (|GeneralModulePolynomial| 1015091 1016098 1016903 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) |domain| NIL NIL NIL) (|GeneralHenselPackage| 1013815 1014041 1014407 "GHENSEL" NIL GHENSEL (NIL T T) |package| NIL NIL NIL) (|GenerateUnivariatePowerSeries| 1010245 1010857 1011849 "GENUPS" NIL GENUPS (NIL T T) |package| NIL NIL NIL) (|GenUFactorize| 1009802 1009885 1010053 "GENUFACT" NIL GENUFACT (NIL T) |package| NIL NIL NIL) (|GeneralPolynomialGcdPackage| 1008847 1008958 1009293 "GENPGCD" NIL GENPGCD (NIL T T T T) |package| NIL NIL NIL) (|GeneralizedMultivariateFactorize| 1007957 1008007 1008406 "GENMFACT" NIL GENMFACT (NIL T T T T T) |package| NIL NIL NIL) (|GenExEuclid| 1006278 1006585 1007011 "GENEEZ" NIL GENEEZ (NIL T T) |package| NIL NIL NIL) (|GeneralDistributedMultivariatePolynomial| 999950 1005658 1005999 "GDMP" NIL GDMP (NIL NIL T T) |domain| NIL NIL NIL) (|GenericNonAssociativeAlgebra| 992641 996397 997819 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) |domain| NIL NIL NIL) (|GcdDomain| 989826 991235 991283 "GCDDOM" 991684 GCDDOM (NIL) |category| NIL 991980 NIL) (|GcdDomain&| 989367 989543 989821 "GCDDOM-" NIL GCDDOM- (NIL T) |package| NIL NIL NIL) (|GroebnerInternalPackage| 983375 984580 985941 "GBINTERN" NIL GBINTERN (NIL T T T T) |package| NIL NIL NIL) (|GroebnerFactorizationPackage| 981768 981989 982538 "GBF" NIL GBF (NIL T T T T) |package| NIL NIL NIL) (|EuclideanGroebnerBasisPackage| 980364 980538 980966 "GBEUCLID" NIL GBEUCLID (NIL T T T T) |package| NIL NIL NIL) (|GroebnerPackage| 979043 979220 979618 "GB" NIL GB (NIL T T T T) |package| NIL NIL NIL) (|GaussianFactorizationPackage| 978334 978493 978740 "GAUSSFAC" NIL GAUSSFAC (NIL) |package| NIL NIL NIL) (|GaloisGroupUtilities| 976728 977121 977653 "GALUTIL" NIL GALUTIL (NIL T) |package| NIL NIL NIL) (|GaloisGroupPolynomialUtilities| 974555 974969 975527 "GALPOLYU" NIL GALPOLYU (NIL T T) |package| NIL NIL NIL) (|GaloisGroupFactorizationUtilities| 972288 972685 973406 "GALFACTU" NIL GALFACTU (NIL T T T) |package| NIL NIL NIL) (|GaloisGroupFactorizer| 966538 968042 969858 "GALFACT" NIL GALFACT (NIL T) |package| NIL NIL NIL) (|FunctionDescriptor| 966054 966295 966435 "FUNDESC" NIL FUNDESC (NIL) |domain| NIL NIL NIL) (|Functorial| 965693 965742 965806 "FUNCTOR" 965934 FUNCTOR (NIL T) |category| NIL 966021 NIL) (|FunctionCalled| 965213 965446 965582 "FUNCTION" NIL FUNCTION (NIL NIL) |domain| NIL NIL NIL) (|FortranType| 963089 963831 964492 "FT" NIL FT (NIL) |domain| NIL NIL NIL) (|FunctionSpaceUnivariatePolynomialFactor| 961224 961652 962337 "FSUPFACT" NIL FSUPFACT (NIL T T T) |package| NIL NIL NIL) (|FortranScalarType| 959888 960280 960771 "FST" NIL FST (NIL) |domain| NIL NIL NIL) (|FunctionSpaceReduce| 958766 958933 959270 "FSRED" NIL FSRED (NIL T T) |package| NIL NIL NIL) (|FunctionSpacePrimitiveElement| 957323 957607 958105 "FSPRMELT" NIL FSPRMELT (NIL T T) |package| NIL NIL NIL) (|FunctionalSpecialFunction| 955475 955952 956560 "FSPECF" NIL FSPECF (NIL T T) |package| NIL NIL NIL) (|FunctionSpaceIntegration| 954574 954650 955051 "FSINT" NIL FSINT (NIL T T) |package| NIL NIL NIL) (|FourierSeries| 952686 953632 954079 "FSERIES" NIL FSERIES (NIL T T) |domain| NIL NIL NIL) (|FunctionSpaceComplexIntegration| 951365 951538 952019 "FSCINT" NIL FSCINT (NIL T T) |package| NIL NIL NIL) (|FiniteSetAggregateFunctions2| 950170 950336 950689 "FSAGG2" NIL FSAGG2 (NIL T T T T) |package| NIL NIL NIL) (|FiniteSetAggregate| 944982 948291 948378 "FSAGG" 949076 FSAGG (NIL T) |category| NIL 949470 NIL) (|FiniteSetAggregate&| 942925 943741 944793 "FSAGG-" NIL FSAGG- (NIL T T) |package| NIL NIL NIL) (|FunctionSpaceToUnivariatePowerSeries| 940587 940814 941630 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) |package| NIL NIL NIL) (|FunctionSpaceToExponentialExpansion| 939033 939263 939816 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) |package| NIL NIL NIL) (|FunctionSpaceFunctions2| 938508 938564 938782 "FS2" NIL FS2 (NIL T T T T) |package| NIL NIL NIL) (|FunctionSpace| 909609 921178 921255 "FS" 928068 FS (NIL T) |category| |Expression| 931787 NIL) (|FunctionSpace&| 901435 904711 909150 "FS-" NIL FS- (NIL T T) |package| NIL NIL NIL) (|FactoredFunctionUtilities| 900765 900880 901102 "FRUTIL" NIL FRUTIL (NIL T) |package| NIL NIL NIL) (|FramedNonAssociativeAlgebra| 892124 896189 896298 "FRNAALG" 899079 FRNAALG (NIL T) |category| NIL 900156 NIL) (|FramedNonAssociativeAlgebra&| 888532 889722 891360 "FRNAALG-" NIL FRNAALG- (NIL T T) |package| NIL NIL NIL) (|FramedNonAssociativeAlgebraFunctions2| 887887 887943 888228 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) |package| NIL NIL NIL) (|FramedModule| 886059 886680 887125 "FRMOD" NIL FRMOD (NIL T T T T NIL) |domain| NIL NIL NIL) (|FractionalIdealFunctions2| 884745 884871 885406 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) |package| NIL NIL NIL) (|FractionalIdeal| 882125 882927 883423 "FRIDEAL" NIL FRIDEAL (NIL T T T T) |domain| NIL NIL NIL) (|FullyRetractableTo| 880857 881371 881451 "FRETRCT" 881456 FRETRCT (NIL T) |category| NIL 881743 NIL) (|FullyRetractableTo&| 880043 880340 880852 "FRETRCT-" NIL FRETRCT- (NIL T T) |package| NIL NIL NIL) (|FramedAlgebra| 874972 876852 876977 "FRAMALG" 878740 FRAMALG (NIL T T) |category| NIL 879213 NIL) (|FramedAlgebra&| 873186 873711 874536 "FRAMALG-" NIL FRAMALG- (NIL T T T) |package| NIL NIL NIL) (|FractionFunctions2| 872680 872762 872950 "FRAC2" NIL FRAC2 (NIL T T) |package| NIL NIL NIL) (|Fraction| 866893 872388 872675 "FRAC" NIL FRAC (NIL T) |domain| NIL NIL NIL) (|FactoredFunctions2| 866387 866469 866657 "FR2" NIL FR2 (NIL T T) |package| NIL NIL NIL) (|Factored| 859384 863363 865028 "FR" NIL FR (NIL T) |domain| NIL NIL NIL) (|FloatingPointSystem| 849978 854555 854623 "FPS" 856736 FPS (NIL) |category| NIL 857775 NIL) (|FloatingPointSystem&| 849386 849530 849799 "FPS-" NIL FPS- (NIL T) |package| NIL NIL NIL) (|FieldOfPrimeCharacteristic| 844872 847427 847509 "FPC" 847987 FPC (NIL) |category| NIL 848287 NIL) (|FieldOfPrimeCharacteristic&| 844555 844634 844867 "FPC-" NIL FPC- (NIL T) |package| NIL NIL NIL) (|FullyPatternMatchable| 842893 843677 843763 "FPATMAB" 843768 FPATMAB (NIL T) |category| NIL 844022 NIL) (|FullPartialFractionExpansion| 841166 841763 842290 "FPARFRAC" NIL FPARFRAC (NIL T T) |domain| NIL NIL NIL) (|FindOrderFinite| 840363 840450 840781 "FORDER" NIL FORDER (NIL T T T T) |package| NIL NIL NIL) (|FreeNilpotentLie| 838743 839680 839995 "FNLA" NIL FNLA (NIL NIL NIL T) |domain| NIL NIL NIL) (|FileNameCategory| 836667 837281 837343 "FNCAT" 838123 FNCAT (NIL) |category| |FileName| 838541 NIL) (|FileName| 836127 836608 836662 "FNAME" NIL FNAME (NIL) |domain| NIL NIL NIL) (|FreeMonoid| 834726 836036 836122 "FMONOID" NIL FMONOID (NIL T) |domain| NIL NIL NIL) (|FreeMonoidCategory| 829665 831277 831364 "FMONCAT" 833496 FMONCAT (NIL T) |category| NIL 834432 NIL) (|FreeModuleCat| 825047 826376 826467 "FMCAT" 828342 FMCAT (NIL T T) |category| NIL 829081 NIL) (|FreeModule1| 823553 824764 824922 "FM1" NIL FM1 (NIL T T) |domain| NIL NIL NIL) (|FreeModule| 822446 823302 823548 "FM" NIL FM (NIL T T) |domain| NIL NIL NIL) (|FloatingRealPackage| 820854 821208 821713 "FLOATRP" NIL FLOATRP (NIL T) |package| NIL NIL NIL) (|FloatingComplexPackage| 819078 819468 820039 "FLOATCP" NIL FLOATCP (NIL T) |package| NIL NIL NIL) (|Float| 812793 817319 818325 "FLOAT" NIL FLOAT (NIL) |domain| NIL NIL NIL) (|FullyLinearlyExplicitRingOver| 810680 811971 812073 "FLINEXP" 812078 FLINEXP (NIL T) |category| NIL 812269 NIL) (|FullyLinearlyExplicitRingOver&| 809908 810188 810675 "FLINEXP-" NIL FLINEXP- (NIL T T) |package| NIL NIL NIL) (|FiniteLinearAggregateSort| 809164 809298 809608 "FLASORT" NIL FLASORT (NIL T T) |package| NIL NIL NIL) (|FreeLieAlgebra| 804166 805528 805631 "FLALG" 807928 FLALG (NIL T T) |category| |LiePolynomial| 808692 NIL) (|FiniteLinearAggregateFunctions2| 802955 803121 803479 "FLAGG2" NIL FLAGG2 (NIL T T T T) |package| NIL NIL NIL) (|FiniteLinearAggregate| 794044 798592 798678 "FLAGG" 800946 FLAGG (NIL T) |category| NIL 801929 NIL) (|FiniteLinearAggregate&| 793043 793429 794039 "FLAGG-" NIL FLAGG- (NIL T T) |package| NIL NIL NIL) (|FiniteRankAlgebra| 787375 788992 789125 "FINRALG" 791421 FINRALG (NIL T T) |category| NIL 792251 NIL) (|FiniteRankAlgebra&| 786627 786900 787370 "FINRALG-" NIL FINRALG- (NIL T T T) |package| NIL NIL NIL) (|Finite| 785578 785942 785984 "FINITE" 786311 FINITE (NIL) |category| NIL 786515 NIL) (|Finite&| 785448 785477 785573 "FINITE-" NIL FINITE- (NIL T) |package| NIL NIL NIL) (|FiniteAggregate| 780730 782365 782439 "FINAGG" 784143 FINAGG (NIL T) |category| NIL 784926 NIL) (|FiniteAggregate&| 779540 780049 780725 "FINAGG-" NIL FINAGG- (NIL T T) |package| NIL NIL NIL) (|FiniteRankNonAssociativeAlgebra| 764705 768424 768541 "FINAALG" 776390 FINAALG (NIL T) |category| NIL 779013 NIL) (|FiniteRankNonAssociativeAlgebra&| 760878 762374 764022 "FINAALG-" NIL FINAALG- (NIL T T) |package| NIL NIL NIL) (|FileCategory| 758712 759174 759270 "FILECAT" 760453 FILECAT (NIL T T) |category| NIL 760766 NIL) (|File| 757938 758442 758605 "FILE" NIL FILE (NIL T) |domain| NIL NIL NIL) (|Field| 754321 756614 756654 "FIELD" 756703 FIELD (NIL) |category| NIL 756887 NIL) (|Field&| 753048 753618 754316 "FIELD-" NIL FIELD- (NIL T) |package| NIL NIL NIL) (|FreeGroup| 750881 751894 752396 "FGROUP" NIL FGROUP (NIL T) |domain| NIL NIL NIL) (|FGLMIfCanPackage| 749987 750156 750433 "FGLMICPK" NIL FGLMICPK (NIL T NIL) |package| NIL NIL NIL) (|FiniteFieldExtension| 745846 749832 749982 "FFX" NIL FFX (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldSolveLinearPolynomialEquation| 745112 745207 745531 "FFSLPE" NIL FFSLPE (NIL T T T) |package| NIL NIL NIL) (|FiniteFieldPolynomialPackage2| 744174 744257 744689 "FFPOLY2" NIL FFPOLY2 (NIL T T) |package| NIL NIL NIL) (|FiniteFieldPolynomialPackage| 741196 742066 743034 "FFPOLY" NIL FFPOLY (NIL T) |package| NIL NIL NIL) (|FiniteFieldExtensionByPolynomial| 736770 741001 741191 "FFP" NIL FFP (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldNormalBasisExtension| 731699 735883 736320 "FFNBX" NIL FFNBX (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldNormalBasisExtensionByPolynomial| 726185 730682 731176 "FFNBP" NIL FFNBP (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldNormalBasis| 721125 725328 725746 "FFNB" NIL FFNB (NIL NIL NIL) |domain| NIL NIL NIL) (|FunctionFieldIntegralBasis| 720090 720259 720687 "FFINTBAS" NIL FFINTBAS (NIL T T T) |package| NIL NIL NIL) (|FiniteFieldCategory| 713335 716836 716904 "FFIELDC" 718095 FFIELDC (NIL) |category| NIL 718829 NIL) (|FiniteFieldCategory&| 711932 712528 713330 "FFIELDC-" NIL FFIELDC- (NIL T) |package| NIL NIL NIL) (|FiniteFieldHomomorphisms| 711328 711389 711626 "FFHOM" NIL FFHOM (NIL T T T) |package| NIL NIL NIL) (|FiniteFieldFunctions| 709425 709946 710562 "FFF" NIL FFF (NIL T) |package| NIL NIL NIL) (|FiniteFieldCyclicGroupExtension| 704891 708936 709204 "FFCGX" NIL FFCGX (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldCyclicGroupExtensionByPolynomial| 700049 704336 704644 "FFCGP" NIL FFCGP (NIL T NIL) |domain| NIL NIL NIL) (|FiniteFieldCyclicGroup| 695546 699610 699858 "FFCG" NIL FFCG (NIL NIL NIL) |domain| NIL NIL NIL) (|FunctionFieldCategoryFunctions2| 694436 694492 694981 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) |package| NIL NIL NIL) (|FunctionFieldCategory| 660360 674373 674581 "FFCAT" 686129 FFCAT (NIL T T T) |category| NIL 688583 NIL) (|FunctionFieldCategory&| 655695 657072 658928 "FFCAT-" NIL FFCAT- (NIL T T T T) |package| NIL NIL NIL) (|FiniteField| 651555 655560 655690 "FF" NIL FF (NIL NIL NIL) |domain| NIL NIL NIL) (|FullyEvalableOver| 650277 650831 650916 "FEVALAB" 650921 FEVALAB (NIL T) |category| NIL 651253 NIL) (|FullyEvalableOver&| 649574 649823 650272 "FEVALAB-" NIL FEVALAB- (NIL T T) |package| NIL NIL NIL) (|FiniteDivisorCategory| 644145 645242 645479 "FDIVCAT" 648673 FDIVCAT (NIL T T T T) |category| NIL 649316 NIL) (|FiniteDivisorCategory&| 643758 643803 644140 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) |package| NIL NIL NIL) (|FiniteDivisorFunctions2| 642479 642601 643120 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) |package| NIL NIL NIL) (|FiniteDivisor| 640737 641778 642135 "FDIV" NIL FDIV (NIL T T T T) |domain| NIL NIL NIL) (|FunctorData| 639311 639853 640275 "FCTRDATA" NIL FCTRDATA (NIL) |domain| NIL NIL NIL) (|FourierComponent| 638426 638821 639045 "FCOMP" NIL FCOMP (NIL T) |domain| NIL NIL NIL) (|FiniteAlgebraicExtensionField| 625380 631418 631521 "FAXF" 635193 FAXF (NIL T) |category| NIL 636541 NIL) (|FiniteAlgebraicExtensionField&| 622552 623568 624891 "FAXF-" NIL FAXF- (NIL T T) |package| NIL NIL NIL) (|FlexibleArray| 618646 621834 622189 "FARRAY" NIL FARRAY (NIL T) |domain| NIL NIL NIL) (|FiniteAbelianMonoidRing| 610248 613229 613349 "FAMR" 615385 FAMR (NIL T T) |category| NIL 616118 NIL) (|FiniteAbelianMonoidRing&| 609134 609576 610243 "FAMR-" NIL FAMR- (NIL T T T) |package| NIL NIL NIL) (|FreeAbelianMonoid| 607982 608999 609129 "FAMONOID" NIL FAMONOID (NIL T) |domain| NIL NIL NIL) (|FreeAbelianMonoidCategory| 603971 605053 605189 "FAMONC" 607130 FAMONC (NIL T T) |category| NIL 607725 NIL) (|FreeAbelianGroup| 602486 603720 603966 "FAGROUP" NIL FAGROUP (NIL T) |domain| NIL NIL NIL) (|FactoringUtilities| 600028 600433 601012 "FACUTIL" NIL FACUTIL (NIL T T T T) |package| NIL NIL NIL) (|FactoredFunctions| 598987 599225 599554 "FACTFUNC" NIL FACTFUNC (NIL T) |package| NIL NIL NIL) (|ExponentialOfUnivariatePuiseuxSeries| 593448 598214 598606 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) |domain| NIL NIL NIL) (|ExpressionTubePlot| 591897 592261 592730 "EXPRTUBE" NIL EXPRTUBE (NIL) |package| NIL NIL NIL) (|ExpressionSpaceODESolver| 589065 589497 590239 "EXPRODE" NIL EXPRODE (NIL T T) |package| NIL NIL NIL) (|ExpressionToUnivariatePowerSeries| 585802 586350 587347 "EXPR2UPS" NIL EXPR2UPS (NIL T T) |package| NIL NIL NIL) (|ExpressionFunctions2| 585284 585370 585563 "EXPR2" NIL EXPR2 (NIL T T) |package| NIL NIL NIL) (|Expression| 574125 583858 584647 "EXPR" NIL EXPR (NIL T) |domain| NIL NIL NIL) (|ExponentialExpansion| 567404 573036 573610 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) |domain| NIL NIL NIL) (|ExitAst| 566780 567095 567255 "EXITAST" NIL EXITAST (NIL) |domain| NIL NIL NIL) (|Exit| 566536 566734 566775 "EXIT" NIL EXIT (NIL) |domain| NIL NIL NIL) (|EvaluateCycleIndicators| 566007 566110 566317 "EVALCYC" NIL EVALCYC (NIL T) |package| NIL NIL NIL) (|Evalable| 565315 565476 565543 "EVALAB" 565813 EVALAB (NIL T) |category| NIL 565970 NIL) (|Evalable&| 564874 565021 565310 "EVALAB-" NIL EVALAB- (NIL T T) |package| NIL NIL NIL) (|EuclideanDomain| 560657 562641 562701 "EUCDOM" 563604 EUCDOM (NIL) |category| NIL 564162 NIL) (|EuclideanDomain&| 559390 559936 560652 "EUCDOM-" NIL EUCDOM- (NIL T) |package| NIL NIL NIL) (|ExpressionSpaceFunctions2| 558925 558992 559180 "ES2" NIL ES2 (NIL T T) |package| NIL NIL NIL) (|ExpressionSpaceFunctions1| 558404 558482 558683 "ES1" NIL ES1 (NIL T T) |package| NIL NIL NIL) (|ExpressionSpace| 548660 551163 551223 "ES" 555898 ES (NIL) |category| NIL 558136 NIL) (|ExpressionSpace&| 545018 546460 548370 "ES-" NIL ES- (NIL T) |package| NIL NIL NIL) (|ErrorFunctions| 544374 544509 544733 "ERROR" NIL ERROR (NIL) |package| NIL NIL NIL) (|EqTable| 541504 544276 544369 "EQTBL" NIL EQTBL (NIL T T) |domain| NIL NIL NIL) (|EquationFunctions2| 541018 541100 541278 "EQ2" NIL EQ2 (NIL T T) |package| NIL NIL NIL) (|Equation| 535753 538114 539869 "EQ" NIL EQ (NIL T) |domain| NIL NIL NIL) (|EigenPackage| 533021 533609 534321 "EP" NIL EP (NIL T) |package| NIL NIL NIL) (|Environment| 531512 531957 532449 "ENV" NIL ENV (NIL) |domain| NIL NIL NIL) (|EntireRing| 529969 530869 530919 "ENTIRER" 530924 ENTIRER (NIL) |category| NIL 531010 NIL) (|EntireRing&| 529786 529834 529964 "ENTIRER-" NIL ENTIRER- (NIL T) |package| NIL NIL NIL) (|EuclideanModularRing| 526121 527925 528474 "EMR" NIL EMR (NIL T T T NIL NIL NIL) |domain| NIL NIL NIL) (|EltableAggregate| 524758 525026 525121 "ELTAGG" 525772 ELTAGG (NIL T T) |category| NIL 526060 NIL) (|EltableAggregate&| 524451 524531 524753 "ELTAGG-" NIL ELTAGG- (NIL T T T) |package| NIL NIL NIL) (|Eltable| 524117 524152 524224 "ELTAB" 524345 ELTAB (NIL T T) |category| NIL 524418 NIL) (|EllipticFunctionsUnivariateTaylorSeries| 523200 523346 523661 "ELFUTS" NIL ELFUTS (NIL T T) |package| NIL NIL NIL) (|ElementaryFunctionCategory| 522736 522810 522892 "ELEMFUN" 523099 ELEMFUN (NIL) |category| NIL NIL NIL) (|ElementaryFunctionCategory&| 522544 522571 522731 "ELEMFUN-" NIL ELEMFUN- (NIL T) |package| NIL NIL NIL) (|ExtensibleLinearAggregate| 515857 519165 519259 "ELAGG" 520958 ELAGG (NIL T) |category| NIL 521684 NIL) (|ExtensibleLinearAggregate&| 514440 514999 515852 "ELAGG-" NIL ELAGG- (NIL T T) |package| NIL NIL NIL) (|Elaboration| 513553 513802 514102 "ELABOR" NIL ELABOR (NIL) |domain| NIL NIL NIL) (|ElaboratedExpression| 512233 512636 513103 "ELABEXPR" NIL ELABEXPR (NIL) |domain| NIL NIL NIL) (|ElementaryFunctionsUnivariatePuiseuxSeries| 508455 510046 511093 "EFUPXS" NIL EFUPXS (NIL T T T T) |package| NIL NIL NIL) (|ElementaryFunctionsUnivariateLaurentSeries| 504845 506434 507435 "EFULS" NIL EFULS (NIL T T T) |package| NIL NIL NIL) (|ElementaryFunctionStructurePackage| 502376 502827 503593 "EFSTRUC" NIL EFSTRUC (NIL T T) |package| NIL NIL NIL) (|ElementaryFunction| 497136 498802 500533 "EF" NIL EF (NIL T T) |package| NIL NIL NIL) (|ExtAlgBasis| 496232 496671 496912 "EAB" NIL EAB (NIL) |domain| NIL NIL NIL) (|DifferentialVariableCategory| 494212 494985 495091 "DVARCAT" 495681 DVARCAT (NIL T) |category| NIL 495960 NIL) (|DifferentialVariableCategory&| 493368 493683 494207 "DVARCAT-" NIL DVARCAT- (NIL T T) |package| NIL NIL NIL) (|DifferentialSparseMultivariatePolynomial| 486404 493043 493363 "DSMP" NIL DSMP (NIL T T T) |domain| NIL NIL NIL) (|DifferentialSpaceExtension| 483936 484811 484907 "DSEXT" 485570 DSEXT (NIL T) |category| NIL 486069 NIL) (|DifferentialSpaceExtension&| 482788 483176 483931 "DSEXT-" NIL DSEXT- (NIL T T) |package| NIL NIL NIL) (|DrawOptionFunctions1| 482346 482432 482606 "DROPT1" NIL DROPT1 (NIL T) |package| NIL NIL NIL) (|DrawOptionFunctions0| 479389 480310 481293 "DROPT0" NIL DROPT0 (NIL) |package| NIL NIL NIL) (|DrawOption| 475085 476494 477847 "DROPT" NIL DROPT (NIL) |domain| NIL NIL NIL) (|TopLevelDrawFunctionsForPoints| 473825 474125 474559 "DRAWPT" NIL DRAWPT (NIL) |package| NIL NIL NIL) (|DrawNumericHack| 473244 473339 473571 "DRAWHACK" NIL DRAWHACK (NIL T) |package| NIL NIL NIL) (|DrawComplex| 472058 472388 472770 "DRAWCX" NIL DRAWCX (NIL) |package| NIL NIL NIL) (|TopLevelDrawFunctionsForAlgebraicCurves| 471239 471352 471682 "DRAWCURV" NIL DRAWCURV (NIL T T) |package| NIL NIL NIL) (|TopLevelDrawFunctionsForCompiledFunctions| 466880 468022 469486 "DRAWCFUN" NIL DRAWCFUN (NIL) |package| NIL NIL NIL) (|TopLevelDrawFunctions| 463670 464386 465381 "DRAW" NIL DRAW (NIL T) |package| NIL NIL NIL) (|DequeueAggregate| 458910 461397 461473 "DQAGG" 462543 DQAGG (NIL T) |category| |Dequeue| 462988 NIL) (|DifferentialPolynomialCategory| 438490 447823 448024 "DPOLCAT" 452108 DPOLCAT (NIL T T T T) |category| NIL 453103 NIL) (|DifferentialPolynomialCategory&| 434228 435890 438485 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) |package| NIL NIL NIL) (|DirectProductModule| 429639 434049 434223 "DPMO" NIL DPMO (NIL NIL T T) |domain| NIL NIL NIL) (|DirectProductMatrixModule| 424924 429356 429634 "DPMM" NIL DPMM (NIL NIL T T T) |domain| NIL NIL NIL) (|DomainTemplate| 424376 424661 424824 "DOMTMPLT" NIL DOMTMPLT (NIL) |domain| NIL NIL NIL) (|DomainConstructor| 423563 424088 424270 "DOMCTOR" NIL DOMCTOR (NIL) |domain| NIL NIL NIL) (|Domain| 422678 423055 423304 "DOMAIN" NIL DOMAIN (NIL) |domain| NIL NIL NIL) (|DistributedMultivariatePolynomial| 416599 422176 422485 "DMP" NIL DMP (NIL NIL T) |domain| NIL NIL NIL) (|DifferentialModuleExtension| 413414 414897 414995 "DMEXT" 415000 DMEXT (NIL T) |category| NIL 415317 NIL) (|DiscreteLogarithmPackage| 412777 412879 413159 "DLP" NIL DLP (NIL T) |package| NIL NIL NIL) (|DataList| 407900 412098 412384 "DLIST" NIL DLIST (NIL T) |domain| NIL NIL NIL) (|DoublyLinkedAggregate| 403959 405915 406001 "DLAGG" 406985 DLAGG (NIL T) |category| NIL 407344 NIL) (|DivisionRing| 401799 402849 402903 "DIVRING" 403048 DIVRING (NIL) |category| NIL 403182 NIL) (|DivisionRing&| 401092 401366 401794 "DIVRING-" NIL DIVRING- (NIL T) |package| NIL NIL NIL) (|DisplayPackage| 399715 400052 400486 "DISPLAY" NIL DISPLAY (NIL) |package| NIL NIL NIL) (|DirectProductFunctions2| 398447 398662 399009 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) |package| NIL NIL NIL) (|DirectProduct| 393767 398321 398442 "DIRPROD" NIL DIRPROD (NIL NIL T) |domain| NIL NIL NIL) (|DirectProductCategory| 377945 385484 385598 "DIRPCAT" 386047 DIRPCAT (NIL NIL T) |category| NIL 387463 NIL) (|DirectProductCategory&| 375514 376349 377600 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) |package| NIL NIL NIL) (|DiophantineSolutionPackage| 374709 374921 375219 "DIOSP" NIL DIOSP (NIL) |package| NIL NIL NIL) (|DictionaryOperations| 370844 372769 372860 "DIOPS" 373657 DIOPS (NIL T) |category| NIL 374015 NIL) (|DictionaryOperations&| 370358 370520 370839 "DIOPS-" NIL DIOPS- (NIL T T) |package| NIL NIL NIL) (|Dioid| 369103 369938 369978 "DIOID" 369983 DIOID (NIL) |category| NIL 370031 NIL) (|DifferentialRing| 367483 368508 368570 "DIFRING" 368575 DIFRING (NIL) |category| NIL 368616 NIL) (|DifferentialSpace| 366830 366977 367041 "DIFFSPC" 367264 DIFFSPC (NIL) |category| NIL 367419 NIL) (|DifferentialSpace&| 366472 366579 366825 "DIFFSPC-" NIL DIFFSPC- (NIL T) |package| NIL NIL NIL) (|DifferentialModule| 364927 365670 365750 "DIFFMOD" 365755 DIFFMOD (NIL T) |category| NIL 365913 NIL) (|DifferentialDomain| 364449 364512 364592 "DIFFDOM" 364793 DIFFDOM (NIL T) |category| NIL 364894 NIL) (|DifferentialDomain&| 364269 364295 364444 "DIFFDOM-" NIL DIFFDOM- (NIL T T) |package| NIL NIL NIL) (|DifferentialExtension| 361013 362785 362871 "DIFEXT" 362876 DIFEXT (NIL T) |category| NIL 363159 NIL) (|Dictionary| 358231 360166 360237 "DIAGG" 360242 DIAGG (NIL T) |category| NIL 360283 NIL) (|Dictionary&| 357676 357878 358226 "DIAGG-" NIL DIAGG- (NIL T T) |package| NIL NIL NIL) (|DenavitHartenbergMatrix| 353589 356852 357273 "DHMATRIX" NIL DHMATRIX (NIL T) |domain| NIL NIL NIL) (|DoubleFloatSpecialFunctions| 351381 352008 352852 "DFSFUN" NIL DFSFUN (NIL) |package| NIL NIL NIL) (|DoubleFloat| 346080 350355 350914 "DFLOAT" NIL DFLOAT (NIL) |domain| NIL NIL NIL) (|DefiniteIntegrationTools| 343962 344288 344895 "DFINTTLS" NIL DFINTTLS (NIL T T) |package| NIL NIL NIL) (|DeRhamComplex| 341319 342625 343228 "DERHAM" NIL DERHAM (NIL T NIL) |domain| NIL NIL NIL) (|Dequeue| 339315 341047 341194 "DEQUEUE" NIL DEQUEUE (NIL T) |domain| NIL NIL NIL) (|DegreeReductionPackage| 338325 338517 338824 "DEGRED" NIL DEGRED (NIL T T) |package| NIL NIL NIL) (|RationalFunctionDefiniteIntegration| 336222 336595 337234 "DEFINTRF" NIL DEFINTRF (NIL T) |package| NIL NIL NIL) (|ElementaryFunctionDefiniteIntegration| 334194 334487 335144 "DEFINTEF" NIL DEFINTEF (NIL T T) |package| NIL NIL NIL) (|DefinitionAst| 333430 333781 333988 "DEFAST" NIL DEFAST (NIL) |domain| NIL NIL NIL) (|DecimalExpansion| 327820 333027 333285 "DECIMAL" NIL DECIMAL (NIL) |domain| NIL NIL NIL) (|DistinctDegreeFactorize| 325414 325973 326676 "DDFACT" NIL DDFACT (NIL T T) |package| NIL NIL NIL) (|DoubleResultantPackage| 324706 324774 325080 "DBLRESP" NIL DBLRESP (NIL T T T T) |package| NIL NIL NIL) (|DualBasis| 323936 324424 324575 "DBASIS" NIL DBASIS (NIL NIL) |domain| NIL NIL NIL) (|Database| 322059 322526 323009 "DBASE" NIL DBASE (NIL T) |domain| NIL NIL NIL) (|DataArray| 321166 321484 321717 "DATAARY" NIL DATAARY (NIL NIL T) |domain| NIL NIL NIL) (|CyclotomicPolynomialPackage| 320341 320545 320835 "CYCLOTOM" NIL CYCLOTOM (NIL) |package| NIL NIL NIL) (|CycleIndicators| 318553 319089 319675 "CYCLES" NIL CYCLES (NIL) |package| NIL NIL NIL) (|CoerceVectorMatrixPackage| 317786 317956 318234 "CVMP" NIL CVMP (NIL T) |package| NIL NIL NIL) (|ComplexTrigonometricManipulations| 315869 316200 316842 "CTRIGMNP" NIL CTRIGMNP (NIL T T) |package| NIL NIL NIL) (|ConstructorKind| 315271 315558 315764 "CTORKIND" NIL CTORKIND (NIL) |domain| NIL NIL NIL) (|ConstructorCategory| 314026 314497 314565 "CTORCAT" 314901 CTORCAT (NIL) |category| NIL 315117 NIL) (|ConstructorCategory&| 313528 313718 314021 "CTORCAT-" NIL CTORCAT- (NIL T) |package| NIL NIL NIL) (|ConstructorCall| 312796 313080 313284 "CTORCALL" NIL CTORCALL (NIL T) |domain| NIL NIL NIL) (|Constructor| 312015 312509 312660 "CTOR" NIL CTOR (NIL) |domain| NIL NIL NIL) (|CyclicStreamTools| 311142 311314 311600 "CSTTOOLS" NIL CSTTOOLS (NIL T T) |package| NIL NIL NIL) (|ComplexRootFindingPackage| 307785 308544 309536 "CRFP" NIL CRFP (NIL T T) |package| NIL NIL NIL) (|CoerceAst| 307152 307468 307633 "CRCEAST" NIL CRCEAST (NIL) |domain| NIL NIL NIL) (|CRApackage| 306230 306414 306695 "CRAPACK" NIL CRAPACK (NIL T) |package| NIL NIL NIL) (|ComplexPatternMatch| 305399 305546 305876 "CPMATCH" NIL CPMATCH (NIL T T T) |package| NIL NIL NIL) (|CharacteristicPolynomialInMonogenicalAlgebra| 304803 304858 305139 "CPIMA" NIL CPIMA (NIL T T T) |package| NIL NIL NIL) (|CoordinateSystems| 302959 303500 304175 "COORDSYS" NIL COORDSYS (NIL T) |package| NIL NIL NIL) (|Contour| 302286 302471 302701 "CONTOUR" NIL CONTOUR (NIL) |domain| NIL NIL NIL) (|ContinuedFraction| 298177 300768 301478 "CONTFRAC" NIL CONTFRAC (NIL T) |domain| NIL NIL NIL) (|Conduit| 297991 298021 298065 "CONDUIT" 298120 CONDUIT (NIL) |category| NIL NIL NIL) (|CommutativeRing| 296435 297335 297395 "COMRING" 297400 COMRING (NIL) |category| NIL 297489 NIL) (|SubSpaceComponentProperty| 295564 295921 296208 "COMPPROP" NIL COMPPROP (NIL) |domain| NIL NIL NIL) (|ComplexPattern| 295042 295092 295314 "COMPLPAT" NIL COMPLPAT (NIL T T T) |package| NIL NIL NIL) (|ComplexFunctions2| 294543 294623 294808 "COMPLEX2" NIL COMPLEX2 (NIL T T) |package| NIL NIL NIL) (|Complex| 286549 294457 294538 "COMPLEX" NIL COMPLEX (NIL T) |domain| NIL NIL NIL) (|CompilerPackage| 285774 285955 286217 "COMPILER" NIL COMPILER (NIL) |package| NIL NIL NIL) (|ComplexFactorization| 285306 285356 285560 "COMPFACT" NIL COMPFACT (NIL T T) |package| NIL NIL NIL) (|ComplexCategory| 259725 274229 274314 "COMPCAT" 276264 COMPCAT (NIL T) |category| |Complex| 278553 NIL) (|ComplexCategory&| 251208 254843 259218 "COMPCAT-" NIL COMPCAT- (NIL T T) |package| NIL NIL NIL) (|CommutativeOperatorCategory| 250760 250800 250903 "COMOPC" 250908 COMOPC (NIL T) |category| |CommutativeOperation| 251111 NIL) (|CommutativeOperation| 250194 250353 250602 "COMOP" NIL COMOP (NIL T) |domain| NIL NIL NIL) (|CommuteUnivariatePolynomialCategory| 249691 249726 249965 "COMMUPC" NIL COMMUPC (NIL T T T) |package| NIL NIL NIL) (|CommonOperators| 249380 249439 249561 "COMMONOP" NIL COMMONOP (NIL) |package| NIL NIL NIL) (|CommaAst| 248875 249156 249285 "COMMAAST" NIL COMMAAST (NIL) |domain| NIL NIL NIL) (|Commutator| 248348 248605 248753 "COMM" NIL COMM (NIL) |domain| NIL NIL NIL) (|CombinatorialOpsCategory| 246961 247275 247353 "COMBOPC" 247988 COMBOPC (NIL) |category| NIL 248305 NIL) (|IntegerCombinatoricFunctions| 245996 246254 246625 "COMBINAT" NIL COMBINAT (NIL T) |package| NIL NIL NIL) (|CombinatorialFunction| 243520 244147 244917 "COMBF" NIL COMBF (NIL T T) |package| NIL NIL NIL) (|Color| 242284 242786 243159 "COLOR" NIL COLOR (NIL) |domain| NIL NIL NIL) (|ColonAst| 241684 241990 242143 "COLONAST" NIL COLONAST (NIL) |domain| NIL NIL NIL) (|ComplexRootPackage| 241121 241190 241431 "CMPLXRT" NIL CMPLXRT (NIL T T) |package| NIL NIL NIL) (|CollectAst| 240482 240799 240967 "CLLCTAST" NIL CLLCTAST (NIL) |domain| NIL NIL NIL) (|TwoDimensionalPlotClipping| 238865 239244 239749 "CLIP" NIL CLIP (NIL) |package| NIL NIL NIL) (|CliffordAlgebra| 236890 237898 238253 "CLIF" NIL CLIF (NIL NIL T NIL) |domain| NIL NIL NIL) (|Collection| 233462 234896 234960 "CLAGG" 235782 CLAGG (NIL T) |category| NIL 236291 NIL) (|Collection&| 233038 233187 233457 "CLAGG-" NIL CLAGG- (NIL T T) |package| NIL NIL NIL) (|ComplexIntegerSolveLinearPolynomialEquation| 232301 232429 232736 "CINTSLPE" NIL CINTSLPE (NIL T T) |package| NIL NIL NIL) (|ChangeOfVariable| 229821 230322 231004 "CHVAR" NIL CHVAR (NIL T T T) |package| NIL NIL NIL) (|CharacteristicZero| 228403 229303 229369 "CHARZ" 229374 CHARZ (NIL) |category| NIL 229393 NIL) (|CharacteristicPolynomialPackage| 227965 228036 228228 "CHARPOL" NIL CHARPOL (NIL T) |package| NIL NIL NIL) (|CharacteristicNonZero| 226335 227277 227349 "CHARNZ" 227457 CHARNZ (NIL) |category| NIL 227537 NIL) (|Character| 223641 224809 225678 "CHAR" NIL CHAR (NIL) |domain| NIL NIL NIL) (|CombinatorialFunctionCategory| 223089 223187 223275 "CFCAT" 223516 CFCAT (NIL) |category| NIL NIL NIL) (|CommonDenominator| 221920 222095 222433 "CDEN" NIL CDEN (NIL T T T) |package| NIL NIL NIL) (|CharacterClass| 218666 221117 221613 "CCLASS" NIL CCLASS (NIL) |domain| NIL NIL NIL) (|Category| 217774 218044 218360 "CATEGORY" NIL CATEGORY (NIL) |domain| NIL NIL NIL) (|CategoryConstructor| 217170 217649 217769 "CATCTOR" NIL CATCTOR (NIL) |domain| NIL NIL NIL) (|CategoryAst| 216504 216829 217007 "CATAST" NIL CATAST (NIL) |domain| NIL NIL NIL) (|CaseAst| 215959 216256 216398 "CASEAST" NIL CASEAST (NIL) |domain| NIL NIL NIL) (|CartesianTensorFunctions2| 215015 215184 215518 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) |package| NIL NIL NIL) (|CartesianTensor| 211496 212793 213761 "CARTEN" NIL CARTEN (NIL NIL NIL T) |domain| NIL NIL NIL) (|CardinalNumber| 209585 210640 211120 "CARD" NIL CARD (NIL) |domain| NIL NIL NIL) (|CapsuleAst| 209074 209355 209488 "CAPSLAST" NIL CAPSLAST (NIL) |domain| NIL NIL NIL) (|CachableSet| 208196 208512 208564 "CACHSET" 208804 CACHSET (NIL) |category| NIL 208962 NIL) (|CancellationAbelianMonoid| 207263 207757 207837 "CABMON" 207930 CABMON (NIL) |category| NIL 208033 NIL) (|ByteOrder| 206644 206944 207151 "BYTEORD" NIL BYTEORD (NIL) |domain| NIL NIL NIL) (|ByteBuffer| 203154 206175 206475 "BYTEBUF" NIL BYTEBUF (NIL) |domain| NIL NIL NIL) (|Byte| 202032 202719 202940 "BYTE" NIL BYTE (NIL) |domain| NIL NIL 203110) (|BinaryTree| 199771 201703 201890 "BTREE" NIL BTREE (NIL T) |domain| NIL NIL NIL) (|BinaryTournament| 197391 199324 199532 "BTOURN" NIL BTOURN (NIL T) |domain| NIL NIL NIL) (|BinaryTreeCategory| 193655 196363 196450 "BTCAT" 196563 BTCAT (NIL T) |category| NIL 196723 NIL) (|BinaryTreeCategory&| 193269 193390 193650 "BTCAT-" NIL BTCAT- (NIL T T) |package| NIL NIL NIL) (|BitAggregate| 187496 191894 191948 "BTAGG" 192123 BTAGG (NIL) |category| NIL 192319 NIL) (|BitAggregate&| 187099 187249 187491 "BTAGG-" NIL BTAGG- (NIL T) |package| NIL NIL NIL) (|BinarySearchTree| 184362 186405 186719 "BSTREE" NIL BSTREE (NIL T) |domain| NIL NIL NIL) (|BrillhartTests| 183418 183624 183984 "BRILL" NIL BRILL (NIL T) |package| NIL NIL NIL) (|BinaryRecursiveAggregate| 179246 181229 181321 "BRAGG" 182482 BRAGG (NIL T) |category| NIL 182862 NIL) (|BinaryRecursiveAggregate&| 178112 178568 179241 "BRAGG-" NIL BRAGG- (NIL T T) |package| NIL NIL NIL) (|BalancedPAdicRational| 171782 177272 177622 "BPADICRT" NIL BPADICRT (NIL NIL) |domain| NIL NIL NIL) (|BalancedPAdicInteger| 169794 171673 171777 "BPADIC" NIL BPADIC (NIL NIL) |domain| NIL NIL NIL) (|BoundIntegerRoots| 169287 169337 169560 "BOUNDZRO" NIL BOUNDZRO (NIL T T) |package| NIL NIL NIL) (|BasicOperatorFunctions1| 167445 167854 168425 "BOP1" NIL BOP1 (NIL T) |package| NIL NIL NIL) (|BasicOperator| 163271 164672 165916 "BOP" NIL BOP (NIL) |domain| NIL NIL NIL) (|Boolean| 162154 162972 163179 "BOOLEAN" NIL BOOLEAN (NIL) |domain| NIL NIL NIL) (|BooleanLogic| 161615 161766 161820 "BOOLE" 161990 BOOLE (NIL) |category| NIL 162105 NIL) (|BooleanLogic&| 161356 161435 161610 "BOOLE-" NIL BOOLE- (NIL T) |package| NIL NIL NIL) (|BiModule| 160162 160780 160854 "BMODULE" 160859 BMODULE (NIL T T) |category| NIL 160986 NIL) (|Bits| 157131 159909 160038 "BITS" NIL BITS (NIL) |domain| NIL NIL NIL) (|BinaryOperatorCategory| 156891 156931 157019 "BINOPC" 157024 BINOPC (NIL T) |category| NIL 157072 NIL) (|BinaryOperation| 156264 156549 156748 "BINOP" NIL BINOP (NIL T) |domain| NIL NIL NIL) (|Binding| 155641 155817 156037 "BINDING" NIL BINDING (NIL) |domain| NIL NIL NIL) (|BinaryExpansion| 150039 155244 155498 "BINARY" NIL BINARY (NIL) |domain| NIL NIL NIL) (|BagAggregate| 147649 148768 148836 "BGAGG" 149243 BGAGG (NIL T) |category| NIL 149476 NIL) (|BagAggregate&| 147460 147500 147644 "BGAGG-" NIL BGAGG- (NIL T T) |package| NIL NIL NIL) (|BezoutMatrix| 146103 146331 146780 "BEZOUT" NIL BEZOUT (NIL T T T T T) |package| NIL NIL NIL) (|BalancedBinaryTree| 142912 145032 145505 "BBTREE" NIL BBTREE (NIL T) |domain| NIL NIL NIL) (|BasicType| 142503 142586 142634 "BASTYPE" 142760 BASTYPE (NIL) |category| NIL 142879 NIL) (|BasicType&| 142249 142335 142498 "BASTYPE-" NIL BASTYPE- (NIL T) |package| NIL NIL NIL) (|BalancedFactorisation| 141381 141490 141794 "BALFACT" NIL BALFACT (NIL T T) |package| NIL NIL NIL) (|Automorphism| 140156 140867 141131 "AUTOMOR" NIL AUTOMOR (NIL T) |domain| NIL NIL NIL) (|AttributeRegistry| 139585 139590 139654 "ATTREG" 139659 ATTREG (NIL) |category| NIL NIL NIL) (|AttributeAst| 139095 139367 139495 "ATTRAST" NIL ATTRAST (NIL) |domain| NIL NIL NIL) (|ArcTrigonometricFunctionCategory| 138213 138368 138462 "ATRIG" 138915 ATRIG (NIL) |category| NIL NIL NIL) (|ArcTrigonometricFunctionCategory&| 137949 138005 138208 "ATRIG-" NIL ATRIG- (NIL T) |package| NIL NIL NIL) (|AbstractSyntaxCategory| 137354 137615 137689 "ASTCAT" 137694 ASTCAT (NIL) |category| NIL 137747 NIL) (|AbstractSyntaxCategory&| 137026 137116 137349 "ASTCAT-" NIL ASTCAT- (NIL T) |package| NIL NIL NIL) (|ArrayStack| 135323 136741 136895 "ASTACK" NIL ASTACK (NIL T) |domain| NIL NIL NIL) (|AssociatedEquations| 133646 134013 134550 "ASSOCEQ" NIL ASSOCEQ (NIL T T) |package| NIL NIL NIL) (|TwoDimensionalArray| 131815 133499 133641 "ARRAY2" NIL ARRAY2 (NIL T) |domain| NIL NIL NIL) (|OneDimensionalArrayFunctions2| 130661 130878 131211 "ARRAY12" NIL ARRAY12 (NIL T T) |package| NIL NIL NIL) (|OneDimensionalArray| 127260 130168 130422 "ARRAY1" NIL ARRAY1 (NIL T) |domain| NIL NIL NIL) (|TwoDimensionalArrayCategory| 118326 120856 121028 "ARR2CAT" 125623 ARR2CAT (NIL T T T) |category| NIL 126666 NIL) (|TwoDimensionalArrayCategory&| 117063 117565 118321 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) |package| NIL NIL NIL) (|Arity| 116296 116713 116927 "ARITY" NIL ARITY (NIL) |domain| NIL NIL NIL) (|ApplyRules| 114929 115120 115534 "APPRULE" NIL APPRULE (NIL T T T) |package| NIL NIL NIL) (|ApplyUnivariateSkewPolynomial| 114375 114438 114679 "APPLYORE" NIL APPLYORE (NIL T T T) |package| NIL NIL NIL) (|AnyFunctions1| 113537 113718 113970 "ANY1" NIL ANY1 (NIL T) |package| NIL NIL NIL) (|Any| 112858 113165 113338 "ANY" NIL ANY (NIL) |domain| NIL NIL NIL) (|AntiSymm| 110447 111717 112231 "ANTISYM" NIL ANTISYM (NIL T NIL) |domain| NIL NIL NIL) (|AnonymousFunction| 109821 110095 110278 "ANON" NIL ANON (NIL) |domain| NIL NIL NIL) (|AlgebraicNumber| 104072 108665 109352 "AN" NIL AN (NIL) |domain| NIL NIL NIL) (|AbelianMonoidRing| 97569 99582 99690 "AMR" 100936 AMR (NIL T T) |category| NIL 101851 NIL) (|AbelianMonoidRing&| 96677 97009 97564 "AMR-" NIL AMR- (NIL T T T) |package| NIL NIL NIL) (|AssociationList| 90987 96553 96672 "ALIST" NIL ALIST (NIL T T) |domain| NIL NIL NIL) (|AlgebraGivenByStructuralConstants| 87323 90396 90725 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) |domain| NIL NIL NIL) (|AlgebraPackage| 84572 85345 86248 "ALGPKG" NIL ALGPKG (NIL T T) |package| NIL NIL NIL) (|AlgebraicMultFact| 83592 83747 84078 "ALGMFACT" NIL ALGMFACT (NIL T T T) |package| NIL NIL NIL) (|AlgebraicManipulations| 80556 81092 81984 "ALGMANIP" NIL ALGMANIP (NIL T T) |package| NIL NIL NIL) (|AlgebraicFunctionField| 72902 79915 80233 "ALGFF" NIL ALGFF (NIL T T T NIL) |domain| NIL NIL NIL) (|AlgFactor| 72086 72270 72559 "ALGFACT" NIL ALGFACT (NIL T) |package| NIL NIL NIL) (|Algebra| 70332 71307 71376 "ALGEBRA" 71381 ALGEBRA (NIL T) |category| NIL 71441 NIL) (|Algebra&| 70017 70110 70327 "ALGEBRA-" NIL ALGEBRA- (NIL T T) |package| NIL NIL NIL) (|AssociationListAggregate| 44166 66656 66776 "ALAGG" 66999 ALAGG (NIL T T) |category| |AssociationList| 67252 NIL) (|ArcHyperbolicFunctionCategory| 43290 43451 43539 "AHYP" 43980 AHYP (NIL) |category| NIL NIL NIL) (|Aggregate| 42527 42680 42728 "AGG" 43060 AGG (NIL) |category| NIL 43257 NIL) (|Aggregate&| 42297 42364 42522 "AGG-" NIL AGG- (NIL T) |package| NIL NIL NIL) (|AlgebraicFunction| 39865 40360 40982 "AF" NIL AF (NIL T T) |package| NIL NIL NIL) (|AddAst| 39317 39616 39758 "ADDAST" NIL ADDAST (NIL) |domain| NIL NIL NIL) (|PlaneAlgebraicCurvePlot| 38424 38758 39038 "ACPLOT" NIL ACPLOT (NIL) |domain| NIL NIL NIL) (|AlgebraicallyClosedFunctionSpace| 22471 33054 33172 "ACFS" 34395 ACFS (NIL T) |category| |Expression| 34778 NIL) (|AlgebraicallyClosedFunctionSpace&| 21103 21579 22466 "ACFS-" NIL ACFS- (NIL T T) |package| NIL NIL NIL) (|AlgebraicallyClosedField| 14337 17403 17481 "ACF" 19214 ACF (NIL) |category| NIL 20010 NIL) (|AlgebraicallyClosedField&| 13404 13760 14332 "ACF-" NIL ACF- (NIL T) |package| NIL NIL NIL) (|AbelianSemiGroup| 12697 12963 13025 "ABELSG" 13184 ABELSG (NIL) |category| NIL 13292 NIL) (|AbelianSemiGroup&| 12504 12548 12692 "ABELSG-" NIL ABELSG- (NIL T) |package| NIL NIL NIL) (|AbelianMonoid| 11228 11668 11724 "ABELMON" 12123 ABELMON (NIL) |category| NIL 12365 NIL) (|AbelianMonoid&| 10731 10918 11223 "ABELMON-" NIL ABELMON- (NIL T) |package| NIL NIL NIL) (|AbelianGroup| 9641 10204 10258 "ABELGRP" 10364 ABELGRP (NIL) |category| NIL 10496 NIL) (|AbelianGroup&| 8995 9248 9636 "ABELGRP-" NIL ABELGRP- (NIL T) |package| NIL NIL NIL) (|OneDimensionalArrayAggregate| 3204 7708 7808 "A1AGG" 7813 A1AGG (NIL T) |category| NIL 7891 NIL) (|OneDimensionalArrayAggregate&| 30 1394 3199 "A1AGG-" NIL A1AGG- (NIL T T) |package| NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 404f34d9..6bf1fe21 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,14108 +1,28327 @@
-(628695 . 3581069280)
+(1293668 . 3581079093)
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485))))
- (-5 *2 (-1180 (-349 (-485)))) (-5 *1 (-1209 *4)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485))))
- (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 (-485)))) (-5 *2 (-82))
- (-5 *1 (-1209 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *5 (-12 (-554 *2) (-145))) (-5 *2 (-801 *4)) (-5 *1 (-143 *4 *5 *3))
- (-4 *4 (-1014)) (-4 *3 (-138 *5))))
+ (|partial| AND (|isDomain| *3 (|Vector| *4))
+ (|ofCategory| *4 (|Join| (|Ring|) (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Vector| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|IntegerLinearDependence| *4)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Vector| *4))
+ (|ofCategory| *4 (|Join| (|Ring|) (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Vector| (|Integer|)))
+ (|isDomain| *1 (|IntegerLinearDependence| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *4))
+ (|ofCategory| *4
+ (|Join| (|Ring|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IntegerLinearDependence| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *5 (|Join| (|ConvertibleTo| *2) (|CommutativeRing|)))
+ (|isDomain| *2 (|Pattern| *4))
+ (|isDomain| *1 (|ComplexPattern| *4 *5 *3))
+ (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *3 (|ComplexCategory| *5))))
((*1 *1 *2)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-1156 *3))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *1)
- (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3))
- (-5 *2 (-1180 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-360 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 *3))))
+ (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|Vector| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6))))
- ((*1 *1 *2) (-11 (-5 *2 (-1016)) (-5 *1 (-474))))
- ((*1 *2 *1) (-11 (-4 *1 (-554 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-4 *1 (-558 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-4 *3 (-145)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GeneralPolynomialSet| *3 *4 *5 *6))))
((*1 *1 *2)
- (-11 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5))
- (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757))))
+ (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|InputForm|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ConvertibleTo| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|ConvertibleFrom| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|MonogenicAlgebra| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Pattern| *3))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
((*1 *1 *2)
(OR
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074))
- (-5 *1 (-982 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074))
- (-5 *1 (-1060 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-11 (-5 *2 (-1016)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-1096))))
- ((*1 *1 *2 *3 *2) (-11 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-858 *4)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-858 (-938 (-349 *4)))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-349 *4))))
- (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-1086 (-938 (-349 *4)))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))
- (-4 *4 (-12 (-756) (-257) (-117) (-934))) (-13 *6 (-584 (-1091)))
- (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *5 (-584 (-1091))))))
-(((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3))
- (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-347 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-347 *1)) (-4 *1 (-862 *3 *4 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-347 *3))
- (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-347 (-1086 (-349 *7)))) (-5 *1 (-1088 *4 *5 *6 *7))
- (-5 *3 (-1086 (-349 *7)))))
- ((*1 *2 *1) (-11 (-5 *2 (-347 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-347 *3)) (-5 *1 (-1160 *4 *3))
- (-4 *3 (-12 (-1156 *4) (-496) (-10 -8 (-14 -3147 ($ $ $)))))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *5 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))))
- (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-349 *4)))))
- (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091)))))
+ (AND #1=(|isDomain| *2 (|Polynomial| (|Integer|)))
+ #2=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Algebra| (|Integer|)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #3=((|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ (AND #1# #2#
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #3#)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|))))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8)))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8)))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *8 (|SquareFreeRegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *1 *2 *3 *2)
+ (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|TexFormat|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|TexFormat|))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *5)))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *6)))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *6 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *4))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|Polynomial| (|RealClosure| (|Fraction| *4))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *6)))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2 (|Polynomial| (|RealClosure| (|Fraction| *4))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| *4))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|SquareFreeRegularTriangularSet| *4
+ (|IndexedExponents|
+ (|OrderedVariableList| *6))
+ (|OrderedVariableList| *6)
+ (|NewSparseMultivariatePolynomial| *4
+ (|OrderedVariableList|
+ *6))))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|List| (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *6))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|IntegerFactorizationPackage| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *4 *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Factored| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|PolynomialSquareFree| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2
+ (|Factored| (|SparseUnivariatePolynomial| (|Fraction| *7))))
+ (|isDomain| *1 (|SupFractionFactorizer| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| *7)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Factored| *1))
+ (|ofCategory| *1 (|UniqueFactorizationDomain|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|UnivariatePolynomialSquareFree| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|UnivariatePolynomialCategory| *4)
+ (|IntegralDomain|)
+ (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)))))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|RegularChain| *4 *5))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|List|
+ (|SquareFreeRegularTriangularSet| *4
+ (|IndexedExponents|
+ (|OrderedVariableList| *6))
+ (|OrderedVariableList| *6)
+ (|NewSparseMultivariatePolynomial|
+ *4 (|OrderedVariableList| *6)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *6 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|RegularChain| *4 *5))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *4)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *6 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *4)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| (|Symbol|))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 (-329)))) (-5 *1 (-937)) (-5 *5 (-329))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| (|Integer|))))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|List| (|Float|))))
+ (|isDomain| *1 (|RealSolvePackage|)) (|isDomain| *5 (|Float|))))
((*1 *2 *3)
- (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-349 *4)))))
- (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091)))))
+ (AND (|isDomain| *3 (|RegularChain| *4 *5))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *4)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *6 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-584 (-938 (-349 *4))))) (-5 *1 (-1208 *4 *5 *6))
- (-13 *5 (-584 (-1091))) (-13 *6 (-584 (-1091))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-959 *4 *5)) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-13 *5 (-584 (-1091)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4))))))
- (-5 *1 (-1208 *4 *5 *6)) (-13 *6 (-584 (-1091)))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *5)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|List| (|RealClosure| (|Fraction| *4)))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|RegularChain| *4 *5))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *4))
+ (|:| |coordinates| (|List| (|Polynomial| *4))))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *6 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091)))
- (-13 *7 (-584 (-1091)))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5))
+ (|:| |coordinates| (|List| (|Polynomial| *5))))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091)))
- (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091)))
- (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4))))))
- (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-13 *5 (-584 (-1091)))
- (-13 *6 (-584 (-1091))))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5))
+ (|:| |coordinates| (|List| (|Polynomial| *5))))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5))
+ (|:| |coordinates| (|List| (|Polynomial| *5))))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *4))
+ (|:| |coordinates| (|List| (|Polynomial| *4))))))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|List| (|Symbol|))))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-959 *5 *6)))
- (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-82))
- (-4 *5 (-12 (-756) (-257) (-117) (-934))) (-5 *2 (-584 (-959 *5 *6)))
- (-5 *1 (-1208 *5 *6 *7)) (-13 *6 (-584 (-1091))) (-13 *7 (-584 (-1091)))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|RegularChain| *5 *6)))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|RegularChain| *5 *6)))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *5 *6 *7))
+ (|ofType| *6 (|List| (|Symbol|))) (|ofType| *7 (|List| (|Symbol|)))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-756) (-257) (-117) (-934)))
- (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-584 (-1091))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4))
- (-4 *4 (-1130))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485))
- (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))))
-(((*1 *2 *1) (-11 (-5 *2 (-885)) (-5 *1 (-1206)))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4
+ (|Join| (|OrderedRing|) (|EuclideanDomain|)
+ (|CharacteristicZero|) (|RealConstant|)))
+ (|isDomain| *2 (|List| (|RegularChain| *4 *5)))
+ (|isDomain| *1 (|ZeroDimensionalSolvePackage| *4 *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| #1=(|Stream| *4) #1#))
+ (|isDomain| *2 (|Stream| *4))
+ (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *4))
+ (|ofCategory| *4 (|Type|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| #2=(|List| (|Stream| *5)) #2#))
+ (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|Stream| *5)))
+ (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *5))
+ (|ofCategory| *5 (|Type|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|YoungDiagram|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Partition|)) (|isDomain| *1 (|YoungDiagram|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-264 *6)))
- (-5 *1 (-174 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962))))
- ((*1 *2 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496))))
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *6 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Expression| *6)))
+ (|isDomain| *1 (|DegreeReductionPackage| *5 *6))
+ (|isDomain| *3 (|Expression| *6)) (|ofCategory| *5 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *2 *3)
- (-11 (-5 *3 (-520 *5)) (-4 *5 (-12 (-26 *4) (-1116)))
- (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5))
- (-5 *1 (-522 *4 *5))))
+ (AND (|isDomain| *3 (|IntegrationResult| *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *4)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|IntegrationResultToFunction| *4 *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-520 (-349 (-858 *4))))
- (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-264 *4)))
- (-5 *1 (-526 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3))))
+ (AND (|isDomain| *3 (|IntegrationResult| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|List| (|Expression| *4)))
+ (|isDomain| *1 (|IntegrationResultRFToFunction| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentExpansionCategory| *3 *2))
+ (|ofCategory| *3 (|OrderedRing|))
+ (|ofCategory| *2 (|StreamAggregate| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
- (-4 *2 (-1065 *4))))
+ (AND (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2))
+ (|ofCategory| *4 (|OrderedRing|))
+ (|ofCategory| *2 (|StreamAggregate| *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116)))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|XDistributedPolynomial| (|Symbol|) *3))
+ (|isDomain| *1 (|XPolynomial| *3)) (|ofCategory| *3 (|Ring|))))
((*1 *2 *1)
- (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4))
+ (|isDomain| *1 (|XRecursivePolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3))))
+ (AND (|isDomain| *2 (|XDistributedPolynomial| (|Symbol|) *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|XPolynomial| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
- (-5 *1 (-1205 *3 *4)))))
+ (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|XRecursivePolynomial| *3 *4)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3)))))
- (-5 *1 (-1202 *3)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|List| (|Record| (|:| |k| (|Symbol|)) (|:| |c| (|XPolynomial| *3)))))
+ (|isDomain| *1 (|XPolynomial| *3)) (|ofCategory| *3 (|Ring|))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4)))))
- (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-(((*1 *1 *2 *1) (-11 (-4 *1 (-20)) (-5 *2 (-695))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-22)) (-5 *2 (-831))))
+ (AND
+ (|isDomain| *2
+ (|List| (|Record| (|:| |k| *3) (|:| |c| (|XRecursivePolynomial| *3 *4)))))
+ (|isDomain| *1 (|XRecursivePolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))))
+(((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoid|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|AbelianSemiGroup|))
+ (|isDomain| *2 (|PositiveInteger|))))
((*1 *1 *1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-127))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-127))))
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Color|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|))))
((*1 *2 *1 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116))) (-5 *1 (-180 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1026)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1026)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-11 (-4 *1 (-273 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-101))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-309 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-309 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *3) (-11 (-5 *1 (-333 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))
- ((*1 *1 *2 *3) (-11 (-4 *1 (-334 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014))))
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|)))
+ (|isDomain| *1 (|DenavitHartenbergMatrix| *3))))
((*1 *1 *2 *1)
- (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *6 (-195 (-3961 *3) (-695)))
- (-13 *7
- (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6))
- (-2 (|:| -2402 *5) (|:| -2403 *6))))
- (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757))
- (-4 *2 (-862 *4 *6 (-774 *3)))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|SemiGroup|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|SemiGroup|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *3)
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *2 (|CancellationAbelianMonoid|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|FreeModule1| *3 *2)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *2 *3)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *6
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|ofType| *7
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *5) (|:| |exponent| *6))
+ (|Record| (|:| |index| *5) (|:| |exponent| *6))))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *6 *7 *2))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2
+ (|PolynomialCategory| *4 *6 (|OrderedVariableList| *3)))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-589 *2)) (-4 *2 (-1026))))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *3))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|InputForm|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerTaylorSeries| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|LeftLinearSet| *2)) (|ofCategory| *2 (|SemiGroup|))))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|Mapping| *6 *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Mapping| *7 *5))
+ (|isDomain| *1 (|MappingPackage3| *5 *6 *7))))
((*1 *2 *2 *1)
- (-11 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-323 *3))
- (-4 *4 (-323 *3))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))))
((*1 *2 *1 *2)
- (-11 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *2 (-323 *3))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *3))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
((*1 *1 *2 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|Monad|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496))
- (-5 *1 (-883 *3 *4))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-964 *2)) (-4 *2 (-1026))))
- ((*1 *1 *1 *1) (-4 *1 (-1026)))
+ (AND (|isDomain| *2 (|Vector| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *4))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RightLinearSet| *2))
+ (|ofCategory| *2 (|SemiGroup|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SemiGroup|)))
((*1 *2 *2 *1)
- (-11 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-195 *3 *4))
- (-4 *5 (-195 *3 *4))))
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *2 *5))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))))
((*1 *2 *1 *2)
- (-11 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4))
- (-4 *2 (-195 *3 *4))))
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *2))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *2 (|DirectProductCategory| *3 *4))))
((*1 *1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2))
- (-4 *2 (-862 *3 (-470 *4) *4))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *3) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-855 (-178))) (-5 *3 (-178)) (-5 *1 (-1127))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *1 (|TubePlotTools|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|Monoid|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|Monoid|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|VectorCategory| *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|AbelianGroup|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-18))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
-(((*1 *1 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
- ((*1 *1 *1) (-11 (-5 *1 (-47 *2 *3)) (-4 *2 (-962)) (-13 *3 (-584 (-1091)))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedMonoid|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|AntiSymm| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofType| *3 (|List| (|Symbol|)))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|DeRhamComplex| *2 *3))
+ (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *3 (|List| (|Symbol|)))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *1)
+ (AND (|ofType| *2 (|List| (|Symbol|))) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *5
+ (|DirectProductCategory| (|#| *2) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *4) (|:| |exponent| *5))
+ (|Record| (|:| |index| *4) (|:| |exponent| *5))))
+ (|isDomain| *1 (|GeneralModulePolynomial| *2 *3 *4 *5 *6 *7))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *3 *5 (|OrderedVariableList| *2)))))
((*1 *1 *1)
- (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757)))
- (-13 *3 (-584 (-1091)))))
- ((*1 *1 *1) (-11 (-4 *1 (-334 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
+ (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3))
+ (|ofCategory| *2 (|BasicType|)) (|ofCategory| *3 (|OrderedType|))))
((*1 *1 *1)
- (-11 (-13 *2 (-584 (-1091))) (-4 *3 (-145)) (-4 *5 (-195 (-3961 *2) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *4) (|:| -2403 *5))
- (-2 (|:| -2402 *4) (|:| -2403 *5))))
- (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757))
- (-4 *7 (-862 *3 *5 (-774 *2)))))
- ((*1 *1 *1) (-11 (-4 *1 (-450 *2 *3)) (-4 *2 (-69)) (-4 *3 (-760))))
- ((*1 *1 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *1 *1) (-11 (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|LaurentPolynomial| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
((*1 *1 *1)
- (-11 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))
- ((*1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|Monoid|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-208))))
- ((*1 *2 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-885))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedMonoid|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DomainTemplate|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Partition|))))
((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|XPolynomialRing| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedMonoid|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
- ((*1 *2 *1) (-11 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))))
+ (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|OrderedFreeMonoid| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|OrderedMonoid|))
+ (|isDomain| *1 (|XPolynomialRing| *3 *2)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
- ((*1 *2 *1) (-11 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|OrderedFreeMonoid| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|OrderedMonoid|))
+ (|isDomain| *1 (|XPolynomialRing| *3 *2)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1205 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-757))
- (-4 *2 (-145))))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ (AND (|isDomain| *3 (|XRecursivePolynomial| *4 *2))
+ (|ofCategory| *1 (|FreeLieAlgebra| *4 *2))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|OrderedFreeMonoid| *4))
+ (|ofCategory| *1 (|XFreeAlgebra| *4 *2))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-11 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|XPolynomialRing| *2 *3))
+ (|ofCategory| *3 (|OrderedMonoid|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElaboratedExpression|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|XPolynomialRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedMonoid|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5))
- (-4 *4 (-1014))))
- ((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
- ((*1 *2 *1) (-11 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))))
+ (AND (|isDomain| *3 (|Mapping| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *5 *4))
+ (|isDomain| *1 (|MappingPackage2| *4 *5))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PatternMatchAssertions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|XPolynomialRing| *2 *3))
+ (|ofCategory| *3 (|OrderedMonoid|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
-(((*1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *1 *1) (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|XPolynomialRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedMonoid|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedMonoid|)))))
(((*1 *1 *1 *2)
- (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-178))))
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DoubleFloat|))))
((*1 *1 *1 *1)
- (OR (-11 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1130)))
- (-11 (-5 *1 (-248 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))
- ((*1 *1 *1 *1) (-4 *1 (-311)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-329))))
+ (OR
+ (AND #1=(|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Field|))
+ . #2=((|ofCategory| *2 (|Type|))))
+ (AND #1# (|ofCategory| *2 (|Group|)) . #2#)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|Field|)))
+ ((*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|))))
((*1 *1 *2 *2)
- (-11 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014))
- (-4 *1 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-413)))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
+ (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1)))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|Group|)))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *3))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|InputForm|)))
((*1 *1 *2 *3)
- (-11 (-4 *4 (-145)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-35 *4))
- (-4 *3 (|SubsetCategory| (-664) *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|LocalAlgebra| *2 *4 *3))
+ (|ofCategory| *2 (|Algebra| *4))
+ (|ofCategory| *3 (|SubsetCategory| (|Monoid|) *4))))
((*1 *1 *1 *2)
- (-11 (-4 *4 (-145)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-35 *4))
- (-4 *2 (|SubsetCategory| (-664) *4))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-575 *2)) (-4 *2 (-145)) (-4 *2 (-311))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|LocalAlgebra| *3 *4 *2))
+ (|ofCategory| *3 (|Algebra| *4))
+ (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|LieAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|))))
((*1 *1 *2 *3)
- (-11 (-4 *4 (-145)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4))
- (-4 *3 (|SubsetCategory| (-664) *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|Localize| *2 *4 *3)) (|ofCategory| *2 (|Module| *4))
+ (|ofCategory| *3 (|SubsetCategory| (|Monoid|) *4))))
((*1 *1 *1 *2)
- (-11 (-4 *4 (-145)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))
- (-4 *2 (|SubsetCategory| (-664) *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|Localize| *3 *4 *2)) (|ofCategory| *3 (|Module| *4))
+ (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1)
+ (|partial| AND (|isDomain| *1 (|OrdinaryWeightedPolynomials| *2 *3 *4 *5))
+ (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Ring|))
+ (|ofType| *3 (|List| (|Symbol|)))
+ (|ofType| *4 (|List| (|NonNegativeInteger|)))
+ (|ofType| *5 (|NonNegativeInteger|))))
((*1 *1 *1 *1)
- (|partial| -11 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962))
- (-13 *3 (-584 (-1091))) (-13 *4 (-584 (-695))) (-13 *5 (-695))))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *2) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496))))
- ((*1 *1 *1 *2)
- (-11 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-195 *4 *2))
- (-4 *6 (-195 *3 *2)) (-4 *2 (-311))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1188 *2)) (-4 *2 (-311))))
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *2 *5 *6))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *5 (|DirectProductCategory| *4 *2))
+ (|ofCategory| *6 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *2 (|Field|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|VectorSpace| *2)) (|ofCategory| *2 (|Field|))))
((*1 *1 *1 *1)
- (|partial| -11 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718))
- (-13 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-862 *2 *4 *3)) (-13 *7 (-584 (-695))) (-13 *8 (-695))))
+ (|partial| AND (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofType| *6 (|List| *3))
+ (|isDomain| *1 (|WeightedPolynomials| *2 *3 *4 *5 *6 *7 *8))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3))
+ (|ofType| *7 (|List| (|NonNegativeInteger|)))
+ (|ofType| *8 (|NonNegativeInteger|))))
((*1 *1 *1 *2)
- (-11 (-5 *1 (-1204 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755)))))
-(((*1 *2 *1) (-11 (-4 *1 (-44 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Field|))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedMonoid|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|OrderedAbelianMonoid|))))
((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AntiSymm| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-485)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-228))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757))
- (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695)))
- (-5 *1 (-271 *5 *6 *7 *8))))
- ((*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ExtAlgBasis|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *8))
+ (|isDomain| *4 (|List| *6)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|Ring|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|FactoringUtilities| *5 *6 *7 *8))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-410 *3 *2)) (-4 *3 (-145)) (-4 *2 (-20))))
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (AND (|ofCategory| *1 (|GradedModule| *3 *2))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *2 (|AbelianMonoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|LaurentPolynomial| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717))))
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *2 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *2 (|OrderedAbelianMonoid|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3))
- (-5 *2 (-349 (-485)))))
- ((*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831)))))
+ (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (-11 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|XPolynomialsCat| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-311)) (-13 *6 (-1180 (-631 *3)))
- (-5 *1 (-41 *3 *4 *5 *6)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))))
- ((*1 *2 *3) (-11 (-5 *2 (-48)) (-5 *1 (-49 *3)) (-4 *3 (-1130))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-145))
- (-5 *2 (-1180 (-631 (-349 (-858 *4))))) (-5 *1 (-162 *4))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1005 (-264 *4))) (-4 *4 (-12 (-757) (-496) (-554 (-329))))
- (-5 *2 (-1005 (-329))) (-5 *1 (-218 *4))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-228))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-1156 *3)) (-5 *1 (-243 *3 *2 *4 *5 *6 *7)) (-4 *3 (-145))
- (-4 *4 (-20)) (-13 *5 (-1 *2 *2 *4)) (-13 *6 (-1 (-3 *4 "failed") *4 *4))
- (-13 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3)))
- (-13 *5 (-1091)) (-13 *6 *4)
- (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *1 (-263 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2))
- (-4 *3 (-279 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3))
- (-4 *3 (-279 *4))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145))
- (-5 *2 (-1205 *3 *4))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145))
- (-5 *2 (-1196 *3 *4))))
- ((*1 *1 *2) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-349 (-858 (-349 *3)))) (-4 *3 (-496)) (-4 *3 (-1014))
- (-4 *1 (-363 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-858 (-349 *3))) (-4 *3 (-496)) (-4 *3 (-1014))
- (-4 *1 (-363 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-349 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-363 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014))
- (-4 *1 (-363 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-280 *4)) (-4 *4 (-12 (-757) (-18))) (-5 *1 (-371 *3 *4))
- (-4 *3 (-12 (-145) (-35 (-349 (-485)))))))
- ((*1 *1 *2)
- (-11 (-5 *1 (-371 *2 *3)) (-4 *2 (-12 (-145) (-35 (-349 (-485)))))
- (-4 *3 (-12 (-757) (-18)))))
- ((*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-376))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-376))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-376))))
- ((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-376))))
- ((*1 *1 *2) (-11 (-5 *2 (-376)) (-5 *1 (-378))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1180 (-349 (-858 *3)))) (-4 *3 (-145))
- (-13 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-13 *4 (-831))
- (-13 *5 (-584 (-1091)))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408))))
- ((*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-408))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3)
- (-5 *1 (-414 *3 *4 *5))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-414 *3 *4 *5))
- (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))
- ((*1 *1 *2) (-11 (-4 *3 (-145)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-553 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-4 *1 (-556 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-4 *1 (-561 *2)) (-4 *2 (-962))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831))))
- ((*1 *1 *2) (-11 (-4 *3 (-145)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *1 *2) (-11 (-5 *2 (-1029)) (-5 *1 (-623))))
- ((*1 *2 *3) (-11 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2)
- (-11 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-323 *3))
- (-4 *2 (-323 *3))))
- ((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-145)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-145)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-4 *3 (-962))
- (-4 *4 (-664)) (-5 *1 (-675 *3 *4))))
- ((*1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-688))))
- ((*1 *2 *3) (-11 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-768))))
- ((*1 *2 *3) (-11 (-5 *3 (-858 (-45))) (-5 *2 (-264 (-485))) (-5 *1 (-785))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 (-45)))) (-5 *2 (-264 (-485))) (-5 *1 (-785))))
- ((*1 *1 *2) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-11 (-5 *2 (-349 (-347 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-349 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-417)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496))))
- ((*1 *2 *3) (-11 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130))))
- ((*1 *2 *3) (-11 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-13 *6 (-584 *2))))
- ((*1 *2 *3) (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496))))
- ((*1 *1 *2)
- (-11 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2))
- (-4 *2 (-862 *3 (-470 *4) *4))))
- ((*1 *1 *2)
- (-11 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4))
- (-4 *4 (-862 *3 (-470 *2) *2))))
- ((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773))))
- ((*1 *1 *2) (-11 (-5 *2 (-114)) (-4 *1 (-1059))))
- ((*1 *2 *3) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3)
- (-5 *1 (-1090 *3 *4 *5))))
- ((*1 *2 *1) (-11 (-5 *2 (-1103 (-1091) (-378))) (-5 *1 (-1095))))
- ((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014))))
- ((*1 *2 *3) (-11 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-11 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *1 *2) (-11 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5))
- (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-13 *4 (-1091)) (-13 *5 *3)
- (-5 *1 (-1170 *3 *4 *5))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-13 *3 *2)))
- ((*1 *2 *3) (-11 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-11 (-5 *2 (-773)) (-5 *1 (-1183))))
- ((*1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-145))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-145))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145))
- (-5 *1 (-1201 *3 *4)))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Field|))
+ (|ofType| *6 (|Vector| (|Matrix| *3)))
+ (|isDomain| *1 (|AlgebraGivenByStructuralConstants| *3 *4 *5 *6))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| (|Matrix| *4)))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|Vector| (|Matrix| (|Fraction| (|Polynomial| *4)))))
+ (|isDomain| *1 (|CoerceVectorMatrixPackage| *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SegmentBinding| (|Expression| *4)))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|) (|IntegralDomain|)
+ (|ConvertibleTo| (|Float|))))
+ (|isDomain| *2 (|SegmentBinding| (|Float|)))
+ (|isDomain| *1 (|DrawNumericHack| *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|ExtAlgBasis|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|EuclideanModularRing| *3 *2 *4 *5 *6 *7))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 (|Mapping| *2 *2 *4))
+ (|ofType| *6 (|Mapping| (|Union| *4 "failed") *4 *4))
+ (|ofType| *7 (|Mapping| (|Union| *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *4 *5 *6))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))
+ (|ofType| *5 (|Symbol|)) (|ofType| *6 *4)
+ (|ofCategory| *3
+ (|Join| (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|GcdDomain|)))
+ (|isDomain| *1 (|ExponentialExpansion| *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *2 (|FiniteAlgebraicExtensionField| *4))
+ (|isDomain| *1 (|FiniteFieldHomomorphisms| *3 *4 *2))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *2 (|FiniteAlgebraicExtensionField| *4))
+ (|isDomain| *1 (|FiniteFieldHomomorphisms| *2 *4 *3))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|XRecursivePolynomial| *3 *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|XDistributedPolynomial| *3 *4))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Fraction| *3))))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| (|Fraction| *3)))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| *3)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1)))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FourierComponent| *4))
+ (|ofCategory| *4 (|Join| (|OrderedSet|) (|AbelianGroup|)))
+ (|isDomain| *1 (|FourierSeries| *3 *4))
+ (|ofCategory| *3
+ (|Join| (|CommutativeRing|)
+ (|Algebra| (|Fraction| (|Integer|)))))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|FourierSeries| *2 *3))
+ (|ofCategory| *2
+ (|Join| (|CommutativeRing|)
+ (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Join| (|OrderedSet|) (|AbelianGroup|)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FortranScalarType|)) (|isDomain| *1 (|FortranType|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Vector| (|Fraction| (|Polynomial| *3))))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofType| *6 (|Vector| (|Matrix| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *1 (|GraphImage|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|GraphImage|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3)
+ (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|ImportAst|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|JoinAst|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *1 (|AssociatedJordanAlgebra| *3 *2))
+ (|ofCategory| *2 (|NonAssociativeAlgebra| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|CoercibleTo| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|CoercibleFrom| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|LeftAlgebra| *2)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|XPBWPolynomial| *3 *4))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *1 (|AssociatedLieAlgebra| *3 *2))
+ (|ofCategory| *2 (|NonAssociativeAlgebra| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Magma| *3)) (|isDomain| *1 (|LyndonWord| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|isDomain| *1 (|Magma| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|MappingAst|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *3))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|MathMLFormat|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |coef| *3) (|:| |monom| *4))))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|))
+ (|isDomain| *1 (|MonoidRing| *3 *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|NonAssociativeRing|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|None|)) (|isDomain| *1 (|NoneFunctions1| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OrdSetInts|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| (|AlgebraicNumber|)))
+ (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PolynomialAN2Expression|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|AlgebraicNumber|))))
+ (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PolynomialAN2Expression|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Permutation| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Permutation| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PermutationGroup| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Factored| *3)))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|PartialFraction| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Fraction| *3)) (|isDomain| *1 (|PartialFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Pi|)) (|isDomain| *2 (|Expression| *4))
+ (|isDomain| *1 (|PiCoercions| *4))
+ (|ofCategory| *4 (|IntegralDomain|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ResolveLatticeCompletion| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Exit|)) (|isDomain| *1 (|ResolveLatticeCompletion| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5))
+ (|ofType| *6 (|List| *2))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|RationalFunction| *3))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *2 *4))
+ (|ofCategory| *4 (|PolynomialCategory| *3 (|IndexedExponents| *2) *2))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|OutputForm|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Character|)) (|ofCategory| *1 (|StringAggregate|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|SparseUnivariateLaurentSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3)
+ (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Table| (|Symbol|) (|FortranType|)))
+ (|isDomain| *1 (|SymbolTable|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Tableau| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|TexFormat|)) (|isDomain| *1 (|TexFormat1| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|TaylorSeries| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|UnivariateLaurentSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|UniversalSegment| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3)
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Variable| *3))
+ (|ofType| *3 *2)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|GraphImage|))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|ViewportPackage|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4)))))
(((*1 *1 *2)
- (|partial| -11 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145))
- (-5 *1 (-607 *3 *4))))
+ (|partial| AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|LiePolynomial| *3 *4))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-145)))))
+ (|partial| AND (|isDomain| *2 (|LiePolynomial| *3 *4))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *1 *1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145))))
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1005 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496))
- (-5 *1 (-128 *4 *2))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-405 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
+ (AND (|isDomain| *3 (|SegmentBinding| *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|SegmentBinding| *1))
+ (|ofCategory| *1 (|CombinatorialOpsCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|CombinatorialOpsCategory|))
+ (|isDomain| *2 (|Symbol|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-485))) (-5 *1 (-47 *3 *4)) (-4 *3 (-962))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|AntiSymm| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-238)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|)))
((*1 *1 *2)
- (-11 (-5 *2 (-607 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-5 *1 (-567 *3 *4 *5))
- (-13 *5 (-831))))
+ (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofType| *5 (|PositiveInteger|))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|XExponentialPackage| *4 *5 *2))
+ (|ofCategory| *2 (|XPolynomialsCat| *5 *4))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-349 (-485))))
- (-4 *3 (-757)) (-4 *4 (-145)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4))
+ (|ofCategory| *4 (|Module| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-238)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|)))
((*1 *2 *3)
- (-11 (-5 *3 (-347 *4)) (-4 *4 (-496))
- (-5 *2 (-584 (-2 (|:| -3958 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4))))
+ (AND (|isDomain| *3 (|Factored| *4)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| *4))))
+ (|isDomain| *1 (|FactoredFunctions| *4))))
((*1 *2 *1)
- (-11 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831))))
+ (AND (|isDomain| *2 (|LiePolynomial| *3 *4))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|XExponentialPackage| *4 *5 *2))
+ (|ofCategory| *2 (|XPolynomialsCat| *5 *4))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-349 (-485))))
- (-4 *3 (-757)) (-4 *4 (-145)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|XPBWPolynomial| *3 *4))
+ (|ofCategory| *4 (|Module| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
- (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |k| (|OrderedFreeMonoid| *3)) (|:| |c| *4))))))
(((*1 *2 *2 *1)
- (-11 (-5 *2 (-1205 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-145))))
- ((*1 *1 *1 *1) (|partial| -11 (-4 *1 (-335 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (|partial| -11 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4))
+ (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *2 *1)
- (-11 (-5 *2 (-1205 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-145))))
- ((*1 *1 *1 *1) (|partial| -11 (-4 *1 (-335 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (|partial| -11 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4))
+ (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
-(((*1 *1 *2 *3) (-11 (-4 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
+ (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *2 *3)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Stream| *3))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *4))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *1 (|XFreeAlgebra| *4 *3)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-44 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *1)
- (-11 (-4 *3 (-496)) (-5 *2 (-82)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LaurentPolynomial| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|MonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-82)))))
-(((*1 *1 *1) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|))))
((*1 *1 *1)
- (-11 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757))
- (-4 *3 (-12 (-145) (-655 (-349 (-485))))) (-13 *4 (-831))))
- ((*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+ (AND (|isDomain| *1 (|LieExponentials| *2 *3 *4))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *3
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *4 (|PositiveInteger|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|OrderedFreeMonoid| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
- (-4 *4 (-145))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|CommutativeRing|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-145)))))
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *3 (|CommutativeRing|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-325 *3 *4)) (-4 *3 (-757)) (-4 *4 (-145)) (-5 *2 (-584 *3))))
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|List| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LyndonWord| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Magma| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|List| *3)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757))
- (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
((*1 *2)
- (-11 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4))
- (-4 *3 (-279 *4))))
- ((*1 *2) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831))))
- ((*1 *2) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|)))
+ (|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))))
(((*1 *2)
- (-11 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
- ((*1 *2) (-11 (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-5 *2 (-695)))))
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1156 *4))
- (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-13 *6 (-831))))
+ (AND (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofCategory| *4 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|NormRetractPackage| *3 *4 *5 *2 *6))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|ofType| *6 (|PositiveInteger|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-311)) (-4 *3 (-319))))
- ((*1 *1 *1) (-11 (-4 *1 (-1199 *2)) (-4 *2 (-311)) (-4 *2 (-319)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *3 (|Finite|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ExtensionField| *2)) (|ofCategory| *2 (|Field|))
+ (|ofCategory| *2 (|Finite|)))))
(((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-12 (-962) (-655 (-349 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|XExponentialPackage| *4 *5 *2))
+ (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))))
(((*1 *1 *2)
- (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6))))
+ (|partial| AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))))
+ (|partial| AND (|isDomain| *2 (|List| *8))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8))
+ (|isDomain| *4 (|Mapping| *8 *8 *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *5 *6 *7 *8)))))
(((*1 *1 *2)
- (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6))))
+ (|partial| AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7)))
- (-5 *1 (-1194 *4 *5 *6 *7))))
+ (|partial| AND (|isDomain| *2 (|List| *8))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8))
+ (|isDomain| *4 (|Mapping| *8 *8 *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|WuWenTsunTriangularSet| *4 *5 *6 *7)))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 *9)) (-5 *4 (-1 (-82) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
- (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962))
- (-13 *5 (-584 (-1091))) (-13 *6 (-584 *3)) (-13 *7 *3)))
- ((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
- (-13 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-862 *4 *6 *5)) (-13 *9 (-584 *3)) (-13 *10 *3))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-12 (-1014) (-31))) (-5 *1 (-1055 *3 *2))
- (-4 *3 (-12 (-1014) (-31)))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1192)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1191)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1191)))))
-(((*1 *2 *3)
- (-11 (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3))
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-1156 *3))
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-693 *4 *5)) (-4 *5 (-352 *3 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3))
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3))
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5)))))
+ (AND (|isDomain| *3 (|List| *9))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *9 *9))
+ (|isDomain| *5 (|Mapping| *9 *9 *9))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|WuWenTsunTriangularSet| *6 *7 *8 *9)))
+ (|isDomain| *1 (|WuWenTsunTriangularSet| *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|OrdinaryWeightedPolynomials| *4 *5 *6 *7))
+ (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|List| *3)) (|ofType| *7 *3)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofType| *8 (|List| *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|WeightedPolynomials| *4 *5 *6 *7 *8 *9 *10))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofType| *9 (|List| *3)) (|ofType| *10 *3))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IfAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingNode| *3 *2))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|WhileAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|WhereAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|WhereAst|)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|isDomain| *1 (|FunctionFieldIntegralBasis| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|isDomain| *1 (|NumberFieldIntegralBasis| *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *4 *3 *5 *6))
+ (|ofCategory| *6 (|MonogenicAlgebra| *3 *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|isDomain| *1 (|WildFunctionFieldIntegralBasis| *4 *3 *5 *6))
+ (|ofCategory| *6 (|FramedAlgebra| *3 *5)))))
(((*1 *2)
- (-11 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))))
((*1 *2)
- (-11 (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3))
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|isDomain| *1 (|FunctionFieldIntegralBasis| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4))))
((*1 *2)
- (-11 (-4 *3 (-1156 (-485)))
- (-5 *2
- (-2 (|:| -2014 (-631 (-485))) (|:| |basisDen| (-485))
- (|:| |basisInv| (-631 (-485)))))
- (-5 *1 (-693 *3 *4)) (-4 *4 (-352 (-485) *3))))
+ (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| (|Integer|)))
+ (|:| |basisDen| (|Integer|))
+ (|:| |basisInv| (|Matrix| (|Integer|)))))
+ (|isDomain| *1 (|NumberFieldIntegralBasis| *3 *4))
+ (|ofCategory| *4 (|FramedAlgebra| (|Integer|) *3))))
((*1 *2)
- (-11 (-4 *3 (-298)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4))
- (-5 *2
- (-2 (|:| -2014 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))
+ (AND (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (|Matrix| *4))))
+ (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *3 *4 *5 *6))
+ (|ofCategory| *6 (|MonogenicAlgebra| *4 *5))))
((*1 *2)
- (-11 (-4 *3 (-298)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4))
- (-5 *2
- (-2 (|:| -2014 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
- (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5)))))
+ (AND (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (|Matrix| *4))))
+ (|isDomain| *1 (|WildFunctionFieldIntegralBasis| *3 *4 *5 *6))
+ (|ofCategory| *6 (|FramedAlgebra| *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1123 *6))
- (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *6 (|Field|))
+ (|isDomain| *4 (|TaylorSeries| *6))
+ (|isDomain| *2 (|Mapping| #1=(|Stream| *4) #1#))
+ (|isDomain| *1 (|WeierstrassPreparation| *6))
+ (|isDomain| *5 (|Stream| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-4 *5 (-311)) (-5 *2 (-584 (-1123 *5)))
- (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4)))
- (-5 *1 (-1189 *4)) (-4 *4 (-311)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|List| (|TaylorSeries| *5)))
+ (|isDomain| *1 (|WeierstrassPreparation| *5))
+ (|isDomain| *4 (|TaylorSeries| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2
+ (|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| *4))
+ (|Polynomial| *4)))
+ (|isDomain| *1 (|WeierstrassPreparation| *4))
+ (|ofCategory| *4 (|Field|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-4 *5 (-311)) (-5 *2 (-1070 (-1070 (-858 *5))))
- (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-311)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Stream| (|Stream| (|Polynomial| *5))))
+ (|isDomain| *1 (|WeierstrassPreparation| *5))
+ (|isDomain| *4 (|Stream| (|Polynomial| *5))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|Mapping| (|Stream| (|Polynomial| *4)) (|Stream| (|Polynomial| *4))))
+ (|isDomain| *1 (|WeierstrassPreparation| *4))
+ (|ofCategory| *4 (|Field|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|Mapping| (|Stream| (|Polynomial| *4)) (|Stream| (|Polynomial| *4))))
+ (|isDomain| *1 (|WeierstrassPreparation| *4))
+ (|ofCategory| *4 (|Field|)))))
+(((*1 *2)
+ (AND (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|CardinalNumber|))
+ (|isDomain| *1 (|DirectProductCategory&| *3 *4 *5))
+ (|ofCategory| *3 (|DirectProductCategory| *4 *5))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|CardinalNumber|))
+ (|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FreeNilpotentLie| *3 *4 *5)) (|ofType| *3 *2)
+ (|ofType| *4 *2) (|ofCategory| *5 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PointCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|VectorSpace| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|CardinalNumber|)))))
+(((*1 *1) (|isDomain| *1 (|Void|))))
(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-311)))))
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
(((*1 *2)
- (-11 (-13 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-104)) (-5 *1 (-194 *3 *4 *5))
- (-4 *3 (-195 *4 *5))))
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|List| (|String|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|List| (|String|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|String|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|ViewDefaultsPackage|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
((*1 *2)
- (-11 (-4 *4 (-311)) (-5 *2 (-104)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
((*1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 *2) (-13 *4 *2)
- (-4 *5 (-145))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
- (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))
- ((*1 *2 *1) (-11 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831))))
- ((*1 *2) (-11 (-4 *1 (-1188 *3)) (-4 *3 (-311)) (-5 *2 (-104)))))
-(((*1 *1) (-5 *1 (-1186))))
-(((*1 *2 *3) (-11 (-5 *3 (-329)) (-5 *2 (-178)) (-5 *1 (-1185))))
- ((*1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-1185)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-11 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184))))
- ((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184))))
- ((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184))))
- ((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184))))
- ((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184))))
- ((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-1184)))))
-(((*1 *1) (-5 *1 (-1184))))
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *1) (|isDomain| *1 (|ThreeDimensionalViewport|))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-584 (-220))) (-5 *1 (-1184))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-1074)) (-5 *1 (-1184))))
- ((*1 *1 *1) (-5 *1 (-1184))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3))))
- ((*1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1184))))
- ((*1 *2 *1) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1184)))))
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *3 (|String|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *1 *1) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|SubSpace| 3 *3))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Point| *4))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|))))
((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1183))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1183))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1184))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-220))) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-584 (-220))) (-5 *1 (-221))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|Point| (|DoubleFloat|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
(((*1 *2 *1 *3 *3 *4 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
((*1 *2 *1 *3 *3 *4 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
(((*1 *1 *2)
- (-11
- (-5 *2
- (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178))
- (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178))
- (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))
- (-5 *1 (-220))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|))
+ (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|))
+ (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|))
+ (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))
+ (|isDomain| *1 (|DrawOption|))))
((*1 *2 *3 *2)
- (-11
- (-5 *2
- (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178))
- (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178))
- (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))
- (-5 *3 (-584 (-220))) (-5 *1 (-221))))
- ((*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|))
+ (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|))
+ (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|))
+ (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2 *1 *3 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-11 (-5 *3 (-485)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3)
- (-11
- (-5 *3
- (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178))
- (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178))
- (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))
- (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1)
- (-11
- (-5 *2
- (-2 (|:| |theta| (-178)) (|:| |phi| (-178)) (|:| -3851 (-178))
- (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |scaleZ| (-178))
- (|:| |deltaX| (-178)) (|:| |deltaY| (-178))))
- (-5 *1 (-1184))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|))
+ (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|))
+ (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|))
+ (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|))
+ (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|))
+ (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|))
+ (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Palette|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *1 *2 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837))))
- ((*1 *1 *1 *2 *2 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839))))
- ((*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *2 *2 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *1 *1 *2 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
+ ((*1 *1 *1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|))))
+ ((*1 *2 *1 *3 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)))))
((*1 *2 *1 *3 *4 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-329)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-11 (-5 *3 (-127)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3 *3 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|Color|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
(((*1 *2 *1 *2 *3)
- (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1183))))
+ (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *2 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
((*1 *2 *1 *2 *3)
- (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184))))
- ((*1 *2 *1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1184))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-144))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-408))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-855 (-178)))) (-5 *1 (-1183)))))
-(((*1 *1) (-5 *1 (-1183))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-408)) (-5 *3 (-584 (-220))) (-5 *1 (-1183))))
- ((*1 *1 *1) (-5 *1 (-1183))))
+ (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *2 *2)
+ (AND (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SubSpaceComponentProperty|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphImage|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ThreeDimensionalViewport|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Point| (|DoubleFloat|))))
+ (|isDomain| *1 (|TwoDimensionalViewport|)))))
+(((*1 *1) (|isDomain| *1 (|TwoDimensionalViewport|))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|GraphImage|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|TwoDimensionalViewport|))))
+ ((*1 *1 *1) (|isDomain| *1 (|TwoDimensionalViewport|))))
(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-11 (-5 *3 (-831)) (-5 *4 (-178)) (-5 *5 (-485)) (-5 *6 (-784))
- (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1)
- (-11
- (-5 *2
- (-1180
- (-2 (|:| |scaleX| (-178)) (|:| |scaleY| (-178)) (|:| |deltaX| (-178))
- (|:| |deltaY| (-178)) (|:| -3854 (-485)) (|:| -3852 (-485))
- (|:| |spline| (-485)) (|:| -3883 (-485)) (|:| |axesColor| (-784))
- (|:| -3855 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))))
- (-5 *1 (-1183)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163))))
- ((*1 *2 *1) (-11 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|DoubleFloat|))
+ (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|Palette|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Vector|
+ (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|))
+ (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))
+ (|:| |points| (|Integer|)) (|:| |connect| (|Integer|))
+ (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|))
+ (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|))
+ (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))))
+ (|isDomain| *1 (|TwoDimensionalViewport|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Vector| (|Union| (|GraphImage|) "undefined")))
+ (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *4 (|PositiveInteger|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|GraphImage|))
+ (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 (-329))) (-5 *3 (-584 (-220))) (-5 *1 (-221))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-408))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-408))))
+ (AND (|isDomain| *2 (|List| (|Float|)))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|GraphImage|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|GraphImage|))))
((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Palette|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|))))
((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *2 *2 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116)))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
- ((*1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
+(((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
((*1 *2 *1 *3 *4 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-329)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *4 (|PositiveInteger|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *6 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-1182))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-584 (-220)))
- (-5 *2 (-1183)) (-5 *1 (-1182)))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|))
+ (|isDomain| *6 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|ViewportPackage|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *4 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|ViewportPackage|)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *6 (-584 (-220))) (-5 *2 (-408)) (-5 *1 (-1182))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|))
+ (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|))
+ (|isDomain| *1 (|ViewportPackage|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-408)) (-5 *1 (-1182))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|))))
((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-584 (-220))) (-5 *2 (-408))
- (-5 *1 (-1182)))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|))
+ (|isDomain| *1 (|ViewportPackage|)))))
(((*1 *1 *2 *1 *1 *3)
- (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-55 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-55 *6)) (-5 *1 (-56 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *8 *7)) (-5 *4 (-105 *5 *6 *7)) (-13 *5 (-485))
- (-13 *6 (-695)) (-4 *7 (-145)) (-4 *8 (-145)) (-5 *2 (-105 *5 *6 *8))
- (-5 *1 (-106 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-141 *5)) (-4 *5 (-145)) (-4 *6 (-145))
- (-5 *2 (-141 *6)) (-5 *1 (-142 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-196 *5 *6)) (-13 *5 (-695)) (-4 *6 (-1130))
- (-4 *7 (-1130)) (-5 *2 (-196 *5 *7)) (-5 *1 (-197 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|OneDimensionalArray| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|OneDimensionalArray| *6))
+ (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *8 *7))
+ (|isDomain| *4 (|CartesianTensor| *5 *6 *7)) (|ofType| *5 (|Integer|))
+ (|ofType| *6 (|NonNegativeInteger|))
+ (|ofCategory| *7 (|CommutativeRing|))
+ (|ofCategory| *8 (|CommutativeRing|))
+ (|isDomain| *2 (|CartesianTensor| *5 *6 *8))
+ (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Complex| *5))
+ (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *6 (|CommutativeRing|)) (|isDomain| *2 (|Complex| *6))
+ (|isDomain| *1 (|ComplexFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *6))
+ (|isDomain| *4 (|DirectProduct| *5 *6))
+ (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)) (|isDomain| *2 (|DirectProduct| *5 *7))
+ (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Equation| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Equation| *6))
+ (|isDomain| *1 (|EquationFunctions2| *5 *6))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *1 *1)) (|isDomain| *3 (|Kernel| *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-253))
- (-4 *2 (-1130)) (-5 *1 (-254 *6 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253))
- (-5 *1 (-255 *5 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *9 (-311)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-349 *10)))
- (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-290 *9 *10 *11))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-349 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-290 *8 *9 *10))
- (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7))
- (-4 *10 (-1156 (-349 *9)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-323 *6))
- (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-496)) (-4 *6 (-496))
- (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-496)) (-4 *6 (-496))
- (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-257))
- (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-12 (-352 *6 *7) (-951 *6)))
- (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10))
- (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-12 (-352 *10 *11) (-951 *10)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-360 *6))
- (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-363 *6))
- (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-368 *6))
- (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1130))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-311)) (-4 *6 (-311))
- (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311))
- (-4 *6 (-311)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6)))
- (-5 *1 (-521 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311))
- (-4 *2 (-311)) (-5 *1 (-521 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|String|))
+ (|isDomain| *5 (|Kernel| *6)) (|ofCategory| *6 (|ExpressionSpace|))
+ (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|ExpressionSpaceFunctions1| *6 *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Kernel| *5))
+ (|ofCategory| *5 (|ExpressionSpace|))
+ (|ofCategory| *2 (|ExpressionSpace|))
+ (|isDomain| *1 (|ExpressionSpaceFunctions2| *5 *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Expression| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Expression| *6))
+ (|isDomain| *1 (|ExpressionFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *9 *5))
+ (|isDomain| *4 (|FiniteDivisor| *5 *6 *7 *8))
+ (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *9 (|Field|))
+ (|ofCategory| *10 (|UnivariatePolynomialCategory| *9))
+ (|ofCategory| *11 (|UnivariatePolynomialCategory| (|Fraction| *10)))
+ (|isDomain| *2 (|FiniteDivisor| *9 *10 *11 *12))
+ (|isDomain| *1 (|FiniteDivisorFunctions2| *5 *6 *7 *8 *9 *10 *11 *12))
+ (|ofCategory| *12 (|FunctionFieldCategory| *9 *10 *11))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *8 *5))
+ (|ofCategory| *5 (|UniqueFactorizationDomain|))
+ (|ofCategory| *8 (|UniqueFactorizationDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *9 (|UnivariatePolynomialCategory| *8))
+ (|ofCategory| *2 (|FunctionFieldCategory| *8 *9 *10))
+ (|isDomain| *1
+ (|FunctionFieldCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2))
+ (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *10 (|UnivariatePolynomialCategory| (|Fraction| *9)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *6))
+ (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *6 *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Factored| *5))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *6))
+ (|isDomain| *1 (|FactoredFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Fraction| *5))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| *6))
+ (|isDomain| *1 (|FractionFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *9 *5))
+ (|isDomain| *4 (|FractionalIdeal| *5 *6 *7 *8))
+ (|ofCategory| *5 (|EuclideanDomain|))
+ (|ofCategory| *6 (|QuotientFieldCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *8 (|Join| (|FramedAlgebra| *6 *7) (|RetractableTo| *6)))
+ (|ofCategory| *9 (|EuclideanDomain|))
+ (|ofCategory| *10 (|QuotientFieldCategory| *9))
+ (|ofCategory| *11 (|UnivariatePolynomialCategory| *10))
+ (|isDomain| *2 (|FractionalIdeal| *9 *10 *11 *12))
+ (|isDomain| *1 (|FractionalIdealFunctions2| *5 *6 *7 *8 *9 *10 *11 *12))
+ (|ofCategory| *12
+ (|Join| (|FramedAlgebra| *10 *11)
+ (|RetractableTo| *10)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *6 (|CommutativeRing|))
+ (|ofCategory| *2 (|FramedNonAssociativeAlgebra| *6))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebraFunctions2| *4 *5 *2 *6))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|Ring|)) (|ofCategory| *2 (|FunctionSpace| *6))
+ (|isDomain| *1 (|FunctionSpaceFunctions2| *5 *4 *6 *2))
+ (|ofCategory| *4 (|FunctionSpace| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|FiniteSetAggregate| *6))
+ (|isDomain| *1 (|FiniteSetAggregateFunctions2| *5 *4 *6 *2))
+ (|ofCategory| *4 (|FiniteSetAggregate| *5))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|Functorial| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|IntegrationResult| *5)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|IntegrationResult| *6))
+ (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4
+ (|Union| (|Record| (|:| |ratpart| *5) (|:| |coeff| *5)) "failed"))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *6) (|:| |coeff| *6)))
+ (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| *2 *5))
+ (|isDomain| *4 (|Union| *5 "failed")) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *2 (|Field|))
+ (|isDomain| *1 (|IntegrationResultFunctions2| *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4
+ (|Union|
+ (|Record| (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-311)) (-4 *6 (-311))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-521 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *6) (|:| |logand| *6))))))
+ (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|InfiniteTuple| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|InfiniteTuple| *6))
+ (|isDomain| *1 (|InfiniteTupleFunctions2| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8))
- (-5 *1 (-535 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Mapping| *8 *6 *7))
+ (|isDomain| *4 (|InfiniteTuple| *6))
+ (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|))
+ (|isDomain| *2 (|InfiniteTuple| *8))
+ (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-535 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6))
+ (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|))
+ (|isDomain| *2 (|Stream| *8))
+ (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-535 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6))))
+ (AND (|isDomain| *3 (|Mapping| *8 *6 *7))
+ (|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|Stream| *7))
+ (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|))
+ (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8))
+ (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|List| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|ListFunctions2| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8))
- (-5 *1 (-587 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|List| *6))
+ (|isDomain| *5 (|List| *7)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|))
+ (|isDomain| *2 (|List| *8))
+ (|isDomain| *1 (|ListFunctions3| *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-323 *5))
- (-4 *7 (-323 *5)) (-4 *2 (-628 *8 *9 *10))
- (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
- (-4 *9 (-323 *8)) (-4 *10 (-323 *8))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962))
- (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-628 *8 *9 *10))
- (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
- (-4 *9 (-323 *8)) (-4 *10 (-323 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5))
- (-4 *2 (-1156 (-349 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1156 (-349 *6))) (-4 *8 (-1156 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757))
- (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718))
- (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962))
- (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-721 *6))
- (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3))
+ (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *8 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *7 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *2 (|MatrixCategory| *8 *9 *10))
+ (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2))
+ (|ofCategory| *4 (|MatrixCategory| *5 *6 *7))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *8))
+ (|ofCategory| *10 (|FiniteLinearAggregate| *8))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *8 "failed") *5))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *7 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *2 (|MatrixCategory| *8 *9 *10))
+ (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2))
+ (|ofCategory| *4 (|MatrixCategory| *5 *6 *7))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *8))
+ (|ofCategory| *10 (|FiniteLinearAggregate| *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *5)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *7 (|IntegralDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Fraction| *8)))
+ (|isDomain| *1 (|MultipleMap| *5 *6 *4 *7 *8 *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *9 *8)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *9 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|PolynomialCategory| *9 *7 *5))
+ (|isDomain| *1 (|MPolyCatFunctions2| *5 *6 *7 *8 *9 *4 *2))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|PolynomialCategory| *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|Ring|))
+ (|ofCategory| *2 (|PolynomialCategory| *9 *8 *6))
+ (|isDomain| *1 (|MPolyCatFunctions3| *5 *6 *7 *8 *9 *4 *2))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|PolynomialCategory| *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|MonoidRing| *5 *7))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|Monoid|)) (|isDomain| *2 (|MonoidRing| *6 *7))
+ (|isDomain| *1 (|MonoidRingFunctions2| *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|NewSparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|NewSparseUnivariatePolynomial| *6))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomialFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *6 (|CommutativeRing|))
+ (|ofCategory| *2 (|OctonionCategory| *6))
+ (|isDomain| *1 (|OctonionCategoryFunctions2| *4 *5 *2 *6))
+ (|ofCategory| *4 (|OctonionCategory| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|OnePointCompletion| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|OnePointCompletion| *6))
+ (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014))
- (-4 *6 (-1014)) (-5 *1 (-745 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))
+ (AND (|isDomain| *2 (|OnePointCompletion| *6))
+ (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|OnePointCompletion| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|OrderedCompletion| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|OrderedCompletion| *6))
+ (|isDomain| *1 (|OrderedCompletionFunctions2| *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-11 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014))
- (-4 *6 (-1014)) (-5 *1 (-752 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))
+ (AND (|isDomain| *2 (|OrderedCompletion| *6))
+ (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|OrderedCompletion| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *1 (|OrderedCompletionFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|ParametricPlaneCurve| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricPlaneCurve| *6))
+ (|isDomain| *1 (|ParametricPlaneCurveFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|ParametricSpaceCurve| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricSpaceCurve| *6))
+ (|isDomain| *1 (|ParametricSpaceCurveFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|ParametricSurface| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricSurface| *6))
+ (|isDomain| *1 (|ParametricSurfaceFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *6))
+ (|isDomain| *4 (|PatternMatchResult| *5 *6))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|))
+ (|isDomain| *2 (|PatternMatchResult| *5 *7))
+ (|isDomain| *1 (|PatternMatchResultFunctions2| *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Pattern| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Pattern| *6))
+ (|isDomain| *1 (|PatternFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Polynomial| *5))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|Polynomial| *6))
+ (|isDomain| *1 (|PolynomialFunctions2| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962))
- (-4 *6 (-718))
- (-4 *2
- (-12 (-1014)
- (-10 -8 (-14 -3842 ($ $ $)) (-14 * ($ $ $)) (-14 ** ($ $ (-695))))))
- (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))
+ (AND (|isDomain| *3 (|Mapping| *2 *7)) (|isDomain| *4 (|Mapping| *2 *8))
+ (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2
+ (|Join| (|SetCategory|)
+ (CATEGORY |domain| (SIGNATURE + ($ $ $))
+ (SIGNATURE * ($ $ $))
+ (SIGNATURE ** ($ $ (|NonNegativeInteger|))))))
+ (|isDomain| *1 (|PolynomialCategoryLifting| *6 *7 *8 *5 *2))
+ (|ofCategory| *5 (|PolynomialCategory| *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|PrimitiveArray| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|PrimitiveArray| *6))
+ (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|PropositionalFormula| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|PropositionalFormula| *6))
+ (|isDomain| *1 (|PropositionalFormulaFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Point| *5))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|Point| *6)) (|isDomain| *1 (|PointFunctions2| *5 *6))))
((*1 *2 *3 *2)
- (-11 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6))
- (-4 *5 (-718))
- (-4 *6
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6))
- (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-145)) (-4 *6 (-145)) (-4 *2 (-912 *6))
- (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))
+ (AND (|isDomain| *3 (|Mapping| *2 (|Polynomial| *4)))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ "failed") (|Symbol|))))))
+ (|isDomain| *1 (|PushVariables| *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *2 (|QuotientFieldCategory| *6))
+ (|isDomain| *1 (|QuotientFieldCategoryFunctions2| *5 *6 *4 *2))
+ (|ofCategory| *4 (|QuotientFieldCategory| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *6 (|CommutativeRing|))
+ (|ofCategory| *2 (|QuaternionCategory| *6))
+ (|isDomain| *1 (|QuaternionCategoryFunctions2| *4 *5 *2 *6))
+ (|ofCategory| *4 (|QuaternionCategory| *5))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
- (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-13 *5 (-695))
- (-13 *6 (-695)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7))
- (-4 *2 (-966 *5 *6 *10 *11 *12))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-195 *6 *10))
- (-4 *12 (-195 *5 *10))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130))
- (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))
+ (AND (|isDomain| *2 (|Mapping| *5 *5 *5))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *10 *7)) (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *10 (|Ring|)) (|ofType| *5 (|NonNegativeInteger|))
+ (|ofType| *6 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|DirectProductCategory| *6 *7))
+ (|ofCategory| *9 (|DirectProductCategory| *5 *7))
+ (|ofCategory| *2 (|RectangularMatrixCategory| *5 *6 *10 *11 *12))
+ (|isDomain| *1
+ (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *10 *11 *12
+ *2))
+ (|ofCategory| *4 (|RectangularMatrixCategory| *5 *6 *7 *8 *9))
+ (|ofCategory| *11 (|DirectProductCategory| *6 *10))
+ (|ofCategory| *12 (|DirectProductCategory| *5 *10))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Segment| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Segment| *6))
+ (|isDomain| *1 (|SegmentFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Segment| *5))
+ (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|SegmentFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SegmentBinding| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|SegmentBinding| *6))
+ (|isDomain| *1 (|SegmentBindingFunctions2| *5 *6))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
- (-4 *2 (-1065 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6))))
+ (AND (|isDomain| *3 (|Mapping| *4 *4))
+ (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2))
+ (|ofCategory| *4 (|OrderedRing|))
+ (|ofCategory| *2 (|StreamAggregate| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Stream| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Stream| *6))
+ (|isDomain| *1 (|StreamFunctions2| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-1073 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6))))
+ (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6))
+ (|isDomain| *5 (|Stream| *7)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|))
+ (|isDomain| *2 (|Stream| *8))
+ (|isDomain| *1 (|StreamFunctions3| *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|SparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|isDomain| *1 (|SparseUnivariatePolynomialFunctions2| *5 *6))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014))
- (-4 *4 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962))
- (-4 *6 (-962)) (-13 *7 (-1091)) (-13 *9 *5) (-13 *10 *6)
- (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10))
- (-13 *8 (-1091))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130))
- (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-13 *5 (-1091)) (-4 *6 (-962))
- (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8))
- (-13 *7 (-1091))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6))
- (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962))
- (-4 *6 (-962)) (-13 *7 (-1091)) (-13 *9 *5) (-13 *10 *6)
- (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10))
- (-13 *8 (-1091))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6))
- (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5))
- (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-45)))
+ (AND (|isDomain| *2 (|Mapping| *4 *4 *4))
+ (|ofCategory| *1 (|TableAggregate| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|UnivariateLaurentSeries| *5 *7 *9))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6)
+ (|isDomain| *2 (|UnivariateLaurentSeries| *6 *8 *10))
+ (|isDomain| *1 (|UnivariateLaurentSeriesFunctions2| *5 *6 *7 *8 *9 *10))
+ (|ofType| *8 (|Symbol|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|UniversalSegment| *6))
+ (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|UniversalSegment| *5))
+ (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Stream| *6))
+ (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *8 *6))
+ (|isDomain| *4 (|UnivariatePolynomial| *5 *6)) (|ofType| *5 (|Symbol|))
+ (|ofCategory| *6 (|Ring|)) (|ofCategory| *8 (|Ring|))
+ (|isDomain| *2 (|UnivariatePolynomial| *7 *8))
+ (|isDomain| *1 (|UnivariatePolynomialFunctions2| *5 *6 *7 *8))
+ (|ofType| *7 (|Symbol|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *1 (|UnivariatePolynomialCategoryFunctions2| *5 *4 *6 *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5))
+ (|isDomain| *4 (|UnivariatePuiseuxSeries| *5 *7 *9))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|))
+ (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6)
+ (|isDomain| *2 (|UnivariatePuiseuxSeries| *6 *8 *10))
+ (|isDomain| *1 (|UnivariatePuiseuxSeriesFunctions2| *5 *6 *7 *8 *9 *10))
+ (|ofType| *8 (|Symbol|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *6))
+ (|isDomain| *1 (|UnivariateTaylorSeriesFunctions2| *5 *6 *4 *2))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|VectorFunctions2| *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *6 "failed") *5))
+ (|isDomain| *4 (|Vector| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|VectorFunctions2| *5 *6)))))
+(((*1 *1 *1) (|isDomain| *1 (|AlgebraicNumber|)))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-55 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-56 *5 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2))
+ (|isDomain| *4 (|OneDimensionalArray| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *2))))
((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2006 (-1086 *4)) (|:| |deg| (-831))))
- (-5 *1 (-174 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496))))
+ (AND (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |pol| (|SparseUnivariatePolynomial| *4))
+ (|:| |deg| (|PositiveInteger|))))
+ (|isDomain| *1 (|DegreeReductionPackage| *4 *5))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *5 (|IntegralDomain|))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-196 *5 *6)) (-13 *5 (-695))
- (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-197 *5 *6 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *6 *2))
+ (|isDomain| *4 (|DirectProduct| *5 *6))
+ (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *2))))
((*1 *1 *2 *3)
- (-11 (-4 *4 (-145)) (-5 *1 (-243 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4))
- (-4 *3 (-20)) (-13 *5 (-1 *2 *2 *3)) (-13 *6 (-1 (-3 *3 "failed") *3 *3))
- (-13 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-11 (-5 *1 (-264 *2)) (-4 *2 (-496)) (-4 *2 (-1014))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *1 (|EuclideanModularRing| *4 *2 *3 *5 *6 *7))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *5 (|Mapping| *2 *2 *3))
+ (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *7 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|Expression| *2)) (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *1 *1)
- (-11 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-349 *3))) (-4 *5 (-290 *2 *3 *4))))
+ (AND (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5))
+ (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4))))
((*1 *2 *3 *1 *2 *2)
- (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-69)) (-4 *1 (-317 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *2 (|BasicType|))
+ (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|))))
((*1 *2 *3 *1 *2)
- (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130))))
- ((*1 *2 *3 *1) (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2))
+ (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2))
+ (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *2 *6))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *2))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014))
- (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2))))
- ((*1 *1 *1) (-5 *1 (-435)))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|FiniteSetAggregateFunctions2| *5 *4 *2 *6))
+ (|ofCategory| *4 (|FiniteSetAggregate| *5))
+ (|ofCategory| *6 (|FiniteSetAggregate| *2))))
+ ((*1 *1 *1) (|isDomain| *1 (|InnerAlgebraicNumber|)))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-585 *5 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|List| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|ListFunctions2| *5 *2))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-323 *5))
- (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2))
- (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7))
- (-4 *10 (-628 *2 *8 *9))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *7 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *8 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *2))
+ (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *2 *8 *9 *10))
+ (|ofCategory| *4 (|MatrixCategory| *5 *6 *7))
+ (|ofCategory| *10 (|MatrixCategory| *2 *8 *9))))
((*1 *1 *2 *3)
- (-11 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-11 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModMonic| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *1 *2 *3)
- (-11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| AND (|isDomain| *2 (|Fraction| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|MonogenicAlgebra| *3 *4))))
((*1 *1 *2)
- (|partial| -11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-311))
- (-4 *3 (-145)) (-4 *1 (-662 *3 *4))))
- ((*1 *1 *2) (-11 (-4 *3 (-145)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|MonogenicAlgebra| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-871 *5 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2))
+ (|isDomain| *4 (|PrimitiveArray| *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *2))))
((*1 *1 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-13 *6 (-584 *2))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5))
+ (|ofType| *6 (|List| *2))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-13 *5 (-695))
- (-13 *6 (-695)) (-4 *8 (-195 *6 *7)) (-4 *9 (-195 *5 *7))
- (-4 *10 (-195 *6 *2)) (-4 *11 (-195 *5 *2))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11))))
+ (AND (|isDomain| *3 (|Mapping| *2 *7 *2)) (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *5 (|NonNegativeInteger|))
+ (|ofType| *6 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|DirectProductCategory| *6 *7))
+ (|ofCategory| *9 (|DirectProductCategory| *5 *7))
+ (|ofCategory| *10 (|DirectProductCategory| *6 *2))
+ (|ofCategory| *11 (|DirectProductCategory| *5 *2))
+ (|isDomain| *1
+ (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *2 *10 *11
+ *12))
+ (|ofCategory| *4 (|RectangularMatrixCategory| *5 *6 *7 *8 *9))
+ (|ofCategory| *12 (|RectangularMatrixCategory| *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-1072 *5 *2))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|Stream| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|StreamFunctions2| *5 *2))))
((*1 *2 *2 *1 *3 *4)
- (-11 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-82) *2 *2))
- (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *2 (-978 *5 *6 *7))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2))
+ (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *2))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-1181 *5 *2)))))
+ (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|VectorFunctions2| *5 *2)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-55 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-55 *5)) (-5 *1 (-56 *6 *5))))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5))
+ (|isDomain| *4 (|OneDimensionalArray| *6)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|OneDimensionalArray| *5))
+ (|isDomain| *1 (|OneDimensionalArrayFunctions2| *6 *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-196 *6 *7)) (-13 *6 (-695))
- (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-196 *6 *5))
- (-5 *1 (-197 *6 *7 *5))))
+ (AND (|isDomain| *3 (|Mapping| *5 *7 *5))
+ (|isDomain| *4 (|DirectProduct| *6 *7))
+ (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|Type|))
+ (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|DirectProduct| *6 *5))
+ (|isDomain| *1 (|DirectProductFunctions2| *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-323 *5))
- (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6))))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *5 (|Type|))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *5))
+ (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *6 *4 *5 *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-368 *5))
- (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6))))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *2 (|FiniteSetAggregate| *5))
+ (|isDomain| *1 (|FiniteSetAggregateFunctions2| *6 *4 *5 *2))
+ (|ofCategory| *4 (|FiniteSetAggregate| *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|List| *6))
+ (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|ListFunctions2| *6 *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5))
+ (|isDomain| *4 (|PrimitiveArray| *6)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|PrimitiveArray| *5))
+ (|isDomain| *1 (|PrimitiveArrayFunctions2| *6 *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130))
- (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3))))
+ (AND (|isDomain| *4 (|Mapping| *3 *6 *3)) (|isDomain| *5 (|Stream| *6))
+ (|ofCategory| *6 (|Type|)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Stream| *3))
+ (|isDomain| *1 (|StreamFunctions2| *6 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-22))) ((*1 *1 *1 *1) (-5 *1 (-127)))
+ (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|Vector| *6))
+ (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|Vector| *5))
+ (|isDomain| *1 (|VectorFunctions2| *6 *5)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Vector| *3)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|AbelianSemiGroup|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|Color|)))
((*1 *1 *1 *1)
- (-11 (-5 *1 (-166 *2))
- (-4 *2
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $))
- (-14 -1965 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-22)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-22)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-273 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-101))))
+ (AND (|isDomain| *1 (|Database| *2))
+ (|ofCategory| *2
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| ((|Void|) $))
+ (SIGNATURE |fullDisplay| ((|Void|) $)))))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianSemiGroup|))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *2 *1)
- (-11 (-4 *3 (-12 (-311) (-117))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1156 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianSemiGroup|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3))
+ (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *3 (|CancellationAbelianMonoid|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|FullPartialFractionExpansion| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|InputForm|)))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *1 (|TubePlotTools|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-22)))))
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|AbelianSemiGroup|)))))
(((*1 *1 *2 *2)
- (-11 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-20)) (-4 *3 (-1130)))))
-(((*1 *1 *1 *1) (-4 *1 (-18))) ((*1 *1 *1) (-4 *1 (-18)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-104)))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|VectorCategory| *3))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofCategory| *3 (|Type|)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|AbelianGroup|)))
+ ((*1 *1 *1) (|ofCategory| *1 (|AbelianGroup|)))
+ ((*1 *1 *1 *1) (|partial| |isDomain| *1 (|CardinalNumber|)))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|Database| *2))
+ (|ofCategory| *2
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| ((|Void|) $))
+ (SIGNATURE |fullDisplay| ((|Void|) $)))))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianGroup|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianGroup|))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *1 *1)
- (-11 (-5 *1 (-166 *2))
- (-4 *2
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $))
- (-14 -1965 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
- ((*1 *1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
((*1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *1 (|TubePlotTools|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
- ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-18))))
- ((*1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-18)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-195 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-178)) (-5 *1 (-1127))))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|AbelianGroup|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|AbelianGroup|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-894 *2)) (-4 *2 (-962))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130))))
+ (AND (|ofCategory| *1 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|Point| (|DoubleFloat|)))
+ (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|TubePlotTools|))))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Matrix| *3)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|PointCategory| *2)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *1 (|TubePlotTools|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|LyndonWord| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Magma| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Tuple| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-227 *2)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *2)
- (|partial| -11 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-13 *3 (-584 *2))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-903))))
+ (|partial| AND (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|OrderedVariableList| *3)) (|ofType| *3 (|List| *2))))
((*1 *2 *1)
- (-11 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4))
- (-4 *3 (-1007 *4))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|QueryEquation|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091))))
- ((*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-13 *3 *2))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-349 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962))
- (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6)))
- (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))))
+ (AND (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|RangeBinding| *3 *4))
+ (|ofCategory| *3 (|SegmentCategory| *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|SegmentBinding| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Symbol|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Variable| *3))
+ (|ofType| *3 *2))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Fraction| *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))
+ (|isDomain| *1 (|UTSodetools| *4 *5 *6 *2))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Mapping| *6 (|List| *6)))
+ (|isDomain| *1 (|UTSodetools| *4 *5 *3 *6))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *6 (|UnivariateTaylorSeriesCategory| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5))
- (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4))
- (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|UTSodetools| *5 *2 *6 *3))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))
+ (|isDomain| *1 (|UTSodetools| *4 *3 *5 *2))
+ (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *3)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6))))
- (-4 *5 (-35 (-349 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6))
- (-5 *1 (-1174 *5 *6)))))
+ (AND (|isDomain| *3 (|List| *5))
+ (|isDomain| *4 (|List| (|Mapping| *6 (|List| *6))))
+ (|ofCategory| *5 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *6 (|UnivariateTaylorSeriesCategory| *5))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *5 *6)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-35 (-349 (-485))))
- (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))))
+ (AND (|isDomain| *3 (|Mapping| *2 (|List| *2))) (|isDomain| *4 (|List| *5))
+ (|ofCategory| *5 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *5 *2)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-35 (-349 (-485)))))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *2))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-35 (-349 (-485)))))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *2))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))))))
(((*1 *2 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485))))
- (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485))))
- (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-35 (-349 (-485))))
- (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4)))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *5 (|List| *5)))
+ (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Mapping| (|Stream| *4) (|List| (|Stream| *4))))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *5 *5 *5))
+ (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Mapping| (|Stream| *4) (|Stream| *4) (|Stream| *4)))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *5 *5))
+ (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Mapping| (|Stream| *4) (|Stream| *4)))
+ (|isDomain| *1 (|UnivariateTaylorSeriesODESolver| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-349 (-485))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *5 *3))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-248 *3)) (-5 *5 (-349 (-485)))
- (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *6 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 (-485))) (-5 *4 (-248 *6))
- (-4 *6 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *5 *6))))
+ (AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|Fraction| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *6 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 (|Integer|)))
+ (|isDomain| *4 (|Equation| *6))
+ (|ofCategory| *6
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *6 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-485)))
- (-4 *7 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *6 *7))))
+ (AND (|isDomain| *3 (|Mapping| *7 (|Integer|)))
+ (|isDomain| *4 (|Equation| *7))
+ (|isDomain| *5 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-485)))
- (-4 *3 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *7 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-1 *8 (-349 (-485)))) (-5 *4 (-248 *8))
- (-5 *5 (-1147 (-349 (-485)))) (-5 *6 (-349 (-485)))
- (-4 *8 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *7 *8))))
+ (AND (|isDomain| *3 (|Mapping| *8 #1=(|Fraction| (|Integer|))))
+ (|isDomain| *4 (|Equation| *8)) (|isDomain| *5 (|UniversalSegment| #1#))
+ (|isDomain| *6 (|Fraction| (|Integer|)))
+ (|ofCategory| *8
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-349 (-485))))
- (-5 *7 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *8)))
- (-4 *8 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *8 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|UniversalSegment| (|Fraction| (|Integer|))))
+ (|isDomain| *7 (|Fraction| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *8)))
+ (|ofCategory| *8
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *8 *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3))))
+ (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
- (-5 *1 (-531 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|InnerTaylorSeries| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
- (-4 *1 (-1142 *3))))
+ (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3))))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-349 (-485))) (|:| |c| *4))))
- (-4 *4 (-962)) (-4 *1 (-1163 *4))))
- ((*1 *1 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *3
+ (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| *4))))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *4))))
((*1 *1 *2)
- (-11 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962))
- (-4 *1 (-1173 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3))))
+ ((*1 *1 *2)
+ (AND
+ (|isDomain| *2
+ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| *3))))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3))))
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|List| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *3))))
((*1 *2 *1)
- (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InnerTaylorSeries| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
- ((*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))))
-(((*1 *1 *1) (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Stream| *3)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 (|Integer|))) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 (|Integer|)))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 (|Integer|)))
+ (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
- (-5 *2 (-858 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|Polynomial| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
- (-5 *2 (-858 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|Polynomial| *4))))
((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-349 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496))
- (-5 *1 (-29 *4 *2)) (-4 *2 (-363 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-104)))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-178)))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-200)) (-5 *2 (-485))))
+ (AND (|isDomain| *3 (|Fraction| (|Integer|)))
+ (|ofCategory| *4 (|RetractableTo| (|Integer|)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicFunction| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|CardinalNumber|)))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|DivisionRing|)) (|isDomain| *2 (|Integer|))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-349 (-485))) (-4 *4 (-311)) (-4 *4 (-35 *3)) (-4 *5 (-1173 *4))
- (-5 *1 (-231 *4 *5 *2)) (-4 *2 (-1144 *4 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *4 (|Algebra| *3))
+ (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *4 *5 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *4 *5))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-349 (-485))) (-4 *4 (-311)) (-4 *4 (-35 *3)) (-4 *5 (-1142 *4))
- (-5 *1 (-232 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-238)))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-309 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *1) (-5 *1 (-329)))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-335 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-4 *3 (-1026))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-413)) (-5 *2 (-485))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *4 (|Algebra| *3))
+ (|ofCategory| *5 (|UnivariateLaurentSeriesCategory| *4))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *4 *5 *2 *6))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *4 *5))
+ (|ofCategory| *6 (|PartialTranscendentalFunctions| *5))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|)))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|FreeGroup| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|Float|)))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *3 (|SemiGroup|))))
+ ((*1 *1 *1 *2) (AND (|ofCategory| *1 (|Group|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-298)) (-5 *1 (-467 *4))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-474))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-474))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InputForm|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InputForm|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|MappingPackage1| *4))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-311))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Field|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))
+ (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *4))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3))))
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|ModuleOperator| *3 *4))
+ (|ofCategory| *4 (|LeftModule| *3))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5))
- (-4 *5 (-591 *4))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-664)) (-5 *2 (-695))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *4 *5))
+ (|ofCategory| *5 (|LeftModule| *4))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|MonadWithUnit|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Operator| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-916)) (-5 *2 (-349 (-485)))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1026)) (-5 *2 (-831))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962))
- (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)) (-4 *4 (-311))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|Operator| *4)) (|ofCategory| *4 (|Ring|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RadicalCategory|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *6))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *6 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *4 (|Field|))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-12 (-1116) (-872) (-26 *5)))
- (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3)))
- (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
- (-5 *1 (-172 *5 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| *3)))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| *3))
+ (|:| |f2| (|List| (|OrderedCompletion| *3)))
+ (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
+ (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *5 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074))
- (-4 *3 (-12 (-1116) (-872) (-26 *6)))
- (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#)
- (|:| |pole| #2#)))
- (-5 *1 (-172 *6 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1005 (-751 (-264 *5))))
- (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5))))
- (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
- (-5 *1 (-173 *5))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| *3)))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| *3))
+ (|:| |f2| (|List| (|OrderedCompletion| *3))) (|:| |fail| #1#)
+ (|:| |pole| #2#)))
+ (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *6 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4
+ (|SegmentBinding| (|OrderedCompletion| (|Expression| *5))))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *5)))
+ (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *5))))
+ (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
+ (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-349 (-858 *6))) (-5 *4 (-1005 (-751 (-264 *6))))
- (-5 *5 (-1074)) (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-173 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1005 (-751 (-349 (-858 *5))))) (-5 *3 (-349 (-858 *5)))
- (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-173 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|isDomain| *4
+ (|SegmentBinding| (|OrderedCompletion| (|Expression| *6))))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *6)))
+ (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *6))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *4
+ (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *5)))
+ (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *5))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1005 (-751 (-349 (-858 *6))))) (-5 *5 (-1074))
- (-5 *3 (-349 (-858 *6)))
- (-4 *6 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6))))
- (|:| |fail| #3#) (|:| |pole| #4#)))
- (-5 *1 (-173 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-372 *5 *3))
- (-4 *3 (-12 (-1116) (-872) (-26 *5)))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-414 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-520 (-349 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-349 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-117))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-526 *5))))
+ (AND
+ (|isDomain| *4
+ (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| *6)))))
+ (|isDomain| *5 (|String|)) (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *6)))
+ (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Union| *3 (|List| *3)))
+ (|isDomain| *1 (|FunctionSpaceIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *5)))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|IntegrationResult| (|Fraction| *5)))
+ (|isDomain| *1 (|RationalIntegration| *4 *5))
+ (|isDomain| *3 (|Fraction| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|CharacteristicZero|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Union| (|Expression| *5) (|List| (|Expression| *5))))
+ (|isDomain| *1 (|IntegrationResultRFToFunction| *5))))
((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))
- (-4 *3 (-35 (-349 (-485))))))
+ (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-35 (-349 (-485))))
- (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Polynomial| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2 *3)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-4 *2 (-757))
- (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *2 *4))
+ (|ofCategory| *4 (|PolynomialCategory| *3 (|IndexedExponents| *2) *2))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962))
- (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|SparseUnivariateLaurentSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|SparseUnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-35 (-349 (-485))))
- (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|UnivariateLaurentSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2)
(OR
- (-11 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962))
- (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-35 (-349 (-485))))))
- (-11 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962))
- (-11 (|has| *3 (-14 -3084 ((-584 *2) *3)))
- (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485))))))))
+ (AND #5=(|isDomain| *2 (|Symbol|))
+ #6=(|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *3))
+ #7=(|ofCategory| *3 (|Ring|))
+ (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|)))
+ (|ofCategory| *3 (|PrimitiveFunctionCategory|))
+ (|ofCategory| *3 (|TranscendentalFunctionCategory|))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))
+ (AND #5# #6# #7#
+ (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3)))
+ (|has| *3 (SIGNATURE |integrate| (*3 *3 *2)))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))))
((*1 *1 *1)
- (-11 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485))))))
+ (AND (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))))
((*1 *1 *1)
- (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485))))))
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|UnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2)
(OR
- (-11 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962))
- (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-35 (-349 (-485))))))
- (-11 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962))
- (-11 (|has| *3 (-14 -3084 ((-584 *2) *3)))
- (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485))))))))
+ (AND #8=(|isDomain| *2 (|Symbol|))
+ #9=(|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *3))
+ #10=(|ofCategory| *3 (|Ring|))
+ (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|)))
+ (|ofCategory| *3 (|PrimitiveFunctionCategory|))
+ (|ofCategory| *3 (|TranscendentalFunctionCategory|))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))
+ (AND #8# #9# #10#
+ (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3)))
+ (|has| *3 (SIGNATURE |integrate| (*3 *3 *2)))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))))
((*1 *1 *1)
- (-11 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485))))))
+ (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1177 *4)) (-13 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)) (-13 *5 *3)))
+ (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))
((*1 *1 *1 *2)
(OR
- (-11 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962))
- (-11 (-4 *3 (-26 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-35 (-349 (-485))))))
- (-11 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962))
- (-11 (|has| *3 (-14 -3084 ((-584 *2) *3)))
- (|has| *3 (-14 -3815 (*3 *3 *2))) (-4 *3 (-35 (-349 (-485))))))))
+ (AND #11=(|isDomain| *2 (|Symbol|))
+ #12=(|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3))
+ #13=(|ofCategory| *3 (|Ring|))
+ (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|)))
+ (|ofCategory| *3 (|PrimitiveFunctionCategory|))
+ (|ofCategory| *3 (|TranscendentalFunctionCategory|))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))
+ (AND #11# #12# #13#
+ (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3)))
+ (|has| *3 (SIGNATURE |integrate| (*3 *3 *2)))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))))
((*1 *1 *1)
- (-11 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-35 (-349 (-485)))))))
+ (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6))
- (-4 *4 (-962)) (-13 *5 (-1091)) (-13 *6 *4)))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|UnivariatePolynomial| *5 *4))
+ (|isDomain| *1 (|SparseUnivariateTaylorSeries| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4)))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6))
- (-4 *4 (-962)) (-13 *5 (-1091)) (-13 *6 *4))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|UnivariatePolynomial| *5 *4))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))))
+ (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))))
((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091))
- (-13 *5 *3))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-13 *3 (-1091)) (-13 *4 *2))))
+ (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))))
(((*1 *2 *3 *3 *2)
- (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))))
((*1 *1 *2 *2 *1)
- (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091))
- (-13 *5 *3))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))))
(((*1 *2 *3 *3 *2)
- (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))))
((*1 *1 *2 *2 *1)
- (-11 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-1091))
- (-13 *5 *3))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4))
- (-4 *4 (-1130))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-539 *3 *2)) (-4 *3 (-69)) (-4 *3 (-757)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-11 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *2 *1)
- (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|LinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4))
+ (|isDomain| *1 (|StreamFunctions1| *4)) (|ofCategory| *4 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IndexedAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|OrderedFreeMonoid| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|Pair| *2 *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|LyndonWord| *3))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *2 *1 *3 *3 *2)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5))
+ (|ofCategory| *2 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))))
((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 "right") (-4 *1 (-89 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 "left") (-4 *1 (-89 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 "right")
+ (|ofCategory| *1 (|BinaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 "left") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 (-485))) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2))
- (-13 *4 (-485)) (-13 *5 (-695))))
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 (|Integer|))
+ (|ofType| *5 (|NonNegativeInteger|))))
((*1 *2 *1 *3 *3 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3)
- (-13 *5 (-695))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3)
+ (|ofType| *5 (|NonNegativeInteger|))))
((*1 *2 *1 *3 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3)
- (-13 *5 (-695))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3)
+ (|ofType| *5 (|NonNegativeInteger|))))
((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-145)) (-5 *1 (-105 *4 *5 *2)) (-13 *4 *3)
- (-13 *5 (-695))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-145)) (-5 *1 (-105 *3 *4 *2)) (-13 *3 (-485)) (-13 *4 (-695))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-202 (-1074))) (-5 *1 (-166 *4))
- (-4 *4
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ *3)) (-14 -3620 ((-1186) $))
- (-14 -1965 ((-1186) $)))))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-903)) (-5 *1 (-166 *3))
- (-4 *3
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 ((-1186) $))
- (-14 -1965 ((-1186) $)))))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-202 *4)) (-4 *4 (-757))))
- ((*1 *1 *1 *2) (-11 (-5 *2 "sort") (-5 *1 (-202 *3)) (-4 *3 (-757))))
- ((*1 *1 *1 *2) (-11 (-5 *2 "unique") (-5 *1 (-202 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-240 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3 *2) (-11 (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 *1)) (-4 *1 (-253))))
- ((*1 *1 *2 *1 *1 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
- ((*1 *1 *2 *1 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
- ((*1 *1 *2 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3)
+ (|ofType| *5 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *3 *4 *2)) (|ofType| *3 (|Integer|))
+ (|ofType| *4 (|NonNegativeInteger|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|DataList| (|String|)))
+ (|isDomain| *1 (|Database| *4))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ *3))
+ (SIGNATURE |display| ((|Void|) $))
+ (SIGNATURE |fullDisplay| ((|Void|) $)))))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|QueryEquation|)) (|isDomain| *1 (|Database| *3))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| ((|Void|) $))
+ (SIGNATURE |fullDisplay| ((|Void|) $)))))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 "count") (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DataList| *4)) (|ofCategory| *4 (|OrderedSet|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 "sort") (|isDomain| *1 (|DataList| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 "unique") (|isDomain| *1 (|DataList| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|Eltable| *3 *2)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1 *3 *2)
+ (AND (|ofCategory| *1 (|EltableAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
+ ((*1 *1 *2 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
+ ((*1 *1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
((*1 *2 *1 *2 *2)
- (-11 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-349 *3)))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4))
+ (|ofCategory| *2 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|IndexCard|))))
((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4))
- (-4 *4 (-1014))))
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *3 (|List| (|Pattern| *4))) (|isDomain| *1 (|Pattern| *4))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Permutation| *4))
+ (|isDomain| *1 (|PermutationGroup| *4))
+ (|ofCategory| *4 (|SetCategory|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1 *3) (-11 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 "value") (|ofCategory| *1 (|RecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
((*1 *2 *1 *3 *3 *2)
- (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962))
- (-4 *6 (-195 *5 *2)) (-4 *7 (-195 *4 *2))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *5 *2))
+ (|ofCategory| *7 (|DirectProductCategory| *4 *2))))
((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2))
- (-4 *7 (-195 *4 *2)) (-4 *2 (-962))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7))
+ (|ofCategory| *6 (|DirectProductCategory| *5 *2))
+ (|ofCategory| *7 (|DirectProductCategory| *4 *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *2 *1 *2 *3)
- (-11 (-5 *3 (-831)) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
- (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4))))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|RewriteRule| *4 *5 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))))
((*1 *2 *1 *2 *3)
- (-11 (-5 *3 (-831)) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2))
- (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1059)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|Ruleset| *4 *5 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|StringAggregate|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|))))
((*1 *2 *3 *2)
- (-11 (-5 *3 (-349 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
+ (AND (|isDomain| *3 (|Fraction| *1))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-349 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496))))
- ((*1 *2 *1 *3) (-11 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1 *3) (-11 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757))))
+ (AND (|isDomain| *2 (|Fraction| *1))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 "last") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 "rest") (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 "first") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|OrderedFreeMonoid| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1)
- (|partial| -11 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718))
- (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1009))))
- ((*1 *2 *1)
- (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
- ((*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(((*1 *1 *1) (-11 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|SequenceAst|))))
+ ((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|Pair| *3 *2))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *2 *1 *3 *3 *2)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5))
+ (|ofCategory| *2 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))))
((*1 *1 *1 *2 *1)
- (-11 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-89 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 "right")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|BinaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *1 *1 *2 *1)
- (-11 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-89 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 "left")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|BinaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1 *3 *2)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|EltableAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|))))
((*1 *2 *1 *3 *2)
- (-11 (-4 *1 (-1036 *2)) (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3 *2) (-11 (-5 *2 (-48)) (-5 *3 (-1091)) (-5 *1 (-572))))
+ (AND (|isDomain| *2 (|Any|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|Library|))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *3 (-1147 (-485))) (-4 *1 (-1036 *2)) (-4 *1 (-594 *2))
- (-4 *2 (-1130))))
+ (AND (|isDomain| *3 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|LinearAggregate| *2)) (|ofCategory| *2 (|Type|))))
((*1 *1 *1 *2 *2 *1)
- (-11 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 "value")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 "last")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *1 *2 *1)
- (-11 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 "rest")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *3 "first")
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Stream| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|UnaryRecursiveAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6))
- (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4)))
+ (|partial| AND
+ (|ofCategory| *3
+ (|Join| (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|GcdDomain|)))
+ (|isDomain| *2 (|OrderedCompletion| *4))
+ (|isDomain| *1 (|ExponentialExpansion| *3 *4 *5 *6))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))
+ (|ofType| *5 (|Symbol|)) (|ofType| *6 *4)))
((*1 *2 *1)
- (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6))
- (-4 *4 (-12 (-24) (-1116) (-363 *3))) (-13 *5 (-1091)) (-13 *6 *4))))
+ (|partial| AND
+ (|ofCategory| *3
+ (|Join| (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|GcdDomain|)))
+ (|isDomain| *2 (|OrderedCompletion| *4))
+ (|isDomain| *1
+ (|UnivariatePuiseuxSeriesWithExponentialSingularity| *3 *4 *5 *6))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))
+ (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))))
(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-12 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *2
- (-2
+ (|partial| AND
+ (|ofCategory| *3
+ (|Join| (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|GcdDomain|)))
+ (|isDomain| *2
+ (|Record|
(|:| |%term|
- (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6))
- (|:| |%expTerms| (-584 (-2 (|:| |k| (-349 (-485))) (|:| |c| *4))))))
- (|:| |%type| (-1074))))
- (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-12 (-24) (-1116) (-363 *3)))
- (-13 *5 (-1091)) (-13 *6 *4))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4)))))
+ (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| *4 *5 *6))
+ (|:| |%expon|
+ (|ExponentialOfUnivariatePuiseuxSeries| *4 *5 *6))
+ (|:| |%expTerms|
+ (|List|
+ (|Record| (|:| |k| (|Fraction| (|Integer|)))
+ (|:| |c| *4))))))
+ (|:| |%type| (|String|))))
+ (|isDomain| *1
+ (|UnivariatePuiseuxSeriesWithExponentialSingularity| *3 *4 *5 *6))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))
+ (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-349 (-485))) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *5 *3))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-248 *3)) (-5 *5 (-349 (-485)))
- (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *6 *3))))
+ (AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|Fraction| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-1 *8 (-349 (-485)))) (-5 *4 (-248 *8))
- (-5 *5 (-1147 (-349 (-485)))) (-5 *6 (-349 (-485)))
- (-4 *8 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *7 *8))))
+ (AND (|isDomain| *3 (|Mapping| *8 #1=(|Fraction| (|Integer|))))
+ (|isDomain| *4 (|Equation| *8)) (|isDomain| *5 (|UniversalSegment| #1#))
+ (|isDomain| *6 (|Fraction| (|Integer|)))
+ (|ofCategory| *8
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-349 (-485))))
- (-5 *7 (-349 (-485))) (-4 *3 (-12 (-24) (-1116) (-363 *8)))
- (-4 *8 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *8 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|UniversalSegment| (|Fraction| (|Integer|))))
+ (|isDomain| *7 (|Fraction| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *8)))
+ (|ofCategory| *8
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *8 *3))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-349 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3))
- (-4 *3 (-1142 *4)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *4 *3))
+ (|ofCategory| *3 (|UnivariateLaurentSeriesCategory| *4)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3))
- (-5 *2 (-349 (-485))))))
-(((*1 *2 *1) (-11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4)))))
+ (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *2 (|Fraction| (|Integer|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-4 *5 (-12 (-392) (-951 *4) (-581 *4))) (-5 *2 (-48))
- (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *5 *3))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Integer|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| *4)
+ (|LinearlyExplicitRingOver| *4)))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-48))
- (-5 *1 (-266 *6 *3))))
+ (AND (|isDomain| *4 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| *5)
+ (|LinearlyExplicitRingOver| *5)))
+ (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *6 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-485)))
- (-4 *7 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *6 *7))))
+ (AND (|isDomain| *3 (|Mapping| *7 (|Integer|)))
+ (|isDomain| *4 (|Equation| *7))
+ (|isDomain| *5 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-485)))
- (-4 *3 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *7 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *3))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *4 *3))
+ (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))))
(((*1 *2 *1)
- (|partial| -11 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))
+ (|partial| AND
+ (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|ofCategory| *1 (|UnivariatePuiseuxSeriesCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *2)
- (-11
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-485))))
- (-4 *4 (-12 (-1156 *3) (-496) (-10 -8 (-14 -3147 ($ $ $))))) (-4 *3 (-496))
- (-5 *1 (-1160 *3 *4)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime"))
+ (|:| |fctr| *4) (|:| |xpnt| (|Integer|))))
+ (|ofCategory| *4
+ (|Join| (|UnivariatePolynomialCategory| *3) (|IntegralDomain|)
+ (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)))))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|UnivariatePolynomialSquareFree| *3 *4)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|))))
((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1135)))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *1))))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|UniqueFactorizationDomain|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2))
- (-4 *2 (-12 (-1156 *3) (-496) (-10 -8 (-14 -3147 ($ $ $))))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|UnivariatePolynomialSquareFree| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|UnivariatePolynomialCategory| *3)
+ (|IntegralDomain|)
+ (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $))))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101))
- (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4))))))
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|CancellationAbelianMonoid|))
+ (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4))))))
((*1 *2 *1)
- (-11 (-4 *1 (-450 *3 *4)) (-4 *3 (-69)) (-4 *4 (-760))
- (-5 *2 (-584 (-454 *3 *4)))))
+ (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *4))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|OrderedType|))
+ (|isDomain| *2 (|List| (|IndexedProductTerm| *3 *4)))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| -3958 *3) (|:| -3942 *4)))) (-5 *1 (-675 *3 *4))
- (-4 *3 (-962)) (-4 *4 (-664))))
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |coef| *3) (|:| |monom| *4))))
+ (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|Monoid|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
- (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-198))))
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Stream| (|Record| (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|DisplayPackage|))))
((*1 *2 *2 *3 *4)
- (-11 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-198))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-11 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1 *3)
- (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-227 *3)) (-4 *3 (-757)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-831))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-12 (-319) (-311)))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-4 *7 (-290 *4 *5 *6))
- (-5 *2 (-695)) (-5 *1 (-340 *4 *5 *6 *7))))
- ((*1 *2 *1) (-11 (-4 *1 (-344)) (-5 *2 (-744 (-831)))))
- ((*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *3 (|Integer|))
+ (|isDomain| *4 (|String|)) (|isDomain| *1 (|DisplayPackage|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|FiniteDivisor| *4 *5 *6 *7))
+ (|ofCategory| *4 (|Join| (|Finite|) (|Field|)))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|ofCategory| *7 (|FunctionFieldCategory| *4 *5 *6))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FindOrderFinite| *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))
+ (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|LaurentPolynomial| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-695))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ (|partial| AND (|isDomain| *3 (|FiniteDivisor| *5 *6 *7 *8))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|PointsOfFiniteOrder| *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6))
- (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-1156 (-349 *4)))
- (-4 *6 (-290 (-349 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))
+ (|partial| AND
+ (|isDomain| *3 (|FiniteDivisor| (|Fraction| (|Integer|)) *4 *5 *6))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| (|Fraction| (|Integer|)) *4 *5))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|PointsOfFiniteOrderRational| *4 *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311))
- (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-349 *7))) (-4 *8 (-290 *6 *7 *4))
- (-4 *9 (-12 (-319) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))
+ (AND (|isDomain| *3 (|FiniteDivisor| *6 *7 *4 *8))
+ (|isDomain| *5 (|Mapping| *9 *6)) (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *7)))
+ (|ofCategory| *8 (|FunctionFieldCategory| *6 *7 *4))
+ (|ofCategory| *9 (|Join| (|Finite|) (|Field|)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ReducedDivisor| *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695))))
- ((*1 *2 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *2 *1) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
-(((*1 *1 *1) (-4 *1 (-974)))
- ((*1 *1 *1 *2 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))))
+(((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|)))
+ ((*1 *1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-87 *4)) (-13 *4 *3) (-5 *3 (-485))))
- ((*1 *2 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|BalancedPAdicRational| *4)) (|ofType| *4 *3)
+ (|isDomain| *3 (|Integer|))))
+ ((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1 *3)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-781 *4)) (-13 *4 *3) (-5 *3 (-485))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|PAdicRational| *4)) (|ofType| *4 *3)
+ (|isDomain| *3 (|Integer|))))
((*1 *2 *1 *3)
- (-11 (-13 *4 *3) (-5 *2 (-349 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485))
- (-4 *5 (-780 *4))))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-926)) (-5 *2 (-349 (-485)))))
+ (AND (|ofType| *4 *3) (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|PAdicRationalConstructor| *4 *5))
+ (|isDomain| *3 (|Integer|))
+ (|ofCategory| *5 (|PAdicIntegerCategory| *4))))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|RealClosedField|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *3 *1 *2)
- (-11 (-4 *1 (-981 *2 *3)) (-4 *2 (-12 (-756) (-311))) (-4 *3 (-1156 *2))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *2 *3))
+ (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-14 ** (*2 *2 *3)))
- (|has| *2 (-14 -3950 (*2 (-1091)))) (-4 *2 (-962)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-147 *3)) (-4 *3 (-257))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|has| *2 (SIGNATURE ** (*2 *2 *3)))
+ (|has| *2 (SIGNATURE |coerce| (*2 (|Symbol|))))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LazyStreamAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Integer|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PointCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-349 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *1 (-118 *4 *5 *2)) (-4 *2 (-1156 *3))))
+ (AND (|isDomain| *3 (|Fraction| *5))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|ChangeOfVariable| *4 *5 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-1093 (-349 (-485)))) (-5 *2 (-349 (-485))) (-5 *1 (-163))))
+ (AND (|isDomain| *3 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|CycleIndicators|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1014))
- (-4 *3 (-1130)) (-5 *1 (-248 *3))))
+ (AND (|isDomain| *2 (|List| (|Equation| *3)))
+ (|ofCategory| *3 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Equation| *3))))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-259 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-248 *2))))
- ((*1 *1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253))))
+ (AND (|ofCategory| *2 (|Evalable| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|Equation| *2))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *1 *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *3 (|Mapping| *1 (|List| *1)))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|List| (|BasicOperator|)))
+ (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1))))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253))))
- ((*1 *1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|List| (|BasicOperator|)))
+ (|isDomain| *3 (|List| (|Mapping| *1 *1)))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 (|List| *1)))
+ (|ofCategory| *1 (|ExpressionSpace|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253))))
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1))))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *3 (|List| (|Mapping| *1 *1)))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Equation| *3)))
+ (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Equation| *3)) (|ofCategory| *1 (|Evalable| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-349 (-485)))) (-5 *1 (-260 *2))
- (-4 *2 (-35 (-349 (-485))))))
+ (AND (|isDomain| *3 (|Mapping| *2 (|Integer|)))
+ (|isDomain| *4 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|EvaluateCycleIndicators| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-757))
- (-4 *5 (-145))))
- ((*1 *1 *1 *2 *1) (-11 (-4 *1 (-325 *2 *3)) (-4 *2 (-757)) (-4 *3 (-145))))
+ (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|FreeLieAlgebra| *4 *5))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|CommutativeRing|))))
+ ((*1 *1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5))
- (-4 *5 (-1014)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|Mapping| *1 *1)) (|ofCategory| *1 (|FunctionSpace| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1)))
- (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|Mapping| *1 (|List| *1)))
+ (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695)))
- (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1014))
- (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *4 (|List| (|Mapping| *1 (|List| *1))))
+ (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1)))
- (-4 *1 (-363 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *4 (|List| (|Mapping| *1 *1)))
+ (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-83))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-363 *5))
- (-4 *5 (-1014)) (-4 *5 (-554 (-474)))))
+ (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| *1))
+ (|isDomain| *4 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *5))
+ (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *5 (|ConvertibleTo| (|InputForm|)))))
((*1 *1 *1 *2 *1 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-1091)) (-4 *1 (-363 *4)) (-4 *4 (-1014))
- (-4 *4 (-554 (-474)))))
- ((*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474)))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *4 (|ConvertibleTo| (|InputForm|)))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|ConvertibleTo| (|InputForm|)))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-1091))) (-4 *1 (-363 *3)) (-4 *3 (-1014))
- (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014))
- (-4 *3 (-554 (-474)))))
- ((*1 *1 *1 *2 *3) (-11 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|ofCategory| *1 (|InnerEvalable| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|Type|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1130))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3))))
- ((*1 *2 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *5))
+ (|ofCategory| *1 (|InnerEvalable| *4 *5))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|OnePointCompletion| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|MoebiusTransform| *3))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2 *3 *2)
- (-11 (-5 *2 (-349 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496))
- (-5 *1 (-953 *4))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *4)))
+ (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|RationalFunction| *4))))
((*1 *2 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-349 (-858 *5))))
- (-5 *2 (-349 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5))))
+ (AND (|isDomain| *3 (|List| (|Symbol|)))
+ (|isDomain| *4 (|List| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *5)))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|RationalFunction| *5))))
+ ((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4))))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|RationalFunction| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-248 (-349 (-858 *4)))) (-5 *2 (-349 (-858 *4))) (-4 *4 (-496))
- (-5 *1 (-953 *4))))
+ (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|RationalFunction| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-248 (-349 (-858 *4))))) (-5 *2 (-349 (-858 *4)))
- (-4 *4 (-496)) (-5 *1 (-953 *4))))
- ((*1 *2 *2 *3) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
- (|has| *3 (-14 ** (*3 *3 *4))) (-5 *2 (-1070 *3)))))
+ (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|has| *3 (SIGNATURE ** (*3 *3 *4))) (|isDomain| *2 (|Stream| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Vector| *4)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))))
(((*1 *1 *1 *2)
- (|partial| -11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
+ (|partial| AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *1 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-862 *4 *5 *3))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-1156 *4)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-185 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-188)) (-5 *2 (-695))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialDomain| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|DifferentialSpace|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-224 *4)) (-4 *4 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|DifferentialSpaceExtension| *4))
+ (|ofCategory| *4 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|DifferentialSpaceExtension| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *4 *4))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *2 (|PartialDifferentialRing| *3))
+ (|isDomain| *1 (|IntegrationResult| *2)) (|isDomain| *3 (|Symbol|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Mapping| *2 *2))
+ (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|))))
((*1 *2 *1 *3)
- (-11 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))
+ (AND (|ofCategory| *1 (|PartialDifferentialDomain| *2 *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|List| *4))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *4))
+ (|ofCategory| *4 (|BasicType|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
- (-4 *4 (-69))))
- ((*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-69))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-69))))
- ((*1 *1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
-(((*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-137 *3 *2)) (-4 *3 (-138 *2))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1156 *2))
- (-4 *2 (-145))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *2))
+ (|ofCategory| *2 (|BasicType|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *3))
+ (|ofCategory| *3 (|BasicType|))))
+ ((*1 *1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *2)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|ComplexCategory&| *3 *2))
+ (|ofCategory| *3 (|ComplexCategory| *2))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *2 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|FramedAlgebra&| *3 *2 *4))
+ (|ofCategory| *3 (|FramedAlgebra| *2 *4))))
((*1 *2)
- (-11 (-4 *4 (-1156 *2)) (-4 *2 (-145)) (-5 *1 (-351 *3 *2 *4))
- (-4 *3 (-352 *2 *4))))
- ((*1 *2) (-11 (-4 *1 (-352 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145))))
+ (AND (|ofCategory| *1 (|FramedAlgebra| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2)
- (-11 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4))
- (-4 *4 (-352 *2 *3))))
+ (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|NumberFieldIntegralBasis| *3 *4))
+ (|ofCategory| *4 (|FramedAlgebra| *2 *3))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *3 (-145))))
- ((*1 *2 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *2 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-145)))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|CommutativeRing|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *3 (-145))))
- ((*1 *2 *3 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|))))
+ ((*1 *2 *3 *3)
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-145)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *2 *1)
- (|partial| -11 (-5 *2 (-349 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962))
- (-4 *3 (-496))))
+ (|partial| AND (|isDomain| *2 (|Fraction| *1))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|IntegralDomain|))))
((*1 *1 *1 *1)
- (|partial| -11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
+ (|partial| AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3958 *4) (|:| -1974 *3) (|:| -2905 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *4) (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-978 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| -3958 *3) (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-4 *4 (-496)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -1767 (-563 *4 *5)) (|:| -1766 (-349 *5))))
- (-5 *1 (-563 *4 *5)) (-5 *3 (-349 *5))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *3) (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |polyPart| (|LaurentPolynomial| *4 *5))
+ (|:| |fracPart| (|Fraction| *5))))
+ (|isDomain| *1 (|LaurentPolynomial| *4 *5))
+ (|isDomain| *3 (|Fraction| *5))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-962))))
+ (AND (|isDomain| *2 (|List| (|SubSpace| *3 *4)))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-392)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (|ofCategory| *1 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *2 *2 *3 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|UnivariatePolynomialMultiplicationPackage| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|UnivariatePolynomialMultiplicationPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|UnivariatePolynomialMultiplicationPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *3 *3)
- (|partial| -11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3)))
- (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-117))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *4 (-12 (-496) (-117)))
- (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (|partial| AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|UnivariatePolynomialDivisionPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (|partial| AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Record| (|:| |left| *3) (|:| |right| *3)))
+ (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *2)
- (|partial| -11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1152 *3 *2))
- (-4 *2 (-1156 *3)))))
+ (|partial| AND
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *2 *3 *4)
- (|partial| -11 (-5 *3 (-695)) (-4 *4 (-12 (-496) (-117)))
- (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-695)) (-4 *4 (-12 (-496) (-117)))
- (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-905 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-112 *4 *5 *3))
- (-4 *3 (-323 *5))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|UnivariatePolynomialDecompositionPackage| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4)))
+ (|isDomain| *1 (|CommonDenominator| *4 *5 *3))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *5))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-905 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3))
- (-4 *6 (-323 *4)) (-4 *3 (-323 *5))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|isDomain| *2 (|Record| (|:| |num| *6) (|:| |den| *4)))
+ (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *6 *3))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-2 (|:| -3269 *7) (|:| |rh| (-584 (-349 *6)))))
- (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-349 *6))) (-4 *7 (-601 *6))
- (-4 *3 (-601 (-349 *6)))))
+ (AND (|isDomain| *3 (|Matrix| *5))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |num| (|Matrix| *4)) (|:| |den| *4)))
+ (|isDomain| *1 (|MatrixCommonDenominator| *4 *5))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|Record| (|:| |eq| *7) (|:| |rh| (|List| (|Fraction| *6)))))
+ (|isDomain| *1 (|PrimitiveRatDE| *5 *6 *7 *3))
+ (|isDomain| *4 (|List| (|Fraction| *6)))
+ (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| *6))
+ (|ofCategory| *3
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *6)))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-905 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4)))
+ (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-112 *3 *4 *2))
- (-4 *2 (-323 *4))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|isDomain| *1 (|CommonDenominator| *3 *4 *2))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *4))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-323 *4))
- (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-323 *5))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *4))
+ (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *2 *3))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4))
- (-5 *1 (-634 *4 *5))))
+ (AND (|isDomain| *3 (|Matrix| *5))
+ (|ofCategory| *5 (|QuotientFieldCategory| *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|MatrixCommonDenominator| *4 *5))))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2))
- (-4 *2 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-112 *2 *4 *3))
- (-4 *3 (-323 *4))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|CommonDenominator| *2 *4 *3))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *4))))
((*1 *2 *3)
- (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3))
- (-4 *5 (-323 *2)) (-4 *3 (-323 *4))))
+ (AND (|ofCategory| *4 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|InnerCommonDenominator| *2 *4 *5 *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496))
- (-5 *1 (-634 *2 *4))))
+ (AND (|isDomain| *3 (|Matrix| *4))
+ (|ofCategory| *4 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|MatrixCommonDenominator| *2 *4))))
((*1 *2 *3)
- (-11 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (AND (|ofCategory| *4 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *2 *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *1 *1 *2 *3 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2 *3 *1)
- (-11 (-5 *1 (-868 *3 *2)) (-4 *2 (-101)) (-4 *3 (-496)) (-4 *3 (-962))
- (-4 *2 (-717))))
- ((*1 *1 *1 *2 *3 *1) (-11 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *1 (|PolynomialRing| *3 *2))
+ (|ofCategory| *2 (|CancellationAbelianMonoid|))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|OrderedAbelianMonoid|))))
((*1 *1 *1 *2 *3 *1)
- (-11 (-5 *2 (-885)) (-4 *2 (-101)) (-5 *1 (-1093 *3)) (-4 *3 (-496))
- (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2 *3 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-13 *4 (-1091)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2 *2) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *2) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-11 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1147 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-82))
- (-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485)))))))
- (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82))
- (-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485)))))))
- (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-347 *3)) (-5 *1 (-169 *4 *3))
- (-4 *3 (-1156 *4))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-695))) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (AND (|isDomain| *2 (|Partition|))
+ (|ofCategory| *2 (|CancellationAbelianMonoid|))
+ (|isDomain| *1 (|SymmetricPolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2 *3 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|UnivariatePolynomial| *4 *3)) (|ofType| *4 (|Symbol|))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SegmentCategory| *3))
+ (|isDomain| *1 (|RangeBinding| *2 *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Segment| *3)) (|isDomain| *1 (|SegmentBinding| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UniversalSegment| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|isDomain| *2
+ (|Record| (|:| |contp| (|Integer|))
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|)))))))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|isDomain| *2
+ (|Record| (|:| |contp| (|Integer|))
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|)))))))
+ (|isDomain| *1 (|UnivariateFactorize| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (AND (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFactorize| *3))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory|
+ (|Fraction| (|Integer|))))))
((*1 *2 *3)
- (-11 (-5 *2 (-347 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-349 (-485))))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|UnivariateFactorize| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-45))) (-5 *2 (-347 *3)) (-5 *1 (-36 *3))
- (-4 *3 (-1156 (-45)))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-45))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-347 *3))
- (-5 *1 (-39 *5 *6 *3)) (-4 *3 (-862 (-45) *6 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-45))) (-4 *5 (-757)) (-4 *6 (-718))
- (-4 *7 (-862 (-45) *6 *5)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-39 *5 *6 *7))
- (-5 *3 (-1086 *7))))
+ (AND (|isDomain| *4 (|List| (|AlgebraicNumber|)))
+ (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|)))))
((*1 *2 *3)
- (-11 (-4 *4 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-139 *4 *3))
- (-4 *3 (-1156 (-141 *4)))))
+ (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|AlgebraicNumber|)))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|AlgebraicMultFact| *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| (|AlgebraicNumber|) *6 *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|AlgebraicNumber|)))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|PolynomialCategory| (|AlgebraicNumber|) *6 *5))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|AlgebraicMultFact| *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexFactorization| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-82)) (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3))
- (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3))
- (-4 *3 (-1156 (-141 *4)))))
+ (AND (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3))
- (-4 *3 (-1156 (-141 *4)))))
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-347 *3)) (-5 *1 (-169 *4 *3))
- (-4 *3 (-1156 *4))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-695))) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (AND (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-695)) (-5 *2 (-347 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3)
- (-11 (-5 *2 (-347 (-141 (-485)))) (-5 *1 (-386)) (-5 *3 (-141 (-485)))))
- ((*1 *2 *3)
- (-11
- (-4 *4
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))))
- (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-347 *3))
- (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-257)) (-5 *2 (-347 (-1086 *4))) (-5 *1 (-398 *4))
- (-5 *3 (-1086 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-4 *7 (-12 (-311) (-117) (-662 *5 *6))) (-5 *2 (-347 *3))
- (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-347 (-1086 *7)) (-1086 *7))) (-4 *7 (-12 (-257) (-117)))
- (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-347 *3)) (-5 *1 (-479 *5 *6 *7 *3))
- (-4 *3 (-862 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-347 (-1086 *7)) (-1086 *7))) (-4 *7 (-12 (-257) (-117)))
- (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5))
- (-5 *2 (-347 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-349 *6)))) (-5 *1 (-602 *5 *6))
- (-5 *3 (-598 (-349 *6)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-24))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-349 *5)))) (-5 *1 (-602 *4 *5))
- (-5 *3 (-598 (-349 *5)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4)))
- (-5 *1 (-615 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-347 *3))
- (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4))
- (-5 *2 (-347 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718))
- (-4 *5
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ "failed") (-1091))))))
- (-4 *6 (-257)) (-5 *2 (-347 *3)) (-5 *1 (-670 *4 *5 *6 *3))
- (-4 *3 (-862 (-858 *6) *4 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)))))
- (-4 *6 (-496)) (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3))
- (-4 *3 (-862 (-349 (-858 *6)) *4 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-12 (-257) (-117)))
- (-5 *2 (-347 *3)) (-5 *1 (-673 *4 *5 *6 *3))
- (-4 *3 (-862 (-349 *6) *4 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-12 (-257) (-117)))
- (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-12 (-257) (-117)))
- (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-347 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7))
- (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-11 (-5 *2 (-347 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-349 (-485))))))
- ((*1 *2 *3)
- (-11 (-5 *2 (-347 *3)) (-5 *1 (-955 *3))
- (-4 *3 (-1156 (-349 (-858 (-485)))))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-1156 (-349 (-485))))
- (-4 *5 (-12 (-311) (-117) (-662 (-349 (-485)) *4))) (-5 *2 (-347 *3))
- (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-1156 (-349 (-858 (-485)))))
- (-4 *5 (-12 (-311) (-117) (-662 (-349 (-858 (-485))) *4))) (-5 *2 (-347 *3))
- (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-347 (-1086 (-349 *7)))) (-5 *1 (-1088 *4 *5 *6 *7))
- (-5 *3 (-1086 (-349 *7)))))
- ((*1 *2 *1) (-11 (-5 *2 (-347 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *1) (-11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-87 *3)) (-13 *3 *2)))
- ((*1 *1 *1) (-11 (-5 *1 (-87 *2)) (-13 *2 (-485))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-13 *3 *2)))
- ((*1 *1 *1) (-11 (-5 *1 (-781 *2)) (-13 *2 (-485))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| (|Complex| (|Integer|))))
+ (|isDomain| *1 (|GaussianFactorizationPackage|))
+ (|isDomain| *3 (|Complex| (|Integer|)))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ "failed") (|Symbol|))))))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|GeneralizedMultivariateFactorize| *4 *5 *6 *7 *3))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *3 (|PolynomialCategory| *7 *5 *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|EuclideanDomain|))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *4)))
+ (|isDomain| *1 (|GenUFactorize| *4))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|Factored| *6) *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|ofCategory| *7
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|MonogenicAlgebra| *5 *6)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|InnerAlgFactor| *5 *6 *7 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *7))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *4
+ (|Mapping| (|Factored| (|SparseUnivariatePolynomial| *7))
+ (|SparseUnivariatePolynomial| *7)))
+ (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|InnerMultFact| *5 *6 *7 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *4
+ (|Mapping| (|Factored| (|SparseUnivariatePolynomial| *7))
+ (|SparseUnivariatePolynomial| *7)))
+ (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|PolynomialCategory| *7 *6 *5))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *8)))
+ (|isDomain| *1 (|InnerMultFact| *5 *6 *7 *8))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *8))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|IntegerFactorizationPackage| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6))))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorFactorizer| *5 *6))
+ (|isDomain| *3
+ (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|AlgebraicallyClosedField|))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| *5))))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorFactorizer| *4 *5))
+ (|isDomain| *3
+ (|LinearOrdinaryDifferentialOperator1| (|Fraction| *5)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|OrderedFreeMonoid| *4))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|LyndonWord| *4)))
+ (|isDomain| *1 (|LyndonWord| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|FiniteFieldCategory|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ "failed") (|Symbol|))))))
+ (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MPolyCatPolyFactorizer| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| (|Polynomial| *6) *4 *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $)))))
+ (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *5 *6 *3))
+ (|ofCategory| *3
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *4
+ *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MRationalFactorize| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| (|Fraction| *6) *4 *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MultivariateFactorize| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|MultivariateFactorize| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFactorize| *3))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory|
+ (|Fraction| (|Integer|))))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|RationalFunctionFactor| *3))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory|
+ (|Fraction| (|Polynomial| (|Integer|)))))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|MonogenicAlgebra| (|Fraction| (|Integer|)) *4)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|SimpleAlgebraicExtensionAlgFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|UnivariatePolynomialCategory|
+ (|Fraction| (|Polynomial| (|Integer|)))))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|MonogenicAlgebra|
+ (|Fraction| (|Polynomial| (|Integer|))) *4)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|SAERationalFunctionAlgFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2
+ (|Factored| (|SparseUnivariatePolynomial| (|Fraction| *7))))
+ (|isDomain| *1 (|SupFractionFactorizer| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| *7)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Factored| *1))
+ (|ofCategory| *1 (|UniqueFactorizationDomain|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|UnivariateFactorize| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|BalancedPAdicRational| *3))
+ (|ofType| *3 *2)))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|BalancedPAdicRational| *2)) (|ofType| *2 (|Integer|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-485)) (-13 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))
- ((*1 *1 *1) (-11 (-13 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PAdicRational| *3))
+ (|ofType| *3 *2)))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|PAdicRational| *2)) (|ofType| *2 (|Integer|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3))))
- ((*1 *1 *1) (-11 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *4 *5)) (-4 *5 (-12 (-24) (-1116) (-363 *4)))))
+ (AND (|isDomain| *2 (|Integer|)) (|ofType| *3 *2)
+ (|isDomain| *1 (|PAdicRationalConstructor| *3 *4))
+ (|ofCategory| *4 (|PAdicIntegerCategory| *3))))
+ ((*1 *1 *1)
+ (AND (|ofType| *2 (|Integer|))
+ (|isDomain| *1 (|PAdicRationalConstructor| *2 *3))
+ (|ofCategory| *3 (|PAdicIntegerCategory| *2))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *2 *3))
+ (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *2)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-48)) (-5 *1 (-266 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *5 *3))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *5 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-266 *6 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 (-485))) (-5 *4 (-248 *6))
- (-4 *6 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *5 *6))))
+ (AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|NonNegativeInteger|))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionToUnivariatePowerSeries| *6 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *6 (|Integer|)))
+ (|isDomain| *4 (|Equation| *6))
+ (|ofCategory| *6
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *6 *3))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *7 (-485))) (-5 *4 (-248 *7)) (-5 *5 (-1147 (-695)))
- (-4 *7 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *6 *7))))
+ (AND (|isDomain| *3 (|Mapping| *7 (|Integer|)))
+ (|isDomain| *4 (|Equation| *7))
+ (|isDomain| *5 (|UniversalSegment| (|NonNegativeInteger|)))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *4 (-1091)) (-5 *5 (-248 *3)) (-5 *6 (-1147 (-695)))
- (-4 *3 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-48))
- (-5 *1 (-399 *7 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|UniversalSegment| (|NonNegativeInteger|)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|GenerateUnivariatePowerSeries| *7 *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
(((*1 *2 *1)
- (|partial| -11 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
+ (|partial| AND
+ (|ofCategory| *1 (|UnivariateLaurentSeriesConstructorCategory| *3 *2))
+ (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496))
- (-5 *2 (-349 (-858 *4)))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496))
- (-5 *2 (-349 (-858 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-98)))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))
- ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139))))
-(((*1 *1 *1 *1) (-5 *1 (-98)))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))
- ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139))))
-(((*1 *1) (-4 *1 (-20))) ((*1 *1) (-4 *1 (-31))) ((*1 *1) (-5 *1 (-98)))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *4))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *4)))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|UnivariateLaurentSeriesCategory| *4))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *4))))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Byte|)))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|SystemNonNegativeInteger| *2))
+ (|ofType| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt16|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt32|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt64|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt8|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Byte|)))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|SystemNonNegativeInteger| *2))
+ (|ofType| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt16|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt32|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt64|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|UInt8|))))
+(((*1 *1) (|ofCategory| *1 (|AbelianMonoid|)))
+ ((*1 *1) (|ofCategory| *1 (|Aggregate|))) ((*1 *1) (|isDomain| *1 (|Byte|)))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1) (|isDomain| *1 (|Int16|))) ((*1 *1) (|isDomain| *1 (|Int32|)))
+ ((*1 *1) (|isDomain| *1 (|Int64|))) ((*1 *1) (|isDomain| *1 (|Int8|)))
+ ((*1 *1) (|ofCategory| *1 (|Monoid|))) ((*1 *1) (|isDomain| *1 (|Symbol|)))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|SystemInteger| *2)) (|ofType| *2 (|PositiveInteger|))))
((*1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145))))
- ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488)))
- ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1) (-11 (-5 *1 (-1097 *2)) (-13 *2 (-831))))
- ((*1 *1) (-11 (-5 *1 (-1098 *2)) (-13 *2 (-831)))) ((*1 *1) (-5 *1 (-1136)))
- ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139))))
-(((*1 *2 *3) (-11 (-5 *3 (-141 (-485))) (-5 *2 (-82)) (-5 *1 (-386))))
- ((*1 *2 *3)
- (-11
- (-5 *3
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485)))))
- (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5))))
- ((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-874 *3)) (-4 *3 (-484))))
- ((*1 *2 *1) (-11 (-4 *1 (-1135)) (-5 *2 (-82)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1133)))))
+ (AND (|isDomain| *1 (|SystemNonNegativeInteger| *2))
+ (|ofType| *2 (|PositiveInteger|))))
+ ((*1 *1) (|isDomain| *1 (|UInt16|))) ((*1 *1) (|isDomain| *1 (|UInt32|)))
+ ((*1 *1) (|isDomain| *1 (|UInt64|))) ((*1 *1) (|isDomain| *1 (|UInt8|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Complex| (|Integer|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GaussianFactorizationPackage|))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|)))))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IdealDecompositionPackage| *4 *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerPrimesPackage| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UniqueFactorizationDomain|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|UserDefinedVariableOrdering|)))))
(((*1 *2)
- (-11 (-5 *2 (-2 (|:| -3231 (-584 (-1091))) (|:| -3232 (-584 (-1091)))))
- (-5 *1 (-1133)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))
- ((*1 *2 *3 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |high| (|List| (|Symbol|)))
+ (|:| |low| (|List| (|Symbol|)))))
+ (|isDomain| *1 (|UserDefinedVariableOrdering|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|UserDefinedVariableOrdering|))))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|UserDefinedVariableOrdering|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *3)
- (-11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *3))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *2)) (-5 *4 (-1 (-82) *2 *2)) (-5 *1 (-1132 *2))
- (-4 *2 (-1014))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *2))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *2)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *3)
- (|partial| -11 (-5 *2 (-82)) (-5 *1 (-1132 *3)) (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-1 (-82) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-82))
- (-5 *1 (-1132 *3)))))
+ (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *3)))))
(((*1 *2)
- (-11 (-5 *2 (-2 (|:| -3232 (-584 *3)) (|:| -3231 (-584 *3))))
- (-5 *1 (-1132 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))
+ (AND
+ (|isDomain| *2 (|Record| (|:| |low| (|List| *3)) (|:| |high| (|List| *3))))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *4))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))))
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|UserDefinedPartialOrdering| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-4 *5 (-298)) (-5 *2 (-347 (-1086 (-1086 *5))))
- (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-347 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4))
- (-5 *3 (-1086 (-1086 *4))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-347 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4))
- (-5 *3 (-1086 (-1086 *4))))))
+ (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Factored|
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *5))))
+ (|isDomain| *1 (|TwoFactorize| *5))
+ (|isDomain| *3
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *5))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Factored|
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))))
+ (|isDomain| *1 (|TwoFactorize| *4))
+ (|isDomain| *3
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Factored|
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))))
+ (|isDomain| *1 (|TwoFactorize| *4))
+ (|isDomain| *3
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-121 *3))
- (-4 *3 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1 *3)
- (|partial| -11 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|FiniteAggregate| *3))
+ (|ofCategory| *1 (|Collection| *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|InfiniteTuple| *3))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|LazyStreamAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1 *3)
+ (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *2))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|Tuple| *2))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-11 (-5 *5 (-584 (-584 (-178)))) (-5 *4 (-178)) (-5 *2 (-584 (-855 *4)))
- (-5 *1 (-1127)) (-5 *3 (-855 *4)))))
-(((*1 *2 *3) (-11 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-178)))) (-5 *1 (-1127)))))
+ (AND (|isDomain| *5 (|List| (|List| (|DoubleFloat|))))
+ (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|List| (|Point| *4)))
+ (|isDomain| *1 (|TubePlotTools|)) (|isDomain| *3 (|Point| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *2 (|List| (|List| (|DoubleFloat|))))
+ (|isDomain| *1 (|TubePlotTools|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-831)) (-4 *1 (-195 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130))))
- ((*1 *1 *2)
- (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *5 (-195 (-3961 *3) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *5))
- (-2 (|:| -2402 *2) (|:| -2403 *5))))
- (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757))
- (-4 *7 (-862 *4 *5 (-774 *3)))))
- ((*1 *2 *2) (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)))))
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|ofCategory| *1 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *5))
+ (|Record| (|:| |index| *2) (|:| |exponent| *5))))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *2 *5 *6 *7))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *4 *5 (|OrderedVariableList| *3)))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *1 (|TubePlotTools|)))))
(((*1 *2 *1 *3 *4)
- (-11 (-5 *3 (-855 (-178))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *3 (|Point| (|DoubleFloat|))) (|isDomain| *4 (|Palette|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GraphImage|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|PointCategory| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Point| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *3 *3 *3 *3)
- (-11 (-5 *2 (-855 (-178))) (-5 *1 (-1127)) (-5 *3 (-178)))))
+ (AND (|isDomain| *2 (|Point| (|DoubleFloat|)))
+ (|isDomain| *1 (|TubePlotTools|)) (|isDomain| *3 (|DoubleFloat|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-178)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3))
- (-4 *3 (-888))))
+ (AND (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *5 (|Integer|))
+ (|isDomain| *2 (|TubePlot| *3)) (|isDomain| *1 (|NumericTubePlot| *3))
+ (|ofCategory| *3 (|PlottableSpaceCurveCategory|))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *4 (-82)) (-5 *1 (-1126 *2))
- (-4 *2 (-888)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-144))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1) (-11 (-5 *1 (-1126 *2)) (-4 *2 (-888)))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|TubePlot| *2))
+ (|ofCategory| *2 (|PlottableSpaceCurveCategory|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3))
+ (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3))
+ (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SubSpaceComponentProperty|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3))
+ (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TubePlot| *3))
+ (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *1 (|TubePlot| *2))
+ (|ofCategory| *2 (|PlottableSpaceCurveCategory|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1 (-82) *9)) (-5 *5 (-1 (-82) *9 *9))
- (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-584 *9)))) (-5 *3 (-584 *9))
- (-4 *1 (-1125 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-1 (-82) *8 *8)) (-4 *8 (-978 *5 *6 *7))
- (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3326 (-584 *8)))) (-5 *3 (-584 *8))
- (-4 *1 (-1125 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-2 (|:| -3865 (-584 *6)) (|:| -1703 (-584 *6)))))))
+ (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *9))
+ (|isDomain| *5 (|Mapping| (|Boolean|) *9 *9))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *9))))
+ (|isDomain| *3 (|List| *9))
+ (|ofCategory| *1 (|TriangularSetCategory| *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *8))))
+ (|isDomain| *3 (|List| *8))
+ (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|List| *6)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2
+ (|Record| (|:| |close| (|List| *6)) (|:| |open| (|List| *6)))))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1 *4)
- (-11 (-5 *4 (-1 (-82) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-82)))))
+ (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *3))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82))))
+ (AND (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-1 (-82) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7))
- (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *7 (|List| *7)))
+ (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *2 *1 *3 *4)
- (-11 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-82) *8 *8))
- (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| *8 *8 *8))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8))
+ (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)))))
(((*1 *2 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))))
((*1 *2 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))))
((*1 *2 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-978 *2 *3 *4)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4)))))
(((*1 *2 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10))
- (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8))
- (-4 *10 (-1021 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392))
- (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392))
- (-13 *6 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
- (-5 *1 (-568 *5 *6))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| *10))
+ (|isDomain| *1 (|LazardSetSolvingPackage| *5 *6 *7 *8 *9 *10))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *10
+ (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6))))
+ (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|RegularChain| *5 *6)))
+ (|isDomain| *1 (|LexTriangularPackage| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6))))
+ (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|List|
+ (|SquareFreeRegularTriangularSet| *5
+ (|IndexedExponents|
+ (|OrderedVariableList| *6))
+ (|OrderedVariableList| *6)
+ (|NewSparseMultivariatePolynomial| *5
+ (|OrderedVariableList|
+ *6)))))
+ (|isDomain| *1 (|LexTriangularPackage| *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|RegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|RegularTriangularSet| *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|RegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|RegularTriangularSet| *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392))
- (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8))))
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6))))
+ (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|RegularChain| *5 *6)))
+ (|isDomain| *1 (|RegularChain| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|SquareFreeRegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|SquareFreeRegularTriangularSet| *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|SquareFreeRegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|SquareFreeRegularTriangularSet| *5 *6 *7 *8))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| -3865 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7))
- (-4 *1 (-1125 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |close| *1) (|:| |open| (|List| *7)))))
+ (|isDomain| *3 (|List| *7))
+ (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|List| *5)))))
(((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))))
+ (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-695)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-44 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *5 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *2 (-962)) (-5 *1 (-47 *2 *3)) (-13 *3 (-584 (-1091)))))
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|AntiSymm| *2 *3))
+ (|ofType| *3 (|List| (|Symbol|)))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-122 *4 *2 *5))
- (-13 *4 (-831)) (-13 *5 (-907 *4 *2))))
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|ofCategory| *2 (|Field|))
+ (|isDomain| *1 (|CliffordAlgebra| *4 *2 *5))
+ (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|QuadraticForm| *4 *2))))
((*1 *2 *1 *1)
- (-11 (-5 *2 (-264 *3)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091)))))
- ((*1 *2 *3 *1) (-11 (-4 *1 (-273 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-101))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-334 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
- ((*1 *2 *1) (-11 (-4 *2 (-69)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-11 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664))))
+ (AND (|isDomain| *2 (|Expression| *3))
+ (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *2 *3 *1)
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *2 (|CancellationAbelianMonoid|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|BasicType|))
+ (|isDomain| *1 (|IndexedProductTerm| *2 *3))
+ (|ofCategory| *3 (|OrderedType|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|LaurentPolynomial| *2 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MonogenicLinearOperator| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|MonoidRing| *2 *3))
+ (|ofCategory| *3 (|Monoid|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (AND (|isDomain| *2 (|List| *5))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *2 (-757))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *2 (|PolynomialCategory| *4 (|IndexedExponents| *5) *5))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *4 *5 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Polynomial| *4))
+ (|isDomain| *1 (|TaylorSeries| *4)) (|ofCategory| *4 (|Ring|)))))
(((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962))
- (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3))))
+ (AND (|isDomain| *2 (|Mapping| (|SparseMultivariateTaylorSeries| *4 *3 *5)))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *4 *3 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *4 (|IndexedExponents| *3) *3))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4))
- (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|Mapping| (|TaylorSeries| *4)))
+ (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *4))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392))
- (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3))
- (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|ConvertibleTo| (|Pattern| *3)))
+ (|ofCategory| *3 (|PatternMatchable| *3))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2 (|ConvertibleTo| (|Pattern| *3)))
+ (|ofCategory| *2 (|PatternMatchable| *3))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
-(((*1 *2 *2) (-11 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PropositionalFormulaFunctions1| *3))))
((*1 *1 *1)
- (-11 (-4 *2 (-117)) (-4 *2 (-257)) (-4 *2 (-392)) (-4 *3 (-757))
- (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))
- ((*1 *2 *3) (-11 (-5 *3 (-45)) (-5 *2 (-264 (-485))) (-5 *1 (-1033))))
+ (AND (|ofCategory| *2 (|CharacteristicZero|))
+ (|ofCategory| *2 (|EuclideanDomain|)) (|ofCategory| *2 (|GcdDomain|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|AlgebraicNumber|))
+ (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|SimplifyAlgebraicNumberConvertPackage|))))
((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-12 (-363 *3) (-1116))))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|TranscendentalManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *2 *3)
- (-11 (-4 *3 (-496)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|TriangularMatrixOperations| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-11 (-4 *3 (-496)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-141 (-264 *4)))
- (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|TriangularMatrixOperations| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Complex| (|Expression| *4)))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-141 *3))
- (-5 *1 (-1120 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-82)) (-5 *1 (-161 *4 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4))))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Complex| *3))
+ (|isDomain| *1 (|TrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-82))
- (-5 *1 (-1120 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4))))))
-(((*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|TrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-264 *4))
- (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4))))))
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Expression| *4))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3))))))
-(((*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-264 *4))
- (-5 *1 (-161 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 (-141 *4))))))
- ((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145))))
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Expression| *4))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3))))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3))))))
+ (AND
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *3))))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3))))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3))))))
+ (AND
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *3))))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *4 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 (-141 *4))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3)))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1120 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 (-141 *3))))))
+ (AND
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *3))))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *1 (-161 *4 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 (-141 *4))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|ComplexTrigonometricManipulations| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| (|Complex| *4))))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3)))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1120 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|TrigonometricManipulations| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *2) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|FourierComponent| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *2) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|FourierComponent| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
-(((*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *1 (-1117 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Tree| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *1 (|Tree| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Tree| *3))))
((*1 *1 *2 *3)
- (-11 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1) (-11 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *3 (|List| (|Tree| *2))) (|isDomain| *1 (|Tree| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Tree| *2)) (|ofCategory| *2 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|List| (|Tree| *3))) (|isDomain| *1 (|Tree| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Tree| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|List| (|Tree| *3))) (|isDomain| *1 (|Tree| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2)
+ (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *1) (|isDomain| *1 (|Pi|)))
+ ((*1 *1) (|ofCategory| *1 (|TranscendentalFunctionCategory|))))
(((*1 *2)
- (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496))))
- ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1116))))
-(((*1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-1114)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))))
-(((*1 *2 *3) (|partial| -11 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-715)) (-5 *2 (-485))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelThreeSpace|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ToolsForSign| *4)) (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ToolsForSign| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OrderedAbelianGroup|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Permutation| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4))
- (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *3)
- (|partial| -11 (-4 *4 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *4 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *4)))))
+ (|partial| AND
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| *2)
+ (|LinearlyExplicitRingOver| *2) (|GcdDomain|)))
+ (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ElementaryFunctionSign| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-751 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *6 *3))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *5 (|OrderedCompletion| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| *2)
+ (|LinearlyExplicitRingOver| *2) (|GcdDomain|)))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ElementaryFunctionSign| *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-1074))
- (-4 *6 (-12 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *6 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *6)))))
+ (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|String|))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| *2)
+ (|LinearlyExplicitRingOver| *2) (|GcdDomain|)))
+ (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ElementaryFunctionSign| *6 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485))
- (-5 *1 (-1032 *4))))
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|RationalFunctionSign| *4))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-751 (-349 (-858 *6))))
- (-5 *3 (-349 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *5 (|OrderedCompletion| (|Fraction| (|Polynomial| *6))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|RationalFunctionSign| *6))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -11 (-5 *3 (-349 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074))
- (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
- ((*1 *2 *3) (|partial| -11 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1112))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (|partial| -11 (-5 *1 (-312 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1) (|partial| -11 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1112)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-83))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-83))))
- ((*1 *2 *1) (-11 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-83))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1186)) (-5 *1 (-166 *3))
- (-4 *3
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $))
- (-14 -1965 (*2 $)))))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-442))))
- ((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1110))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|String|))
+ (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|RationalFunctionSign| *6))))
+ ((*1 *2 *3)
+ (|partial| AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ToolsForSign| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TextFile|))))
+ ((*1 *2 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TextFile|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TextFile|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TextFile|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *1 (|File| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TextFile|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TextFile|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|OutputForm|) (|OutputForm|)))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|OutputForm|) (|List| (|OutputForm|))))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2 (|Maybe| (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Database| *3))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| (*2 $))
+ (SIGNATURE |fullDisplay| (*2 $)))))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|IndexCard|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|MathMLFormat|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TexFormat|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TexFormat|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
(((*1 *1 *2 *2 *3)
- (-11 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-54 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
- ((*1 *1) (-5 *1 (-144)))
- ((*1 *1) (-11 (-5 *1 (-165 *2 *3)) (-13 *2 (-831)) (-4 *3 (-1014))))
- ((*1 *1 *2 *2 *2) (-11 (-5 *2 (-1074)) (-4 *1 (-338))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
+ ((*1 *1) (|isDomain| *1 (|SubSpaceComponentProperty|)))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|DataArray| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|))))
((*1 *1)
- (-11 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
- (-4 *4 (-609 *3))))
- ((*1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-11 (-5 *1 (-1057 *3 *2)) (-13 *3 (-695)) (-4 *2 (-962))))
- ((*1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962))))
- ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1) (-5 *1 (-1110))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-91 *2)) (-4 *2 (-757))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-96 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-236 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-236 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1 *3) (-11 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))))
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *4 (|ListAggregate| *3))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|PatternMatchResult| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|SquareMatrix| *3 *2))
+ (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *1) (|isDomain| *1 (|Symbol|))) ((*1 *1) (|isDomain| *1 (|Symbol|)))
+ ((*1 *1) (|isDomain| *1 (|TexFormat|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))))
+(((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *1 (|BinarySearchTree| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *1 (|BinaryTournament| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultiDictionary| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *2 *3)
+ (|partial| AND (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1014)))))
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *4 *5))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1014)))))
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *4 *5))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)))))
(((*1 *2)
- (-11 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TabulatedComputationPackage| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| -3864 *3) (|:| |entry| *4)))) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4))))
- ((*1 *1) (-11 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-311)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-311)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-29 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-52)) (-5 *1 (-83))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-83))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-83))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-128 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-83)) (-5 *1 (-133))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-229 *3 *4))
- (-4 *4 (-12 (-363 *3) (-916)))))
- ((*1 *2 *2) (-11 (-5 *2 (-83)) (-5 *1 (-252 *3)) (-4 *3 (-253))))
- ((*1 *2 *2) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *4 (-1014)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-83)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-83)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4))
- (-4 *4 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-933))))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-52)) (-5 *1 (-1105 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-584 (-584 *3)))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-584 (-584 *5)))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-757))
- (-5 *2
- (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4))))
- (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4))))))
- (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))))
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |key| *3) (|:| |entry| *4))))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *1 (|TableAggregate| *3 *4))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|TableAggregate| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|TangentExpansions| *2))
+ (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|isDomain| *1 (|TangentExpansions| *3)) (|ofCategory| *3 (|Field|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|TangentExpansions| *2))
+ (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicFunction| *3 *4))
+ (|ofCategory| *4 (|FunctionSpace| *3))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Arity|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *4))
+ (|ofCategory| *4 (|FunctionSpace| *3))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *1 (|CommonOperators|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *4))
+ (|ofCategory| *4 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *1 (|ExpressionSpace&| *3))
+ (|ofCategory| *3 (|ExpressionSpace|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpace&| *3 *4))
+ (|ofCategory| *3 (|FunctionSpace| *4))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *4))
+ (|ofCategory| *4 (|FunctionSpace| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *1 (|Kernel| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *4))
+ (|ofCategory| *4
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ReduceAst|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Arity|)) (|isDomain| *1 (|TermAlgebraOperator| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|List| (|List| *3)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|List| (|List| *5)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|Tableau| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Tableau| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |f1| (|List| *4))
+ (|:| |f2| #1=(|List| (|List| (|List| *4))))
+ (|:| |f3| (|List| (|List| *4))) (|:| |f4| #1#)))
+ (|isDomain| *1 (|TableauxBumpers| *4))
+ (|isDomain| *3 (|List| (|List| (|List| *4)))))))
(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-11 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5))))
- (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))))
-(((*1 *2 *2)
- (|partial| -11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -11 (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9))
- (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6))
- (-4 *8 (-323 *7)) (-4 *9 (-323 *7))))
+ (AND (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *3 (|List| *6))
+ (|isDomain| *5 (|List| *3))
+ (|isDomain| *2
+ (|Record| (|:| |f1| *3) (|:| |f2| #1=(|List| *5)) (|:| |f3| *5)
+ (|:| |f4| #1#)))
+ (|isDomain| *1 (|TableauxBumpers| *6)) (|isDomain| *4 (|List| *5)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *7 (|QuotientFieldCategory| *4))
+ (|ofCategory| *2 (|MatrixCategory| *7 *8 *9))
+ (|isDomain| *1
+ (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *2))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))
+ (|ofCategory| *8 (|FiniteLinearAggregate| *7))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *7))))
((*1 *1 *1)
- (|partial| -11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-311))))
+ (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2)
- (|partial| -11 (-4 *3 (-311)) (-4 *3 (-145)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -11 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962))))
+ (|partial| AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| AND (|isDomain| *1 (|Matrix| *2)) (|ofCategory| *2 (|Field|))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1)
- (|partial| -11 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962))
- (-4 *4 (-195 *2 *3)) (-4 *5 (-195 *2 *3)) (-4 *3 (-311))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))))
+ (|partial| AND (|ofCategory| *1 (|SquareMatrixCategory| *2 *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|DirectProductCategory| *2 *3))
+ (|ofCategory| *5 (|DirectProductCategory| *2 *3))
+ (|ofCategory| *3 (|Field|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|TableauxBumpers| *3)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 *4)))))
-(((*1 *2 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))))
+ (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|List| *4)))
+ (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| *4)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|TableauxBumpers| *3)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 *4)))))
+ (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Tableau| (|List| *4)))
+ (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| *4)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 (-584 *4))))))
+ (AND (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|List| (|List| *4))))
+ (|isDomain| *1 (|TableauxBumpers| *4))
+ (|isDomain| *3 (|List| (|List| *4))))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4)))
- (-5 *1 (-1102 *4)))))
+ (AND (|isDomain| *3 (|Tableau| (|List| *4))) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|List| *4)))
+ (|isDomain| *1 (|TableauxBumpers| *4)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4)))
- (-5 *1 (-1102 *4)) (-4 *4 (-757)))))
+ (AND (|isDomain| *3 (|List| (|List| (|List| *4))))
+ (|isDomain| *2 (|List| (|List| *4)))
+ (|isDomain| *1 (|TableauxBumpers| *4))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757))
- (-5 *1 (-1102 *4)))))
+ (AND (|isDomain| *3 (|List| (|List| (|List| *4))))
+ (|isDomain| *2 (|List| (|List| *4))) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|TableauxBumpers| *4)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757))
- (-5 *1 (-1102 *4)))))
+ (AND (|isDomain| *2 (|List| (|List| (|List| *4))))
+ (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|TableauxBumpers| *4)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-82) *5 *5))
- (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))))
+ (AND (|isDomain| *2 (|List| (|List| (|List| *5))))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5))
+ (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|TableauxBumpers| *5)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 (-82) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6))
- (-5 *2 (-2 (|:| |fs| (-82)) (|:| |sd| *4) (|:| |td| (-584 *4))))
- (-5 *1 (-1102 *6)) (-5 *5 (-584 *4)))))
-(((*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2) (-11 (-5 *2 (-100)) (-5 *1 (-1101)))))
-(((*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 (-485)))))
- (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-12 (-756) (-311)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-248 (-349 (-858 (-485))))))
- (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-12 (-756) (-311)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 (-485)))) (-5 *2 (-584 (-248 (-858 *4))))
- (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-248 (-349 (-858 (-485))))) (-5 *2 (-584 (-248 (-858 *4))))
- (-5 *1 (-331 *4)) (-4 *4 (-12 (-756) (-311)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *6 *6))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *4 (|List| *6))
+ (|isDomain| *2
+ (|Record| (|:| |fs| (|Boolean|)) (|:| |sd| *4) (|:| |td| (|List| *4))))
+ (|isDomain| *1 (|TableauxBumpers| *6)) (|isDomain| *5 (|List| *4)))))
+(((*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|System|)))))
+(((*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|System|)))))
+(((*1 *2) (AND (|isDomain| *2 (|ByteOrder|)) (|isDomain| *1 (|System|)))))
+(((*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|System|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|System|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|List| (|Polynomial| *5))))
+ (|isDomain| *1 (|SystemSolvePackage| *5)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Polynomial| *4)))))
+ (|isDomain| *1 (|FloatingRealPackage| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Polynomial| *4)))))
+ (|isDomain| *1 (|FloatingRealPackage| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Integer|))))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| *4))))
+ (|isDomain| *1 (|FloatingRealPackage| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| *4))))
+ (|isDomain| *1 (|FloatingRealPackage| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *5 (-1091))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-4 *4 (-12 (-26 *6) (-1116) (-872)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-584 *4))))
- (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))
+ (|partial| AND (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|isDomain| *2 (|Record| (|:| |particular| *4) (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 *2))
- (-4 *2 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5)))
- (-4 *4 (-12 (-323 *5) (-1036 *5)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5)))
- (-4 *7 (-12 (-323 *5) (-1036 *5)))
- (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2014 (-584 *7)))))
- (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *5)) (-4 *5 (-311))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1180 *5) #2="failed"))
- (|:| -2014 (-584 (-1180 *5)))))
- (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1180 *5) #2#)) (|:| -2014 (-584 (-1180 *5)))))
- (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *5)) (-4 *5 (-311))
- (-5 *2
- (-584
- (-2 (|:| |particular| (-3 (-1180 *5) #2#))
- (|:| -2014 (-584 (-1180 *5))))))
- (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311))
- (-5 *2
- (-584
- (-2 (|:| |particular| (-3 (-1180 *5) #2#))
- (|:| -2014 (-584 (-1180 *5))))))
- (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-694 *5))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-694 *4))))
+ (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *2 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|ofCategory| *4
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 #1="failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3))
+ (|ofCategory| *3 (|MatrixCategory| *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|ofCategory| *7
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |particular| (|Union| *7 #1#))
+ (|:| |basis| (|List| *7)))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *7 *3))
+ (|isDomain| *4 (|List| *7))
+ (|ofCategory| *3 (|MatrixCategory| *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| #2=(|Vector| *5) #3="failed"))
+ (|:| |basis| (|List| #2#))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5))
+ (|isDomain| *4 (|Vector| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|List| *5))) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| #4=(|Vector| *5) #3#))
+ (|:| |basis| (|List| #4#))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5))
+ (|isDomain| *4 (|Vector| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |particular| (|Union| (|Vector| *5) #3#))
+ (|:| |basis| (|List| (|Vector| *5))))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5))
+ (|isDomain| *4 (|List| (|Vector| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|List| *5))) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |particular| (|Union| (|Vector| *5) #3#))
+ (|:| |basis| (|List| (|Vector| *5))))))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5))
+ (|isDomain| *4 (|List| (|Vector| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5))))))
+ (|isDomain| *1 (|NonLinearSolvePackage| *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4))))))
+ (|isDomain| *1 (|NonLinearSolvePackage| *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -11 (-5 *3 (-83)) (-5 *4 (-1091))
- (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117))) (-5 *1 (-696 *5 *2))
- (-4 *2 (-12 (-26 *5) (-1116) (-872)))))
+ (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|NonLinearFirstOrderODESolver| *5 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *5)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *3 (-631 *7)) (-5 *5 (-1091))
- (-4 *7 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-631 *6)) (-5 *4 (-1091))
- (-4 *6 (-12 (-26 *5) (-1116) (-872)))
- (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6))))
+ (|partial| AND (|isDomain| *3 (|Matrix| *7)) (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| #5=(|Vector| *7)) (|:| |basis| (|List| #5#))))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *7))
+ (|isDomain| *4 (|Vector| *7))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Matrix| *6)) (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *6
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *5)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Vector| *6)))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-83))) (-5 *5 (-1091))
- (-4 *7 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7))))
+ (|partial| AND (|isDomain| *3 (|List| (|Equation| *7)))
+ (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Vector| *7))
+ (|:| |basis| (|List| (|Vector| *7)))))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *3 (-584 *7)) (-5 *4 (-584 (-83))) (-5 *5 (-1091))
- (-4 *7 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7))))
+ (|partial| AND (|isDomain| *3 (|List| *7))
+ (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Vector| *7))
+ (|:| |basis| (|List| (|Vector| *7)))))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *7))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-248 *7)) (-5 *4 (-83)) (-5 *5 (-1091))
- (-4 *7 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-584 *7))) *7 #3="failed"))
- (-5 *1 (-726 *6 *7))))
+ (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|BasicOperator|))
+ (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *7
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Union| (|Record| (|:| |particular| *7) (|:| |basis| (|List| *7))) *7
+ #6="failed"))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *7))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-83)) (-5 *5 (-1091))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-584 *3))) *3 #3#))
- (-5 *1 (-726 *6 *3)) (-4 *3 (-12 (-26 *6) (-1116) (-872)))))
+ (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Union| (|Record| (|:| |particular| *3) (|:| |basis| (|List| *3))) *3
+ #6#))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -11 (-5 *3 (-248 *2)) (-5 *4 (-83)) (-5 *5 (-584 *2))
- (-4 *2 (-12 (-26 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))))
+ (|partial| AND (|isDomain| *3 (|Equation| *2))
+ (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|List| *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *2))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -11 (-5 *3 (-83)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2))
- (-4 *2 (-12 (-26 *6) (-1116) (-872)))
- (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *1 (-726 *6 *2))))
+ (|partial| AND (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *4 (|Equation| *2)) (|isDomain| *5 (|List| *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|ElementaryFunctionODESolver| *6 *2))))
((*1 *2 *3 *4 *5)
- (|partial| -11
- (-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-584 *6))) "failed") *7 *6))
- (-4 *6 (-311)) (-4 *7 (-601 *6))
- (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2014 (-631 *6))))
- (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 (-349 (-485)))) (-5 *2 (-584 (-329))) (-5 *1 (-937))
- (-5 *4 (-329))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-329))) (-5 *1 (-937))
- (-5 *4 (-329))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-264 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1046 *4))
- (-5 *3 (-248 (-264 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1046 *5))
- (-5 *3 (-248 (-264 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-264 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1091)))
- (-4 *5 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1046 *5))
- (-5 *3 (-584 (-248 (-264 *5))))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-1100 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-1100 *5))
- (-5 *3 (-584 (-248 (-349 (-858 *5)))))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-349 (-858 *4)))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-1100 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-248 (-349 (-858 *4))))))
- (-5 *1 (-1100 *4)) (-5 *3 (-584 (-248 (-349 (-858 *4)))))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *5)))))
- (-5 *1 (-1100 *5)) (-5 *3 (-349 (-858 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *5)))))
- (-5 *1 (-1100 *5)) (-5 *3 (-248 (-349 (-858 *5))))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *4))))) (-5 *1 (-1100 *4))
- (-5 *3 (-349 (-858 *4)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 (-248 (-349 (-858 *4))))) (-5 *1 (-1100 *4))
- (-5 *3 (-248 (-349 (-858 *4)))))))
-(((*1 *2 *1) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))
- ((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-786))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-786))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-485))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1074))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-447))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-529))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-418))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-107))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-126))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1082))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-566))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1009))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1004))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-986))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-884))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-153))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-949))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-262))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-614))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-124))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1068))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-464))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1192))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-979))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-459))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-623))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-64))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1030))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-103))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-540))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-108))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-1191))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-618))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-171))))
- ((*1 *2 *1) (-11 (-4 *1 (-1052)) (-5 *2 (-463))))
- ((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-178)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-1096)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1096))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1096)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-447)) (-5 *1 (-233))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-3 (-485) (-178) (-447) (-1074) (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-584 (-233))) (-5 *1 (-233))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1096)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2858)) (-5 *2 (-82)) (-5 *1 (-557))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-82)) (-5 *1 (-557))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-82)) (-5 *1 (-557))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-82)) (-5 *1 (-633 *4))
- (-4 *4 (-553 (-773)))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-82))
- (-5 *1 (-633 *4))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82)) (-5 *1 (-786))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82)) (-5 *1 (-786))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-107))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-126))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-124))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-64))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-103))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-171))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-82)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-82)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-82)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-82)) (-5 *1 (-1096)))))
-(((*1 *1) (-4 *1 (-31))) ((*1 *1) (-5 *1 (-246))) ((*1 *1) (-5 *1 (-773)))
+ (|partial| AND
+ (|isDomain| *5
+ (|Mapping|
+ (|Union| (|Record| (|:| |particular| *6) (|:| |basis| (|List| *6)))
+ "failed")
+ *7 *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| *6))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Vector| *6)) (|:| |basis| (|Matrix| *6))))
+ (|isDomain| *1 (|SystemODESolver| *6 *7)) (|isDomain| *3 (|Matrix| *6))
+ (|isDomain| *4 (|Vector| *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|RealSolvePackage|))
+ (|isDomain| *4 (|Float|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Polynomial| (|Integer|)))
+ (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|RealSolvePackage|))
+ (|isDomain| *4 (|Float|))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *4))))
+ (|isDomain| *1 (|TransSolvePackage| *4)) (|isDomain| *3 (|Expression| *4))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *4))))
+ (|isDomain| *1 (|TransSolvePackage| *4))
+ (|isDomain| *3 (|Equation| (|Expression| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *5))))
+ (|isDomain| *1 (|TransSolvePackage| *5))
+ (|isDomain| *3 (|Equation| (|Expression| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *5))))
+ (|isDomain| *1 (|TransSolvePackage| *5))
+ (|isDomain| *3 (|Expression| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5)))))
+ (|isDomain| *1 (|TransSolvePackage| *5))
+ (|isDomain| *3 (|List| (|Equation| (|Expression| *5))))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5))))))
+ (|isDomain| *1 (|SystemSolvePackage| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5))))))
+ (|isDomain| *1 (|SystemSolvePackage| *5))
+ (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4))))))
+ (|isDomain| *1 (|SystemSolvePackage| *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4))))))
+ (|isDomain| *1 (|SystemSolvePackage| *4))
+ (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|SystemSolvePackage| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|SystemSolvePackage| *5))
+ (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5))))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))
+ (|isDomain| *1 (|SystemSolvePackage| *4))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *4)))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))
+ (|isDomain| *1 (|SystemSolvePackage| *4))
+ (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4)))))))
+(((*1 *2 *1)
+ (AND (|isDomain| *1 (|Maybe| *2))
+ (|ofCategory| *2 (|CoercibleTo| (|OutputForm|)))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|ParameterAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|ParameterAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|String|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|Identifier|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|IsAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|HasAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CaseAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ColonAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SuchThatAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|LetAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SequenceAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SegmentAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|RestrictAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|PretendAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CoerceAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ReturnAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ExitAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ConstructAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CollectAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|StepAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|InAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|WhileAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|RepeatAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|IfAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|MappingAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|AttributeAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|SignatureAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CapsuleAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|JoinAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|CategoryAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|WhereAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|MacroAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|DefinitionAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SpadAstExports|)) (|isDomain| *2 (|ImportAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Syntax|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|Syntax|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|List| (|Syntax|)))
+ (|isDomain| *1 (|Syntax|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Syntax|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|Identifier|))
+ (|isDomain| *1 (|ElaboratedExpression|))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) (|Syntax|)))
+ (|isDomain| *1 (|Syntax|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|List| (|ElaboratedExpression|)))
+ (|isDomain| *1 (|ElaboratedExpression|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|Syntax|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Syntax|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| |true|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|KleeneTrivalentLogic|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| |unknown|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|KleeneTrivalentLogic|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| |false|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|KleeneTrivalentLogic|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| |nothing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Maybe| *4))
+ (|ofCategory| *4 (|CoercibleTo| (|OutputForm|)))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| *4))
+ (|ofCategory| *4 (|CoercibleTo| (|OutputForm|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Maybe| *4))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|String|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ParameterAst|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|Identifier|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ParameterAst|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|Integer|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|String|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|Identifier|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|IsAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|HasAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|CaseAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|ColonAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|SuchThatAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|LetAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|SequenceAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|SegmentAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|RestrictAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|PretendAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|CoerceAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|ReturnAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|ExitAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|ConstructAst|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|CollectAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|StepAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|InAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|WhileAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|RepeatAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|IfAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|MappingAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|AttributeAst|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|SignatureAst|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|CapsuleAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|JoinAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|CategoryAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|WhereAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|MacroAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|DefinitionAst|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|SpadAstExports|))
+ (|isDomain| *3 (|[\|\|]| (|ImportAst|))) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|String|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|Identifier|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|DoubleFloat|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Syntax|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|[\|\|]| (|Integer|))) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Syntax|)))))
+(((*1 *1) (|ofCategory| *1 (|Aggregate|)))
+ ((*1 *1) (|isDomain| *1 (|Environment|)))
+ ((*1 *1) (|isDomain| *1 (|OutputForm|)))
((*1 *1)
- (-11 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-998)))
+ (AND (|ofCategory| *2 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3))))
+ ((*1 *1) (|isDomain| *1 (|Scope|)))
((*1 *1)
- (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31)))))
- ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095))))
-(((*1 *2 *3 *2 *3) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094))))
+ (AND (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
+ ((*1 *1) (|isDomain| *1 (|TheSymbolTable|)))
+ ((*1 *1) (|isDomain| *1 (|SymbolTable|))))
+(((*1 *2 *3 *2 *3)
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|TheSymbolTable|))))
((*1 *2 *3 *2 *4 *1)
- (-11 (-5 *2 (-378)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2 *3 *1) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2 *1) (-11 (-5 *2 (-378)) (-5 *3 (-1091)) (-5 *1 (-1095))))
- ((*1 *2 *3 *2 *1) (-11 (-5 *2 (-378)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))))
-(((*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-378)) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))))
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|List| (|Symbol|)))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *2 *3 *1)
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *2 *1)
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|SymbolTable|))))
+ ((*1 *2 *3 *2 *1)
+ (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|List| (|Symbol|)))
+ (|isDomain| *1 (|SymbolTable|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-376))
- (-5 *2
- (-584
- (-3 (|:| -3545 (-1091))
- (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))
- (-5 *1 (-1095)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))))
-(((*1 *2 *1)
- (-11
- (-5 *2
- (-584
- (-584
- (-3 (|:| -3545 (-1091))
- (|:| -3228 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))))
- (-5 *1 (-1095)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-1095)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-1095)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|FortranType|))
+ (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|FortranScalarType|))
+ (|isDomain| *2
+ (|List|
+ (|Union| (|:| |name| (|Symbol|))
+ (|:| |bounds|
+ (|List|
+ (|Union| (|:| S (|Symbol|))
+ (|:| P (|Polynomial| (|Integer|)))))))))
+ (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|List|
+ (|Union| (|:| |name| (|Symbol|))
+ (|:| |bounds|
+ (|List|
+ (|Union| (|:| S (|Symbol|))
+ (|:| P (|Polynomial| (|Integer|))))))))))
+ (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SymbolTable|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| (-378)))))
- (-5 *1 (-1095)))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1094)))))
-(((*1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-1094)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
+ (AND
+ (|isDomain| *2
+ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|)))))
+ (|isDomain| *1 (|SymbolTable|)))))
+(((*1 *1) (|isDomain| *1 (|TheSymbolTable|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|))))
((*1 *2 *3 *4 *1)
- (-11 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3914 #1="void"))) (-5 *2 (-1186))
- (-5 *1 (-1094))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3914 #1#)))
- (-5 *2 (-1186)) (-5 *1 (-1094))))
+ (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *4
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|))))
((*1 *2 *3 *4 *1)
- (-11 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3914 #1#)))
- (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *4
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|))))
+ ((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))
+ (|isDomain| *1 (|TheSymbolTable|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 "void")))
- (-5 *1 (-1094)))))
-(((*1 *2 *3 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))))
-(((*1 *2 *3 *1) (-11 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-1091)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-64))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-75))))
- ((*1 *2 *1) (-11 (-4 *1 (-313 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014))))
- ((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-379 *3)) (-13 *3 *2)))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-423))))
- ((*1 *2 *1) (-11 (-4 *1 (-748 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-775))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-877))))
- ((*1 *2 *1) (-11 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-13 *3 *2)))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1030)))) ((*1 *1 *1) (-5 *1 (-1091))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *2 *1)
- (-11
- (-5 *2
- (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773)))
- (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773)))
- (|:| |args| (-584 (-773)))))
- (-5 *1 (-1091)))))
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|TheSymbolTable|))
+ (|isDomain| *3 (|Symbol|)))))
+(((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|SymbolTable|))
+ (|isDomain| *1 (|TheSymbolTable|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Vector| *4))
+ (|isDomain| *1 (|SymmetricFunctions| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Vector| *3))
+ (|isDomain| *1 (|SymmetricFunctions| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Symbol|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|AttributeAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|Binding|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileCategory| *2 *3))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FunctionCalled| *3))
+ (|ofType| *3 *2)))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|HeadAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OperatorCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|OverloadSet|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|Property|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RuleCalled| *3))
+ (|ofType| *3 *2)))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|SignatureAst|))))
+ ((*1 *1 *1) (|isDomain| *1 (|Symbol|))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |sub| (|List| (|OutputForm|)))
+ (|:| |sup| (|List| (|OutputForm|)))
+ (|:| |presup| (|List| (|OutputForm|)))
+ (|:| |presub| (|List| (|OutputForm|)))
+ (|:| |args| (|List| (|OutputForm|)))))
+ (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *1 *2)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |sub| (|List| (|OutputForm|)))
+ (|:| |sup| (|List| (|OutputForm|)))
+ (|:| |presup| (|List| (|OutputForm|)))
+ (|:| |presub| (|List| (|OutputForm|)))
+ (|:| |args| (|List| (|OutputForm|)))))
+ (|isDomain| *1 (|Symbol|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| (|OutputForm|))))
+ (|isDomain| *1 (|Symbol|)))))
(((*1 *1 *1 *2)
- (-11
- (-5 *2
- (-2 (|:| -2587 (-584 (-773))) (|:| -2486 (-584 (-773)))
- (|:| |presup| (-584 (-773))) (|:| -2585 (-584 (-773)))
- (|:| |args| (-584 (-773)))))
- (-5 *1 (-1091))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1)
- (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-1074))))
- ((*1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-1074))))
- ((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-1074))))
- ((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-1091)))))
-(((*1 *1 *2) (-11 (-4 *1 (-609 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))))
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|String|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|String|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|String|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Symbol|)))))
+(((*1 *1 *2)
+ (AND (|ofCategory| *1 (|ListAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|Symbol|)))))
(((*1 *2 *1 *3 *3 *4)
- (-11 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773))
- (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-20)) (-13 *7 *6)))
+ (AND (|isDomain| *3 (|Mapping| #1=(|OutputForm|) #1# #1#))
+ (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|ListMonoidOps| *5 *6 *7))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|AbelianMonoid|))
+ (|ofType| *7 *6)))
((*1 *2 *1 *2)
- (-11 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-13 *4 (-66 *3))
- (-13 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-773))))
- ((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-773))))
- ((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|SparseUnivariateSkewPolynomial| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Automorphism| *3))
+ (|ofType| *5 (|Mapping| *3 *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757))
- (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485))))
- (-5 *1 (-530 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3))
- (-4 *3 (-862 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773)))
+ (AND (|isDomain| *5 (|Segment| *3))
+ (|ofCategory| *3 (|PolynomialCategory| *7 *6 *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| (|Integer|))))
+ (|isDomain| *1 (|InnerPolySum| *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| (|Integer|))))
+ (|isDomain| *1 (|InnerPolySum| *5 *4 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1084 *4 *2)) (-4 *2 (-12 (-363 *4) (-130) (-24) (-1116)))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|FunctionSpaceSum| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|CombinatorialOpsCategory|)
+ (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1005 *2)) (-4 *2 (-12 (-363 *4) (-130) (-24) (-1116)))
- (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485))))
- (-5 *2 (-349 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485))))
- (-5 *2 (-3 (-349 (-858 *5)) (-264 *5))) (-5 *1 (-1085 *5))
- (-5 *3 (-349 (-858 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5))
- (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-349 *3)) (-5 *1 (-1085 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1005 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-264 *5)))
- (-5 *1 (-1085 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-82) *5))
- (-5 *1 (-802 *4 *5)) (-4 *5 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1082)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-121 *3))))
+ (AND (|isDomain| *3 (|SegmentBinding| *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|CombinatorialOpsCategory|)
+ (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|FunctionSpaceSum| *4 *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *1 (|RationalFunctionSum| *5))
+ (|isDomain| *3 (|Polynomial| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|Fraction| (|Polynomial| *5)) (|Expression| *5)))
+ (|isDomain| *1 (|RationalFunctionSum| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|SegmentBinding| (|Polynomial| *5)))
+ (|isDomain| *3 (|Polynomial| *5))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Fraction| *3))
+ (|isDomain| *1 (|RationalFunctionSum| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|SegmentBinding| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Union| *3 (|Expression| *5)))
+ (|isDomain| *1 (|RationalFunctionSum| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| (|Boolean|) *5))
+ (|isDomain| *1 (|PatternFunctions1| *4 *5)) (|ofCategory| *5 (|Type|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|SuchThatAst|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *1 (|Collection| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| -2403 (-695)) (|:| -3776 *4) (|:| |num| *4))))
- (-4 *4 (-1156 *3)) (-4 *3 (-12 (-311) (-117))) (-5 *1 (-341 *3 *4))))
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| *4)
+ (|:| |num| *4))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1="void")))
- (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-82)) (-5 *1 (-378))))
+ (AND
+ (|isDomain| *2
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")))
+ (|isDomain| *3 (|List| (|Polynomial| (|Integer|))))
+ (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|FortranType|))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 #1#))) (-5 *3 (-584 (-1091)))
- (-5 *4 (-82)) (-5 *1 (-378))))
- ((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-575 *2)) (-4 *2 (-145))))
+ (AND
+ (|isDomain| *2 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)))
+ (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|Boolean|))
+ (|isDomain| *1 (|FortranType|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InfiniteTuple| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|LieAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145))))
+ (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|LiePolynomial| *3 *4))
+ (|ofCategory| *4 (|CommutativeRing|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145))))
+ (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|LiePolynomial| *3 *4))
+ (|ofCategory| *4 (|CommutativeRing|))))
((*1 *1 *2 *2)
- (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-145))))
+ (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|LiePolynomial| *3 *4))
+ (|ofCategory| *4 (|CommutativeRing|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|ModuleMonomial| *2 *3 *4))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofType| *4
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *3))
+ (|Record| (|:| |index| *2) (|:| |exponent| *3))))))
((*1 *1 *2 *3)
- (-11 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014))
- (-13 *4
- (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *3))
- (-2 (|:| -2402 *2) (|:| -2403 *3))))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750))))
- ((*1 *1 *2 *3) (-11 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014))
- (-5 *1 (-799 *3 *4)) (-4 *3 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *5)) (-4 *5 (-12 (-1014) (-31)))
- (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5))
- (-4 *3 (-12 (-1014) (-31)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5))))
- (-4 *4 (-12 (-1014) (-31))) (-4 *5 (-12 (-1014) (-31)))
- (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1055 *3 *4))))
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|Signature|))
+ (|isDomain| *1 (|OperatorSignature|))))
((*1 *1 *2 *3)
- (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31)))))
+ (AND (|isDomain| *1 (|Pair| *2 *3)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2)
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| *4))))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchResult| *3 *4))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| *5))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|List| (|SplittingNode| *3 *5)))
+ (|isDomain| *1 (|SplittingNode| *3 *5))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Record| (|:| |val| *4) (|:| |tower| *5))))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|List| (|SplittingNode| *4 *5)))
+ (|isDomain| *1 (|SplittingNode| *4 *5))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Record| (|:| |val| *3) (|:| |tower| *4)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingNode| *3 *4))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31)))))
+ (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
((*1 *1 *2 *3 *2 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-12 (-1014) (-31))) (-5 *1 (-1056 *2 *3))
- (-4 *2 (-12 (-1014) (-31)))))
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))) (-5 *1 (-1056 *2 *3))))
+ (AND (|isDomain| *4 (|List| (|SplittingNode| *2 *3)))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *2 *3))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3))
- (-4 *2 (-12 (-1014) (-31))) (-4 *3 (-12 (-1014) (-31)))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4))))
- ((*1 *1 *2 *3) (-11 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-107))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-126))))
- ((*1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-418))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-529))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-566))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))))
- ((*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-107))))
- ((*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-126))))
- ((*1 *2 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-418))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-529))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-566))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))))
- ((*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-82))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))))
+ (AND (|isDomain| *4 (|List| (|SplittingTree| *2 *3)))
+ (|isDomain| *1 (|SplittingTree| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *3 *4))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|SuchThat| *2 *3)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|CaseAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ColonAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|HasAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IsAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|LetAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *1 (|RewriteRule| *3 *4 *2))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|SuchThat| *2 *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|CaseAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|TypeAst|)) (|isDomain| *1 (|ColonAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|HasAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IsAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|LetAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *1 (|RewriteRule| *3 *4 *2))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|SuchThat| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1) (-11 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursiveAggregate| *3))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|List| (|SubSpace| *3 *4)))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-962))))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|SubSpace| *3 *4)))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|))))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831))))
+ (AND (|isDomain| *3 (|Point| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
- (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|Point| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)))))
+ (AND (|isDomain| *2 (|Point| *4)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|)))))
(((*1 *1 *1 *1 *2 *3)
- (-11 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|Point| *5)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|SubSpace| *4 *5))
+ (|ofType| *4 (|PositiveInteger|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Point| *5))
+ (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|SubSpace| *4 *5))
+ (|ofType| *4 (|PositiveInteger|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
- (-5 *1 (-1080 *4 *5)) (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|Point| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-82)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831)) (-4 *5 (-962)))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|Boolean|)) (|isDomain| *1 (|SubSpace| *4 *5))
+ (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-695))) (-5 *3 (-144)) (-5 *1 (-1080 *4 *5))
- (-13 *4 (-831)) (-4 *5 (-962)))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *3 (|SubSpaceComponentProperty|))
+ (|isDomain| *1 (|SubSpace| *4 *5)) (|ofType| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|Ring|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|Point| *4)) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-144)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-262))))
+ (AND (|isDomain| *2 (|SubSpaceComponentProperty|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ExitAst|))))
((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-11 (-5 *1 (-1080 *2 *3)) (-13 *2 (-831)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SubSpace| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|SubSpace| *2 *3)) (|ofType| *2 (|PositiveInteger|))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|List| (|Point| *4))) (|isDomain| *1 (|SubSpace| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392))))
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *2 (|GcdDomain|))))
((*1 *1 *1)
- (-11 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-349 *3)))))
- ((*1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4))
+ (|ofCategory| *2 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *3 (-392))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|GcdDomain|))))
((*1 *1 *1)
- (-11 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|))))
((*1 *2 *2 *3)
- (-11 (-4 *3 (-257)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|SubResultantPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|PrimitiveArray| *3))
+ (|isDomain| *1 (|SubResultantPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-32)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1) (-4 *1 (-433)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63))) ((*1 *1 *1 *1) (-5 *1 (-178)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-329)))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|Float|)))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *1 *1) (-4 *1 (-63)))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))
((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-231 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *3))
+ (|isDomain| *1 (|ElementaryFunctionsUnivariateLaurentSeries| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariateLaurentSeriesConstructorCategory| *3 *4))))
((*1 *2 *2)
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-232 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3))
+ (|isDomain| *1
+ (|ElementaryFunctionsUnivariatePuiseuxSeries| *3 *4 *2 *5))
+ (|ofCategory| *2 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4))
+ (|ofCategory| *5 (|PartialTranscendentalFunctions| *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1077 *3))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-35 (-349 (-485)))) (-5 *1 (-1078 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-35 (-349 (-485))))
- (-5 *2 (-2 (|:| -3493 (-1070 *4)) (|:| -3494 (-1070 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-35 (-349 (-485))))
- (-5 *2 (-2 (|:| -3641 (-1070 *4)) (|:| -3637 (-1070 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |sinh| #1=(|Stream| *4)) (|:| |cosh| #1#)))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *4))
+ (|isDomain| *3 (|Stream| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |sin| #1=(|Stream| *4)) (|:| |cos| #1#)))
+ (|isDomain| *1 (|StreamTranscendentalFunctions| *4))
+ (|isDomain| *3 (|Stream| *4)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-311))
- (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))))
+ (AND (|isDomain| *3 (|Mapping| *4 (|Integer|)))
+ (|isDomain| *5 (|Mapping| (|Stream| *4))) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Stream| *4))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-1070 *4)) (-4 *4 (-35 *3)) (-4 *4 (-962)) (-5 *3 (-349 (-485)))
- (-5 *1 (-1076 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))
- (-4 *4 (-35 (-349 (-485)))) (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|ofCategory| *4 (|Algebra| *3))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))
+ (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3))
- (-4 *3 (-35 (-349 (-485)))) (-4 *3 (-962)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))
- (-4 *4 (-962)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (AND (|isDomain| *4 (|Mapping| (|Stream| *3))) (|isDomain| *2 (|Stream| *3))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|PolynomialComposition| *2 *3))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962))
- (-5 *1 (-1076 *4)))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Mapping| *4 (|Integer|)))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *1 (-727 *4 *2)) (-4 *2 (-12 (-26 *4) (-1116) (-872)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|ODEIntegration| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *4)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))))
+ ((*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962))
- (-5 *3 (-485)))))
+ (AND (|isDomain| *2 (|Stream| (|Integer|)))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962))
- (-5 *3 (-485)))))
+ (AND (|isDomain| *2 (|Stream| (|Integer|)))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))))
(((*1 *1 *1)
- (|partial| -11 (-5 *1 (-122 *2 *3 *4)) (-13 *2 (-831)) (-4 *3 (-311))
- (-13 *4 (-907 *2 *3))))
+ (|partial| AND (|isDomain| *1 (|CliffordAlgebra| *2 *3 *4))
+ (|ofType| *2 (|PositiveInteger|)) (|ofCategory| *3 (|Field|))
+ (|ofType| *4 (|QuadraticForm| *2 *3))))
+ ((*1 *1 *1)
+ (|partial| AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|EuclideanModularRing| *2 *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 (|Mapping| *3 *3 *4))
+ (|ofType| *6 (|Mapping| (|Union| *4 "failed") *4 *4))
+ (|ofType| *7 (|Mapping| (|Union| *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (|partial| -11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1156 *2)) (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4))
- (-13 *6 (-1 (-3 *4 "failed") *4 *4))
- (-13 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496))))
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *1 *1)
- (|partial| -11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
- ((*1 *1) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664)))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3))))
+ (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|)))
+ ((*1 *1 *1) (|partial| |ofCategory| *1 (|Monoid|)))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *3)))
+ (|isDomain| *1 (|NormalizationPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3))))
((*1 *2 *2 *1)
- (|partial| -11 (-4 *1 (-981 *3 *2)) (-4 *3 (-12 (-756) (-311)))
- (-4 *2 (-1156 *3))))
+ (|partial| AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *3 *2))
+ (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
(((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-496))))
+ (|partial| AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))
- (-4 *2 (-496))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-496)))
+ (|partial| AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1 *1) (|partial| |ofCategory| *1 (|IntegralDomain|)))
((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-496))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-695)))
+ (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1 *1) (|partial| |isDomain| *1 (|NonNegativeInteger|)))
((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
+ (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496))
- (-5 *1 (-883 *3 *4))))
+ (AND (|isDomain| *2 (|Vector| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *4))))
((*1 *1 *1 *2)
- (|partial| -11 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962))
- (-4 *5 (-195 *4 *2)) (-4 *6 (-195 *3 *2)) (-4 *2 (-496))))
+ (|partial| AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *2 *5 *6))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *4 *2))
+ (|ofCategory| *6 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *2 (|IntegralDomain|))))
((*1 *2 *2 *2)
- (|partial| -11 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
+ (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stream| *3)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-82))
- (-5 *1 (-1070 *4)))))
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Stream| *4)))))
(((*1 *2 *3 *1)
- (-11
- (-5 *2 (-2 (|:| |cycle?| (-82)) (|:| -2598 (-695)) (|:| |period| (-695))))
- (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *2 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))))
-(((*1 *1) (-5 *1 (-515)))
- ((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769))))
- ((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |cycle?| (|Boolean|))
+ (|:| |prefix| #1=(|NonNegativeInteger|)) (|:| |period| #1#)))
+ (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *3 (|NonNegativeInteger|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|Stream| *3))) (|isDomain| *1 (|Stream| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *1 *2 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *1) (AND (|isDomain| *1 (|Stream| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1) (|isDomain| *1 (|IOMode|)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|OutputPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|OutputPackage|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|OutputForm|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputPackage|))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014))
- (-4 *4 (-1130)))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *4 (|Type|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Stream| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))))
(((*1 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stream| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Vector| (|List| (|Integer|))))
+ (|isDomain| *1 (|HallBasis|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|InfiniteTuple| *3))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stream| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stream| *3)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|InfiniteTuple| *3))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stream| *3)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|InfiniteTuple| *3))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stream| *3)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-12 (-496) (-117))) (-5 *1 (-476 *4 *2))
- (-4 *2 (-1173 *4))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|InfiniteProductCharacteristicZero| *4 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))))
((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-12 (-311) (-319) (-554 *3))) (-4 *5 (-1156 *4))
- (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| *3)))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|MonogenicAlgebra| *4 *5))
+ (|isDomain| *1 (|InfiniteProductFiniteField| *4 *5 *6 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *6))))
((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-12 (-311) (-319) (-554 *3)))
- (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| *3)))
+ (|isDomain| *1 (|InfiniteProductPrimeField| *4 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4))))
((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-12 (-496) (-117)))
- (-5 *1 (-1069 *4)))))
+ (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|StreamInfiniteProduct| *4)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (AND (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|InfiniteProductCharacteristicZero| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|MonogenicAlgebra| *3 *4))
+ (|isDomain| *1 (|InfiniteProductFiniteField| *3 *4 *5 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|StreamInfiniteProduct| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (AND (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|InfiniteProductCharacteristicZero| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|MonogenicAlgebra| *3 *4))
+ (|isDomain| *1 (|InfiniteProductFiniteField| *3 *4 *5 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|StreamInfiniteProduct| *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-117))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (AND (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|InfiniteProductCharacteristicZero| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|MonogenicAlgebra| *3 *4))
+ (|isDomain| *1 (|InfiniteProductFiniteField| *3 *4 *5 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5))))
((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-319) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))))
+ (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))
((*1 *2 *2)
- (-11 (-5 *2 (-1070 *3)) (-4 *3 (-12 (-496) (-117))) (-5 *1 (-1069 *3)))))
-(((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-464))))
- ((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-1068)))))
+ (AND (|isDomain| *2 (|Stream| *3))
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|StreamInfiniteProduct| *3)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|InAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|StepAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|StepAst|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|SpadAst|))) (|isDomain| *1 (|StepAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|StepAst|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
- ((*1 *1) (-4 *1 (-1067))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-1067)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))))
+ ((*1 *1) (|ofCategory| *1 (|StepThrough|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|StepThrough|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|StreamAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|Stack| *3)))))
(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3))
- (-4 *3 (-978 *5 *6 *7))))
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|RegularTriangularSet| *5 *6 *7 *3)))
+ (|isDomain| *1 (|RegularTriangularSet| *5 *6 *7 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))))
((*1 *1 *2 *1)
- (-11 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5))))
((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3))
- (-4 *3 (-978 *5 *6 *7)))))
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|SquareFreeRegularTriangularSet| *5 *6 *7 *3)))
+ (|isDomain| *1 (|SquareFreeRegularTriangularSet| *5 *6 *7 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|RegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|RegularTriangularSet| *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-82)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8)))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|SquareFreeRegularTriangularSet| *5 *6 *7 *8)))
+ (|isDomain| *1 (|SquareFreeRegularTriangularSet| *5 *6 *7 *8)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8)))))
- (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |val| (|List| *8))
+ (|:| |towers|
+ (|List| (|RegularTriangularSet| *5 *6 *7 *8)))))
+ (|isDomain| *1 (|RegularTriangularSet| *5 *6 *7 *8))
+ (|isDomain| *3 (|List| *8))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8)))))
- (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186))
- (-5 *1 (-982 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186))
- (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |val| (|List| *8))
+ (|:| |towers|
+ (|List|
+ (|SquareFreeRegularTriangularSet| *5 *6 *7 *8)))))
+ (|isDomain| *1 (|SquareFreeRegularTriangularSet| *5 *6 *7 *8))
+ (|isDomain| *3 (|List| *8)))))
+(((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) (|:| |tower| *9))))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) (|:| |tower| *9))))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *2 *5 *6)
- (-11
- (-5 *5
- (-2 (|:| |done| (-584 *11))
- (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11))))))
- (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11))))
- (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
- (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
- (-5 *1 (-982 *7 *8 *9 *10 *11))))
+ (AND
+ (|isDomain| *5
+ (|Record| (|:| |done| (|List| *11))
+ (|:| |todo|
+ (|List| (|Record| (|:| |val| *3) (|:| |tower| *11))))))
+ (|isDomain| *6 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|List| *10)) (|:| |tower| *11))))
+ (|isDomain| *3 (|List| *10)) (|isDomain| *4 (|List| *11))
+ (|ofCategory| *10 (|RecursivePolynomialCategory| *7 *8 *9))
+ (|ofCategory| *11 (|RegularTriangularSetCategory| *7 *8 *9 *10))
+ (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|OrderedSet|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
- (-11
- (-5 *5
- (-2 (|:| |done| (-584 *11))
- (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11))))))
- (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11))))
- (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
- (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
- (-5 *1 (-1060 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2338 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3092 (-349 *6)) (|:| |special| (-349 *6))))
- (-5 *1 (-667 *5 *6)) (-5 *3 (-349 *6))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4))
- (-4 *3 (-1156 *4))))
+ (AND
+ (|isDomain| *5
+ (|Record| (|:| |done| (|List| *11))
+ (|:| |todo|
+ (|List| (|Record| (|:| |val| *3) (|:| |tower| *11))))))
+ (|isDomain| *6 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|List| *10)) (|:| |tower| *11))))
+ (|isDomain| *3 (|List| *10)) (|isDomain| *4 (|List| *11))
+ (|ofCategory| *10 (|RecursivePolynomialCategory| *7 *8 *9))
+ (|ofCategory| *11 (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *10))
+ (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|OrderedSet|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *10 *11)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5))
+ (|isDomain| *2
+ (|Record| (|:| |id| (|FractionalIdeal| *4 (|Fraction| *4) *5 *6))
+ (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |poly| *6) (|:| |normal| #1=(|Fraction| *6))
+ (|:| |special| #1#)))
+ (|isDomain| *1 (|MonomialExtensionTools| *5 *6))
+ (|isDomain| *3 (|Fraction| *6))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialDecomposition| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *4 *4)
- (|partial| -11 (-5 *4 (-695)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3141 *3) (|:| -3140 *3))) (-5 *1 (-808 *3 *5))
- (-4 *3 (-1156 *5))))
+ (|partial| AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |left| *3) (|:| |right| *3)))
+ (|isDomain| *1 (|PolynomialDecomposition| *3 *5))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
((*1 *2 *3 *2 *4 *4)
- (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8))
+ (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8))
+ (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
- (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8))
+ (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-11 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-82))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8))
+ (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *5 (-695)) (-5 *6 (-82)) (-4 *7 (-392)) (-4 *8 (-718))
- (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|Boolean|))
+ (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *7 *8 *9))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *7 *8 *9 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *5 (-695)) (-5 *6 (-82)) (-4 *7 (-392)) (-4 *8 (-718))
- (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|Boolean|))
+ (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *7 *8 *9))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
+ (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-111))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1) (-5 *1 (-111))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-82)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-82)))))
-(((*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-82)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))
+ (AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |done| (|List| *4))
+ (|:| |todo|
+ (|List|
+ (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4
+ (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RegularSetDecompositionPackage| *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1
+ (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|)))
+ ((*1 *1 *1) (|isDomain| *1 (|Character|)))
+ ((*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))))
+(((*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|)))
+ ((*1 *1 *1) (|isDomain| *1 (|Character|)))
+ ((*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))))
+(((*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1 *1 *3)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *6))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|ListToMap| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130))
- (-5 *1 (-586 *5 *2))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|ListToMap| *5 *2))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5))))
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| *5))
+ (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|Mapping| *5 *6)) (|isDomain| *1 (|ListToMap| *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130))
- (-5 *1 (-586 *5 *2))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|Type|))
+ (|isDomain| *1 (|ListToMap| *5 *2))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014))
- (-4 *6 (-1130)) (-5 *1 (-586 *5 *6))))
+ (AND (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *3 (|List| *5))
+ (|isDomain| *4 (|List| *6)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014))
- (-4 *2 (-1130)) (-5 *1 (-586 *5 *2))))
- ((*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-114)) (-5 *2 (-695)))))
-(((*1 *2 *1 *1 *3) (-11 (-4 *1 (-1059)) (-5 *3 (-114)) (-5 *2 (-82)))))
-(((*1 *1 *1 *2 *1) (-11 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))))
-(((*1 *2 *1) (-11 (-4 *1 (-102)) (-5 *2 (-695))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2))
+ (|isDomain| *6 (|Mapping| *2 *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *2))))
+ ((*1 *2 *1 *1 *3)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1 *1 *3)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|StringAggregate|))
+ (|isDomain| *2 (|UniversalSegment| (|Integer|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|CachableSet|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *3 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-69))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|BasicType|))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1130)) (-5 *2 (-485))))
- ((*1 *2 *1) (-11 (-5 *2 (-1034)) (-5 *1 (-468))))
- ((*1 *2 *3 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-111))))
- ((*1 *2 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-485)))))
-(((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|InputBinaryFile|))))
+ ((*1 *2 *3 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *3 (|CharacterClass|))))
+ ((*1 *2 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|)))))
((*1 *2 *3 *1)
- (-11 (-5 *2 (-2 (|:| |less| (-91 *3)) (|:| |greater| (-91 *3))))
- (-5 *1 (-91 *3)) (-4 *3 (-757))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-520 *4)) (-4 *4 (-12 (-26 *3) (-1116)))
- (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-520 (-349 (-858 *3))))
- (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3092 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-311)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-111)) (-5 *2 (-584 *1)) (-4 *1 (-1059))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-111))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1059)) (-5 *2 (-114)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |less| #1=(|BinarySearchTree| *3)) (|:| |greater| #1#)))
+ (|isDomain| *1 (|BinarySearchTree| *3)) (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|IntegrationResult| *4))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *3)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|IntegrationResultToFunction| *3 *4))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|IntegrationResult| (|Fraction| (|Polynomial| *3))))
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|IntegrationResultRFToFunction| *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *3 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |normal| *3) (|:| |special| *3)))
+ (|isDomain| *1 (|MonomialExtensionTools| *5 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Vector| *5)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *5))))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|isDomain| *3 (|List| (|Matrix| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Vector| (|Vector| *5))) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *5))))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|isDomain| *3 (|List| (|Matrix| *5)))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|CharacterClass|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|StringAggregate|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Character|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|StringAggregate|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|))
+ (|isDomain| *2 (|CharacterClass|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|))
+ (|isDomain| *2 (|CharacterClass|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|))
+ (|isDomain| *2 (|CharacterClass|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))))
(((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695))
- (-4 *5 (-145))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5))
+ (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|))))
((*1 *1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145))))
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|))))
((*1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
((*1 *1 *2)
- (-11 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-323 *3))
- (-4 *4 (-323 *3))))
- ((*1 *1 *1) (-11 (-5 *1 (-1057 *2 *3)) (-13 *2 (-695)) (-4 *3 (-962)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *2 *4))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|SquareMatrix| *2 *3))
+ (|ofType| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-13 *3 (-695)))))
+ (AND (|isDomain| *2 (|Matrix| *4)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|SquareMatrix| *3 *4))
+ (|ofType| *3 (|NonNegativeInteger|)))))
(((*1 *1 *1)
- (|partial| -11 (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))))))
+ (|partial| AND (|isDomain| *1 (|SplittingTree| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *1 *1)
- (-11 (-5 *1 (-1056 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *1 (|SplittingTree| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|SplittingTree| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4))
- (-4 *3 (-12 (-1014) (-31))) (-4 *4 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|SplittingTree| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1055 *4 *5)) (-4 *4 (-12 (-1014) (-31)))
- (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-82)) (-5 *1 (-1056 *4 *5)))))
+ (AND (|isDomain| *3 (|SplittingNode| *4 *5))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingTree| *4 *5)))))
(((*1 *2 *3 *1 *4)
- (-11 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-82) *6 *6))
- (-4 *5 (-12 (-1014) (-31))) (-4 *6 (-12 (-1014) (-31))) (-5 *2 (-82))
- (-5 *1 (-1056 *5 *6)))))
+ (AND (|isDomain| *3 (|SplittingNode| *5 *6))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *6 *6))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *6 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingTree| *5 *6)))))
(((*1 *1 *2 *1)
- (-11 (-4 *1 (-317 *2)) (-4 *1 (-121 *2)) (-4 *2 (-1130)) (-4 *2 (-69))))
+ (AND (|ofCategory| *1 (|FiniteAggregate| *2))
+ (|ofCategory| *1 (|Collection| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|BasicType|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|FiniteAggregate| *3))
+ (|ofCategory| *1 (|Collection| *3)) (|ofCategory| *3 (|Type|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-121 *3))
- (-4 *3 (-1130))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|LazyStreamAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *1 *2 *1 *3)
- (-11 (-5 *2 (-1 (-82) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
- ((*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|Multiset| *4))))
+ ((*1 *1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Multiset| *2))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))))
+ (AND (|isDomain| *2 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *3 *4)))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-192 *3))
- (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-317 *2)) (-4 *1 (-192 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-69))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|FiniteAggregate| *3))
+ (|ofCategory| *1 (|DictionaryOperations| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAggregate| *2))
+ (|ofCategory| *1 (|DictionaryOperations| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
((*1 *2 *3 *1)
- (|partial| -11 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))
+ (|partial| AND (|ofCategory| *1 (|KeyedDictionary| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2 *1 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|Multiset| *4))))
((*1 *1 *2 *1 *3)
- (-11 (-5 *2 (-1 (-82) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
- ((*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Multiset| *2))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))))
+ (AND (|isDomain| *2 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *3 *4)))))
(((*1 *1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-82) *5 *5))
- (-4 *4 (-12 (-1014) (-31))) (-4 *5 (-12 (-1014) (-31)))
- (-5 *1 (-1056 *4 *5))))
+ (AND (|isDomain| *2 (|List| (|SplittingNode| *4 *5)))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *4 *5))))
((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))) (-5 *1 (-1056 *3 *4)))))
-(((*1 *2 *1) (-11 (-4 *1 (-31)) (-5 *2 (-82))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-82))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-768))))
- ((*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-877))))
- ((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-903))))
- ((*1 *2 *1) (-11 (-4 *1 (-924 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-12 (-1014) (-31))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-12 (-1014) (-31))))))
-(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-82))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))))))
-(((*1 *1 *1) (-4 *1 (-31))) ((*1 *1 *1) (-5 *1 (-83)))
- ((*1 *1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962))))
+ (AND (|isDomain| *2 (|List| (|SplittingNode| *3 *4)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingTree| *3 *4)))))
+(((*1 *2 *1) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OrdSetInts|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|Property|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|QueryEquation|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
+(((*1 *2 *1)
+ (|partial| AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
+(((*1 *1 *1) (|ofCategory| *1 (|Aggregate|)))
+ ((*1 *1 *1) (|isDomain| *1 (|BasicOperator|)))
+ ((*1 *1 *1) (|isDomain| *1 (|SubSpaceComponentProperty|)))
+ ((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
((*1 *1 *1)
- (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *1 *1 *2)
- (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *1 *1 *2)
- (-11 (-5 *1 (-1055 *3 *2)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *2 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *1 (|SplittingNode| *3 *2))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-12 (-1014) (-31)))
- (-4 *4 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *1 *1)
- (-11 (-5 *1 (-1055 *2 *3)) (-4 *2 (-12 (-1014) (-31)))
- (-4 *3 (-12 (-1014) (-31))))))
+ (AND (|isDomain| *1 (|SplittingNode| *2 *3))
+ (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))))
(((*1 *2 *1 *1 *3 *4)
- (-11 (-5 *3 (-1 (-82) *5 *5)) (-5 *4 (-1 (-82) *6 *6))
- (-4 *5 (-12 (-1014) (-31))) (-4 *6 (-12 (-1014) (-31))) (-5 *2 (-82))
- (-5 *1 (-1055 *5 *6)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Boolean|) *5 *5))
+ (|isDomain| *4 (|Mapping| #1# *6 *6))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|ofCategory| *6 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *5 *6)))))
(((*1 *2 *1 *1 *3)
- (-11 (-5 *3 (-1 (-82) *5 *5)) (-4 *5 (-12 (-1014) (-31))) (-5 *2 (-82))
- (-5 *1 (-1055 *4 *5)) (-4 *4 (-12 (-1014) (-31))))))
-(((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1) (-5 *1 (-178))) ((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-178)) (-5 *3 (-695)) (-5 *1 (-179))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-141 (-178))) (-5 *3 (-695)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1 *1) (-5 *1 (-178)))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-974))))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *1 *1) (-4 *1 (-715)))
- ((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)) (-4 *2 (-974))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)) (-4 *2 (-974))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
- ((*1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5))
+ (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *4 *5))
+ (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|RealNumberSystem|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *1 *1) (|ofCategory| *1 (|OrderedAbelianGroup|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|RealNumberSystem|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|RealNumberSystem|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|OutputForm|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|OutputForm|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|OutputForm|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SpecialOutputPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|OutputForm|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SpecialOutputPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|List| (|Syntax|)))
+ (|isDomain| *1 (|SpadParser|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|SubSpace| 3 *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))))
(((*1 *2)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *5 *6))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *5 *6))))
((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))))
-(((*1 *2 *1) (-11 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962))
- (-5 *2 (-695)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))))
-(((*1 *1 *2 *2) (-11 (-5 *1 (-788 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *2 *2) (-11 (-5 *1 (-790 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (AND (|isDomain| *3 (|List| (|Point| *4)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *2 *2)
+ (AND (|isDomain| *1 (|ParametricPlaneCurve| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *1 (|ParametricSpaceCurve| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|Point| *3)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (AND (|isDomain| *2 (|List| (|Point| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|Point| *3)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (AND (|isDomain| *2 (|List| (|Point| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|Point| *3)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))))
+ (AND (|isDomain| *2 (|List| (|Point| *3)))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3))))))
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Point| *3))))))
((*1 *1 *2 *3 *3)
- (-11 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-82)) (-4 *4 (-962))
- (-4 *1 (-1049 *4))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| *4))))
+ (|isDomain| *3 (|Boolean|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *4))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| *3))))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3))))
((*1 *1 *1 *2 *3 *3)
- (-11 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-82)) (-4 *1 (-1049 *4))
- (-4 *4 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| (|List| *4))))
+ (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4))
+ (|ofCategory| *4 (|Ring|))))
((*1 *1 *1 *2 *3 *3)
- (-11 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-82)) (-4 *1 (-1049 *4))
- (-4 *4 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| *4))))
+ (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4))
+ (|ofCategory| *4 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-144))) (-5 *4 (-144))
- (-4 *1 (-1049 *5)) (-4 *5 (-962))))
+ (AND (|isDomain| *2 (|List| (|List| (|List| *5))))
+ (|isDomain| *3 (|List| (|SubSpaceComponentProperty|)))
+ (|isDomain| *4 (|SubSpaceComponentProperty|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|))))
((*1 *1 *1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-144))) (-5 *4 (-144))
- (-4 *1 (-1049 *5)) (-4 *5 (-962)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| *5))))
+ (|isDomain| *3 (|List| (|SubSpaceComponentProperty|)))
+ (|isDomain| *4 (|SubSpaceComponentProperty|))
+ (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|Point| *3))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))))
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|List| (|NonNegativeInteger|))))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962))
- (-5 *2 (-584 (-584 (-584 (-855 *3))))))))
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|List| (|Point| *3))))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-144)))))))
-(((*1 *2 *1) (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-144))))))
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|SubSpaceComponentProperty|)))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1049 *3)) (-4 *3 (-962))
- (-5 *2
- (-2 (|:| -3854 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695))
- (|:| |constructs| (-695)))))))
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|List| (|SubSpaceComponentProperty|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |points| (|NonNegativeInteger|))
+ (|:| |curves| (|NonNegativeInteger|))
+ (|:| |polygons| (|NonNegativeInteger|))
+ (|:| |constructs| (|NonNegativeInteger|)))))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3735 (-1086 *6)) (|:| -2403 (-485)))))
- (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
- ((*1 *1 *1) (-11 (-4 *1 (-1049 *2)) (-4 *2 (-962)))))
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *6))
+ (|:| |exponent| (|Integer|)))))
+ (|ofCategory| *6 (|EuclideanDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2))
- (-4 *2 (-12 (-539 (-485) *4) (-317 *4) (-1036 *4)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|SortPackage| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|IndexedAggregate| (|Integer|) *4)
+ (|FiniteAggregate| *4)
+ (|ShallowlyMutableAggregate| *4)))))
((*1 *2 *2)
- (-11 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2))
- (-4 *2 (-12 (-539 (-485) *3) (-317 *3) (-1036 *3))))))
+ (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|SortPackage| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|IndexedAggregate| (|Integer|) *3)
+ (|FiniteAggregate| *3)
+ (|ShallowlyMutableAggregate| *3))))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2))
- (-4 *2 (-12 (-539 (-485) *4) (-317 *4) (-1036 *4)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|SortPackage| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|IndexedAggregate| (|Integer|) *4)
+ (|FiniteAggregate| *4)
+ (|ShallowlyMutableAggregate| *4)))))
((*1 *2 *2)
- (-11 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2))
- (-4 *2 (-12 (-539 (-485) *3) (-317 *3) (-1036 *3))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4))
- (-5 *1 (-384 *4 *2))))
+ (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|SortPackage| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|IndexedAggregate| (|Integer|) *3)
+ (|FiniteAggregate| *3)
+ (|ShallowlyMutableAggregate| *3))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *2))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *2 (-349 (-1086 (-264 *5)))) (-5 *3 (-1180 (-264 *5)))
- (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))))
+ (AND
+ (|isDomain| *2
+ (|Fraction| (|SparseUnivariatePolynomial| (|Expression| *5))))
+ (|isDomain| *3 (|Vector| (|Expression| *5))) (|isDomain| *4 (|Integer|))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|TransSolvePackageService| *5)))))
(((*1 *2 *2 *2 *2)
- (-11 (-5 *2 (-349 (-1086 (-264 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3)))))
+ (AND
+ (|isDomain| *2
+ (|Fraction| (|SparseUnivariatePolynomial| (|Expression| *3))))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|TransSolvePackageService| *3)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-248 (-349 (-858 *5)))) (-5 *4 (-1091))
- (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-1081 (-584 (-264 *5)) (-584 (-248 (-264 *5)))))
- (-5 *1 (-1044 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-1081 (-584 (-264 *5)) (-584 (-248 (-264 *5)))))
- (-5 *1 (-1044 *5)))))
+ (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|SuchThat| (|List| (|Expression| *5))
+ (|List| (|Equation| (|Expression| *5)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|SuchThat| (|List| (|Expression| *5))
+ (|List| (|Equation| (|Expression| *5)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-584 (-264 *5))) (-5 *1 (-1044 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-264 *5))))
- (-5 *1 (-1044 *5)))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Expression| *5)))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Expression| *5))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *5))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-12 (-257) (-117)))
- (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-248 (-349 (-858 *5)))) (-5 *4 (-1091))
- (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-248 (-264 *5))))
- (-5 *1 (-1044 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *4))))
+ (|isDomain| *1 (|RadicalSolvePackage| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *5))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-248 (-349 (-858 *4)))) (-4 *4 (-12 (-257) (-117)))
- (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 *5)))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *5)))))
- (-5 *1 (-1044 *5))))
+ (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|Equation| (|Expression| *4))))
+ (|isDomain| *1 (|RadicalSolvePackage| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-349 (-858 *4)))) (-4 *4 (-12 (-257) (-117)))
- (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1044 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-248 (-349 (-858 *5))))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-12 (-257) (-117))) (-5 *2 (-584 (-584 (-248 (-264 *5)))))
- (-5 *1 (-1044 *5))))
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *4)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-248 (-349 (-858 *4))))) (-4 *4 (-12 (-257) (-117)))
- (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1044 *4)))))
+ (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *4)))))
+ (|isDomain| *1 (|RadicalSolvePackage| *4)))))
(((*1 *2 *2 *2 *2 *2 *2)
- (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (AND
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *2 *2 *2 *2)
- (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (AND
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *2 *2 *2)
- (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (AND
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *2 *2)
- (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (AND
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *3 *3 *3 *3)
- (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *4 *3))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *3 *3 *3)
- (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *4 *3))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *3 *3)
- (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *4 *3))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *4))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *3)
- (-11 (-4 *3 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *5 *5))
- (-4 *5 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *2
- (-2 (|:| |solns| (-584 *5))
- (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *4 *3))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *5 *5))
+ (|ofCategory| *5
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *2
+ (|Record| (|:| |solns| (|List| *5))
+ (|:| |maps|
+ (|List| (|Record| (|:| |arg| *5) (|:| |res| *5))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *5))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *3 *2)
- (|partial| -11 (-4 *4 (-311)) (-4 *5 (-12 (-323 *4) (-1036 *4)))
- (-4 *2 (-12 (-323 *4) (-1036 *4))) (-5 *1 (-610 *4 *5 *2 *3))
- (-4 *3 (-628 *4 *5 *2))))
+ (|partial| AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5
+ (|Join| (|FiniteLinearAggregate| *4)
+ (|ShallowlyMutableAggregate| *4)))
+ (|ofCategory| *2
+ (|Join| (|FiniteLinearAggregate| *4)
+ (|ShallowlyMutableAggregate| *4)))
+ (|isDomain| *1 (|LinearSystemMatrixPackage| *4 *5 *2 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *2))))
((*1 *2 *3 *2)
- (|partial| -11 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311))
- (-5 *1 (-611 *4))))
+ (|partial| AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Matrix| *4))
+ (|ofCategory| *4 (|Field|))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *4))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -11 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311))
- (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2))))
+ (|partial| AND (|isDomain| *4 (|List| *2)) (|isDomain| *5 (|Mapping| *2 *2))
+ (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|ODETools| *2 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))))
((*1 *2 *3)
- (-11 (-4 *2 (-12 (-311) (-10 -8 (-14 ** ($ $ (-349 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (AND
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain|
+ (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))))
+ (|isDomain| *1 (|PolynomialSolveByFormulas| *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757))
- (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7))
- (-5 *1 (-1041 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| (|Stream| *7)))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *5 (|IndexedExponents| *6) *6))
+ (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Mapping| (|Stream| *7) *7))
+ (|isDomain| *1 (|SparseMultivariateTaylorSeries| *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-257)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-257)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))))
+ (AND (|ofCategory| *5 (|EuclideanDomain|))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *5))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 "failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|SmithNormalForm| *5 *6 *4 *3))
+ (|ofCategory| *3 (|MatrixCategory| *5 *6 *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2
+ (|Record| (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (|isDomain| *1 (|SmithNormalForm| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-257)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-257)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3))
- (-4 *3 (-628 *4 *5 *6)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|SmithNormalForm| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|Record| (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (|isDomain| *1 (|SmithNormalForm| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|))))
((*1 *2 *2)
- (-11 (-4 *3 (-257)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|SmithNormalForm| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *2)
- (-11 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2))
- (-4 *5 (-195 *3 *2)))))
+ (AND (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5))
+ (|ofCategory| *4 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *2)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6))
- (-4 *5 (-195 *3 *4)) (-4 *6 (-195 *3 *4)))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Matrix| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *5 *6))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *6 (|DirectProductCategory| *3 *4)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4))
- (-4 *2 (-195 *3 *4)))))
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *4 *2 *5))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *2 (|DirectProductCategory| *3 *4)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319))))
- ((*1 *2 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-11 (-4 *1 (-321 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145))))
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2))
+ (|ofCategory| *2 (|Field|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankAlgebra| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-467 *4))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2))
- (-4 *2 (-962)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2))
- (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-352 *2 *4))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2))
- (-4 *2 (-962)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-311))
- (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2))
- (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-145))
- (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2))
- (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2))
- (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-145))
- (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-195 *3 *2)) (-4 *5 (-195 *3 *2))
- (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-962)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-11 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(((*1 *1 *1 *1) (-5 *1 (-82))) ((*1 *1 *1 *1) (-4 *1 (-93)))
- ((*1 *1 *1 *1) (-5 *1 (-1034))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-171))))
- ((*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-381))))
- ((*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-750))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029))))
- ((*1 *2 *1) (-11 (-5 *2 (-1029)) (-5 *1 (-1030)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-153))))
- ((*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-623))))
- ((*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-884))))
- ((*1 *2 *1) (-11 (-5 *2 (-1131)) (-5 *1 (-986))))
- ((*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-1029)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-623))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-1029)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-13 *5 (-1091))
- (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
-(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-13 *5 (-1091))
- (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5))
+ (|ofCategory| *4 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|isDomain| *1 (|IntegralBasisTools| *2 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *2 *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5))
+ (|ofCategory| *4 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Field|))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *2 *4 *5 *3))
+ (|ofCategory| *3 (|MatrixCategory| *2 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *2 *4 *5 *3))
+ (|ofCategory| *3 (|MatrixCategory| *2 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5))
+ (|ofCategory| *4 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *2))
+ (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *2 *4 *5 *3))
+ (|ofCategory| *3 (|MatrixCategory| *2 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SquareMatrixCategory| *3 *2 *4 *5))
+ (|ofCategory| *4 (|DirectProductCategory| *3 *2))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *2))
+ (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *2 *1)
+ (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|StackAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Boolean|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|SingleInteger|))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|Signature|))
+ (|isDomain| *1 (|SignatureAst|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|DefinitionAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|FunctionDescriptor|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|OperatorSignature|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *3 (|Syntax|))
+ (|isDomain| *1 (|Signature|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Signature|)) (|isDomain| *1 (|SignatureAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|TypeAst|)) (|isDomain| *1 (|CoerceAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|TypeAst|)) (|isDomain| *1 (|MappingAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|TypeAst|)) (|isDomain| *1 (|PretendAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|TypeAst|)) (|isDomain| *1 (|RestrictAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Syntax|)) (|isDomain| *1 (|Signature|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|MappingAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Syntax|))) (|isDomain| *1 (|Signature|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485))
- (-5 *1 (-1028 *4 *5)))))
+ (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-485))
- (-5 *1 (-1028 *4 *5)))))
+ (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4))
+ (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 *4))
- (-5 *1 (-1028 *4 *5)))))
+ (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4))
+ (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4)))
- (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
+ (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4))
+ (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-741)) (-13 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4)))
- (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-1023 *3)))))
-(((*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-1022)))))
-(((*1 *2 *2 *2 *3) (-11 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022))))
+ (AND (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|List| (|UnivariatePolynomial| *5 *4)))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5))
+ (|isDomain| *3 (|UnivariatePolynomial| *5 *4)))))
+(((*1 *2 *3 *3)
+ (AND (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|))
+ (|isDomain| *2 (|List| (|UnivariatePolynomial| *5 *4)))
+ (|isDomain| *1 (|SturmHabichtPackage| *4 *5))
+ (|isDomain| *3 (|UnivariatePolynomial| *5 *4)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|))
+ (|isDomain| *1 (|SemiGroupOperation| *3)))))
+(((*1 *2 *3 *3 *3)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3 *3 *3)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3 *3 *3)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
+(((*1 *2 *2 *2 *3)
+ (AND (|isDomain| *2 (|Vector| (|Integer|))) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485))
- (-5 *1 (-1022)))))
+ (AND (|isDomain| *2 (|Vector| #1=(|Integer|))) (|isDomain| *3 (|List| #1#))
+ (|isDomain| *4 (|Integer|))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *3 *2 *4)
- (-11 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-82))
- (-5 *1 (-1022)))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *4 (|Boolean|))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *3 *3 *2)
- (-11 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))))
+ (AND (|isDomain| *2 (|Matrix| (|Integer|)))
+ (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485)))
- (-5 *1 (-1022)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))))
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *4 (|List| (|Integer|)))
+ (|isDomain| *2 (|Matrix| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *2 (|List| (|Matrix| (|Integer|))))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *2 *2 *3)
- (-11 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *3 (|Matrix| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|Matrix| (|Integer|)))
+ (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-82)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-82))
- (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
- (-4 *7 (-718)) (-4 *4 (-757))
- (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9))))
- (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
+ (AND
+ (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) (|:| |tower| *9))))
+ (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *6 *7 *4))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *6 *7 *4 *8))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *8) (|:| |tower| *9))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))))
((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))))
((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1
+ (|SquareFreeRegularTriangularSetGcdPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *9 (-978 *6 *7 *8))
- (-5 *2 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9))))
- (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9))))
+ (|partial| AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |eq| #1=(|List| *9)) (|:| |tower| *4) (|:| |ineq| #1#)))
+ (|isDomain| *1 (|QuasiComponentPackage| *6 *7 *8 *9 *4))
+ (|isDomain| *3 (|List| *9))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *9))))
((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *9 (-978 *6 *7 *8))
- (-5 *2 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9))))
- (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9))
- (-4 *4 (-984 *6 *7 *8 *9)))))
+ (|partial| AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |eq| #2=(|List| *9)) (|:| |tower| *4) (|:| |ineq| #2#)))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *6 *7 *8 *9 *4))
+ (|isDomain| *3 (|List| *9))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *5)
- (-11 (-5 *4 (-584 *10)) (-5 *5 (-82)) (-4 *10 (-984 *6 *7 *8 *9))
- (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
- (-5 *2
- (-584 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9)))))
- (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))
+ (AND (|isDomain| *4 (|List| *10)) (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *10 (|RegularTriangularSetCategory| *6 *7 *8 *9))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eq| #1=(|List| *9)) (|:| |tower| *10)
+ (|:| |ineq| #1#))))
+ (|isDomain| *1 (|QuasiComponentPackage| *6 *7 *8 *9 *10))
+ (|isDomain| *3 (|List| *9))))
((*1 *2 *3 *4 *5 *5)
- (-11 (-5 *4 (-584 *10)) (-5 *5 (-82)) (-4 *10 (-984 *6 *7 *8 *9))
- (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
- (-5 *2
- (-584 (-2 (|:| -3269 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9)))))
- (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7))))
- (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7))))
- (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (AND (|isDomain| *4 (|List| *10)) (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *10 (|RegularTriangularSetCategory| *6 *7 *8 *9))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eq| #2=(|List| *9)) (|:| |tower| *10)
+ (|:| |ineq| #2#))))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *6 *7 *8 *9 *10))
+ (|isDomain| *3 (|List| *9)))))
+(((*1 *2 *2)
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *6)) (|:| |tower| *7))))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|QuasiComponentPackage| *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *6)) (|:| |tower| *7))))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8)))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))))
+ (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8)))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-902 *3 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|List| *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|QuasiComponentPackage| *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|List| *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82))
- (-5 *1 (-902 *5 *6 *7 *8 *3))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82))
- (-5 *1 (-1019 *5 *6 *7 *8 *3)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *3)
- (|partial| -11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3))
- (-4 *3 (-984 *4 *5 *6 *7))))
+ (|partial| AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (|partial| -11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3))
- (-4 *3 (-984 *4 *5 *6 *7)))))
+ (|partial| AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-902 *3 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|List| *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|QuasiComponentPackage| *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-11 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|List| *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-82)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
(((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|QuasiComponentPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))))
((*1 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *3 *4 *5 *6 *7))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|QuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-987))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|SquareFreeQuasiComponentPackage| *4 *5 *6 *7 *8))
+ (|ofCategory| *8 (|RegularTriangularSetCategory| *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RuntimeValue|))))
((*1 *2 *1 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376))))
- ((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| (|Integer|)))))
((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| -3864 (-1091)) (|:| |entry| *4))))
- (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| *4))))
+ (|isDomain| *1 (|PatternMatchResult| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *2 *4 *5 *6))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| *2))))
((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
-(((*1 *1 *2 *2 *3) (-11 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-346))))
- ((*1 *1 *2 *2) (-11 (-5 *2 (-485)) (-4 *1 (-346))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *2 *5 *6))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PositiveInteger|))
+ (|ofCategory| *1 (|FloatingPointSystem|))))
+ ((*1 *1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|FloatingPointSystem|))))
((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *2 *6))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|SetCategory|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+ (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|SetCategory|)))))
(((*1 *1 *1 *2)
- (|partial| -11 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-13 *3 *2) (-13 *4 *2))))
+ (|partial| AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *3 *4)) (|ofType| *3 *2)
+ (|ofType| *4 *2))))
(((*1 *1 *1 *2 *2)
- (|partial| -11 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-13 *3 *2) (-13 *4 *2))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-614))))
+ (|partial| AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *3 *4)) (|ofType| *3 *2)
+ (|ofType| *4 *2))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|ConstructAst|))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831))
- (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831))
- (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|)))))
(((*1 *2)
- (-11 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-13 *3 (-831))
- (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|Vector| (|SetOfMIntegersInOneToN| *3 *4)))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-82)) (-5 *1 (-817 *4))))
+ (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *4))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-831)) (-5 *2 (-82)) (-5 *1 (-1015 *4 *5)) (-13 *4 *3)
- (-13 *5 *3))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *4 *5)) (|ofType| *4 *3)
+ (|ofType| *5 *3))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-13 *4 *3)
- (-13 *5 *3))))
-(((*1 *2 *1) (-11 (-4 *1 (-1014)) (-5 *2 (-1034)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1014)) (-5 *2 (-1074)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
- ((*1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
- ((*1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|SetOfMIntegersInOneToN| *4 *5)) (|ofType| *4 *3)
+ (|ofType| *5 *3))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SetCategory|)) (|isDomain| *2 (|SingleInteger|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SetCategory|)) (|isDomain| *2 (|String|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|SetAggregate| *3))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|SetAggregate| *3))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|PolynomialIdeals| *3 *4 *5 *6)))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 (-551 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1014))
- (-5 *1 (-510 *3 *4))))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-28))))
- ((*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-46))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-103))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-108))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-124))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-132))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-171))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-618))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-933))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-979))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))))
-(((*1 *1 *2 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903))))
+ (AND (|isDomain| *2 (|List| (|Kernel| *4)))
+ (|ofCategory| *4 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|IntegrationTools| *3 *4))))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|PatternMatchResult| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|SetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|AddAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Syntax|)) (|isDomain| *1 (|AnonymousFunction|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CapsuleAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CategoryAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|CollectAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CommaAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|DefinitionAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|MacroAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ReduceAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|RepeatAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|SequenceAst|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SegmentCategory| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Integer|)))))
+(((*1 *1 *2 *2)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Type|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4))
- (-4 *3 (-1007 *4))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|String|))
+ (|isDomain| *1 (|QueryEquation|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-1004)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *1 (-220))))
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|RangeBinding| *3 *4))
+ (|ofCategory| *3 (|SegmentCategory| *4))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Segment| *4))
+ (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SegmentBinding| *4)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|SegmentAst|)))))
+(((*1 *1 *2)
+ (AND
+ (|isDomain| *2
+ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))
+ (|isDomain| *1 (|DrawOption|))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1180 *3))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4))
+ (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *3))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-1180 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *4))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Matrix| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145))
- (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Vector| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-145))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FramedAlgebra| *4 *5))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Matrix| *4))))
((*1 *2 *1)
- (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3))
- (-5 *2 (-1180 *3))))
+ (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|Vector| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-360 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 *3))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *3))))
((*1 *2 *1)
- (-11 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|isDomain| *1 (|LinearElement| *3 *4))
+ (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|isDomain| *1 (|LinearForm| *3 *4))
+ (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311))
- (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))))
+ (AND (|isDomain| *4 (|List| (|Matrix| *5))) (|isDomain| *3 (|Matrix| *5))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Vector| *5))
+ (|isDomain| *1 (|StructuralConstantsPackage| *5)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145))
- (-5 *2 (-1180 (-631 *4)))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|Vector| (|Matrix| *4)))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-1180 (-631 *3)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1091))) (-4 *5 (-311))
- (-5 *2 (-1180 (-631 (-349 (-858 *5))))) (-5 *1 (-999 *5))
- (-5 *4 (-631 (-349 (-858 *5))))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1091))) (-4 *5 (-311)) (-5 *2 (-1180 (-631 (-858 *5))))
- (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1180 (-631 *4)))
- (-5 *1 (-999 *4)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-148))) (-5 *1 (-998)))))
-(((*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-75))) (-5 *1 (-148))))
- ((*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-75))) (-5 *1 (-998)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-75)) (-5 *1 (-998)))))
-(((*1 *1) (-5 *1 (-998))))
-(((*1 *1) (-5 *1 (-998))))
-(((*1 *2 *2 *3) (-11 (-5 *3 (-1 (-82) *2)) (-4 *2 (-102)) (-5 *1 (-997 *2))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|Vector| (|Matrix| *4)))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|Vector| (|Matrix| *3)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Vector| (|Matrix| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|StructuralConstantsPackage| *5))
+ (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *5))))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Vector| (|Matrix| (|Polynomial| *5))))
+ (|isDomain| *1 (|StructuralConstantsPackage| *5))
+ (|isDomain| *4 (|Matrix| (|Polynomial| *5)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Matrix| *4))) (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|Vector| (|Matrix| *4)))
+ (|isDomain| *1 (|StructuralConstantsPackage| *4)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Contour|))) (|isDomain| *1 (|Scope|)))))
+(((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| (|Binding|)))
+ (|isDomain| *1 (|Contour|))))
+ ((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| (|Binding|)))
+ (|isDomain| *1 (|Scope|)))))
+(((*1 *1 *2 *1) (AND (|isDomain| *2 (|Binding|)) (|isDomain| *1 (|Scope|)))))
+(((*1 *1) (|isDomain| *1 (|Scope|))))
+(((*1 *1) (|isDomain| *1 (|Scope|))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *2))
+ (|ofCategory| *2 (|CachableSet|)) (|isDomain| *1 (|SortedCache| *2))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-102)) (-5 *1 (-997 *2)))))
-(((*1 *2) (-11 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-102)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-102)))))
-(((*1 *1) (-5 *1 (-995))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3))
- (-4 *3 (-1021 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5))))))
- (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-117)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *4)) (|:| -3227 (-584 (-858 *4))))))
- (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-13 *5 (-584 (-1091)))))
+ (AND (|isDomain| *3 (|Mapping| (|Integer|) *2 *2))
+ (|ofCategory| *2 (|CachableSet|)) (|isDomain| *1 (|SortedCache| *2)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|SortedCache| *3))
+ (|ofCategory| *3 (|CachableSet|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SortedCache| *3))
+ (|ofCategory| *3 (|CachableSet|)))))
+(((*1 *1) (|isDomain| *1 (|SingletonAsOrderedSet|))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1
+ (|InternalRationalUnivariateRepresentationPackage| *5 *6 *7 *8 *3))
+ (|ofCategory| *3
+ (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5))
+ (|:| |coordinates| (|List| (|Polynomial| *5))))))
+ (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *5 *6))
+ (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|ofType| *6 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *4))
+ (|:| |coordinates| (|List| (|Polynomial| *4))))))
+ (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *4 *5))
+ (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofType| *5 (|List| (|Symbol|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-584 (-2 (|:| -1752 (-1086 *5)) (|:| -3227 (-584 (-858 *5))))))
- (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-13 *6 (-584 (-1091))))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5))
+ (|:| |coordinates| (|List| (|Polynomial| *5))))))
+ (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *5 *6))
+ (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|ofType| *6 (|List| (|Symbol|))))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014))
- (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))
- (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))))
+ (AND (|isDomain| *2 (|List| (|RewriteRule| *3 *4 *5)))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *1 (|Ruleset| *3 *4 *5)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5))
- (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))))
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *2 (|List| (|RewriteRule| *3 *4 *5)))
+ (|isDomain| *1 (|Ruleset| *3 *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3)))))))
(((*1 *1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
- (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4))))))
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|RewriteRule| *4 *5 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))))
((*1 *1 *2 *2)
- (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))))
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *1 (|RewriteRule| *3 *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3)))))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-801 *4)) (-5 *3 (-1 (-82) *5)) (-4 *4 (-1014)) (-4 *5 (-1130))
- (-5 *1 (-802 *4 *5))))
+ (AND (|isDomain| *2 (|Pattern| *4))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *5))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *1 (|PatternFunctions1| *4 *5))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-82) *5))) (-4 *4 (-1014))
- (-4 *5 (-1130)) (-5 *1 (-802 *4 *5))))
+ (AND (|isDomain| *2 (|Pattern| *4))
+ (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *5)))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|))
+ (|isDomain| *1 (|PatternFunctions1| *4 *5))))
((*1 *2 *2 *3 *4)
- (-11 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-82) (-584 *6)))
- (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-5 *4 (-1 (-82) *5)) (-4 *5 (-1130))
- (-5 *2 (-264 (-485))) (-5 *1 (-849 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-82) *5))) (-4 *5 (-1130))
- (-5 *2 (-264 (-485))) (-5 *1 (-849 *5))))
+ (AND (|isDomain| *2 (|Pattern| *5)) (|isDomain| *3 (|List| (|Symbol|)))
+ (|isDomain| *4 (|Mapping| (|Boolean|) (|List| *6)))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *1 (|PatternFunctions1| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Mapping| (|Boolean|) *5))
+ (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|AttachPredicates| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *4 (|List| (|Mapping| (|Boolean|) *5)))
+ (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|AttachPredicates| *5))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1 (-82) *5)) (-4 *5 (-1130)) (-4 *4 (-1014))
- (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-363 *4))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5)) (|ofCategory| *5 (|Type|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAttachPredicates| *4 *2 *5))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-1 (-82) *5))) (-4 *5 (-1130)) (-4 *4 (-1014))
- (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-363 *4))))
+ (AND (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *5)))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAttachPredicates| *4 *2 *5))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-82) (-584 *6)))
- (-4 *6 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 *2)))
- (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5))
- (-4 *5 (-12 (-363 *4) (-797 *3) (-554 *2))))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-1014)) (-4 *4 (-12 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5))
- (-4 *5 (-12 (-363 *4) (-797 *3) (-554 (-801 *3)))))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-153))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-262))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-884))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-908))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-949))))
- ((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-986)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-82)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *3 (|Mapping| (|Boolean|) (|List| *6)))
+ (|ofCategory| *6
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|RewriteRule| *4 *5 *6)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| *2)))
+ (|isDomain| *2 (|Pattern| *3)) (|isDomain| *1 (|RewriteRule| *3 *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| *2))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4
+ (|Join| (|Ring|) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3))))
+ (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *1 (|RewriteRule| *3 *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3)
+ (|ConvertibleTo| (|Pattern| *3)))))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|CoerceAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ExitAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|PretendAst|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|QuasiquoteAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|ReturnAst|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|RestrictAst|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-11 (-5 *5 (-82)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *6 *7 *8 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-82))
- (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
- (-4 *7 (-718)) (-4 *4 (-757))
- (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9))))
- (-5 *1 (-985 *6 *7 *4 *8 *9)))))
+ (AND
+ (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) (|:| |tower| *9))))
+ (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *6 *7 *4))
+ (|ofCategory| *9 (|RegularTriangularSetCategory| *6 *7 *4 *8))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *8) (|:| |tower| *9))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4))))
+ (|isDomain| *1 (|RegularTriangularSetGcdPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-3 (-82) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Union| (|Boolean|) (|List| *1)))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *1))))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962))))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Union| *3 (|List| *1)))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2))
+ (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *2 *3 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *1))))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| *7))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *3 *1)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-20)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-52))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RegularTriangularSetCategory| *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Arity|))))
((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-715)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|IntervalCategory| *3))
+ (|ofCategory| *3
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OrderedAbelianGroup|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-717)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|IntervalCategory| *3))
+ (|ofCategory| *3
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-4 *1 (-981 *4 *3)) (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-29 *3 *2))
- (-4 *2 (-363 *3))))
+ (AND (|ofCategory| *3 (|RetractableTo| (|Integer|)))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-1086 *4)) (-5 *1 (-137 *3 *4))
- (-4 *3 (-138 *4))))
- ((*1 *1 *1) (-11 (-4 *1 (-962)) (-4 *1 (-253))))
- ((*1 *2) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1086 *3))))
- ((*1 *2) (-11 (-4 *1 (-662 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-981 *3 *2)) (-4 *3 (-12 (-756) (-311))) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3) (-11 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-858 (-349 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-11 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1086 (-349 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-756) (-311))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1))
- (-4 *1 (-981 *4 *3)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-24))))
- ((*1 *1 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-24))))
- ((*1 *1 *2) (-11 (-5 *2 (-858 *1)) (-4 *1 (-24))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-4 *1 (-26 *3)) (-4 *3 (-496))))
- ((*1 *1 *1) (-11 (-4 *1 (-26 *2)) (-4 *2 (-496))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-363 *5)) (-5 *1 (-29 *5 *2))
- (-4 *5 (-496))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|ComplexCategory&| *3 *4))
+ (|ofCategory| *3 (|ComplexCategory| *4))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|Ring|)) (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|MonogenicAlgebra| *3 *2))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *3 *2))
+ (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *1)) (|ofCategory| *1 (|RealClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *3)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *2))
+ (|isDomain| *4 (|Symbol|)) (|ofCategory| *2 (|FunctionSpace| *5))
+ (|isDomain| *1 (|AlgebraicFunction| *5 *2))
+ (|ofCategory| *5 (|IntegralDomain|))))
((*1 *1 *2 *3)
- (|partial| -11 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|RealClosedField|))))
((*1 *1 *2 *3 *4)
- (|partial| -11 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773))
- (-4 *1 (-926))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|OutputForm|))
+ (|ofCategory| *1 (|RealClosedField|))))
((*1 *1 *2 *3)
- (|partial| -11 (-5 *3 (-831)) (-4 *4 (-12 (-756) (-311)))
- (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *1 (|RealRootCharacterizationCategory| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-938 *3))
- (-4 *3 (-12 (-756) (-311) (-934)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RealClosure| *3))
+ (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|) (|RealConstant|)))))
((*1 *2 *3 *1 *2)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
((*1 *2 *3 *1 *2)
- (-11 (-4 *1 (-981 *2 *3)) (-4 *2 (-12 (-756) (-311))) (-4 *3 (-1156 *2)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-124))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))))
+ (AND (|ofCategory| *1 (|RealRootCharacterizationCategory| *2 *3))
+ (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757))))
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|CollectAst|))))
((*1 *2 *1)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
+ (AND (|isDomain| *2 (|List| (|SpadAst|))) (|isDomain| *1 (|RepeatAst|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-695)))))
-(((*1 *2 *1) (-11 (-5 *2 (-423)) (-5 *1 (-171))))
- ((*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-11 (-5 *2 (-423)) (-5 *1 (-618))))
+ (AND (|isDomain| *2 (|HeadAst|)) (|isDomain| *1 (|DefinitionAst|))))
((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|HeadAst|)) (|isDomain| *1 (|MacroAst|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
-(((*1 *2 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
- ((*1 *2 *1) (-11 (-4 *2 (-962)) (-5 *1 (-47 *2 *3)) (-13 *3 (-584 (-1091)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|AntiSymm| *2 *3))
+ (|ofType| *3 (|List| (|Symbol|)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Expression| *3))
+ (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|))))
((*1 *2 *1)
- (-11 (-5 *2 (-264 *3)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091)))))
- ((*1 *2 *1) (-11 (-4 *1 (-334 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
+ (AND (|ofType| *3 (|List| (|Symbol|)))
+ (|ofCategory| *5
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *4) (|:| |exponent| *5))
+ (|Record| (|:| |index| *4) (|:| |exponent| *5))))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *2 *4 *5 *6 *7))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *2 *5 (|OrderedVariableList| *3)))))
((*1 *2 *1)
- (-11 (-13 *3 (-584 (-1091))) (-4 *5 (-195 (-3961 *3) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *4) (|:| -2403 *5))
- (-2 (|:| -2402 *4) (|:| -2403 *5))))
- (-4 *2 (-145)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757))
- (-4 *7 (-862 *2 *5 (-774 *3)))))
- ((*1 *2 *1) (-11 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-69))))
- ((*1 *2 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *2 *1) (-11 (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3))
+ (|ofCategory| *3 (|OrderedType|)) (|ofCategory| *2 (|BasicType|))))
((*1 *2 *1)
- (-11 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664))))
- ((*1 *2 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|LaurentPolynomial| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))
((*1 *2 *1)
- (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962))))
+ (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|MonoidRing| *2 *3))
+ (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Monoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-5 *2 (-82)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4))))
+ (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1 *1)
- (|partial| -11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *2 (-82)))))
+ (|partial| AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *2 *1 *1 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -2905 *1)))
- (-4 *1 (-978 *4 *5 *3))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|))
+ (|:| |remainder| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -2905 *1)))
- (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|))
+ (|:| |remainder| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-11
- (-5 *2
- (-2 (|:| -3958 *3) (|:| |gap| (-695)) (|:| -1974 (-705 *3))
- (|:| -2905 (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |coef| *3) (|:| |gap| (|NonNegativeInteger|))
+ (|:| |quotient| #1=(|NewSparseUnivariatePolynomial| *3))
+ (|:| |remainder| #1#)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *1 *1 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-978 *4 *5 *3))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|))
+ (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3958 *1) (|:| |gap| (-695)) (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-978 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|))
+ (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)))))
(((*1 *2 *1 *1)
- (-11
- (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3484 (-695))))
- (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |polnum| (|NewSparseUnivariatePolynomial| *3))
+ (|:| |polden| *3) (|:| |power| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3484 (-695))))
- (-4 *1 (-978 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -11 (-5 *3 (-48)) (-5 *1 (-49 *2)) (-4 *2 (-1130))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |polnum| *1) (|:| |polden| *1)
+ (|:| |power| (|NonNegativeInteger|))))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *2))
+ (|ofCategory| *2 (|Type|))))
((*1 *2 *3)
- (|partial| -11 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1156 *5))
- (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6))
- (-13 *7 (-831))))
+ (|partial| AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *5 (|FiniteAlgebraicExtensionField| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4)))
+ (|isDomain| *1 (|NormRetractPackage| *4 *5 *6 *3 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *6))
+ (|ofType| *7 (|PositiveInteger|))))
((*1 *1 *2)
- (|partial| -11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -11 (-4 *1 (-951 *2)) (-4 *2 (-1130))))
+ (|partial| AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))))
+ ((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|RetractableTo| *2))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *2)
(|partial| OR
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-2563 (-4 *3 (-35 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-484))) (-2563 (-4 *3 (-35 (-349 (-485)))))
- (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-905 (-485)))) (-4 *3 (-35 (-349 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
+ (AND #1=(|isDomain| *2 (|Polynomial| *3))
+ (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|not| (|ofCategory| *3 (|Algebra| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2=((|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ (AND #1#
+ (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|)))
+ (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Algebra| (|Integer|)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2#)
+ (AND #1#
+ (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|))))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2#)))
((*1 *1 *2)
(|partial| OR
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
- ((*1 *1 *2)
- (|partial| -11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
-(((*1 *2 *3) (-11 (-5 *3 (-48)) (-5 *1 (-49 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
- ((*1 *2 *1) (-11 (-4 *1 (-951 *2)) (-4 *2 (-1130))))
+ (AND #3=(|isDomain| *2 (|Polynomial| (|Integer|)))
+ #4=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Algebra| (|Integer|)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #5=((|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ (AND #3# #4#
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #5#)))
+ ((*1 *1 *2)
+ (|partial| AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|))))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|))))
((*1 *1 *2)
(OR
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-2563 (-4 *3 (-35 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-484))) (-2563 (-4 *3 (-35 (-349 (-485)))))
- (-4 *3 (-35 (-485))) (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 *3))
- (-11 (-2563 (-4 *3 (-905 (-485)))) (-4 *3 (-35 (-349 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
+ (AND #1=(|isDomain| *2 (|Polynomial| *3))
+ (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|not| (|ofCategory| *3 (|Algebra| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2=((|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ (AND #1#
+ (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|)))
+ (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Algebra| (|Integer|)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2#)
+ (AND #1#
+ (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|))))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #2#)))
((*1 *1 *2)
(OR
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-2563 (-4 *3 (-35 (-349 (-485))))) (-4 *3 (-35 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-11 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-11 (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-858 (-349 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-35 (-349 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
+ (AND #3=(|isDomain| *2 (|Polynomial| (|Integer|)))
+ #4=(|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|Algebra| (|Integer|)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #5=((|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))))
+ (AND #3# #4#
+ (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))))
+ . #5#)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|))))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *2 *1 *1)
- (-11
- (-5 *2
- (-2 (|:| -3147 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |gcd| #1=(|NewSparseUnivariatePolynomial| *3))
+ (|:| |coef1| #1#) (|:| |coef2| #1#)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |gcd| *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -3147 (-705 *3)) (|:| |coef1| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |gcd| #1=(|NewSparseUnivariatePolynomial| *3))
+ (|:| |coef1| #1#)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3147 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef1| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -3147 (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |gcd| #1=(|NewSparseUnivariatePolynomial| *3))
+ (|:| |coef2| #1#)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3147 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef2| *1)))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *3 (-496)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))))
(((*1 *1 *1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *3 (-496)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))))
(((*1 *1 *1 *1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-392))))
- ((*1 *1 *1 *1) (-4 *1 (-392)))
- ((*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))
- ((*1 *2 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-695)))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|GcdDomain|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|GcdDomain|)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|HeuGcd| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *2 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|NonNegativeInteger|)))
((*1 *2 *2 *2)
- (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2))
- (-4 *2 (-862 *5 *3 *4))))
+ (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|))
+ (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *5 *3 *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *2))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|))
+ (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *6))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257))
- (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-831)))
+ (AND (|isDomain| *3 (|List| (|SparseUnivariatePolynomial| *7)))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *7))
+ (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|PositiveInteger|)))
((*1 *2 *2 *2)
- (-11 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *2 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-392)))))
-(((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-976))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-976)))))
-(((*1 *1 *1) (-11 (-4 *1 (-89 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-11 (-5 *1 (-615 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *1 *1) (-11 (-4 *1 (-89 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-11 (-5 *1 (-615 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-11 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RomanNumeral|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RomanNumeral|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2)
- (-11 (-13 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-194 *3 *4 *5))
- (-4 *3 (-195 *4 *5))))
+ (AND (|ofType| *4 *2) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DirectProductCategory&| *3 *4 *5))
+ (|ofCategory| *3 (|DirectProductCategory| *4 *5))))
((*1 *2 *1)
- (-11 (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|CancellationAbelianMonoid|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2)
- (-11 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1014))))
- ((*1 *2) (-11 (-4 *1 (-319)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-335 *3)) (-4 *3 (-1014)) (-5 *2 (-695))))
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteAlgebraicExtensionField&| *3 *4))
+ (|ofCategory| *3 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FreeGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2)
- (-11 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4))))
+ (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20))
- (-13 *5 *4)))
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteSetAggregate&| *3 *4))
+ (|ofCategory| *3 (|FiniteSetAggregate| *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ListMonoidOps| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|))
+ (|ofType| *5 *4)))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|MonogenicAlgebra&| *3 *4 *5))
+ (|ofCategory| *3 (|MonogenicAlgebra| *4 *5))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5))
- (-4 *3 (-662 *4 *5))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|))))
((*1 *2 *1)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *1)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-178)) (-5 *1 (-27))))
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|PlaneAlgebraicCurvePlot|))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-496)) (-5 *2 (-347 *4))
- (-5 *1 (-361 *4))))
- ((*1 *1 *1) (-5 *1 (-837)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837))))
- ((*1 *1 *1) (-5 *1 (-839)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839))))
+ (AND (|isDomain| *3 (|Mapping| (|Factored| *4) *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *4))
+ (|isDomain| *1 (|FactoredFunctionUtilities| *4))))
+ ((*1 *1 *1) (|isDomain| *1 (|Plot|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
+ ((*1 *1 *1) (|isDomain| *1 (|Plot3D|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))
- (-5 *4 (-349 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |left| #1=(|Fraction| (|Integer|))) (|:| |right| #1#)))
+ (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *2)
- (|partial| -11
- (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))
- (-5 *4 (-349 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |left| #2=(|Fraction| (|Integer|))) (|:| |right| #2#)))
+ (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *2 *2)
- (|partial| -11
- (-5 *2 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485))))))
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))))
((*1 *1 *1)
- (-11 (-4 *2 (-12 (-756) (-311))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *3 *1)
- (-11 (-4 *4 (-12 (-756) (-311))) (-5 *2 (-82)) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-551 (-45)))) (-5 *1 (-45))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-551 (-45))) (-5 *1 (-45))))
+ (AND (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|)))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Kernel| (|AlgebraicNumber|))))
+ (|isDomain| *1 (|AlgebraicNumber|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Kernel| (|AlgebraicNumber|)))
+ (|isDomain| *1 (|AlgebraicNumber|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1086 (-45))) (-5 *3 (-584 (-551 (-45)))) (-5 *1 (-45))))
- ((*1 *2 *2 *3) (-11 (-5 *2 (-1086 (-45))) (-5 *3 (-551 (-45))) (-5 *1 (-45))))
- ((*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| #1=(|AlgebraicNumber|)))
+ (|isDomain| *3 (|List| (|Kernel| #1#)))
+ (|isDomain| *1 (|AlgebraicNumber|))))
+ ((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| #2=(|AlgebraicNumber|)))
+ (|isDomain| *3 (|Kernel| #2#)) (|isDomain| *1 (|AlgebraicNumber|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *3)
- (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3))
- (-4 *3 (-1156 (-141 *2)))))
+ (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2)))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319))))
- ((*1 *2 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-11 (-4 *1 (-321 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-145))))
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))))
((*1 *2 *1)
- (-11 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5))
- (-4 *3 (-257)) (-4 *5 (-12 (-352 *2 *4) (-951 *2)))))
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2))
+ (|ofCategory| *2 (|Field|))))
((*1 *2 *1)
- (-11 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6))
- (-4 *3 (-257)) (-4 *5 (-352 *2 *4)) (-13 *6 (-1180 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *2 (-12 (-346) (-951 *5) (-311) (-1116) (-238))) (-5 *1 (-383 *5 *3 *2))
- (-4 *3 (-1156 *5))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-551 (-435))) (-5 *1 (-435))))
+ (AND (|ofCategory| *1 (|FiniteRankAlgebra| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|QuotientFieldCategory| *3))
+ (|isDomain| *1 (|FractionalIdeal| *3 *2 *4 *5))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *5
+ (|Join| (|FramedAlgebra| *2 *4) (|RetractableTo| *2)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|QuotientFieldCategory| *3))
+ (|isDomain| *1 (|FramedModule| *3 *2 *4 *5 *6))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *5 (|FramedAlgebra| *2 *4)) (|ofType| *6 (|Vector| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *5)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *5 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Kernel| (|InnerAlgebraicNumber|))))
+ (|isDomain| *1 (|InnerAlgebraicNumber|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Kernel| (|InnerAlgebraicNumber|)))
+ (|isDomain| *1 (|InnerAlgebraicNumber|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435))))
+ (AND
+ (|isDomain| *2 (|SparseUnivariatePolynomial| #3=(|InnerAlgebraicNumber|)))
+ (|isDomain| *3 (|List| (|Kernel| #3#)))
+ (|isDomain| *1 (|InnerAlgebraicNumber|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435))))
+ (AND
+ (|isDomain| *2 (|SparseUnivariatePolynomial| #4=(|InnerAlgebraicNumber|)))
+ (|isDomain| *3 (|Kernel| #4#)) (|isDomain| *1 (|InnerAlgebraicNumber|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-467 *4))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4))
- (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *2 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257))))
- ((*1 *2 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257))))
- ((*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-257))))
- ((*1 *2 *1) (-11 (-4 *1 (-974)) (-5 *2 (-485)))))
-(((*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-74))))
- ((*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-170))))
- ((*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-427))))
- ((*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-257))))
- ((*1 *2 *1) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *1 *1) (-4 *1 (-974))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|MonogenicAlgebra| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|NormInMonogenicAlgebra| *4 *2 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *2 (|IntegerNumberSystem|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *2 (|IntegerNumberSystem|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *1 (|ContinuedFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|PartialFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *2 (|EuclideanDomain|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RealNumberSystem|)) (|isDomain| *2 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|BinaryExpansion|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|DecimalExpansion|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|HexadecimalExpansion|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|ofCategory| *2 (|EuclideanDomain|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
+(((*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-137 *3 *4)) (-4 *3 (-138 *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ComplexCategory&| *3 *4))
+ (|ofCategory| *3 (|ComplexCategory| *4))))
+ ((*1 *2)
+ (AND (|ofType| *4 *2) (|ofCategory| *5 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DirectProductCategory&| *3 *4 *5))
+ (|ofCategory| *3 (|DirectProductCategory| *4 *5))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FunctionSpace&| *3 *4))
+ (|ofCategory| *3 (|FunctionSpace| *4))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IntegerNumberSystem&| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|NonAssociativeRing|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OctonionCategory&| *3 *4))
+ (|ofCategory| *3 (|OctonionCategory| *4))))
((*1 *2)
- (-11 (-13 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-194 *3 *4 *5))
- (-4 *3 (-195 *4 *5))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|QuotientFieldCategory&| *3 *4))
+ (|ofCategory| *3 (|QuotientFieldCategory| *4))))
((*1 *2)
- (-11 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))
- ((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484))))
- ((*1 *2) (-11 (-4 *1 (-688)) (-5 *2 (-695))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|QuaternionCategory&| *3 *4))
+ (|ofCategory| *3 (|QuaternionCategory| *4))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RealClosedField&| *3))
+ (|ofCategory| *3 (|RealClosedField|))))
((*1 *2)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))
+ (AND (|ofCategory| *1 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))
- ((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))
- ((*1 *2) (-11 (-4 *1 (-962)) (-5 *2 (-695))))
- ((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-971)) (-5 *2 (-82)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RealNumberSystem&| *3))
+ (|ofCategory| *3 (|RealNumberSystem|)))))
+(((*1 *2 *1 *1) (AND (|ofCategory| *1 (|Rng|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-13 *3 (-695))
- (-13 *4 (-695)))))
+ (AND (|isDomain| *2 (|Matrix| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *1 (|RectangularMatrix| *3 *4 *5))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofType| *4 (|NonNegativeInteger|)))))
(((*1 *1 *2 *2 *3)
- (-11 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962))
- (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *3 (|Mapping| *4 (|Integer|) (|Integer|)))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *4 *5 *6))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
- (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773))))
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| (|OutputForm|))))
+ (|isDomain| *1 (|OutputForm|))))
((*1 *2 *1)
- (-11 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-13 *3 (-831))
- (-4 *4 (-311))))
+ (AND (|isDomain| *2 (|SquareMatrix| *3 *4))
+ (|isDomain| *1 (|QuadraticForm| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7))
- (-4 *6 (-195 *4 *5)) (-4 *7 (-195 *3 *5)))))
+ (AND (|isDomain| *2 (|List| (|List| *5))) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Integer|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Integer|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Integer|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-485))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Integer|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-485)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|Integer|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-54 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2)) (-4 *2 (-1130))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|DataArray| *4 *2)) (|ofType| *4 (|PositiveInteger|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-165 *4 *2)) (-13 *4 (-831))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130))))
+ (AND (|ofCategory| *1 (|EltableAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|))))
((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-195 *5 *2))
- (-4 *7 (-195 *4 *2)) (-4 *2 (-962)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *2 *6 *7))
+ (|ofCategory| *6 (|DirectProductCategory| *5 *2))
+ (|ofCategory| *7 (|DirectProductCategory| *4 *2))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-323 *4))
- (-4 *2 (-323 *4))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *2 *5))
+ (|ofCategory| *4 (|Type|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962))
- (-4 *7 (-195 *4 *6)) (-4 *2 (-195 *5 *6)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *6 *2 *7))
+ (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|DirectProductCategory| *4 *6))
+ (|ofCategory| *2 (|DirectProductCategory| *5 *6)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-323 *4))
- (-4 *2 (-323 *4))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *2))
+ (|ofCategory| *4 (|Type|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *2 (|FiniteLinearAggregate| *4))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962))
- (-4 *7 (-195 *5 *6)) (-4 *2 (-195 *4 *6)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|RectangularMatrixCategory| *4 *5 *6 *7 *2))
+ (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|DirectProductCategory| *5 *6))
+ (|ofCategory| *2 (|DirectProductCategory| *4 *6)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-905 *4))
- (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *7 (|QuotientFieldCategory| *4))
+ (|ofCategory| *2 (|MatrixCategory| *7 *8 *9))
+ (|isDomain| *1
+ (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *2))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))
+ (|ofCategory| *8 (|FiniteLinearAggregate| *7))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *7))))
((*1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)) (-4 *2 (-257))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|EuclideanDomain|))))
((*1 *2 *2)
- (-11 (-4 *3 (-257)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
- ((*1 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|ModularHermitianRowReduction| *3))))
((*1 *1 *1)
- (-11 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-195 *3 *4))
- (-4 *6 (-195 *2 *4)) (-4 *4 (-257)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *2 *3 *4 *5 *6))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5 (|DirectProductCategory| *3 *4))
+ (|ofCategory| *6 (|DirectProductCategory| *2 *4))
+ (|ofCategory| *4 (|EuclideanDomain|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485)) (-13 *4 *2)
- (-4 *5 (-145))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|))
+ (|ofType| *4 *2) (|ofCategory| *5 (|CommutativeRing|))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-831)) (-5 *1 (-137 *3 *4)) (-4 *3 (-138 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-831))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|ComplexCategory&| *3 *4))
+ (|ofCategory| *3 (|ComplexCategory| *4))))
((*1 *2)
- (-11 (-4 *1 (-321 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-831))))
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *4))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|PositiveInteger|))))
((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695))
- (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5)))
- (-4 *4 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3))
- (-4 *3 (-628 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-5 *2 (-695))
- (-5 *1 (-611 *5))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|ofCategory| *4
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3))
+ (|ofCategory| *3 (|MatrixCategory| *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *5)) (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5))))
((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-695))
- (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
-(((*1 *2 *3)
- (-11 (-4 *6 (-1036 *4)) (-4 *4 (-311)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *6 (|ShallowlyMutableAggregate| *4))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *2 *3)
- (-11 (-4 *9 (-1036 *7)) (-4 *4 (-496)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-4 *7 (-905 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-584 *6))
- (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6))
- (-4 *10 (-628 *7 *8 *9))))
+ (AND (|ofCategory| *9 (|ShallowlyMutableAggregate| *7))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *7 (|QuotientFieldCategory| *4))
+ (|ofCategory| *8 (|FiniteLinearAggregate| *7))
+ (|ofCategory| *9 (|FiniteLinearAggregate| *7))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1
+ (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *10))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))
+ (|ofCategory| *10 (|MatrixCategory| *7 *8 *9))))
((*1 *2 *1)
- (-11 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *5))))
((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *2 *1)
- (-11 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-195 *4 *5))
- (-4 *7 (-195 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
+ (AND (|ofCategory| *1 (|RectangularMatrixCategory| *3 *4 *5 *6 *7))
+ (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *6 (|DirectProductCategory| *4 *5))
+ (|ofCategory| *7 (|DirectProductCategory| *3 *5))
+ (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| *7)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-13 *4 (-1091)) (-4 *5 (-311))
- (-5 *1 (-834 *4 *5))))
+ (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *5))
+ (|isDomain| *3 (|List| *5)) (|ofType| *4 (|Symbol|))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *1 (|PolynomialInterpolation| *4 *5))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5))
- (-13 *4 (-1091))))
+ (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *5))
+ (|isDomain| *1 (|PolynomialInterpolation| *4 *5))
+ (|ofType| *4 (|Symbol|))))
((*1 *2 *3 *3 *4 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-349 (-858 *6)))
- (-5 *1 (-963 *5 *6)) (-13 *5 (-1091)))))
-(((*1 *2 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-960)))))
-(((*1 *2 *3) (-11 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-(((*1 *2 *3) (-11 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-(((*1 *1 *1 *1) (-4 *1 (-113)))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))
- (-5 *3 (-485)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))
- ((*1 *2 *3 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329))))
- ((*1 *2 *3) (-11 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-(((*1 *1) (-11 (-4 *1 (-958 *2)) (-4 *2 (-20)))))
-(((*1 *1) (-5 *1 (-127))) ((*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))))
-(((*1 *1) (-5 *1 (-127))) ((*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))))
-(((*1 *1) (-5 *1 (-127))) ((*1 *2 *1) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))))
-(((*1 *2) (-11 (-4 *1 (-957 *2)) (-4 *2 (-20)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-349 (-347 (-858 *4))))
- (-5 *1 (-956 *4)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))))
-(((*1 *2 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1 (-329))) (-5 *1 (-954)))))
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *6 (|Field|))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *6)))
+ (|isDomain| *1 (|RationalInterpolation| *5 *6))
+ (|ofType| *5 (|Symbol|)))))
+(((*1 *2 *2 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|RandomIntegerDistributions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|)))
+ (|isDomain| *1 (|RandomIntegerDistributions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|)))
+ (|isDomain| *1 (|RandomIntegerDistributions|)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|)))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|)))
+ (|isDomain| *1 (|RandomIntegerDistributions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Set| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *4))
+ (|isDomain| *1 (|RandomDistributions| *4))))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Segment| (|Integer|)))
+ (|isDomain| *2 (|Mapping| (|Integer|)))
+ (|isDomain| *1 (|RandomIntegerDistributions|)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|RGBColorSpace| *2))
+ (|ofCategory| *2 (|AbelianMonoid|)))))
+(((*1 *1) (|isDomain| *1 (|Color|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RGBColorModel| *2))
+ (|ofCategory| *2 (|AbelianMonoid|)))))
+(((*1 *1) (|isDomain| *1 (|Color|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RGBColorModel| *2))
+ (|ofCategory| *2 (|AbelianMonoid|)))))
+(((*1 *1) (|isDomain| *1 (|Color|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RGBColorModel| *2))
+ (|ofCategory| *2 (|AbelianMonoid|)))))
+(((*1 *2)
+ (AND (|ofCategory| *1 (|RGBColorModel| *2))
+ (|ofCategory| *2 (|AbelianMonoid|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|isDomain| *2 (|Fraction| (|Factored| (|Polynomial| *4))))
+ (|isDomain| *1 (|RationalFunctionFactorizer| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-311)) (-13 *4 (-1091)) (-13 *5 *3)
- (-5 *1 (-269 *3 *4 *5))))
- ((*1 *2 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329)))))
-(((*1 *2 *3 *3) (-11 (-5 *2 (-1 (-329))) (-5 *1 (-954)) (-5 *3 (-329)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-329)) (-5 *1 (-954)))))
-(((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))))
-(((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))))
-(((*1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-954)))))
+ (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Field|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3)
+ (|isDomain| *1 (|ExponentialOfUnivariatePuiseuxSeries| *3 *4 *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Float|)))
+ (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|RandomFloatDistributions|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1086 (-349 (-1086 *2)))) (-5 *4 (-551 *2))
- (-4 *2 (-12 (-363 *5) (-24) (-1116)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014))))
+ (AND
+ (|isDomain| *3
+ (|SparseUnivariatePolynomial|
+ (|Fraction| (|SparseUnivariatePolynomial| *2))))
+ (|isDomain| *4 (|Kernel| *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|GenusZeroIntegration| *5 *2 *6))
+ (|ofCategory| *6 (|SetCategory|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *3 (-757))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718))
- (-4 *3 (-757))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
- (-4 *2
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $)))))
- (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-1086 (-349 (-858 *5))))) (-5 *4 (-1091))
- (-5 *2 (-349 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|SparseUnivariatePolynomial| *2)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $)))))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *5 *4 *6 *7 *2))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *1 (|RationalFunction| *5))
+ (|ofCategory| *5 (|IntegralDomain|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-551 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1014)) (-4 *4 (-496))
- (-5 *2 (-349 (-1086 *1)))))
+ (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| *1)))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-1086 (-349 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3))
- (-4 *7 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1177 *5)) (-13 *5 (-1091)) (-4 *6 (-962))
- (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))
+ (AND (|isDomain| *4 (|Kernel| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial|
+ (|Fraction| (|SparseUnivariatePolynomial| *3))))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7))
+ (|isDomain| *5 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *7 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Variable| *5)) (|ofType| *5 (|Symbol|))
+ (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|UnivariatePolynomial| *5 (|Polynomial| *6)))
+ (|isDomain| *1 (|PolynomialToUnivariatePolynomial| *5 *6))
+ (|isDomain| *3 (|Polynomial| *6))))
((*1 *2 *1)
- (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-1086 *3))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))))
((*1 *2 *1 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1))
- (-4 *1 (-862 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4))
- (-5 *2 (-349 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $)))))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4))
+ (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| *3)))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *5 *4 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-1086 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $)))))
- (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
- (-5 *1 (-863 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-349 (-1086 (-349 (-858 *5)))))
- (-5 *1 (-953 *5)) (-5 *3 (-349 (-858 *5))))))
-(((*1 *2 *1)
- (|partial| -11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *2 (-757))))
- ((*1 *2 *3)
- (|partial| -11 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2))
- (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *6)) (-14 -3001 (*6 $)) (-14 -3000 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091))
- (-5 *1 (-953 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7))))
- ((*1 *2 *1) (-11 (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091)))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-584 *5))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $)))))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
- (-5 *2 (-584 *5))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091)))
- (-5 *1 (-953 *4)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091)))
- (-4 *6 (-12 (-496) (-951 *5))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-551 *6)) (-4 *6 (-12 (-363 *5) (-24) (-1116)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-1086 (-349 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6))
- (-4 *7 (-1014))))
- ((*1 *2 *1) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
- ((*1 *2 *1) (-11 (-4 *1 (-662 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $)))))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Fraction|
+ (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|RationalFunction| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5))))))
+(((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *3)
+ (|partial| AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|PolynomialCategory| *5 *4 *2))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *2 *5 *6 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *6))
+ (SIGNATURE |numer| (*6 $))
+ (SIGNATURE |denom| (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|RationalFunction| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|FactoringUtilities| *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|List| (|Symbol|)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Pattern| *3))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $)))))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|List| *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Symbol|)))
+ (|isDomain| *1 (|RationalFunction| *4)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *6)))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *6 (|Join| (|IntegralDomain|) (|RetractableTo| *5)))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *6))))))
+ (|isDomain| *1 (|RetractSolvePackage| *5 *6)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Kernel| *6))
+ (|ofCategory| *6
+ (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial|
+ (|Fraction| (|SparseUnivariatePolynomial| *6))))
+ (|isDomain| *1 (|GenusZeroIntegration| *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *6))
+ (|ofCategory| *7 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|ModMonic| *3 *2)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MonogenicAlgebra| *3 *2))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -11 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695)))
- (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718))
- (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5)))
- (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5))))
+ (|partial| AND (|isDomain| *4 (|SparseUnivariatePolynomial| *11))
+ (|isDomain| *6 (|List| *10)) (|isDomain| *7 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *8 (|List| *11)) (|ofCategory| *10 (|OrderedSet|))
+ (|ofCategory| *11 (|EuclideanDomain|))
+ (|ofCategory| *9 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|PolynomialCategory| *11 *9 *10))
+ (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *1 (|MultivariateSquareFree| *9 *10 *11 *5))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5))))
((*1 *2 *1)
- (-11 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311))
- (-4 *4 (-718)) (-4 *5 (-757)) (-13 *6 (-584 *2)))))
+ (AND (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofType| *6 (|List| *2)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *1 (-946 *2))
- (-4 *2 (-12 (-1014) (-10 -8 (-14 * ($ $ $))))))))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *1 (|RepeatedSquaring| *2))
+ (|ofCategory| *2
+ (|Join| (|SetCategory|)
+ (CATEGORY |domain| (SIGNATURE * ($ $ $))))))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-831)) (-5 *1 (-945 *2))
- (-4 *2 (-12 (-1014) (-10 -8 (-14 -3842 ($ $ $))))))))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *1 (|RepeatedDoubling| *2))
+ (|ofCategory| *2
+ (|Join| (|SetCategory|)
+ (CATEGORY |domain| (SIGNATURE + ($ $ $))))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5))
- (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962)))))
+ (AND (|isDomain| *3 (|List| (|Vector| *5))) (|isDomain| *4 (|Integer|))
+ (|isDomain| *2 (|Vector| *5))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Finite|))
+ (|ofCategory| *5 (|Ring|)))))
(((*1 *2 *3 *4 *5 *5)
- (-11 (-5 *4 (-82)) (-5 *5 (-485)) (-4 *6 (-311)) (-4 *6 (-319))
- (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6))
- (-5 *3 (-584 (-631 *6)))))
+ (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *5 (|Integer|))
+ (|ofCategory| *6 (|Field|)) (|ofCategory| *6 (|Finite|))
+ (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *6))))
+ (|isDomain| *1 (|RepresentationPackage2| *6))
+ (|isDomain| *3 (|List| (|Matrix| *6)))))
((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-4 *4 (-319)) (-4 *4 (-962))
- (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-319)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))))
+ (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Finite|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *4))))
+ (|isDomain| *1 (|RepresentationPackage2| *4))
+ (|isDomain| *3 (|List| (|Matrix| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Finite|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *5))))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|isDomain| *3 (|List| (|Matrix| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Finite|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|List| (|List| (|Matrix| *5))))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|isDomain| *3 (|List| (|Matrix| *5))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-311)) (-4 *5 (-962))
- (-5 *2 (-82)) (-5 *1 (-944 *5))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *5))) (|isDomain| *4 (|Integer|))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|RepresentationPackage2| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-82))
- (-5 *1 (-944 *4)))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *4))) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|RepresentationPackage2| *4)))))
(((*1 *2 *3 *3 *4 *5)
- (-11 (-5 *3 (-584 (-631 *6))) (-5 *4 (-82)) (-5 *5 (-485)) (-5 *2 (-631 *6))
- (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *6))) (|isDomain| *4 (|Boolean|))
+ (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|Matrix| *6))
+ (|isDomain| *1 (|RepresentationPackage2| *6))
+ (|ofCategory| *6 (|Field|)) (|ofCategory| *6 (|Ring|))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))
- (-4 *4 (-311)) (-4 *4 (-962))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *4))) (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|RepresentationPackage2| *4))
+ (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Ring|))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5))
- (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962)))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *5))) (|isDomain| *4 (|Integer|))
+ (|isDomain| *2 (|Matrix| *5))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-257))
- (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *5))) (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *5 (|EuclideanDomain|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Matrix| *5))
+ (|isDomain| *1 (|RepresentationPackage2| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962))
- (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *5)))
+ (|ofCategory| *5 (|EuclideanDomain|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Vector| (|Vector| *5)))
+ (|isDomain| *1 (|RepresentationPackage2| *5))
+ (|isDomain| *4 (|Vector| *5)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962))
- (-5 *1 (-944 *4)))))
+ (AND (|isDomain| *3 (|List| (|Matrix| *4))) (|isDomain| *2 (|Matrix| *4))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage2| *4)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4))
- (-5 *1 (-944 *4)))))
+ (AND (|isDomain| *3 (|Vector| (|Vector| *4))) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|RepresentationPackage2| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5))
- (-4 *5 (-962))))
+ (AND (|isDomain| *3 (|Permutation| (|Integer|))) (|isDomain| *4 (|Integer|))
+ (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|RepresentationPackage1| *5))
+ (|ofCategory| *5 (|Ring|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4))
- (-4 *4 (-962))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4)))
- (-5 *1 (-943 *5)) (-4 *5 (-962))))
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|Matrix| (|Integer|)))
+ (|isDomain| *1 (|RepresentationPackage1| *4))
+ (|ofCategory| *4 (|Ring|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Permutation| (|Integer|))))
+ (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|Matrix| *4)))
+ (|isDomain| *1 (|RepresentationPackage1| *5))
+ (|ofCategory| *5 (|Ring|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485))))
- (-5 *1 (-943 *4)) (-4 *4 (-962)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ (AND (|isDomain| *3 (|List| (|List| (|Integer|))))
+ (|isDomain| *2 (|List| (|Matrix| (|Integer|))))
+ (|isDomain| *1 (|RepresentationPackage1| *4))
+ (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *3))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))
- ((*1 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))))
+ (AND (|isDomain| *2 (|List| (|Matrix| *3))) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *3))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *3))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|Matrix| *3))) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *3)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4))))
+ (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962))
- (-5 *1 (-943 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4))
- (-4 *4 (-962)))))
+ (AND (|isDomain| *2 (|List| (|Matrix| *4)))
+ (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Matrix| (|Polynomial| *4)))
+ (|isDomain| *1 (|RepresentationPackage1| *4))
+ (|ofCategory| *4 (|Ring|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*")))
- (-4 *4 (-962)) (-5 *1 (-943 *4))))
+ (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|PositiveInteger|))
+ (|has| *4 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3997 "*")))
- (-4 *4 (-962)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-631 (-264 (-485)))))
- (-5 *1 (-942)))))
-(((*1 *2 *2) (-11 (-5 *2 (-584 (-631 (-264 (-485))))) (-5 *1 (-942)))))
-(((*1 *2 *2) (-11 (-5 *2 (-631 (-264 (-485)))) (-5 *1 (-942)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-631 (-349 (-858 (-485)))))
- (-5 *2 (-631 (-264 (-485)))) (-5 *1 (-942)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-264 (-485))))
- (-5 *1 (-942)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-631 (-349 (-858 (-485))))) (-5 *2 (-584 (-631 (-264 (-485)))))
- (-5 *1 (-942)) (-5 *3 (-264 (-485))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-858 (-485)))))
- (-5 *2
- (-584
- (-2 (|:| |radval| (-264 (-485))) (|:| |radmult| (-485))
- (|:| |radvect| (-584 (-631 (-264 (-485))))))))
- (-5 *1 (-942)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82))))
- ((*1 *1 *2 *2) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *2) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-11 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3269 *3) (|:| -2516 (-584 *5))))
- (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))))
-(((*1 *1 *2 *3)
- (-11 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773))
- (-5 *1 (-938 *4)) (-4 *4 (-12 (-756) (-311) (-934))))))
-(((*1 *2 *1)
- (|partial| -11 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3))
- (-4 *3 (-12 (-756) (-311) (-934))))))
+ (AND (|isDomain| *2 (|List| (|Matrix| *4)))
+ (|isDomain| *3 (|PositiveInteger|))
+ (|has| *4 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|RepresentationPackage1| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|)))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|)))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| (|Expression| (|Integer|))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))
- (-5 *4 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))))
+ (|partial| AND
+ (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|Matrix| (|Expression| (|Integer|))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Expression| (|Integer|))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|)))))
+ (|isDomain| *1 (|RadicalEigenPackage|))
+ (|isDomain| *3 (|Expression| (|Integer|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |radval| (|Expression| (|Integer|)))
+ (|:| |radmult| (|Integer|))
+ (|:| |radvect|
+ (|List| (|Matrix| (|Expression| (|Integer|))))))))
+ (|isDomain| *1 (|RadicalEigenPackage|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *2 *2)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Reference| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *1 *2) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|ReductionOfOrder| *3 *2))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *3))))
((*1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-349 (-485)))))
+ (AND (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |eq| *3) (|:| |op| (|List| *5))))
+ (|isDomain| *1 (|ReductionOfOrder| *5 *3)) (|isDomain| *4 (|List| *5))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *1 *2 *3)
+ (AND
+ (|isDomain| *2
+ (|RightOpenIntervalRootCharacterization| #1=(|RealClosure| *4)
+ (|SparseUnivariatePolynomial|
+ #1#)))
+ (|isDomain| *3 (|OutputForm|)) (|isDomain| *1 (|RealClosure| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|) (|RealConstant|))))))
+(((*1 *2 *1)
+ (|partial| AND
+ (|isDomain| *2
+ (|RightOpenIntervalRootCharacterization| #1=(|RealClosure| *3)
+ (|SparseUnivariatePolynomial|
+ #1#)))
+ (|isDomain| *1 (|RealClosure| *3))
+ (|ofCategory| *3 (|Join| (|OrderedRing|) (|Field|) (|RealConstant|))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|))))))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|))))))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *4
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|)))))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |left| #1=(|Fraction| (|Integer|))) (|:| |right| #1#))))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *4 (|Fraction| (|Integer|)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *5) (|:| -3140 *5))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))
- (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5)))))
+ (AND (|isDomain| *5 (|Fraction| (|Integer|)))
+ (|isDomain| *2 (|List| (|Record| (|:| |left| *5) (|:| |right| *5))))
+ (|isDomain| *1 (|RealZeroPackage| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *4 (|Record| (|:| |left| *5) (|:| |right| *5)))))
((*1 *2 *3)
- (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485))))))
- ((*1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-349 (-485))))
- (-5 *4 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *4) (|:| -3140 *4))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 *4))))
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|))))))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|))))))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|isDomain| *4
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|)))))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|isDomain| *2 (|List| (|Record| (|:| |left| *4) (|:| |right| *4))))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-349 (-485))) (-5 *2 (-584 (-2 (|:| -3141 *5) (|:| -3140 *5))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 *5))
- (-5 *4 (-2 (|:| -3141 *5) (|:| -3140 *5))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485))))))
- (-5 *2 (-584 (-349 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-2 (|:| -3141 (-349 (-485))) (|:| -3140 (-349 (-485)))))
- (-5 *2 (-349 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))))
+ (AND (|isDomain| *5 (|Fraction| (|Integer|)))
+ (|isDomain| *2 (|List| (|Record| (|:| |left| *5) (|:| |right| *5))))
+ (|isDomain| *1 (|RealZeroPackageQ| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *4 (|Record| (|:| |left| *5) (|:| |right| *5))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |left| (|Fraction| (|Integer|)))
+ (|:| |right| (|Fraction| (|Integer|))))))
+ (|isDomain| *2 (|List| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|RealZeroPackage| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |left| #1=(|Fraction| (|Integer|))) (|:| |right| #1#)))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RealZeroPackage| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014))
- (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3405 *4) (|:| -1523 (-485))))) (-4 *4 (-1014))
- (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
+ (AND (|isDomain| *3 (|Vector| *6)) (|isDomain| *4 (|Vector| (|Integer|)))
+ (|isDomain| *5 (|Integer|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *6))
+ (|isDomain| *1 (|RandomDistributions| *6)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |value| *4) (|:| |weight| (|Integer|)))))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Mapping| *4))
+ (|isDomain| *1 (|RandomDistributions| *4)))))
(((*1 *2 *3 *3 *3)
- (|partial| -11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-349 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-349 *5)))))
+ (|partial| AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|List| (|Fraction| *5)))
+ (|isDomain| *1 (|TranscendentalRischDESystem| *4 *5))
+ (|isDomain| *3 (|Fraction| *5)))))
(((*1 *2 *3 *3 *3 *4)
- (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6))
- (|:| |c2| (-349 *6)) (|:| -3096 *6)))
- (-5 *1 (-930 *5 *6)) (-5 *3 (-349 *6)))))
+ (|partial| AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |a| *6) (|:| |b| #1=(|Fraction| *6)) (|:| |h| *6)
+ (|:| |c1| #1#) (|:| |c2| #1#) (|:| |t| *6)))
+ (|isDomain| *1 (|TranscendentalRischDESystem| *5 *6))
+ (|isDomain| *3 (|Fraction| *6)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-11 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6))
- (-4 *6 (-12 (-311) (-117) (-951 *4))) (-5 *4 (-485))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-82))))
- (|:| -3269
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-929 *6 *3)))))
+ (AND (|isDomain| *5 (|Mapping| *3 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *6
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| *4)))
+ (|isDomain| *4 (|Integer|))
+ (|isDomain| *2
+ (|Union|
+ (|:| |ans| (|Record| (|:| |ans| *3) (|:| |nosol| (|Boolean|))))
+ (|:| |eq|
+ (|Record| (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (|isDomain| *1 (|TranscendentalRischDE| *6 *3)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-82)))) (-5 *1 (-929 *4 *5))
- (-5 *3 (-349 *5)))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |ans| (|Fraction| *5)) (|:| |nosol| (|Boolean|))))
+ (|isDomain| *1 (|TranscendentalRischDE| *4 *5))
+ (|isDomain| *3 (|Fraction| *5)))))
(((*1 *2 *3 *3 *4)
- (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3096 *6)))
- (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6)))))
+ (|partial| AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |a| *6) (|:| |b| #1=(|Fraction| *6)) (|:| |c| #1#)
+ (|:| |t| *6)))
+ (|isDomain| *1 (|TranscendentalRischDE| *5 *6))
+ (|isDomain| *3 (|Fraction| *6)))))
(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -11 (-5 *5 (-1091))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|partial| AND (|isDomain| *5 (|Symbol|))
+ (|isDomain| *6
+ (|Mapping|
+ (|Union|
+ (|Record| (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-584 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-12 (-1116) (-24) (-363 *8)))
- (-4 *8 (-12 (-392) (-117) (-951 *3) (-581 *3))) (-5 *3 (-485))
- (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
+ *4 (|List| *4)))
+ (|isDomain| *7
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (|ofCategory| *4
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedField|) (|FunctionSpace| *8)))
+ (|ofCategory| *8
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| *3) (|LinearlyExplicitRingOver| *3)))
+ (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|ElementaryRischDESystem| *8 *4)))))
(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-11 (-5 *5 (-1091))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-584 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-12 (-1116) (-24) (-363 *8)))
- (-4 *8 (-12 (-392) (-117) (-951 *3) (-581 *3))) (-5 *3 (-485))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-82))))
- (-5 *1 (-927 *8 *4)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485))))
- ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-926))))
- ((*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-4 *1 (-926))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-831))))
- ((*1 *1 *1) (-4 *1 (-926))))
-(((*1 *2 *1) (|partial| -11 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-1086 *1)) (-4 *1 (-926)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-1086 *1)) (-4 *1 (-926)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *2 *1) (-11 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))))
+ (AND (|isDomain| *5 (|Symbol|))
+ (|isDomain| *6
+ (|Mapping|
+ (|Union|
+ (|Record| (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (|List|
+ (|Record| (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (|List| *4)))
+ (|isDomain| *7
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *4) (|:| |coeff| *4)) "failed") *4
+ *4))
+ (|ofCategory| *4
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedField|)
+ (|FunctionSpace| *8)))
+ (|ofCategory| *8
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| *3)
+ (|LinearlyExplicitRingOver| *3)))
+ (|isDomain| *3 (|Integer|))
+ (|isDomain| *2
+ (|Record| (|:| |ans| *4) (|:| |right| *4) (|:| |sol?| (|Boolean|))))
+ (|isDomain| *1 (|ElementaryRischDE| *8 *4)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Integer|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RadicalCategory|)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|ofCategory| *1 (|RealClosedField|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RealClosedField|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|RealClosedField|))))
+(((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|RealClosedField|))
+ (|isDomain| *2 (|OutputForm|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|RealClosedField|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|RealClosedField|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|RecursiveAggregate| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|List| *3)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Integer|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *1 *2) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|RecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|RecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))))
(((*1 *2 *1)
- (|partial| -11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484))
- (-5 *2 (-349 (-485)))))
+ (|partial| AND (|ofCategory| *1 (|ComplexCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
+ ((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|IntegralDomain|))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-347 *3)) (-4 *3 (-484))
- (-4 *3 (-496))))
- ((*1 *2 *1) (|partial| -11 (-4 *1 (-484)) (-5 *2 (-349 (-485)))))
+ (|partial| AND (|ofCategory| *1 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (|partial| -11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484))
- (-5 *2 (-349 (-485)))))
+ (|partial| AND (|ofCategory| *1 (|OctonionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484))
- (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|OnePointCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484))
- (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (|partial| -11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484))
- (-5 *2 (-349 (-485)))))
+ (|partial| AND (|ofCategory| *1 (|QuaternionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *3)
- (|partial| -11 (-5 *2 (-349 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+ (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RationalRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| *2)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|ComplexCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Factored| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|IntegralDomain|))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-347 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
- ((*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|OctonionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|QuaternionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-5 *2 (-82)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-349 (-485)))))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RationalRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| (|Fraction| (|Integer|)))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485)))))
+ (AND (|ofCategory| *1 (|ComplexCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-347 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
- ((*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-349 (-485)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Factored| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|IntegralDomain|))))
((*1 *2 *1)
- (-11 (-4 *1 (-721 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485)))))
+ (AND (|ofCategory| *1 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (AND (|ofCategory| *1 (|OctonionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|OnePointCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *1 (-912 *3)) (-4 *3 (-145)) (-4 *3 (-484)) (-5 *2 (-349 (-485)))))
- ((*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))))
-(((*1 *2 *3) (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920))))
- ((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-920)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|RationalRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| *2)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|RandomNumberSource|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-485))) (-5 *4 (-485)) (-5 *2 (-48)) (-5 *1 (-919)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
-(((*1 *1 *2 *2) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-13 *3 (-485)))))
+ (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|isDomain| *4 (|Integer|))
+ (|isDomain| *2 (|Any|)) (|isDomain| *1 (|RadixUtilities|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
+(((*1 *1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|RadixExpansion| *3)) (|ofType| *3 (|Integer|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-347 *5)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *5) (|:| |radicand| (-584 *5))))
- (-5 *1 (-270 *5)) (-5 *4 (-695))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-916)) (-5 *2 (-485)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
-(((*1 *1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145))))
- ((*1 *1 *1 *1) (-4 *1 (-413)))
- ((*1 *1 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-794))))
- ((*1 *1 *1) (-5 *1 (-885)))
- ((*1 *1 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))))
-(((*1 *1 *2 *2 *2 *2) (-11 (-4 *1 (-912 *2)) (-4 *2 (-145)))))
-(((*1 *2 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *5)
+ (|:| |radicand| (|List| *5))))
+ (|isDomain| *1 (|FactoredFunctions| *5))
+ (|isDomain| *4 (|NonNegativeInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|RadicalCategory|)) (|isDomain| *2 (|Integer|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-1057 *3 *4)) (-13 *3 (-831)) (-4 *4 (-311))
- (-5 *1 (-907 *3 *4)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-45)))) (-5 *1 (-45))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Queue| *3)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|Group|)))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|PartitionsAndPermutations|))))
+ ((*1 *1 *1) (|isDomain| *1 (|Partition|)))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *1)
- (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
- (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4)))))
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1)))
- (-4 *1 (-363 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435))))
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2 *1)
- (-11 (-4 *3 (-145)) (-4 *2 (-35 *3)) (-5 *1 (-559 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-664) *3))))
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *1 *2 *2 *2 *2)
+ (AND (|ofCategory| *1 (|QuaternionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *2 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|SquareMatrix| *3 *4)) (|ofType| *3 (|PositiveInteger|))
+ (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|QuadraticForm| *3 *4)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|SparseMultivariatePolynomial| (|Integer|)
+ (|Kernel| (|AlgebraicNumber|))))
+ (|isDomain| *1 (|AlgebraicNumber|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6))
+ (|ofCategory| *6
+ (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4)))))
((*1 *2 *1)
- (-11 (-4 *3 (-145)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-664) *3))))
- ((*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-45)))) (-5 *1 (-45))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1)))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|SparseMultivariatePolynomial| (|Integer|)
+ (|Kernel| (|InnerAlgebraicNumber|))))
+ (|isDomain| *1 (|InnerAlgebraicNumber|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|Algebra| *3))
+ (|isDomain| *1 (|LocalAlgebra| *2 *3 *4))
+ (|ofCategory| *4 (|SubsetCategory| (|Monoid|) *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|Module| *3))
+ (|isDomain| *1 (|Localize| *2 *3 *4))
+ (|ofCategory| *4 (|SubsetCategory| (|Monoid|) *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|SparseMultivariatePolynomial| (|Integer|)
+ (|Kernel| (|AlgebraicNumber|))))
+ (|isDomain| *1 (|AlgebraicNumber|))))
((*1 *2 *1)
- (-11 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-257))
- (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-12 (-352 *3 *4) (-951 *3)))))
+ (AND (|ofCategory| *3 (|QuotientFieldCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *2 (|EuclideanDomain|))
+ (|isDomain| *1 (|FractionalIdeal| *2 *3 *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FramedAlgebra| *3 *4) (|RetractableTo| *3)))))
((*1 *2 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1)))
- (-4 *1 (-363 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1)))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
((*1 *2 *1)
- (-11 (-4 *4 (-145)) (-4 *2 (|SubsetCategory| (-664) *4))
- (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-35 *4))))
+ (AND
+ (|isDomain| *2
+ (|SparseMultivariatePolynomial| (|Integer|)
+ (|Kernel| (|InnerAlgebraicNumber|))))
+ (|isDomain| *1 (|InnerAlgebraicNumber|))))
((*1 *2 *1)
- (-11 (-4 *4 (-145)) (-4 *2 (|SubsetCategory| (-664) *4))
- (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-962))))
- ((*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)) (-4 *2 (-496))))
- ((*1 *1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4))
+ (|isDomain| *1 (|LocalAlgebra| *3 *4 *2))
+ (|ofCategory| *3 (|Algebra| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4))
+ (|isDomain| *1 (|Localize| *3 *4 *2)) (|ofCategory| *3 (|Module| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
- ((*1 *1) (-4 *1 (-319)))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))))
+ ((*1 *1) (|ofCategory| *1 (|Finite|)))
((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298))))
- ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484)))
- ((*1 *1 *1) (-5 *1 (-695)))
- ((*1 *2 *1) (-11 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Vector| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
+ ((*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
+ ((*1 *1 *1) (|isDomain| *1 (|NonNegativeInteger|)))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Permutation| *3))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *1) (-11 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Permutation| *4))
+ (|isDomain| *1 (|PermutationGroup| *4))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|QuotientFieldCategory| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|))
+ (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *2 *2)
- (-11
- (-5 *2
- (-900 (-349 (-485)) (-774 *3) (-196 *4 (-695)) (-205 *3 (-349 (-485)))))
- (-13 *3 (-584 (-1091))) (-13 *4 (-695)) (-5 *1 (-901 *3 *4)))))
+ (AND
+ (|isDomain| *2
+ (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| *3)
+ (|DirectProduct| *4 (|NonNegativeInteger|))
+ (|DistributedMultivariatePolynomial| *3
+ (|Fraction|
+ (|Integer|)))))
+ (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|NonNegativeInteger|))
+ (|isDomain| *1 (|QuasiAlgebraicSet2| *3 *4)))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757))
- (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))))
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *4 *5 *6 *3)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-3 (-82) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
+ (AND (|isDomain| *2 (|Union| (|Boolean|) "failed"))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
+ (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))))
(((*1 *2 *1)
- (-11 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392))
- (-4 *4 (-757)) (-4 *5 (-718)))))
+ (AND (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *2))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))))
(((*1 *1 *1)
- (-11 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *4 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5))
- (-4 *4 (-298)) (-4 *5 (-662 *2 *3)))))
+ (AND (|ofCategory| *2 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PAdicWildFunctionFieldIntegralBasis| *4 *2 *3 *5))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *5 (|MonogenicAlgebra| *2 *3)))))
(((*1 *2 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)))))
- (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
- (-4 *2 (-862 (-349 (-858 *5)) *4 *3))))
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $)))))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *3 *5 *2))
+ (|ofCategory| *2
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *5)) *4
+ *3))))
((*1 *2 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *3
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $))
- (-14 -3834 ((-3 $ #1="failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ #1="failed") (|Symbol|))))))
+ (|isDomain| *1 (|PushVariables| *4 *5 *3 *2))
+ (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *3))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *6))
- (-4 *6
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091))))))
- (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
- (-4 *2 (-862 (-858 *4) *5 *6)))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|ofCategory| *6
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ #1#) (|Symbol|))))))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|PushVariables| *4 *5 *6 *2))
+ (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6)))))
(((*1 *2 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *3 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)))))
- (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
- (-4 *2 (-862 (-349 (-858 *5)) *4 *3))))
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $)))))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *3 *5 *2))
+ (|ofCategory| *2
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *5)) *4
+ *3))))
((*1 *2 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *3
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $))
- (-14 -3834 ((-3 $ #1="failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ #1="failed") (|Symbol|))))))
+ (|isDomain| *1 (|PushVariables| *4 *5 *3 *2))
+ (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *3))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *6))
- (-4 *6
- (-12 (-757)
- (-10 -8 (-14 -3975 ((-1091) $)) (-14 -3834 ((-3 $ #1#) (-1091))))))
- (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
- (-4 *2 (-862 (-858 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -11 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|ofCategory| *6
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))
+ (SIGNATURE |variable|
+ ((|Union| $ #1#) (|Symbol|))))))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|PushVariables| *4 *5 *6 *2))
+ (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-784))))
- ((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-127))))
- ((*1 *2 *1) (-11 (-5 *2 (-127)) (-5 *1 (-784))))
- ((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-127))))
- ((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-11 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-311))
- (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5))
- (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|PartialTranscendentalFunctions| *2))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Palette|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|List| (|Record| (|:| C (|Matrix| *5)) (|:| |g| (|Vector| *5)))))
+ (|isDomain| *1 (|PseudoLinearNormalForm| *5))
+ (|isDomain| *3 (|Matrix| *5)) (|isDomain| *4 (|Vector| *5)))))
(((*1 *2 *2 *2 *3 *4)
- (-11 (-5 *2 (-631 *5)) (-5 *3 (-66 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
- (-5 *1 (-892 *5)))))
+ (AND (|isDomain| *2 (|Matrix| *5)) (|isDomain| *3 (|Automorphism| *5))
+ (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *1 (|PseudoLinearNormalForm| *5)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerPackage| *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-66 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311))
- (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6))))
- (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
+ (AND (|isDomain| *4 (|Automorphism| *6)) (|isDomain| *5 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| R #1=(|Matrix| *6)) (|:| A #1#) (|:| |Ainv| #1#)))
+ (|isDomain| *1 (|PseudoLinearNormalForm| *6))
+ (|isDomain| *3 (|Matrix| *6)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|CharacteristicZero|))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|CharacteristicZero|))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-117)) (-4 *3 (-257))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|CharacteristicZero|))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-82)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392))
- (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Boolean|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-11 (-5 *2 (-584 *8)) (-5 *3 (-1 (-82) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *1 (-891 *5 *6 *7 *8)))))
+ (AND (|isDomain| *2 (|List| *8))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8))
+ (|isDomain| *4 (|Mapping| *8 *8 *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)))))
(((*1 *2 *2 *3 *4 *5)
- (-11 (-5 *2 (-584 *9)) (-5 *3 (-1 (-82) *9)) (-5 *4 (-1 (-82) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718))
- (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))))
+ (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|Mapping| (|Boolean|) *9))
+ (|isDomain| *4 (|Mapping| (|Boolean|) *9 *9))
+ (|isDomain| *5 (|Mapping| *9 *9 *9))
+ (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3326 (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |bas| (|GeneralTriangularSet| *4 *5 *6 *7))
+ (|:| |top| (|List| *7))))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *2)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-82)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Boolean|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *7)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *7)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *7)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *7)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1 (-82) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+ (AND (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *8)))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *8)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8))
+ (|isDomain| *4 (|List| *8)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-1 (-82) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+ (AND (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *8)))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *8)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8))
+ (|isDomain| *4 (|List| *8)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-82) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |goodPols| #1=(|List| *8)) (|:| |badPols| #1#)))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8))
+ (|isDomain| *4 (|List| *8)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7))
- (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-82))
- (-5 *1 (-891 *5 *6 *7 *8)))))
+ (AND (|isDomain| *4 (|List| (|List| *8))) (|isDomain| *3 (|List| *8))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-82)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3))))
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7))
- (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *1 (-891 *4 *5 *6 *7)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|List| *7) #1#))
+ (|isDomain| *2 (|List| *7))
+ (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|List| *5)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *1 *2)
- (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-11 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
-(((*1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1 *3)
- (-11 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3133 *1) (|:| |upper| *1)))
- (-4 *1 (-890 *4 *5 *3 *6)))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3))
+ (|isDomain| *2
+ (|Record| (|:| |under| *1) (|:| |floor| *1) (|:| |upper| *1)))
+ (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *2 *1)
- (-11 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)))))
(((*1 *2 *2 *1)
- (-11 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-178)))))))
- ((*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-178))))))))
-(((*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-1002 (-178)))))
- ((*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))))
-(((*1 *2 *1) (-11 (-4 *1 (-867)) (-5 *2 (-1002 (-178)))))
- ((*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))))
-(((*1 *2 *1) (-11 (-4 *1 (-888)) (-5 *2 (-1002 (-178))))))
-(((*1 *1 *1) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
- ((*1 *2 *1) (-11 (-4 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
- ((*1 *2 *1)
- (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *6 (-195 (-3961 *3) (-695)))
- (-13 *7
- (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6))
- (-2 (|:| -2402 *5) (|:| -2403 *6))))
- (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757))
- (-4 *8 (-862 *4 *6 (-774 *3)))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|))
+ (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|))
+ (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|))
+ (|isDomain| *2 (|Segment| (|DoubleFloat|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|))
+ (|isDomain| *2 (|Segment| (|DoubleFloat|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|))
+ (|isDomain| *2 (|Segment| (|DoubleFloat|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|))
+ (|isDomain| *2 (|Segment| (|DoubleFloat|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|))
+ (|isDomain| *2 (|Segment| (|DoubleFloat|))))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *6
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|ofType| *7
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *5) (|:| |exponent| *6))
+ (|Record| (|:| |index| *5) (|:| |exponent| *6))))
+ (|isDomain| *2 (|ModuleMonomial| *5 *6 *7))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *6 *7 *8))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *8
+ (|PolynomialCategory| *4 *6 (|OrderedVariableList| *3)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|Monoid|)) (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|MonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|))))
((*1 *1 *1)
- (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(((*1 *1 *2 *3) (-11 (-4 *1 (-44 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *4 (|OrderedSet|)))))
+(((*1 *1 *2 *3)
+ (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|CliffordAlgebra| *4 *2 *5))
+ (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *2 (|Field|))
+ (|ofType| *5 (|QuadraticForm| *4 *2))))
((*1 *1 *2 *3)
- (-11 (-5 *3 (-584 (-831))) (-5 *1 (-122 *4 *2 *5)) (-13 *4 (-831))
- (-4 *2 (-311)) (-13 *5 (-907 *4 *2))))
+ (AND (|isDomain| *3 (|ModuleMonomial| *5 *6 *7))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6
+ (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|)))
+ (|ofType| *7
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *5) (|:| |exponent| *6))
+ (|Record| (|:| |index| *5) (|:| |exponent| *6))))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|GeneralModulePolynomial| *4 *2 *5 *6 *7 *8))
+ (|ofCategory| *8
+ (|PolynomialCategory| *2 *6 (|OrderedVariableList| *4)))))
((*1 *1 *2 *3)
- (-11 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-195 (-3961 *4) (-695)))
- (-13 *7
- (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *6))
- (-2 (|:| -2402 *5) (|:| -2403 *6))))
- (-13 *4 (-584 (-1091))) (-4 *2 (-145)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-862 *2 *6 (-774 *4)))))
- ((*1 *1 *2 *3) (-11 (-4 *1 (-450 *2 *3)) (-4 *2 (-69)) (-4 *3 (-760))))
+ (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3))
+ (|ofCategory| *2 (|BasicType|)) (|ofCategory| *3 (|OrderedType|))))
((*1 *1 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2))))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
- ((*1 *1 *2 *3) (-11 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|LaurentPolynomial| *2 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MonogenicLinearOperator| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|Monoid|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (AND (|isDomain| *2 (|List| *5))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *2 (-757))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757))))
+ (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| *5))
+ (|ofCategory| *1 (|PowerSeriesCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoid|))
+ (|ofCategory| *6 (|OrderedSet|))))
((*1 *1 *1 *2 *3)
- (-11 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
- (-5 *2 (-82)))))
-(((*1 *1 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257))))
- ((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163))))
- ((*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-4 *1 (-780 *2)))
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *4 *3 *2))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerTaylorSeries| *3))
+ (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|ContinuedFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2)))
((*1 *1 *1)
- (-11 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(((*1 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-11 (-5 *2 (-831)) (-5 *1 (-885)))))
+ (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))
+ (|ofCategory| *4 (|OrderedSet|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|Partition|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|Partition|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Stream| (|Partition|))) (|isDomain| *1 (|Partition|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2 (|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))))
+ (|isDomain| *1 (|Partition|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Partition|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *3 *3) (-11 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |resultant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3 *3)
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *2 *2 *2 *3)
- (-11 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *2 *3 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *2 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1))) (-4 *1 (-257))))
+ (AND (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|EuclideanDomain|))))
((*1 *2 *1 *1)
- (|partial| -11 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
- (-4 *1 (-335 *3))))
+ (|partial| AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Record| (|:| |lm| *1) (|:| |rm| *1)))
+ (|ofCategory| *1 (|FreeMonoidCategory| *3))))
((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -1974 (-695)) (|:| -2905 (-695)))) (-5 *1 (-695))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |quotient| #1=(|NonNegativeInteger|))
+ (|:| |remainder| #1#)))
+ (|isDomain| *1 (|NonNegativeInteger|))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2879 *4))) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultantReduit| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2879 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3)
+ (|:| |resultantReduit| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|GcdDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |discriminant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |discriminant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3147 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |gcd| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3147 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |gcd| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3147 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |gcd| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |resultant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |resultant| *4)))
+ (|isDomain| *1 (|PseudoRemainderSequence| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *1)
- (-11 (-4 *1 (-346)) (-2563 (|has| *1 (-6 -3988)))
- (-2563 (|has| *1 (-6 -3981)))))
- ((*1 *2 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
- ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760)))
- ((*1 *2 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|)))
+ (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteSetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1) (|ofCategory| *1 (|OrderedFinite|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|OrderedType|)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *2 *1 *1)
- (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(((*1 *1) (-4 *1 (-881))))
-(((*1 *1) (-4 *1 (-881))))
-(((*1 *1 *1 *1) (-4 *1 (-881))))
-(((*1 *1 *1 *1) (-4 *1 (-881))))
-(((*1 *1 *2) (-11 (-5 *2 (-578 *3)) (-13 *3 (-584 (-1091))) (-5 *1 (-167 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-167 *3)) (-13 *3 (-584 (-1091))) (-5 *1 (-578 *3))))
- ((*1 *2 *2) (-11 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
-(((*1 *2 *1)
- (-11 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5))
- (-4 *3 (-1014)) (-4 *5 (-609 *4))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-83))))
- ((*1 *2 *1 *3) (|partial| -11 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-83))))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
-(((*1 *1 *2 *3) (-11 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-773))))
- ((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875)))))
-(((*1 *2 *3 *3) (-11 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
-(((*1 *2 *2) (-11 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2) (-11 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
-(((*1 *1) (-4 *1 (-298)))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 *5)) (-4 *5 (-363 *4)) (-4 *4 (-12 (-496) (-117)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-374 *4 *5))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|PriorityQueueAggregate| *2))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *1) (|ofCategory| *1 (|PropositionalLogic|))))
+(((*1 *1) (|ofCategory| *1 (|PropositionalLogic|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|PropositionalLogic|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|PropositionalLogic|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|LinearBasis| *3)) (|ofType| *3 (|List| (|Symbol|)))
+ (|isDomain| *1 (|DualBasis| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|DualBasis| *3)) (|ofType| *3 (|List| (|Symbol|)))
+ (|isDomain| *1 (|LinearBasis| *3))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PropositionalFormulaFunctions1| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|PatternMatchResult| *3 *4))
+ (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *5 (|ListAggregate| *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|PropositionalFormula| *4))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Set| *4))
+ (|isDomain| *1 (|PropositionalFormulaFunctions1| *4)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| *3)) (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|PropositionalFormula| *3)))
+ (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|Pair| #1=(|PropositionalFormula| *3) #1#)))
+ (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|Pair| #1=(|PropositionalFormula| *3) #1#)))
+ (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|Pair| #1=(|PropositionalFormula| *3) #1#)))
+ (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| (|Pair| #1=(|PropositionalFormula| *3) #1#)))
+ (|isDomain| *1 (|PropositionalFormula| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|PropositionalFormula| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|PropositionalFormula| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| (|None|)))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *1 *3)
+ (|partial| AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|None|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|SExpression|))
+ (|isDomain| *1 (|Property|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|Product| *2 *3)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|Product| *2 *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|Product| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|PrintPackage|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|IntegerPrimesPackage| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *1 (|IntegerPrimesPackage| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *1 (|IntegerPrimesPackage| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *1) (|ofCategory| *1 (|FiniteFieldCategory|)))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |primelt| *5)
+ (|:| |poly| (|List| (|SparseUnivariatePolynomial| *5)))
+ (|:| |prim| (|SparseUnivariatePolynomial| *5))))
+ (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *5))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-496) (-117)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3))
- (|:| |prim| (-1086 *3))))
- (-5 *1 (-374 *4 *3)) (-4 *3 (-24)) (-4 *3 (-363 *4))))
+ (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |primelt| *3)
+ (|:| |pol1| (|SparseUnivariatePolynomial| *3))
+ (|:| |pol2| (|SparseUnivariatePolynomial| *3))
+ (|:| |prim| (|SparseUnivariatePolynomial| *3))))
+ (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *3))
+ (|ofCategory| *3 (|AlgebraicallyClosedField|))
+ (|ofCategory| *3 (|FunctionSpace| *4))))
((*1 *2 *3 *4 *3 *4)
- (-11 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-12 (-311) (-117)))
- (-5 *2
- (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5))))
- (-5 *1 (-873 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-12 (-311) (-117)))
- (-5 *2
- (-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-873 *5))))
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|))
+ (|:| |prim| (|SparseUnivariatePolynomial| *5))))
+ (|isDomain| *1 (|PrimitiveElement| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |coef| (|List| (|Integer|)))
+ (|:| |poly| (|List| (|SparseUnivariatePolynomial| *5)))
+ (|:| |prim| (|SparseUnivariatePolynomial| *5))))
+ (|isDomain| *1 (|PrimitiveElement| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091))
- (-4 *6 (-12 (-311) (-117)))
- (-5 *2
- (-2 (|:| -3958 (-584 (-485))) (|:| |poly| (-584 (-1086 *6)))
- (|:| |prim| (-1086 *6))))
- (-5 *1 (-873 *6)))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *6)))
+ (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *6 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |coef| (|List| (|Integer|)))
+ (|:| |poly| (|List| (|SparseUnivariatePolynomial| *6)))
+ (|:| |prim| (|SparseUnivariatePolynomial| *6))))
+ (|isDomain| *1 (|PrimitiveElement| *6)))))
(((*1 *1 *2 *3)
- (-11 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311))))
- ((*1 *1 *2 *2) (-11 (-5 *1 (-520 *2)) (-4 *2 (-311))))
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|IntegrationResult| *2))
+ (|ofCategory| *2 (|RetractableTo| *3)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *2 *2)
+ (AND (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2))
- (-4 *2 (-12 (-363 *4) (-916) (-1116)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1005 *2)) (-4 *2 (-12 (-363 *4) (-916) (-1116))) (-4 *4 (-496))
- (-5 *1 (-569 *4 *2))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-872)) (-5 *2 (-1091))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-872)))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5))
- (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1034)) (-5 *1 (-866)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| (-584 *3))))
- (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695))
- (-4 *8
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *3)) (-14 -3001 (*3 $)) (-14 -3000 (*3 $))))))))
-(((*1 *2 *3 *4)
- (-11 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
- (-4 *8 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| *3)))
- (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *8)) (-14 -3001 (*8 $)) (-14 -3000 (*8 $))))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
- (-4 *8 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *9) (|:| |radicand| *9)))
- (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695))
- (-4 *9
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *8)) (-14 -3001 (*8 $)) (-14 -3000 (*8 $))))))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *8) (|:| |radicand| *8)))
- (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695))
- (-4 *8
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-962)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-485)))) (-4 *1 (-363 *3))))
- ((*1 *2 *1)
- (|partial| -11 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2403 (-801 *3))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *2 *3)
- (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-485))))
- (-5 *1 (-863 *4 *5 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
+ (AND (|isDomain| *3 (|SegmentBinding| *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *4 *2))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|PrimitiveFunctionCategory|))
+ (|isDomain| *2 (|Symbol|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|SegmentBinding| *1))
+ (|ofCategory| *1 (|PrimitiveFunctionCategory|)))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Matrix| *5))
+ (|isDomain| *1 (|PrecomputedAssociatedEquations| *5 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|PortNumber|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|))
+ (|ofCategory| *3 (|PolynomialCategory| *7 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *3)
+ (|:| |radicand| (|List| *3))))
+ (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *3 *8))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *8
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *3))
+ (SIGNATURE |numer| (*3 $))
+ (SIGNATURE |denom| (*3 $))))))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|))
+ (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *3)
+ (|:| |radicand| *3)))
+ (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *3))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *8))
+ (SIGNATURE |numer| (*8 $))
+ (SIGNATURE |denom| (*8 $))))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Integer|)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|))
+ (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *9)
+ (|:| |radicand| *9)))
+ (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *9))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *9
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *8))
+ (SIGNATURE |numer| (*8 $))
+ (SIGNATURE |denom| (*8 $))))))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *7 (|PolynomialCategory| *3 *5 *6))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *8)
+ (|:| |radicand| *8)))
+ (|isDomain| *1 (|PolynomialRoots| *5 *6 *3 *7 *8))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *8
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Record| (|:| |val| *1) (|:| |exponent| (|Integer|))))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
+ ((*1 *2 *1)
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |val| #1=(|Pattern| *3)) (|:| |exponent| #1#)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *3)
+ (|partial| AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|Record| (|:| |val| *3) (|:| |exponent| (|Integer|))))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
(((*1 *2 *1 *3)
- (|partial| -11 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *4))))
+ (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|))))
+ (|ofCategory| *1 (|FunctionSpace| *4))))
((*1 *2 *1 *3)
- (|partial| -11 (-5 *3 (-83)) (-4 *4 (-962)) (-4 *4 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *4))))
+ (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|))))
+ (|ofCategory| *1 (|FunctionSpace| *4))))
((*1 *2 *1)
- (|partial| -11 (-4 *3 (-1026)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2403 (-485)))) (-4 *1 (-363 *3))))
+ (|partial| AND (|ofCategory| *3 (|SemiGroup|))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|))))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2403 (-695))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |val| (|Pattern| *3))
+ (|:| |exponent| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (|partial| -11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-695))))))
+ (|partial| AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |var| *5) (|:| |exponent| (|NonNegativeInteger|))))))
((*1 *2 *3)
- (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-485))))
- (-5 *1 (-863 *4 *5 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
+ (|partial| AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|Record| (|:| |var| *5) (|:| |exponent| (|Integer|))))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
- (-4 *1 (-363 *3))))
+ (|partial| AND (|ofCategory| *3 (|SemiGroup|))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *2 (|List| (|Pattern| *3)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (|partial| -11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5))))
+ (|partial| AND (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))))
((*1 *2 *3)
- (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
+ (|partial| AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-22)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
- (-4 *1 (-363 *3))))
+ (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|FunctionSpace| *3))))
((*1 *2 *1)
- (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *2 (|List| (|Pattern| *3)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (|partial| -11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5))))
+ (|partial| AND (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))))
((*1 *2 *3)
- (|partial| -11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
- (-4 *3
- (-12 (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
+ (|partial| AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|PolynomialCategoryQuotientFunctions| *4 *5 *6 *7 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-334 *3 *4))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FreeModuleCat| *3 *4))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962))
- (-4 *4 (-664))))
+ (AND (|isDomain| *2 (|List| (|MonoidRing| *3 *4)))
+ (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|Monoid|))))
((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5)))))
-(((*1 *2 *1) (-11 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *2 *1) (-11 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *4 *5 *3))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-695))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|ofCategory| *1 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1)
- (-11 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|PolynomialCategory| *3 *4 *5)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392))))
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *2 (|GcdDomain|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485)))
- (-5 *1 (-426 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
+ (AND (|isDomain| *3 (|List| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|HeuGcd| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *3 (-392)))))
+ (AND (|ofCategory| *1 (|PolynomialCategory| *3 *4 *2))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|GcdDomain|)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-311))
- (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|Integer|))
+ (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *5 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedRing|))
+ (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *4 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|OrderedRing|))
+ (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3 *3)
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|RealPolynomialUtilitiesPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5))
+ (|isDomain| *1 (|PolToPol| *4 *5)) (|ofType| *4 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Polynomial| *5)) (|isDomain| *1 (|PolToPol| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Polynomial| *5)) (|isDomain| *1 (|PolToPol| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5))
+ (|isDomain| *1 (|PolToPol| *4 *5)) (|ofType| *4 (|List| (|Symbol|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5))
+ (|isDomain| *1 (|PolToPol| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5))
+ (|isDomain| *1 (|PolToPol| *4 *5)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695))
- (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3)
- (-11 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3 *3)
- (-11 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-205 *4 *5))
- (-5 *1 (-856 *4 *5)) (-13 *4 (-584 (-1091))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-421 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5))
- (-5 *1 (-856 *4 *5)) (-13 *4 (-584 (-1091))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-421 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-205 *4 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-164)) (-5 *3 (-485))))
- ((*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-145))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))
- ((*1 *2 *3) (-11 (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|CyclotomicPolynomialPackage|))
+ (|isDomain| *3 (|Integer|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|NumberTheoreticPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PolynomialNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3 *4 *2 *5)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6)))
- (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014))
- (-4 *8 (-12 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8))
- (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|Pattern| *6)))
+ (|isDomain| *5
+ (|Mapping| #1=(|PatternMatchResult| *6 *8) *8 (|Pattern| *6) #1#))
+ (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *8
+ (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *6))
+ (|RetractableTo| *7)))
+ (|isDomain| *2 (|PatternMatchResult| *6 *8)) (|ofCategory| *7 (|Ring|))
+ (|isDomain| *1 (|PatternMatchTools| *6 *7 *8)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-138 *6))
- (-4 (-858 *6) (-797 *5)) (-4 *6 (-12 (-797 *5) (-145)))
- (-5 *1 (-151 *5 *6 *3))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *3))
+ (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *3 (|ComplexCategory| *6))
+ (|ofCategory| (|Polynomial| *6) (|PatternMatchable| *5))
+ (|ofCategory| *6 (|Join| (|PatternMatchable| *5) (|CommutativeRing|)))
+ (|isDomain| *1 (|ComplexPatternMatch| *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-11 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4))
- (-4 *4 (-1014))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *4 *1))
+ (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *1 (|PatternMatchable| *4))
+ (|ofCategory| *4 (|SetCategory|))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
- (-4 *6 (-12 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *6))
+ (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|Join| (|SetCategory|) (|RetractableTo| *3)))
+ (|ofCategory| *3 (|PatternMatchable| *5))
+ (|isDomain| *1 (|PatternMatchPushDown| *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
- (-4 *3 (-12 (-363 *6) (-554 *4) (-797 *5) (-951 (-551 $))))
- (-5 *4 (-801 *5)) (-4 *6 (-12 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *3))
+ (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|ConvertibleTo| *4)
+ (|PatternMatchable| *5)
+ (|RetractableTo| (|Kernel| $))))
+ (|isDomain| *4 (|Pattern| *5))
+ (|ofCategory| *6 (|Join| (|IntegralDomain|) (|PatternMatchable| *5)))
+ (|isDomain| *1 (|PatternMatchFunctionSpace| *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484))
- (-5 *1 (-845 *3))))
+ (AND (|isDomain| *2 (|PatternMatchResult| (|Integer|) *3))
+ (|isDomain| *4 (|Pattern| (|Integer|)))
+ (|ofCategory| *3 (|IntegerNumberSystem|))
+ (|isDomain| *1 (|PatternMatchIntegerNumberSystem| *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014))
- (-4 *6 (-12 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5))
- (-5 *1 (-846 *5 *6))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *6))
+ (|isDomain| *3 (|Kernel| *6)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6
+ (|Join| (|SetCategory|) (|RetractableTo| (|Kernel| $))
+ (|ConvertibleTo| *4) (|PatternMatchable| *5)))
+ (|isDomain| *4 (|Pattern| *5))
+ (|isDomain| *1 (|PatternMatchKernel| *5 *6))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
- (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))
+ (AND (|isDomain| *2 (|PatternMatchListResult| *5 *6 *3))
+ (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|PatternMatchable| *5))
+ (|ofCategory| *3 (|ListAggregate| *6))
+ (|isDomain| *1 (|PatternMatchListAggregate| *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-11 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757))
- (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014))
- (-4 *3 (-12 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718))
- (-4 *9 (-12 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))
+ (AND
+ (|isDomain| *5
+ (|Mapping| #1=(|PatternMatchResult| *6 *3) *8 (|Pattern| *6) #1#))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|isDomain| *2 (|PatternMatchResult| *6 *3)) (|isDomain| *4 (|Pattern| *6))
+ (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *3
+ (|Join| (|PolynomialCategory| *9 *7 *8) (|ConvertibleTo| *4)))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|Join| (|Ring|) (|PatternMatchable| *6)))
+ (|isDomain| *1 (|PatternMatchPolynomialCategory| *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
- (-4 *3 (-12 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-12 (-962) (-797 *5)))
- (-5 *1 (-848 *5 *6 *7 *8 *3))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *3))
+ (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *3
+ (|Join| (|PolynomialCategory| *8 *6 *7)
+ (|ConvertibleTo| *4)))
+ (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *7 (|PatternMatchable| *5))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|Join| (|Ring|) (|PatternMatchable| *5)))
+ (|isDomain| *1 (|PatternMatchPolynomialCategory| *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6))
- (-4 *6 (-12 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5))
- (-5 *1 (-851 *5 *6 *3))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 *3))
+ (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *3 (|QuotientFieldCategory| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|PatternMatchable| *5)
+ (|ConvertibleTo| *4)))
+ (|isDomain| *4 (|Pattern| *5))
+ (|isDomain| *1 (|PatternMatchQuotientFieldCategory| *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5))
- (-4 *5 (-1014)) (-5 *1 (-852 *5))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *5 (|Symbol|)))
+ (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Pattern| *5))
+ (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchSymbol| *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-11 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9)))
- (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014))
- (-4 *9 (-12 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9))
- (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 (-82) *6)) (-4 *6 (-12 (-1014) (-951 *5))) (-4 *5 (-797 *4))
- (-4 *4 (-1014)) (-5 *2 (-1 (-82) *5)) (-5 *1 (-843 *4 *5 *6)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1091)) (-5 *2 (-264 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-11 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-83))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-264 (-485))) (-5 *1 (-841))))
+ (AND (|isDomain| *4 (|List| (|Pattern| *7)))
+ (|isDomain| *5 (|Mapping| *9 (|List| *9)))
+ (|isDomain| *6
+ (|Mapping| #2=(|PatternMatchResult| *7 *9) *9 (|Pattern| *7) #2#))
+ (|ofCategory| *7 (|SetCategory|))
+ (|ofCategory| *9
+ (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *7))
+ (|RetractableTo| *8)))
+ (|isDomain| *2 (|PatternMatchResult| *7 *9)) (|isDomain| *3 (|List| *9))
+ (|ofCategory| *8 (|Ring|))
+ (|isDomain| *1 (|PatternMatchTools| *7 *8 *9)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *6))
+ (|ofCategory| *6 (|Join| (|SetCategory|) (|RetractableTo| *5)))
+ (|ofCategory| *5 (|PatternMatchable| *4))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| (|Boolean|) *5))
+ (|isDomain| *1 (|PatternMatchPushDown| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PatternMatchAssertions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PatternMatchAssertions|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Identifier|))
+ (|isDomain| *2 (|Expression| (|Integer|)))
+ (|isDomain| *1 (|PatternMatchAssertions|))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-363 *4)))))
+ (AND (|isDomain| *3 (|Identifier|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|FunctionSpaceAssertions| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-584 (-1002 (-178))))
- (-5 *1 (-840)))))
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *2 (|List| (|Segment| (|DoubleFloat|))))
+ (|isDomain| *1 (|PlotTools|)))))
(((*1 *1 *2 *3 *3 *3)
- (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3 *3 *3 *3)
- (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-839))))
+ (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1 (-855 (-178)) (-178))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-839)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *2 *3 *3 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *2 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3 *3)
- (-11 (-5 *2 (-584 (-1 (-178) (-178)))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1 (-178) (-178)))) (-5 *3 (-1002 (-178)))
- (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *2 *3 *3 *4 *5)
- (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|))))
((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|))))
((*1 *1 *2 *2 *2 *2 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-837))))
- ((*1 *2 *1) (-11 (-5 *2 (-1002 (-178))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-178)))) (-5 *1 (-839)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-839)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|List| (|DoubleFloat|))))
+ (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|Plot|))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1 (-178) (-178))) (-5 *3 (-1002 (-178))) (-5 *1 (-837))))
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1091)) (-5 *5 (-1002 (-178))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-837)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))))
-(((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-837)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-82))
- (-5 *1 (-836 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-82))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-257) (-117))) (-4 *4 (-12 (-757) (-554 (-1091))))
- (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Plot|))
+ (|isDomain| *1 (|PlotFunctions1| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *4 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4)))))
(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-11
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
- (-5 *4 (-631 *12)) (-5 *5 (-584 (-349 (-858 *9)))) (-5 *6 (-584 (-584 *12)))
- (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-12 (-257) (-117)))
- (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-12 (-757) (-554 (-1091))))
- (-4 *11 (-718))
- (-5 *2
- (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12))
- (|:| |wcond| (-584 (-858 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *9))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *9)))))))))
- (-5 *1 (-836 *9 *10 *11 *12)))))
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |det| *12) (|:| |rows| (|List| #1=(|Integer|)))
+ (|:| |cols| (|List| #1#))))
+ (|isDomain| *4 (|Matrix| *12))
+ (|isDomain| *5 (|List| (|Fraction| (|Polynomial| *9))))
+ (|isDomain| *6 (|List| (|List| *12))) (|isDomain| *7 (|NonNegativeInteger|))
+ (|isDomain| *8 (|Integer|))
+ (|ofCategory| *9 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *12 (|PolynomialCategory| *9 *11 *10))
+ (|ofCategory| *10 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *11 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record| (|:| |eqzro| (|List| *12)) (|:| |neqzro| (|List| *12))
+ (|:| |wcond| (|List| (|Polynomial| *9)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *9))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *9)))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5))
- (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091))))
- (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (-5 *1 (-836 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091))))
- (-4 *7 (-718)) (-5 *2 (-82)) (-5 *1 (-836 *5 *6 *7 *8)))))
+ (AND (|isDomain| *2 (|Matrix| *7)) (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |det| *8) (|:| |rows| (|List| (|Integer|)))
+ (|:| |cols| (|List| (|Integer|))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|List| *8))) (|isDomain| *3 (|List| *8))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7))
- (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4))
- (-4 *3 (-12 (-257) (-117))) (-4 *4 (-12 (-757) (-554 (-1091))))
- (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-584
- (-2 (|:| -3111 (-695))
- (|:| |eqns|
- (-584
- (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *7)))))
- (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695))
- (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-584
- (-2 (|:| -3111 (-695))
- (|:| |eqns|
- (-584
- (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *7)))))
- (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695))
- (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3))
- (-4 *3 (-862 *4 *6 *5)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-2 (|:| |mat| (-631 (-349 (-858 *4)))) (|:| |vec| (-584 (-349 (-858 *4))))
- (|:| -3111 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
- (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718))
- (-5 *2
- (-2 (|:| |partsol| (-1180 (-349 (-858 *4))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *4)))))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|List| (|Integer|))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|isDomain| *3 (|Integer|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|List| *6)))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4))
+ (|ofCategory| *3 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *4 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |rank| (|NonNegativeInteger|))
+ (|:| |eqns|
+ (|List|
+ (|Record| (|:| |det| *7) (|:| |rows| (|List| (|Integer|)))
+ (|:| |cols| (|List| (|Integer|))))))
+ (|:| |fgb| (|List| *7)))))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |rank| (|NonNegativeInteger|))
+ (|:| |eqns|
+ (|List|
+ (|Record| (|:| |det| *7) (|:| |rows| (|List| (|Integer|)))
+ (|:| |cols| (|List| (|Integer|))))))
+ (|:| |fgb| (|List| *7)))))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| *4))))
+ (|:| |vec| (|List| (|Fraction| (|Polynomial| *4))))
+ (|:| |rank| (|NonNegativeInteger|))
+ (|:| |rows| (|List| (|Integer|)))
+ (|:| |cols| (|List| (|Integer|)))))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4))))
+ (|:| |basis|
+ (|List| (|Vector| (|Fraction| (|Polynomial| *4)))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))))
(((*1 *2 *2 *3)
- (-11
- (-5 *2
- (-2 (|:| |partsol| (-1180 (-349 (-858 *4))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *4)))))))
- (-5 *3 (-584 *7)) (-4 *4 (-12 (-257) (-117))) (-4 *7 (-862 *4 *6 *5))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117)))
- (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| -3111 (-695))
- (|:| |eqns|
- (-584
- (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *8)))))
- (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4))))
+ (|:| |basis|
+ (|List| (|Vector| (|Fraction| (|Polynomial| *4)))))))
+ (|isDomain| *3 (|List| *7))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |rank| (|NonNegativeInteger|))
+ (|:| |eqns|
+ (|List|
+ (|Record| (|:| |det| *8)
+ (|:| |rows| (|List| (|Integer|)))
+ (|:| |cols| (|List| (|Integer|))))))
+ (|:| |fgb| (|List| *8)))))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8))
+ (|isDomain| *4 (|NonNegativeInteger|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-82)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-858 *4)) (-4 *4 (-12 (-257) (-117))) (-4 *2 (-862 *4 *6 *5))
- (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-584 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))
- (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-12 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-349 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3))
- (-4 *3 (-862 *4 *6 *5))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-631 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-584 (-349 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|isDomain| *2
+ (|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| #1=(|List| *7))
+ (|:| |n0| #1#)))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *4))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *6 *5))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *2))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Symbol|)))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|Fraction| (|Polynomial| *4))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Fraction| (|Polynomial| *4)))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| *4))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|Fraction| (|Polynomial| *4))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-11 (-5 *3 (-631 *11)) (-5 *4 (-584 (-349 (-858 *8)))) (-5 *5 (-695))
- (-5 *6 (-1074)) (-4 *8 (-12 (-257) (-117))) (-4 *11 (-862 *8 *10 *9))
- (-4 *9 (-12 (-757) (-554 (-1091)))) (-4 *10 (-718))
- (-5 *2
- (-2
- (|:| |rgl|
- (-584
- (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11))
- (|:| |wcond| (-584 (-858 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *8))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *8))))))))))
- (|:| |rgsz| (-485))))
- (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
- (|:| |wcond| (-584 (-858 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *4))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *4))))))))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-11
- (-5 *3
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *5))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *5))))))))))
- (-5 *4 (-1074)) (-4 *5 (-12 (-257) (-117))) (-4 *8 (-862 *5 *7 *6))
- (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-12 (-257) (-117)))
- (-4 *6 (-12 (-757) (-554 (-1091)))) (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *5))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091))))
- (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *5))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-12 (-257) (-117)))
- (-4 *5 (-12 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
- (|:| |wcond| (-584 (-858 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *4))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *4))))))))))
- (-5 *1 (-836 *4 *5 *6 *7))))
+ (AND (|isDomain| *3 (|Matrix| *11))
+ (|isDomain| *4 (|List| (|Fraction| (|Polynomial| *8))))
+ (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|String|))
+ (|ofCategory| *8 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *11 (|PolynomialCategory| *8 *10 *9))
+ (|ofCategory| *9 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *10 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record|
+ (|:| |rgl|
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *11)) (|:| |neqzro| (|List| *11))
+ (|:| |wcond| (|List| (|Polynomial| *8)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *8))))
+ (|:| |basis|
+ (|List|
+ (|Vector|
+ (|Fraction| (|Polynomial| *8))))))))))
+ (|:| |rgsz| (|Integer|))))
+ (|isDomain| *1 (|ParametricLinearEquations| *8 *9 *10 *11))
+ (|isDomain| *7 (|Integer|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *7)) (|:| |neqzro| (|List| *7))
+ (|:| |wcond| (|List| (|Polynomial| *4)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *4))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *4))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8))
+ (|:| |wcond| (|List| (|Polynomial| *5)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *5))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *5))))))))))
+ (|isDomain| *4 (|String|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| #1=(|List| *8)) (|:| |neqzro| #1#)
+ (|:| |wcond| (|List| (|Polynomial| *5)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *5))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *5))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8))
+ (|isDomain| *4 (|List| *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8))
+ (|:| |wcond| (|List| (|Polynomial| *5)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *5))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *5))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5))
+ (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *7)) (|:| |neqzro| (|List| *7))
+ (|:| |wcond| (|List| (|Polynomial| *4)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *4))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *4))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7))
- (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091))))
- (-4 *8 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
- (|:| |wcond| (-584 (-858 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *6))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *6))))))))))
- (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9))))
+ (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *5 (|PositiveInteger|))
+ (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| #2=(|List| *9)) (|:| |neqzro| #2#)
+ (|:| |wcond| (|List| (|Polynomial| *6)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *6))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *6))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9))
+ (|isDomain| *4 (|List| *9))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117)))
- (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
- (|:| |wcond| (-584 (-858 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *6))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *6))))))))))
- (-5 *1 (-836 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091))))
- (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-349 (-858 *5))))
- (|:| -2014 (-584 (-1180 (-349 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| (|Symbol|)))
+ (|isDomain| *5 (|PositiveInteger|))
+ (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *9)) (|:| |neqzro| (|List| *9))
+ (|:| |wcond| (|List| (|Polynomial| *6)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *6))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *6))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8))
+ (|:| |wcond| (|List| (|Polynomial| *5)))
+ (|:| |bsoln|
+ (|Record|
+ (|:| |partsol|
+ (|Vector| (|Fraction| (|Polynomial| *5))))
+ (|:| |basis|
+ (|List|
+ (|Vector| (|Fraction| (|Polynomial| *5))))))))))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117)))
- (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *6 *7 *8 *9))))
+ (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| *9))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-12 (-257) (-117)))
- (-4 *7 (-12 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-12 (-757) (-554 (-1091))))
- (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8))))
+ (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| (|Symbol|)))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|String|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074))
- (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-12 (-257) (-117)))
- (-4 *8 (-12 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *7 *8 *9 *10))))
+ (AND (|isDomain| *3 (|Matrix| *10)) (|isDomain| *4 (|List| *10))
+ (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|String|))
+ (|ofCategory| *10 (|PolynomialCategory| *7 *9 *8))
+ (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *8 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *9 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074))
- (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-12 (-257) (-117)))
- (-4 *8 (-12 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *7 *8 *9 *10))))
+ (AND (|isDomain| *3 (|Matrix| *10)) (|isDomain| *4 (|List| (|Symbol|)))
+ (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|String|))
+ (|ofCategory| *10 (|PolynomialCategory| *7 *9 *8))
+ (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *8 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *9 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7))
- (-4 *6 (-12 (-257) (-117))) (-4 *7 (-12 (-757) (-554 (-1091))))
- (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))))
+ (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|PositiveInteger|))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))))
+ (|ofCategory| *8 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1156 *4))
- (-5 *1 (-835 *4 *2)))))
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PolynomialInterpolationAlgorithms| *4 *2)))))
(((*1 *2 *3)
- (-11 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3958 (-584 *1)) (|:| -2411 *1)))
- (-5 *3 (-584 *1)))))
+ (AND (|ofCategory| *1 (|PrincipalIdealDomain|))
+ (|isDomain| *2 (|Record| (|:| |coef| (|List| *1)) (|:| |generator| *1)))
+ (|isDomain| *3 (|List| *1)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
+ (AND (|ofCategory| *1 (|PrincipalIdealDomain|))
+ (|isDomain| *2 (|Maybe| (|List| *1))) (|isDomain| *3 (|List| *1)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-830 *4)))))
+ (AND (|isDomain| *2 (|List| (|Polynomial| *4)))
+ (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *1 (|PolyGroebner| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-830 *4)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-11 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-11 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+ (AND (|isDomain| *2 (|List| (|Polynomial| *4)))
+ (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *1 (|PolyGroebner| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Partition|))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|PermutationGroup| (|Integer|)))
+ (|isDomain| *1 (|PermutationGroupExamples|)))))
(((*1 *2 *2 *2)
- (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2))
- (-4 *2 (-862 *5 *3 *4))))
+ (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|))
+ (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *5 *3 *4))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|))
+ (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *6))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-347 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *6 *4 *5))
+ (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *2))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Factored| *2)) (|ofCategory| *2 (|EuclideanDomain|))
+ (|isDomain| *1 (|PartialFraction| *2))))
((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117)))
- (-5 *2 (-48)) (-5 *1 (-827 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Any|)) (|isDomain| *1 (|PartialFractionPackage| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-347 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6))
- (-4 *6 (-12 (-257) (-117))) (-5 *2 (-48)) (-5 *1 (-827 *6)))))
-(((*1 *1 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
-(((*1 *2 *3 *3) (-11 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
-(((*1 *1 *1) (-11 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-1156 (-349 (-485)))) (-5 *1 (-825 *3 *2))
- (-4 *2 (-1156 (-349 *3))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
- (-4 *3 (-1156 (-349 *4))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))
- (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5))
- (-4 *5 (-1156 (-349 *4))))))
-(((*1 *2 *3)
- (-11 (-4 *3 (-1156 (-349 (-485))))
- (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4))
- (-4 *4 (-1156 (-349 *3)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-1156 (-349 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
- (-4 *3 (-1156 (-349 *4))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-1156 (-349 *3))) (-5 *2 (-831))
- (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-349 *4))))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-12 (-496) (-951 (-485))))
- (-5 *2 (-2 (|:| -3775 (-695)) (|:| -2385 *8)))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6))
- (-4 *4 (-1156 (-349 (-485)))) (-4 *5 (-1156 (-349 *4)))
- (-4 *6 (-290 (-349 (-485)) *4 *5))
- (-5 *2 (-2 (|:| -3775 (-695)) (|:| -2385 *6))) (-5 *1 (-824 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-349 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-82))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-282 (-349 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-349 (-485))))
- (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 (-349 (-485)) *4 *5)) (-5 *2 (-82))
- (-5 *1 (-824 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-392))))
+ (AND (|isDomain| *4 (|Factored| (|Polynomial| *6)))
+ (|isDomain| *5 (|Symbol|)) (|isDomain| *3 (|Polynomial| *6))
+ (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Any|)) (|isDomain| *1 (|PartialFractionPackage| *6)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|PartialFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|PartialFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *1 (|PartialFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|isDomain| *1 (|PartialFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|PartialFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|)))))
+(((*1 *2 *2)
+ (AND
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Fraction| *3))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |den| #1=(|Integer|)) (|:| |gcdnum| #1#))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|FiniteDivisor| *5 *6 *7 *8))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| *8)))
+ (|isDomain| *1 (|PointsOfFiniteOrder| *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| AND
+ (|isDomain| *3 (|FiniteDivisor| (|Fraction| (|Integer|)) *4 *5 *6))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| (|Fraction| (|Integer|)) *4 *5))
+ (|isDomain| *2
+ (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| *6)))
+ (|isDomain| *1 (|PointsOfFiniteOrderRational| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|FiniteDivisor| *5 *6 *7 *8))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PointsOfFiniteOrder| *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|FiniteDivisor| (|Fraction| (|Integer|)) *4 *5 *6))
+ (|ofCategory| *4
+ (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6
+ (|FunctionFieldCategory| (|Fraction| (|Integer|)) *4 *5))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PointsOfFiniteOrderRational| *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|GcdDomain|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *5 *6))))
((*1 *2 *2 *2)
- (-11 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-822)))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-347 (-1086 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1086 *1))
- (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
- ((*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-347 (-1086 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1086 *1))
- (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
- ((*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *2 *3) (-11 (-4 *1 (-822)) (-5 *2 (-347 (-1086 *1))) (-5 *3 (-1086 *1)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *1 (|Expression| *4))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *1 (|Expression| *4))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *1 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-138 *4))
- (-4 *4 (-484)) (-5 *1 (-119 *4 *5))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|ComplexCategory| *4))
+ (|ofCategory| *4 (|IntegerNumberSystem|))
+ (|isDomain| *1 (|ComplexIntegerSolveLinearPolynomialEquation| *4 *5))))
((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4))
- (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3))))
+ (|partial| AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldSolveLinearPolynomialEquation| *4 *5 *3))))
((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485)))
- (-5 *1 (-509))))
+ (|partial| AND
+ (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| (|Integer|))))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *1 (|IntegerSolveLinearPolynomialEquation|))))
((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *1)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))))
(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1180 *1))))
+ (|partial| AND (|isDomain| *3 (|Matrix| *1))
+ (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|Vector| *1))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-631 *1)) (-4 *1 (-115)) (-4 *1 (-822))
- (-5 *2 (-1180 *1)))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-115))))
- ((*1 *1 *1) (-4 *1 (-298)))
- ((*1 *2 *1) (-11 (-5 *2 (-633 *1)) (-4 *1 (-115)) (-4 *1 (-822)))))
+ (|partial| AND (|isDomain| *3 (|Matrix| *1))
+ (|ofCategory| *1 (|CharacteristicNonZero|))
+ (|ofCategory| *1 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *2 (|Vector| *1)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| *1))
+ (|ofCategory| *1 (|CharacteristicNonZero|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|FiniteFieldCategory|)))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Maybe| *1)) (|ofCategory| *1 (|CharacteristicNonZero|))
+ (|ofCategory| *1 (|PolynomialFactorizationExplicit|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-347 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8))
- (-5 *4 (-1086 *8))))
+ (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *5 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *8)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *7 *8))
+ (|isDomain| *4 (|SparseUnivariatePolynomial| *8))))
((*1 *2 *3)
- (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
+ (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))))
(((*1 *2)
- (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *2 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *2 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
((*1 *2)
- (-11 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *2) (-11 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
- (-5 *2 (-347 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *2 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *2 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
((*1 *2 *3)
- (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
- (-5 *2 (-347 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))))
((*1 *2 *3)
- (-11 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-347 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
+ (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *1 (-819 *4 *5 *6 *7))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5))
- (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -11 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757))
- (-5 *1 (-819 *5 *6 *4 *7)))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-28))))
- ((*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-484)))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
- ((*1 *2 *1 *3)
- (-11 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4))
- (-5 *3 (-584 *4))))
- ((*1 *2 *1 *3)
- (-11 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4))
- (-5 *3 (-1010 *4))))
- ((*1 *2 *1 *3) (-11 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *5 *6 *4))
+ (|ofCategory| *5 (|PolynomialFactorizationExplicit|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|AddAst|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|List| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Permutation| *3)))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PermutationGroup| *3)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|PermutationCategory| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Set| *3))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Set| (|List| *4)))
+ (|isDomain| *1 (|PermutationGroup| *4)) (|isDomain| *3 (|List| *4))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Set| (|Set| *4)))
+ (|isDomain| *1 (|PermutationGroup| *4)) (|isDomain| *3 (|Set| *4))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Set| (|Set| *3)))
+ (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
- (-5 *1 (-817 *4)))))
+ (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|PermutationGroup| *4)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
- (-5 *1 (-817 *4)))))
-(((*1 *2 *1) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-82))))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|PermutationGroup| *4)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PermutationCategory| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Set| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|PermutationCategory| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1057 *4 *2)) (-13 *4 (-831))
- (-4 *2 (-12 (-962) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-815 *4 *2)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3))))
- (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *2 *1) (-11 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *1 (-951 (-485))) (-4 *1 (-253)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *1 (-951 (-485))) (-4 *1 (-253)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-319)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-813 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-11 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *1 (-185 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-188)) (-5 *2 (-695))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|PermutationGroup| *4))
+ (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PermutationGroup| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|PermutationCategory| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|PermutationCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SquareMatrix| *4 *2)) (|ofType| *4 (|PositiveInteger|))
+ (|ofCategory| *2
+ (|Join| (|Ring|)
+ (CATEGORY |package|
+ (ATTRIBUTE (|commutative| "*")))))
+ (|isDomain| *1 (|Permanent| *4 *2)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |preimage| (|List| *3)) (|:| |image| (|List| *3))))
+ (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Permutation| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Permutation| *3)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Partition|)) (|isDomain| *1 (|Permutation| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RetractableTo| (|Integer|)))
+ (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Permutation| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|RetractableTo| (|Integer|)))
+ (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Permutation| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|Permutation| *3))
+ (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Permutation| *3)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialDomain| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|DifferentialSpace|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-224 *4)) (-4 *4 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1130))))
- ((*1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|DifferentialSpaceExtension| *4))
+ (|ofCategory| *4 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|DifferentialSpaceExtension| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|PartialDifferentialDomain| *2 *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|Type|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
- (-4 *4 (-69))))
- ((*1 *1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-69))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-69)))))
+ (AND (|isDomain| *2 (|List| *4))
+ (|isDomain| *3 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *4))
+ (|ofCategory| *4 (|BasicType|))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *2))
+ (|ofCategory| *2 (|BasicType|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *1 (|PartialDifferentialSpace| *3))
+ (|ofCategory| *3 (|BasicType|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *1 (|PolynomialDecomposition| *2 *4))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *2)
- (|partial| -11 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))))
-(((*1 *1) (-11 (-4 *1 (-405 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
- ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664)))
- ((*1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1) (-11 (-5 *1 (-804 *2)) (-4 *2 (-757)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
- (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962))
- (-13 *4 (-584 (-1091)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-48)) (-5 *2 (-82)) (-5 *1 (-49 *4)) (-4 *4 (-1130))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091)))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5))
- (-4 *5 (-1130)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-48)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|PolynomialDecomposition| *2 *3))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
+ ((*1 *1) (|isDomain| *1 (|InputForm|)))
+ ((*1 *1) (|ofCategory| *1 (|MonadWithUnit|)))
+ ((*1 *1) (|ofCategory| *1 (|Monoid|)))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| (|Record| (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| *3)) (|:| |c| *4))))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|LyndonWord| *3)))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AntiSymm| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Any|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|AnyFunctions1| *4)) (|ofCategory| *4 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Magma| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3))
+ (|ofCategory| *3 (|OrderedSet|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|PatternFunctions1| *4 *5))
+ (|ofCategory| *5 (|Type|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Any|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|PatternFunctions1| *4 *3)) (|ofCategory| *3 (|Type|)))))
(((*1 *2 *1 *3)
- (|partial| -11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-82))
- (-5 *1 (-799 *4 *5)) (-4 *5 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-802 *5 *3))
- (-4 *3 (-1130))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130))
- (-5 *2 (-82)) (-5 *1 (-802 *5 *6)))))
-(((*1 *1) (-4 *1 (-20)))
- ((*1 *1) (-11 (-4 *1 (-410 *2 *3)) (-4 *2 (-145)) (-4 *3 (-20))))
- ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1)
- (|partial| -11 (-5 *2 (-2 (|:| -2516 (-83)) (|:| |arg| (-584 (-801 *3)))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1 *3)
- (|partial| -11 (-5 *3 (-83)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4))
- (-4 *4 (-1014)))))
-(((*1 *2 *1)
- (|partial| -11 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (|partial| AND (|isDomain| *3 (|Pattern| *4))
+ (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PatternMatchResult| *4 *5))
+ (|ofCategory| *5 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternFunctions1| *5 *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|Pattern| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PatternFunctions1| *5 *6)))))
+(((*1 *1) (|ofCategory| *1 (|AbelianMonoid|)))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|GradedModule| *2 *3))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|))))
+ ((*1 *1) (|isDomain| *1 (|InputForm|)))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |op| (|BasicOperator|))
+ (|:| |arg| (|List| (|Pattern| *3)))))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (|partial| AND (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *2 (|List| (|Pattern| *4))) (|isDomain| *1 (|Pattern| *4))
+ (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *2 *1)
+ (|partial| AND
+ (|isDomain| *2 (|Record| (|:| |num| #1=(|Pattern| *3)) (|:| |den| #1#)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|List| (|Pattern| *3)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Any|))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Any|))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Any|))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *2 *3 *3 *3)
- (-11 (-5 *2 (-1091)) (-5 *3 (-82)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Boolean|))
+ (|isDomain| *1 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-48)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|Any|))
+ (|isDomain| *1 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-48))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1) (-11 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-48))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Pattern| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Any|))) (|isDomain| *1 (|Pattern| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (|partial| AND (|isDomain| *2 (|List| (|Pattern| *3)))
+ (|isDomain| *1 (|Pattern| *3)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-4 *4 (-1014)) (-5 *2 (-82)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014))
- (-4 *5 (-609 *4))))
+ (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *5 (|ListAggregate| *4))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatchResult| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
(((*1 *1)
- (-11 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
- (-4 *4 (-609 *3))))
- ((*1 *1) (-11 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *4 (|ListAggregate| *3))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|PatternMatchResult| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *1)
- (|partial| -11 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
- (-5 *1 (-799 *4 *2)))))
+ (|partial| AND (|isDomain| *3 (|Pattern| *4))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchResult| *4 *2)))))
(((*1 *1 *2 *3 *1)
- (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchResult| *4 *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *2 *3 *1)
- (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchResult| *4 *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *2 *3 *1 *3)
- (-11 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|PatternMatchResult| *4 *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6)))
- (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-1014)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4))
- (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-1014)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4))
- (-4 *3 (-962)) (-2563 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4))
- (-2563 (-4 *3 (-951 (-1091)))) (-2563 (-4 *3 (-962))) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5))))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-1091)) (-5 *2 (-82))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-83)) (-5 *2 (-82))))
+ (AND (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|PatternMatchable| *5))
+ (|isDomain| *2 (|PatternMatchListResult| *5 *6 (|List| *6)))
+ (|isDomain| *1 (|PatternMatch| *5 *6 *4)) (|isDomain| *3 (|List| *6))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|List| (|Equation| *3)))
+ (|isDomain| *1 (|PatternMatch| *5 *3 *4))
+ (|ofCategory| *3 (|RetractableTo| (|Symbol|)))
+ (|ofCategory| *3 (|PatternMatchable| *5))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| *3))))
+ (|isDomain| *1 (|PatternMatch| *5 *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|not| (|ofCategory| *3 (|RetractableTo| (|Symbol|))))
+ (|ofCategory| *3 (|PatternMatchable| *5))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|PatternMatchResult| *5 *3))
+ (|isDomain| *1 (|PatternMatch| *5 *3 *4))
+ (|not| (|ofCategory| *3 (|RetractableTo| (|Symbol|))))
+ (|not| (|ofCategory| *3 (|Ring|)))
+ (|ofCategory| *3 (|PatternMatchable| *5))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-82)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
+ (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-83)) (-5 *2 (-82)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1 *3) (-11 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-82))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-82))
- (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))))
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Kernel| *4)) (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|Kernel| *4)) (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|OperatorCategory| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PatternMatch| *5 *3 *4))
+ (|ofCategory| *3 (|PatternMatchable| *5))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|PatternMatchable| *5))
+ (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PatternMatch| *5 *6 *4))
+ (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|PatternMatchResult| *4 *5))
+ (|isDomain| *3 (|PatternMatchResult| *4 *6))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|ListAggregate| *5))
+ (|isDomain| *1 (|PatternMatchListResult| *4 *5 *6)))))
(((*1 *2 *1)
- (-11 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5))
- (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))))
+ (AND (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|PatternMatchResult| *3 *5))
+ (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *5 (|ListAggregate| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Stream| (|List| (|Integer|))))
+ (|isDomain| *1 (|PartitionsAndPermutations|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))
+ (AND (|isDomain| *2 (|Stream| (|List| (|Integer|))))
+ (|isDomain| *1 (|PartitionsAndPermutations|))
+ (|isDomain| *3 (|List| (|Integer|)))))
((*1 *2 *3)
- (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
+ (AND (|isDomain| *2 (|Stream| (|List| (|Integer|))))
+ (|isDomain| *1 (|PartitionsAndPermutations|))
+ (|isDomain| *3 (|List| (|Integer|))))))
(((*1 *2 *3 *2)
- (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))))
+ (AND (|isDomain| *2 (|Stream| (|List| (|Integer|))))
+ (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *1 (|PartitionsAndPermutations|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
-(((*1 *2 *2) (-11 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *2 *2 *2) (-11 (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791)))))
-(((*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))))
-(((*1 *2 *3) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-198)) (-5 *3 (-1074))))
- ((*1 *2 *2) (-11 (-5 *2 (-584 (-1074))) (-5 *1 (-198))))
- ((*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-11 (-5 *2 (-127)) (-5 *1 (-784)))))
-(((*1 *1 *2 *3) (-11 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-87 *3)) (-13 *3 (-485))))
- ((*1 *1 *2 *3 *3) (-11 (-5 *3 (-1070 *2)) (-4 *2 (-257)) (-5 *1 (-147 *2))))
- ((*1 *1 *2) (-11 (-5 *2 (-349 *3)) (-4 *3 (-257)) (-5 *1 (-147 *3))))
- ((*1 *2 *3) (-11 (-5 *2 (-147 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-346))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-781 *3)) (-13 *3 (-485))))
- ((*1 *2 *1)
- (-11 (-13 *3 (-485)) (-5 *2 (-147 (-349 (-485)))) (-5 *1 (-782 *3 *4))
- (-4 *4 (-780 *3)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-345 *3)) (-4 *3 (-346))))
- ((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-345 *3)) (-4 *3 (-346))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346))))
- ((*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831))))
- ((*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-145)) (-4 *2 (-20)) (-5 *1 (-243 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1156 *3)) (-13 *5 (-1 *4 *4 *2))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2))
- (-13 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-20)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-145))
- (-13 *4 (-1 *3 *3 *2)) (-13 *5 (-1 (-3 *2 "failed") *2 *2))
- (-13 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-11 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-20)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-145))
- (-13 *4 (-1 *3 *3 *2)) (-13 *5 (-1 (-3 *2 "failed") *2 *2))
- (-13 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
-(((*1 *2 *1) (-11 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
-(((*1 *1 *1) (-4 *1 (-780 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2 *3) (-11 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
+ (AND (|isDomain| *2 (|Stream| (|List| (|Integer|))))
+ (|isDomain| *1 (|PartitionsAndPermutations|))
+ (|isDomain| *3 (|List| (|Integer|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Stream| (|List| (|PositiveInteger|))))
+ (|isDomain| *1 (|PartitionsAndPermutations|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ParametricPlaneCurve| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ParametricSpaceCurve| *2)) (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|ParametricSurface| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *1 (|ParametricSurface| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|List| (|Syntax|)))
+ (|isDomain| *1 (|Parser|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|DisplayPackage|))
+ (|isDomain| *3 (|String|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|DisplayPackage|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|Pair| *2 *3)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|ContinuedFraction| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|BalancedPAdicRational| *3)) (|ofType| *3 (|Integer|))))
+ ((*1 *1 *2 *3 *3)
+ (AND (|isDomain| *3 (|Stream| *2)) (|ofCategory| *2 (|EuclideanDomain|))
+ (|isDomain| *1 (|ContinuedFraction| *2))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|ContinuedFraction| *3))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *2 (|ContinuedFraction| (|Integer|)))
+ (|isDomain| *1 (|NumericContinuedFraction| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|ContinuedFraction| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PAdicRational| *3)) (|ofType| *3 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|ofType| *3 (|Integer|))
+ (|isDomain| *2 (|ContinuedFraction| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PAdicRationalConstructor| *3 *4))
+ (|ofCategory| *4 (|PAdicIntegerCategory| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FloatingPointSystem&| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FloatingPointSystem&| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|has| *1 (ATTRIBUTE |arbitraryPrecision|))
+ (|ofCategory| *1 (|FloatingPointSystem|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Stream| (|Integer|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *2 (|AbelianMonoid|))
+ (|isDomain| *1 (|EuclideanModularRing| *3 *4 *2 *5 *6 *7))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofType| *5 (|Mapping| *4 *4 *2))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2))
+ (|ofType| *7 (|Mapping| (|Union| *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|AbelianMonoid|))
+ (|isDomain| *1 (|ModularField| *3 *2 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2))
+ (|ofType| *5 (|Mapping| (|Union| *2 "failed") *2 *2))
+ (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|ModMonic| *3 *2)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|AbelianMonoid|))
+ (|isDomain| *1 (|ModularRing| *3 *2 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2))
+ (|ofType| *5 (|Mapping| (|Union| *2 "failed") *2 *2))
+ (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3))
+ (|isDomain| *2 (|Integer|)))))
+(((*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|)))
+ (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|PAdicIntegerCategory| *4)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -11 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-349 *6))
- (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Fraction| *6))
+ (|isDomain| *1 (|PadeApproximants| *5 *4 *6))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *5))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))))
((*1 *2 *3 *3 *4 *4)
- (|partial| -11 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-311))
- (-13 *6 (-1091)) (-13 *7 *5) (-5 *2 (-349 (-1149 *6 *5)))
- (-5 *1 (-778 *5 *6 *7))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|UnivariateTaylorSeries| *5 *6 *7))
+ (|ofCategory| *5 (|Field|)) (|ofType| *6 (|Symbol|)) (|ofType| *7 *5)
+ (|isDomain| *2 (|Fraction| (|UnivariatePolynomial| *6 *5)))
+ (|isDomain| *1 (|PadeApproximantPackage| *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (|partial| -11 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-311))
- (-13 *6 (-1091)) (-13 *7 *5) (-5 *2 (-349 (-1149 *6 *5)))
- (-5 *1 (-778 *5 *6 *7)))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|UnivariateTaylorSeries| *5 *6 *7))
+ (|ofCategory| *5 (|Field|)) (|ofType| *6 (|Symbol|)) (|ofType| *7 *5)
+ (|isDomain| *2 (|Fraction| (|UnivariatePolynomial| *6 *5)))
+ (|isDomain| *1 (|PadeApproximantPackage| *5 *6 *7)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -11 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-147 *6))
- (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))))
-(((*1 *2 *1) (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))))
-(((*1 *2 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116)))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-11 (-4 *1 (-213 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-695))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
- ((*1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-773)))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-253))))
- ((*1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-253))))
- ((*1 *1 *1) (-4 *1 (-253)))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-760)) (-5 *2 (-82))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|ContinuedFraction| *6))
+ (|isDomain| *1 (|PadeApproximants| *5 *4 *6))
+ (|ofCategory| *4 (|UnivariateTaylorSeriesCategory| *5))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|List| *3))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|FunctionDescriptor|)))
+ (|isDomain| *1 (|OverloadSet|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Kernel| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1) (|isDomain| *1 (|Character|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|))))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
(((*1 *2 *1 *1)
- (|partial| -11 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3))))
- (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695)))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695)))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-81))) ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-81))) ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1) (-4 *1 (-81))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-772))))
- ((*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-468))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-514))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-772)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-98))) (-5 *3 (-98)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-771)) (-5 *3 (-99)) (-5 *2 (-695)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-48))) (-5 *2 (-1186)) (-5 *1 (-769)))))
+ (AND (|ofCategory| *1 (|OrderedType|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *2 *1 *1)
+ (|partial| AND
+ (|isDomain| *2
+ (|Record| (|:| |lm| #1=(|OrderedFreeMonoid| *3)) (|:| |rm| #1#)))
+ (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|NonNegativeInteger|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|NonNegativeInteger|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|BooleanLogic|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|BooleanLogic|)))
+ ((*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *1) (|ofCategory| *1 (|BooleanLogic|)))
+ ((*1 *1 *1) (|isDomain| *1 (|OutputForm|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputBinaryFile|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FileName|)) (|isDomain| *1 (|OutputBinaryFile|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InputBinaryFile|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InputOutputBinaryFile|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OutputBinaryFile|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|OutputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Byte|))) (|isDomain| *3 (|Byte|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|OutputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Int8|))) (|isDomain| *3 (|Int8|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|OutputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|UInt8|))) (|isDomain| *3 (|UInt8|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|OutputByteConduit|)) (|isDomain| *3 (|ByteBuffer|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Any|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|OutputPackage|)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-35 (-349 (-485))))
- (-4 *2 (-145)))))
-(((*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145))))
- ((*1 *2 *3 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))))
-(((*1 *2 *3 *2) (-11 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-145)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *3 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-762 *3))))
+ (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-66 *5)) (-4 *5 (-311)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3)))
- (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *3 *4))
+ (|ofCategory| *3 (|MonogenicLinearOperator| *4))))
((*1 *2 *1 *1)
- (-11 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-762 *3))))
+ (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-66 *5)) (-4 *5 (-311)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-762 *3))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-66 *5)) (-4 *5 (-496)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2905 *1)))
- (-4 *1 (-762 *3))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-66 *5)) (-4 *5 (-496)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962))
- (-5 *1 (-50 *5 *2 *3)) (-4 *3 (-762 *5))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-631 *3)) (-4 *1 (-360 *3)) (-4 *3 (-145))))
- ((*1 *2 *1 *2 *2) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 (|LeftModule| *5))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *1 (|ApplyUnivariateSkewPolynomial| *5 *2 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))))
+ ((*1 *2 *1 *2 *2)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
((*1 *2 *3 *2 *2 *4 *5)
- (-11 (-5 *4 (-66 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3))
- (-4 *3 (-762 *2)))))
+ (AND (|isDomain| *4 (|Automorphism| *2)) (|isDomain| *5 (|Mapping| *2 *2))
+ (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *2 *3))
+ (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *2)))))
(((*1 *2 *2 *2 *3 *4)
- (-11 (-5 *3 (-66 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2))
- (-4 *2 (-762 *5)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+ (AND (|isDomain| *3 (|Automorphism| *5)) (|isDomain| *4 (|Mapping| *5 *5))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *2))
+ (|ofCategory| *2 (|UnivariateSkewPolynomialCategory| *5)))))
(((*1 *2 *2 *2)
- (|partial| -11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3))))
((*1 *1 *1 *1)
- (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *2 *2)
+ (|partial| AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3))))
+ ((*1 *1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-311)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1)))
- (-4 *1 (-762 *3)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+ (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))))
(((*1 *1 *1 *1)
- (|partial| -11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-311)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1)))
- (-4 *1 (-762 *3)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-11 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+ (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1)))
+ (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3))))
+ ((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
(((*1 *1)
- (-11 (-4 *1 (-346)) (-2563 (|has| *1 (-6 -3988)))
- (-2563 (|has| *1 (-6 -3981)))))
- ((*1 *2 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
- ((*1 *2 *1) (-11 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753)))
- ((*1 *1 *1 *1) (-4 *1 (-760))))
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|)))
+ (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|)))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteSetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OrderedMultisetAggregate| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *1) (|ofCategory| *1 (|OrderedFinite|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|OrderedType|))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5))
- (-13 *4 (-695)))))
+ (AND (|isDomain| *3 (|Vector| *5)) (|ofCategory| *5 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderingFunctions| *4 *5))
+ (|ofType| *4 (|NonNegativeInteger|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5))
- (-13 *4 (-695)))))
+ (AND (|isDomain| *3 (|Vector| *5)) (|ofCategory| *5 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderingFunctions| *4 *5))
+ (|ofType| *4 (|NonNegativeInteger|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-82)) (-5 *1 (-754 *4 *5))
- (-13 *4 (-695)))))
-(((*1 *2) (-11 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-11 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
-(((*1 *2) (-11 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-11 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-104))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-166 (-442))) (-5 *1 (-749)))))
-(((*1 *2 *1) (-11 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-52)))))
-(((*1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3))
- (-4 *3 (-628 *4 *5 *6))))
+ (AND (|isDomain| *3 (|Vector| *5)) (|ofCategory| *5 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderingFunctions| *4 *5))
+ (|ofType| *4 (|NonNegativeInteger|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|)))
+ (|isDomain| *1 (|Infinity|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|OrderedCompletion| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|)))
+ (|isDomain| *1 (|Infinity|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|OrderedCompletion| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|SingleInteger|))
+ (|isDomain| *1 (|OrderedCompletion| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Database| (|IndexCard|)))
+ (|isDomain| *1 (|OperationsQuery|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OperatorCategory| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Arity|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *2 (|Record| (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *3))
+ (|ofCategory| *3 (|MatrixCategory| *4 *5 *6))))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|ModuleOperator| *2 *3))
+ (|ofCategory| *3 (|LeftModule| *2))))
((*1 *1 *1)
- (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
- ((*1 *1 *1 *1) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962))))
- ((*1 *1 *1) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962)))))
+ (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|ModuleOperator| *2 *3))
+ (|ofCategory| *3 (|LeftModule| *2))))
+ ((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|Ring|))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *2)
- (-11 (-4 *2 (-145)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
- ((*1 *2 *2) (-11 (-5 *1 (-746 *2)) (-4 *2 (-145)) (-4 *2 (-962)))))
+ (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|ModuleOperator| *2 *3))
+ (|ofCategory| *3 (|LeftModule| *2))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-83)) (-5 *4 (-584 *2)) (-5 *1 (-84 *2))
- (-4 *2 (-1014))))
+ (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|List| *2))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *2))
+ (|ofCategory| *2 (|SetCategory|))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014))
- (-5 *1 (-84 *4))))
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *3 (|Mapping| *4 (|List| *4)))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-84 *4))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *4 *4))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-83)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-84 *4))
- (-4 *4 (-1014))))
+ (|partial| AND (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *2 (|Mapping| *4 (|List| *4)))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))
+ (|ofCategory| *4 (|SetCategory|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
- (-5 *1 (-652 *3 *4))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|LeftModule| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *3 *4))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Operator| *3)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
- (-5 *1 (-652 *3 *4))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|LeftModule| *3))
+ (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *3 *4))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Operator| *3)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-83)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4))))
- ((*1 *2 *3 *2) (-11 (-5 *3 (-83)) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|ModuleOperator| *4 *2))
+ (|ofCategory| *2 (|LeftModule| *4))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *1 (|Operator| *2))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *2 *3)
- (-11 (-5 *3 (-309 (-83))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4))
- (-4 *4 (-591 *2))))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-309 (-83))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
-(((*1 *2) (-11 (-5 *2 (-744 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-11 (-5 *1 (-744 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-11 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))))
-(((*1 *2 *1) (-11 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
+ (AND (|isDomain| *3 (|FreeGroup| (|BasicOperator|)))
+ (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *4))
+ (|ofCategory| *4 (|LeftModule| *2))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|FreeGroup| (|BasicOperator|)))
+ (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|Ring|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|OnePointCompletion| (|Integer|)))
+ (|isDomain| *1 (|Infinity|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|OnePointCompletion| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|OppositeMonogenicLinearOperator| *2 *3))
+ (|ofCategory| *2 (|MonogenicLinearOperator| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|MonogenicLinearOperator| *3))
+ (|isDomain| *1 (|OppositeMonogenicLinearOperator| *2 *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Magma| *3))
+ (|ofCategory| *3 (|OrderedSet|))))
+ ((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *3 (|OrderedSet|)))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1180 *4))
- (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5))
- (-4 *5 (-601 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5))
- (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))))
+ (|partial| AND (|isDomain| *5 (|List| *4)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|Vector| *4)) (|isDomain| *1 (|ODETools| *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|ODETools| *4 *5))
+ (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Matrix| *5))
+ (|isDomain| *1 (|ODETools| *5 *6))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *5)))))) (-5 *1 (-694 *5))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *5)))
+ (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5))))))
+ (|isDomain| *1 (|NonLinearSolvePackage| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-248 (-349 (-858 *4)))))) (-5 *1 (-694 *4))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4))))))
+ (|isDomain| *1 (|NonLinearSolvePackage| *4))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-584 *6))) *7 *6))
- (-4 *6 (-311)) (-4 *7 (-601 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1180 *6) "failed"))
- (|:| -2014 (-584 (-1180 *6)))))
- (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-311))
- (-5 *2
- (-2 (|:| A (-631 *5))
- (|:| |eqs|
- (-584
- (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3269 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5))
- (-4 *6 (-601 *5))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *6 (-601 *5))
- (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5))))
- (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6))))
+ (AND (|isDomain| *3 (|Matrix| *7))
+ (|isDomain| *5
+ (|Mapping|
+ (|Record| (|:| |particular| (|Union| *6 "failed"))
+ (|:| |basis| (|List| *6)))
+ *7 *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| *6))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| #1=(|Vector| *6) "failed"))
+ (|:| |basis| (|List| #1#))))
+ (|isDomain| *1 (|SystemODESolver| *6 *7))
+ (|isDomain| *4 (|Vector| *6)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| A #1=(|Matrix| *5))
+ (|:| |eqs|
+ (|List|
+ (|Record| (|:| C #1#) (|:| |g| (|Vector| *5))
+ (|:| |eq| *6) (|:| |rh| *5))))))
+ (|isDomain| *1 (|SystemODESolver| *5 *6)) (|isDomain| *3 (|Matrix| *5))
+ (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|isDomain| *2
+ (|Record| (|:| |mat| (|Matrix| *6)) (|:| |vec| (|Vector| *5))))
+ (|isDomain| *1 (|SystemODESolver| *5 *6)) (|isDomain| *3 (|Matrix| *6))
+ (|isDomain| *4 (|Vector| *5)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))
+ (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Fraction| *6)))
+ (|isDomain| *1 (|RationalRicDE| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-598 (-349 *7))) (-5 *4 (-1 (-584 *6) *7))
- (-5 *5 (-1 (-347 *7) *7))
- (-4 *6 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *7 (-1156 *6)) (-5 *2 (-584 (-349 *7))) (-5 *1 (-733 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6))))
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *7)))
+ (|isDomain| *4 (|Mapping| (|List| *6) *7))
+ (|isDomain| *5 (|Mapping| (|Factored| *7) *7))
+ (|ofCategory| *6
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2 (|List| (|Fraction| *7)))
+ (|isDomain| *1 (|RationalRicDE| *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6)))
+ (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Fraction| *6)))
+ (|isDomain| *1 (|RationalRicDE| *5 *6))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-599 *7 (-349 *7))) (-5 *4 (-1 (-584 *6) *7))
- (-5 *5 (-1 (-347 *7) *7))
- (-4 *6 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *7 (-1156 *6)) (-5 *2 (-584 (-349 *7))) (-5 *1 (-733 *6 *7))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-598 (-349 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-24))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-349 *5))) (-5 *1 (-733 *4 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-24)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-599 *5 (-349 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-24))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-349 *5))) (-5 *1 (-733 *4 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-24)) (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-349 *6))) (-5 *1 (-733 *5 *6)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3269 *3))))
- (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-349 *6)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3269 (-599 *6 (-349 *6))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-349 *6))))))
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *7 (|Fraction| *7)))
+ (|isDomain| *4 (|Mapping| (|List| *6) *7))
+ (|isDomain| *5 (|Mapping| (|Factored| *7) *7))
+ (|ofCategory| *6
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2 (|List| (|Fraction| *7)))
+ (|isDomain| *1 (|RationalRicDE| *6 *7))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *5)))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|AlgebraicallyClosedField|))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Fraction| *5)))
+ (|isDomain| *1 (|RationalRicDE| *4 *5))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))
+ (|isDomain| *4 (|Mapping| (|Factored| *6) *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|AlgebraicallyClosedField|))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Fraction| *6)))
+ (|isDomain| *1 (|RationalRicDE| *5 *6))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *5 (|Fraction| *5)))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|AlgebraicallyClosedField|))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Fraction| *5)))
+ (|isDomain| *1 (|RationalRicDE| *4 *5))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6)))
+ (|isDomain| *4 (|Mapping| (|Factored| *6) *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|AlgebraicallyClosedField|))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Fraction| *6)))
+ (|isDomain| *1 (|RationalRicDE| *5 *6)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Record| (|:| |poly| *6) (|:| |eq| *3))))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *5 *6 *3 *7))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *6))
+ (|ofCategory| *7
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *6)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |poly| *6)
+ (|:| |eq|
+ (|LinearOrdinaryDifferentialOperator2| *6
+ (|Fraction|
+ *6))))))
+ (|isDomain| *1 (|RationalRicDE| *5 *6))
+ (|isDomain| *3
+ (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-347 *7) *7))
- (-4 *7 (-1156 *6)) (-4 *6 (-12 (-311) (-117) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-2 (|:| |frac| (-349 *7)) (|:| -3269 *3))))
- (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-349 *7)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-584 (-2 (|:| |frac| (-349 *6)) (|:| -3269 (-599 *6 (-349 *6))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-349 *6))))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7))
- (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5))))
- (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-598 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-599 *2 (-349 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485))))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-598 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-731 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-598 (-349 *6))) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-2 (|:| -2014 (-584 (-349 *6))) (|:| |mat| (-631 *5))))
- (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-349 *6)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-599 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-584 *4))))
- (-5 *1 (-731 *5 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-599 *6 (-349 *6))) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-2 (|:| -2014 (-584 (-349 *6))) (|:| |mat| (-631 *5))))
- (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-349 *6))))))
+ (AND
+ (|isDomain| *4 (|Mapping| (|List| *7) *7 (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *5 (|Mapping| (|Factored| *7) *7))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *6
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |frac| (|Fraction| *7)) (|:| |eq| *3))))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *6 *7 *3 *8))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *7))
+ (|ofCategory| *8
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *7)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|Factored| *6) *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |frac| (|Fraction| *6))
+ (|:| |eq|
+ (|LinearOrdinaryDifferentialOperator2| *6
+ (|Fraction|
+ *6))))))
+ (|isDomain| *1 (|RationalRicDE| *5 *6))
+ (|isDomain| *3
+ (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6))))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *4 (|MonogenicAlgebra| *5 *7))
+ (|isDomain| *2
+ (|Record| (|:| |mat| (|Matrix| *6)) (|:| |vec| (|Vector| *5))))
+ (|isDomain| *1 (|ReduceLODE| *5 *6 *7 *4 *3))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|RationalLODE| *4 *2))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *2 (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|RationalLODE| *4 *2))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|))))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))
+ (|isDomain| *4 (|Fraction| *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 #1="failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|RationalLODE| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| (|Fraction| *6)))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|List| (|Fraction| *6)))
+ (|:| |mat| (|Matrix| *5))))
+ (|isDomain| *1 (|RationalLODE| *5 *6))
+ (|isDomain| *4 (|List| (|Fraction| *6)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6)))
+ (|isDomain| *4 (|Fraction| *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 #1#)) (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|RationalLODE| *5 *6))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|LinearOrdinaryDifferentialOperator2| *6 (|Fraction| *6)))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|List| (|Fraction| *6)))
+ (|:| |mat| (|Matrix| *5))))
+ (|isDomain| *1 (|RationalLODE| *5 *6))
+ (|isDomain| *4 (|List| (|Fraction| *6))))))
(((*1 *2 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-1156 *4))
- (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-349 *3)))))
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *4 *3 *2 *5))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *3))
+ (|ofCategory| *5
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *3)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-349 *5)) (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5))
- (-4 *6 (-601 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3956 *5) (|:| -3269 *3)))) (-5 *1 (-730 *5 *6 *3 *7))
- (-4 *3 (-601 *6)) (-4 *7 (-601 (-349 *6))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3269 *5))))
- (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-349 *5))))))
-(((*1 *2 *3)
- (-11 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5))
- (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2))
- (-4 *5 (-601 (-349 *2))))))
-(((*1 *2 *3 *4)
- (-11 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5))
- (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2))
- (-4 *5 (-601 (-349 *2)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3))
- (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-601 *2))
- (-4 *3 (-601 (-349 *2))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-729 *4 *5 *3 *6))
- (-4 *3 (-601 *5)) (-4 *6 (-601 (-349 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *4 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-729 *5 *4 *3 *6))
- (-4 *3 (-601 *4)) (-4 *6 (-601 (-349 *4)))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| -3776 *5) (|:| -3229 *5)))) (-5 *1 (-729 *4 *5 *6 *3))
- (-4 *6 (-601 *5)) (-4 *3 (-601 (-349 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *4 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3776 *4) (|:| -3229 *4)))) (-5 *1 (-729 *5 *4 *6 *3))
- (-4 *6 (-601 *4)) (-4 *3 (-601 (-349 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-349 *2)) (-4 *2 (-1156 *5))
- (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485)))))
- (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-349 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6))
- (-4 *5 (-12 (-311) (-117) (-951 (-349 (-485))))) (-4 *3 (-601 *2))
- (-4 *6 (-601 (-349 *2))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7))
- (-4 *5 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-349 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-728 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5))
- (-4 *5 (-12 (-26 *4) (-1116) (-872))))))
+ (AND (|isDomain| *3 (|Fraction| *5))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *2 *6))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *3)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| (|List| *5) *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Record| (|:| |constant| *5) (|:| |eq| *3))))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *5 *6 *3 *7))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *6))
+ (|ofCategory| *7
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *6))))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| *5))))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *3 *6))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *6
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *5))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PrimitiveRatRicDE| *4 *2 *3 *5))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *5
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *2))))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PrimitiveRatDE| *4 *2 *3 *5))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *5
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *2)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|PrimitiveRatDE| *4 *2 *5 *3))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *3
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *2))))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|List| (|Record| (|:| |center| *5) (|:| |equation| *5))))
+ (|isDomain| *1 (|PrimitiveRatDE| *4 *5 *3 *6))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *6
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *5)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Record| (|:| |center| *4) (|:| |equation| *4))))
+ (|isDomain| *1 (|PrimitiveRatDE| *5 *4 *3 *6))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))
+ (|ofCategory| *6
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *4)))))
+ ((*1 *2 *3)
+ (AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|List| (|Record| (|:| |center| *5) (|:| |equation| *5))))
+ (|isDomain| *1 (|PrimitiveRatDE| *4 *5 *6 *3))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5))
+ (|ofCategory| *3
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *5)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| (|Record| (|:| |center| *4) (|:| |equation| *4))))
+ (|isDomain| *1 (|PrimitiveRatDE| *5 *4 *6 *3))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *4))
+ (|ofCategory| *3
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *4))))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *4 (|Fraction| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|PrimitiveRatDE| *5 *2 *3 *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|PrimitiveRatDE| *5 *2 *3 *6))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *6
+ (|LinearOrdinaryDifferentialOperatorCategory|
+ (|Fraction| *2))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|LinearOrdinaryDifferentialOperator1| *4))
+ (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 "failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|PureAlgebraicLODE| *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|Mapping| *5 *5))
+ (|isDomain| *1 (|ODEIntegration| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *4)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|))))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-5 *1 (-727 *4 *2)) (-4 *2 (-12 (-26 *4) (-1116) (-872))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|ODEIntegration| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *4)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-1091)) (-4 *6 (-12 (-257) (-951 (-485)) (-581 (-485)) (-117)))
- (-4 *4 (-12 (-26 *6) (-1116) (-872)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-584 *4))))
- (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145))))
- ((*1 *1 *2 *2) (-11 (-5 *2 (-910 *3)) (-4 *3 (-145)) (-5 *1 (-723 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)))))
-(((*1 *1 *1) (-4 *1 (-200)))
+ (AND (|isDomain| *5 (|Symbol|))
+ (|ofCategory| *6
+ (|Join| (|EuclideanDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))
+ (|CharacteristicZero|)))
+ (|ofCategory| *4
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *6)
+ (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)))
+ (|isDomain| *2
+ (|Record| (|:| |particular| *4) (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|ConstantLODE| *6 *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *1 *2 *2)
+ (AND (|isDomain| *2 (|Quaternion| *3)) (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *1 (|Octonion| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *1 *1) (|ofCategory| *1 (|DivisionRing|)))
((*1 *1 *1)
- (-11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2))
- (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4)) (-13 *6 (-1 (-3 *4 "failed") *4 *4))
- (-13 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|EuclideanModularRing| *2 *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 (|Mapping| *3 *3 *4))
+ (|ofType| *6 (|Mapping| (|Union| *4 "failed") *4 *4))
+ (|ofType| *7 (|Mapping| (|Union| *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (OR (-11 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1130)))
- (-11 (-5 *1 (-248 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))
- ((*1 *1 *1) (-4 *1 (-413)))
- ((*1 *2 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-298)) (-5 *1 (-467 *3))))
+ (OR
+ (AND #1=(|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Field|))
+ . #2=((|ofCategory| *2 (|Type|))))
+ (AND #1# (|ofCategory| *2 (|Group|)) . #2#)))
+ ((*1 *1 *1) (|ofCategory| *1 (|Group|)))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *3))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
((*1 *1 *1)
- (-11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-11 (-4 *1 (-721 *2)) (-4 *2 (-145)) (-4 *2 (-311)))))
-(((*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116)))))
- ((*1 *1 *1 *1) (-4 *1 (-718))))
+ (AND (|ofCategory| *1 (|OctonionCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|OrderedAbelianMonoidSup|))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-11 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329))
- (-5 *2
- (-2 (|:| -3405 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
- (|:| |success| (-82))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (AND (|isDomain| *3 (|Mapping| #1=(|Float|) #1#)) (|isDomain| *4 (|Float|))
+ (|isDomain| *2
+ (|Record| (|:| |value| *4) (|:| |error| *4)
+ (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))))
+ (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329)))
- (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6 (|Mapping| (|Void|) #1=(|Vector| *5) #1# #2=(|Float|)))
+ (|isDomain| *3 (|Vector| #2#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|)))))
(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-11 (-5 *4 (-485))
- (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))))
- (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329)))
- (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6
+ (|Record| (|:| |tryValue| #1=(|Float|)) (|:| |did| #1#)
+ (|:| |next| #1#)))
+ (|isDomain| *7 (|Mapping| (|Void|) #2=(|Vector| *5) #2# #1#))
+ (|isDomain| *3 (|Vector| #1#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|))))
((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-11 (-5 *4 (-485))
- (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1476 (-329))))
- (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-329))) (-5 *3 (-1180 (-329)))
- (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6
+ (|Record| (|:| |tryValue| #3=(|Float|)) (|:| |did| #3#)
+ (|:| |next| #3#)))
+ (|isDomain| *7 (|Mapping| (|Void|) #4=(|Vector| *5) #4# #3#))
+ (|isDomain| *3 (|Vector| #3#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|)))))
(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329)))
- (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6 (|Mapping| (|Void|) #1=(|Vector| *5) #1# #2=(|Float|)))
+ (|isDomain| *3 (|Vector| #2#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329)))
- (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6 (|Mapping| (|Void|) #1=(|Vector| *5) #1# #2=(|Float|)))
+ (|isDomain| *3 (|Vector| #2#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|))))
((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-11 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-329)))
- (-5 *3 (-1180 (-329))) (-5 *5 (-329)) (-5 *2 (-1186)) (-5 *1 (-711)))))
-(((*1 *2 *3) (|partial| -11 (-5 *3 (-1074)) (-5 *2 (-329)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-329)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *6 (|Mapping| (|Void|) #3=(|Vector| *5) #3# #4=(|Float|)))
+ (|isDomain| *3 (|Vector| #4#)) (|isDomain| *5 (|Float|))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NumericalOrdinaryDifferentialEquations|)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|NumberFormats|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|NumberFormats|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|NumberFormats|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|NumberFormats|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|NumberFormats|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|NumberFormats|)))))
(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-858 (-141 *4))) (-4 *4 (-145)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
+ (|partial| AND (|isDomain| *3 (|Polynomial| (|Complex| *4)))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-858 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-145))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Polynomial| (|Complex| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Polynomial| *5))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-349 (-858 (-141 *4)))) (-4 *4 (-496))
- (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-349 (-858 (-141 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *4))))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *5))))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Expression| *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Expression| *5))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-264 (-141 *4))) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-264 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-757)) (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329)))
- (-5 *1 (-709 *5)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2))
- (-5 *2 (-329)) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Expression| (|Complex| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Expression| (|Complex| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Polynomial| *5))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2))
- (-5 *2 (-329)) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5))))
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| *2))
+ (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (|partial| -11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-141 (-329))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-329)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-5 *2 (-141 (-329))) (-5 *1 (-709 *3))
- (-4 *3 (-554 (-329)))))
+ (|partial| AND (|isDomain| *3 (|Expression| *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Expression| *5))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| *2))
+ (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|Float|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|Float|)))))
((*1 *2 *3)
- (-11 (-5 *3 (-141 *4)) (-4 *4 (-145)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-141 *5)) (-5 *4 (-831)) (-4 *5 (-145)) (-4 *5 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Complex| *4)) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Complex| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-858 (-141 *4))) (-4 *4 (-145)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-145))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Polynomial| (|Complex| *4)))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Polynomial| (|Complex| *5)))
+ (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
+ (AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 (-141 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 (-141 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *4))))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *5))))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-329)))
- (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-264 (-141 *4))) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-264 (-141 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-329))) (-5 *2 (-141 (-329))) (-5 *1 (-709 *5)))))
-(((*1 *2 *3) (-11 (-5 *2 (-329)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-5 *2 (-329)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
+ (AND (|isDomain| *3 (|Expression| (|Complex| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *4 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Expression| (|Complex| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Float|)))
+ (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *3))
+ (|ofCategory| *3 (|ConvertibleTo| *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *3)) (|ofCategory| *3 (|ConvertibleTo| *2))))
((*1 *2 *3)
- (-11 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-329))
- (-5 *1 (-709 *4))))
+ (AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *4))))
((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2))
- (-5 *2 (-329)) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| *2))
+ (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-349 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-329))
- (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2))
- (-5 *2 (-329)) (-5 *1 (-709 *5))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-264 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2))
- (-5 *2 (-329)) (-5 *1 (-709 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 *2)) (-5 *2 (-329)) (-5 *1 (-709 *5)))))
+ (AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| *2))
+ (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|))
+ (|isDomain| *1 (|Numeric| *5)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-35 (-349 (-485))))
- (-4 *2 (-145)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|NumberTheoreticPolynomialFunctions| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|CommutativeRing|)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-35 (-349 (-485))))
- (-4 *2 (-145)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|NumberTheoreticPolynomialFunctions| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496))
- (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|List| (|NewSparseUnivariatePolynomial| *3)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *1)
- (-11
- (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |resultant| *3)
+ (|:| |coef1| #1=(|NewSparseUnivariatePolynomial| *3))
+ (|:| |coef2| #1#)))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3))
- (-4 *3 (-496)) (-4 *3 (-962)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |resultant| *3)
+ (|:| |coef1| (|NewSparseUnivariatePolynomial| *3))))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| -3759 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3))
- (-4 *3 (-496)) (-4 *3 (-962)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |resultant| *3)
+ (|:| |coef2| (|NewSparseUnivariatePolynomial| *3))))
+ (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-349 (-485))))
- (-5 *2
- (-584
- (-2 (|:| |outval| *4) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 *4))))))
- (-5 *1 (-703 *4)) (-4 *4 (-12 (-311) (-756))))))
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Integer|))))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |outval| *4) (|:| |outmult| (|Integer|))
+ (|:| |outvect| (|List| (|Matrix| *4))))))
+ (|isDomain| *1 (|NumericRealEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4))
- (-4 *4 (-12 (-311) (-756))))))
-(((*1 *2 *3 *2) (-11 (-5 *3 (-631 *2)) (-4 *2 (-145)) (-5 *1 (-116 *2))))
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|NumericRealEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *3 (|Matrix| *2)) (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|CharacteristicPolynomialPackage| *2))))
((*1 *2 *3)
- (-11 (-4 *4 (-145)) (-4 *2 (-1156 *4)) (-5 *1 (-150 *4 *2 *3))
- (-4 *3 (-662 *4 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-349 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5))
- (-5 *1 (-247 *5)) (-4 *5 (-392))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1
+ (|CharacteristicPolynomialInMonogenicalAlgebra| *4 *2 *3))
+ (|ofCategory| *3 (|MonogenicAlgebra| *4 *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Polynomial| *5))
+ (|isDomain| *1 (|EigenPackage| *5)) (|ofCategory| *5 (|GcdDomain|))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4))
- (-4 *4 (-392))))
- ((*1 *2 *1) (-11 (-4 *1 (-321 *3 *2)) (-4 *3 (-145)) (-4 *2 (-1156 *3))))
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4))))
+ (|isDomain| *2 (|Polynomial| *4)) (|isDomain| *1 (|EigenPackage| *4))
+ (|ofCategory| *4 (|GcdDomain|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *2))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *2 (-858 (-141 (-349 (-485)))))
- (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *4 (-1091))
- (-5 *2 (-858 (-141 (-349 (-485))))) (-5 *1 (-689 *5))
- (-4 *5 (-12 (-311) (-756)))))
+ (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|Polynomial| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|NumericComplexEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2 (|Polynomial| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|NumericComplexEigenPackage| *5))
+ (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|)))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *2 (-858 (-349 (-485))))
- (-5 *1 (-703 *4)) (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-349 (-485)))) (-5 *4 (-1091))
- (-5 *2 (-858 (-349 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-12 (-311) (-756))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695)))
- (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))))
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|NumericRealEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Integer|))))
+ (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|NumericRealEigenPackage| *5))
+ (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|NPCoef| *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-11 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257))
- (-4 *10 (-862 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-584 (-1086 *10)))
- (|:| |dterm| (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10))))
- (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6))
- (-5 *5 (-584 *10)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3))
- (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-13 *7 (-831)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-82)) (|:| -1601 *4))))
- (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|ofCategory| *6 (|UnivariatePolynomialCategory| *9))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *9 (|EuclideanDomain|))
+ (|ofCategory| *10 (|PolynomialCategory| *9 *7 *8))
+ (|isDomain| *2
+ (|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| *10)))
+ (|:| |dterm|
+ (|List|
+ (|List|
+ (|Record| (|:| |expt| (|NonNegativeInteger|))
+ (|:| |pcoef| *10)))))
+ (|:| |nfacts| (|List| *6)) (|:| |nlead| (|List| *10))))
+ (|isDomain| *1 (|NPCoef| *6 *7 *8 *9 *10))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *10))
+ (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *10)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *5 (|FiniteAlgebraicExtensionField| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|NormRetractPackage| *4 *5 *6 *3 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *6))
+ (|ofType| *7 (|PositiveInteger|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| *4))))
+ (|isDomain| *1 (|NormalizationPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5)
- (-11 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5))
- (-4 *5 (-984 *6 *7 *8 *4)))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|ofCategory| *4 (|RecursivePolynomialCategory| *6 *7 *8))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|NormalizationPackage| *6 *7 *8 *4 *5))
+ (|ofCategory| *5 (|RegularTriangularSetCategory| *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3)))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4)))))
- ((*1 *1 *1) (-5 *1 (-329)))
- ((*1 *2 *3 *4)
- (-11 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))))
+ ((*1 *1 *1) (|isDomain| *1 (|Float|)))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|Record| (|:| |val| *3) (|:| |tower| *4))))
+ (|isDomain| *1 (|NormalizationPackage| *5 *6 *7 *3 *4))
+ (|ofCategory| *4 (|RegularTriangularSetCategory| *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6))
- (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-329))))
- ((*1 *1 *1 *1) (-4 *1 (-484)))
- ((*1 *1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
- ((*1 *1 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-141 (-349 (-485)))))
- (-5 *2
- (-584
- (-2 (|:| |outval| (-141 *4)) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 (-141 *4)))))))
- (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 (-141 (-349 (-485))))) (-5 *2 (-584 (-141 *4)))
- (-5 *1 (-689 *4)) (-4 *4 (-12 (-311) (-756))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-145)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *6))
+ (|isDomain| *1 (|NormalizationPackage| *4 *5 *6 *2 *3))
+ (|ofCategory| *3 (|RegularTriangularSetCategory| *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|NonNegativeInteger|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Hostname|)) (|isDomain| *4 (|PortNumber|))
+ (|isDomain| *2 (|Maybe| (|InetClientStreamSocket|)))
+ (|isDomain| *1 (|InetClientStreamSocket|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PortNumber|)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Maybe| *1))
+ (|ofCategory| *1 (|NetworkClientSocket| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|NetworkClientSocket| *3))
+ (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |outval| (|Complex| *4)) (|:| |outmult| (|Integer|))
+ (|:| |outvect| (|List| (|Matrix| (|Complex| *4)))))))
+ (|isDomain| *1 (|NumericComplexEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Complex| *4)))
+ (|isDomain| *1 (|NumericComplexEigenPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|Group|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|ofCategory| *1 (|NonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-257)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|isDomain| *3 (|Integer|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757))
- (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695)))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9))
+ (|isDomain| *4 (|List| *7)) (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|EuclideanDomain|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9))
+ (|isDomain| *5 (|NonNegativeInteger|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-485)) (-5 *4 (-347 *2)) (-4 *2 (-862 *7 *5 *6))
- (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257)))))
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Factored| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *7 *5 *6))
+ (|isDomain| *1 (|MultivariateSquareFree| *5 *6 *7 *2))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|EuclideanDomain|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8)))
- (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718))
- (-5 *2
- (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8))
- (|:| |Lfact| (-584 (-2 (|:| -3735 (-1086 *8)) (|:| -2403 (-485)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-682 *6 *7 *8 *9)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9))
+ (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| (|List| *8)))
+ (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|))
+ (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record| (|:| |upol| (|SparseUnivariatePolynomial| *8))
+ (|:| |Lval| (|List| *8))
+ (|:| |Lfact|
+ (|List|
+ (|Record|
+ (|:| |factor| (|SparseUnivariatePolynomial| *8))
+ (|:| |exponent| (|Integer|)))))
+ (|:| |ctpol| *8)))
+ (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257))
- (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart| (-584 (-2 (|:| -3735 (-1086 *9)) (|:| -2403 (-485)))))))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))))
+ (AND (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| (|List| *8)))
+ (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |unitPart| *9)
+ (|:| |suPart|
+ (|List|
+ (|Record|
+ (|:| |factor| (|SparseUnivariatePolynomial| *9))
+ (|:| |exponent| (|Integer|)))))))
+ (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *9)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257))
- (-4 *9 (-862 *8 *6 *7))
- (-5 *2 (-2 (|:| -2006 (-1086 *9)) (|:| |polval| (-1086 *8))))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3))
- (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3735 (-1086 *6)) (|:| -2403 (-485)))))
- (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
- (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-347 *3))
- (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3))))
- ((*1 *1 *2) (-11 (-5 *1 (-676 *2)) (-4 *2 (-1014))))
- ((*1 *1) (-11 (-5 *1 (-676 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
- (-5 *3 (-349 (-858 *6))) (-4 *5 (-718))
- (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496))
- (-4 *2 (-862 (-349 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
- (-4 *5 (-718)) (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-349 (-858 *6)) *5 *4))
- (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718))
- (-4 *4 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $))))) (-4 *6 (-496)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-718)) (-4 *5 (-12 (-757) (-10 -8 (-14 -3975 ((-1091) $)))))
- (-4 *6 (-496)) (-5 *2 (-2 (|:| -2486 (-858 *6)) (|:| -2060 (-858 *6))))
- (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-349 (-858 *6)) *4 *5)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-105 *5 *6 *7)) (-13 *5 (-485))
- (-13 *6 (-695)) (-4 *7 (-145)) (-4 *8 (-145)) (-5 *2 (-105 *5 *6 *8))
- (-5 *1 (-106 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
- (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5))
- (-5 *1 (-667 *5 *2)) (-4 *5 (-311)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3092 (-347 *3)) (|:| |special| (-347 *3))))
- (-5 *1 (-667 *5 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-666 *2)) (-4 *2 (-69)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-665 *3)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-52))))
- ((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
- ((*1 *2 *1) (-11 (-4 *1 (-660)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-664)) (-5 *2 (-82)))))
+ (AND (|isDomain| *5 (|Integer|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|))
+ (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7))
+ (|isDomain| *2
+ (|Record| (|:| |pol| (|SparseUnivariatePolynomial| *9))
+ (|:| |polval| (|SparseUnivariatePolynomial| *8))))
+ (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *9))
+ (|isDomain| *4 (|SparseUnivariatePolynomial| *8)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MultivariateSquareFree| *5 *4 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *6))
+ (|:| |exponent| (|Integer|)))))
+ (|ofCategory| *6 (|EuclideanDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *6 *4 *5)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|MergeThing| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|MoreSystemCommands|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962))
- (-13 *4 (-584 (-1091)))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091)))))
- ((*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311))))
- ((*1 *2 *1)
- (|partial| -11 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *2 (-290 *3 *4 *5))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 *2) (-13 *4 *2)
- (-4 *5 (-145))))
- ((*1 *1) (-11 (-4 *2 (-145)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
- (-4 *1 (-662 *5 *6)) (-4 *5 (-145)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-660)) (-5 *2 (-695)))))
-(((*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))))
-(((*1 *1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-145)) (-4 *2 (-496))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))))
-(((*1 *1 *2 *2 *2 *2) (-11 (-5 *1 (-656 *2)) (-4 *2 (-311)))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Multiset| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1)
+ (AND (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Multiset| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|Monoid|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Polynomial| *6)))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *2
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *5
+ *4))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $))))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *2))
+ (|ofCategory| *2
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *5
+ *4))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $)))))
+ (|ofCategory| *6 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |convert| ((|Symbol|) $)))))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |sup| (|Polynomial| *6)) (|:| |inf| (|Polynomial| *6))))
+ (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *5 *6 *3))
+ (|ofCategory| *3
+ (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *4
+ *5)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|CartesianTensor| *5 *6 *7))
+ (|ofType| *5 (|Integer|)) (|ofType| *6 (|NonNegativeInteger|))
+ (|ofCategory| *7 (|CommutativeRing|))
+ (|ofCategory| *8 (|CommutativeRing|))
+ (|isDomain| *2 (|CartesianTensor| *5 *6 *8))
+ (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| *9)) (|ofCategory| *9 (|Ring|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *2 (|PolynomialCategory| *9 *7 *5))
+ (|isDomain| *1 (|MPolyCatFunctions2| *5 *6 *7 *8 *9 *4 *2))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|PolynomialCategory| *8 *6 *5)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| *2)) (|isDomain| *4 (|Mapping| *2 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|MonomialExtensionTools| *5 *2))
+ (|ofCategory| *5 (|Field|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *3 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |normal| (|Factored| *3))
+ (|:| |special| (|Factored| *3))))
+ (|isDomain| *1 (|MonomialExtensionTools| *5 *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MonoidOperatorCategory| *2))
+ (|ofCategory| *2 (|BasicType|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|))
+ (|isDomain| *1 (|MonoidOperation| *3)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Arity|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AntiSymm| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|)))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2))
+ (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|))))
+ ((*1 *2 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FreeNilpotentLie| *3 *4 *5)) (|ofType| *3 *2)
+ (|ofType| *4 *2) (|ofCategory| *5 (|CommutativeRing|))))
+ ((*1 *1)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *1 (|MonogenicAlgebra| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Vector| *1)) (|isDomain| *4 (|Mapping| *5 *5))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *1 (|MonogenicAlgebra| *5 *6))
+ (|ofCategory| *5 (|CommutativeRing|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|Matrix| *5)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|MonadWithUnit|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|MonadWithUnit|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))))
+(((*1 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))))
+(((*1 *1 *2 *2 *2 *2)
+ (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))))
(((*1 *1 *1 *1)
- (|partial| -11 (-4 *2 (-145)) (-5 *1 (-243 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1156 *2)) (-4 *4 (-20)) (-13 *5 (-1 *3 *3 *4))
- (-13 *6 (-1 (-3 *4 "failed") *4 *4))
- (-13 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (|partial| AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|EuclideanModularRing| *2 *3 *4 *5 *6 *7))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 (|Mapping| *3 *3 *4))
+ (|ofType| *6 (|Mapping| (|Union| *4 "failed") *4 *4))
+ (|ofType| *7 (|Mapping| (|Union| *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -11 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (|partial| AND (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (|partial| -11 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-145)) (-4 *3 (-20))
- (-13 *4 (-1 *2 *2 *3)) (-13 *5 (-1 (-3 *3 "failed") *3 *3))
- (-13 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
- (-13 *4 (-1091)) (-13 *5 *3)))
- ((*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485))))
- ((*1 *2 *1) (-11 (-5 *2 (-485)) (-5 *1 (-347 *3)) (-4 *3 (-496))))
- ((*1 *2 *1)
- (-11 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757))
- (-13 *4
- (-1 (-82) (-2 (|:| -2402 *3) (|:| -2403 *2))
- (-2 (|:| -2402 *3) (|:| -2403 *2)))))))
-(((*1 *1 *2) (-11 (-5 *2 (-831)) (-4 *1 (-319))))
- ((*1 *2 *1) (-11 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-69))))
+ (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 (|Mapping| *2 *2 *3))
+ (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3))
+ (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5))
+ (|isDomain| *1 (|ExponentialOfUnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Field|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3)))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Factored| *3))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|ModuleMonomial| *3 *2 *4))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofType| *4
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *3) (|:| |exponent| *2))
+ (|Record| (|:| |index| *3) (|:| |exponent| *2)))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|Finite|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *2 (|OrderedType|))
+ (|isDomain| *1 (|IndexedProductTerm| *3 *2))
+ (|ofCategory| *3 (|BasicType|))))
((*1 *2 *3 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Vector| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))))
((*1 *2 *1)
- (-11 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014))
- (-13 *4
- (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *3))
- (-2 (|:| -2402 *2) (|:| -2403 *3)))))))
-(((*1 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))))
+ (AND (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|ModuleMonomial| *2 *3 *4))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofType| *4
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *3))
+ (|Record| (|:| |index| *2) (|:| |exponent| *3)))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModMonic| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Vector| *3))
+ (|isDomain| *1 (|ModMonic| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|ModMonic| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Vector| *3))
+ (|isDomain| *1 (|ModMonic| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|PrimitiveArray| (|ModMonic| *3 *4)))
+ (|isDomain| *1 (|ModMonic| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *2 (|PrimitiveArray| (|ModMonic| *3 *4)))
+ (|isDomain| *1 (|ModMonic| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
(((*1 *1 *1)
- (-11 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
-(((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
-(((*1 *2 *3) (-11 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
+ (AND (|ofCategory| *2 (|FiniteFieldCategory|)) (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|ModMonic| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|MathMLFormat|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|MathMLFormat|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|))
+ (|isDomain| *1 (|MathMLFormat|)))))
(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -11 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13))
- (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13))
- (-5 *7 (-584 (-584 (-2 (|:| -3081 (-695)) (|:| |pcoef| *13)))))
- (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757))
- (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718))
- (-5 *1 (-645 *11 *12 *10 *13)))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *13)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *13))
+ (|isDomain| *4 (|List| *12)) (|isDomain| *5 (|List| *10))
+ (|isDomain| *6 (|List| *13))
+ (|isDomain| *7
+ (|List|
+ (|List|
+ (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| *13)))))
+ (|isDomain| *8 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *9 (|Vector| (|List| (|SparseUnivariatePolynomial| *10))))
+ (|ofCategory| *12 (|OrderedSet|)) (|ofCategory| *10 (|EuclideanDomain|))
+ (|ofCategory| *13 (|PolynomialCategory| *10 *11 *12))
+ (|ofCategory| *11 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|MultivariateLifting| *11 *12 *10 *13)))))
(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -11 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9))
- (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257))
- (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12)))
- (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))))
+ (|partial| AND (|isDomain| *4 (|List| *11))
+ (|isDomain| *5 (|List| (|SparseUnivariatePolynomial| *9)))
+ (|isDomain| *6 (|List| *9)) (|isDomain| *7 (|List| *12))
+ (|isDomain| *8 (|List| (|NonNegativeInteger|)))
+ (|ofCategory| *11 (|OrderedSet|)) (|ofCategory| *9 (|EuclideanDomain|))
+ (|ofCategory| *12 (|PolynomialCategory| *9 *10 *11))
+ (|ofCategory| *10 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *12)))
+ (|isDomain| *1 (|MultivariateLifting| *10 *11 *9 *12))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *12)))))
(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -11 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11))
- (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695)))
- (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-257))
- (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *11)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *11))
+ (|isDomain| *4 (|List| *10)) (|isDomain| *5 (|List| *8))
+ (|isDomain| *6 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *7 (|Vector| (|List| (|SparseUnivariatePolynomial| *8))))
+ (|ofCategory| *10 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|))
+ (|ofCategory| *11 (|PolynomialCategory| *8 *9 *10))
+ (|ofCategory| *9 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|MultivariateLifting| *9 *10 *8 *11)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7))
- (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
- (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
- (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6))
+ (|isDomain| *1 (|MakeBinaryCompiledFunction| *3 *5 *6 *7))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| *6 *5))
+ (|isDomain| *1 (|MakeUnaryCompiledFunction| *3 *5 *6))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| *6 *5))
+ (|isDomain| *1 (|MakeUnaryCompiledFunction| *4 *5 *6))
+ (|ofCategory| *4 (|ConvertibleTo| (|InputForm|)))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4))
- (-4 *3 (-1130)) (-4 *4 (-1130)))))
-(((*1 *1 *1 *2 *3) (-11 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *2 (|Record| (|:| |part1| *3) (|:| |part2| *4)))
+ (|isDomain| *1 (|MakeRecord| *3 *4)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *4 (|Type|)))))
+(((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *1 (|InputForm|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *2 *3 *2 *2)
- (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *2 *3 *2 *2 *2)
- (-11 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3))
- (-4 *3 (-554 (-474))))))
+ (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|MakeFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-5 *2 (-1 (-178) (-178))) (-5 *1 (-641 *3))
- (-4 *3 (-554 (-474)))))
+ (AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|MakeFloatCompiledFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-1091)) (-5 *2 (-1 (-178) (-178) (-178))) (-5 *1 (-641 *3))
- (-4 *3 (-554 (-474))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7))
- (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))))
+ (AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|MakeFloatCompiledFunction| *3))
+ (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6))
+ (|isDomain| *1 (|MakeBinaryCompiledFunction| *4 *5 *6 *7))
+ (|ofCategory| *4 (|ConvertibleTo| (|InputForm|)))
+ (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))
+ (|ofCategory| *7 (|Type|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *3 (-257)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-630 *3 *4 *5 *6))
- (-4 *6 (-628 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *6))
+ (|ofCategory| *6 (|MatrixCategory| *3 *4 *5))))
((*1 *2 *3 *3)
- (-11 (-5 *2 (-2 (|:| -1974 *3) (|:| -2905 *3))) (-5 *1 (-639 *3))
- (-4 *3 (-257)))))
-(((*1 *2 *2 *3 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
-(((*1 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
-(((*1 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
+ (AND (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3)))
+ (|isDomain| *1 (|ModularHermitianRowReduction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *2 *3 *3)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|ModularHermitianRowReduction| *3)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|ModularHermitianRowReduction| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|ModularHermitianRowReduction| *3)))))
(((*1 *2 *3 *3 *3 *4)
- (-11 (-5 *3 (-1 (-178) (-178) (-178)))
- (-5 *4 (-1 (-178) (-178) (-178) (-178)))
- (-5 *2 (-1 (-855 (-178)) (-178) (-178))) (-5 *1 (-637)))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)
+ (|DoubleFloat|)))
+ (|isDomain| *2
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))))
(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178)))
- (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637)))))
+ (AND (|isDomain| *3 (|Expression| (|Integer|)))
+ (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *6 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-11 (-5 *3 (-1 (-178) (-178) (-178)))
- (-5 *4 (-3 (-1 (-178) (-178) (-178) (-178)) "undefined"))
- (-5 *5 (-1002 (-178))) (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-637)))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4
+ (|Union|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)
+ (|DoubleFloat|))
+ "undefined"))
+ (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *6 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))))
(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-11 (-5 *3 (-1 (-178) (-178) (-178)))
- (-5 *4 (-3 (-1 (-178) (-178) (-178) (-178)) "undefined"))
- (-5 *5 (-1002 (-178))) (-5 *6 (-584 (-220))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-637))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4
+ (|Union|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)
+ (|DoubleFloat|))
+ "undefined"))
+ (|isDomain| *5 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *6 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-178)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-637))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|))))
((*1 *2 *2 *3 *4 *4 *5)
- (-11 (-5 *2 (-1048 (-178))) (-5 *3 (-1 (-855 (-178)) (-178) (-178)))
- (-5 *4 (-1002 (-178))) (-5 *5 (-584 (-220))) (-5 *1 (-637)))))
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))))
(((*1 *2 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *2 *3 *2 *3)
- (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2578 *5)))) (-4 *5 (-1156 *4))
- (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-169 *4 *5))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-2 (|:| -3735 *5) (|:| -3952 (-485))))) (-5 *4 (-485))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| *5))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *5))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |factor| *5) (|:| |degree| (|Integer|)))))
+ (|isDomain| *4 (|Integer|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3735 *3) (|:| -3952 *4))))
- (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *1 *1) (-11 (-4 *1 (-236 *2)) (-4 *2 (-1130)) (-4 *2 (-69))))
- ((*1 *1 *1) (-11 (-4 *1 (-635 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *4 (|Integer|))
+ (|isDomain| *2 (|List| (|Record| (|:| |factor| *3) (|:| |degree| *4))))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|BasicType|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|MultiDictionary| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-635 *3)) (-4 *3 (-1014))
- (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1732 (-695))))))))
-(((*1 *1 *2) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
-(((*1 *1) (-11 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+ (AND (|ofCategory| *1 (|MultiDictionary| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |entry| *3) (|:| |count| (|NonNegativeInteger|))))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *1 (|Maybe| *2))
+ (|ofCategory| *2 (|CoercibleTo| (|OutputForm|))))))
+(((*1 *1)
+ (AND (|isDomain| *1 (|Maybe| *2))
+ (|ofCategory| *2 (|CoercibleTo| (|OutputForm|))))))
(((*1 *2 *2 *2 *2 *2 *3)
- (-11 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))))
-(((*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2 *3) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *3 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))
- ((*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2)
- (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-4 *3 (-145)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))))
+(((*1 *2 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2 *2 *3)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2 *3 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3))))
+ ((*1 *2 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
(((*1 *2 *2 *3 *4 *4)
- (-11 (-5 *4 (-485)) (-4 *3 (-145)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3))
- (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
+ (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *5 *6 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *5 *6)))))
(((*1 *2 *2 *3 *4 *4)
- (-11 (-5 *4 (-485)) (-4 *3 (-145)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3))
- (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
+ (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *3 *5 *6 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *5 *6)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-145)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))
- (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4))
+ (|isDomain| *1 (|MatrixLinearAlgebraFunctions| *4 *5 *6 *2))
+ (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2)))))
+ (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2)))))
(((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3)))))
(((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3)))))
(((*1 *1 *1 *2 *2 *2 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3)))))
(((*1 *1 *1 *2 *2 *1)
- (-11 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-323 *3))
- (-4 *5 (-323 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *6 *5 *4))
+ (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5))
+ (|isDomain| *1 (|MappingPackage3| *4 *5 *6))
+ (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *6 *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5))
+ (|isDomain| *1 (|MappingPackage3| *4 *5 *6))
+ (|ofCategory| *5 (|SetCategory|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))))
+ (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *6 *5))
+ (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-625 *4 *5)))))
+ (AND (|isDomain| *3 (|Mapping| *6 *5 *4)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|isDomain| *2 (|Mapping| *6 *5))
+ (|isDomain| *1 (|MappingPackage3| *5 *4 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *5 *4 *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Mapping| *5 *4))
+ (|isDomain| *1 (|MappingPackage2| *4 *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5))
- (-5 *1 (-625 *4 *5)))))
+ (AND (|isDomain| *3 (|Mapping| *5 *4)) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Mapping| *5))
+ (|isDomain| *1 (|MappingPackage2| *4 *5)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014))
- (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Mapping| *3 *4))
+ (|isDomain| *1 (|MappingPackage2| *4 *3))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014))
- (-5 *1 (-620 *2))))
- ((*1 *2 *2) (-11 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))))
-(((*1 *2 *2) (-11 (-5 *1 (-624 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5))
- (-5 *1 (-624 *5)) (-4 *5 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))))
+ (AND (|isDomain| *3 (|Mapping| *2 (|NonNegativeInteger|) *2))
+ (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|MappingPackageInternalHacks1| *2))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 (|NonNegativeInteger|) *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|MappingPackage1| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *1 (|MappingPackage1| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *1 (|MappingPackage1| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| #1=(|List| *5) #1#))
+ (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| *5))
+ (|isDomain| *1 (|MappingPackage1| *5))
+ (|ofCategory| *5 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *3 (|TypeAst|))
+ (|isDomain| *1 (|MappingAst|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-11 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *2 *3) (-11 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|Mapping| *6 *5))
+ (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|))
+ (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|MappingPackageInternalHacks3| *5 *6 *2)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
-(((*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-82)))))
-(((*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-82)) (-5 *1 (-615 *4)))))
-(((*1 *1 *2) (-11 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|MappingPackageInternalHacks1| *2)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|OrderedFreeMonoid| *4))
+ (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LyndonWord| *4)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))))
(((*1 *1 *2)
- (|partial| -11 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
+ (|partial| AND (|isDomain| *2 (|OrderedFreeMonoid| *3))
+ (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757))
- (-5 *2 (-55 (-584 (-615 *5)))) (-5 *1 (-615 *5)))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|OneDimensionalArray| (|List| (|LyndonWord| *5))))
+ (|isDomain| *1 (|LyndonWord| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5)))
- (-5 *1 (-615 *5)))))
+ (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|LyndonWord| *5)))
+ (|isDomain| *1 (|LyndonWord| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1180 (-349 *8)) "failed"))
- (|:| -2014 (-584 (-1180 (-349 *8))))))
- (-5 *1 (-612 *5 *6 *7 *8)))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *7))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record|
+ (|:| |particular| (|Union| (|Vector| (|Fraction| *8)) "failed"))
+ (|:| |basis| (|List| (|Vector| (|Fraction| *8))))))
+ (|isDomain| *1 (|LinearSystemPolynomialPackage| *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *6 (-12 (-323 *5) (-1036 *5)))
- (-4 *4 (-12 (-323 *5) (-1036 *5))) (-5 *2 (-82)) (-5 *1 (-610 *5 *6 *4 *3))
- (-4 *3 (-628 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-311)) (-5 *2 (-82))
- (-5 *1 (-611 *5)))))
+ (AND (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|ofCategory| *4
+ (|Join| (|FiniteLinearAggregate| *5)
+ (|ShallowlyMutableAggregate| *5)))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3))
+ (|ofCategory| *3 (|MatrixCategory| *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Matrix| *5)) (|isDomain| *4 (|Vector| *5))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822))
- (-5 *1 (-606 *4)))))
-(((*1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
+ (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *4)))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|PolynomialFactorizationExplicit|))
+ (|isDomain| *1 (|LinearPolynomialEquationByFractions| *4)))))
+(((*1 *1 *1) (|ofCategory| *1 (|Logic|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|Logic|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|Logic|))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2))
- (-4 *2 (-601 *4)))))
+ (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *4 *2))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *3))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|Field|))))
((*1 *2 *2 *3 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2))
- (-4 *2 (-601 *5)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *5 *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *5 *2))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))
((*1 *2 *2 *2 *3)
- (-11 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2))
- (-4 *2 (-601 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-24))
- (-4 *4 (-12 (-311) (-117) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-349 *5)))) (-5 *1 (-602 *4 *5))
- (-5 *3 (-598 (-349 *5))))))
-(((*1 *1 *1) (-11 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4))))
- (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20)) (-13 *5 *4))))
+ (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *4 *2))
+ (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|AlgebraicallyClosedField|))
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| *5))))
+ (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorFactorizer| *4 *5))
+ (|isDomain| *3
+ (|LinearOrdinaryDifferentialOperator1| (|Fraction| *5))))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *1 (|LinearAggregate| *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|LinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4))))
+ (|isDomain| *1 (|ListMonoidOps| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|))
+ (|ofType| *5 *4))))
(((*1 *1 *2 *3)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 *4)))) (-4 *3 (-1014))
- (-4 *4 (-20)) (-13 *5 *4) (-5 *1 (-592 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-309 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4))))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|))
+ (|ofType| *5 *4) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|FreeGroup| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-335 *4)) (-4 *4 (-1014)) (-5 *2 (-695))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeMonoidCategory| *4))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-20)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014))
- (-13 *5 *2))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|AbelianMonoid|))
+ (|isDomain| *1 (|ListMonoidOps| *4 *2 *5))
+ (|ofCategory| *4 (|SetCategory|)) (|ofType| *5 *2))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-273 *2 *4)) (-4 *4 (-101)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-309 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-4 *1 (-335 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-20))
- (-13 *5 *4))))
-(((*1 *1 *1) (-11 (-4 *1 (-323 *2)) (-4 *2 (-1130))))
- ((*1 *2 *2) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *4))
+ (|ofCategory| *4 (|CancellationAbelianMonoid|))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|FreeGroup| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2))
+ (|ofCategory| *2 (|IntegralDomain|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|ListMonoidOps| *2 *4 *5))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *1)
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|))))
((*1 *1 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
-(((*1 *1 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-323 *2)) (-4 *2 (-1130))))
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *1 *1 *2)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *1 *2 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *1 *1 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3)))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3)))
((*1 *1 *2 *3 *1)
- (-11 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-20)) (-13 *4 *3))))
+ (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|))
+ (|ofType| *4 *3))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-20))
- (-13 *5 *4))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|))
+ (|ofType| *5 *4))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-309 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Mapping| (|Integer|) (|Integer|)))
+ (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-335 *3)) (-4 *3 (-1014))))
+ (AND
+ (|isDomain| *2 (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|FreeMonoidCategory| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *4 (-20)) (-13 *5 *4) (-5 *1 (-592 *3 *4 *5))
- (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|AbelianMonoid|))
+ (|ofType| *5 *4) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-309 *3))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1014))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|CancellationAbelianMonoid|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|FreeGroup| *3))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|ofCategory| *1 (|FreeMonoidCategory| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-20))
- (-13 *5 *4))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *2 *1) (-11 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
-(((*1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|ListMonoidOps| *3 *4 *5))
+ (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ListMultiDictionary| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2 *2 *1)
+ (AND (|isDomain| *1 (|ListMultiDictionary| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|List| *3))
+ (|ofCategory| *3 (|Type|)))))
+(((*1 *1 *1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4))
- (-13 *4 (-584 (-1091))))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|LinearForm| *3 *4)) (|ofType| *4 (|List| (|Symbol|))))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962))
- (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4))))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|LinearlyExplicitRingOver| *4))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |mat| (|Matrix| *4)) (|:| |vec| (|Vector| *4))))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|LinearlyExplicitRingOver| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5))))))
+ (AND (|isDomain| *3 (|Matrix| *1)) (|isDomain| *4 (|Vector| *1))
+ (|ofCategory| *1 (|LinearlyExplicitRingOver| *5))
+ (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2
+ (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| *5))))))
((*1 *2 *3)
- (-11 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
+ (AND (|isDomain| *3 (|Matrix| *1))
+ (|ofCategory| *1 (|LinearlyExplicitRingOver| *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4))
- (-13 *4 (-584 (-1091))))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|LinearElement| *3 *4))
+ (|ofType| *4 (|List| (|Symbol|))))))
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 *5)))
- (-4 *5 (-311)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1180 *4)) (-4 *4 (-12 (-962) (-581 *5)))
- (-2563 (-4 *5 (-311))) (-4 *5 (-496)) (-5 *2 (-1180 (-349 *5)))
- (-5 *1 (-579 *5 *4)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-1180 *5)) (-4 *5 (-12 (-962) (-581 *4)))
- (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *5)) (-4 *5 (-12 (-962) (-581 *4))) (-4 *4 (-496))
- (-5 *2 (-82)) (-5 *1 (-579 *4 *5)))))
+ (|partial| AND (|isDomain| *3 (|Vector| *4))
+ (|ofCategory| *4 (|Join| (|Ring|) (|LinearlyExplicitRingOver| *5)))
+ (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|Vector| *5)) (|isDomain| *1 (|LinearDependence| *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Vector| *4))
+ (|ofCategory| *4 (|Join| (|Ring|) (|LinearlyExplicitRingOver| *5)))
+ (|not| (|ofCategory| *5 (|Field|))) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2 (|Vector| (|Fraction| *5)))
+ (|isDomain| *1 (|LinearDependence| *5 *4)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Vector| *5))
+ (|ofCategory| *5 (|Join| (|Ring|) (|LinearlyExplicitRingOver| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Vector| *4))
+ (|isDomain| *1 (|LinearDependence| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *5))
+ (|ofCategory| *5 (|Join| (|Ring|) (|LinearlyExplicitRingOver| *4)))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LinearDependence| *4 *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 (-751 *3))) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (-751 *3)
- (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-751 *3) #1#)))
- "failed"))
- (-5 *1 (-576 *5 *3))))
+ (AND (|isDomain| *4 (|Equation| (|OrderedCompletion| *3)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|OrderedCompletion| *3)
+ (|Record|
+ (|:| |leftHandLimit|
+ (|Union| (|OrderedCompletion| *3) #1="failed"))
+ (|:| |rightHandLimit|
+ (|Union| (|OrderedCompletion| *3) #1#)))
+ "failed"))
+ (|isDomain| *1 (|PowerSeriesLimitPackage| *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-248 *3)) (-5 *5 (-1074))
- (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3))
- (-5 *1 (-576 *6 *3))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-392))
- (-5 *2
- (-3 (-751 (-349 (-858 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-751 (-349 (-858 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-751 (-349 (-858 *5))) #2#)))
- #3="failed"))
- (-5 *1 (-577 *5)) (-5 *3 (-349 (-858 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-392))
- (-5 *2
- (-3 (-751 *3)
- (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#))
- (|:| |rightHandLimit| (-3 (-751 *3) #2#)))
- #3#))
- (-5 *1 (-577 *5))))
+ (|partial| AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|String|))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|OrderedCompletion| *3))
+ (|isDomain| *1 (|PowerSeriesLimitPackage| *6 *3))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| (|OrderedCompletion| (|Polynomial| *5))))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2
+ (|Union| (|OrderedCompletion| #2=(|Fraction| (|Polynomial| *5)))
+ (|Record|
+ (|:| |leftHandLimit|
+ (|Union| (|OrderedCompletion| #2#) #3="failed"))
+ (|:| |rightHandLimit|
+ (|Union| (|OrderedCompletion| #2#) #3#)))
+ #4="failed"))
+ (|isDomain| *1 (|RationalFunctionLimitPackage| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2
+ (|Union| (|OrderedCompletion| *3)
+ (|Record|
+ (|:| |leftHandLimit| (|Union| (|OrderedCompletion| *3) #3#))
+ (|:| |rightHandLimit|
+ (|Union| (|OrderedCompletion| *3) #3#)))
+ #4#))
+ (|isDomain| *1 (|RationalFunctionLimitPackage| *5))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-248 (-349 (-858 *6)))) (-5 *5 (-1074))
- (-5 *3 (-349 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3))
- (-5 *1 (-577 *6)))))
+ (|partial| AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *6))))
+ (|isDomain| *5 (|String|)) (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|OrderedCompletion| *3))
+ (|isDomain| *1 (|RationalFunctionLimitPackage| *6)))))
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-248 (-744 *3)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3))
- (-5 *1 (-576 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-392))
- (-5 *2 (-744 (-349 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-349 (-858 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-248 (-349 (-858 *5)))) (-5 *3 (-349 (-858 *5))) (-4 *5 (-392))
- (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))))
-(((*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-572)))))
-(((*1 *1 *1) (-11 (-5 *1 (-548 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1) (-5 *1 (-572))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-205 *4 *5)) (-13 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))))
+ (|partial| AND (|isDomain| *4 (|Equation| (|OnePointCompletion| *3)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|OnePointCompletion| *3))
+ (|isDomain| *1 (|PowerSeriesLimitPackage| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| (|OnePointCompletion| (|Polynomial| *5))))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|OnePointCompletion| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *1 (|RationalFunctionLimitPackage| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|OnePointCompletion| *3))
+ (|isDomain| *1 (|RationalFunctionLimitPackage| *5)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|FileName|)) (|isDomain| *1 (|Library|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|KeyedAccessFile| *2))
+ (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *1) (|isDomain| *1 (|Library|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-205 *4 *5))) (-5 *2 (-205 *4 *5)) (-13 *4 (-584 (-1091)))
- (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
+ (AND (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *4 *5)))
+ (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))))
(((*1 *2 *3 *2 *2)
- (-11 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-13 *4 (-584 (-1091)))
- (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
+ (AND
+ (|isDomain| *2
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5)))
+ (|isDomain| *3 (|OrderedVariableList| *4)) (|ofType| *4 (|List| (|Symbol|)))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))))
(((*1 *2 *3 *2 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-205 *5 *6))) (-4 *6 (-392))
- (-5 *2 (-205 *5 *6)) (-13 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *1 (-220))))
+ (AND (|isDomain| *3 (|List| *6))
+ (|isDomain| *4 (|List| (|DistributedMultivariatePolynomial| *5 *6)))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2 (|DistributedMultivariatePolynomial| *5 *6))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *1 (|LinGroebnerPackage| *5 *6)))))
+(((*1 *1 *2)
+ (AND
+ (|isDomain| *2
+ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))
+ (|isDomain| *1 (|DrawOption|))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-1 (-855 (-178)) (-855 (-178)))) (-5 *3 (-584 (-220)))
- (-5 *1 (-221))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-13 *5 (-584 (-1091)))
- (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))))
+ (AND
+ (|isDomain| *2
+ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *4
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6)))
+ (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *5 *6))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|LinGroebnerPackage| *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 (-421 *3 *4))) (-13 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-571 *3 *4)))))
+ (AND
+ (|isDomain| *2
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *3 *4)))
+ (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *1 (|LinGroebnerPackage| *3 *4)))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-13 *5 (-584 (-1091)))
- (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-13 *5 (-584 (-1091)))
- (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-421 *4 *5))) (-13 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-584 (-205 *4 *5))) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-13 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-2 (|:| |glbase| (-584 (-205 *4 *5))) (|:| |glval| (-584 (-485)))))
- (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-205 *4 *5))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-421 *4 *5))) (-13 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-2 (|:| |gblist| (-584 (-205 *4 *5))) (|:| |gvlist| (-584 (-485)))))
- (-5 *1 (-571 *4 *5)))))
+ (AND
+ (|isDomain| *3
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6)))
+ (|isDomain| *4 (|OrderedVariableList| *5)) (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *5 *6))
+ (|isDomain| *1 (|LinGroebnerPackage| *5 *6))
+ (|ofCategory| *6 (|GcdDomain|))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6)))
+ (|isDomain| *4 (|OrderedVariableList| *5)) (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *5 *6))
+ (|isDomain| *1 (|LinGroebnerPackage| *5 *6))
+ (|ofCategory| *6 (|GcdDomain|)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5)))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|List| (|DistributedMultivariatePolynomial| *4 *5)))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2
+ (|Record|
+ (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| *4 *5)))
+ (|:| |glval| (|List| (|Integer|)))))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5))
+ (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *4 *5))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5)))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2
+ (|Record|
+ (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| *4 *5)))
+ (|:| |gvlist| (|List| (|Integer|)))))
+ (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-12 (-363 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-29 *4 *5))
- (-4 *5 (-363 *4))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|LiouvillianFunction| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *3) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AlgebraicFunction| *4 *5))
+ (|ofCategory| *5 (|FunctionSpace| *4))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *5))
+ (|ofCategory| *5 (|FunctionSpace| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-128 *4 *5))
- (-4 *5 (-363 *4))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElementaryFunction| *4 *5))
+ (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|RadicalCategory|)))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-229 *4 *5))
- (-4 *5 (-12 (-363 *4) (-916)))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ExpressionSpace&| *4))
+ (|ofCategory| *4 (|ExpressionSpace|))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-5 *2 (-82)) (-5 *1 (-252 *4)) (-4 *4 (-253))))
- ((*1 *2 *3) (-11 (-4 *1 (-253)) (-5 *3 (-83)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *5 (-1014)) (-5 *2 (-82)) (-5 *1 (-362 *4 *5))
- (-4 *4 (-363 *5))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FunctionSpace&| *4 *5))
+ (|ofCategory| *4 (|FunctionSpace| *5))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-373 *4 *5))
- (-4 *5 (-363 *4))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *4 *5))
+ (|ofCategory| *5 (|FunctionSpace| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-83)) (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-569 *4 *5))
- (-4 *5 (-12 (-363 *4) (-916) (-1116))))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LiouvillianFunction| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392))
- (-13 *6 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
- (-5 *1 (-568 *5 *6)))))
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6))))
+ (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2
+ (|List|
+ (|SquareFreeRegularTriangularSet| *5
+ (|IndexedExponents|
+ (|OrderedVariableList| *6))
+ (|OrderedVariableList| *6)
+ (|NewSparseMultivariatePolynomial| *5
+ (|OrderedVariableList|
+ *6)))))
+ (|isDomain| *1 (|LexTriangularPackage| *5 *6)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-82)) (-4 *5 (-392))
- (-13 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))))
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6))))
+ (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|RegularChain| *5 *6)))
+ (|isDomain| *1 (|LexTriangularPackage| *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-308 *3 *4))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|List| (|Polynomial| *3)))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|isDomain| *1 (|FGLMIfCanPackage| *3 *4))
+ (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerPackage| *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerPackage| *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerPackage| *4 *5 *6 *7))))
((*1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4))))
((*1 *2 *2)
- (-11 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
- (-13 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))))
+ (AND
+ (|isDomain| *2
+ (|List| (|NewSparseMultivariatePolynomial| *3 (|OrderedVariableList| *4))))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofType| *4 (|List| (|Symbol|)))
+ (|isDomain| *1 (|LexTriangularPackage| *3 *4)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-308 *3 *4))
- (-13 *4 (-584 (-1091)))))
+ (|partial| AND (|isDomain| *2 (|List| (|Polynomial| *3)))
+ (|ofCategory| *3 (|GcdDomain|)) (|isDomain| *1 (|FGLMIfCanPackage| *3 *4))
+ (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *2)
- (|partial| -11 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
- (-13 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-82))
- (-5 *1 (-308 *4 *5)) (-13 *5 (-584 (-1091)))))
+ (|partial| AND
+ (|isDomain| *2
+ (|List| (|NewSparseMultivariatePolynomial| *3 (|OrderedVariableList| *4))))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofType| *4 (|List| (|Symbol|)))
+ (|isDomain| *1 (|LexTriangularPackage| *3 *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Polynomial| *4)))
+ (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FGLMIfCanPackage| *4 *5))
+ (|ofType| *5 (|List| (|Symbol|)))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392))
- (-13 *5 (-584 (-1091))) (-5 *2 (-82)) (-5 *1 (-568 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5)))
- (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-12 (-145) (-655 (-349 (-485)))))
- (-13 *6 (-831)))))
+ (AND
+ (|isDomain| *3
+ (|List| (|NewSparseMultivariatePolynomial| *4 (|OrderedVariableList| *5))))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LexTriangularPackage| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *2 (|List| (|LiePolynomial| *4 *5)))
+ (|isDomain| *1 (|LieExponentials| *4 *5 *6))
+ (|ofCategory| *5
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *6 (|PositiveInteger|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))))
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |k| (|LyndonWord| *3)) (|:| |c| *4))))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|)))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-12 (-145) (-655 (-349 (-485))))) (-13 *5 (-831)))))
+ (AND (|isDomain| *2 (|List| (|Equation| *4)))
+ (|isDomain| *1 (|LieExponentials| *3 *4 *5))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4
+ (|Join| (|CommutativeRing|)
+ (|Module| (|Fraction| (|Integer|)))))
+ (|ofType| *5 (|PositiveInteger|)))))
(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -11
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1784 (-584 (-2 (|:| |irr| *10) (|:| -2397 (-485)))))))
- (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257))
- (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718))
- (-5 *2
- (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-584 (-1086 *3)))))
- (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))))
+ (|partial| AND
+ (|isDomain| *5
+ (|Record| (|:| |contp| *3)
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *10) (|:| |pow| (|Integer|)))))))
+ (|isDomain| *6 (|List| *3)) (|isDomain| *7 (|List| *8))
+ (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *10 (|PolynomialCategory| *3 *9 *8))
+ (|ofCategory| *9 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record| (|:| |polfac| (|List| *10)) (|:| |correct| *3)
+ (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| *3)))))
+ (|isDomain| *1 (|LeadingCoefDetermination| *8 *9 *3 *10))
+ (|isDomain| *4 (|List| (|SparseUnivariatePolynomial| *3))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757))
- (-4 *7 (-718)) (-5 *2 (-82)) (-5 *1 (-565 *6 *7 *3 *8))
- (-4 *8 (-862 *3 *7 *6)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6))
- (-4 *2 (-1021 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-11 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *5 (|List| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|LeadingCoefDetermination| *6 *7 *3 *8))
+ (|ofCategory| *8 (|PolynomialCategory| *3 *7 *6)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5))
+ (|isDomain| *1 (|LazardSetSolvingPackage| *3 *4 *5 *6 *7 *2))
+ (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6))
+ (|ofCategory| *2
+ (|SquareFreeRegularTriangularSetCategory| *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|IntegralDomain|))
+ (|isDomain| *1 (|LaurentPolynomial| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-562 *4 *2)) (-4 *2 (-12 (-1116) (-872) (-26 *4))))))
-(((*1 *1) (-5 *1 (-557))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|LaplaceTransform| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *4))))))
+(((*1 *1) (|isDomain| *1 (|KleeneTrivalentLogic|))))
(((*1 *2 *3 *3 *3)
- (|partial| -11 (-4 *4 (-12 (-117) (-24) (-951 (-485)) (-951 (-349 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-349 *5))) (-5 *1 (-555 *4 *5))
- (-5 *3 (-349 *5))))
+ (|partial| AND
+ (|ofCategory| *4
+ (|Join| (|CharacteristicZero|) (|AlgebraicallyClosedField|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| *5)))
+ (|isDomain| *1 (|Kovacic| *4 *5)) (|isDomain| *3 (|Fraction| *5))))
((*1 *2 *3 *3 *3 *4)
- (|partial| -11 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-117) (-24) (-951 (-485)) (-951 (-349 (-485)))))
- (-5 *2 (-1086 (-349 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-349 *6)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
- (-5 *1 (-552 *2 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(((*1 *2 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)) (-4 *2 (-1116))))
- ((*1 *2 *1) (-11 (-5 *1 (-280 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-83)) (-5 *3 (-584 *1)) (-4 *1 (-253))))
- ((*1 *1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-83))))
- ((*1 *1 *2) (-11 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
+ (|partial| AND (|isDomain| *4 (|Mapping| (|Factored| *6) *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|CharacteristicZero|) (|AlgebraicallyClosedField|)
+ (|RetractableTo| (|Integer|))
+ (|RetractableTo| (|Fraction| (|Integer|)))))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| *6)))
+ (|isDomain| *1 (|Kovacic| *5 *6)) (|isDomain| *3 (|Fraction| *6)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|Kernel| *4))
+ (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|KernelFunctions2| *2 *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Kernel| *4)) (|isDomain| *1 (|KernelFunctions2| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *2 (|TranscendentalFunctionCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|FourierComponent| *2))
+ (|ofCategory| *2 (|OrderedSet|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Kernel| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|BasicOperator|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Kernel| *3))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-83)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014))
- (-5 *1 (-551 *5)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *5))
+ (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *1 (|Kernel| *5)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Kernel| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|KeyedDictionary| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))))
+ (AND (|ofCategory| *1 (|KeyedDictionary| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|List| *3)))))
(((*1 *2 *3 *1)
- (|partial| -11 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *2 *1) (-11 (-5 *2 (-870 (-157 (-109)))) (-5 *1 (-281))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))))
+ (|partial| AND (|ofCategory| *1 (|KeyedDictionary| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1) (|isDomain| *1 (|JVMClassFileAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMFieldAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMFieldAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMFieldAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMFieldAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMClassFileAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMFieldAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMClassFileAccess|)))
+ ((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMMethodAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMFieldAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMFieldAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMConstantTag|))))
+(((*1 *1) (|isDomain| *1 (|JVMClassFileAccess|))))
+(((*1 *1) (|isDomain| *1 (|JVMClassFileAccess|))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))))
+ (|isDomain| *1 (|FunctorData|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|JoinAst|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|List| *4)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))))
+ (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|List| *3)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-317 *3)) (-4 *3 (-69)) (-4 *1 (-539 *4 *3)) (-4 *4 (-69))
- (-4 *3 (-1130)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|BasicType|))
+ (|ofCategory| *1 (|IndexedAggregate| *4 *3))
+ (|ofCategory| *4 (|BasicType|)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-69)) (-4 *2 (-757)))))
+ (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *2 (|BasicType|)) (|ofCategory| *2 (|OrderedSet|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-69)) (-4 *2 (-757)))))
+ (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *2 (|BasicType|)) (|ofCategory| *2 (|OrderedSet|)))))
(((*1 *1 *1 *2)
- (-11 (-4 *1 (-54 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-323 *2))
- (-4 *4 (-323 *2))))
+ (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *3 *4))
+ (|ofCategory| *2 (|Type|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))))
((*1 *1 *1 *2)
- (-11 (-4 *1 (-1036 *2)) (-4 *1 (-539 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))))
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|IndexedAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))))
(((*1 *2 *1 *3 *3)
- (-11 (-4 *1 (-1036 *4)) (-4 *1 (-539 *3 *4)) (-4 *3 (-69)) (-4 *4 (-1130))
- (-5 *2 (-1186)))))
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *4))
+ (|ofCategory| *1 (|IndexedAggregate| *3 *4))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Void|)))))
(((*1 *2 *2 *3 *4)
- (-11 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091)))
- (-4 *2 (-12 (-363 (-141 *5)) (-916) (-1116))) (-4 *5 (-496))
- (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-12 (-363 *5) (-916) (-1116))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-141 *5)) (-5 *1 (-536 *4 *5 *3))
- (-4 *5 (-12 (-363 *4) (-916) (-1116)))
- (-4 *3 (-12 (-363 (-141 *4)) (-916) (-1116))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *2 (-12 (-363 (-141 *4)) (-916) (-1116)))
- (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-12 (-363 *4) (-916) (-1116))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-4 *2 (-12 (-363 *4) (-916) (-1116)))
- (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-12 (-363 (-141 *4)) (-916) (-1116))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-141 *5)) (-4 *5 (-12 (-363 *4) (-916) (-1116))) (-4 *4 (-496))
- (-4 *2 (-12 (-363 (-141 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
+ (AND (|isDomain| *3 (|List| (|Kernel| *2)))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| (|Complex| *5))
+ (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|InnerTrigonometricManipulations| *5 *6 *2))
+ (|ofCategory| *6
+ (|Join| (|FunctionSpace| *5) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Complex| *5))
+ (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *3))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| (|Complex| *4))
+ (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| (|Complex| *4))
+ (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *3 *2))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *2 *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| (|Complex| *4))
+ (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Complex| *5))
+ (|ofCategory| *5
+ (|Join| (|FunctionSpace| *4) (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| (|Complex| *4))
+ (|RadicalCategory|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *2)))))
+(((*1 *1) (|isDomain| *1 (|InternalTypeForm|))))
+(((*1 *1) (|isDomain| *1 (|InternalTypeForm|))))
+(((*1 *1) (|isDomain| *1 (|InternalTypeForm|))))
+(((*1 *1) (|isDomain| *1 (|InternalTypeForm|))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|InternalTypeForm|)))
+ (|isDomain| *1 (|InternalTypeForm|)))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-940 (-751 (-485))))
- (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962))
- (-5 *1 (-531 *4)))))
+ (AND (|isDomain| *2 (|Reference| (|OrderedCompletion| (|Integer|))))
+ (|isDomain| *3 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *4))))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *4)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Reference| (|OrderedCompletion| (|Integer|))))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3))
- (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3))))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))
+ (|ofCategory| *3 (|Ring|)))))
(((*1 *1 *1 *1 *2)
- (|partial| -11 (-5 *2 (-82)) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
+ (|partial| AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Ring|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-11 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6))))
- (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-349 (-485)))
- (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))))
+ (AND (|isDomain| *3 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *6))))
+ (|isDomain| *4 (|Reference| (|OrderedCompletion| (|Integer|))))
+ (|isDomain| *5 (|Symbol|)) (|isDomain| *7 (|Fraction| (|Integer|)))
+ (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *6)))))
(((*1 *1 *1 *2)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-35 *2))
- (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3))
+ (|ofCategory| *3 (|Algebra| *2)) (|ofCategory| *3 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *1 *1)
- (-11 (-5 *1 (-531 *2)) (-4 *2 (-35 (-349 (-485)))) (-4 *2 (-962)))))
+ (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2))
+ (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))
+ (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8))
- (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-82)) (-5 *1 (-528 *5 *6 *7 *8 *3)))))
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1
+ (|InternalRationalUnivariateRepresentationPackage| *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485)))
- (-5 *1 (-527))))
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *4 (|Permutation| (|Integer|)))
+ (|isDomain| *2 (|Matrix| (|Integer|)))
+ (|isDomain| *1 (|IrrRepSymNatPackage|))))
((*1 *2 *3)
- (-11 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485))))
- (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *2 (|List| (|Matrix| (|Integer|))))
+ (|isDomain| *1 (|IrrRepSymNatPackage|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *4 (|List| (|Permutation| (|Integer|))))
+ (|isDomain| *2 (|List| (|Matrix| (|Integer|))))
+ (|isDomain| *1 (|IrrRepSymNatPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IrrRepSymNatPackage|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-370 *4 *2)) (-4 *2 (-12 (-1116) (-26 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-117))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-264 *5))
- (-5 *1 (-526 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-520 *2)) (-4 *2 (-12 (-26 *4) (-1116))) (-5 *1 (-522 *4 *2))
- (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|FunctionSpaceComplexIntegration| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5)))
+ (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|CharacteristicZero|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Expression| *5))
+ (|isDomain| *1 (|IntegrationResultRFToFunction| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|IntegrationResult| *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedFunctionSpace| *4)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *1 (|IntegrationResultToFunction| *4 *2))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))))
((*1 *2 *3)
- (-11 (-5 *3 (-520 (-349 (-858 *4))))
- (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-264 *4))
- (-5 *1 (-526 *4)))))
+ (AND (|isDomain| *3 (|IntegrationResult| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Expression| *4))
+ (|isDomain| *1 (|IntegrationResultRFToFunction| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|IrredPolyOverFiniteField| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *1 (|IntegerRoots| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *2)
+ (|partial| AND (|isDomain| *1 (|IntegerRoots| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-298)))))
-(((*1 *2 *2) (-11 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2) (|partial| -11 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
-(((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-(((*1 *2 *2 *3) (-11 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRoots| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IntegerRoots| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IntegerRoots| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|))))
((*1 *2 *3)
- (-11 (-5 *2 (-2 (|:| -2697 *3) (|:| -2403 (-695)))) (-5 *1 (-524 *3))
- (-4 *3 (-484)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |base| *3) (|:| |exponent| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|IntegerRoots| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-5 *2 (-82)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-(((*1 *1 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IntegerRoots| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|InternalTypeForm|))
+ (|isDomain| *1 (|InternalRepresentationForm|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|InternalTypeForm|))
+ (|isDomain| *1 (|InternalRepresentationForm|)))))
+(((*1 *1 *2 *3 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|InternalTypeForm|))
+ (|isDomain| *1 (|InternalRepresentationForm|)))))
(((*1 *1 *2 *3 *4)
- (-11
- (-5 *3
- (-584
- (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 *2))
- (|:| |logand| (-1086 *2)))))
- (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311))
- (-5 *1 (-520 *2)))))
-(((*1 *2 *1) (-11 (-5 *1 (-520 *2)) (-4 *2 (-311)))))
-(((*1 *2 *1)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |scalar| (-349 (-485))) (|:| |coeff| (-1086 *3))
- (|:| |logand| (-1086 *3)))))
- (-5 *1 (-520 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-520 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-520 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-516)))))
-(((*1 *2 *1) (-11 (-5 *2 (-165 4 (-98))) (-5 *1 (-516)))))
-(((*1 *2 *3) (-11 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
-(((*1 *2 *1) (-11 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-83))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-83))))
- ((*1 *1) (-5 *1 (-515))))
-(((*1 *1) (-5 *1 (-515))))
-(((*1 *1) (-5 *1 (-515))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-514))))
- ((*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-514)))))
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |scalar| (|Fraction| (|Integer|)))
+ (|:| |coeff| (|SparseUnivariatePolynomial| *2))
+ (|:| |logand| (|SparseUnivariatePolynomial| *2)))))
+ (|isDomain| *4 (|List| (|Record| (|:| |integrand| *2) (|:| |intvar| *2))))
+ (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|IntegrationResult| *2)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |scalar| (|Fraction| (|Integer|)))
+ (|:| |coeff| (|SparseUnivariatePolynomial| *3))
+ (|:| |logand| (|SparseUnivariatePolynomial| *3)))))
+ (|isDomain| *1 (|IntegrationResult| *3)) (|ofCategory| *3 (|Field|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |integrand| *3) (|:| |intvar| *3))))
+ (|isDomain| *1 (|IntegrationResult| *3)) (|ofCategory| *3 (|Field|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegrationResult| *3))
+ (|ofCategory| *3 (|Field|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|InternalPrintPackage|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|IP4Address|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|DataArray| 4 (|Byte|)))
+ (|isDomain| *1 (|IP4Address|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Hostname|)) (|isDomain| *2 (|Maybe| (|IP4Address|)))
+ (|isDomain| *1 (|IP4Address|)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2 (|Maybe| (|Mapping| (|InputForm|) (|List| (|InputForm|)))))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|InputForm|) (|List| (|InputForm|))))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1) (|isDomain| *1 (|IOMode|))))
+(((*1 *1) (|isDomain| *1 (|IOMode|))))
+(((*1 *1) (|isDomain| *1 (|IOMode|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputOutputBinaryFile|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FileName|)) (|isDomain| *1 (|InputOutputBinaryFile|)))))
(((*1 *2 *2 *3 *3)
- (|partial| -11 (-5 *3 (-1091))
- (-4 *4 (-12 (-257) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2))
- (-4 *2 (-12 (-1116) (-872) (-1054) (-26 *4))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-5 *2
- (-2 (|:| |ir| (-520 (-349 *6))) (|:| |specpart| (-349 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-511 *5 *6)) (-5 *3 (-349 *6)))))
+ (|partial| AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|InverseLaplaceTransform| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|SpecialFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *4))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *3 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2 (|Record| (|:| |answer| *3) (|:| |polypart| *3)))
+ (|isDomain| *1 (|TranscendentalIntegration| *5 *3)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |ir| (|IntegrationResult| #1=(|Fraction| *6)))
+ (|:| |specpart| #1#) (|:| |polypart| *6)))
+ (|isDomain| *1 (|TranscendentalIntegration| *5 *6))
+ (|isDomain| *3 (|Fraction| *6)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-563 *4 *5))
- (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3140 *4) (|:| |sol?| (-82))) (-485) *4))
- (-4 *4 (-311)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))))
+ (|partial| AND (|isDomain| *2 (|LaurentPolynomial| *4 *5))
+ (|isDomain| *3
+ (|Mapping|
+ (|Record| (|:| |ans| *4) (|:| |right| *4) (|:| |sol?| (|Boolean|)))
+ (|Integer|) *4))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|TranscendentalIntegration| *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -11
- (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-311)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| AND
+ (|isDomain| *3
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *4) (|:| |coeff| *4)) "failed") *4))
+ (|ofCategory| *4 (|Field|))
+ (|isDomain| *1 (|TranscendentalIntegration| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-349 *7))) (-4 *7 (-1156 *6))
- (-5 *3 (-349 *7)) (-4 *6 (-311))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-511 *6 *7)))))
+ (|partial| AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5 (|List| (|Fraction| *7)))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *3 (|Fraction| *7)) (|ofCategory| *6 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7)))))
(((*1 *2 *3 *4 *3)
- (|partial| -11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -2138 (-349 *6)) (|:| |coeff| (-349 *6))))
- (-5 *1 (-511 *5 *6)) (-5 *3 (-349 *6)))))
+ (|partial| AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |ratpart| #1=(|Fraction| *6)) (|:| |coeff| #1#)))
+ (|isDomain| *1 (|TranscendentalIntegration| *5 *6))
+ (|isDomain| *3 (|Fraction| *6)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -11 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3140 *7) (|:| |sol?| (-82))) (-485) *7))
- (-5 *6 (-584 (-349 *8))) (-4 *7 (-311)) (-4 *8 (-1156 *7)) (-5 *3 (-349 *8))
- (-5 *2
- (-2
+ (|partial| AND (|isDomain| *4 (|Mapping| *8 *8))
+ (|isDomain| *5
+ (|Mapping|
+ (|Record| (|:| |ans| *7) (|:| |right| *7) (|:| |sol?| (|Boolean|)))
+ (|Integer|) *7))
+ (|isDomain| *6 (|List| (|Fraction| *8))) (|ofCategory| *7 (|Field|))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| *7))
+ (|isDomain| *3 (|Fraction| *8))
+ (|isDomain| *2
+ (|Record|
(|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List|
+ (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-511 *7 *8)))))
+ (|isDomain| *1 (|TranscendentalIntegration| *7 *8)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -11 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-584 (-349 *8))) (-4 *7 (-311)) (-4 *8 (-1156 *7)) (-5 *3 (-349 *8))
- (-5 *2
- (-2
+ (|partial| AND (|isDomain| *4 (|Mapping| *8 *8))
+ (|isDomain| *5
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *7) (|:| |coeff| *7)) "failed") *7))
+ (|isDomain| *6 (|List| (|Fraction| *8))) (|ofCategory| *7 (|Field|))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| *7))
+ (|isDomain| *3 (|Fraction| *8))
+ (|isDomain| *2
+ (|Record|
(|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List|
+ (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-511 *7 *8)))))
+ (|isDomain| *1 (|TranscendentalIntegration| *7 *8)))))
(((*1 *2 *3 *4 *5 *3)
- (-11 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-82))) (-485) *6))
- (-4 *6 (-311)) (-4 *7 (-1156 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6))
- (-2 (|:| -2138 (-349 *7)) (|:| |coeff| (-349 *7))) "failed"))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5
+ (|Mapping|
+ (|Record| (|:| |ans| *6) (|:| |right| *6) (|:| |sol?| (|Boolean|)))
+ (|Integer|) *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2
+ (|Union| (|Record| (|:| |answer| #1=(|Fraction| *7)) (|:| |a0| *6))
+ (|Record| (|:| |ratpart| #1#) (|:| |coeff| #1#)) "failed"))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7))
+ (|isDomain| *3 (|Fraction| *7)))))
(((*1 *2 *3 *4 *5 *3)
- (-11 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-311)) (-4 *7 (-1156 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6))
- (-2 (|:| -2138 (-349 *7)) (|:| |coeff| (-349 *7))) "failed"))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *6) (|:| |coeff| *6)) "failed") *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2
+ (|Union| (|Record| (|:| |answer| #1=(|Fraction| *7)) (|:| |a0| *6))
+ (|Record| (|:| |ratpart| #1#) (|:| |coeff| #1#)) "failed"))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7))
+ (|isDomain| *3 (|Fraction| *7)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6))
- (-4 *6 (-311)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5
+ (|Mapping| (|Union| (|List| *6) "failed") (|Integer|) *6 *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2
+ (|Record| (|:| |answer| (|IntegrationResult| (|Fraction| *7)))
+ (|:| |a0| *6)))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7))
+ (|isDomain| *3 (|Fraction| *7)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3140 *6) (|:| |sol?| (-82))) (-485) *6))
- (-4 *6 (-311)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5
+ (|Mapping|
+ (|Record| (|:| |ans| *6) (|:| |right| *6) (|:| |sol?| (|Boolean|)))
+ (|Integer|) *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2
+ (|Record| (|:| |answer| (|IntegrationResult| (|Fraction| *7)))
+ (|:| |a0| *6)))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7))
+ (|isDomain| *3 (|Fraction| *7)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-311)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-349 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-349 *7)))))
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|isDomain| *5
+ (|Mapping|
+ (|Union| (|Record| (|:| |ratpart| *6) (|:| |coeff| *6)) "failed") *6))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|isDomain| *2
+ (|Record| (|:| |answer| (|IntegrationResult| (|Fraction| *7)))
+ (|:| |a0| *6)))
+ (|isDomain| *1 (|TranscendentalIntegration| *6 *7))
+ (|isDomain| *3 (|Fraction| *7)))))
(((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *5 (-1 (-520 *3) *3 (-1091)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091)))
- (-4 *3 (-238)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-363 *7))
- (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392))
- (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3))
- (-5 *1 (-510 *7 *3)))))
+ (AND (|isDomain| *5 (|Mapping| (|IntegrationResult| *3) *3 #1=(|Symbol|)))
+ (|isDomain| *6
+ (|Mapping|
+ (|Union| (|Record| (|:| |special| *3) (|:| |integrand| *3)) "failed")
+ *3 #1#))
+ (|ofCategory| *3 (|ElementaryFunctionCategory|))
+ (|ofCategory| *3 (|LiouvillianFunctionCategory|))
+ (|ofCategory| *3 (|RetractableTo| *4))
+ (|ofCategory| *3 (|FunctionSpace| *7)) (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *7 (|ConvertibleTo| (|Pattern| (|Integer|))))
+ (|ofCategory| *7 (|GcdDomain|))
+ (|ofCategory| *7 (|PatternMatchable| (|Integer|)))
+ (|ofCategory| *7 (|SetCategory|))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|IntegrationTools| *7 *3)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
- (-4 *2 (-238)) (-4 *2 (-363 *4)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|IntegrationTools| *4 *2))
+ (|ofCategory| *2 (|ElementaryFunctionCategory|))
+ (|ofCategory| *2 (|FunctionSpace| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
- (-4 *2 (-363 *4)))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|IntegrationTools| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-363 *5)) (-4 *5 (-1014))
- (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))))
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *6 (|FunctionSpace| *5)) (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *2 (|List| (|Kernel| *6)))
+ (|isDomain| *1 (|IntegrationTools| *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-11 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6))
- (-4 *6 (-363 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5))
- (-5 *1 (-510 *4 *5)) (-4 *5 (-363 *4)))))
+ (AND (|isDomain| *3 (|List| (|Kernel| *6))) (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2 (|Kernel| *6)) (|ofCategory| *6 (|FunctionSpace| *5))
+ (|ofCategory| *5 (|SetCategory|))
+ (|isDomain| *1 (|IntegrationTools| *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Kernel| *5))) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Kernel| *5)) (|isDomain| *1 (|IntegrationTools| *4 *5))
+ (|ofCategory| *5 (|FunctionSpace| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-363 *4))
- (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
+ (AND (|isDomain| *2 (|List| (|Kernel| *5))) (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *5 (|FunctionSpace| *4)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|IntegrationTools| *4 *5)))))
(((*1 *2 *3 *4 *3)
- (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-117)))
- (-5 *2 (-2 (|:| -2138 (-349 (-858 *5))) (|:| |coeff| (-349 (-858 *5)))))
- (-5 *1 (-507 *5)) (-5 *3 (-349 (-858 *5))))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |ratpart| #1=(|Fraction| (|Polynomial| *5)))
+ (|:| |coeff| #1#)))
+ (|isDomain| *1 (|RationalFunctionIntegration| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5))))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 (-349 (-858 *6))))
- (-5 *3 (-349 (-858 *6))) (-4 *6 (-12 (-496) (-951 (-485)) (-117)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-507 *6)))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *5 (|List| (|Fraction| (|Polynomial| *6))))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *6)))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|RationalFunctionIntegration| *6)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-349 (-858 *4))) (-5 *3 (-1091))
- (-4 *4 (-12 (-496) (-951 (-485)) (-117))) (-5 *1 (-507 *4)))))
+ (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| *4)))
+ (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *1 (|RationalFunctionIntegration| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-12 (-1116) (-26 *5)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-117)))
- (-5 *2 (-520 (-349 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-349 (-858 *5))))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|FunctionSpaceComplexIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *5)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)))
+ (|isDomain| *2 (|IntegrationResult| (|Fraction| (|Polynomial| *5))))
+ (|isDomain| *1 (|RationalFunctionIntegration| *5))
+ (|isDomain| *3 (|Fraction| (|Polynomial| *5))))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerRetractions| *3))
+ (|ofCategory| *3 (|RetractableTo| *2)))))
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-584 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-311) (-117) (-951 (-485))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-505 *5 *6)))))
+ (|partial| AND (|isDomain| *4 (|List| (|Fraction| *6)))
+ (|isDomain| *3 (|Fraction| *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|RationalIntegration| *5 *6)))))
(((*1 *2 *3 *3)
- (|partial| -11 (-4 *4 (-12 (-311) (-117) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -2138 (-349 *5)) (|:| |coeff| (-349 *5))))
- (-5 *1 (-505 *4 *5)) (-5 *3 (-349 *5)))))
+ (|partial| AND
+ (|ofCategory| *4
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |ratpart| #1=(|Fraction| *5)) (|:| |coeff| #1#)))
+ (|isDomain| *1 (|RationalIntegration| *4 *5))
+ (|isDomain| *3 (|Fraction| *5)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3))
- (-4 *3 (-12 (-311) (-117) (-951 (-485)))) (-5 *1 (-505 *3 *4)))))
+ (|partial| AND (|isDomain| *2 (|Fraction| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))))
+ (|isDomain| *1 (|RationalIntegration| *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-570)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|))))
+ (|ofCategory| *5 (|PatternMatchable| (|Integer|)))
+ (|ofCategory| *5
+ (|Join| (|RetractableTo| (|Integer|)) (|GcdDomain|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |special| *3) (|:| |integrand| *3)))
+ (|isDomain| *1 (|PatternMatchIntegration| *5 *3))
+ (|ofCategory| *3 (|LiouvillianFunctionCategory|))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))))
((*1 *2 *2 *3 *4 *4)
- (|partial| -11 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054))
- (-4 *2 (-12 (-24) (-1116) (-363 *5))) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *1 (-504 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-570)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
+ (|partial| AND (|isDomain| *3 (|Symbol|))
+ (|isDomain| *4 (|OrderedCompletion| *2))
+ (|ofCategory| *2 (|SpecialFunctionCategory|))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|))))
+ (|ofCategory| *5 (|PatternMatchable| (|Integer|)))
+ (|ofCategory| *5
+ (|Join| (|RetractableTo| (|Integer|)) (|GcdDomain|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|PatternMatchIntegration| *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|))))
+ (|ofCategory| *5 (|PatternMatchable| (|Integer|)))
+ (|ofCategory| *5
+ (|Join| (|RetractableTo| (|Integer|)) (|GcdDomain|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |special| *3) (|:| |integrand| *3)))
+ (|isDomain| *1 (|PatternMatchIntegration| *5 *3))
+ (|ofCategory| *3 (|LiouvillianFunctionCategory|))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|RetractableTo| (|Integer|)) (|GcdDomain|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |const| *3) (|:| |nconst| *3)))
+ (|isDomain| *1 (|PatternMatchIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-11 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-12 (-363 *7) (-24) (-1116)))
- (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 "failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|PureAlgebraicIntegration| *7 *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -11 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091)))
- (-4 *2 (-12 (-363 *5) (-24) (-1116)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))))
+ (|partial| AND (|isDomain| *3 (|Kernel| *2))
+ (|isDomain| *4 (|Mapping| (|Union| *2 "failed") *2 *2 (|Symbol|)))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|PureAlgebraicIntegration| *5 *2 *6))
+ (|ofCategory| *6 (|SetCategory|)))))
(((*1 *2 *3 *4 *4 *5)
- (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3))
- (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|PureAlgebraicIntegration| *6 *3 *7))
+ (|ofCategory| *7 (|SetCategory|)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *5) (-24) (-1116)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6))
- (-4 *6 (-1014)))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3)))
+ (|isDomain| *1 (|PureAlgebraicIntegration| *5 *3 *6))
+ (|ofCategory| *6 (|SetCategory|)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-551 *3)) (-4 *3 (-12 (-363 *5) (-24) (-1116)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-4 *7 (-1156 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3)))
- (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-311))
- (-5 *2
- (-2 (|:| |answer| (-349 *6)) (|:| -2137 (-349 *6))
- (|:| |specpart| (-349 *6)) (|:| |polypart| *6)))
- (-5 *1 (-502 *5 *6)) (-5 *3 (-349 *6)))))
-(((*1 *2 *2 *3) (-11 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *3) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-152 *2)) (-4 *2 (-257))))
+ (AND (|isDomain| *4 (|Kernel| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|PureAlgebraicIntegration| *5 *3 *6))
+ (|ofCategory| *6 (|SetCategory|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|isDomain| *2 (|Record| (|:| |answer| *3) (|:| |logpart| *3)))
+ (|isDomain| *1 (|AlgebraicHermiteIntegration| *5 *6 *7 *3))
+ (|ofCategory| *3 (|FunctionFieldCategory| *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Field|))
+ (|isDomain| *2
+ (|Record| (|:| |answer| #1=(|Fraction| *6)) (|:| |logpart| #1#)
+ (|:| |specpart| #1#) (|:| |polypart| *6)))
+ (|isDomain| *1 (|TranscendentalHermiteIntegration| *5 *6))
+ (|isDomain| *3 (|Fraction| *6)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|CRApackage| *2))
+ (|ofCategory| *2 (|EuclideanDomain|))))
((*1 *2 *3 *2)
- (-11 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257))
- (-5 *1 (-152 *4))))
+ (AND (|isDomain| *3 (|List| (|List| *4))) (|isDomain| *2 (|List| *4))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|isDomain| *1 (|CRApackage| *4))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 *8))
- (-5 *4
- (-584
- (-2 (|:| -2014 (-631 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-631 *7)))))
- (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-298))
- (-5 *2
- (-2 (|:| -2014 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))
- (-5 *1 (-438 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-500)))))
+ (AND (|isDomain| *3 (|List| *8))
+ (|isDomain| *4
+ (|List|
+ (|Record| (|:| |basis| (|Matrix| *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (|Matrix| *7)))))
+ (|isDomain| *5 (|NonNegativeInteger|))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| *7))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *6 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (|Matrix| *7))))
+ (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-11 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4))
- (-4 *4 (-12 (-363 *7) (-24) (-1116)))
- (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-584 *4))))
- (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))
+ (AND (|isDomain| *5 (|Kernel| *4))
+ (|isDomain| *6 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4
+ (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 #1="failed"))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|GenusZeroIntegration| *7 *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))
+ (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-11 (-5 *5 (-551 *4)) (-5 *6 (-349 (-1086 *4)))
- (-4 *4 (-12 (-363 *7) (-24) (-1116)))
- (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-584 *4))))
- (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *5 (|Kernel| *4))
+ (|isDomain| *6 (|Fraction| (|SparseUnivariatePolynomial| *4)))
+ (|ofCategory| *4
+ (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |particular| (|Union| *4 #1#))
+ (|:| |basis| (|List| *4))))
+ (|isDomain| *1 (|GenusZeroIntegration| *7 *4 *3))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -11 (-5 *3 (-551 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1091))) (-5 *5 (-1086 *2))
- (-4 *2 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014))))
+ (|partial| AND (|isDomain| *3 (|Kernel| *2))
+ (|isDomain| *4 (|Mapping| (|Union| *2 #1="failed") *2 *2 (|Symbol|)))
+ (|isDomain| *5 (|SparseUnivariatePolynomial| *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *2 *7))
+ (|ofCategory| *7 (|SetCategory|))))
((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -11 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091)))
- (-5 *5 (-349 (-1086 *2))) (-4 *2 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))))
+ (|partial| AND (|isDomain| *3 (|Kernel| *2))
+ (|isDomain| *4 (|Mapping| (|Union| *2 #1#) *2 *2 (|Symbol|)))
+ (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *2)))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *2 *7))
+ (|ofCategory| *7 (|SetCategory|)))))
(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3))
- (-4 *3 (-12 (-363 *7) (-24) (-1116)))
- (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3))
+ (|isDomain| *6 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|GenusZeroIntegration| *7 *3 *8))
+ (|ofCategory| *8 (|SetCategory|))))
((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-349 (-1086 *3)))
- (-4 *3 (-12 (-363 *7) (-24) (-1116)))
- (-4 *7 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3))
+ (|isDomain| *6 (|Fraction| (|SparseUnivariatePolynomial| *3)))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|GenusZeroIntegration| *7 *3 *8))
+ (|ofCategory| *8 (|SetCategory|)))))
(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
- (-4 *7 (-1014))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3))
+ (|isDomain| *5 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3)))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7))
+ (|ofCategory| *7 (|SetCategory|))))
((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -11 (-5 *4 (-551 *3)) (-5 *5 (-349 (-1086 *3)))
- (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485))))
- (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
- (-4 *7 (-1014)))))
+ (|partial| AND (|isDomain| *4 (|Kernel| *3))
+ (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *3)))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3)))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7))
+ (|ofCategory| *7 (|SetCategory|)))))
(((*1 *2 *3 *4 *4 *3 *5)
- (-11 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))
+ (AND (|isDomain| *4 (|Kernel| *3))
+ (|isDomain| *5 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7))
+ (|ofCategory| *7 (|SetCategory|))))
((*1 *2 *3 *4 *4 *4 *3 *5)
- (-11 (-5 *4 (-551 *3)) (-5 *5 (-349 (-1086 *3)))
- (-4 *3 (-12 (-363 *6) (-24) (-1116)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-117) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
-(((*1 *2 *2) (|partial| -11 (-5 *1 (-498 *2)) (-4 *2 (-484)))))
-(((*1 *2 *3) (-11 (-5 *2 (-347 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
+ (AND (|isDomain| *4 (|Kernel| *3))
+ (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *3)))
+ (|ofCategory| *3
+ (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|CharacteristicZero|)
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7))
+ (|ofCategory| *7 (|SetCategory|)))))
+(((*1 *2 *2)
+ (|partial| AND (|isDomain| *1 (|IntegerFactorizationPackage| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|IntegerFactorizationPackage| *3))
+ (|ofCategory| *3 (|IntegerNumberSystem|)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -11 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *7)))
- (-4 *7 (-12 (-392) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-392) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|isDomain| *6 (|List| (|Kernel| *3))) (|isDomain| *5 (|Kernel| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *7)))
+ (|ofCategory| *7
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3)))
+ (|isDomain| *1 (|ElementaryIntegration| *7 *3)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|ElementaryIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5))))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-1091))
- (-4 *4 (-12 (-392) (-117) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *4))))))
+ (|partial| AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryIntegration| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *4 (-1091)) (-5 *5 (-584 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *6)))
- (-4 *6 (-12 (-392) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-497 *6 *3)))))
+ (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|isDomain| *1 (|ElementaryIntegration| *6 *3)))))
(((*1 *2 *3 *4 *3)
- (|partial| -11 (-5 *4 (-1091))
- (-4 *5 (-12 (-392) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3))
- (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-2 (|:| -1777 *1) (|:| -3984 *1) (|:| |associate| *1)))
- (-4 *1 (-496)))))
-(((*1 *1 *1) (-4 *1 (-496))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-496)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-496)) (-5 *2 (-82)))))
+ (|partial| AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3)))
+ (|isDomain| *1 (|ElementaryIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5))))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |unit| *1) (|:| |canonical| *1) (|:| |associate| *1)))
+ (|ofCategory| *1 (|IntegralDomain|)))))
+(((*1 *1 *1) (|ofCategory| *1 (|IntegralDomain|))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-349 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116)))))
- ((*1 *1 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116)))))
- ((*1 *1 *2 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))))
-(((*1 *1 *2 *2) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))))
-(((*1 *2 *1) (-11 (-4 *1 (-494 *2)) (-4 *2 (-12 (-346) (-1116))))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|ofCategory| *1 (|IntervalCategory| *3))
+ (|ofCategory| *3
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))))
+ ((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IntervalCategory| *2))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|))))))
(((*1 *2 *1 *3)
- (-11 (-4 *1 (-494 *3)) (-4 *3 (-12 (-346) (-1116))) (-5 *2 (-82)))))
-(((*1 *2 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-82)) (-5 *1 (-493)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-493)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-493)))))
+ (AND (|ofCategory| *1 (|IntervalCategory| *3))
+ (|ofCategory| *3
+ (|Join| (|FloatingPointSystem|)
+ (|TranscendentalFunctionCategory|)))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IntegerBits|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-12 (-24) (-363 *4))) (-4 *4 (-12 (-496) (-951 (-485))))
- (-4 *7 (-1156 (-349 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2))
- (-4 *2 (-290 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-12 (-24) (-363 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)))) (-4 *8 (-1156 (-349 *7)))
- (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-12 (-24) (-363 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)))) (-4 *8 (-1156 (-349 *7)))
- (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
+ (|partial| AND (|isDomain| *3 (|Mapping| *6 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| *4)))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|isDomain| *1 (|AlgebraicIntegrate| *4 *5 *6 *7 *2))
+ (|ofCategory| *2 (|FunctionFieldCategory| *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *6
+ (|Join| (|AlgebraicallyClosedField|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| (|Fraction| *7)))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|AlgebraicIntegrate| *5 *6 *7 *8 *3))
+ (|ofCategory| *3 (|FunctionFieldCategory| *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Mapping| *7 *7))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))
+ (|ofCategory| *6
+ (|Join| (|AlgebraicallyClosedField|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *8 (|UnivariatePolynomialCategory| (|Fraction| *7)))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|AlgebraicIntegrate| *5 *6 *7 *8 *3))
+ (|ofCategory| *3 (|FunctionFieldCategory| *6 *7 *8)))))
(((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3)))
- (-4 *3 (-12 (-24) (-363 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3))
- (-5 *1 (-491 *6 *3)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-484)) (-5 *2 (-82)))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
+ (AND (|isDomain| *4 (|Kernel| *3))
+ (|isDomain| *5
+ (|Mapping| (|SparseUnivariatePolynomial| *3)
+ (|SparseUnivariatePolynomial| *3)))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|FunctionSpace| *6)))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|AlgebraicIntegration| *6 *3)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))))
(((*1 *2 *3 *2 *4)
- (|partial| -11 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-962))
- (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5))))
+ (|partial| AND
+ (|isDomain| *4 (|Mapping| (|Union| (|Integer|) #1="failed") *5))
+ (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|InnerPolySign| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))
((*1 *2 *3 *4 *2 *5)
- (|partial| -11 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
- (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4))))
+ (|partial| AND (|isDomain| *5 (|Mapping| (|Union| (|Integer|) #1#) *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|InnerPolySign| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
- (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3))))
- ((*1 *2 *2 *3) (-11 (-4 *3 (-257)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3))))
+ (|partial| AND (|isDomain| *5 (|Mapping| (|Union| (|Integer|) #1#) *4))
+ (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|InnerPolySign| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|GenExEuclid| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *2 *3)
- (-11 (-4 *3 (-257)) (-13 *4 *3) (-13 *5 (-1 *3 *3 (-695)))
- (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6))
- (-4 *4 (-257)) (-13 *5 *4) (-13 *6 (-1 *4 *4 (-695))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6))
- (-4 *4 (-257)) (-13 *5 *4) (-13 *6 (-1 *4 *4 (-695))))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|GeneralHenselPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofType| *4 *3)
+ (|ofType| *5 (|Mapping| *3 *3 (|NonNegativeInteger|)))
+ (|isDomain| *1 (|InnerModularGcd| *3 *2 *4 *5))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|InnerModularGcd| *4 *2 *5 *6))
+ (|ofCategory| *4 (|EuclideanDomain|)) (|ofType| *5 *4)
+ (|ofType| *6 (|Mapping| *4 *4 (|NonNegativeInteger|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|InnerModularGcd| *4 *2 *5 *6))
+ (|ofCategory| *4 (|EuclideanDomain|)) (|ofType| *5 *4)
+ (|ofType| *6 (|Mapping| *4 *4 (|NonNegativeInteger|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-311))
- (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392))
- (-4 *7 (-12 (-311) (-756))))))
+ (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| (|Symbol|)))
+ (|ofCategory| *6 (|Field|))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| *6))))
+ (|isDomain| *1 (|InnerNumericFloatSolvePackage| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *7 (|Join| (|Field|) (|OrderedRing|))))))
(((*1 *2 *3 *3 *4 *5)
- (-11 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-311))
- (-4 *5 (-12 (-311) (-756))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
- (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
- (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756))))))
-(((*1 *2 *1) (-11 (-5 *2 (-48)) (-5 *1 (-474))))
- ((*1 *2 *3) (-11 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130)))))
-(((*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-74))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-474))) (-5 *1 (-474)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))))
-(((*1 *1 *1) (-5 *1 (-474))))
-(((*1 *2 *1) (-11 (-5 *2 (-1074)) (-5 *1 (-474)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-474)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))))
-(((*1 *2 *2 *3) (-11 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
-(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-631 *6)) (-5 *5 (-1 (-347 (-1086 *6)) (-1086 *6)))
- (-4 *6 (-311))
- (-5 *2
- (-584
- (-2 (|:| |outval| *7) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 *7))))))
- (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-12 (-311) (-756))))))
+ (AND (|isDomain| *3 (|List| (|Polynomial| *6)))
+ (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2 (|List| (|List| *7)))
+ (|isDomain| *1 (|InnerNumericFloatSolvePackage| *6 *7 *5))
+ (|ofCategory| *7 (|Field|))
+ (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6))
- (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-12 (-311) (-756))))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|InnerNumericFloatSolvePackage| *5 *6 *4))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Polynomial| *5)) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|InnerNumericFloatSolvePackage| *5 *6 *4))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Any|)) (|isDomain| *1 (|InputForm|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|InputForm|)) (|isDomain| *1 (|InputFormFunctions1| *2))
+ (|ofCategory| *2 (|Type|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1086 *4))
- (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-12 (-311) (-756))))))
+ (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|InputForm|))
+ (|isDomain| *1 (|InputFormFunctions1| *4)) (|ofCategory| *4 (|Type|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|BinaryExpansion|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|InputForm|))) (|isDomain| *1 (|InputForm|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|InputForm|)))))
+(((*1 *1 *1) (|isDomain| *1 (|InputForm|))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputForm|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputForm|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-12 (-664) (-22))))))
+ (AND (|isDomain| *3 (|List| (|InputForm|))) (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|InputForm|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|InputForm|)))
+ (|isDomain| *1 (|InputForm|)))))
+(((*1 *2 *3 *4 *5)
+ (AND (|isDomain| *3 (|Matrix| *6))
+ (|isDomain| *5
+ (|Mapping| (|Factored| (|SparseUnivariatePolynomial| *6))
+ (|SparseUnivariatePolynomial| *6)))
+ (|ofCategory| *6 (|Field|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |outval| *7) (|:| |outmult| (|Integer|))
+ (|:| |outvect| (|List| (|Matrix| *7))))))
+ (|isDomain| *1 (|InnerNumericEigenPackage| *6 *7 *4))
+ (|ofCategory| *7 (|Field|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *5))
+ (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|InnerNumericEigenPackage| *5 *6 *4))
+ (|ofCategory| *6 (|Field|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|InnerNumericEigenPackage| *4 *5 *6))
+ (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|isDomain| *1 (|IncrementingMaps| *3))
+ (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|))))))
(((*1 *2)
- (-11 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-12 (-664) (-22))))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-468))))
- ((*1 *1 *2) (-11 (-5 *2 (-337)) (-5 *1 (-468)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-468)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-1034)) (-5 *1 (-468)))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3))
+ (|isDomain| *1 (|IncrementingMaps| *3))
+ (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputBinaryFile|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FileName|)) (|isDomain| *1 (|InputBinaryFile|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InputBinaryFile|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|InputBinaryFile|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-831)) (-4 *4 (-319)) (-4 *4 (-311)) (-5 *2 (-1086 *1))
- (-4 *1 (-279 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1086 *3))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|))
+ (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4))))
((*1 *2 *1)
- (-11 (-4 *1 (-321 *3 *2)) (-4 *3 (-145)) (-4 *3 (-311)) (-4 *2 (-1156 *3))))
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankAlgebra| *3 *2))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))))
-(((*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311))))
+ (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2))
+ (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|))))
((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Vector| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-1180 *4)) (-4 *4 (-360 *3)) (-4 *3 (-257)) (-4 *3 (-496))
- (-5 *1 (-40 *3 *4))))
+ (AND (|isDomain| *2 (|Vector| *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1180 *1)) (-4 *1 (-279 *4))))
- ((*1 *2) (-11 (-4 *3 (-311)) (-5 *2 (-1180 *1)) (-4 *1 (-279 *3))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|))
+ (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))))
((*1 *2)
- (-11 (-4 *3 (-145)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1))
- (-4 *1 (-352 *3 *4))))
+ (AND (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FramedAlgebra| *3 *4))))
((*1 *2 *1)
- (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
- (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4)))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6))
+ (|ofCategory| *6
+ (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4)))))
((*1 *2 *1)
- (-11 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
- (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-13 *7 *2)))
- ((*1 *2) (-11 (-4 *3 (-145)) (-5 *2 (-1180 *1)) (-4 *1 (-360 *3))))
+ (AND (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7))
+ (|ofCategory| *6 (|FramedAlgebra| *4 *5)) (|ofType| *7 *2)))
+ ((*1 *2)
+ (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))))
((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4))
- (-4 *4 (-298)))))
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|Vector| (|Vector| *4)))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-304 *4))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-467 *4)))))
-(((*1 *2 *1) (-11 (-4 *1 (-319)) (-5 *2 (-831))))
+ (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|PositiveInteger|))))
((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-467 *4)))))
+ (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-298)) (-5 *1 (-467 *4)))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-298)) (-5 *1 (-467 *4)))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|SingleInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-467 *4)))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
(((*1 *2 *2 *3 *4)
- (-11 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-298))
- (-5 *1 (-467 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *4)) (-4 *4 (-298)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))
- (-4 *4 (-298)) (-5 *2 (-1186)) (-5 *1 (-467 *4)))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-98))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-489))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-486))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-487))))))
-(((*1 *2 *1) (-11 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-466)) (-5 *3 (-99)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-464)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1050)) (-5 *1 (-459)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-277 *3))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-13 *4 (-485)))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 (-485)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-277 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 *2))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-277 *3)) (-4 *3 (-1130))))
- ((*1 *2 *2)
- (-11 (-5 *2 (-82)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-13 *4 (-485)))))
-(((*1 *1 *2 *3) (-11 (-5 *1 (-454 *3 *2)) (-4 *3 (-69)) (-4 *2 (-760)))))
+ (AND (|isDomain| *2 (|Vector| *5)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *4 (|SingleInteger|))
+ (|ofCategory| *5 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
+(((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|Vector|
+ (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))
+ (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|InnerNormalBasisFieldFunctions| *4)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Byte|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Int8|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|UInt8|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Int16|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|UInt16|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|Int32|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|InputByteConduit|))
+ (|isDomain| *2 (|Maybe| (|UInt32|))))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|InputByteConduit|)) (|isDomain| *3 (|ByteBuffer|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|InAst|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|TypeAst|))) (|isDomain| *1 (|ImportAst|)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *3))
+ (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2))
+ (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IfAst|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *1 (|IfAst|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|FlexibleArray| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|IndexedFlexibleArray| *3 *4))
+ (|ofType| *4 (|Integer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IndexedFlexibleArray| *3 *4))
+ (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|FlexibleArray| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|IndexedFlexibleArray| *3 *4))
+ (|ofCategory| *3 (|Type|)) (|ofType| *4 *2))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FlexibleArray| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IndexedFlexibleArray| *3 *4))
+ (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *1 (|IndexedProductTerm| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|OrderedType|)))))
(((*1 *1 *1 *1 *2 *3)
- (-11 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-69))
- (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
-(((*1 *2 *1) (-11 (-4 *1 (-450 *3 *2)) (-4 *3 (-69)) (-4 *2 (-760)))))
-(((*1 *1) (-5 *1 (-447))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4 *4))
+ (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4))
+ (|ofCategory| *4 (|BasicType|))
+ (|isDomain| *1 (|IndexedDirectProductObject| *4 *5))
+ (|ofCategory| *5 (|OrderedType|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|OrderedType|)))))
+(((*1 *1) (|isDomain| *1 (|Identifier|))))
(((*1 *1 *1 *2 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695))
- (-4 *5 (-145))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5))
+ (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|))))
((*1 *1 *1 *2 *1 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 *2) (-13 *4 (-695))
- (-4 *5 (-145))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5))
+ (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|))))
((*1 *2 *2 *3)
- (-11
- (-5 *2
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485)))))
- (-5 *3 (-584 (-774 *4))) (-13 *4 (-584 (-1091))) (-13 *5 (-695))
- (-5 *1 (-445 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-13 *4 (-584 (-1091))) (-13 *5 (-695))
- (-5 *2
- (-584
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))))
- (-5 *1 (-445 *4 *5))
- (-5 *3
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485))))))))
-(((*1 *2 *2)
- (-11
- (-5 *2
- (-444 (-349 (-485)) (-196 *4 (-695)) (-774 *3) (-205 *3 (-349 (-485)))))
- (-13 *3 (-584 (-1091))) (-13 *4 (-695)) (-5 *1 (-445 *3 *4)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485)))))
- (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-444 (-349 (-485)) (-196 *5 (-695)) (-774 *4) (-205 *4 (-349 (-485)))))
- (-13 *4 (-584 (-1091))) (-13 *5 (-695)) (-5 *2 (-82)) (-5 *1 (-445 *4 *5)))))
+ (AND
+ (|isDomain| *2
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|)))))
+ (|isDomain| *3 (|List| (|OrderedVariableList| *4)))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))))
+(((*1 *2 *3)
+ (AND (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|List|
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|))))))
+ (|isDomain| *1 (|IdealDecompositionPackage| *4 *5))
+ (|isDomain| *3
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|))))))))
+(((*1 *2 *2)
+ (AND
+ (|isDomain| *2
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *4 (|NonNegativeInteger|))
+ (|OrderedVariableList| *3)
+ (|DistributedMultivariatePolynomial| *3
+ (|Fraction|
+ (|Integer|)))))
+ (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|NonNegativeInteger|))
+ (|isDomain| *1 (|IdealDecompositionPackage| *3 *4)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|)))))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|PolynomialIdeals| (|Fraction| (|Integer|))
+ (|DirectProduct| *5 (|NonNegativeInteger|))
+ (|OrderedVariableList| *4)
+ (|DistributedMultivariatePolynomial| *4
+ (|Fraction|
+ (|Integer|)))))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))))
(((*1 *2 *3 *1)
- (-11 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-11 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))))
((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
- (-5 *2 (-82)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
+ (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5))))
((*1 *1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4)))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
- (-5 *2
- (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4))
- (|:| |genIdeal| (-444 *4 *5 *6 *7))))
- (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
+ (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2
+ (|Record| (|:| |mval| (|Matrix| *4)) (|:| |invmval| (|Matrix| *4))
+ (|:| |genIdeal| (|PolynomialIdeals| *4 *5 *6 *7))))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *1 *2)
- (-11
- (-5 *2
- (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3))
- (|:| |genIdeal| (-444 *3 *4 *5 *6))))
- (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))
- (-4 *6 (-862 *3 *4 *5)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |mval| (|Matrix| *3)) (|:| |invmval| (|Matrix| *3))
+ (|:| |genIdeal| (|PolynomialIdeals| *3 *4 *5 *6))))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1)
- (-11 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4)))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *2 *3 *4 *5))
+ (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5))
- (-5 *2 (-355 *4 (-349 *4) *5 *6))))
+ (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5))
+ (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6))))
((*1 *1 *2)
- (-11 (-5 *2 (-1180 *6)) (-4 *6 (-12 (-352 *4 *5) (-951 *4)))
- (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-257))
- (-5 *1 (-355 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|Vector| *6))
+ (|ofCategory| *6 (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4)))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6))))
((*1 *1 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
- (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6))))
+ (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))))
((*1 *1 *1 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091)))
- (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-248 (-858 *4)))))
- (-5 *1 (-444 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|PolynomialIdeals| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *6 (|ConvertibleTo| (|Symbol|)))
+ (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2
+ (|SuchThat| (|List| (|Polynomial| *4))
+ (|List| (|Equation| (|Polynomial| *4)))))
+ (|isDomain| *1 (|PolynomialIdeals| *4 *5 *6 *7)))))
(((*1 *2 *1 *3 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-166 *4))
- (-4 *4
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $))
- (-14 -1965 (*2 $)))))))
- ((*1 *2 *1)
- (-11 (-5 *2 (-1186)) (-5 *1 (-166 *3))
- (-4 *3
- (-12 (-757)
- (-10 -8 (-14 -3803 ((-1074) $ (-1091))) (-14 -3620 (*2 $))
- (-14 -1965 (*2 $)))))))
- ((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-442)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5))
- (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8)))
- (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6))
- (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7))
- (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7))
- (-4 *6 (-1156 *2)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962))
- (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5))
- (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Database| *4))
+ (|ofCategory| *4
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| (*2 $))
+ (SIGNATURE |fullDisplay| (*2 $)))))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Database| *3))
+ (|ofCategory| *3
+ (|Join| (|OrderedSet|)
+ (CATEGORY |domain|
+ (SIGNATURE |elt| ((|String|) $ (|Symbol|)))
+ (SIGNATURE |display| (*2 $))
+ (SIGNATURE |fullDisplay| (*2 $)))))))
+ ((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|IndexCard|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *7)))
+ (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *6 *4 *7))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *6)))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *5 "failed") *8))
+ (|isDomain| *4 (|Matrix| (|SparseUnivariatePolynomial| *8)))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|Matrix| *6))
+ (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *6 *7 *8))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *5 "failed") *7))
+ (|isDomain| *4 (|SparseUnivariatePolynomial| *7)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *2 *6 *7))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *5 *7))
+ (|isDomain| *4 (|SparseUnivariatePolynomial| *7))
+ (|ofCategory| *5 (|Ring|)) (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *2 *6 *7))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *2))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| *7 *5)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *7 (|Ring|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *7))
+ (|isDomain| *1 (|IntegralBasisPolynomialTools| *5 *4 *6 *7))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *2)
- (-11
- (-5 *2
- (-2 (|:| -2014 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *4 (-1156 *3))
- (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (|Matrix| *3))))
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4))))
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4))))
((*1 *2 *2 *2 *3)
- (-11 (-5 *2 (-631 *3)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4)))))
(((*1 *2 *2 *2)
- (-11 (-5 *2 (-695)) (-4 *3 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-352 *3 *4)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *3
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5))
+ (|ofCategory| *5 (|FramedAlgebra| *3 *4)))))
(((*1 *2 *3 *3 *2 *4)
- (-11 (-5 *3 (-631 *2)) (-5 *4 (-485))
- (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *5 (-1156 *2))
- (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-352 *2 *5)))))
+ (AND (|isDomain| *3 (|Matrix| *2)) (|isDomain| *4 (|Integer|))
+ (|ofCategory| *2
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *2))
+ (|isDomain| *1 (|IntegralBasisTools| *2 *5 *6))
+ (|ofCategory| *6 (|FramedAlgebra| *2 *5)))))
(((*1 *2 *3 *2 *4)
- (-11 (-5 *3 (-631 *2)) (-5 *4 (-695))
- (-4 *2 (-12 (-257) (-10 -8 (-14 -3974 ((-347 $) $))))) (-4 *5 (-1156 *2))
- (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-352 *2 *5)))))
+ (AND (|isDomain| *3 (|Matrix| *2)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *2
+ (|Join| (|EuclideanDomain|)
+ (CATEGORY |domain|
+ (SIGNATURE |squareFree| ((|Factored| $) $)))))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *2))
+ (|isDomain| *1 (|IntegralBasisTools| *2 *5 *6))
+ (|ofCategory| *6 (|FramedAlgebra| *2 *5)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1156 *5))
- (-5 *2
- (-584
- (-2 (|:| -2014 (-631 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-631 *6)))))
- (-5 *1 (-438 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2014 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))
- (-4 *7 (-1156 *6)))))
-(((*1 *2 *1)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-485)))))
- (-5 *1 (-347 *3)) (-4 *3 (-496))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|FiniteFieldCategory|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |basis| (|Matrix| *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (|Matrix| *6)))))
+ (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *5 *6 *7))
+ (|isDomain| *3
+ (|Record| (|:| |basis| (|Matrix| *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (|Matrix| *6))))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime"))
+ (|:| |fctr| *3) (|:| |xpnt| (|Integer|)))))
+ (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|))))
((*1 *2 *3 *4 *4 *4)
- (-11 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1156 *3))
- (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5)))))
-(((*1 *2 *1 *1) (-11 (-5 *2 (-82)) (-5 *1 (-435)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-431)))))
-(((*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-427)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4))
- (-4 *4 (-1156 *2)))))
-(((*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))))
-(((*1 *2 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))))
-(((*1 *2 *3) (-11 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-447))) (-5 *1 (-46))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *3)))
+ (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *3 *5 *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerAlgebraicNumber|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Hostname|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|HexadecimalExpansion|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|HeuGcd| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *1 (|HeuGcd| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|List| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *1 (|HeuGcd| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|HeuGcd| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|Heap| *3)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|List| (|ParameterAst|)))
+ (|isDomain| *1 (|HeadAst|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Identifier|)))
+ (|isDomain| *1 (|AnonymousFunction|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|ParameterAst|))) (|isDomain| *1 (|HeadAst|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-485))) (-5 *1 (-205 *3 *4)) (-13 *3 (-584 (-1091)))
- (-4 *4 (-962))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|DistributedMultivariatePolynomial| *3 *4))
+ (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Ring|))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-485))) (-13 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-195 (-3961 *3) (-695)))))
+ (AND (|isDomain| *2 (|List| (|Integer|))) (|ofType| *3 (|List| (|Symbol|)))
+ (|isDomain| *1 (|GeneralDistributedMultivariatePolynomial| *3 *4 *5))
+ (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *5
+ (|DirectProductCategory| (|#| *3)
+ (|NonNegativeInteger|)))))
((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-13 *3 (-584 (-1091)))
- (-4 *4 (-962)))))
-(((*1 *2 *3 *3 *3 *3) (-11 (-5 *3 (-485)) (-5 *2 (-82)) (-5 *1 (-420)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-420)))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|HomogeneousDistributedMultivariatePolynomial| *3 *4))
+ (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Ring|)))))
+(((*1 *2 *3 *3 *3 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|HallBasis|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|HallBasis|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-774 *5))) (-13 *5 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-2 (|:| |dpolys| (-584 (-205 *5 *6))) (|:| |coords| (-584 (-485)))))
- (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-205 *5 *6))) (-4 *7 (-392)))))
+ (AND (|isDomain| *4 (|List| (|OrderedVariableList| *5)))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2
+ (|Record|
+ (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| *5 *6)))
+ (|:| |coords| (|List| (|Integer|)))))
+ (|isDomain| *1 (|GroebnerSolve| *5 *6 *7))
+ (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *5 *6)))
+ (|ofCategory| *7 (|GcdDomain|)))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4)))
- (-13 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6))
- (-4 *6 (-392)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-774 *5))) (-13 *5 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-584 (-584 (-205 *5 *6)))) (-5 *1 (-411 *5 *6 *7))
- (-5 *3 (-584 (-205 *5 *6))) (-4 *7 (-392)))))
-(((*1 *1) (-5 *1 (-408))))
+ (|partial| AND
+ (|isDomain| *2
+ (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5)))
+ (|isDomain| *3 (|List| (|OrderedVariableList| *4)))
+ (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *1 (|GroebnerSolve| *4 *5 *6)) (|ofCategory| *6 (|GcdDomain|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|OrderedVariableList| *5)))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2
+ (|List| (|List| (|DistributedMultivariatePolynomial| *5 *6))))
+ (|isDomain| *1 (|GroebnerSolve| *5 *6 *7))
+ (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *5 *6)))
+ (|ofCategory| *7 (|GcdDomain|)))))
+(((*1 *1) (|isDomain| *1 (|GraphImage|))))
(((*1 *1 *2 *3 *3 *4 *5)
- (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784)))
- (-5 *4 (-584 (-831))) (-5 *5 (-584 (-220))) (-5 *1 (-408))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *3 (|List| (|Palette|)))
+ (|isDomain| *4 (|List| (|PositiveInteger|)))
+ (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *1 (|GraphImage|))))
((*1 *1 *2 *3 *3 *4)
- (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784)))
- (-5 *4 (-584 (-831))) (-5 *1 (-408))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408))))
- ((*1 *1 *1) (-5 *1 (-408))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *1 (-408)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *3 (|List| (|Palette|)))
+ (|isDomain| *4 (|List| (|PositiveInteger|)))
+ (|isDomain| *1 (|GraphImage|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *1 (|GraphImage|))))
+ ((*1 *1 *1) (|isDomain| *1 (|GraphImage|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *1 (|GraphImage|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *1 (|DrawOption|))))
((*1 *2 *3 *2)
- (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *3 (-584 (-220))) (-5 *1 (-221))))
- ((*1 *2 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-408))))
- ((*1 *2 *1) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-408)))))
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *1 (|GraphImage|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *1 (|GraphImage|)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-11 (-5 *3 (-855 (-178))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186))
- (-5 *1 (-408))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-408))))
+ (AND (|isDomain| *3 (|Point| (|DoubleFloat|))) (|isDomain| *4 (|Palette|))
+ (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GraphImage|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Point| (|DoubleFloat|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GraphImage|))))
((*1 *2 *1 *3 *4 *4 *5)
- (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *2 (-1186)) (-5 *1 (-408)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-855 (-178))) (-5 *2 (-1186)) (-5 *1 (-408)))))
+ (AND (|isDomain| *3 (|List| (|Point| (|DoubleFloat|))))
+ (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GraphImage|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Point| (|DoubleFloat|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GraphImage|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 (-584 (-855 (-178))))) (-5 *3 (-584 (-784)))
- (-5 *1 (-408)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-584 (-855 (-178))))) (-5 *2 (-584 (-178)))
- (-5 *1 (-408)))))
-(((*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221))))
- ((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407))))
- ((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-407)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))))
+ (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *3 (|List| (|Palette|))) (|isDomain| *1 (|GraphImage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|isDomain| *2 (|List| (|DoubleFloat|)))
+ (|isDomain| *1 (|GraphImage|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|Vector| (|Vector| (|Integer|))))
+ (|isDomain| *1 (|GrayCode|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
+ (AND (|isDomain| *2 (|Vector| (|Vector| (|Integer|))))
+ (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|GrayCode|)))))
(((*1 *2 *2 *3 *4)
- (|partial| -11 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496))
- (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2))
- (-4 *2
- (-12 (-951 (-349 (-485))) (-311)
- (-10 -8 (-14 -3950 ($ *7)) (-14 -3001 (*7 $)) (-14 -3000 (*7 $))))))))
-(((*1 *2 *1)
- (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *2))
- (-2 (|:| -2402 *5) (|:| -2403 *2))))
- (-4 *2 (-195 (-3961 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))))
-(((*1 *2 *1)
- (-11 (-13 *3 (-584 (-1091))) (-4 *4 (-145)) (-4 *5 (-195 (-3961 *3) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *2) (|:| -2403 *5))
- (-2 (|:| -2402 *2) (|:| -2403 *5))))
- (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-862 *4 *5 (-774 *3))))))
+ (|partial| AND (|isDomain| *4 (|Mapping| *3))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|IntegralDomain|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *5 *3))
+ (|isDomain| *1 (|GosperSummationMethod| *5 *3 *6 *7 *2))
+ (|ofCategory| *2
+ (|Join| (|RetractableTo| (|Fraction| (|Integer|))) (|Field|)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))
+ (SIGNATURE |numer| (*7 $))
+ (SIGNATURE |denom| (*7 $))))))))
+(((*1 *2 *1)
+ (AND (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *5) (|:| |exponent| *2))
+ (|Record| (|:| |index| *5) (|:| |exponent| *2))))
+ (|ofCategory| *2
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *5 *2 *6 *7))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *4 *2 (|OrderedVariableList| *3))))))
+(((*1 *2 *1)
+ (AND (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5
+ (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *5))
+ (|Record| (|:| |index| *2) (|:| |exponent| *5))))
+ (|ofCategory| *2 (|OrderedSet|))
+ (|isDomain| *1 (|GeneralModulePolynomial| *3 *4 *2 *5 *6 *7))
+ (|ofCategory| *7
+ (|PolynomialCategory| *4 *5 (|OrderedVariableList| *3))))))
(((*1 *1 *2 *3 *4)
- (-11 (-13 *5 (-584 (-1091))) (-4 *2 (-145)) (-4 *4 (-195 (-3961 *5) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *3) (|:| -2403 *4))
- (-2 (|:| -2402 *3) (|:| -2403 *4))))
- (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757))
- (-4 *7 (-862 *2 *4 (-774 *5))))))
+ (AND (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *4
+ (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *3) (|:| |exponent| *4))
+ (|Record| (|:| |index| *3) (|:| |exponent| *4))))
+ (|isDomain| *1 (|GeneralModulePolynomial| *5 *2 *3 *4 *6 *7))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *2 *4 (|OrderedVariableList| *5))))))
(((*1 *1 *2 *3 *1)
- (-11 (-13 *4 (-584 (-1091))) (-4 *2 (-145)) (-4 *3 (-195 (-3961 *4) (-695)))
- (-13 *6
- (-1 (-82) (-2 (|:| -2402 *5) (|:| -2403 *3))
- (-2 (|:| -2402 *5) (|:| -2403 *3))))
- (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757))
- (-4 *7 (-862 *2 *3 (-774 *4))))))
+ (AND (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *2 (|CommutativeRing|))
+ (|ofCategory| *3
+ (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|)))
+ (|ofType| *6
+ (|Mapping| (|Boolean|) (|Record| (|:| |index| *5) (|:| |exponent| *3))
+ (|Record| (|:| |index| *5) (|:| |exponent| *3))))
+ (|isDomain| *1 (|GeneralModulePolynomial| *4 *2 *5 *3 *6 *7))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|ofCategory| *7
+ (|PolynomialCategory| *2 *3 (|OrderedVariableList| *4))))))
(((*1 *2 *3 *2 *4 *5)
- (-11 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-257))
- (-5 *1 (-400 *4 *3)))))
+ (AND (|isDomain| *2 (|List| *3)) (|isDomain| *5 (|PositiveInteger|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|isDomain| *1 (|GeneralHenselPackage| *4 *3)))))
(((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1156 *5))
- (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3))
- (-5 *4 (-584 *3)))))
+ (AND (|isDomain| *6 (|PositiveInteger|))
+ (|ofCategory| *5 (|EuclideanDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2 (|Record| (|:| |plist| (|List| *3)) (|:| |modulo| *5)))
+ (|isDomain| *1 (|GeneralHenselPackage| *5 *3))
+ (|isDomain| *4 (|List| *3)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-257)) (-5 *2 (-82))
- (-5 *1 (-395 *3 *5)))))
+ (AND (|isDomain| *4 (|List| *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GenExEuclid| *3 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3))
- (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))))
+ (|partial| AND (|isDomain| *5 (|Vector| (|List| *3)))
+ (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|GenExEuclid| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -11 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1156 *4))
- (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))))
+ (|partial| AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Vector| (|List| *6))) (|isDomain| *1 (|GenExEuclid| *4 *6))
+ (|isDomain| *5 (|List| *6)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-257)) (-5 *2 (-695))
- (-5 *1 (-395 *5 *3)))))
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|EuclideanDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GenExEuclid| *5 *3)))))
(((*1 *2)
- (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-584 *1)))) (-4 *1 (-315 *3))))
+ (|partial| AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1))))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))))
((*1 *2)
- (|partial| -11
- (-5 *2
- (-2 (|:| |particular| (-393 *3 *4 *5 *6))
- (|:| -2014 (-584 (-393 *3 *4 *5 *6)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831))
- (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))))
+ (|partial| AND
+ (|isDomain| *2
+ (|Record|
+ (|:| |particular| #1=(|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|:| |basis| (|List| #1#))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2)
- (|partial| -11 (-4 *3 (-496)) (-4 *3 (-145))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-584 *1)))) (-4 *1 (-315 *3))))
+ (|partial| AND (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1))))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))))
((*1 *2)
- (|partial| -11
- (-5 *2
- (-2 (|:| |particular| (-393 *3 *4 *5 *6))
- (|:| -2014 (-584 (-393 *3 *4 *5 *6)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145)) (-13 *4 (-831))
- (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3))))))
+ (|partial| AND
+ (|isDomain| *2
+ (|Record|
+ (|:| |particular| #1=(|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|:| |basis| (|List| #1#))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-145)) (-13 *5 (-831))
- (-13 *6 (-584 (-1091))) (-13 *7 (-1180 (-631 *4)))))
+ (AND (|isDomain| *2 (|Vector| (|Symbol|)))
+ (|isDomain| *3 (|Vector| (|GenericNonAssociativeAlgebra| *4 *5 *6 *7)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *4 *5 *6 *7))
+ (|ofCategory| *4 (|CommutativeRing|)) (|ofType| *5 (|PositiveInteger|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|ofType| *7 (|Vector| (|Matrix| *4)))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-145)) (-13 *5 (-831)) (-13 *6 (-584 *2))
- (-13 *7 (-1180 (-631 *4)))))
+ (AND (|isDomain| *2 (|Symbol|))
+ (|isDomain| *3 (|Vector| (|GenericNonAssociativeAlgebra| *4 *5 *6 *7)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *4 *5 *6 *7))
+ (|ofCategory| *4 (|CommutativeRing|)) (|ofType| *5 (|PositiveInteger|))
+ (|ofType| *6 (|List| *2)) (|ofType| *7 (|Vector| (|Matrix| *4)))))
((*1 *1 *2)
- (-11 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3)))))
+ (AND (|isDomain| *2 (|Vector| (|GenericNonAssociativeAlgebra| *3 *4 *5 *6)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3)))))
((*1 *1 *2)
- (-11 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145))
- (-13 *4 (-831)) (-13 *5 (-584 (-1091))) (-13 *6 (-1180 (-631 *3)))))
+ (AND (|isDomain| *2 (|Vector| (|Symbol|)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3)))))
((*1 *1 *2)
- (-11 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-145))
- (-13 *4 (-831)) (-13 *5 (-584 *2)) (-13 *6 (-1180 (-631 *3)))))
+ (AND (|isDomain| *2 (|Symbol|))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| *2)) (|ofType| *6 (|Vector| (|Matrix| *3)))))
((*1 *1)
- (-11 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-145)) (-13 *3 (-831))
- (-13 *4 (-584 (-1091))) (-13 *5 (-1180 (-631 *2))))))
+ (AND (|isDomain| *1 (|GenericNonAssociativeAlgebra| *2 *3 *4 *5))
+ (|ofCategory| *2 (|CommutativeRing|)) (|ofType| *3 (|PositiveInteger|))
+ (|ofType| *4 (|List| (|Symbol|)))
+ (|ofType| *5 (|Vector| (|Matrix| *2))))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *4)))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
((*1 *2)
- (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-4 *3 (-311))
- (-5 *2 (-1086 (-858 *3)))))
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *3)))))
((*1 *2)
- (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *3))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *3))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *4)))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
((*1 *2)
- (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-4 *3 (-311))
- (-5 *2 (-1086 (-858 *3)))))
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|Field|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Polynomial| *3)))))
((*1 *2)
- (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *3))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-1086 (-349 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND
+ (|isDomain| *2
+ (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *3))))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2 *1 *1)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
(((*1 *2)
- (-11 (-5 *2 (-349 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145))
- (-5 *2 (-584 (-858 *4)))))
+ (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|List| (|Polynomial| *4)))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|List| (|Polynomial| *4)))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-584 (-858 *3)))))
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|List| (|Polynomial| *3)))))
((*1 *2)
- (-11 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-145)) (-13 *4 (-831)) (-13 *5 (-584 (-1091)))
- (-13 *6 (-1180 (-631 *3)))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-145)) (-13 *5 (-831))
- (-13 *6 (-584 (-1091))) (-13 *7 (-1180 (-631 *4))))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *1)) (-4 *1 (-392))))
- ((*1 *1 *1 *1) (-4 *1 (-392))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| (|Polynomial| *3)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *3 *4 *5 *6))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|PositiveInteger|))
+ (|ofType| *5 (|List| (|Symbol|)))
+ (|ofType| *6 (|Vector| (|Matrix| *3)))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| (|GenericNonAssociativeAlgebra| *4 *5 *6 *7)))
+ (|isDomain| *2 (|List| (|Polynomial| *4)))
+ (|isDomain| *1 (|GenericNonAssociativeAlgebra| *4 *5 *6 *7))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|ofCategory| *4 (|CommutativeRing|)) (|ofType| *5 (|PositiveInteger|))
+ (|ofType| *6 (|List| (|Symbol|)))
+ (|ofType| *7 (|Vector| (|Matrix| *4))))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|GcdDomain|))))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|GcdDomain|))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2006 *4))) (-5 *5 (-695))
- (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
- (-5 *1 (-390 *6 *7 *8 *4)))))
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| *4)))
+ (|isDomain| *5 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|PolynomialCategory| *6 *7 *8))
+ (|ofCategory| *6 (|GcdDomain|))
+ (|ofCategory| *7 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *8 (|OrderedSet|))
+ (|isDomain| *2
+ (|Record| (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (|isDomain| *1 (|GroebnerInternalPackage| *6 *7 *8 *4)))))
(((*1 *2 *3 *3)
- (-11
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
- (-5 *2 (-82)) (-5 *1 (-390 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))))
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *7) (|:| |polj| *7)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-11 (-5 *2 (-485))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
- (-5 *1 (-390 *5 *6 *7 *4)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *3
+ (|Record| (|:| |lcmfij| *6) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *4) (|:| |polj| *4)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|PolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *4)))))
(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-11 (-5 *2 (-485))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
- (-5 *1 (-390 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|isDomain| *3
+ (|Record| (|:| |lcmfij| *6) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *4) (|:| |polj| *4)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *4 (|PolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
- (-5 *1 (-390 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2))
- (-4 *4 (-392)) (-4 *6 (-757)))))
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |lcmfij| *4) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *6) (|:| |polj| *6))))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *2) (|:| |polj| *2)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|)))))
(((*1 *2 *3 *4 *2)
- (-11 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2006 *3)))) (-5 *4 (-695))
- (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *1 (-390 *5 *6 *7 *3)))))
+ (AND
+ (|isDomain| *2
+ (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| *3))))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *3 (|PolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *3)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|GcdDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *2))
+ (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-390 *5 *6 *7 *3)))))
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|PolynomialCategory| *5 *6 *7))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|isDomain| *2 (|Record| (|:| |poly| *3) (|:| |mult| *5)))
+ (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *3)))))
(((*1 *2 *3 *2)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757))
- (-5 *1 (-390 *4 *3 *5 *6)))))
-(((*1 *2 *2)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
- (-5 *1 (-390 *3 *4 *5 *6)))))
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |lcmfij| *3) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *6) (|:| |polj| *6))))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |lcmfij| *4) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *6) (|:| |polj| *6))))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))))
(((*1 *2 *3 *2)
- (-11
- (-5 *2
- (-584
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
- (-5 *1 (-390 *4 *5 *6 *3)))))
+ (AND
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *3) (|:| |polj| *3))))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-82))
- (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
-(((*1 *2 *3)
- (-11
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
- (-5 *2 (-82)) (-5 *1 (-390 *4 *5 *6 *7)))))
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *3 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|))
+ (|:| |poli| *7) (|:| |polj| *7)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))))
(((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Integer|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| (|List| *7)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|List| *8)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *5 *6 *7 *8))
+ (|isDomain| *3 (|List| *8))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-257) (-117))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-257) (-117))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8)))))
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| (|List| *7)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|List| *8)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *5 *6 *7 *8))
+ (|isDomain| *3 (|List| *8)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|isDomain| *2 (|List| (|List| *7)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *4 *5 *6 *7))
+ (|isDomain| *3 (|List| *7))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|)))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *7 (|OrderedSet|))
+ (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7))
+ (|isDomain| *2 (|List| (|List| *8)))
+ (|isDomain| *1 (|GroebnerFactorizationPackage| *5 *6 *7 *8))
+ (|isDomain| *3 (|List| *8)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6))))
+ (AND (|isDomain| *2 (|List| *6))
+ (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-11 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|))
+ (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6))
+ (|ofCategory| *4 (|EuclideanDomain|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *6 (|OrderedSet|))
+ (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|GaussianFactorizationPackage|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962))))
- ((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GaloisGroupUtilities| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3)
- (-11 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-346)) (-4 *3 (-962)))))
-(((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
-(((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
-(((*1 *2 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))
- ((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GaloisGroupUtilities| *3))
+ (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GaloisGroupUtilities| *3))
+ (|ofCategory| *3 (|Ring|)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|))))
+ ((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Integer|))
+ (|isDomain| *1 (|GaloisGroupUtilities| *2)) (|ofCategory| *2 (|Ring|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-347 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962))
- (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))))
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Factored| *6))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|List| *6))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *6)))))
(((*1 *2 *3 *2)
- (|partial| -11 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *4)
- (|partial| -11 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2))
- (-4 *2 (-1156 (-485)))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *4)
- (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2))
- (-4 *2 (-1156 (-485)))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
- (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *5 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -11 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
- (-5 *6 (-82)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-831)) (-5 *4 (-347 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2))
- (-4 *5 (-962)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3735 *4) (|:| -3952 (-485)))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4))))
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *4 (|List| (|NonNegativeInteger|)))
+ (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|Boolean|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Factored| *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *2))
+ (|ofCategory| *5 (|Ring|)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |factor| *4) (|:| |degree| (|Integer|)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *2 (|Multiset| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *4))))
((*1 *2 *3)
- (-11 (-5 *3 (-347 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962))
- (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))))
+ (AND (|isDomain| *3 (|Factored| *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|Ring|))
+ (|isDomain| *2 (|Multiset| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *5)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6))
- (-4 *3 (-1156 *5)) (-4 *6 (-12 (-346) (-951 *5) (-311) (-1116) (-238)))))
+ (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Ring|))
+ (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *5 *3 *6))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *6
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *5)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))))
((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-12 (-346) (-951 *4) (-311) (-1116) (-238)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *2 (-12 (-346) (-951 *5) (-311) (-1116) (-238))) (-5 *1 (-383 *5 *3 *2))
- (-4 *3 (-1156 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-12 (-346) (-951 *4) (-311) (-1116) (-238))))))
+ (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *5))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *5))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|))
+ (|ofCategory| *2
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *5)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|)))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *5 *3 *2))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|GaloisGroupFactorizationUtilities| *4 *3 *5))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5
+ (|Join| (|FloatingPointSystem|) (|RetractableTo| *4)
+ (|Field|) (|TranscendentalFunctionCategory|)
+ (|ElementaryFunctionCategory|))))))
(((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *4 (-82)) (-5 *5 (-1010 (-695))) (-5 *6 (-695))
- (-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485)))))))
- (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-2 (|:| -2581 (-485)) (|:| -1784 (-584 *3)))) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485))))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-347 *3)) (-4 *3 (-496))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-584 (-2 (|:| -3735 *4) (|:| -3952 (-485)))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *1 *2 *3)
- (-11
- (-5 *3
- (-584
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-485)))))
- (-4 *2 (-496)) (-5 *1 (-347 *2))))
- ((*1 *2 *3)
- (-11
- (-5 *3
- (-2 (|:| |contp| (-485))
- (|:| -1784 (-584 (-2 (|:| |irr| *4) (|:| -2397 (-485)))))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-347 *4)) (-5 *1 (-382 *4)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3914 "void"))) (-5 *1 (-378)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-378)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-378)))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *5 (-951 (-45))) (-4 *4 (-12 (-496) (-951 (-485))))
- (-4 *5 (-363 *4)) (-5 *2 (-347 (-1086 (-45)))) (-5 *1 (-377 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4))
- (-5 *2
- (-3 (|:| |overq| (-1086 (-349 (-485)))) (|:| |overan| (-1086 (-45)))
- (|:| -2642 (-82))))
- (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4))
- (-5 *2 (-347 (-1086 (-349 (-485))))) (-5 *1 (-377 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3))
- (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-376)))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|isDomain| *5 (|Set| (|NonNegativeInteger|)))
+ (|isDomain| *6 (|NonNegativeInteger|))
+ (|isDomain| *2
+ (|Record| (|:| |contp| (|Integer|))
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|)))))))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
(((*1 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-375 *3 *4))
- (-4 *4 (-363 *3)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-496) (-951 (-485)))) (-5 *2 (-349 (-485)))
- (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-551 *3)) (-4 *3 (-363 *5)) (-4 *5 (-12 (-496) (-951 (-485))))
- (-5 *2 (-1086 (-349 (-485)))) (-5 *1 (-375 *5 *3)))))
-(((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| *3))))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Factored| *3))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List| (|Record| (|:| |factor| *4) (|:| |degree| (|Integer|)))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *4)))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|List|
+ (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime"))
+ (|:| |fctr| *2) (|:| |xpnt| (|Integer|)))))
+ (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|Factored| *2))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Record| (|:| |contp| (|Integer|))
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *4) (|:| |pow| (|Integer|)))))))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|)))
+ (|isDomain| *2 (|Factored| *4))
+ (|isDomain| *1 (|GaloisGroupFactorizer| *4)))))
+(((*1 *2 *1)
+ (AND
+ (|isDomain| *2
+ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))
+ (|isDomain| *1 (|FortranType|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Polynomial| (|Integer|))))
+ (|isDomain| *1 (|FortranType|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranType|)))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *1) (|isDomain| *1 (|FortranType|))))
+(((*1 *2 *3)
+ (|partial| AND (|ofCategory| *5 (|RetractableTo| (|AlgebraicNumber|)))
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|isDomain| *2
+ (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))))
+ (|isDomain| *1 (|FunctionSpaceUnivariatePolynomialFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|isDomain| *2
+ (|Union|
+ (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|)))
+ (|:| |failed| (|Boolean|))))
+ (|isDomain| *1 (|FunctionSpaceUnivariatePolynomialFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *3)
+ (|partial| AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|FunctionSpace| *4))
+ (|isDomain| *2
+ (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|FunctionSpaceUnivariatePolynomialFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|FunctionSpace| *4)) (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|FunctionSpaceUnivariatePolynomialFactor| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranScalarType|)))))
+(((*1 *2)
+ (AND
+ (|ofCategory| *3 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Void|)) (|isDomain| *1 (|FunctionSpaceReduce| *3 *4))
+ (|ofCategory| *4 (|FunctionSpace| *3)))))
+(((*1 *2 *3)
+ (AND
+ (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|FunctionSpaceReduce| *4 *3))
+ (|ofCategory| *3 (|FunctionSpace| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|FunctionSpace| *5))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|FunctionSpaceReduce| *5 *3)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FunctionalSpecialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3)))))
(((*1 *1 *2 *3)
- (-11 (-5 *1 (-371 *3 *2)) (-4 *3 (-12 (-145) (-35 (-349 (-485)))))
- (-4 *2 (-12 (-757) (-18))))))
+ (AND (|isDomain| *1 (|FourierSeries| *3 *2))
+ (|ofCategory| *3
+ (|Join| (|CommutativeRing|)
+ (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *2 (|Join| (|OrderedSet|) (|AbelianGroup|))))))
(((*1 *1 *2 *3)
- (-11 (-5 *1 (-371 *3 *2)) (-4 *3 (-12 (-145) (-35 (-349 (-485)))))
- (-4 *2 (-12 (-757) (-18))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-12 (-1116) (-26 *5))))))
-(((*1 *2 *1) (-11 (-4 *1 (-368 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))))
-(((*1 *1 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-1014)) (-4 *2 (-319)))))
-(((*1 *1) (-11 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1014)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-12 (-24) (-1116) (-363 *3)))
- (-13 *4 (-1091)) (-13 *5 *2)))
- ((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *2 (-12 (-24) (-1116) (-363 *3) (-10 -8 (-14 -3950 ($ *4)))))
- (-4 *4 (-756))
- (-4 *5
- (-12 (-1159 *2 *4) (-311) (-1116)
- (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $)))))
- (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-13 *7 (-1091)))))
+ (AND (|isDomain| *1 (|FourierSeries| *3 *2))
+ (|ofCategory| *3
+ (|Join| (|CommutativeRing|)
+ (|Algebra| (|Fraction| (|Integer|)))))
+ (|ofCategory| *2 (|Join| (|OrderedSet|) (|AbelianGroup|))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|IntegrationResult| *3))
+ (|isDomain| *1 (|FunctionSpaceComplexIntegration| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *5))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteSetAggregate| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FiniteSetAggregate| *2))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Finite|)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|FiniteSetAggregate| *2)) (|ofCategory| *2 (|Finite|))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *2)
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *3 *2 *4 *5))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))
+ (|ofType| *4 (|Symbol|)) (|ofType| *5 *2)))
+ ((*1 *2 *2)
+ (AND
+ (|ofCategory| *3
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *4)))))
+ (|ofCategory| *4 (|OrderedRing|))
+ (|ofCategory| *5
+ (|Join| (|UnivariatePowerSeriesCategory| *2 *4) (|Field|)
+ (|TranscendentalFunctionCategory|)
+ (CATEGORY |domain| (SIGNATURE |differentiate| ($ $))
+ (SIGNATURE |integrate| ($ $)))))
+ (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *3 *2 *4 *5 *6 *7))
+ (|ofCategory| *6 (|PartialTranscendentalFunctions| *5))
+ (|ofType| *7 (|Symbol|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-82)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-12 (-24) (-1116) (-363 *6) (-10 -8 (-14 -3950 ($ *7)))))
- (-4 *7 (-756))
- (-4 *8
- (-12 (-1159 *3 *7) (-311) (-1116)
- (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8))
- (-13 *10 (-1091)))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)))))
+ (|ofCategory| *7 (|OrderedRing|))
+ (|ofCategory| *8
+ (|Join| (|UnivariatePowerSeriesCategory| *3 *7) (|Field|)
+ (|TranscendentalFunctionCategory|)
+ (CATEGORY |domain|
+ (SIGNATURE |differentiate| ($ $))
+ (SIGNATURE |integrate| ($ $)))))
+ (|isDomain| *2
+ (|Union| (|:| |%series| *8)
+ (|:| |%problem|
+ (|Record| (|:| |func| #1=(|String|)) (|:| |prob| #1#)))))
+ (|isDomain| *1
+ (|FunctionSpaceToUnivariatePowerSeries| *6 *3 *7 *8 *9 *10))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *9 (|PartialTranscendentalFunctions| *8))
+ (|ofType| *10 (|Symbol|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-82)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-12 (-24) (-1116) (-363 *6) (-10 -8 (-14 -3950 ($ *7)))))
- (-4 *7 (-756))
- (-4 *8
- (-12 (-1159 *3 *7) (-311) (-1116)
- (-10 -8 (-14 -3761 ($ $)) (-14 -3815 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8))
- (-13 *10 (-1091)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-3 (|:| |%expansion| (-263 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-12 (-24) (-1116) (-363 *5)))
- (-13 *6 (-1091)) (-13 *7 *3))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-82))))
- ((*1 *2 *1) (-11 (-4 *1 (-363 *3)) (-4 *3 (-1014)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
- ((*1 *2 *1) (-11 (-4 *1 (-363 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *6)
+ (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)))))
+ (|ofCategory| *7 (|OrderedRing|))
+ (|ofCategory| *8
+ (|Join| (|UnivariatePowerSeriesCategory| *3 *7) (|Field|)
+ (|TranscendentalFunctionCategory|)
+ (CATEGORY |domain|
+ (SIGNATURE |differentiate| ($ $))
+ (SIGNATURE |integrate| ($ $)))))
+ (|isDomain| *2
+ (|Union| (|:| |%series| *8)
+ (|:| |%problem|
+ (|Record| (|:| |func| #1=(|String|)) (|:| |prob| #1#)))))
+ (|isDomain| *1
+ (|FunctionSpaceToUnivariatePowerSeries| *6 *3 *7 *8 *9 *10))
+ (|isDomain| *5 (|String|))
+ (|ofCategory| *9 (|PartialTranscendentalFunctions| *8))
+ (|ofType| *10 (|Symbol|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Union| (|:| |%expansion| (|ExponentialExpansion| *5 *3 *6 *7))
+ (|:| |%problem|
+ (|Record| (|:| |func| (|String|))
+ (|:| |prob| (|String|))))))
+ (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *5 *3 *6 *7))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofType| *6 (|Symbol|)) (|ofType| *7 *3))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FunctionSpace| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1014))))
+ (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|SetCategory|))))
((*1 *1 *2 *1 *1 *1 *1)
- (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1 *1 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1091)) (-4 *1 (-363 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (|partial| -11 (-4 *3 (-22)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| -3958 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-363 *3)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-347 *3)) (-4 *3 (-496)) (-5 *1 (-361 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3))))
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1 *1 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1)
+ (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| *1))))
+ (|ofCategory| *1 (|FunctionSpace| *3)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|FactoredFunctionUtilities| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Field|))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135))
- (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1156 (-349 *3)))))
+ (AND (|isDomain| *2 (|Vector| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-145)) (-4 *1 (-315 *4))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))))
((*1 *1 *2 *3)
- (-11 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-145))
- (-4 *1 (-321 *4 *5)) (-4 *5 (-1156 *4))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-1156 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1180 *3)) (-4 *3 (-145)) (-4 *1 (-360 *3)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *2)) (-4 *2 (-145))))
- ((*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2))))
- ((*1 *2) (-11 (-4 *1 (-360 *2)) (-4 *2 (-145)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *2)) (-4 *2 (-145))))
- ((*1 *2) (-11 (-4 *2 (-145)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2))))
- ((*1 *2) (-11 (-4 *1 (-360 *2)) (-4 *2 (-145)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2)
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *2))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *2))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-631 *4)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))))
+ (AND (|ofCategory| *2 (|CommutativeRing|))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *2))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *2))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|FramedNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-631 *4)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))))
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-315 *4)) (-4 *4 (-145)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-11 (-4 *1 (-360 *3)) (-4 *3 (-145)) (-5 *2 (-631 *3)))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4))
+ (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FramedNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *3)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257))
- (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-352 *4 *5))
- (-13 *7 (-1180 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7))))
+ (AND (|isDomain| *2 (|FractionalIdeal| *3 *4 *5 *6))
+ (|ofCategory| *6 (|RetractableTo| *4))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|FramedAlgebra| *4 *5)) (|ofType| *7 (|Vector| *6))
+ (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-11 (-5 *2 (-1180 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-905 *3))
- (-4 *5 (-1156 *4)) (-4 *3 (-257)) (-5 *1 (-357 *3 *4 *5 *6 *7))
- (-13 *7 *2))))
+ (AND (|isDomain| *2 (|Vector| *6)) (|ofCategory| *6 (|FramedAlgebra| *4 *5))
+ (|ofCategory| *4 (|QuotientFieldCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7)) (|ofType| *7 *2))))
(((*1 *1 *1)
- (-11 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3))
- (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-12 (-352 *3 *4) (-951 *3))))))
+ (AND (|ofCategory| *2 (|EuclideanDomain|))
+ (|ofCategory| *3 (|QuotientFieldCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|FractionalIdeal| *2 *3 *4 *5))
+ (|ofCategory| *5
+ (|Join| (|FramedAlgebra| *3 *4) (|RetractableTo| *3))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5))
- (-4 *2 (-12 (-352 *6 *7) (-951 *6))) (-5 *1 (-355 *5 *6 *7 *2))
- (-4 *7 (-1156 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Vector| *2))
+ (|ofCategory| *5 (|EuclideanDomain|))
+ (|ofCategory| *6 (|QuotientFieldCategory| *5))
+ (|ofCategory| *2 (|Join| (|FramedAlgebra| *6 *7) (|RetractableTo| *6)))
+ (|isDomain| *1 (|FractionalIdeal| *5 *6 *7 *2))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Matrix| *4))))
((*1 *2)
- (-11 (-4 *4 (-145)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))
- (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|FramedAlgebra&| *3 *4 *5))
+ (|ofCategory| *3 (|FramedAlgebra| *4 *5))))
((*1 *2)
- (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3))
- (-5 *2 (-631 *3)))))
+ (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|Matrix| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-1180 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-145))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (AND (|isDomain| *3 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankAlgebra| *4 *5))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Matrix| *4))))
((*1 *2 *1)
- (-11 (-4 *1 (-352 *3 *4)) (-4 *3 (-145)) (-4 *4 (-1156 *3))
- (-5 *2 (-631 *3)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))))
+ (AND (|ofCategory| *1 (|FramedAlgebra| *3 *4))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *2 (|Matrix| *3)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 (-485))))) (-5 *1 (-309 *3))
- (-4 *3 (-1014))))
+ (AND
+ (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| (|Integer|)))))
+ (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|))))
((*1 *2 *1)
- (-11 (-4 *1 (-335 *3)) (-4 *3 (-1014))
- (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3947 (-695)))))))
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |gen| *3) (|:| |exp| (|NonNegativeInteger|)))))))
((*1 *2 *1)
- (-11 (-5 *2 (-584 (-2 (|:| -3735 *3) (|:| -2403 (-485))))) (-5 *1 (-347 *3))
- (-4 *3 (-496)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-347 *3)) (-4 *3 (-496)))))
+ (AND
+ (|isDomain| *2
+ (|List| (|Record| (|:| |factor| *3) (|:| |exponent| (|Integer|)))))
+ (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Factored| *3))
+ (|ofCategory| *3 (|IntegralDomain|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-347 *4)) (-4 *4 (-496)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-485)) (-5 *1 (-347 *2)) (-4 *2 (-496)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *2 (|Union| "nil" "sqfr" "irred" "prime"))
+ (|isDomain| *1 (|Factored| *4)) (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
(((*1 *1 *2 *3 *4)
- (-11 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-347 *2)) (-4 *2 (-496)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-329))) (-5 *1 (-220))))
- ((*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145))))
- ((*1 *2 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-11 (-5 *1 (-347 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1) (-11 (-4 *1 (-346)) (-5 *2 (-485)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *3 (-82)) (-5 *1 (-78))))
- ((*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346))))
- ((*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-346))))
- ((*1 *2) (-11 (-4 *1 (-346)) (-5 *2 (-831)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-346)) (-5 *2 (-831)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-346)) (-5 *2 (-831)))))
-(((*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-695))))
- ((*1 *2 *1 *1) (|partial| -11 (-4 *1 (-344)) (-5 *2 (-695)))))
-(((*1 *1 *1 *2) (-11 (-4 *1 (-344)) (-5 *2 (-695))))
- ((*1 *1 *1) (-4 *1 (-344))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|isDomain| *4 (|Union| "nil" "sqfr" "irred" "prime"))
+ (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Boolean|))
+ (|isDomain| *1 (|Bits|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|has| *1 (ATTRIBUTE |arbitraryPrecision|))
+ (|ofCategory| *1 (|FloatingPointSystem|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|has| *1 (ATTRIBUTE |arbitraryPrecision|))
+ (|ofCategory| *1 (|FloatingPointSystem|))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|))
+ (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|))
+ (|ofCategory| *1 (|FloatingPointSystem|))
+ (|isDomain| *2 (|PositiveInteger|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1 *1)
+ (|partial| AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))))
(((*1 *1 *2)
- (-11 (-5 *2 (-349 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-12 (-311) (-117)))
- (-5 *1 (-341 *3 *4)))))
-(((*1 *2 *1)
- (-11 (-4 *2 (-1156 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-12 (-311) (-117))))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-12 (-311) (-117)))
- (-5 *2 (-584 (-2 (|:| -2403 (-695)) (|:| -3776 *4) (|:| |num| *4))))
- (-5 *1 (-341 *3 *4)) (-4 *4 (-1156 *3)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-773)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 (-695)) (-13 *4 (-695))
- (-4 *5 (-145)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-773)) (-5 *1 (-339 *3 *4 *5)) (-13 *3 (-695)) (-13 *4 (-695))
- (-4 *5 (-145)))))
-(((*1 *1 *2 *2 *2) (-11 (-5 *2 (-1074)) (-4 *1 (-338)))))
-(((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074)))))
-(((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-1074)))))
-(((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-338)) (-5 *2 (-82)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-335 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *2 (|Fraction| *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|FullPartialFractionExpansion| *3 *2))
+ (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|)))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| *4)
+ (|:| |num| *4))))
+ (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|FreeNilpotentLie| *3 *4 *5))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|FreeNilpotentLie| *3 *4 *5))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|)))))
+(((*1 *1 *2 *2 *2)
+ (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|FreeMonoidCategory| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *2 *1 *1)
- (-11 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-335 *3)))))
+ (AND (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *2 (|Record| (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (|ofCategory| *1 (|FreeMonoidCategory| *3)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-334 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Record| (|:| |k| *4) (|:| |c| *3))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-349 (-858 (-485))))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 *5))) (-5 *1 (-331 *5)) (-4 *5 (-12 (-756) (-311)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-12 (-756) (-311))))))
+ (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|)))))
+ (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|List| (|List| *5)))
+ (|isDomain| *1 (|FloatingRealPackage| *5))
+ (|ofCategory| *5 (|Join| (|OrderedRing|) (|Field|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Integer|))))
+ (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|FloatingRealPackage| *4))
+ (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))))))
(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 (-141 (-485))))) (-5 *2 (-584 (-141 *4)))
- (-5 *1 (-330 *4)) (-4 *4 (-12 (-311) (-756)))))
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Complex| *4)))
+ (|isDomain| *1 (|FloatingComplexPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-584 (-349 (-858 (-141 (-485)))))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 (-141 *5)))) (-5 *1 (-330 *5))
- (-4 *5 (-12 (-311) (-756))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-349 (-858 (-141 (-485))))))
- (-5 *2 (-584 (-584 (-248 (-858 (-141 *4)))))) (-5 *1 (-330 *4))
- (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-248 (-349 (-858 (-141 (-485)))))))
- (-5 *2 (-584 (-584 (-248 (-858 (-141 *4)))))) (-5 *1 (-330 *4))
- (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 (-858 (-141 (-485)))))
- (-5 *2 (-584 (-248 (-858 (-141 *4))))) (-5 *1 (-330 *4))
- (-4 *4 (-12 (-311) (-756)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-248 (-349 (-858 (-141 (-485))))))
- (-5 *2 (-584 (-248 (-858 (-141 *4))))) (-5 *1 (-330 *4))
- (-4 *4 (-12 (-311) (-756))))))
-(((*1 *2 *1 *1) (-11 (-5 *2 (-485)) (-5 *1 (-329)))))
-(((*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-178))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-178))))
- ((*1 *2 *1 *3 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-329))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-695)) (-5 *2 (-349 (-485))) (-5 *1 (-329)))))
-(((*1 *1 *1) (-5 *1 (-178))) ((*1 *1 *1) (-5 *1 (-329)))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *1 *1) (-5 *1 (-178))) ((*1 *1 *1) (-5 *1 (-329)))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *1) (-5 *1 (-178))) ((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329))))
- ((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329))))
- ((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329))))
- ((*1 *2) (-11 (-5 *2 (-1186)) (-5 *1 (-329)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-329)))))
+ (AND
+ (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))))
+ (|isDomain| *4 (|List| (|Symbol|)))
+ (|isDomain| *2 (|List| (|List| (|Complex| *5))))
+ (|isDomain| *1 (|FloatingComplexPackage| *5))
+ (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Polynomial| (|Complex| *4))))))
+ (|isDomain| *1 (|FloatingComplexPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))))
+ (|isDomain| *2 (|List| (|List| (|Equation| (|Polynomial| (|Complex| *4))))))
+ (|isDomain| *1 (|FloatingComplexPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| (|Complex| *4)))))
+ (|isDomain| *1 (|FloatingComplexPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))))
+ (|isDomain| *2 (|List| (|Equation| (|Polynomial| (|Complex| *4)))))
+ (|isDomain| *1 (|FloatingComplexPackage| *4))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))))
+(((*1 *2 *1 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|)))))
+(((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|DoubleFloat|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|DoubleFloat|))))
+ ((*1 *2 *1 *3 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Float|))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Float|)))))
+(((*1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
+ ((*1 *1 *1) (|isDomain| *1 (|Float|))) ((*1 *1) (|isDomain| *1 (|Float|))))
+(((*1 *1 *1) (|isDomain| *1 (|DoubleFloat|)))
+ ((*1 *1 *1) (|isDomain| *1 (|Float|))) ((*1 *1) (|isDomain| *1 (|Float|))))
+(((*1 *1) (|isDomain| *1 (|DoubleFloat|))) ((*1 *1) (|isDomain| *1 (|Float|))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Float|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Float|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Float|))))
+ ((*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|Float|)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-12 (-323 *4) (-1036 *4))))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FiniteLinearAggregate| *4)
+ (|ShallowlyMutableAggregate| *4))))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-12 (-323 *4) (-1036 *4))))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FiniteLinearAggregate| *4)
+ (|ShallowlyMutableAggregate| *4))))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-326 *4 *2))
- (-4 *2 (-12 (-323 *4) (-1036 *4))))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|FiniteLinearAggregate| *4)
+ (|ShallowlyMutableAggregate| *4))))))
(((*1 *1 *2)
- (-11 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-325 *3 *4)) (-4 *4 (-145)))))
+ (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *1 (|FreeLieAlgebra| *3 *4))
+ (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-323 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 (-82) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1130))
- (-5 *2 (-82)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-1036 *2)) (-4 *1 (-323 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))
((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-323 *3))
- (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3))
+ (|ofCategory| *1 (|ShallowlyMutableAggregate| *3))
+ (|ofCategory| *1 (|FiniteLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4))
+ (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-82)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4))
+ (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-317 *3)) (-4 *3 (-1130)) (-4 *3 (-69)) (-5 *2 (-695))))
+ (AND (|ofCategory| *1 (|FiniteAggregate| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *3 (|BasicType|)) (|isDomain| *2 (|NonNegativeInteger|))))
((*1 *2 *3 *1)
- (-11 (-5 *3 (-1 (-82) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))))
+ (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4))
+ (|ofCategory| *1 (|FiniteAggregate| *4)) (|ofCategory| *4 (|Type|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *3 *1)
- (|partial| -11 (-5 *3 (-1 (-82) *2)) (-4 *1 (-317 *2)) (-4 *2 (-1130)))))
-(((*1 *2) (-11 (-4 *3 (-145)) (-5 *2 (-1180 *1)) (-4 *1 (-315 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-1086 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-1086 *3)))))
+ (|partial| AND (|isDomain| *3 (|Mapping| (|Boolean|) *2))
+ (|ofCategory| *1 (|FiniteAggregate| *2)) (|ofCategory| *2 (|Type|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
+(((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2)
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
-(((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-82)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
- ((*1 *2) (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
+ ((*1 *2)
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *4 (-145)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-314 *3 *4))
- (-4 *3 (-315 *4))))
+ (AND (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|List| (|Vector| *4)))
+ (|isDomain| *1 (|FiniteRankNonAssociativeAlgebra&| *3 *4))
+ (|ofCategory| *3 (|FiniteRankNonAssociativeAlgebra| *4))))
((*1 *2)
- (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496))
- (-5 *2 (-584 (-1180 *3))))))
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Vector| *3))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))))
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-315 *3)) (-4 *3 (-145)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))))
-(((*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145)))))
-(((*1 *1) (|partial| -11 (-4 *1 (-315 *2)) (-4 *2 (-496)) (-4 *2 (-145)))))
+ (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
+(((*1 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *1)
+ (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2))
+ (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))))
(((*1 *1 *2 *3)
- (-11 (-5 *3 (-1074)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014))))
- ((*1 *1 *2) (-11 (-4 *1 (-313 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *3 (|String|)) (|ofCategory| *1 (|FileCategory| *2 *4))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *1 (|FileCategory| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-1074)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(((*1 *1 *1) (-4 *1 (-146)))
- ((*1 *1 *1) (-11 (-4 *1 (-313 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *1 *1) (|ofCategory| *1 (|Conduit|)))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|FileCategory| *2 *3))
+ (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-313 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))))
-(((*1 *2 *1) (-11 (-4 *1 (-313 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *2) (-11 (-4 *1 (-313 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298))
- (-4 *2
- (-12 (-344)
- (-10 -7 (-14 -3950 (*2 *4)) (-14 -2012 ((-831) *2))
- (-14 -2014 ((-1180 *2) (-831))) (-14 -3932 (*2 *2)))))
- (-5 *1 (-305 *2 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-304 *4))
- (-5 *3 (-1086 *4)))))
-(((*1 *2 *2) (-11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (AND (|ofCategory| *1 (|FileCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|String|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FileCategory| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *1 *2)
+ (AND (|ofCategory| *1 (|FileCategory| *3 *2))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|ofCategory| *2
+ (|Join| (|FieldOfPrimeCharacteristic|)
+ (CATEGORY |package| (SIGNATURE |coerce| (*2 *4))
+ (SIGNATURE |lookup| ((|PositiveInteger|) *2))
+ (SIGNATURE |basis|
+ ((|Vector| *2) (|PositiveInteger|)))
+ (SIGNATURE |Frobenius| (*2 *2)))))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage2| *2 *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|PrimitiveArray| (|SparseUnivariatePolynomial| *4)))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *4)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
(((*1 *2 *2)
- (|partial| -11 (-5 *2 (-1086 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2) (-11 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
-(((*1 *2 *1) (-11 (-4 *1 (-298)) (-5 *2 (-82))))
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
+(((*1 *2 *2)
+ (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *4))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3))
+ (|ofCategory| *3 (|FiniteFieldCategory|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-304 *4)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)))))
(((*1 *2)
- (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 (-818 *3)) (|:| -2402 (-1034))))))
- (-5 *1 (-300 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831))))
+ (AND
+ (|isDomain| *2
+ (|Vector|
+ (|List|
+ (|Record| (|:| |value| (|PrimeField| *3))
+ (|:| |index| (|SingleInteger|))))))
+ (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|))))
((*1 *2)
- (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034))))))
- (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-13 *4 (-3 (-1086 *3) *2))))
+ (AND
+ (|isDomain| *2
+ (|Vector|
+ (|List| (|Record| (|:| |value| *3) (|:| |index| (|SingleInteger|))))))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtensionByPolynomial| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|Union| (|SparseUnivariatePolynomial| *3) *2))))
((*1 *2)
- (-11 (-5 *2 (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034))))))
- (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))))
+ (AND
+ (|isDomain| *2
+ (|Vector|
+ (|List| (|Record| (|:| |value| *3) (|:| |index| (|SingleInteger|))))))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtension| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|PositiveInteger|)))))
(((*1 *2)
- (-11 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-13 *3 (-831))
- (-13 *4 (-831))))
+ (AND (|isDomain| *2 (|Matrix| (|PrimeField| *3)))
+ (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|))))
((*1 *2)
- (-11 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
- (-13 *4
- (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034)))))))))
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtensionByPolynomial| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4
+ (|Union| (|SparseUnivariatePolynomial| *3)
+ (|Vector|
+ (|List|
+ (|Record| (|:| |value| *3)
+ (|:| |index| (|SingleInteger|)))))))))
((*1 *2)
- (-11 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))
- (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4))))
+ (AND (|isDomain| *2 (|Matrix| *3))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtension| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|PositiveInteger|)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Vector|
+ (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4))))
((*1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-13 *3 (-831)) (-13 *4 (-831))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|))))
((*1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
- (-13 *4
- (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3405 *3) (|:| -2402 (-1034)))))))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtensionByPolynomial| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4
+ (|Union| (|SparseUnivariatePolynomial| *3)
+ (|Vector|
+ (|List|
+ (|Record| (|:| |value| *3)
+ (|:| |index| (|SingleInteger|)))))))))
((*1 *2)
- (-11 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FiniteFieldNormalBasisExtension| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|PositiveInteger|)))))
(((*1 *2)
- (-11 (-4 *1 (-298))
- (-5 *2 (-584 (-2 (|:| -3735 (-485)) (|:| -2403 (-485))))))))
-(((*1 *2 *3) (-11 (-4 *1 (-298)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))))
-(((*1 *1) (-4 *1 (-298))))
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|List|
+ (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *2 (|Table| (|PositiveInteger|) (|NonNegativeInteger|))))))
+(((*1 *1) (|ofCategory| *1 (|FiniteFieldCategory|))))
(((*1 *2)
- (-11 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-831))
- (-5 *2
- (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034)))))))
- (-5 *1 (-295 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (|partial| -11 (-5 *3 (-831))
- (-5 *2 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))
- (-5 *1 (-295 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))
- (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298))
- (-5 *2 (-1180 (-584 (-2 (|:| -3405 *4) (|:| -2402 (-1034))))))
- (-5 *1 (-295 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1034)))
- (-5 *1 (-295 *4)))))
+ (AND (|ofCategory| *1 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|Union| "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2
+ (|Union| (|SparseUnivariatePolynomial| *4)
+ (|Vector|
+ (|List|
+ (|Record| (|:| |value| *4)
+ (|:| |index| (|SingleInteger|)))))))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2
+ (|Vector|
+ (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|)))))
+(((*1 *2 *3)
+ (AND
+ (|isDomain| *3
+ (|Vector|
+ (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))
+ (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Matrix| *4))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Vector|
+ (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|)))
+ (|isDomain| *1 (|FiniteFieldFunctions| *4)))))
(((*1 *2)
- (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-292 *3 *4)) (-13 *3 (-831))
- (-13 *4 (-831))))
+ (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|)))
+ (|isDomain| *1 (|FiniteFieldCyclicGroup| *3 *4))
+ (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|))))
((*1 *2)
- (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298))
- (-13 *4 (-1086 *3))))
+ (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|)))
+ (|isDomain| *1 (|FiniteFieldCyclicGroupExtensionByPolynomial| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|SparseUnivariatePolynomial| *3))))
((*1 *2)
- (-11 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298))
- (-13 *4 (-831)))))
+ (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|)))
+ (|isDomain| *1 (|FiniteFieldCyclicGroupExtension| *3 *4))
+ (|ofCategory| *3 (|FiniteFieldCategory|))
+ (|ofType| *4 (|PositiveInteger|)))))
(((*1 *2)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *5 *6))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *5 *6))))
((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-695)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-82)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *5 *6))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *5 *6))))
((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-82)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6))))
+ (AND (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|FunctionFieldCategory&| *4 *3 *5 *6))
+ (|ofCategory| *4 (|FunctionFieldCategory| *3 *5 *6))))
((*1 *2 *3 *3)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
-(((*1 *2 *3)
- (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
-(((*1 *2 *3)
- (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
-(((*1 *2 *3)
- (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *3)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2)
- (-11 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)))))
+ (AND (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1 *3)
- (-11 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-349 *3))) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1 *3)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|))))
((*1 *2 *1)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *2)
- (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))))
+ (AND (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
(((*1 *2 *2)
- (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))))
+ (AND (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
(((*1 *2 *2)
- (-11 (-5 *2 (-1180 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4))))))
+ (AND (|isDomain| *2 (|Vector| *1))
+ (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Matrix| (|Fraction| *4))))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Matrix| (|Fraction| *4))))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Matrix| (|Fraction| *4))))))
(((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-5 *2 (-631 (-349 *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Matrix| (|Fraction| *4))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))))
(((*1 *1 *2 *3)
- (-11 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135))
- (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1156 (-349 *3))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916)))))
+ (AND (|isDomain| *2 (|Vector| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Mapping| *5 *5))
+ (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|Record| (|:| |num| (|Matrix| *5)) (|:| |den| *5))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))))
((*1 *2)
- (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 (-349 *2))) (-4 *2 (-1156 *4))
- (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5))))
+ (|partial| AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *2 *5))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *2 *5))))
((*1 *2)
- (|partial| -11 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1156 (-349 *2))) (-4 *2 (-1156 *3)))))
+ (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2)
- (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 (-349 *2))) (-4 *2 (-1156 *4))
- (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5))))
+ (|partial| AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *2 *5))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *2 *5))))
((*1 *2)
- (|partial| -11 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1156 (-349 *2))) (-4 *2 (-1156 *3)))))
+ (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135))
- (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
- (-4 *1 (-290 *4 *5 *6)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-349 *6))) (-5 *2 (-584 (-858 *5)))
- (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5))) (-4 *4 (-311))
- (-5 *2 (-584 (-858 *4))))))
+ (AND (|isDomain| *3 (|Mapping| *5 *5))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2
+ (|Record| (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *5 (|UniqueFactorizationDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6)))
+ (|isDomain| *2 (|List| (|Polynomial| *5)))
+ (|isDomain| *1 (|FunctionFieldCategory&| *4 *5 *6 *7))
+ (|ofCategory| *4 (|FunctionFieldCategory| *5 *6 *7))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6))
+ (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Polynomial| *4))))))
(((*1 *2)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-349 *5)))
- (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6))
- (-4 *3 (-290 *4 *5 *6))))
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|isDomain| *2 (|List| (|List| *4)))
+ (|isDomain| *1 (|FunctionFieldCategory&| *3 *4 *5 *6))
+ (|ofCategory| *3 (|FunctionFieldCategory| *4 *5 *6))))
((*1 *2)
- (-11 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-584 (-584 *3))))))
+ (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|UniqueFactorizationDomain|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|List| (|List| *3))))))
(((*1 *1 *2 *3 *3 *3 *4)
- (-11 (-4 *4 (-311)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-349 *3)))
- (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5))))
+ (AND (|ofCategory| *4 (|Field|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|ofCategory| *1 (|FiniteDivisorCategory| *4 *3 *5 *2))
+ (|ofCategory| *2 (|FunctionFieldCategory| *4 *3 *5))))
((*1 *1 *2 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *2 (-311)) (-4 *4 (-1156 *2))
- (-4 *5 (-1156 (-349 *4))) (-4 *1 (-285 *2 *4 *5 *6))
- (-4 *6 (-290 *2 *4 *5))))
+ (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *1 (|FiniteDivisorCategory| *2 *4 *5 *6))
+ (|ofCategory| *6 (|FunctionFieldCategory| *2 *4 *5))))
((*1 *1 *2 *2)
- (-11 (-4 *2 (-311)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-349 *3)))
- (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4))))
- ((*1 *1 *2)
- (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))
- (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5))))
- ((*1 *1 *2)
- (-11 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311))
- (-4 *1 (-285 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-349 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-82)))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-1180 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-311)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-349 *4)))
- (-5 *2 (-1180 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
-(((*1 *2 *1) (-11 (-5 *2 (-208)) (-5 *1 (-281)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-281)))))
-(((*1 *2 *1) (-11 (-5 *2 (-870 (-695))) (-5 *1 (-281)))))
-(((*1 *2 *1) (-11 (-5 *2 (-447)) (-5 *1 (-281)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-280 *3)) (-4 *3 (-757)))))
-(((*1 *1) (-11 (-4 *1 (-279 *2)) (-4 *2 (-319)) (-4 *2 (-311)))))
+ (AND (|ofCategory| *2 (|Field|))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3)))
+ (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5))
+ (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4))))
+ ((*1 *1 *2)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2))
+ (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5))
+ (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|FiniteDivisor| *3 *4 *5 *6))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|Field|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))
+ (|isDomain| *2 (|Vector| *6))
+ (|isDomain| *1 (|FiniteDivisor| *3 *4 *5 *6))
+ (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|DomainTemplate|)) (|isDomain| *1 (|FunctorData|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))))
+ (|isDomain| *1 (|FunctorData|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|PrimitiveArray| (|NonNegativeInteger|)))
+ (|isDomain| *1 (|FunctorData|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|FunctorData|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FourierComponent| *3))
+ (|ofCategory| *3 (|OrderedSet|)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2))
+ (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-1086 *3)) (-4 *3 (-319)) (-4 *1 (-279 *3)) (-4 *3 (-311)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|ofCategory| *3 (|Finite|))
+ (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-1086 *3)))))
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
(((*1 *2 *1 *1)
- (|partial| -11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319))
- (-5 *2 (-1086 *3))))
+ (|partial| AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))))
((*1 *2 *1)
- (-11 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-319)) (-5 *2 (-1086 *3)))))
+ (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3))
+ (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))))
-(((*1 *1 *1 *2 *3 *1) (-11 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4))
+ (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))))
+(((*1 *1 *1 *2 *3 *1)
+ (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))))
(((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
- (-4 *3 (-145)))))
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|))
+ (|ofCategory| *3 (|CommutativeRing|)))))
(((*1 *2 *1 *3)
- (-11 (-5 *3 (-485)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-101)))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|FreeAbelianMonoidCategory| *4 *2))
+ (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *2 (|CancellationAbelianMonoid|)))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-101)))))
+ (AND (|isDomain| *2 (|Mapping| *4 *4))
+ (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4))
+ (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *4 (|CancellationAbelianMonoid|)))))
(((*1 *1 *1 *1)
- (-11 (-4 *1 (-273 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-101)) (-4 *3 (-717)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962))
- (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))))
+ (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3))
+ (|ofCategory| *2 (|SetCategory|))
+ (|ofCategory| *3 (|CancellationAbelianMonoid|))
+ (|ofCategory| *3 (|OrderedAbelianMonoid|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|FactoringUtilities| *4 *5 *2 *6))
+ (|ofCategory| *6 (|PolynomialCategory| *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-1086 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-271 *4 *5 *6 *7)))))
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *7))
+ (|isDomain| *3 (|Integer|))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *1 (|FactoringUtilities| *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *6))
+ (|ofCategory| *6 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *7))
+ (|isDomain| *1 (|FactoringUtilities| *4 *5 *6 *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *7))
+ (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5))
+ (|ofCategory| *4 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *6))
+ (|isDomain| *1 (|FactoringUtilities| *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757))
- (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8))
- (-5 *1 (-271 *6 *7 *8 *9)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9))
+ (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| *8))
+ (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|Ring|))
+ (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *8))
+ (|isDomain| *1 (|FactoringUtilities| *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-349 (-485))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
- (-13 *4 (-1091)) (-13 *5 *3))))
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|ExponentialOfUnivariatePuiseuxSeries| *3 *4 *5))
+ (|ofCategory| *3 (|Field|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))))
(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178)))
- (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-268))))
+ (AND (|isDomain| *3 (|Expression| (|Integer|)))
+ (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|Integer|))
+ (|isDomain| *2 (|TubePlot| (|Plot3D|)))
+ (|isDomain| *1 (|ExpressionTubePlot|))))
((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178)))
- (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-268))))
+ (AND (|isDomain| *3 (|Expression| (|Integer|)))
+ (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|Integer|))
+ (|isDomain| *7 (|String|)) (|isDomain| *2 (|TubePlot| (|Plot3D|)))
+ (|isDomain| *1 (|ExpressionTubePlot|))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178)))
- (-5 *6 (-178)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-268))))
+ (AND (|isDomain| *3 (|Expression| (|Integer|)))
+ (|isDomain| *4 (|Mapping| #1=(|DoubleFloat|) #1#))
+ (|isDomain| *5 (|Segment| #1#)) (|isDomain| *6 (|DoubleFloat|))
+ (|isDomain| *7 (|Integer|)) (|isDomain| *2 (|TubePlot| (|Plot3D|)))
+ (|isDomain| *1 (|ExpressionTubePlot|))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-11 (-5 *3 (-264 (-485))) (-5 *4 (-1 (-178) (-178))) (-5 *5 (-1002 (-178)))
- (-5 *6 (-178)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839)))
- (-5 *1 (-268)))))
-(((*1 *2 *3) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-268)) (-5 *3 (-178)))))
+ (AND (|isDomain| *3 (|Expression| (|Integer|)))
+ (|isDomain| *4 (|Mapping| #2=(|DoubleFloat|) #2#))
+ (|isDomain| *5 (|Segment| #2#)) (|isDomain| *6 (|DoubleFloat|))
+ (|isDomain| *7 (|Integer|)) (|isDomain| *8 (|String|))
+ (|isDomain| *2 (|TubePlot| (|Plot3D|)))
+ (|isDomain| *1 (|ExpressionTubePlot|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| #1=(|DoubleFloat|) #1#))
+ (|isDomain| *1 (|ExpressionTubePlot|)) (|isDomain| *3 (|DoubleFloat|)))))
(((*1 *2 *3 *4 *3 *3)
- (-11 (-5 *3 (-248 *6)) (-5 *4 (-83)) (-4 *6 (-363 *5))
- (-4 *5 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *5 *6))))
+ (AND (|isDomain| *3 (|Equation| *6)) (|isDomain| *4 (|BasicOperator|))
+ (|ofCategory| *6 (|FunctionSpace| *5))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-11 (-5 *3 (-248 *7)) (-5 *4 (-83)) (-5 *5 (-584 *7)) (-4 *7 (-363 *6))
- (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *7))))
+ (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|BasicOperator|))
+ (|isDomain| *5 (|List| *7)) (|ofCategory| *7 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-11 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-83))) (-5 *5 (-248 *7))
- (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48))
- (-5 *1 (-267 *6 *7))))
+ (AND (|isDomain| *3 (|List| (|Equation| *7)))
+ (|isDomain| *4 (|List| (|BasicOperator|)))
+ (|isDomain| *5 (|Equation| *7)) (|ofCategory| *7 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-83))) (-5 *5 (-248 *8))
- (-5 *6 (-584 *8)) (-4 *8 (-363 *7)) (-4 *7 (-12 (-496) (-554 (-474))))
- (-5 *2 (-48)) (-5 *1 (-267 *7 *8))))
+ (AND (|isDomain| *3 (|List| (|Equation| *8)))
+ (|isDomain| *4 (|List| (|BasicOperator|)))
+ (|isDomain| *5 (|Equation| *8)) (|isDomain| *6 (|List| *8))
+ (|ofCategory| *8 (|FunctionSpace| *7))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-11 (-5 *3 (-584 *7)) (-5 *4 (-584 (-83))) (-5 *5 (-248 *7))
- (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48))
- (-5 *1 (-267 *6 *7))))
+ (AND (|isDomain| *3 (|List| *7)) (|isDomain| *4 (|List| (|BasicOperator|)))
+ (|isDomain| *5 (|Equation| *7)) (|ofCategory| *7 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *3 (-584 *8)) (-5 *4 (-584 (-83))) (-5 *6 (-584 (-248 *8)))
- (-4 *8 (-363 *7)) (-5 *5 (-248 *8)) (-4 *7 (-12 (-496) (-554 (-474))))
- (-5 *2 (-48)) (-5 *1 (-267 *7 *8))))
+ (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|BasicOperator|)))
+ (|isDomain| *6 (|List| (|Equation| *8)))
+ (|ofCategory| *8 (|FunctionSpace| *7)) (|isDomain| *5 (|Equation| *8))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *8))))
((*1 *2 *3 *4 *3 *5)
- (-11 (-5 *3 (-248 *5)) (-5 *4 (-83)) (-4 *5 (-363 *6))
- (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *5))))
+ (AND (|isDomain| *3 (|Equation| *5)) (|isDomain| *4 (|BasicOperator|))
+ (|ofCategory| *5 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *5))))
((*1 *2 *3 *4 *5 *3)
- (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-4 *3 (-363 *6))
- (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *3))))
+ (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3))
+ (|ofCategory| *3 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *3))))
((*1 *2 *3 *4 *5 *5)
- (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-4 *3 (-363 *6))
- (-4 *6 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *6 *3))))
+ (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3))
+ (|ofCategory| *3 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-11 (-5 *4 (-83)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-363 *7))
- (-4 *7 (-12 (-496) (-554 (-474)))) (-5 *2 (-48)) (-5 *1 (-267 *7 *3)))))
+ (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3))
+ (|isDomain| *6 (|List| *3)) (|ofCategory| *3 (|FunctionSpace| *7))
+ (|ofCategory| *7
+ (|Join| (|IntegralDomain|)
+ (|ConvertibleTo| (|InputForm|))))
+ (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *3)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-264 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Expression| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-485)) (-5 *1 (-264 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-257)) (-5 *2 (-82)))))
-(((*1 *2 *1) (-11 (-4 *1 (-257)) (-5 *2 (-695)))))
+ (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Expression| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|EuclideanDomain|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|EuclideanDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
(((*1 *2 *1 *1 *1)
- (|partial| -11 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-257))))
+ (|partial| AND (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1)))
+ (|ofCategory| *1 (|EuclideanDomain|))))
((*1 *2 *1 *1)
- (-11 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1)))
- (-4 *1 (-257)))))
-(((*1 *2 *2 *1) (|partial| -11 (-5 *2 (-584 *1)) (-4 *1 (-257)))))
-(((*1 *1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1130))))
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1)))
+ (|ofCategory| *1 (|EuclideanDomain|)))))
+(((*1 *2 *2 *1)
+ (|partial| AND (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|EuclideanDomain|)))))
+(((*1 *1 *1 *1)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|ExpressionSpace|))
+ (|ofCategory| *2 (|Type|))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-248 *1)) (-4 *1 (-253)))))
-(((*1 *1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-4 *1 (-253))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-551 *1)) (-4 *1 (-253)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))))
-(((*1 *2 *1) (-11 (-4 *1 (-253)) (-5 *2 (-584 (-83))))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-253)) (-5 *3 (-1091)) (-5 *2 (-82))))
- ((*1 *2 *1 *1) (-11 (-4 *1 (-253)) (-5 *2 (-82)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-551 *5)) (-4 *5 (-363 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496))
- (-5 *2 (-1086 *5)) (-5 *1 (-29 *4 *5))))
- ((*1 *2 *3)
- (-11 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1086 *1)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-261)) (-5 *1 (-251))))
- ((*1 *2 *3 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-261)) (-5 *1 (-251)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-134 *3 *4 *2))
- (-4 *2 (-1156 *4))))
- ((*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-5 *1 (-248 *2)) (-4 *2 (-18)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (|partial| -11 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (|partial| -11 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-11 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-496))
- (-4 *3 (-1130)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392))
- (-5 *2
- (-584
- (-2 (|:| |eigval| (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4))))
- (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-349 (-858 *4))))))))
- (-5 *1 (-247 *4)) (-5 *3 (-631 (-349 (-858 *4)))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-392))
- (-5 *2
- (-584
- (-2 (|:| |eigval| (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4))))
- (|:| |geneigvec| (-584 (-631 (-349 (-858 *4))))))))
- (-5 *1 (-247 *4)) (-5 *3 (-631 (-349 (-858 *4)))))))
+ (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|isDomain| *3 (|List| *1))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Equation| *1)))
+ (|ofCategory| *1 (|ExpressionSpace|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Equation| *1)) (|ofCategory| *1 (|ExpressionSpace|)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|)))
+ ((*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|Kernel| *1))
+ (|ofCategory| *1 (|ExpressionSpace|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Kernel| *1)))
+ (|ofCategory| *1 (|ExpressionSpace|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Kernel| *1)))
+ (|ofCategory| *1 (|ExpressionSpace|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|List| (|BasicOperator|))))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *2 (|Boolean|))))
+ ((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Kernel| *5)) (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|RetractableTo| (|Integer|)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *5))
+ (|isDomain| *1 (|AlgebraicFunction| *4 *5))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|Ring|))
+ (|ofCategory| *1 (|ExpressionSpace|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *1)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Exit|))
+ (|isDomain| *1 (|ErrorFunctions|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|Exit|))
+ (|isDomain| *1 (|ErrorFunctions|))))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Exit|))
+ (|isDomain| *1 (|ErrorFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| (|String|))) (|isDomain| *3 (|String|))
+ (|isDomain| *2 (|Exit|)) (|isDomain| *1 (|ErrorFunctions|)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))
+ (|isDomain| *1 (|CommuteUnivariatePolynomialCategory| *3 *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *1 *1) (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianGroup|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|AbelianGroup|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (|partial| AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Monoid|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (|partial| AND (|isDomain| *1 (|Equation| *2)) (|ofCategory| *2 (|Monoid|))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Equation| *3))) (|isDomain| *1 (|Equation| *3))
+ (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *2
+ (|List|
+ (|Record|
+ (|:| |eigval|
+ (|Union| (|Fraction| (|Polynomial| *4))
+ (|SuchThat| (|Symbol|) (|Polynomial| *4))))
+ (|:| |eigmult| (|NonNegativeInteger|))
+ (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| *4))))))))
+ (|isDomain| *1 (|EigenPackage| *4))
+ (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *2
+ (|List|
+ (|Record|
+ (|:| |eigval|
+ (|Union| (|Fraction| (|Polynomial| *4))
+ (|SuchThat| (|Symbol|) (|Polynomial| *4))))
+ (|:| |geneigvec|
+ (|List| (|Matrix| (|Fraction| (|Polynomial| *4))))))))
+ (|isDomain| *1 (|EigenPackage| *4))
+ (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))))))
(((*1 *2 *3 *4 *5 *5)
- (-11 (-5 *3 (-3 (-349 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695))
- (-4 *6 (-392)) (-5 *2 (-584 (-631 (-349 (-858 *6))))) (-5 *1 (-247 *6))
- (-5 *4 (-631 (-349 (-858 *6))))))
- ((*1 *2 *3 *4)
- (-11
- (-5 *3
- (-2 (|:| |eigval| (-3 (-349 (-858 *5)) (-1081 (-1091) (-858 *5))))
- (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4))))
- (-4 *5 (-392)) (-5 *2 (-584 (-631 (-349 (-858 *5))))) (-5 *1 (-247 *5))
- (-5 *4 (-631 (-349 (-858 *5)))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-3 (-349 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392))
- (-5 *2 (-584 (-631 (-349 (-858 *5))))) (-5 *1 (-247 *5))
- (-5 *4 (-631 (-349 (-858 *5)))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-631 (-349 (-858 *4)))) (-4 *4 (-392))
- (-5 *2 (-584 (-3 (-349 (-858 *4)) (-1081 (-1091) (-858 *4)))))
- (-5 *1 (-247 *4)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-998))) (-5 *1 (-246)))))
-(((*1 *2 *3 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-246)))))
-(((*1 *1 *2 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-246)))))
-(((*1 *2 *3 *1) (-11 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-246)))))
-(((*1 *1 *2 *3 *1) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-246)))))
-(((*1 *1) (-5 *1 (-246))))
-(((*1 *1) (-5 *1 (-246))))
-(((*1 *1) (-5 *1 (-246))))
+ (AND
+ (|isDomain| *3
+ (|Union| (|Fraction| (|Polynomial| *6))
+ (|SuchThat| (|Symbol|) (|Polynomial| *6))))
+ (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|))
+ (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *6)))))
+ (|isDomain| *1 (|EigenPackage| *6))
+ (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *6))))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|Record|
+ (|:| |eigval|
+ (|Union| (|Fraction| (|Polynomial| *5))
+ (|SuchThat| (|Symbol|) (|Polynomial| *5))))
+ (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| *4))))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|EigenPackage| *5))
+ (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *5)))))))
+(((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|Union| (|Fraction| (|Polynomial| *5))
+ (|SuchThat| (|Symbol|) (|Polynomial| *5))))
+ (|ofCategory| *5 (|GcdDomain|))
+ (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *5)))))
+ (|isDomain| *1 (|EigenPackage| *5))
+ (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *5)))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4))))
+ (|ofCategory| *4 (|GcdDomain|))
+ (|isDomain| *2
+ (|List|
+ (|Union| (|Fraction| (|Polynomial| *4))
+ (|SuchThat| (|Symbol|) (|Polynomial| *4)))))
+ (|isDomain| *1 (|EigenPackage| *4)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Scope|))) (|isDomain| *1 (|Environment|)))))
+(((*1 *2 *3 *3 *1)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| (|SExpression|)))
+ (|isDomain| *1 (|Environment|)))))
+(((*1 *1 *2 *2 *3 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|SExpression|))
+ (|isDomain| *1 (|Environment|)))))
+(((*1 *2 *3 *1)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|List| (|Property|)))
+ (|isDomain| *1 (|Environment|)))))
+(((*1 *1 *2 *3 *1)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|List| (|Property|)))
+ (|isDomain| *1 (|Environment|)))))
+(((*1 *1) (|isDomain| *1 (|Environment|))))
+(((*1 *1) (|isDomain| *1 (|Environment|))))
+(((*1 *1) (|isDomain| *1 (|Environment|))))
(((*1 *2 *1 *3 *3 *2)
- (-11 (-5 *3 (-485)) (-4 *1 (-54 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-323 *2))
- (-4 *5 (-323 *2))))
+ (AND (|isDomain| *3 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5))
+ (|ofCategory| *2 (|Type|))
+ (|ofCategory| *4 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))))
((*1 *2 *1 *3 *2)
- (-11 (-4 *1 (-1036 *2)) (-4 *1 (-242 *3 *2)) (-4 *3 (-69)) (-4 *2 (-1130)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *4 (-311)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-239 *4 *5))
- (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *2 *2 *3) (-11 (-4 *3 (-311)) (-5 *1 (-239 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1147 (-485))) (-4 *1 (-236 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-485)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))))
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|EltableAggregate| *3 *2))
+ (|ofCategory| *3 (|BasicType|)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Stream| *4)))
+ (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *4 *5))
+ (|isDomain| *3 (|Stream| *4))
+ (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(((*1 *2 *2 *3)
+ (AND (|ofCategory| *3 (|Field|))
+ (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2))
+ (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|UniversalSegment| (|Integer|)))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
(((*1 *1 *2 *1)
- (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-317 *3)) (-4 *1 (-192 *3))
- (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-11 (-5 *2 (-1 (-82) *3)) (-4 *1 (-236 *3)) (-4 *3 (-1130)))))
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|FiniteAggregate| *3))
+ (|ofCategory| *1 (|DictionaryOperations| *3))
+ (|ofCategory| *3 (|SetCategory|))))
+ ((*1 *1 *2 *1)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3))
+ (|ofCategory| *1 (|ExtensibleLinearAggregate| *3))
+ (|ofCategory| *3 (|Type|)))))
(((*1 *1 *2 *3 *4)
- (-11 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-246)) (-5 *1 (-234)))))
-(((*1 *2 *1) (-11 (-5 *2 (-523)) (-5 *1 (-234)))))
-(((*1 *2 *1) (-11 (-5 *2 (-533)) (-5 *1 (-234)))))
-(((*1 *2 *1) (-11 (-5 *2 (-246)) (-5 *1 (-234)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1096)) (-5 *1 (-233)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-1016)) (-5 *1 (-233)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233)))))
-(((*1 *2 *1) (|partial| -11 (-5 *2 (-447)) (-5 *1 (-233)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-233)))))
+ (AND (|isDomain| *2 (|InternalRepresentationForm|))
+ (|isDomain| *3 (|InternalTypeForm|)) (|isDomain| *4 (|Environment|))
+ (|isDomain| *1 (|Elaboration|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|InternalRepresentationForm|))
+ (|isDomain| *1 (|Elaboration|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|InternalTypeForm|)) (|isDomain| *1 (|Elaboration|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Environment|)) (|isDomain| *1 (|Elaboration|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Syntax|)) (|isDomain| *1 (|ElaboratedExpression|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|SExpression|))
+ (|isDomain| *1 (|ElaboratedExpression|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElaboratedExpression|)))))
+(((*1 *2 *1)
+ (|partial| AND (|isDomain| *2 (|Identifier|))
+ (|isDomain| *1 (|ElaboratedExpression|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElaboratedExpression|)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-349 (-485))) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))))
+ (AND (|isDomain| *3 (|Fraction| (|Integer|)))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-551 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4)))
- (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *4 *2)))))
+ (AND (|isDomain| *3 (|Kernel| *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4)))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *4 *2)))))
(((*1 *2 *3 *2 *4)
- (|partial| -11 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091))
- (-4 *2 (-12 (-24) (-1116) (-363 *5)))
- (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *5 *2)))))
+ (|partial| AND (|isDomain| *3 (|List| (|Kernel| *2)))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *5 *2)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-230 *3 *2))
- (-4 *2 (-12 (-24) (-1116) (-363 *3)))))
+ (AND
+ (|ofCategory| *3
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *3)))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-12 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-230 *4 *2)) (-4 *2 (-12 (-24) (-1116) (-363 *4))))))
+ (AND (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *4
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *4 *2))
+ (|ofCategory| *2
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *4))))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1091)) (-4 *5 (-12 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3))))
- (-5 *1 (-230 *5 *3)) (-4 *3 (-12 (-24) (-1116) (-363 *5))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-82)) (-5 *1 (-229 *4 *3))
- (-4 *3 (-12 (-363 *4) (-916))))))
+ (AND (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *5
+ (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |func| *3) (|:| |kers| (|List| (|Kernel| *3)))
+ (|:| |vals| (|List| *3))))
+ (|isDomain| *1 (|ElementaryFunctionStructurePackage| *5 *3))
+ (|ofCategory| *3
+ (|Join| (|AlgebraicallyClosedField|)
+ (|TranscendentalFunctionCategory|)
+ (|FunctionSpace| *5))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|ElementaryFunction| *4 *3))
+ (|ofCategory| *3 (|Join| (|FunctionSpace| *4) (|RadicalCategory|))))))
(((*1 *2 *2 *3)
- (|partial| -11 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-82)))))
- (-4 *2 (-12 (-363 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-229 *4 *2)))))
+ (|partial| AND
+ (|isDomain| *3 (|List| (|Record| (|:| |func| *2) (|:| |pole| (|Boolean|)))))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|RadicalCategory|)))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *4 *2)))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-229 *3 *2)) (-4 *2 (-12 (-363 *3) (-916))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))))
(((*1 *2)
- (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496)))))
+ (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *3 (|IntegralDomain|)))))
(((*1 *2)
- (-11 (-4 *2 (-12 (-363 *3) (-916))) (-5 *1 (-229 *3 *2)) (-4 *3 (-496)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-485))) (-5 *1 (-228)))))
-(((*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-228)))))
-(((*1 *2 *1)
- (-11 (-4 *3 (-189)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-227 *4))
- (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-212 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-11 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-227 *3)) (-4 *6 (-718))
- (-5 *2 (-1 *1 (-695))) (-4 *1 (-212 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-11 (-5 *3 (-695)) (-4 *1 (-227 *2)) (-4 *2 (-757)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-83))))
- ((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-83))))
- ((*1 *2 *1 *3)
- (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-11 (-4 *1 (-227 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
-(((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *2 (-48))
- (-5 *1 (-220))))
- ((*1 *2 *3 *4)
- (|partial| -11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *1 (-222 *2))
- (-4 *2 (-1130)))))
-(((*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-329)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *1) (-5 *1 (-114)))
- ((*1 *1 *2) (-11 (-5 *2 (-1048 (-178))) (-5 *1 (-220))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-831)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-784)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-784)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-220))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *3 (-584 (-220))) (-5 *1 (-221)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-837))
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123))))
+ (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))
+ (|isDomain| *1 (|ElementaryFunction| *3 *2))
+ (|ofCategory| *3 (|IntegralDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|ExtAlgBasis|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ExtAlgBasis|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *3 (|DifferentialRing|)) (|ofCategory| *3 (|Ring|))
+ (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|)))
+ (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6))))
+ ((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *1 (|DifferentialVariableCategory| *2))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|NonNegativeInteger|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *2 (|NonNegativeInteger|)))))
+(((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Any|))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *4)
+ (|partial| AND (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *1 (|DrawOptionFunctions1| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Float|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1) (|isDomain| *1 (|Character|)))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Palette|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|)))
+ (|isDomain| *1 (|DrawOptionFunctions0|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Plot|))
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-837)) (-5 *4 (-349 (-485)))
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123))))
- ((*1 *2 *3)
- (-11
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123)) (-5 *3 (-584 (-855 (-178))))))
- ((*1 *2 *3)
- (-11
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123)) (-5 *3 (-584 (-584 (-855 (-178)))))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-220)))))
-(((*1 *1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220)))))
-(((*1 *1 *2) (-11 (-5 *2 (-784)) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-329)) (-5 *1 (-220)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178) (-178) (-178))) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178) (-178))) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-1 (-178) (-178))) (-5 *1 (-220)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-349 (-485))))) (-5 *1 (-220))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 (-1002 (-329)))) (-5 *1 (-220)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-220))) (-5 *4 (-1091)) (-5 *2 (-82)) (-5 *1 (-220)))))
+ (AND (|isDomain| *3 (|Plot|)) (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))
+ (|isDomain| *3 (|List| (|Point| (|DoubleFloat|))))))
+ ((*1 *2 *3)
+ (AND
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))
+ (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|)))))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|)))))
+(((*1 *1 *2)
+ (AND
+ (|isDomain| *2
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)
+ (|DoubleFloat|)))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2)
+ (AND
+ (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *1 (|DrawOption|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Fraction| (|Integer|)))))
+ (|isDomain| *1 (|DrawOption|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Segment| (|Float|))))
+ (|isDomain| *1 (|DrawOption|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *4 (|Symbol|))
+ (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1183))
- (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014)))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1183)) (-5 *1 (-214 *3))
- (-4 *3 (-12 (-554 (-474)) (-1014)))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220)))
- (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-214 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-329)))
- (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-214 *5))))
+ (AND (|isDomain| *3 (|ParametricPlaneCurve| *6))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *6
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|ParametricPlaneCurve| *5))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|ofCategory| *5
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220)))
- (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-329)))
- (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *5))))
+ (AND (|isDomain| *3 (|ParametricSpaceCurve| *6))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *6
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|ParametricSpaceCurve| *5))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|ofCategory| *5
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *5))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1184))
- (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014)))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1184)) (-5 *1 (-214 *3))
- (-4 *3 (-12 (-554 (-474)) (-1014)))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220)))
- (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *6))))
+ (AND (|isDomain| *3 (|ParametricSurface| *6))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *6
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *6))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-329)))
- (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-214 *5))))
+ (AND (|isDomain| *3 (|ParametricSurface| *5))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|ofCategory| *5
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *5 (-584 (-220)))
- (-5 *2 (-1183)) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1183))
- (-5 *1 (-215))))
+ (AND (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-788 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1183)) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-788 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1183))
- (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184))
- (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184))
- (-5 *1 (-215))))
+ (AND (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329))) (-5 *2 (-1184))
- (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1184)) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1184)) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSurface|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1184)) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSurface|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-248 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-220)))
- (-4 *7 (-363 *6)) (-4 *6 (-12 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183))
- (-5 *1 (-216 *6 *7))))
- ((*1 *2 *3 *3) (-11 (-5 *3 (-584 (-178))) (-5 *2 (-1183)) (-5 *1 (-219))))
+ (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|Symbol|))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *7 (|FunctionSpace| *6))
+ (|ofCategory| *6
+ (|Join| (|IntegralDomain|) (|OrderedSet|)
+ (|RetractableTo| (|Integer|))))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForAlgebraicCurves| *6 *7))))
+ ((*1 *2 *3 *3)
+ (AND (|isDomain| *3 (|List| (|DoubleFloat|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))
((*1 *2 *3 *3 *4)
- (-11 (-5 *3 (-584 (-178))) (-5 *4 (-584 (-220))) (-5 *2 (-1183))
- (-5 *1 (-219))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *2 (-1183)) (-5 *1 (-219))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-584 (-855 (-178)))) (-5 *4 (-584 (-220))) (-5 *2 (-1183))
- (-5 *1 (-219))))
- ((*1 *2 *3 *3 *3) (-11 (-5 *3 (-584 (-178))) (-5 *2 (-1184)) (-5 *1 (-219))))
+ (AND (|isDomain| *3 (|List| (|DoubleFloat|)))
+ (|isDomain| *4 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|Point| (|DoubleFloat|))))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|List| (|Point| (|DoubleFloat|))))
+ (|isDomain| *4 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|TwoDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))
+ ((*1 *2 *3 *3 *3)
+ (AND (|isDomain| *3 (|List| (|DoubleFloat|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))
((*1 *2 *3 *3 *3 *4)
- (-11 (-5 *3 (-584 (-178))) (-5 *4 (-584 (-220))) (-5 *2 (-1184))
- (-5 *1 (-219)))))
-(((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-217)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-217)))))
-(((*1 *2 *2) (-11 (-5 *2 (-485)) (-5 *1 (-217)))))
+ (AND (|isDomain| *3 (|List| (|DoubleFloat|)))
+ (|isDomain| *4 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DrawComplex|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))))
+(((*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))))
(((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 (-141 (-178)) (-141 (-178)))) (-5 *4 (-1002 (-178)))
- (-5 *2 (-1184)) (-5 *1 (-217)))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|DoubleFloat|)))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|DrawComplex|)))))
(((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-141 (-178)) (-141 (-178)))) (-5 *4 (-1002 (-178)))
- (-5 *5 (-82)) (-5 *2 (-1184)) (-5 *1 (-217)))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *5 (|Boolean|))
+ (|isDomain| *2 (|ThreeDimensionalViewport|))
+ (|isDomain| *1 (|DrawComplex|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-1 (-855 (-178)) (-178) (-178)))
- (-5 *3 (-1 (-178) (-178) (-178) (-178))) (-5 *1 (-215)))))
+ (AND
+ (|isDomain| *2
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *3
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)
+ (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|)))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220)))
- (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-214 *6))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-329)))
- (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-214 *5))))
+ (AND (|isDomain| *3 (|ParametricSpaceCurve| *6))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *6
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *6))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|ParametricSpaceCurve| *5))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|ofCategory| *5
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *5))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-214 *3)) (-4 *3 (-12 (-554 (-474)) (-1014)))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *4 (-1005 (-329))) (-5 *2 (-1048 (-178))) (-5 *1 (-214 *3))
- (-4 *3 (-12 (-554 (-474)) (-1014)))))
+ (AND (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *3))
+ (|ofCategory| *3
+ (|Join| (|ConvertibleTo| (|InputForm|))
+ (|SetCategory|)))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-329))) (-5 *5 (-584 (-220)))
- (-4 *6 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-214 *6))))
+ (AND (|isDomain| *3 (|ParametricSurface| *6))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|ofCategory| *6
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *6))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-329)))
- (-4 *5 (-12 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-178)))
- (-5 *1 (-214 *5))))
+ (AND (|isDomain| *3 (|ParametricSurface| *5))
+ (|isDomain| *4 (|SegmentBinding| (|Float|)))
+ (|ofCategory| *5
+ (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctions| *5))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-790 (-1 (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND
+ (|isDomain| *3
+ (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *5)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
- ((*1 *2 *3 *4)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 (-178) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-1 (-855 (-178)) (-178) (-178))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4 *5)
- (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *5 (-584 (-220))) (-5 *2 (-1048 (-178))) (-5 *1 (-215))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSurface|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *5 (|List| (|DrawOption|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-793 (-1 (-178) (-178) (-178)))) (-5 *4 (-1002 (-329)))
- (-5 *2 (-1048 (-178))) (-5 *1 (-215)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-175 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-213 *3))))
- ((*1 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-213 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))))
+ (AND
+ (|isDomain| *3
+ (|ParametricSurface|
+ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))))
+ (|isDomain| *4 (|Segment| (|Float|)))
+ (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|)))
+ (|isDomain| *1 (|TopLevelDrawFunctionsForCompiledFunctions|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|Dequeue| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *1 (|DequeueAggregate| *3))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| *4)))))
(((*1 *2 *1 *3)
- (-11 (-4 *1 (-212 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-227 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6))
+ (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|)))))
((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|List| (|NonNegativeInteger|))))))
(((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-227 *4)) (-4 *6 (-718)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|DifferentialVariableCategory| *4))
+ (|ofCategory| *6 (|OrderedAbelianMonoidSup|))
+ (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *1)
- (-11 (-4 *1 (-212 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718))
- (-4 *2 (-227 *4)))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *2 *5))
+ (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|))
+ (|ofCategory| *2 (|DifferentialVariableCategory| *4)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
- (-4 *4 (-227 *3)) (-4 *5 (-718)))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-212 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
- (-4 *4 (-227 *3)) (-4 *5 (-718)))))
-(((*1 *2 *1) (-11 (-5 *2 (-281)) (-5 *1 (-207)))))
-(((*1 *2 *1) (-11 (-5 *2 (-109)) (-5 *1 (-110))))
- ((*1 *2 *1) (-11 (-5 *1 (-157 *2)) (-4 *2 (-159))))
- ((*1 *2 *1) (-11 (-5 *2 (-207)) (-5 *1 (-206)))))
-(((*1 *2 *1) (-11 (-5 *2 (-157 (-207))) (-5 *1 (-206)))))
-(((*1 *1 *2) (-11 (-5 *2 (-157 (-207))) (-5 *1 (-206)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1186)) (-5 *1 (-206)))))
+ (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5))
+ (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|))
+ (|ofCategory| *4 (|DifferentialVariableCategory| *3))
+ (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|FunctorData|)) (|isDomain| *1 (|DomainConstructor|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|CategoryConstructor|)) (|isDomain| *1 (|Category|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *1 (|ConstructorCall| *2))
+ (|ofCategory| *2 (|ConstructorCategory|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|DomainConstructor|)) (|isDomain| *1 (|Domain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|ConstructorCall| (|DomainConstructor|)))
+ (|isDomain| *1 (|Domain|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|ConstructorCall| (|DomainConstructor|)))
+ (|isDomain| *1 (|Domain|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Domain|)))))
(((*1 *2 *3 *3 *2)
- (|partial| -11 (-5 *2 (-695))
- (-4 *3 (-12 (-664) (-319) (-10 -7 (-14 ** (*3 *3 (-485))))))
- (-5 *1 (-203 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-202 *3)))))
-(((*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-11 (-4 *1 (-201 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-201 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-198))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-198)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-198))))
- ((*1 *2 *3) (-11 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-198)))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-198)))))
-(((*1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-198)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-195 *3 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-248 (-858 (-485))))
- (-5 *2
- (-2 (|:| |varOrder| (-584 (-1091)))
- (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed"))
- (|:| |hom| (-584 (-1180 (-695))))))
- (-5 *1 (-193)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-192 *3))))
- ((*1 *1) (-11 (-4 *1 (-192 *2)) (-4 *2 (-1014)))))
-(((*1 *1) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))))
-(((*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))))
-(((*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))))
-(((*1 *1 *2) (-11 (-5 *1 (-180 *2)) (-4 *2 (-12 (-311) (-1116))))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))))
-(((*1 *2 *2) (-11 (-5 *2 (-178)) (-5 *1 (-179))))
- ((*1 *2 *2) (-11 (-5 *2 (-141 (-178))) (-5 *1 (-179)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-178)))))
+ (|partial| AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|ofCategory| *3
+ (|Join| (|Monoid|) (|Finite|)
+ (CATEGORY |package|
+ (SIGNATURE ** (*3 *3 (|Integer|))))))
+ (|isDomain| *1 (|DiscreteLogarithmPackage| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|DataList| *3)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1)
+ (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|DoublyLinkedAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|DisplayPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|Integer|))
+ (|isDomain| *1 (|DisplayPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|DisplayPackage|))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|DisplayPackage|)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|Integer|))
+ (|isDomain| *1 (|DisplayPackage|)))))
+(((*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DisplayPackage|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|Type|))
+ (|ofCategory| *1 (|DirectProductCategory| *3 *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Equation| (|Polynomial| (|Integer|))))
+ (|isDomain| *2
+ (|Record| (|:| |varOrder| (|List| (|Symbol|)))
+ (|:| |inhom|
+ (|Union| (|List| (|Vector| (|NonNegativeInteger|)))
+ "failed"))
+ (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))))
+ (|isDomain| *1 (|DiophantineSolutionPackage|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|ofCategory| *1 (|DictionaryOperations| *3))))
+ ((*1 *1)
+ (AND (|ofCategory| *1 (|DictionaryOperations| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *1 (|DenavitHartenbergMatrix| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|))))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|DoubleFloat|))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|Complex| (|DoubleFloat|)))
+ (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DoubleFloat|)))))
(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -11 (-5 *2 (-82)) (-5 *3 (-858 *6)) (-5 *4 (-1091))
- (-5 *5 (-751 *7)) (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *7 (-12 (-1116) (-26 *6))) (-5 *1 (-177 *6 *7))))
+ (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|Polynomial| *6))
+ (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|OrderedCompletion| *7))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|ofCategory| *7
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *6)))
+ (|isDomain| *1 (|DefiniteIntegrationTools| *6 *7))))
((*1 *2 *3 *4 *4 *2)
- (|partial| -11 (-5 *2 (-82)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6))
- (-4 *6 (-12 (-1116) (-26 *5)))
- (-4 *5 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-177 *5 *6)))))
+ (|partial| AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *3 (|SparseUnivariatePolynomial| *6))
+ (|isDomain| *4 (|OrderedCompletion| *6))
+ (|ofCategory| *6
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *5)))
+ (|ofCategory| *5
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|DefiniteIntegrationTools| *5 *6)))))
(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -11 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-82))
- (-4 *4 (-12 (-1116) (-26 *6)))
- (-4 *6 (-12 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-177 *6 *4)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1074)) (-4 *4 (-12 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-82)) (-5 *1 (-177 *4 *5)) (-4 *5 (-12 (-1116) (-26 *4))))))
-(((*1 *1 *1) (-11 (-5 *1 (-47 *2 *3)) (-4 *2 (-962)) (-13 *3 (-584 (-1091)))))
+ (|partial| AND (|isDomain| *2 (|OrderedCompletion| *4))
+ (|isDomain| *3 (|Kernel| *4)) (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *4
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *6)))
+ (|ofCategory| *6
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *1 (|DefiniteIntegrationTools| *6 *4)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|))
+ (|ofCategory| *4
+ (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|DefiniteIntegrationTools| *4 *5))
+ (|ofCategory| *5
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *4))))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|AntiSymm| *2 *3)) (|ofCategory| *2 (|Ring|))
+ (|ofType| *3 (|List| (|Symbol|)))))
((*1 *1 *1)
- (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757)))
- (-13 *3 (-584 (-1091))))))
+ (AND (|isDomain| *1 (|DeRhamComplex| *2 *3))
+ (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *3 (|List| (|Symbol|))))))
(((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-47 *3 *4)) (-4 *3 (-962))
- (-13 *4 (-584 (-1091)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AntiSymm| *3 *4))
+ (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|List| (|Symbol|)))))
((*1 *2 *1)
- (-11 (-5 *2 (-82)) (-5 *1 (-176 *3 *4)) (-4 *3 (-12 (-962) (-757)))
- (-13 *4 (-584 (-1091))))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *4 (|List| (|Symbol|))))))
(((*1 *1 *2)
- (-11 (-5 *2 (-264 *3)) (-4 *3 (-12 (-962) (-757))) (-5 *1 (-176 *3 *4))
- (-13 *4 (-584 (-1091))))))
+ (AND (|isDomain| *2 (|Expression| *3))
+ (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|)))
+ (|isDomain| *1 (|DeRhamComplex| *3 *4))
+ (|ofType| *4 (|List| (|Symbol|))))))
(((*1 *1 *1)
- (-11 (-5 *1 (-176 *2 *3)) (-4 *2 (-12 (-962) (-757)))
- (-13 *3 (-584 (-1091))))))
+ (AND (|isDomain| *1 (|DeRhamComplex| *2 *3))
+ (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|)))
+ (|ofType| *3 (|List| (|Symbol|))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-11 (-5 *4 (-1091)) (-5 *6 (-82))
- (-4 *7 (-12 (-257) (-117) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-12 (-1116) (-872) (-26 *7)))
- (-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed")
- (|:| |pole| "potentialPole")))
- (-5 *1 (-172 *7 *3)) (-5 *5 (-751 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-349 (-485))) (-5 *1 (-170)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-82)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *6 (|Boolean|))
+ (|ofCategory| *7
+ (|Join| (|EuclideanDomain|) (|CharacteristicZero|)
+ (|RetractableTo| (|Integer|))
+ (|LinearlyExplicitRingOver| (|Integer|))))
+ (|ofCategory| *3
+ (|Join| (|TranscendentalFunctionCategory|)
+ (|PrimitiveFunctionCategory|)
+ (|AlgebraicallyClosedFunctionSpace| *7)))
+ (|isDomain| *2
+ (|Union| (|:| |f1| #1=(|OrderedCompletion| *3)) (|:| |f2| (|List| #1#))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *7 *3))
+ (|isDomain| *5 (|OrderedCompletion| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|DecimalExpansion|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *2 *3 *2)
- (-11 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-169 *4 *2)) (-4 *2 (-1156 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2578 *3))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1156 *4)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| *3))))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-298))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1784 (-584 (-2 (|:| |irr| *3) (|:| -2397 (-485)))))))
- (-5 *1 (-169 *5 *3)) (-4 *3 (-1156 *5)))))
+ (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|FiniteFieldCategory|))
+ (|isDomain| *2
+ (|Record| (|:| |cont| *5)
+ (|:| |factors|
+ (|List|
+ (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|)))))))
+ (|isDomain| *1 (|DistinctDegreeFactorize| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1156 (-349 *2)))
- (-4 *2 (-1156 *5)) (-5 *1 (-168 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
+ (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *5 (|Field|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *2)))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *1 (|DoubleResultantPackage| *5 *2 *6 *3))
+ (|ofCategory| *3 (|FunctionFieldCategory| *5 *2 *6)))))
(((*1 *2 *1 *3 *2)
- (-11 (-5 *3 (-695)) (-5 *1 (-165 *4 *2)) (-13 *4 (-831)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *2 (-347 (-1086 (-485)))) (-5 *1 (-164)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-11 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-164)) (-5 *3 (-485)))))
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *1 (|DataArray| *4 *2)) (|ofType| *4 (|PositiveInteger|))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| (|Integer|))))
+ (|isDomain| *1 (|CyclotomicPolynomialPackage|))
+ (|isDomain| *3 (|Integer|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| (|Integer|))))
+ (|isDomain| *1 (|CyclotomicPolynomialPackage|))
+ (|isDomain| *3 (|Integer|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
+ (AND (|isDomain| *3 (|List| (|Integer|)))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
(((*1 *2 *3)
- (-11 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *2 *2) (-11 (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
+ (AND (|isDomain| *3 (|List| (|PositiveInteger|)))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
(((*1 *2 *3 *3)
- (-11 (-5 *3 (-1093 (-349 (-485)))) (-5 *2 (-349 (-485))) (-5 *1 (-163)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *3) (-11 (-5 *3 (-695)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *3) (-11 (-5 *3 (-831)) (-5 *2 (-1093 (-349 (-485)))) (-5 *1 (-163)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-145))
- (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-162 *4)))))
-(((*1 *1) (-5 *1 (-160))))
-(((*1 *1) (-5 *1 (-160))))
-(((*1 *1) (-5 *1 (-160))))
-(((*1 *2 *1) (-11 (-5 *2 (-160)) (-5 *1 (-108))))
- ((*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-160)))))
-(((*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-584 (-82))))))
-(((*1 *2 *1) (-11 (-4 *1 (-159)) (-5 *2 (-584 (-775))))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-1096))) (-5 *1 (-157 *3)) (-4 *3 (-159)))))
-(((*1 *2 *3) (-11 (-5 *3 (-447)) (-5 *2 (-633 (-156))) (-5 *1 (-156)))))
-(((*1 *2 *2 *2) (-11 (-4 *3 (-1130)) (-5 *1 (-155 *3 *2)) (-4 *2 (-617 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-155 *4 *3)) (-4 *3 (-617 *4)))))
-(((*1 *2 *2)
- (|partial| -11 (-4 *3 (-1130)) (-5 *1 (-155 *3 *2)) (-4 *2 (-617 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-756)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1784 (-347 *3)))) (-5 *1 (-154 *4 *3))
- (-4 *3 (-1156 (-141 *4))))))
-(((*1 *2 *2)
- (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3))
- (-4 *3 (-1156 (-141 *2))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-141 *4)) (-5 *1 (-154 *4 *3)) (-4 *4 (-12 (-311) (-756)))
- (-4 *3 (-1156 *2)))))
+ (AND (|isDomain| *3 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *2 (|Fraction| (|Integer|)))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|PositiveInteger|))
+ (|isDomain| *2 (|SymmetricPolynomial| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|CycleIndicators|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Vector| (|Matrix| *4)))
+ (|ofCategory| *4 (|CommutativeRing|))
+ (|isDomain| *2 (|Vector| (|Matrix| (|Polynomial| *4))))
+ (|isDomain| *1 (|CoerceVectorMatrixPackage| *4)))))
+(((*1 *1) (|isDomain| *1 (|ConstructorKind|))))
+(((*1 *1) (|isDomain| *1 (|ConstructorKind|))))
+(((*1 *1) (|isDomain| *1 (|ConstructorKind|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|ConstructorKind|)) (|isDomain| *1 (|CategoryAst|))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ConstructorCategory|))
+ (|isDomain| *2 (|ConstructorKind|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ConstructorCategory|))
+ (|isDomain| *2 (|List| (|Boolean|))))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ConstructorCategory|))
+ (|isDomain| *2 (|List| (|OverloadSet|))))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Syntax|)))
+ (|isDomain| *1 (|ConstructorCall| *3))
+ (|ofCategory| *3 (|ConstructorCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Maybe| (|Constructor|)))
+ (|isDomain| *1 (|Constructor|)))))
+(((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|CyclicStreamTools| *3 *2))
+ (|ofCategory| *2 (|LazyStreamAggregate| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|CyclicStreamTools| *4 *3))
+ (|ofCategory| *3 (|LazyStreamAggregate| *4)))))
+(((*1 *2 *2)
+ (|partial| AND (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|CyclicStreamTools| *3 *2))
+ (|ofCategory| *2 (|LazyStreamAggregate| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2
+ (|Record| (|:| |start| *3) (|:| |factors| (|Factored| *3))))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Complex| *4))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))))
(((*1 *2 *3 *2)
- (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3))
- (-4 *3 (-1156 (-141 *2)))))
+ (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2)))))
((*1 *2 *3)
- (-11 (-4 *2 (-12 (-311) (-756))) (-5 *1 (-154 *2 *3))
- (-4 *3 (-1156 (-141 *2))))))
+ (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-756))) (-5 *1 (-154 *3 *2))
- (-4 *2 (-1156 (-141 *3))))))
+ (AND (|ofCategory| *3 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Complex| *3))))))
(((*1 *2 *3 *4 *5)
- (-11 (-5 *5 (-82)) (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3))
- (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-347 *3)) (-5 *1 (-154 *4 *3))
- (-4 *3 (-1156 (-141 *4))))))
+ (AND (|isDomain| *5 (|Boolean|))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))))
(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-311) (-756))) (-5 *1 (-154 *3 *2))
- (-4 *2 (-1156 (-141 *3))))))
+ (AND (|ofCategory| *3 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *3 *2))
+ (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Complex| *3))))))
(((*1 *2 *3 *3 *4)
- (-11 (-5 *4 (-82)) (-4 *5 (-12 (-311) (-756)))
- (-5 *2 (-584 (-2 (|:| -1784 (-584 *3)) (|:| -1597 *5))))
- (-5 *1 (-154 *5 *3)) (-4 *3 (-1156 (-141 *5)))))
+ (AND (|isDomain| *4 (|Boolean|))
+ (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |factors| (|List| *3)) (|:| |error| *5))))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *5)))))
((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-311) (-756)))
- (-5 *2 (-584 (-2 (|:| -1784 (-584 *3)) (|:| -1597 *4))))
- (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))))
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2
+ (|List| (|Record| (|:| |factors| (|List| *3)) (|:| |error| *4))))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))))
(((*1 *2 *3 *4)
- (-11 (-5 *2 (-584 (-141 *4))) (-5 *1 (-125 *3 *4))
- (-4 *3 (-1156 (-141 (-485)))) (-4 *4 (-12 (-311) (-756)))))
+ (AND (|isDomain| *2 (|List| (|Complex| *4)))
+ (|isDomain| *1 (|ComplexRootPackage| *3 *4))
+ (|ofCategory| *3
+ (|UnivariatePolynomialCategory| (|Complex| (|Integer|))))
+ (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))
((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-584 (-141 *4)))
- (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4)))))
- ((*1 *2 *3 *4)
- (-11 (-4 *4 (-12 (-311) (-756))) (-5 *2 (-584 (-141 *4)))
- (-5 *1 (-154 *4 *3)) (-4 *3 (-1156 (-141 *4))))))
-(((*1 *2 *2 *3) (-11 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-152 *3)))))
-(((*1 *2 *3 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-152 *3)))))
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|List| (|Complex| *4)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))
+ ((*1 *2 *3 *4)
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))
+ (|isDomain| *2 (|List| (|Complex| *4)))
+ (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|CRApackage| *3)))))
+(((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|))
+ (|isDomain| *1 (|CRApackage| *3)))))
(((*1 *2 *3 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *3)
- (-11 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-149 *3))
- (-4 *3 (-12 (-311) (-1116) (-916))))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *2)
- (-11 (-5 *2 (-855 *3)) (-4 *3 (-12 (-311) (-1116) (-916)))
- (-5 *1 (-149 *3)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-75))) (-5 *1 (-148)))))
-(((*1 *1 *2 *1) (-11 (-5 *2 (-75)) (-5 *1 (-148)))))
-(((*1 *1 *2 *3) (-11 (-5 *3 (-1070 *2)) (-4 *2 (-257)) (-5 *1 (-147 *2)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *1 *1) (-11 (-5 *1 (-147 *2)) (-4 *2 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 (-349 *3))) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 (-349 *3))) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1070 *3)) (-5 *1 (-147 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-144)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-144)))))
-(((*1 *2 *2 *3) (-11 (-5 *2 (-1050)) (-5 *3 (-246)) (-5 *1 (-140)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1050)) (-5 *2 (-633 (-234))) (-5 *1 (-140)))))
-(((*1 *2 *3) (-11 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-234)))) (-5 *1 (-140)))))
-(((*1 *1) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))))
-(((*1 *1 *2 *2) (-11 (-4 *1 (-138 *2)) (-4 *2 (-145)))))
-(((*1 *2 *1)
- (-11 (-4 *1 (-138 *3)) (-4 *3 (-145)) (-4 *3 (-974)) (-4 *3 (-1116))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-69)) (-5 *1 (-135 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-131)))
- ((*1 *1 *2) (-11 (-5 *2 (-485)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3))))
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3)))
+ (|isDomain| *1 (|CoordinateSystems| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|))))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Point| *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|TranscendentalFunctionCategory|)
+ (|RadicalCategory|)))
+ (|isDomain| *1 (|CoordinateSystems| *3)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Binding|))) (|isDomain| *1 (|Contour|)))))
+(((*1 *1 *2 *1) (AND (|isDomain| *2 (|Binding|)) (|isDomain| *1 (|Contour|)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *3 (|Stream| *2)) (|ofCategory| *2 (|EuclideanDomain|))
+ (|isDomain| *1 (|ContinuedFraction| *2)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *1 *1)
+ (AND (|isDomain| *1 (|ContinuedFraction| *2))
+ (|ofCategory| *2 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| (|Fraction| *3)))
+ (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| (|Fraction| *3)))
+ (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|ContinuedFraction| *3))
+ (|ofCategory| *3 (|EuclideanDomain|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SubSpaceComponentProperty|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|SubSpaceComponentProperty|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *2 (|SpadAst|)) (|isDomain| *3 (|Environment|))
+ (|isDomain| *1 (|CompilerPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|SpadAst|)) (|isDomain| *2 (|Maybe| (|Elaboration|)))
+ (|isDomain| *1 (|CompilerPackage|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|String|))
+ (|isDomain| *2 (|List| (|Maybe| (|Elaboration|))))
+ (|isDomain| *1 (|CompilerPackage|)))))
+(((*1 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *1 *2 *2)
+ (AND (|ofCategory| *1 (|ComplexCategory| *2))
+ (|ofCategory| *2 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|ComplexCategory| *3))
+ (|ofCategory| *3 (|CommutativeRing|))
+ (|ofCategory| *3 (|RealNumberSystem|))
+ (|ofCategory| *3 (|TranscendentalFunctionCategory|))
+ (|isDomain| *2 (|Record| (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|BasicType|))
+ (|isDomain| *1 (|CommutativeOperation| *3)))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Commutator|)))
+ ((*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Commutator|)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091))))
- ((*1 *1 *1) (-4 *1 (-130))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|CombinatorialOpsCategory|))
+ (|isDomain| *2 (|Symbol|))))
+ ((*1 *1 *1) (|ofCategory| *1 (|CombinatorialOpsCategory|))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-128 *4 *2)) (-4 *2 (-363 *4))))
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-1005 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496))
- (-5 *1 (-128 *4 *2))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1005 *1)) (-4 *1 (-130))))
- ((*1 *1 *1 *2) (-11 (-4 *1 (-130)) (-5 *2 (-1091)))))
-(((*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))))
-(((*1 *1 *1 *1) (-4 *1 (-113)))
- ((*1 *2 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2 *3) (-11 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-129 *2)))))
-(((*1 *1 *1) (-4 *1 (-113)))
- ((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3))))
- ((*1 *2 *2) (-11 (-5 *1 (-129 *2)) (-4 *2 (-484)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *2)) (-4 *2 (-363 *4)) (-5 *1 (-128 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *2) (-11 (-4 *3 (-496)) (-5 *1 (-128 *3 *2)) (-4 *2 (-363 *3)))))
-(((*1 *1) (-5 *1 (-127))))
-(((*1 *2) (-11 (-5 *2 (-831)) (-5 *1 (-127)))))
+ (AND (|isDomain| *3 (|SegmentBinding| *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|SegmentBinding| *1))
+ (|ofCategory| *1 (|CombinatorialOpsCategory|))))
+ ((*1 *1 *1 *2)
+ (AND (|ofCategory| *1 (|CombinatorialOpsCategory|))
+ (|isDomain| *2 (|Symbol|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|)))
+ ((*1 *2 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|IntegerNumberSystem|))
+ (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)))))
+(((*1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|)))
+ ((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2))
+ (|ofCategory| *2 (|IntegerNumberSystem|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|FunctionSpace| *4))
+ (|isDomain| *1 (|CombinatorialFunction| *4 *2))
+ (|ofCategory| *4 (|IntegralDomain|)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|CombinatorialFunction| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3)))))
+(((*1 *1) (|isDomain| *1 (|Color|))))
+(((*1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|)))))
(((*1 *2 *3 *4 *4 *4 *4)
- (-11 (-5 *4 (-178))
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4))
- (|:| |yValues| (-1002 *4))))
- (-5 *1 (-123)) (-5 *3 (-584 (-584 (-855 *4)))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-837))
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123))))
+ (AND (|isDomain| *4 (|DoubleFloat|))
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| *4))))
+ (|:| |xValues| (|Segment| *4))
+ (|:| |yValues| (|Segment| *4))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))
+ (|isDomain| *3 (|List| (|List| (|Point| *4)))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|Plot|))
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|))))
((*1 *2 *3 *4 *4)
- (-11 (-5 *3 (-837)) (-5 *4 (-349 (-485)))
- (-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-178)))))
- (|:| |xValues| (-1002 (-178))) (|:| |yValues| (-1002 (-178)))))
- (-5 *1 (-123)))))
+ (AND (|isDomain| *3 (|Plot|)) (|isDomain| *4 (|Fraction| (|Integer|)))
+ (|isDomain| *2
+ (|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|)))))
+ (|:| |xValues| (|Segment| (|DoubleFloat|)))
+ (|:| |yValues| (|Segment| (|DoubleFloat|)))))
+ (|isDomain| *1 (|TwoDimensionalPlotClipping|)))))
(((*1 *1 *2)
- (-11 (-5 *2 (-831)) (-5 *1 (-122 *3 *4 *5)) (-13 *3 *2) (-4 *4 (-311))
- (-13 *5 (-907 *3 *4)))))
+ (AND (|isDomain| *2 (|PositiveInteger|))
+ (|isDomain| *1 (|CliffordAlgebra| *3 *4 *5)) (|ofType| *3 *2)
+ (|ofCategory| *4 (|Field|)) (|ofType| *5 (|QuadraticForm| *3 *4)))))
(((*1 *1 *1)
- (-11 (-4 *1 (-317 *2)) (-4 *1 (-121 *2)) (-4 *2 (-1130)) (-4 *2 (-69)))))
+ (AND (|ofCategory| *1 (|FiniteAggregate| *2))
+ (|ofCategory| *1 (|Collection| *2)) (|ofCategory| *2 (|Type|))
+ (|ofCategory| *2 (|BasicType|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5))
- (|:| |c2| (-349 *5)) (|:| |deg| (-695))))
- (-5 *1 (-118 *4 *5 *3)) (-4 *3 (-1156 (-349 *5))))))
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (|Fraction| *5))
+ (|:| |c2| (|Fraction| *5))
+ (|:| |deg| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|ChangeOfVariable| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *5))))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-118 *2 *4 *3))
- (-4 *3 (-1156 (-349 *4))))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-349 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5))
- (-5 *2 (-2 (|:| -2403 (-695)) (|:| -3958 *3) (|:| |radicand| *6)))
- (-5 *1 (-118 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))))
-(((*1 *2 *3)
- (|partial| -11 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-695))))
- (-5 *1 (-118 *4 *5 *3)) (-4 *3 (-1156 (-349 *5))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -3958 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-118 *4 *5 *3))
- (-4 *3 (-1156 (-349 *5))))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-114)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-114))))
- ((*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-114)))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *1) (-5 *1 (-114))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-114)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 (-114))) (-5 *1 (-111))))
- ((*1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-111)))))
-(((*1 *1) (-5 *1 (-111))))
-(((*1 *1) (-5 *1 (-111))))
-(((*1 *1) (-5 *1 (-111))))
-(((*1 *1) (-5 *1 (-111))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-750))) (-5 *1 (-110)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-157 (-109)))) (-5 *1 (-110)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-157 (-109)))) (-5 *1 (-110)))))
+ (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *2 (|UniqueFactorizationDomain|))
+ (|isDomain| *1 (|ChangeOfVariable| *2 *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|Fraction| *6))
+ (|ofCategory| *5 (|UniqueFactorizationDomain|))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))
+ (|isDomain| *2
+ (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *3)
+ (|:| |radicand| *6)))
+ (|isDomain| *1 (|ChangeOfVariable| *5 *6 *7))
+ (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *7 (|UnivariatePolynomialCategory| *3)))))
+(((*1 *2 *3)
+ (|partial| AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2
+ (|Record| (|:| |radicand| (|Fraction| *5))
+ (|:| |deg| (|NonNegativeInteger|))))
+ (|isDomain| *1 (|ChangeOfVariable| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *5))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|UniqueFactorizationDomain|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Record| (|:| |coef| (|Fraction| *5)) (|:| |poly| *3)))
+ (|isDomain| *1 (|ChangeOfVariable| *4 *5 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *5))))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Character|)))))
+(((*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Character|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Character|)))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *1) (|isDomain| *1 (|Character|))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| (|Character|)))
+ (|isDomain| *1 (|CharacterClass|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|CharacterClass|)))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|))))
+(((*1 *1) (|isDomain| *1 (|CharacterClass|))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|OperatorSignature|)))
+ (|isDomain| *1 (|Category|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|ConstructorCall| (|CategoryConstructor|))))
+ (|isDomain| *1 (|Category|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|ConstructorCall| (|CategoryConstructor|))))
+ (|isDomain| *1 (|Category|)))))
(((*1 *1 *1 *2)
- (-11 (-5 *2 (-584 (-485))) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485))
- (-13 *4 (-695)) (-4 *5 (-145)))))
+ (AND (|isDomain| *2 (|List| (|Integer|)))
+ (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|))
+ (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|)))))
(((*1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))))
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|)))))
(((*1 *1)
- (-11 (-5 *1 (-105 *2 *3 *4)) (-13 *2 (-485)) (-13 *3 (-695)) (-4 *4 (-145)))))
+ (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|))
+ (|ofType| *3 (|NonNegativeInteger|))
+ (|ofCategory| *4 (|CommutativeRing|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5))
+ (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|CommutativeRing|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *5)) (|ofCategory| *5 (|CommutativeRing|))
+ (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|))
+ (|ofType| *4 (|NonNegativeInteger|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|CardinalNumber|)))))
(((*1 *2 *1)
- (-11 (-5 *2 (-584 *5)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485))
- (-13 *4 (-695)) (-4 *5 (-145)))))
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))))
+(((*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))))
+(((*1 *2 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))))
+(((*1 *2 *1 *3)
+ (AND (|ofCategory| *1 (|CachableSet|)) (|isDomain| *3 (|NonNegativeInteger|))
+ (|isDomain| *2 (|Void|)))))
+(((*1 *1 *1 *1) (|partial| |ofCategory| *1 (|CancellationAbelianMonoid|))))
+(((*1 *1) (|isDomain| *1 (|ByteOrder|))))
+(((*1 *1) (|isDomain| *1 (|ByteOrder|))))
+(((*1 *1) (|isDomain| *1 (|ByteOrder|))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ByteBuffer|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ByteBuffer|)))))
+(((*1 *2 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ByteBuffer|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Byte|)))))
+(((*1 *1 *1 *2 *1)
+ (AND (|isDomain| *1 (|BinaryTree| *2)) (|ofCategory| *2 (|SetCategory|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *1 (|BinaryTree| *2)) (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|BinaryTournament| *3)))))
+(((*1 *1 *1 *2 *1)
+ (AND (|ofCategory| *1 (|BinaryTreeCategory| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Boolean|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))))
+(((*1 *1 *1 *1) (|isDomain| *1 (|Boolean|)))
+ ((*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))))
(((*1 *1 *2)
- (-11 (-5 *2 (-584 *5)) (-4 *5 (-145)) (-5 *1 (-105 *3 *4 *5)) (-13 *3 (-485))
- (-13 *4 (-695)))))
-(((*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-104)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-104)))))
-(((*1 *2) (-11 (-5 *2 (-82)) (-5 *1 (-104)))))
-(((*1 *2 *2) (-11 (-5 *2 (-82)) (-5 *1 (-104)))))
-(((*1 *2 *1 *3) (-11 (-4 *1 (-102)) (-5 *3 (-695)) (-5 *2 (-1186)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-101))))
-(((*1 *1) (-5 *1 (-100))))
-(((*1 *1) (-5 *1 (-100))))
-(((*1 *1) (-5 *1 (-100))))
-(((*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-99)))))
-(((*1 *2 *1) (-11 (-5 *2 (-695)) (-5 *1 (-99)))))
-(((*1 *2 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-99)))))
-(((*1 *1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-98)))))
-(((*1 *1 *1 *2 *1) (-11 (-5 *1 (-97 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-11 (-5 *1 (-97 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-96 *3)))))
-(((*1 *1 *1 *2 *1) (-11 (-4 *1 (-95 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-5 *1 (-82))) ((*1 *1 *1 *1) (-4 *1 (-93))))
-(((*1 *1 *1 *1) (-5 *1 (-82))) ((*1 *1 *1 *1) (-4 *1 (-93))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-91 *3)))))
-(((*1 *1 *2 *1) (-11 (-5 *1 (-91 *2)) (-4 *2 (-757)))))
-(((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-11 (-5 *2 (-695)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-11 (-5 *2 (-695)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *2) (-11 (-5 *2 (-82)) (-5 *1 (-90 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-89 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-11 (-4 *1 (-1036 *2)) (-4 *1 (-89 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-12 (-311) (-951 (-349 *2)))) (-5 *2 (-485)) (-5 *1 (-85 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3) (|partial| -11 (-5 *3 (-83)) (-5 *1 (-84 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-11 (-5 *2 (-83)) (-5 *1 (-84 *3)) (-4 *3 (-1014)))))
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|))
+ (|isDomain| *1 (|BinarySearchTree| *3)))))
+(((*1 *1 *2 *1)
+ (AND (|isDomain| *1 (|BinarySearchTree| *2))
+ (|ofCategory| *2 (|OrderedSet|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BrillhartTests| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *2)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BrillhartTests| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))
+ ((*1 *2 *3 *2)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|BinaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *1 *1 *1)
+ (AND (|ofCategory| *1 (|ShallowlyMutableAggregate| *2))
+ (|ofCategory| *1 (|BinaryRecursiveAggregate| *2))
+ (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|Join| (|Field|) (|RetractableTo| (|Fraction| *2))))
+ (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|BoundIntegerRoots| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))))
+(((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
(((*1 *2 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014))
- (-5 *1 (-84 *4))))
+ (AND (|isDomain| *2 (|BasicOperator|))
+ (|isDomain| *3 (|List| (|Mapping| *4 (|List| *4))))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))))
((*1 *2 *2 *3)
- (-11 (-5 *2 (-83)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-84 *4))))
- ((*1 *2 *3)
- (|partial| -11 (-5 *3 (-83)) (-5 *2 (-584 (-1 *4 (-584 *4))))
- (-5 *1 (-84 *4)) (-4 *4 (-1014)))))
-(((*1 *2 *1) (-11 (-5 *2 (-584 (-877))) (-5 *1 (-75))))
- ((*1 *2 *1) (-11 (-5 *2 (-42 (-1074) (-697))) (-5 *1 (-83)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))))
-(((*1 *2 *1) (-11 (-5 *2 (-82)) (-5 *1 (-83)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1 (-82) (-83) (-83))) (-5 *1 (-83)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-1 (-82) (-83) (-83))) (-5 *1 (-83)))))
-(((*1 *2 *1 *3) (-11 (-5 *3 (-447)) (-5 *2 (-82)) (-5 *1 (-83)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-447)) (-5 *1 (-83))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1074)) (-5 *1 (-83)))))
-(((*1 *1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-83))))
- ((*1 *1 *1 *2 *3) (-11 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-83)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-42 (-1074) (-697))) (-5 *1 (-83)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-76 *3)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-75)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-73 *3)))))
-(((*1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-11 (-4 *1 (-73 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-11 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2))
- (-4 *2 (-962)) (-5 *1 (-71 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2))
- (-4 *4 (-628 *2 *5 *6)))))
+ (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *4 *4))
+ (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))))
+ ((*1 *2 *3)
+ (|partial| AND (|isDomain| *3 (|BasicOperator|))
+ (|isDomain| *2 (|List| (|Mapping| *4 (|List| *4))))
+ (|isDomain| *1 (|BasicOperatorFunctions1| *4))
+ (|ofCategory| *4 (|SetCategory|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|List| (|Property|))) (|isDomain| *1 (|Binding|))))
+ ((*1 *2 *1)
+ (AND (|isDomain| *2 (|AssociationList| (|String|) (|None|)))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *2 *1)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) #1=(|BasicOperator|) #1#))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| (|Boolean|) #1=(|BasicOperator|) #1#))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Identifier|)) (|isDomain| *2 (|Boolean|))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|None|))
+ (|isDomain| *1 (|BasicOperator|))))
+ ((*1 *1 *1 *2 *3)
+ (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|None|))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|AssociationList| (|String|) (|None|)))
+ (|isDomain| *1 (|BasicOperator|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|BinaryOperation| *3)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|Identifier|)) (|isDomain| *3 (|List| (|Property|)))
+ (|isDomain| *1 (|Binding|)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|ofCategory| *1 (|BagAggregate| *3)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *1)
+ (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))))
+(((*1 *2 *3)
+ (AND (|has| *2 (ATTRIBUTE (|commutative| "*")))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|BezoutMatrix| *2 *3 *4 *5 *6))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|MatrixCategory| *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-11 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2))
- (-4 *2 (-962)) (-5 *1 (-71 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2))
- (-4 *4 (-628 *2 *5 *6)))))
+ (AND (|has| *2 (ATTRIBUTE (|commutative| "*")))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *2))
+ (|ofCategory| *2 (|Ring|))
+ (|isDomain| *1 (|BezoutMatrix| *2 *3 *4 *5 *6))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))
+ (|ofCategory| *4 (|MatrixCategory| *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-71 *4 *3 *2 *5 *6))
- (-4 *3 (-1156 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6))
+ (|isDomain| *1 (|BezoutMatrix| *4 *3 *2 *5 *6))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-71 *4 *3 *2 *5 *6))
- (-4 *3 (-1156 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *1 (-70 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-70 *3)))))
+ (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6))
+ (|isDomain| *1 (|BezoutMatrix| *4 *3 *2 *5 *6))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *6 (|FiniteLinearAggregate| *4)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|BalancedBinaryTree| *3))
+ (|ofCategory| *3 (|SetCategory|)))))
+(((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|BalancedBinaryTree| *3)))))
(((*1 *1 *1 *1 *2)
- (-11 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-70 *3))))
- ((*1 *2 *1 *3) (-11 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-70 *2)) (-4 *2 (-1014)))))
+ (AND (|isDomain| *2 (|Mapping| *3 *3 *3 *3 *3))
+ (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|BalancedBinaryTree| *3))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2))
+ (|isDomain| *1 (|BalancedBinaryTree| *2))
+ (|ofCategory| *2 (|SetCategory|)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-70 *2))))
+ (AND (|isDomain| *3 (|Mapping| (|List| *2) *2 *2 *2))
+ (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|BalancedBinaryTree| *2))))
((*1 *1 *1 *2 *3)
- (-11 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-70 *2)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-69)) (-5 *2 (-82)))))
+ (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *2 (|SetCategory|))
+ (|isDomain| *1 (|BalancedBinaryTree| *2)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *3)
- (-11 (-4 *4 (-12 (-392) (-117))) (-5 *2 (-347 *3)) (-5 *1 (-67 *4 *3))
- (-4 *3 (-1156 *4))))
- ((*1 *2 *3 *4)
- (-11 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-12 (-392) (-117)))
- (-5 *2 (-347 *3)) (-5 *1 (-67 *5 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-66 *3))))
- ((*1 *1 *2 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-66 *3))))
- ((*1 *1 *2) (-11 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-66 *3)))))
-(((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-59 *3)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-311)) (-4 *5 (-496))
- (-5 *2
- (-2 (|:| |minor| (-584 (-831))) (|:| -3269 *3)
- (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3))))
- (-5 *1 (-58 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-58 *4 *5))
- (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))))
-(((*1 *2 *3 *4)
- (-11 (-4 *5 (-496))
- (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831))))))
- (-5 *1 (-58 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-695)) (-5 *1 (-55 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2) (-11 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-55 *3)))))
+ (AND (|ofCategory| *4 (|Join| (|GcdDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|BalancedFactorisation| *4 *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))
+ ((*1 *2 *3 *4)
+ (AND (|isDomain| *4 (|List| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))
+ (|ofCategory| *5 (|Join| (|GcdDomain|) (|CharacteristicZero|)))
+ (|isDomain| *2 (|Factored| *3))
+ (|isDomain| *1 (|BalancedFactorisation| *5 *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3 (|Integer|))) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Automorphism| *3))))
+ ((*1 *1 *2 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Automorphism| *3))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|))
+ (|isDomain| *1 (|Automorphism| *3)))))
+(((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|))
+ (|isDomain| *1 (|ArrayStack| *3)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |minor| (|List| #1=(|PositiveInteger|))) (|:| |eq| *3)
+ (|:| |minors| (|List| (|List| #1#)))
+ (|:| |ops| (|List| *3))))
+ (|isDomain| *1 (|AssociatedEquations| *5 *3))
+ (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|Vector| (|Matrix| *4)))
+ (|isDomain| *1 (|AssociatedEquations| *4 *5))
+ (|isDomain| *3 (|Matrix| *4))
+ (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *4)))))
+(((*1 *2 *3 *4)
+ (AND (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *2
+ (|Record| (|:| |mat| (|Matrix| *5))
+ (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))))
+ (|isDomain| *1 (|AssociatedEquations| *5 *3))
+ (|isDomain| *4 (|PositiveInteger|))
+ (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|OneDimensionalArray| *3)) (|ofCategory| *3 (|Type|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|))
+ (|isDomain| *1 (|OneDimensionalArray| *3)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-485)) (-4 *1 (-54 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-323 *4))
- (-4 *5 (-323 *4)))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *3 *5))
+ (|ofCategory| *4 (|Type|))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4)))))
(((*1 *1 *1 *2 *3)
- (-11 (-5 *2 (-485)) (-4 *1 (-54 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-323 *4))
- (-4 *3 (-323 *4)))))
-(((*1 *1) (-5 *1 (-52))))
+ (AND (|isDomain| *2 (|Integer|))
+ (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *3))
+ (|ofCategory| *4 (|Type|))
+ (|ofCategory| *5 (|FiniteLinearAggregate| *4))
+ (|ofCategory| *3 (|FiniteLinearAggregate| *4)))))
+(((*1 *1) (|isDomain| *1 (|Arity|))))
(((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-1091))) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-51 *4 *5 *2))
- (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))))))
+ (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|ApplyRules| *4 *5 *2))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4)))))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014))
- (-4 *5 (-12 (-962) (-797 *4) (-554 (-801 *4))))
- (-4 *2 (-12 (-363 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-51 *4 *5 *2))))
+ (AND (|isDomain| *3 (|List| (|RewriteRule| *4 *5 *2)))
+ (|ofCategory| *4 (|SetCategory|))
+ (|ofCategory| *5
+ (|Join| (|Ring|) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4)
+ (|ConvertibleTo| (|Pattern| *4))))
+ (|isDomain| *1 (|ApplyRules| *4 *5 *2))))
((*1 *2 *3 *2 *4)
- (-11 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014))
- (-4 *6 (-12 (-962) (-797 *5) (-554 (-801 *5))))
- (-4 *2 (-12 (-363 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-51 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-48)))))
-(((*1 *2 *1) (-11 (-5 *2 (-1016)) (-5 *1 (-48)))))
-(((*1 *2 *1) (-11 (-5 *2 (-697)) (-5 *1 (-48)))))
+ (AND (|isDomain| *3 (|List| (|RewriteRule| *5 *6 *2)))
+ (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|SetCategory|))
+ (|ofCategory| *6
+ (|Join| (|Ring|) (|PatternMatchable| *5)
+ (|ConvertibleTo| (|Pattern| *5))))
+ (|ofCategory| *2
+ (|Join| (|FunctionSpace| *6) (|PatternMatchable| *5)
+ (|ConvertibleTo| (|Pattern| *5))))
+ (|isDomain| *1 (|ApplyRules| *5 *6 *2)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *3 (|None|))
+ (|isDomain| *1 (|Any|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|Any|)))))
+(((*1 *2 *1) (AND (|isDomain| *2 (|None|)) (|isDomain| *1 (|Any|)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4))
- (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Matrix| *3)))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4))
- (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Matrix| *3)))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-40 *3 *4))
- (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *2 (|List| (|Matrix| *3)))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
+ (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
(((*1 *2)
- (-11 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-40 *3 *4)) (-4 *4 (-360 *3)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-40 *4 *3)) (-4 *3 (-360 *4)))))
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4))
+ (|isDomain| *1 (|AlgebraPackage| *3 *4))
+ (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|NonNegativeInteger|))
+ (|isDomain| *1 (|AlgebraPackage| *4 *3))
+ (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))))
(((*1 *2 *3 *2 *4)
- (-11 (-5 *3 (-83)) (-5 *4 (-695)) (-4 *5 (-12 (-392) (-951 (-485))))
- (-4 *5 (-496)) (-5 *1 (-38 *5 *2)) (-4 *2 (-363 *5))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *5 (-551 $)) $))
- (-14 -3000 ((-1040 *5 (-551 $)) $))
- (-14 -3950 ($ (-1040 *5 (-551 $))))))))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2 (-363 *3))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $))))))))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2 (-363 *3))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $))))))))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-12 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2 (-363 *3))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $))))))))))
-(((*1 *2 *3)
- (-11 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-38 *4 *3))
- (-4 *3
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $))
- (-14 -3000 ((-1040 *4 (-551 $)) $))
- (-14 -3950 ($ (-1040 *4 (-551 $))))))))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $)))))))))
+ (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|NonNegativeInteger|))
+ (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *5 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *5 *2))
+ (|ofCategory| *2 (|FunctionSpace| *5))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *5
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *5
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *5
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|))))
+ (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2 (|FunctionSpace| *3))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *3)
+ (AND (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|SparseUnivariatePolynomial| *3))
+ (|isDomain| *1 (|AlgebraicManipulations| *4 *3))
+ (|ofCategory| *3
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *4
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $)))))))))
((*1 *2 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $)))))))))
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $)))))))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 *2))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $))
- (-14 -3000 ((-1040 *4 (-551 $)) $))
- (-14 -3950 ($ (-1040 *4 (-551 $)))))))
- (-4 *4 (-496)) (-5 *1 (-38 *4 *2))))
+ (AND (|isDomain| *3 (|List| *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *4
+ (|Kernel|
+ $)))))))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *4 *2))))
((*1 *2 *2 *3)
- (-11 (-5 *3 (-584 (-551 *2)))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *4 (-551 $)) $))
- (-14 -3000 ((-1040 *4 (-551 $)) $))
- (-14 -3950 ($ (-1040 *4 (-551 $)))))))
- (-4 *4 (-496)) (-5 *1 (-38 *4 *2)))))
-(((*1 *2 *2)
- (-11 (-4 *3 (-496)) (-5 *1 (-38 *3 *2))
- (-4 *2
- (-12 (-311) (-253)
- (-10 -8 (-14 -3001 ((-1040 *3 (-551 $)) $))
- (-14 -3000 ((-1040 *3 (-551 $)) $))
- (-14 -3950 ($ (-1040 *3 (-551 $))))))))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1156 *4)) (-5 *2 (-1186))
- (-5 *1 (-37 *4 *5 *6 *7)) (-4 *6 (-1156 (-349 *5))) (-13 *7 *6))))
-(((*1 *2 *3) (-11 (-5 *2 (-82)) (-5 *1 (-36 *3)) (-4 *3 (-1156 (-45))))))
+ (AND (|isDomain| *3 (|List| (|Kernel| *2)))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *4
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *4
+ (|Kernel|
+ $)))))))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *4 *2)))))
+(((*1 *2 *2)
+ (AND (|ofCategory| *3 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicManipulations| *3 *2))
+ (|ofCategory| *2
+ (|Join| (|Field|) (|ExpressionSpace|)
+ (CATEGORY |domain|
+ (SIGNATURE |numer|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |denom|
+ ((|SparseMultivariatePolynomial| *3
+ (|Kernel| $))
+ $))
+ (SIGNATURE |coerce|
+ ($
+ (|SparseMultivariatePolynomial| *3
+ (|Kernel|
+ $))))))))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|))
+ (|ofCategory| *5 (|UnivariatePolynomialCategory| *4))
+ (|isDomain| *2 (|Void|))
+ (|isDomain| *1 (|AlgebraicFunctionField| *4 *5 *6 *7))
+ (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5)))
+ (|ofType| *7 *6))))
+(((*1 *2 *3)
+ (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AlgFactor| *3))
+ (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|))))))
(((*1 *2 *3 *1)
- (-11 (-4 *1 (-33 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-5 *2 (-633 (-2 (|:| -3864 *3) (|:| |entry| *4)))))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-31)) (-5 *2 (-82)))))
+ (AND (|ofCategory| *1 (|AssociationListAggregate| *3 *4))
+ (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))
+ (|isDomain| *2 (|Maybe| (|Record| (|:| |key| *3) (|:| |entry| *4)))))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|)))))
(((*1 *2 *3 *4)
- (-11 (-5 *4 (-485)) (-4 *2 (-363 *3)) (-5 *1 (-29 *3 *2)) (-4 *3 (-951 *4))
- (-4 *3 (-496)))))
-(((*1 *2 *3)
- (-11 (-5 *3 (-584 *5)) (-4 *5 (-363 *4)) (-4 *4 (-496)) (-5 *2 (-773))
- (-5 *1 (-29 *4 *5)))))
+ (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *2 (|FunctionSpace| *3))
+ (|isDomain| *1 (|AlgebraicFunction| *3 *2))
+ (|ofCategory| *3 (|RetractableTo| *4))
+ (|ofCategory| *3 (|IntegralDomain|)))))
+(((*1 *2 *3)
+ (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|OutputForm|))
+ (|isDomain| *1 (|AlgebraicFunction| *4 *5)))))
(((*1 *2 *3 *2)
- (-11 (-5 *3 (-1086 *2)) (-4 *2 (-363 *4)) (-4 *4 (-496))
- (-5 *1 (-29 *4 *2)))))
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *2))
+ (|ofCategory| *2 (|FunctionSpace| *4))
+ (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *1 (|AlgebraicFunction| *4 *2)))))
(((*1 *1 *2 *3 *3 *4 *4)
- (-11 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-349 (-485))))
- (-5 *1 (-27)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *4))))
- ((*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *3)))))
-(((*1 *1 *2 *3) (-11 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-24))))
- ((*1 *1 *2) (-11 (-5 *2 (-1086 *1)) (-4 *1 (-24))))
- ((*1 *1 *2) (-11 (-5 *2 (-858 *1)) (-4 *1 (-24))))
- ((*1 *1 *1 *2) (-11 (-5 *2 (-1091)) (-4 *1 (-26 *3)) (-4 *3 (-496))))
- ((*1 *1 *1) (-11 (-4 *1 (-26 *2)) (-4 *2 (-496)))))
-(((*1 *2 *3 *4)
- (-11 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-11 (-5 *3 (-1086 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-11 (-5 *3 (-858 *1)) (-4 *1 (-24)) (-5 *2 (-584 *1))))
- ((*1 *2 *1 *3)
- (-11 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *4))))
- ((*1 *2 *1) (-11 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-26 *3)))))
-(((*1 *2 *1 *1) (-11 (-4 *1 (-20)) (-5 *2 (-82)))))
-((-1215 . 628642) (-1216 . 628246) (-1217 . 627944) (-1218 . 627548)
- (-1219 . 627427) (-1220 . 627325) (-1221 . 627212) (-1222 . 627096)
- (-1223 . 627043) (-1224 . 626909) (-1225 . 626834) (-1226 . 626678)
- (-1227 . 626450) (-1228 . 625486) (-1229 . 625239) (-1230 . 624955)
- (-1231 . 624671) (-1232 . 624387) (-1233 . 624068) (-1234 . 623976)
- (-1235 . 623884) (-1236 . 623792) (-1237 . 623700) (-1238 . 623608)
- (-1239 . 623516) (-1240 . 623421) (-1241 . 623326) (-1242 . 623234)
- (-1243 . 623142) (-1244 . 623050) (-1245 . 622958) (-1246 . 622866)
- (-1247 . 622764) (-1248 . 622662) (-1249 . 622560) (-1250 . 622468)
- (-1251 . 622417) (-1252 . 622365) (-1253 . 622295) (-1254 . 621875)
- (-1255 . 621681) (-1256 . 621654) (-1257 . 621531) (-1258 . 621408)
- (-1259 . 621264) (-1260 . 621094) (-1261 . 620970) (-1262 . 620731)
- (-1263 . 620658) (-1264 . 620433) (-1265 . 620187) (-1266 . 620134)
- (-1267 . 619956) (-1268 . 619787) (-1269 . 619711) (-1270 . 619638)
- (-1271 . 619485) (-1272 . 619332) (-1273 . 619148) (-1274 . 618967)
- (-1275 . 618912) (-1276 . 618857) (-1277 . 618784) (-1278 . 618708)
- (-1279 . 618631) (-1280 . 618563) (-1281 . 618420) (-1282 . 618313)
- (-1283 . 618245) (-1284 . 618175) (-1285 . 618105) (-1286 . 618055)
- (-1287 . 618005) (-1288 . 617955) (-1289 . 617834) (-1290 . 617518)
- (-1291 . 617449) (-1292 . 617370) (-1293 . 617251) (-1294 . 617174)
- (-1295 . 617097) (-1296 . 616944) (-1297 . 616795) (-1298 . 616719)
- (-1299 . 616662) (-1300 . 616590) (-1301 . 616527) (-1302 . 616464)
- (-1303 . 616403) (-1304 . 616331) (-1305 . 616217) (-1306 . 616166)
- (-1307 . 616112) (-1308 . 616061) (-1309 . 616010) (-1310 . 615982)
- (-1311 . 615954) (-1312 . 615926) (-1313 . 615882) (-1314 . 615811)
- (-1315 . 615760) (-1316 . 615712) (-1317 . 615661) (-1318 . 615609)
- (-1319 . 615493) (-1320 . 615377) (-1321 . 615285) (-1322 . 615193)
- (-1323 . 615070) (-1324 . 615004) (-1325 . 614938) (-1326 . 614879)
- (-1327 . 614851) (-1328 . 614823) (-1329 . 614795) (-1330 . 614767)
- (-1331 . 614657) (-1332 . 614606) (-1333 . 614555) (-1334 . 614504)
- (-1335 . 614453) (-1336 . 614402) (-1337 . 614351) (-1338 . 614323)
- (-1339 . 614295) (-1340 . 614267) (-1341 . 614239) (-1342 . 614211)
- (-1343 . 614183) (-1344 . 614155) (-1345 . 614127) (-1346 . 614099)
- (-1347 . 613996) (-1348 . 613944) (-1349 . 613778) (-1350 . 613594)
- (-1351 . 613383) (-1352 . 613268) (-1353 . 613035) (-1354 . 612945)
- (-1355 . 612830) (-1356 . 612432) (-1357 . 612214) (-1358 . 612165)
- (-1359 . 612137) (-1360 . 612061) (-1361 . 611962) (-1362 . 611863)
- (-1363 . 611764) (-1364 . 611665) (-1365 . 611566) (-1366 . 611467)
- (-1367 . 611309) (-1368 . 611233) (-1369 . 611066) (-1370 . 611008)
- (-1371 . 610950) (-1372 . 610641) (-1373 . 610387) (-1374 . 610303)
- (-1375 . 610227) (-1376 . 610095) (-1377 . 610037) (-1378 . 609985)
- (-1379 . 609903) (-1380 . 609828) (-1381 . 609757) (-1382 . 609703)
- (-1383 . 609652) (-1384 . 609578) (-1385 . 609504) (-1386 . 609423)
- (-1387 . 609342) (-1388 . 609287) (-1389 . 609213) (-1390 . 609139)
- (-1391 . 609065) (-1392 . 608988) (-1393 . 608934) (-1394 . 608876)
- (-1395 . 608777) (-1396 . 608678) (-1397 . 608579) (-1398 . 608480)
- (-1399 . 608381) (-1400 . 608282) (-1401 . 608183) (-1402 . 608069)
- (-1403 . 607955) (-1404 . 607841) (-1405 . 607727) (-1406 . 607613)
- (-1407 . 607499) (-1408 . 607382) (-1409 . 607306) (-1410 . 607230)
- (-1411 . 606843) (-1412 . 606498) (-1413 . 606396) (-1414 . 606135)
- (-1415 . 606033) (-1416 . 605828) (-1417 . 605715) (-1418 . 605613)
- (-1419 . 605456) (-1420 . 605367) (-1421 . 605273) (-1422 . 605193)
- (-1423 . 605119) (-1424 . 605041) (-1425 . 604982) (-1426 . 604924)
- (-1427 . 604822) (-7 . 604794) (-8 . 604766) (-9 . 604738) (-1431 . 604619)
- (-1432 . 604537) (-1433 . 604455) (-1434 . 604373) (-1435 . 604291)
- (-1436 . 604209) (-1437 . 604115) (-1438 . 604045) (-1439 . 603975)
- (-1440 . 603884) (-1441 . 603790) (-1442 . 603708) (-1443 . 603626)
- (-1444 . 603528) (-1445 . 603368) (-1446 . 603170) (-1447 . 603034)
- (-1448 . 602934) (-1449 . 602834) (-1450 . 602741) (-1451 . 602682)
- (-1452 . 602349) (-1453 . 602249) (-1454 . 602131) (-1455 . 601919)
- (-1456 . 601740) (-1457 . 601582) (-1458 . 601379) (-1459 . 600961)
- (-1460 . 600910) (-1461 . 600801) (-1462 . 600686) (-1463 . 600617)
- (-1464 . 600548) (-1465 . 600479) (-1466 . 600413) (-1467 . 600288)
- (-1468 . 600071) (-1469 . 599993) (-1470 . 599943) (-1471 . 599872)
- (-1472 . 599729) (-1473 . 599588) (-1474 . 599510) (-1475 . 599432)
- (-1476 . 599376) (-1477 . 599320) (-1478 . 599247) (-1479 . 599107)
- (-1480 . 599054) (-1481 . 598995) (-1482 . 598936) (-1483 . 598781)
- (-1484 . 598729) (-1485 . 598612) (-1486 . 598495) (-1487 . 598378)
- (-1488 . 598247) (-1489 . 597968) (-1490 . 597833) (-1491 . 597777)
- (-1492 . 597721) (-1493 . 597662) (-1494 . 597603) (-1495 . 597547)
- (-1496 . 597491) (-1497 . 597294) (-1498 . 594952) (-1499 . 594825)
- (-1500 . 594680) (-1501 . 594552) (-1502 . 594500) (-1503 . 594448)
- (-1504 . 594396) (-1505 . 590358) (-1506 . 590264) (-1507 . 590125)
- (-1508 . 589916) (-1509 . 589814) (-1510 . 589712) (-1511 . 588797)
- (-1512 . 588721) (-1513 . 588592) (-1514 . 588467) (-1515 . 588390)
- (-1516 . 588313) (-1517 . 588186) (-1518 . 588059) (-1519 . 587893)
- (-1520 . 587766) (-1521 . 587639) (-1522 . 587422) (-1523 . 586988)
- (-1524 . 586624) (-1525 . 586572) (-1526 . 586513) (-1527 . 586425)
- (-1528 . 586337) (-1529 . 586246) (-1530 . 586155) (-1531 . 586064)
- (-1532 . 585973) (-1533 . 585882) (-1534 . 585791) (-1535 . 585700)
- (-1536 . 585609) (-1537 . 585518) (-1538 . 585427) (-1539 . 585336)
- (-1540 . 585245) (-1541 . 585154) (-1542 . 585063) (-1543 . 584972)
- (-1544 . 584881) (-1545 . 584790) (-1546 . 584699) (-1547 . 584608)
- (-1548 . 584517) (-1549 . 584426) (-1550 . 584335) (-1551 . 584244)
- (-1552 . 584153) (-1553 . 584062) (-1554 . 583971) (-1555 . 583809)
- (-1556 . 583701) (-1557 . 583458) (-1558 . 583171) (-1559 . 582976)
- (-1560 . 582820) (-1561 . 582660) (-1562 . 582609) (-1563 . 582547)
- (-1564 . 582496) (-1565 . 582433) (-1566 . 582380) (-1567 . 582328)
- (-1568 . 582276) (-1569 . 582224) (-1570 . 582134) (-1571 . 581951)
- (-1572 . 581797) (-1573 . 581717) (-1574 . 581637) (-1575 . 581557)
- (-1576 . 581427) (-1577 . 581203) (-1578 . 581175) (-1579 . 581147)
- (-1580 . 581119) (-1581 . 581039) (-1582 . 580962) (-1583 . 580885)
- (-1584 . 580804) (-1585 . 580745) (-1586 . 580587) (-1587 . 580394)
- (-1588 . 579909) (-1589 . 579667) (-1590 . 579405) (-1591 . 579304)
- (-1592 . 579223) (-1593 . 579142) (-1594 . 579072) (-1595 . 579002)
- (-1596 . 578844) (-1597 . 578540) (-1598 . 578312) (-1599 . 578190)
- (-1600 . 578132) (-1601 . 578070) (-1602 . 578008) (-1603 . 577943)
- (-1604 . 577881) (-1605 . 577602) (-1606 . 577534) (-1607 . 577324)
- (-1608 . 577272) (-1609 . 577218) (-1610 . 577127) (-1611 . 577040)
- (-1612 . 575293) (-1613 . 575214) (-1614 . 574469) (-1615 . 574352)
- (-1616 . 574146) (-1617 . 573985) (-1618 . 573824) (-1619 . 573664)
- (-1620 . 573526) (-1621 . 573432) (-1622 . 573334) (-1623 . 573240)
- (-1624 . 573126) (-1625 . 573044) (-1626 . 572947) (-1627 . 572751)
- (-1628 . 572660) (-1629 . 572566) (-1630 . 572499) (-1631 . 572430)
- (-1632 . 572378) (-1633 . 572319) (-1634 . 572245) (-1635 . 572193)
- (-1636 . 572036) (-1637 . 571879) (-1638 . 571727) (-1639 . 570969)
- (-1640 . 570658) (-1641 . 570306) (-1642 . 570089) (-1643 . 569826)
- (-1644 . 569451) (-1645 . 569267) (-1646 . 569133) (-1647 . 568967)
- (-1648 . 568801) (-1649 . 568667) (-1650 . 568533) (-1651 . 568399)
- (-1652 . 568265) (-1653 . 568134) (-1654 . 568003) (-1655 . 567872)
- (-1656 . 567492) (-1657 . 567366) (-1658 . 567238) (-1659 . 566988)
- (-1660 . 566865) (-1661 . 566615) (-1662 . 566492) (-1663 . 566242)
- (-1664 . 566119) (-1665 . 565836) (-1666 . 565565) (-1667 . 565292)
- (-1668 . 564994) (-1669 . 564892) (-1670 . 564747) (-1671 . 564606)
- (-1672 . 564455) (-1673 . 564294) (-1674 . 564206) (-1675 . 564178)
- (-1676 . 564096) (-1677 . 563999) (-1678 . 563531) (-1679 . 563180)
- (-1680 . 562747) (-1681 . 562608) (-1682 . 562538) (-1683 . 562468)
- (-1684 . 562398) (-1685 . 562307) (-1686 . 562216) (-1687 . 562125)
- (-1688 . 562034) (-1689 . 561943) (-1690 . 561857) (-1691 . 561771)
- (-1692 . 561685) (-1693 . 561599) (-1694 . 561513) (-1695 . 561439)
- (-1696 . 561334) (-1697 . 561108) (-1698 . 561030) (-1699 . 560955)
- (-1700 . 560862) (-1701 . 560758) (-1702 . 560662) (-1703 . 560493)
- (-1704 . 560416) (-1705 . 560339) (-1706 . 560248) (-1707 . 560157)
- (-1708 . 559957) (-1709 . 559804) (-1710 . 559651) (-1711 . 559498)
- (-1712 . 559345) (-1713 . 559192) (-1714 . 559039) (-1715 . 558973)
- (-1716 . 558820) (-1717 . 558667) (-1718 . 558514) (-1719 . 558361)
- (-1720 . 558208) (-1721 . 558055) (-1722 . 557902) (-1723 . 557749)
- (-1724 . 557675) (-1725 . 557601) (-1726 . 557546) (-1727 . 557491)
- (-1728 . 557436) (-1729 . 557381) (-1730 . 557310) (-1731 . 557217)
- (-1732 . 557031) (-1733 . 556934) (-1734 . 556837) (-1735 . 556639)
- (-1736 . 556541) (-1737 . 556353) (-1738 . 556260) (-1739 . 556133)
- (-1740 . 556006) (-1741 . 555879) (-1742 . 555811) (-1743 . 555695)
- (-1744 . 555579) (-1745 . 555463) (-1746 . 555410) (-1747 . 555325)
- (-1748 . 555240) (-1749 . 554932) (-1750 . 554877) (-1751 . 554225)
- (-1752 . 553910) (-1753 . 553626) (-1754 . 553508) (-1755 . 553389)
- (-1756 . 553330) (-1757 . 553271) (-1758 . 553220) (-1759 . 553169)
- (-1760 . 553118) (-1761 . 553065) (-1762 . 553012) (-1763 . 552953)
- (-1764 . 552840) (-1765 . 552727) (-1766 . 552560) (-1767 . 552468)
- (-1768 . 552355) (-1769 . 552271) (-1770 . 552156) (-1771 . 552065)
- (-1772 . 551974) (-1773 . 551853) (-1774 . 551666) (-1775 . 551614)
- (-1776 . 551559) (-1777 . 551372) (-1778 . 551249) (-1779 . 551176)
- (-1780 . 551103) (-1781 . 550983) (-1782 . 550910) (-1783 . 550837)
- (-1784 . 550497) (-1785 . 550424) (-1786 . 550204) (-1787 . 549871)
- (-1788 . 549688) (-1789 . 549545) (-1790 . 549185) (-1791 . 549017)
- (-1792 . 548849) (-1793 . 548593) (-1794 . 548337) (-1795 . 548142)
- (-1796 . 547947) (-1797 . 547353) (-1798 . 547277) (-1799 . 547138)
- (-1800 . 546731) (-1801 . 546604) (-1802 . 546447) (-1803 . 546130)
- (-1804 . 545650) (-1805 . 545170) (-1806 . 544668) (-1807 . 544600)
- (-1808 . 544529) (-1809 . 544458) (-1810 . 544286) (-1811 . 544167)
- (-1812 . 544048) (-1813 . 543972) (-1814 . 543896) (-1815 . 543623)
- (-1816 . 543509) (-1817 . 543458) (-1818 . 543407) (-1819 . 543356)
- (-1820 . 543305) (-1821 . 543254) (-1822 . 543113) (-1823 . 542940)
- (-1824 . 542709) (-1825 . 542523) (-1826 . 542495) (-1827 . 542467)
- (-1828 . 542439) (-1829 . 542411) (-1830 . 542383) (-1831 . 542355)
- (-1832 . 542327) (-1833 . 542276) (-1834 . 542210) (-1835 . 542120)
- (-1836 . 541749) (-1837 . 541598) (-1838 . 541447) (-1839 . 541242)
- (-1840 . 541120) (-1841 . 541046) (-1842 . 540969) (-1843 . 540895)
- (-1844 . 540818) (-1845 . 540741) (-1846 . 540667) (-1847 . 540590)
- (-1848 . 540357) (-1849 . 540204) (-1850 . 539909) (-1851 . 539756)
- (-1852 . 539434) (-1853 . 539296) (-1854 . 539158) (-1855 . 539078)
- (-1856 . 538998) (-1857 . 538734) (-1858 . 538003) (-1859 . 537867)
- (-1860 . 537777) (-1861 . 537642) (-1862 . 537575) (-1863 . 537507)
- (-1864 . 537420) (-1865 . 537333) (-1866 . 537166) (-1867 . 537092)
- (-1868 . 536948) (-1869 . 536488) (-1870 . 536109) (-1871 . 535347)
- (-1872 . 535203) (-1873 . 535059) (-1874 . 534897) (-1875 . 534660)
- (-1876 . 534520) (-1877 . 534374) (-1878 . 534135) (-1879 . 533899)
- (-1880 . 533660) (-1881 . 533468) (-1882 . 533345) (-1883 . 533141)
- (-1884 . 532918) (-1885 . 532679) (-1886 . 532538) (-1887 . 532400)
- (-1888 . 532261) (-1889 . 532008) (-1890 . 531752) (-1891 . 531595)
- (-1892 . 531441) (-1893 . 531201) (-1894 . 530916) (-1895 . 530778)
- (-1896 . 530691) (-1897 . 530025) (-1898 . 529849) (-1899 . 529667)
- (-1900 . 529491) (-1901 . 529309) (-1902 . 529130) (-1903 . 528951)
- (-1904 . 528764) (-1905 . 528382) (-1906 . 528203) (-1907 . 528024)
- (-1908 . 527837) (-1909 . 527455) (-1910 . 526462) (-1911 . 526078)
- (-1912 . 525694) (-1913 . 525576) (-1914 . 525419) (-1915 . 525277)
- (-1916 . 525160) (-1917 . 524978) (-1918 . 524854) (-1919 . 524565)
- (-1920 . 524276) (-1921 . 523993) (-1922 . 523710) (-1923 . 523432)
- (-1924 . 523344) (-1925 . 523259) (-1926 . 523162) (-1927 . 523065)
- (-1928 . 522845) (-1929 . 522745) (-1930 . 522642) (-1931 . 522564)
- (-1932 . 522239) (-1933 . 521947) (-1934 . 521874) (-1935 . 521489)
- (-1936 . 521461) (-1937 . 521262) (-1938 . 521088) (-1939 . 520847)
- (-1940 . 520792) (-1941 . 520717) (-1942 . 520349) (-1943 . 520234)
- (-1944 . 520157) (-1945 . 520084) (-1946 . 520003) (-1947 . 519922)
- (-1948 . 519841) (-1949 . 519740) (-1950 . 519681) (-1951 . 519628)
- (-1952 . 519574) (-1953 . 519242) (-1954 . 518918) (-1955 . 518730)
- (-1956 . 518539) (-1957 . 518375) (-1958 . 518040) (-1959 . 517873)
- (-1960 . 517632) (-1961 . 517308) (-1962 . 517118) (-1963 . 516903)
- (-1964 . 516732) (-1965 . 516310) (-1966 . 516083) (-1967 . 515812)
- (-1968 . 515675) (-1969 . 515534) (-1970 . 515057) (-1971 . 514934)
- (-1972 . 514698) (-1973 . 514444) (-1974 . 514194) (-1975 . 513901)
- (-1976 . 513761) (-1977 . 513621) (-1978 . 513481) (-1979 . 513292)
- (-1980 . 513103) (-1981 . 512928) (-1982 . 512654) (-1983 . 512219)
- (-1984 . 512191) (-1985 . 512119) (-1986 . 511986) (-1987 . 511911)
- (-1988 . 511752) (-1989 . 511589) (-1990 . 511428) (-1991 . 511261)
- (-1992 . 511208) (-1993 . 511155) (-1994 . 511026) (-1995 . 510966)
- (-1996 . 510913) (-1997 . 510844) (-1998 . 510784) (-1999 . 510725)
- (-2000 . 510665) (-2001 . 510606) (-2002 . 510546) (-2003 . 510487)
- (-2004 . 510429) (-2005 . 510287) (-2006 . 510192) (-2007 . 510101)
- (-2008 . 509985) (-2009 . 509891) (-2010 . 509793) (-2011 . 509699)
- (-2012 . 509558) (-2013 . 509296) (-2014 . 508440) (-2015 . 508284)
- (-2016 . 507915) (-2017 . 507859) (-2018 . 507808) (-2019 . 507705)
- (-2020 . 507620) (-2021 . 507532) (-2022 . 507386) (-2023 . 507237)
- (-2024 . 506947) (-2025 . 506869) (-2026 . 506794) (-2027 . 506741)
- (-2028 . 506688) (-2029 . 506657) (-2030 . 506594) (-2031 . 506476)
- (-2032 . 506387) (-2033 . 506267) (-2034 . 505972) (-2035 . 505778)
- (-2036 . 505590) (-2037 . 505445) (-2038 . 505300) (-2039 . 505014)
- (-2040 . 504572) (-2041 . 504538) (-2042 . 504501) (-2043 . 504464)
- (-2044 . 504427) (-2045 . 504390) (-2046 . 504359) (-2047 . 504328)
- (-2048 . 504297) (-2049 . 504263) (-2050 . 504229) (-2051 . 504175)
- (-2052 . 503999) (-2053 . 503765) (-2054 . 503531) (-2055 . 503302)
- (-2056 . 503250) (-2057 . 503195) (-2058 . 503126) (-2059 . 503038)
- (-2060 . 502969) (-2061 . 502897) (-2062 . 502667) (-2063 . 502616)
- (-2064 . 502562) (-2065 . 502531) (-2066 . 502425) (-2067 . 502200)
- (-2068 . 501890) (-2069 . 501716) (-2070 . 501534) (-2071 . 501263)
- (-2072 . 501190) (-2073 . 501125) (-2074 . 500649) (-2075 . 500087)
- (-2076 . 499361) (-2077 . 498800) (-2078 . 498172) (-2079 . 497593)
- (-2080 . 497519) (-2081 . 497467) (-2082 . 497415) (-2083 . 497341)
- (-2084 . 497286) (-2085 . 497234) (-2086 . 497182) (-2087 . 497130)
- (-2088 . 497060) (-2089 . 496612) (-2090 . 496406) (-2091 . 496157)
- (-2092 . 495823) (-2093 . 495569) (-2094 . 495267) (-2095 . 495064)
- (-2096 . 494775) (-2097 . 494227) (-2098 . 494090) (-2099 . 493888)
- (-2100 . 493608) (-2101 . 493523) (-2102 . 493190) (-2103 . 493049)
- (-2104 . 492758) (-2105 . 492538) (-2106 . 492412) (-2107 . 492287)
- (-2108 . 492140) (-2109 . 491996) (-2110 . 491880) (-2111 . 491749)
- (-2112 . 491377) (-2113 . 491117) (-2114 . 490847) (-2115 . 490607)
- (-2116 . 490277) (-2117 . 489937) (-2118 . 489529) (-2119 . 489111)
- (-2120 . 488914) (-2121 . 488639) (-2122 . 488471) (-2123 . 488275)
- (-2124 . 488053) (-2125 . 487898) (-2126 . 487713) (-2127 . 487610)
- (-2128 . 487582) (-2129 . 487554) (-2130 . 487380) (-2131 . 487306)
- (-2132 . 487246) (-2133 . 487193) (-2134 . 487124) (-2135 . 487055)
- (-2136 . 486936) (-2137 . 486758) (-2138 . 486703) (-2139 . 486457)
- (-2140 . 486384) (-2141 . 486314) (-2142 . 486244) (-2143 . 486155)
- (-2144 . 485965) (-2145 . 485892) (-2146 . 485823) (-2147 . 485758)
- (-2148 . 485703) (-2149 . 485612) (-2150 . 485321) (-2151 . 484995)
- (-2152 . 484921) (-2153 . 484599) (-2154 . 484394) (-2155 . 484309)
- (-2156 . 484224) (-2157 . 484139) (-2158 . 484054) (-2159 . 483969)
- (-2160 . 483884) (-2161 . 483799) (-2162 . 483714) (-2163 . 483629)
- (-2164 . 483544) (-2165 . 483459) (-2166 . 483374) (-2167 . 483289)
- (-2168 . 483204) (-2169 . 483119) (-2170 . 483034) (-2171 . 482949)
- (-2172 . 482864) (-2173 . 482779) (-2174 . 482694) (-2175 . 482609)
- (-2176 . 482524) (-2177 . 482439) (-2178 . 482354) (-2179 . 482269)
- (-2180 . 482184) (-2181 . 482082) (-2182 . 481994) (-2183 . 481786)
- (-2184 . 481728) (-2185 . 481673) (-2186 . 481586) (-2187 . 481475)
- (-2188 . 481389) (-2189 . 481243) (-2190 . 481181) (-2191 . 481153)
- (-2192 . 481125) (-2193 . 481097) (-2194 . 481069) (-2195 . 480900)
- (-2196 . 480749) (-2197 . 480598) (-2198 . 480426) (-2199 . 480218)
- (-2200 . 480099) (-2201 . 479899) (-2202 . 479809) (-2203 . 479719)
- (-2204 . 479592) (-2205 . 479499) (-2206 . 479407) (-2207 . 479314)
- (-2208 . 479190) (-2209 . 479162) (-2210 . 479134) (-2211 . 479106)
- (-2212 . 479078) (-2213 . 479050) (-2214 . 479022) (-2215 . 478994)
- (-2216 . 478966) (-2217 . 478938) (-2218 . 478910) (-2219 . 478882)
- (-2220 . 478854) (-2221 . 478826) (-2222 . 478798) (-2223 . 478770)
- (-2224 . 478742) (-2225 . 478689) (-2226 . 478661) (-2227 . 478633)
- (-2228 . 478555) (-2229 . 478502) (-2230 . 478449) (-2231 . 478396)
- (-2232 . 478318) (-2233 . 478228) (-2234 . 478133) (-2235 . 478039)
- (-2236 . 477957) (-2237 . 477651) (-2238 . 477455) (-2239 . 477360)
- (-2240 . 477252) (-2241 . 476841) (-2242 . 476813) (-2243 . 476649)
- (-2244 . 476572) (-2245 . 476385) (-2246 . 476206) (-2247 . 475782)
- (-2248 . 475630) (-2249 . 475450) (-2250 . 475277) (-2251 . 475017)
- (-2252 . 474765) (-2253 . 473954) (-2254 . 473787) (-2255 . 473569)
- (-2256 . 472745) (-2257 . 472614) (-2258 . 472483) (-2259 . 472352)
- (-2260 . 472221) (-2261 . 472090) (-2262 . 471959) (-2263 . 471764)
- (-2264 . 471570) (-2265 . 471427) (-2266 . 471112) (-2267 . 470997)
- (-2268 . 470657) (-2269 . 470497) (-2270 . 470358) (-2271 . 470219)
- (-2272 . 470090) (-2273 . 470005) (-2274 . 469953) (-2275 . 469473)
- (-2276 . 468211) (-2277 . 468084) (-2278 . 467942) (-2279 . 467606)
- (-2280 . 467501) (-2281 . 467252) (-2282 . 467020) (-2283 . 466915)
- (-2284 . 466840) (-2285 . 466765) (-2286 . 466690) (-2287 . 466631)
- (-2288 . 466561) (-2289 . 466508) (-2290 . 466446) (-2291 . 466376)
- (-2292 . 466013) (-2293 . 465726) (-2294 . 465616) (-2295 . 465429)
- (-2296 . 465336) (-2297 . 465243) (-2298 . 465156) (-2299 . 464939)
- (-2300 . 464720) (-2301 . 464302) (-2302 . 464030) (-2303 . 463887)
- (-2304 . 463794) (-2305 . 463651) (-2306 . 463499) (-2307 . 463345)
- (-2308 . 463275) (-2309 . 463068) (-2310 . 462891) (-2311 . 462682)
- (-2312 . 462505) (-2313 . 462471) (-2314 . 462437) (-2315 . 462406)
- (-2316 . 462288) (-2317 . 461993) (-2318 . 461715) (-2319 . 461594)
- (-2320 . 461467) (-2321 . 461382) (-2322 . 461309) (-2323 . 461220)
- (-2324 . 461149) (-2325 . 461093) (-2326 . 461037) (-2327 . 460981)
- (-2328 . 460911) (-2329 . 460841) (-2330 . 460771) (-2331 . 460673)
- (-2332 . 460595) (-2333 . 460517) (-2334 . 460374) (-2335 . 460295)
- (-2336 . 460223) (-2337 . 460020) (-2338 . 459964) (-2339 . 459776)
- (-2340 . 459677) (-2341 . 459559) (-2342 . 459438) (-2343 . 459295)
- (-2344 . 459152) (-2345 . 459012) (-2346 . 458872) (-2347 . 458729)
- (-2348 . 458603) (-2349 . 458474) (-2350 . 458351) (-2351 . 458228)
- (-2352 . 458123) (-2353 . 458018) (-2354 . 457916) (-2355 . 457766)
- (-2356 . 457613) (-2357 . 457460) (-2358 . 457316) (-2359 . 457162)
- (-2360 . 457086) (-2361 . 457007) (-2362 . 456854) (-2363 . 456775)
- (-2364 . 456696) (-2365 . 456617) (-2366 . 456515) (-2367 . 456456)
- (-2368 . 456394) (-2369 . 456277) (-2370 . 456153) (-2371 . 456076)
- (-2372 . 455944) (-2373 . 455638) (-2374 . 455455) (-2375 . 454910)
- (-2376 . 454690) (-2377 . 454516) (-2378 . 454346) (-2379 . 454273)
- (-2380 . 454197) (-2381 . 454118) (-2382 . 453821) (-2383 . 453659)
- (-2384 . 453425) (-2385 . 452983) (-2386 . 452853) (-2387 . 452713)
- (-2388 . 452404) (-2389 . 452102) (-2390 . 451786) (-2391 . 451380)
- (-2392 . 451312) (-2393 . 451244) (-2394 . 451176) (-2395 . 451082)
- (-2396 . 450975) (-2397 . 450868) (-2398 . 450767) (-2399 . 450666)
- (-2400 . 450565) (-2401 . 450488) (-2402 . 450095) (-2403 . 449678)
- (-2404 . 449051) (-2405 . 448987) (-2406 . 448868) (-2407 . 448749)
- (-2408 . 448641) (-2409 . 448533) (-2410 . 448377) (-2411 . 447777)
- (-2412 . 447494) (-2413 . 447415) (-2414 . 447361) (-2415 . 447193)
- (-2416 . 447071) (-2417 . 446675) (-2418 . 446439) (-2419 . 446238)
- (-2420 . 446030) (-2421 . 445837) (-2422 . 445570) (-2423 . 445496)
- (-2424 . 445317) (-2425 . 445248) (-2426 . 445172) (-2427 . 445031)
- (-2428 . 444828) (-2429 . 444684) (-2430 . 444434) (-2431 . 444126)
- (-2432 . 443770) (-2433 . 443611) (-2434 . 443405) (-2435 . 443245)
- (-2436 . 443172) (-2437 . 443138) (-2438 . 443073) (-2439 . 443036)
- (-2440 . 442899) (-2441 . 442661) (-2442 . 442591) (-2443 . 442405)
- (-2444 . 442156) (-2445 . 442000) (-2446 . 441477) (-2447 . 441280)
- (-2448 . 441068) (-2449 . 440906) (-2450 . 440507) (-2451 . 440340)
- (-2452 . 439265) (-2453 . 439142) (-2454 . 438925) (-2455 . 438795)
- (-2456 . 438665) (-2457 . 438508) (-2458 . 438405) (-2459 . 438347)
- (-2460 . 438289) (-2461 . 438183) (-2462 . 438077) (-2463 . 437161)
- (-2464 . 435034) (-2465 . 434220) (-2466 . 432417) (-2467 . 432349)
- (-2468 . 432281) (-2469 . 432213) (-2470 . 432145) (-2471 . 432077)
- (-2472 . 431999) (-2473 . 431643) (-2474 . 431461) (-2475 . 430922)
- (-2476 . 430746) (-2477 . 430525) (-2478 . 430304) (-2479 . 430083)
- (-2480 . 429865) (-2481 . 429647) (-2482 . 429429) (-2483 . 429211)
- (-2484 . 428993) (-2485 . 428775) (-2486 . 428674) (-2487 . 427941)
- (-2488 . 427886) (-2489 . 427831) (-2490 . 427776) (-2491 . 427721)
- (-2492 . 427571) (-2493 . 427323) (-2494 . 427162) (-2495 . 426982)
- (-2496 . 426695) (-2497 . 426309) (-2498 . 425437) (-2499 . 425097)
- (-2500 . 424929) (-2501 . 424707) (-2502 . 424457) (-2503 . 424109)
- (-2504 . 423099) (-2505 . 422788) (-2506 . 422576) (-2507 . 422012)
- (-2508 . 421499) (-2509 . 419743) (-2510 . 419271) (-2511 . 418672)
- (-2512 . 418422) (-2513 . 418288) (-2514 . 418076) (-2515 . 418000)
- (-2516 . 417924) (-2517 . 417817) (-2518 . 417635) (-2519 . 417470)
- (-2520 . 417292) (-2521 . 416711) (-2522 . 416550) (-2523 . 415977)
- (-2524 . 415907) (-2525 . 415832) (-2526 . 415760) (-2527 . 415622)
- (-2528 . 415435) (-2529 . 415328) (-2530 . 415221) (-2531 . 415106)
- (-2532 . 414991) (-2533 . 414876) (-2534 . 414598) (-2535 . 414448)
- (-2536 . 414305) (-2537 . 414232) (-2538 . 414147) (-2539 . 414074)
- (-2540 . 414001) (-2541 . 413928) (-2542 . 413785) (-2543 . 413635)
- (-2544 . 413461) (-2545 . 413311) (-2546 . 413161) (-2547 . 413035)
- (-2548 . 412649) (-2549 . 412365) (-2550 . 412081) (-2551 . 411672)
- (-2552 . 411388) (-2553 . 411315) (-2554 . 411168) (-2555 . 411062)
- (-2556 . 410988) (-2557 . 410919) (-2558 . 410840) (-2559 . 410763)
- (-2560 . 410688) (-2561 . 410539) (-2562 . 410436) (-2563 . 410378)
- (-2564 . 410314) (-2565 . 410250) (-2566 . 410153) (-2567 . 410056)
- (-2568 . 409896) (-2569 . 409810) (-2570 . 409724) (-2571 . 409639)
- (-2572 . 409580) (-2573 . 409521) (-2574 . 409462) (-2575 . 409403)
- (-2576 . 409233) (-2577 . 409145) (-2578 . 409048) (-2579 . 409014)
- (-2580 . 408983) (-2581 . 408899) (-2582 . 408843) (-2583 . 408781)
- (-2584 . 408747) (-2585 . 408713) (-2586 . 408679) (-2587 . 408645)
- (-2588 . 408611) (-2589 . 408577) (-2590 . 408543) (-2591 . 408509)
- (-2592 . 408475) (-2593 . 408363) (-2594 . 408329) (-2595 . 408278)
- (-2596 . 408244) (-2597 . 408147) (-2598 . 408085) (-2599 . 407994)
- (-2600 . 407903) (-2601 . 407848) (-2602 . 407796) (-2603 . 407744)
- (-2604 . 407692) (-2605 . 407640) (-2606 . 407217) (-2607 . 407051)
- (-2608 . 406998) (-2609 . 406929) (-2610 . 406876) (-2611 . 406745)
- (-2612 . 406589) (-2613 . 406068) (-2614 . 405927) (-2615 . 405893)
- (-2616 . 405838) (-2617 . 405128) (-2618 . 404813) (-2619 . 404309)
- (-2620 . 404231) (-2621 . 404179) (-2622 . 404127) (-2623 . 403943)
- (-2624 . 403891) (-2625 . 403839) (-2626 . 403763) (-2627 . 403701)
- (-2628 . 403483) (-2629 . 403416) (-2630 . 403322) (-2631 . 403228)
- (-2632 . 403045) (-2633 . 402963) (-2634 . 402841) (-2635 . 402695)
- (-2636 . 402044) (-2637 . 401342) (-2638 . 401238) (-2639 . 401137)
- (-2640 . 401036) (-2641 . 400925) (-2642 . 400757) (-2643 . 400553)
- (-2644 . 400460) (-2645 . 400383) (-2646 . 400327) (-2647 . 400257)
- (-2648 . 400137) (-2649 . 400036) (-2650 . 399939) (-2651 . 399859)
- (-2652 . 399779) (-2653 . 399702) (-2654 . 399632) (-2655 . 399562)
- (-2656 . 399492) (-2657 . 399422) (-2658 . 399352) (-2659 . 399282)
- (-2660 . 399189) (-2661 . 399061) (-2662 . 398819) (-2663 . 398649)
- (-2664 . 398280) (-2665 . 398111) (-2666 . 397995) (-2667 . 397499)
- (-2668 . 397118) (-2669 . 396872) (-2670 . 396780) (-2671 . 396683)
- (-2672 . 396027) (-2673 . 395914) (-2674 . 395840) (-2675 . 395748)
- (-2676 . 395558) (-2677 . 395368) (-2678 . 395297) (-2679 . 395226)
- (-2680 . 395145) (-2681 . 395064) (-2682 . 394939) (-2683 . 394806)
- (-2684 . 394725) (-2685 . 394651) (-2686 . 394486) (-2687 . 394329)
- (-2688 . 394101) (-2689 . 393953) (-2690 . 393849) (-2691 . 393745)
- (-2692 . 393660) (-2693 . 393292) (-2694 . 393211) (-2695 . 393124)
- (-2696 . 393043) (-2697 . 392847) (-2698 . 392627) (-2699 . 392440)
- (-2700 . 392118) (-2701 . 391825) (-2702 . 391532) (-2703 . 391222)
- (-2704 . 390905) (-2705 . 390753) (-2706 . 390565) (-2707 . 390092)
- (-2708 . 390010) (-2709 . 389794) (-2710 . 389578) (-2711 . 389319)
- (-2712 . 388898) (-2713 . 388385) (-2714 . 388255) (-2715 . 387981)
- (-2716 . 387802) (-2717 . 387687) (-2718 . 387583) (-2719 . 387528)
- (-2720 . 387451) (-2721 . 387381) (-2722 . 387308) (-2723 . 387253)
- (-2724 . 387180) (-2725 . 387125) (-2726 . 386770) (-2727 . 386362)
- (-2728 . 386209) (-2729 . 386056) (-2730 . 385975) (-2731 . 385822)
- (-2732 . 385669) (-2733 . 385534) (-2734 . 385399) (-2735 . 385264)
- (-2736 . 385129) (-2737 . 384994) (-2738 . 384859) (-2739 . 384803)
- (-2740 . 384650) (-2741 . 384539) (-2742 . 384428) (-2743 . 384343)
- (-2744 . 384233) (-2745 . 384130) (-2746 . 379979) (-2747 . 379531)
- (-2748 . 379104) (-2749 . 378487) (-2750 . 377886) (-2751 . 377668)
- (-2752 . 377490) (-2753 . 377231) (-2754 . 376820) (-2755 . 376526)
- (-2756 . 376083) (-2757 . 375905) (-2758 . 375512) (-2759 . 375119)
- (-2760 . 374934) (-2761 . 374727) (-2762 . 374507) (-2763 . 374201)
- (-2764 . 374002) (-2765 . 373373) (-2766 . 373216) (-2767 . 372827)
- (-2768 . 372776) (-2769 . 372727) (-2770 . 372676) (-2771 . 372628)
- (-2772 . 372576) (-2773 . 372430) (-2774 . 372378) (-2775 . 372232)
- (-2776 . 372180) (-2777 . 372034) (-2778 . 371983) (-2779 . 371608)
- (-2780 . 371557) (-2781 . 371508) (-2782 . 371457) (-2783 . 371409)
- (-2784 . 371357) (-2785 . 371308) (-2786 . 371256) (-2787 . 371207)
- (-2788 . 371155) (-2789 . 371106) (-2790 . 371040) (-2791 . 370922)
- (-2792 . 369760) (-2793 . 369343) (-2794 . 369235) (-2795 . 368993)
- (-2796 . 368843) (-2797 . 368693) (-2798 . 368532) (-2799 . 366325)
- (-2800 . 366064) (-2801 . 365910) (-2802 . 365764) (-2803 . 365618)
- (-2804 . 365399) (-2805 . 365267) (-2806 . 365192) (-2807 . 365117)
- (-2808 . 364982) (-2809 . 364853) (-2810 . 364724) (-2811 . 364598)
- (-2812 . 364472) (-2813 . 364346) (-2814 . 364220) (-2815 . 364117)
- (-2816 . 364017) (-2817 . 363923) (-2818 . 363793) (-2819 . 363642)
- (-2820 . 363266) (-2821 . 363152) (-2822 . 362911) (-2823 . 362453)
- (-2824 . 362143) (-2825 . 361576) (-2826 . 361007) (-2827 . 359997)
- (-2828 . 359455) (-2829 . 359142) (-2830 . 358804) (-2831 . 358473)
- (-2832 . 358153) (-2833 . 358100) (-2834 . 357973) (-2835 . 357471)
- (-2836 . 356328) (-2837 . 356273) (-2838 . 356218) (-2839 . 356142)
- (-2840 . 356023) (-2841 . 355948) (-2842 . 355873) (-2843 . 355795)
- (-2844 . 355572) (-2845 . 355513) (-2846 . 355454) (-2847 . 355351)
- (-2848 . 355248) (-2849 . 355145) (-2850 . 355042) (-2851 . 354961)
- (-2852 . 354887) (-2853 . 354672) (-2854 . 354438) (-2855 . 354404)
- (-2856 . 354370) (-2857 . 354342) (-2858 . 354314) (-2859 . 354097)
- (-2860 . 353819) (-2861 . 353669) (-2862 . 353539) (-2863 . 353409)
- (-2864 . 353309) (-2865 . 353132) (-2866 . 352972) (-2867 . 352872)
- (-2868 . 352695) (-2869 . 352535) (-2870 . 352376) (-2871 . 352237)
- (-2872 . 352087) (-2873 . 351957) (-2874 . 351827) (-2875 . 351680)
- (-2876 . 351553) (-2877 . 351450) (-2878 . 351343) (-2879 . 351246)
- (-2880 . 351081) (-2881 . 350933) (-2882 . 350518) (-2883 . 350418)
- (-2884 . 350315) (-2885 . 350227) (-2886 . 350147) (-2887 . 349997)
- (-2888 . 349867) (-2889 . 349815) (-2890 . 349742) (-2891 . 349667)
- (-2892 . 349608) (-2893 . 349496) (-2894 . 349184) (-2895 . 349007)
- (-2896 . 347409) (-2897 . 346781) (-2898 . 346721) (-2899 . 346603)
- (-2900 . 346485) (-2901 . 346341) (-2902 . 346189) (-2903 . 346030)
- (-2904 . 345871) (-2905 . 345665) (-2906 . 345478) (-2907 . 345326)
- (-2908 . 345171) (-2909 . 345016) (-2910 . 344864) (-2911 . 344727)
- (-2912 . 344304) (-2913 . 344178) (-2914 . 344052) (-2915 . 343926)
- (-2916 . 343786) (-2917 . 343645) (-2918 . 343504) (-2919 . 343360)
- (-2920 . 342612) (-2921 . 342454) (-2922 . 342268) (-2923 . 342113)
- (-2924 . 341875) (-2925 . 341630) (-2926 . 341385) (-2927 . 341175)
- (-2928 . 341038) (-2929 . 340828) (-2930 . 340691) (-2931 . 340481)
- (-2932 . 340344) (-2933 . 340134) (-2934 . 339831) (-2935 . 339687)
- (-2936 . 339546) (-2937 . 339323) (-2938 . 339182) (-2939 . 338960)
- (-2940 . 338763) (-2941 . 338607) (-2942 . 338280) (-2943 . 338121)
- (-2944 . 337962) (-2945 . 337803) (-2946 . 337632) (-2947 . 337461)
- (-2948 . 337287) (-2949 . 336935) (-2950 . 336812) (-2951 . 336650)
- (-2952 . 336577) (-2953 . 336504) (-2954 . 336431) (-2955 . 336358)
- (-2956 . 336285) (-2957 . 336212) (-2958 . 336089) (-2959 . 335916)
- (-2960 . 335793) (-2961 . 335707) (-2962 . 335641) (-2963 . 335575)
- (-2964 . 335509) (-2965 . 335443) (-2966 . 335377) (-2967 . 335311)
- (-2968 . 335245) (-2969 . 335179) (-2970 . 335113) (-2971 . 335047)
- (-2972 . 334981) (-2973 . 334915) (-2974 . 334849) (-2975 . 334783)
- (-2976 . 334717) (-2977 . 334651) (-2978 . 334585) (-2979 . 334519)
- (-2980 . 334453) (-2981 . 334387) (-2982 . 334321) (-2983 . 334255)
- (-2984 . 334189) (-2985 . 334123) (-2986 . 334057) (-2987 . 333991)
- (-2988 . 333344) (-2989 . 332697) (-2990 . 332569) (-2991 . 332446)
- (-2992 . 332323) (-2993 . 332182) (-2994 . 332028) (-2995 . 331884)
- (-2996 . 331709) (-2997 . 331099) (-2998 . 330975) (-2999 . 330851)
- (-3000 . 330173) (-3001 . 329476) (-3002 . 329375) (-3003 . 329319)
- (-3004 . 329263) (-3005 . 329207) (-3006 . 329151) (-3007 . 329092)
- (-3008 . 329028) (-3009 . 328920) (-3010 . 328812) (-3011 . 328704)
- (-3012 . 328425) (-3013 . 328351) (-3014 . 328125) (-3015 . 328044)
- (-3016 . 327966) (-3017 . 327888) (-3018 . 327810) (-3019 . 327731)
- (-3020 . 327653) (-3021 . 327560) (-3022 . 327461) (-3023 . 327393)
- (-3024 . 327344) (-3025 . 326653) (-3026 . 326013) (-3027 . 325222)
- (-3028 . 325144) (-3029 . 325046) (-3030 . 324957) (-3031 . 324868)
- (-3032 . 324794) (-3033 . 324720) (-3034 . 324646) (-3035 . 324591)
- (-3036 . 324536) (-3037 . 324470) (-3038 . 324404) (-3039 . 324342)
- (-3040 . 324067) (-3041 . 323575) (-3042 . 323117) (-3043 . 322864)
- (-3044 . 322676) (-3045 . 322335) (-3046 . 322039) (-3047 . 321871)
- (-3048 . 321740) (-3049 . 321600) (-3050 . 321445) (-3051 . 321276)
- (-3052 . 319890) (-3053 . 319757) (-3054 . 319616) (-3055 . 319387)
- (-3056 . 319328) (-3057 . 319272) (-3058 . 319216) (-3059 . 318951)
- (-3060 . 318739) (-3061 . 318600) (-3062 . 318493) (-3063 . 318376)
- (-3064 . 318310) (-3065 . 318237) (-3066 . 318123) (-3067 . 317870)
- (-3068 . 317770) (-3069 . 317576) (-3070 . 317268) (-3071 . 316802)
- (-3072 . 316697) (-3073 . 316591) (-3074 . 316442) (-3075 . 316302)
- (-3076 . 315890) (-3077 . 315646) (-3078 . 314988) (-3079 . 314835)
- (-3080 . 314721) (-3081 . 314611) (-3082 . 313791) (-3083 . 313597)
- (-3084 . 312571) (-3085 . 312123) (-3086 . 310734) (-3087 . 309883)
- (-3088 . 309834) (-3089 . 309785) (-3090 . 309736) (-3091 . 309669)
- (-3092 . 309594) (-3093 . 309404) (-3094 . 309332) (-3095 . 309257)
- (-3096 . 309185) (-3097 . 309068) (-3098 . 309017) (-3099 . 308938)
- (-3100 . 308859) (-3101 . 308780) (-3102 . 308729) (-3103 . 308485)
- (-3104 . 308183) (-3105 . 308101) (-3106 . 308019) (-3107 . 307958)
- (-3108 . 307569) (-3109 . 306703) (-3110 . 306130) (-3111 . 304913)
- (-3112 . 304106) (-3113 . 303856) (-3114 . 303606) (-3115 . 303183)
- (-3116 . 302939) (-3117 . 302695) (-3118 . 302451) (-3119 . 302207)
- (-3120 . 301963) (-3121 . 301719) (-3122 . 301477) (-3123 . 301235)
- (-3124 . 300993) (-3125 . 300751) (-3126 . 300173) (-3127 . 300057)
- (-3128 . 300003) (-3129 . 299161) (-3130 . 299130) (-3131 . 298785)
- (-3132 . 298559) (-3133 . 298460) (-3134 . 298361) (-3135 . 296595)
- (-3136 . 296483) (-3137 . 295433) (-3138 . 295341) (-3139 . 294419)
- (-3140 . 294086) (-3141 . 293753) (-3142 . 293650) (-3143 . 293539)
- (-3144 . 293428) (-3145 . 293317) (-3146 . 293206) (-3147 . 292119)
- (-3148 . 291999) (-3149 . 291864) (-3150 . 291732) (-3151 . 291600)
- (-3152 . 291306) (-3153 . 291012) (-3154 . 290667) (-3155 . 290441)
- (-3156 . 290215) (-3157 . 290104) (-3158 . 289993) (-3159 . 288531)
- (-3160 . 286827) (-3161 . 286518) (-3162 . 286366) (-3163 . 285843)
- (-3164 . 285514) (-3165 . 285321) (-3166 . 285128) (-3167 . 284935)
- (-3168 . 284742) (-3169 . 284629) (-3170 . 284506) (-3171 . 284392)
- (-3172 . 284278) (-3173 . 284185) (-3174 . 284092) (-3175 . 283982)
- (-3176 . 283781) (-3177 . 282637) (-3178 . 282544) (-3179 . 282430)
- (-3180 . 282337) (-3181 . 282090) (-3182 . 281979) (-3183 . 281765)
- (-3184 . 281647) (-3185 . 281350) (-3186 . 280622) (-3187 . 280046)
- (-3188 . 279568) (-3189 . 279324) (-3190 . 279080) (-3191 . 278737)
- (-3192 . 278131) (-3193 . 277688) (-3194 . 277533) (-3195 . 277389)
- (-3196 . 277069) (-3197 . 276914) (-3198 . 276774) (-3199 . 276634)
- (-3200 . 276494) (-3201 . 276219) (-3202 . 276000) (-3203 . 275481)
- (-3204 . 275269) (-3205 . 275057) (-3206 . 274677) (-3207 . 274503)
- (-3208 . 274294) (-3209 . 273986) (-3210 . 273794) (-3211 . 273621)
- (-3212 . 272485) (-3213 . 272120) (-3214 . 271920) (-3215 . 271720)
- (-3216 . 270884) (-3217 . 270856) (-3218 . 270788) (-3219 . 270718)
- (-3220 . 270554) (-3221 . 270526) (-3222 . 270498) (-3223 . 270444)
- (-3224 . 270294) (-3225 . 270235) (-3226 . 269542) (-3227 . 268157)
- (-3228 . 268096) (-3229 . 267772) (-3230 . 267700) (-3231 . 267643)
- (-3232 . 267586) (-3233 . 267529) (-3234 . 267472) (-3235 . 267397)
- (-3236 . 266807) (-3237 . 266447) (-3238 . 266373) (-3239 . 266313)
- (-3240 . 266195) (-3241 . 265252) (-3242 . 265125) (-3243 . 264912)
- (-3244 . 264838) (-3245 . 264784) (-3246 . 264730) (-3247 . 264621)
- (-3248 . 264338) (-3249 . 264230) (-3250 . 264127) (-3251 . 263966)
- (-3252 . 263865) (-3253 . 263767) (-3254 . 263629) (-3255 . 263491)
- (-3256 . 263353) (-3257 . 263091) (-3258 . 262882) (-3259 . 262744)
- (-3260 . 262453) (-3261 . 262301) (-3262 . 262026) (-3263 . 261806)
- (-3264 . 261654) (-3265 . 261502) (-3266 . 261350) (-3267 . 261198)
- (-3268 . 261046) (-3269 . 260839) (-3270 . 260452) (-3271 . 260121)
- (-3272 . 259782) (-3273 . 259435) (-3274 . 259096) (-3275 . 258757)
- (-3276 . 258376) (-3277 . 257995) (-3278 . 257614) (-3279 . 257249)
- (-3280 . 256531) (-3281 . 256184) (-3282 . 255739) (-3283 . 255314)
- (-3284 . 254703) (-3285 . 254111) (-3286 . 253724) (-3287 . 253393)
- (-3288 . 253006) (-3289 . 252675) (-3290 . 252455) (-3291 . 251934)
- (-3292 . 251721) (-3293 . 251508) (-3294 . 251295) (-3295 . 251117)
- (-3296 . 250904) (-3297 . 250726) (-3298 . 250344) (-3299 . 250166)
- (-3300 . 249956) (-3301 . 249866) (-3302 . 249776) (-3303 . 249685)
- (-3304 . 249573) (-3305 . 249483) (-3306 . 249376) (-3307 . 249187)
- (-3308 . 249131) (-3309 . 249050) (-3310 . 248969) (-3311 . 248888)
- (-3312 . 248811) (-3313 . 248676) (-3314 . 248541) (-3315 . 248417)
- (-3316 . 248296) (-3317 . 248178) (-3318 . 248042) (-3319 . 247909)
- (-3320 . 247790) (-3321 . 247532) (-3322 . 247247) (-3323 . 247175)
- (-3324 . 247079) (-3325 . 246938) (-3326 . 246881) (-3327 . 246824)
- (-3328 . 246764) (-3329 . 246685) (-3330 . 246290) (-3331 . 245768)
- (-3332 . 245491) (-3333 . 245071) (-3334 . 244959) (-3335 . 244521)
- (-3336 . 244291) (-3337 . 244088) (-3338 . 243906) (-3339 . 243776)
- (-3340 . 243570) (-3341 . 243363) (-3342 . 243173) (-3343 . 242626)
- (-3344 . 242370) (-3345 . 242079) (-3346 . 241785) (-3347 . 241488)
- (-3348 . 241188) (-3349 . 241058) (-3350 . 240925) (-3351 . 240789)
- (-3352 . 240650) (-3353 . 239433) (-3354 . 239125) (-3355 . 238761)
- (-3356 . 238664) (-3357 . 238424) (-3358 . 238149) (-3359 . 237874)
- (-3360 . 237615) (-3361 . 237441) (-3362 . 237363) (-3363 . 237276)
- (-3364 . 237176) (-3365 . 237082) (-3366 . 237001) (-3367 . 236931)
- (-3368 . 236140) (-3369 . 236070) (-3370 . 235742) (-3371 . 235672)
- (-3372 . 235344) (-3373 . 235274) (-3374 . 234829) (-3375 . 234759)
- (-3376 . 234655) (-3377 . 234581) (-3378 . 234507) (-3379 . 234436)
- (-3380 . 234094) (-3381 . 233966) (-3382 . 233889) (-3383 . 233658)
- (-3384 . 233515) (-3385 . 233372) (-3386 . 233033) (-3387 . 232703)
- (-3388 . 232490) (-3389 . 232235) (-3390 . 231885) (-3391 . 231660)
- (-3392 . 231435) (-3393 . 231210) (-3394 . 230985) (-3395 . 230772)
- (-3396 . 230559) (-3397 . 230409) (-3398 . 230228) (-3399 . 230123)
- (-3400 . 230001) (-3401 . 229893) (-3402 . 229785) (-3403 . 229460)
- (-3404 . 229196) (-3405 . 228885) (-3406 . 228583) (-3407 . 228274)
- (-3408 . 227555) (-3409 . 226979) (-3410 . 226804) (-3411 . 226660)
- (-3412 . 226505) (-3413 . 226382) (-3414 . 226277) (-3415 . 226162)
- (-3416 . 226067) (-3417 . 225586) (-3418 . 225476) (-3419 . 225366)
- (-3420 . 225256) (-3421 . 224184) (-3422 . 223677) (-3423 . 223610)
- (-3424 . 223537) (-3425 . 222664) (-3426 . 222591) (-3427 . 222536)
- (-3428 . 222481) (-3429 . 222449) (-3430 . 222363) (-3431 . 222331)
- (-3432 . 222245) (-3433 . 221825) (-3434 . 221405) (-3435 . 220853)
- (-3436 . 219749) (-3437 . 218039) (-3438 . 216489) (-3439 . 215697)
- (-3440 . 215197) (-3441 . 214711) (-3442 . 214309) (-3443 . 213659)
- (-3444 . 213584) (-3445 . 213493) (-3446 . 213422) (-3447 . 213351)
- (-3448 . 213295) (-3449 . 213175) (-3450 . 213121) (-3451 . 213060)
- (-3452 . 213006) (-3453 . 212903) (-3454 . 212463) (-3455 . 212023)
- (-3456 . 211583) (-3457 . 211061) (-3458 . 210900) (-3459 . 210739)
- (-3460 . 210428) (-3461 . 210342) (-3462 . 210252) (-3463 . 209894)
- (-3464 . 209777) (-3465 . 209696) (-3466 . 209538) (-3467 . 209425)
- (-3468 . 209350) (-3469 . 208504) (-3470 . 207322) (-3471 . 207223)
- (-3472 . 207124) (-3473 . 206795) (-3474 . 206717) (-3475 . 206642)
- (-3476 . 206536) (-3477 . 206380) (-3478 . 206273) (-3479 . 206138)
- (-3480 . 206003) (-3481 . 205881) (-3482 . 205786) (-3483 . 205638)
- (-3484 . 205543) (-3485 . 205388) (-3486 . 205233) (-3487 . 204681)
- (-3488 . 204129) (-3489 . 203514) (-3490 . 202962) (-3491 . 202410)
- (-3492 . 201858) (-3493 . 201305) (-3494 . 200752) (-3495 . 200199)
- (-3496 . 199646) (-3497 . 199093) (-3498 . 198540) (-3499 . 197988)
- (-3500 . 197436) (-3501 . 196884) (-3502 . 196332) (-3503 . 195780)
- (-3504 . 195228) (-3505 . 195124) (-3506 . 194539) (-3507 . 194434)
- (-3508 . 194359) (-3509 . 194217) (-3510 . 194125) (-3511 . 194034)
- (-3512 . 193942) (-3513 . 193847) (-3514 . 193742) (-3515 . 193619)
- (-3516 . 193497) (-3517 . 193133) (-3518 . 193011) (-3519 . 192913)
- (-3520 . 192552) (-3521 . 192023) (-3522 . 191948) (-3523 . 191873)
- (-3524 . 191781) (-3525 . 191600) (-3526 . 191505) (-3527 . 191430)
- (-3528 . 191339) (-3529 . 191248) (-3530 . 191089) (-3531 . 190540)
- (-3532 . 189991) (-3533 . 187284) (-3534 . 187112) (-3535 . 185702)
- (-3536 . 185142) (-3537 . 185027) (-3538 . 184655) (-3539 . 184592)
- (-3540 . 184529) (-3541 . 184466) (-3542 . 184188) (-3543 . 183921)
- (-3544 . 183869) (-3545 . 183228) (-3546 . 183177) (-3547 . 182989)
- (-3548 . 182916) (-3549 . 182836) (-3550 . 182723) (-3551 . 182533)
- (-3552 . 182169) (-3553 . 181897) (-3554 . 181846) (-3555 . 181795)
- (-3556 . 181725) (-3557 . 181606) (-3558 . 181577) (-3559 . 181473)
- (-3560 . 181351) (-3561 . 181297) (-3562 . 181120) (-3563 . 181059)
- (-3564 . 180878) (-3565 . 180817) (-3566 . 180745) (-3567 . 180270)
- (-3568 . 179896) (-3569 . 176364) (-3570 . 176312) (-3571 . 176184)
- (-3572 . 176034) (-3573 . 175982) (-3574 . 175841) (-3575 . 173783)
- (-3576 . 166176) (-3577 . 166025) (-3578 . 165955) (-3579 . 165904)
- (-3580 . 165854) (-3581 . 165803) (-3582 . 165752) (-3583 . 165556)
- (-3584 . 165414) (-3585 . 165300) (-3586 . 165179) (-3587 . 165061)
- (-3588 . 164949) (-3589 . 164831) (-3590 . 164726) (-3591 . 164645)
- (-3592 . 164541) (-3593 . 163607) (-3594 . 163387) (-3595 . 163150)
- (-3596 . 163068) (-3597 . 162724) (-3598 . 161585) (-3599 . 161511)
- (-3600 . 161416) (-3601 . 161342) (-3602 . 161138) (-3603 . 161047)
- (-3604 . 160931) (-3605 . 160818) (-3606 . 160727) (-3607 . 160636)
- (-3608 . 160547) (-3609 . 160458) (-3610 . 160369) (-3611 . 160281)
- (-3612 . 159793) (-3613 . 159729) (-3614 . 159665) (-3615 . 159601)
- (-3616 . 159540) (-3617 . 158800) (-3618 . 158739) (-3619 . 158678)
- (-3620 . 158052) (-3621 . 158000) (-3622 . 157872) (-3623 . 157808)
- (-3624 . 157754) (-3625 . 157645) (-3626 . 156348) (-3627 . 156267)
- (-3628 . 156178) (-3629 . 156120) (-3630 . 155980) (-3631 . 155895)
- (-3632 . 155821) (-3633 . 155736) (-3634 . 155679) (-3635 . 155463)
- (-3636 . 155324) (-3637 . 154717) (-3638 . 154163) (-3639 . 153609)
- (-3640 . 153055) (-3641 . 152448) (-3642 . 151894) (-3643 . 151334)
- (-3644 . 150774) (-3645 . 150512) (-3646 . 150073) (-3647 . 149740)
- (-3648 . 149401) (-3649 . 149096) (-3650 . 148963) (-3651 . 148830)
- (-3652 . 148442) (-3653 . 148349) (-3654 . 148256) (-3655 . 148163)
- (-3656 . 148070) (-3657 . 147977) (-3658 . 147884) (-3659 . 147791)
- (-3660 . 147698) (-3661 . 147605) (-3662 . 147512) (-3663 . 147419)
- (-3664 . 147326) (-3665 . 147233) (-3666 . 147140) (-3667 . 147047)
- (-3668 . 146954) (-3669 . 146861) (-3670 . 146768) (-3671 . 146675)
- (-3672 . 146582) (-3673 . 146489) (-3674 . 146396) (-3675 . 146303)
- (-3676 . 146210) (-3677 . 146117) (-3678 . 145932) (-3679 . 145622)
- (-3680 . 143994) (-3681 . 143840) (-3682 . 143703) (-3683 . 143561)
- (-3684 . 143359) (-3685 . 141432) (-3686 . 141305) (-3687 . 141181)
- (-3688 . 141054) (-3689 . 140833) (-3690 . 140612) (-3691 . 140485)
- (-3692 . 140284) (-3693 . 140108) (-3694 . 139591) (-3695 . 139074)
- (-3696 . 138797) (-3697 . 138388) (-3698 . 137871) (-3699 . 137687)
- (-3700 . 137545) (-3701 . 137050) (-3702 . 136419) (-3703 . 136363)
- (-3704 . 136269) (-3705 . 136150) (-3706 . 136080) (-3707 . 136007)
- (-3708 . 135777) (-3709 . 135158) (-3710 . 134728) (-3711 . 134646)
- (-3712 . 134504) (-3713 . 134034) (-3714 . 133912) (-3715 . 133790)
- (-3716 . 133650) (-3717 . 133463) (-3718 . 133347) (-3719 . 133067)
- (-3720 . 132999) (-3721 . 132801) (-3722 . 132621) (-3723 . 132466)
- (-3724 . 132359) (-3725 . 132308) (-3726 . 131931) (-3727 . 131404)
- (-3728 . 131183) (-3729 . 130962) (-3730 . 130723) (-3731 . 130633)
- (-3732 . 128891) (-3733 . 128309) (-3734 . 128231) (-3735 . 122771)
- (-3736 . 121981) (-3737 . 121604) (-3738 . 121533) (-3739 . 121268)
- (-3740 . 121093) (-3741 . 120608) (-3742 . 120186) (-3743 . 119746)
- (-3744 . 118883) (-3745 . 118759) (-3746 . 118632) (-3747 . 118523)
- (-3748 . 118371) (-3749 . 118257) (-3750 . 118118) (-3751 . 118037)
- (-3752 . 117956) (-3753 . 117852) (-3754 . 117434) (-3755 . 117013)
- (-3756 . 116939) (-3757 . 116676) (-3758 . 116412) (-3759 . 116033)
- (-3760 . 115334) (-3761 . 114297) (-3762 . 114238) (-3763 . 114164)
- (-3764 . 114090) (-3765 . 113968) (-3766 . 113718) (-3767 . 113632)
- (-3768 . 113557) (-3769 . 113482) (-3770 . 113387) (-3771 . 109612)
- (-3772 . 108442) (-3773 . 107782) (-3774 . 107598) (-3775 . 105393)
- (-3776 . 105068) (-3777 . 104586) (-3778 . 104145) (-3779 . 103910)
- (-3780 . 103665) (-3781 . 103575) (-3782 . 102140) (-3783 . 102062)
- (-3784 . 101957) (-3785 . 100481) (-3786 . 100076) (-3787 . 99675)
- (-3788 . 99579) (-3789 . 99500) (-3790 . 99345) (-3791 . 98232)
- (-3792 . 98153) (-3793 . 98077) (-3794 . 97731) (-3795 . 97674)
- (-3796 . 97602) (-3797 . 97545) (-3798 . 97488) (-3799 . 97358)
- (-3800 . 97156) (-3801 . 96788) (-3802 . 96367) (-3803 . 92559)
- (-3804 . 91959) (-3805 . 91492) (-3806 . 91279) (-3807 . 91066)
- (-3808 . 90900) (-3809 . 90687) (-3810 . 90521) (-3811 . 90355)
- (-3812 . 90189) (-3813 . 90023) (-3814 . 89753) (-3815 . 84339) (** . 81386)
- (-3817 . 80970) (-3818 . 80729) (-3819 . 80673) (-3820 . 80181)
- (-3821 . 77373) (-3822 . 77223) (-3823 . 77059) (-3824 . 76895)
- (-3825 . 76799) (-3826 . 76681) (-3827 . 76557) (-3828 . 76414)
- (-3829 . 76243) (-3830 . 76117) (-3831 . 75973) (-3832 . 75821)
- (-3833 . 75662) (-3834 . 75149) (-3835 . 75060) (-3836 . 74395)
- (-3837 . 74203) (-3838 . 74108) (-3839 . 73800) (-3840 . 72628)
- (-3841 . 72422) (-3842 . 71247) (-3843 . 71172) (-3844 . 69991)
- (-3845 . 66489) (-3846 . 53985) (-3847 . 53621) (-3848 . 53344)
- (-3849 . 53252) (-3850 . 53159) (-3851 . 52882) (-3852 . 52789)
- (-3853 . 52696) (-3854 . 52603) (-3855 . 52219) (-3856 . 52148)
- (-3857 . 52056) (-3858 . 51898) (-3859 . 51544) (-3860 . 51386)
- (-3861 . 51278) (-3862 . 51249) (-3863 . 51182) (-3864 . 51028)
- (-3865 . 50870) (-3866 . 50476) (-3867 . 50401) (-3868 . 50295)
- (-3869 . 50223) (-3870 . 50145) (-3871 . 50072) (-3872 . 49999)
- (-3873 . 49926) (-3874 . 49854) (-3875 . 49782) (-3876 . 49709)
- (-3877 . 49468) (-3878 . 49128) (-3879 . 48980) (-3880 . 48907)
- (-3881 . 48834) (-3882 . 48761) (-3883 . 48507) (-3884 . 48363)
- (-3885 . 47027) (-3886 . 46833) (-3887 . 46562) (-3888 . 46414)
- (-3889 . 46266) (-3890 . 46026) (-3891 . 45832) (-3892 . 45564)
- (-3893 . 45368) (-3894 . 45339) (-3895 . 45238) (-3896 . 45137)
- (-3897 . 45036) (-3898 . 44935) (-3899 . 44834) (-3900 . 44733)
- (-3901 . 44632) (-3902 . 44531) (-3903 . 44430) (-3904 . 44329)
- (-3905 . 44214) (-3906 . 44099) (-3907 . 44048) (-3908 . 43931)
- (-3909 . 43873) (-3910 . 43772) (-3911 . 43671) (-3912 . 43570)
- (-3913 . 43454) (-3914 . 43425) (-3915 . 42694) (-3916 . 42569)
- (-3917 . 42444) (-3918 . 42304) (-3919 . 42186) (-3920 . 42061)
- (-3921 . 41906) (-3922 . 40923) (-3923 . 40064) (-3924 . 40010)
- (-3925 . 39956) (-3926 . 39748) (-3927 . 39376) (-3928 . 38965)
- (-3929 . 38607) (-3930 . 38249) (-3931 . 38097) (-3932 . 37795)
- (-3933 . 37639) (-3934 . 37313) (-3935 . 37243) (-3936 . 37173)
- (-3937 . 36964) (-3938 . 36355) (-3939 . 36151) (-3940 . 35778)
- (-3941 . 35269) (-3942 . 35004) (-3943 . 34523) (-3944 . 34042)
- (-3945 . 33917) (-3946 . 32817) (-3947 . 31741) (-3948 . 31168)
- (-3949 . 30950) (-3950 . 22624) (-3951 . 22439) (-3952 . 20356)
- (-3953 . 18188) (-3954 . 18042) (-3955 . 17864) (-3956 . 17457)
- (-3957 . 17162) (-3958 . 16814) (-3959 . 16648) (-3960 . 16482)
- (-3961 . 16071) (-3962 . 14964) (* . 10917) (-3964 . 10663) (-3965 . 10479)
- (-3966 . 9522) (-3967 . 9469) (-3968 . 9409) (-3969 . 9140) (-3970 . 8513)
- (-3971 . 7240) (-3972 . 5996) (-3973 . 5127) (-3974 . 3864) (-3975 . 420)
- (-3976 . 306) (-3977 . 173) (-3978 . 30)) \ No newline at end of file
+ (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|isDomain| *3 (|Symbol|))
+ (|isDomain| *4 (|Segment| (|Fraction| (|Integer|))))
+ (|isDomain| *1 (|PlaneAlgebraicCurvePlot|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))))
+(((*1 *1 *2 *3)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *3 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *2)
+ (AND (|isDomain| *2 (|Polynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))))
+ ((*1 *1 *1 *2)
+ (AND (|isDomain| *2 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3))
+ (|ofCategory| *3 (|IntegralDomain|))))
+ ((*1 *1 *1)
+ (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2))
+ (|ofCategory| *2 (|IntegralDomain|)))))
+(((*1 *2 *3 *4)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|isDomain| *4 (|Symbol|))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *3)
+ (AND (|isDomain| *3 (|Polynomial| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedField|))
+ (|isDomain| *2 (|List| *1))))
+ ((*1 *2 *1 *3)
+ (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|))
+ (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4))))
+ ((*1 *2 *1)
+ (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *1))
+ (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))))
+(((*1 *2 *1 *1)
+ (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|Boolean|)))))
+((|opposite?| . 1293577) (|zerosOf| . 1292730) (|zeroOf| . 1292044)
+ (|rootsOf| . 1291197) (|makeSketch| . 1290980) (|inrootof| . 1290762)
+ (|droot| . 1290545) (|iroot| . 1290310) (|eq?| . 1290223) (|assoc| . 1289992)
+ (|doublyTransitive?| . 1289829) (|knownInfBasis| . 1289485)
+ (|rootSplit| . 1288478) (|ratDenom| . 1284366) (|ratPoly| . 1283302)
+ (|rootPower| . 1282171) (|rootProduct| . 1281040) (|rootSimp| . 1279909)
+ (|rootKerSimp| . 1278692) (|leftRank| . 1278477) (|rightRank| . 1278262)
+ (|doubleRank| . 1278047) (|weakBiRank| . 1277832) (|biRank| . 1277617)
+ (|basisOfCommutingElements| . 1277423) (|basisOfLeftAnnihilator| . 1277226)
+ (|basisOfRightAnnihilator| . 1277029) (|basisOfLeftNucleus| . 1276835)
+ (|basisOfRightNucleus| . 1276641) (|basisOfMiddleNucleus| . 1276447)
+ (|basisOfNucleus| . 1276253) (|basisOfCenter| . 1276059)
+ (|basisOfLeftNucloid| . 1275847) (|basisOfRightNucloid| . 1275635)
+ (|basisOfCentroid| . 1275423) (|radicalOfLeftTraceForm| . 1275229)
+ (|obj| . 1275158) (|dom| . 1275080) (|any| . 1274965) (|applyRules| . 1273974)
+ (|localUnquote| . 1273518) (|arbitrary| . 1273479) (|setColumn!| . 1273213)
+ (|setRow!| . 1272947) (|oneDimensionalArray| . 1272677)
+ (|associatedSystem| . 1272304) (|uncouplingMatrices| . 1272030)
+ (|associatedEquations| . 1271568) (|arrayStack| . 1271441)
+ (|morphism| . 1271046) (|balancedFactorisation| . 1270521)
+ (|before?| . 1270434) (|mapDown!| . 1270117) (|mapUp!| . 1269802)
+ (|setleaves!| . 1269664) (|balancedBinaryTree| . 1269508)
+ (|sylvesterMatrix| . 1269184) (|bezoutMatrix| . 1268860)
+ (|bezoutResultant| . 1268479) (|bezoutDiscriminant| . 1268101)
+ (|inspect| . 1268012) (|extract!| . 1267923) (|bag| . 1267799)
+ (|binding| . 1267668) (|binaryOperation| . 1267534)
+ (|setProperties| . 1267410) (|setProperty| . 1267162)
+ (|deleteProperty!| . 1266984) (|has?| . 1266857) (|comparison| . 1266724)
+ (|equality| . 1266591) (|nary?| . 1266505) (|unary?| . 1266419)
+ (|nullary?| . 1266333) (|properties| . 1266124) (|derivative| . 1265513)
+ (|constantOperator| . 1265360) (|constantOpIfCan| . 1265205)
+ (|integerBound| . 1264970) (|setright!| . 1264801) (|setleft!| . 1264632)
+ (|brillhartIrreducible?| . 1264311) (|brillhartTrials| . 1263960)
+ (|noLinearFactor?| . 1263800) (|insertRoot!| . 1263693)
+ (|binarySearchTree| . 1263561) (|nor| . 1263462) (|nand| . 1263363)
+ (|node| . 1263248) (|binaryTournament| . 1263116) (|binaryTree| . 1262928)
+ (|byte| . 1262840) (|setLength!| . 1262743) (|capacity| . 1262649)
+ (|byteBuffer| . 1262555) (|unknownEndian| . 1262512) (|bigEndian| . 1262469)
+ (|littleEndian| . 1262426) (|subtractIfCan| . 1262349)
+ (|setPosition| . 1262217) (|generalizedContinuumHypothesisAssumed| . 1262130)
+ (|generalizedContinuumHypothesisAssumed?| . 1262048) (|countable?| . 1261961)
+ (|Aleph| . 1261856) (|unravel| . 1261644) (|ravel| . 1261432)
+ (|leviCivitaSymbol| . 1261251) (|kroneckerDelta| . 1261070)
+ (|reindex| . 1260839) (|parents| . 1260710) (|principalAncestors| . 1260581)
+ (|exportedOperators| . 1260474) (|alphanumeric| . 1260426)
+ (|alphabetic| . 1260378) (|hexDigit| . 1260330) (|digit| . 1260282)
+ (|charClass| . 1260093) (|alphanumeric?| . 1260013) (|lowerCase?| . 1259933)
+ (|upperCase?| . 1259853) (|alphabetic?| . 1259773) (|hexDigit?| . 1259693)
+ (|digit?| . 1259613) (|escape| . 1259570) (|verticalTab| . 1259527)
+ (|horizontalTab| . 1259484) (|backspace| . 1259441) (|formfeed| . 1259398)
+ (|linefeed| . 1259355) (|carriageReturn| . 1259312) (|newline| . 1259269)
+ (|underscore| . 1259226) (|char| . 1259056) (|ord| . 1258963)
+ (|mkIntegral| . 1258624) (|radPoly| . 1258250) (|rootPoly| . 1257779)
+ (|goodPoint| . 1257516) (|chvar| . 1257054) (|removeDuplicates| . 1256880)
+ (|e| . 1256678) (|clipParametric| . 1255979) (|clipWithRanges| . 1255618)
+ (|numberOfHues| . 1255537) (|yellow| . 1255498) (|iifact| . 1255336)
+ (|iibinom| . 1255146) (|iiperm| . 1254956) (|iipow| . 1254766)
+ (|iidsum| . 1254576) (|iidprod| . 1254386) (|ipow| . 1254196)
+ (|factorial| . 1253845) (|multinomial| . 1253689) (|permutation| . 1253329)
+ (|stirling1| . 1253201) (|stirling2| . 1253073) (|summation| . 1252450)
+ (|factorials| . 1251931) (|mkcomm| . 1251802)
+ (|commutativeOperation| . 1251658) (|polarCoordinates| . 1251380)
+ (|complex| . 1251267) (|imaginary| . 1251160) (|elaborateFile| . 1251008)
+ (|elaborate| . 1250871) (|macroExpand| . 1250741) (|solid| . 1250633)
+ (|solid?| . 1250528) (|denominators| . 1250388) (|numerators| . 1250248)
+ (|convergents| . 1250088) (|approximants| . 1249928) (|reducedForm| . 1249818)
+ (|partialQuotients| . 1249678) (|partialDenominators| . 1249538)
+ (|partialNumerators| . 1249398) (|reducedContinuedFraction| . 1249255)
+ (|push| . 1249174) (|bindings| . 1249085) (|cartesian| . 1248835)
+ (|polar| . 1248585) (|cylindrical| . 1248335) (|spherical| . 1248085)
+ (|parabolic| . 1247835) (|parabolicCylindrical| . 1247585)
+ (|paraboloidal| . 1247335) (|ellipticCylindrical| . 1247060)
+ (|prolateSpheroidal| . 1246785) (|oblateSpheroidal| . 1246510)
+ (|bipolar| . 1246235) (|bipolarCylindrical| . 1245960) (|toroidal| . 1245685)
+ (|conical| . 1245407) (|modTree| . 1245273) (|multiEuclideanTree| . 1245139)
+ (|complexZeros| . 1244346) (|divisorCascade| . 1243694) (|graeffe| . 1243485)
+ (|pleskenSplit| . 1242947) (|reciprocalPolynomial| . 1242738)
+ (|rootRadius| . 1242319) (|schwerpunkt| . 1242084) (|setErrorBound| . 1241875)
+ (|startPolynomial| . 1241575) (|cycleElt| . 1241419)
+ (|computeCycleLength| . 1241226) (|computeCycleEntry| . 1241076)
+ (|findConstructor| . 1240940) (|arguments| . 1240785) (|operations| . 1240671)
+ (|dualSignature| . 1240561) (|kind| . 1240362) (|package| . 1240313)
+ (|domain| . 1240264) (|category| . 1240215) (|coerceP| . 1239986)
+ (|powerSum| . 1239811) (|elementary| . 1239633) (|alternating| . 1239455)
+ (|cyclic| . 1239280) (|dihedral| . 1239105) (|cap| . 1238922)
+ (|cup| . 1238787) (|wreath| . 1238652) (|SFunction| . 1238468)
+ (|skewSFunction| . 1238289) (|cyclotomicDecomposition| . 1238107)
+ (|cyclotomicFactorization| . 1237921) (|qsetelt| . 1237734)
+ (|doubleResultant| . 1237388) (|distdfact| . 1236975)
+ (|separateDegrees| . 1236689) (|trace2PowMod| . 1236453)
+ (|tracePowMod| . 1236217) (|irreducible?| . 1236005) (|decimal| . 1235896)
+ (|innerint| . 1235069) (|exteriorDifferential| . 1234906)
+ (|totalDifferential| . 1234702) (|homogeneous?| . 1234358)
+ (|leadingBasisTerm| . 1234070) (|ignore?| . 1233598) (|computeInt| . 1233092)
+ (|checkForZero| . 1232031) (|nan?| . 1231949) (|logGamma| . 1231717)
+ (|hypergeometric0F1| . 1231479) (|rotatez| . 1231308) (|rotatey| . 1231137)
+ (|rotatex| . 1230966) (|identity| . 1230798) (|dictionary| . 1230553)
+ (|dioSolve| . 1230118) (|directProduct| . 1229980) (|newLine| . 1229899)
+ (|copies| . 1229775) (|say| . 1229532) (|sayLength| . 1229283)
+ (|setnext!| . 1229117) (|setprevious!| . 1228951) (|next| . 1228846)
+ (|previous| . 1228741) (|datalist| . 1228617)
+ (|shanksDiscLogAlgorithm| . 1228311) (|showSummary| . 1228237)
+ (|reflect| . 1228121) (|reify| . 1228005) (|constructor| . 1227715)
+ (|functorData| . 1227621) (|separant| . 1227351) (|initial| . 1227081)
+ (|leader| . 1226811) (|isobaric?| . 1226506) (|weights| . 1225855)
+ (|differentialVariables| . 1225550) (|extractBottom!| . 1225457)
+ (|extractTop!| . 1225364) (|insertBottom!| . 1225268) (|insertTop!| . 1225172)
+ (|bottom!| . 1225079) (|top!| . 1224986) (|dequeue| . 1224648)
+ (|makeObject| . 1219580) (|recolor| . 1219281) (|drawComplex| . 1218999)
+ (|drawComplexVectorField| . 1218748) (|setRealSteps| . 1218666)
+ (|setImagSteps| . 1218584) (|setClipValue| . 1218496) (|draw| . 1209296)
+ (|option?| . 1209136) (|range| . 1208905) (|colorFunction| . 1208478)
+ (|curveColor| . 1208320) (|pointColor| . 1208162) (|clip| . 1206600)
+ (|clipBoolean| . 1206457) (|style| . 1206237) (|toScale| . 1206015)
+ (|pointColorPalette| . 1205872) (|curveColorPalette| . 1205729)
+ (|var1Steps| . 1205482) (|var2Steps| . 1205235) (|space| . 1204921)
+ (|tubePoints| . 1204674) (|tubeRadius| . 1204456) (|option| . 1204112)
+ (|weight| . 1203110) (|makeVariable| . 1202239) (|Nul| . 1202144)
+ (|exponents| . 1202051) (|iisqrt2| . 1201866) (|iisqrt3| . 1201681)
+ (|iiexp| . 1201493) (|iilog| . 1201305) (|iisin| . 1201117)
+ (|iicos| . 1200929) (|iitan| . 1200741) (|iicot| . 1200553)
+ (|iisec| . 1200365) (|iicsc| . 1200177) (|iiasin| . 1199989)
+ (|iiacos| . 1199801) (|iiatan| . 1199613) (|iiacot| . 1199425)
+ (|iiasec| . 1199237) (|iiacsc| . 1199049) (|iisinh| . 1198861)
+ (|iicosh| . 1198673) (|iitanh| . 1198485) (|iicoth| . 1198297)
+ (|iisech| . 1198109) (|iicsch| . 1197921) (|iiasinh| . 1197733)
+ (|iiacosh| . 1197545) (|iiatanh| . 1197357) (|iiacoth| . 1197169)
+ (|iiasech| . 1196981) (|iiacsch| . 1196793) (|specialTrigs| . 1196517)
+ (|localReal?| . 1196301) (|rischNormalize| . 1195670)
+ (|realElementary| . 1194746) (|validExponential| . 1194229)
+ (|rootNormalize| . 1193732) (|tanQ| . 1193224) (|callForm?| . 1193131)
+ (|getIdentifier| . 1193022) (|variable?| . 1192929) (|getConstant| . 1192819)
+ (|type| . 1192727) (|environment| . 1192639) (|typeForm| . 1192546)
+ (|irForm| . 1192436) (|elaboration| . 1192244) (|select!| . 1191872)
+ (|delete!| . 1191559) (|sn| . 1191368) (|cn| . 1191177) (|dn| . 1190986)
+ (|sncndn| . 1190719) (|qsetelt!| . 1190253) (|categoryFrame| . 1190208)
+ (|interactiveEnv| . 1190163) (|currentEnv| . 1190118)
+ (|putProperties| . 1189980) (|getProperties| . 1189845)
+ (|putProperty| . 1189710) (|getProperty| . 1189568) (|scopes| . 1189477)
+ (|eigenvalues| . 1189163) (|eigenvector| . 1188812)
+ (|generalizedEigenvector| . 1187949) (|generalizedEigenvectors| . 1187484)
+ (|eigenvectors| . 1186988) (|factorAndSplit| . 1186820) (|rightOne| . 1186695)
+ (|leftOne| . 1186570) (|rightZero| . 1186445) (|leftZero| . 1186320)
+ (|swap| . 1185996) (|error| . 1185479) (|minPoly| . 1184998)
+ (|freeOf?| . 1184780) (|operators| . 1184668) (|tower| . 1184560)
+ (|kernels| . 1184452) (|mainKernel| . 1184347) (|distribute| . 1184238)
+ (|subst| . 1183761) (|multiEuclidean| . 1183655)
+ (|extendedEuclidean| . 1183358) (|euclideanSize| . 1183250)
+ (|sizeLess?| . 1183157) (|simplifyPower| . 1182990) (|number?| . 1182826)
+ (|seriesSolve| . 1178827) (|constantToUnaryFunction| . 1178674)
+ (|tubePlot| . 1177295) (|exponentialOrder| . 1177080)
+ (|completeEval| . 1176645) (|lowerPolynomial| . 1176279)
+ (|raisePolynomial| . 1175913) (|normalDeriv| . 1175566) (|ran| . 1175279)
+ (|highCommonTerms| . 1175052) (|mapCoef| . 1174834) (|nthCoef| . 1174622)
+ (|binomThmExpt| . 1174372) (|pomopo!| . 1174210) (|mapExponents| . 1174013)
+ (|linearAssociatedLog| . 1173610) (|linearAssociatedOrder| . 1173410)
+ (|linearAssociatedExp| . 1173200) (|createNormalElement| . 1173060)
+ (|sin?| . 1172928) (|lookupFunction| . 1172841)
+ (|encodingDirectory| . 1172720) (|attributeData| . 1172589)
+ (|domainTemplate| . 1172498) (|lSpaceBasis| . 1172161)
+ (|finiteBasis| . 1171824) (|principal?| . 1171479) (|divisor| . 1169820)
+ (|rationalPoints| . 1169115) (|nonSingularModel| . 1168325)
+ (|algSplitSimple| . 1167890) (|hyperelliptic| . 1167310)
+ (|elliptic| . 1166457) (|integralDerivationMatrix| . 1166074)
+ (|integralRepresents| . 1165767) (|integralCoordinates| . 1165425)
+ (|yCoordinates| . 1165083) (|inverseIntegralMatrixAtInfinity| . 1164769)
+ (|integralMatrixAtInfinity| . 1164455) (|inverseIntegralMatrix| . 1164141)
+ (|integralMatrix| . 1163827) (|reduceBasisAtInfinity| . 1163523)
+ (|normalizeAtInfinity| . 1163219) (|complementaryBasis| . 1162915)
+ (|integral?| . 1162007) (|integralAtInfinity?| . 1161705)
+ (|integralBasisAtInfinity| . 1161404) (|ramified?| . 1160802)
+ (|ramifiedAtInfinity?| . 1160503) (|singular?| . 1159901)
+ (|singularAtInfinity?| . 1159602) (|branchPoint?| . 1159000)
+ (|branchPointAtInfinity?| . 1158701) (|rationalPoint?| . 1158031)
+ (|absolutelyIrreducible?| . 1157373) (|genus| . 1156693)
+ (|getZechTable| . 1156008) (|createZechTable| . 1155774)
+ (|createMultiplicationTable| . 1155480)
+ (|createMultiplicationMatrix| . 1155226)
+ (|createLowComplexityTable| . 1154956)
+ (|createLowComplexityNormalBasis| . 1154558) (|representationType| . 1154423)
+ (|createPrimitiveElement| . 1154368) (|tableForDiscreteLogarithm| . 1154198)
+ (|factorsOfCyclicGroupSize| . 1154019) (|sizeMultiplication| . 1152931)
+ (|getMultiplicationMatrix| . 1152119) (|getMultiplicationTable| . 1151251)
+ (|primitive?| . 1150949) (|numberOfIrreduciblePoly| . 1150781)
+ (|numberOfPrimitivePoly| . 1150613) (|numberOfNormalPoly| . 1150445)
+ (|createIrreduciblePoly| . 1150220) (|createPrimitivePoly| . 1149995)
+ (|createNormalPoly| . 1149770) (|createNormalPrimitivePoly| . 1149545)
+ (|createPrimitiveNormalPoly| . 1149320) (|nextIrreduciblePoly| . 1149136)
+ (|nextPrimitivePoly| . 1148952) (|nextNormalPoly| . 1148768)
+ (|nextNormalPrimitivePoly| . 1148584) (|nextPrimitiveNormalPoly| . 1148400)
+ (|leastAffineMultiple| . 1148218) (|reducedQPowers| . 1147960)
+ (|rootOfIrreduciblePoly| . 1147354) (|write!| . 1147211) (|read!| . 1147071)
+ (|iomode| . 1146897) (|close!| . 1146713) (|reopen!| . 1146543)
+ (|open| . 1146235) (|rightUnit| . 1146069) (|leftUnit| . 1145903)
+ (|rightMinimalPolynomial| . 1145676) (|leftMinimalPolynomial| . 1145449)
+ (|associatorDependence| . 1145003) (|lieAlgebra?| . 1144637)
+ (|jordanAlgebra?| . 1144271) (|noncommutativeJordanAlgebra?| . 1143905)
+ (|jordanAdmissible?| . 1143539) (|lieAdmissible?| . 1143173)
+ (|jacobiIdentity?| . 1142807) (|powerAssociative?| . 1142656)
+ (|alternative?| . 1142290) (|flexible?| . 1141924)
+ (|rightAlternative?| . 1141558) (|leftAlternative?| . 1141192)
+ (|antiAssociative?| . 1140826) (|associative?| . 1140460)
+ (|antiCommutative?| . 1140094) (|commutative?| . 1139728)
+ (|rightCharacteristicPolynomial| . 1139545)
+ (|leftCharacteristicPolynomial| . 1139362) (|rightNorm| . 1139236)
+ (|leftNorm| . 1139110) (|rightTrace| . 1138984) (|leftTrace| . 1138858)
+ (|someBasis| . 1138705) (|find| . 1138554) (|count| . 1138192)
+ (|every?| . 1138012) (|any?| . 1137832) (|sort!| . 1137419)
+ (|copyInto!| . 1137215) (|sorted?| . 1136855) (|LiePoly| . 1136669)
+ (|quickSort| . 1136364) (|heapSort| . 1136059) (|shellSort| . 1135754)
+ (|outputSpacing| . 1135633) (|outputGeneral| . 1135444)
+ (|outputFixed| . 1135255) (|outputFloating| . 1135066) (|exp1| . 1134985)
+ (|log10| . 1134861) (|log2| . 1134737) (|rationalApproximation| . 1134151)
+ (|relerror| . 1134072) (|complexSolve| . 1132903) (|complexRoots| . 1132344)
+ (|realRoots| . 1131840) (|leadingTerm| . 1131646) (|overlap| . 1131458)
+ (|hcrf| . 1131346) (|hclf| . 1131234) (|writable?| . 1131143)
+ (|readable?| . 1131052) (|exists?| . 1130961) (|extension| . 1130871)
+ (|directory| . 1130781) (|filename| . 1130685) (|shallowExpand| . 1130444)
+ (|deepExpand| . 1130203) (|fracPart| . 1129844) (|polyPart| . 1129637)
+ (|fullPartialFraction| . 1129391) (|primeFrobenius| . 1129206)
+ (|discreteLog| . 1128968) (|decreasePrecision| . 1128780)
+ (|increasePrecision| . 1128592) (|precision| . 1128328) (|bits| . 1127940)
+ (|mantissa| . 1127846) (|unitNormalize| . 1127753) (|unit| . 1127408)
+ (|flagFactor| . 1127212) (|sqfrFactor| . 1127081) (|primeFactor| . 1126950)
+ (|nthFlag| . 1126757) (|nthExponent| . 1126626)
+ (|irreducibleFactor| . 1126495) (|factors| . 1125922) (|nilFactor| . 1125791)
+ (|regularRepresentation| . 1125331) (|traceMatrix| . 1124622)
+ (|randomLC| . 1124232) (|minimize| . 1123900) (|module| . 1123164)
+ (|rightRegularRepresentation| . 1122818)
+ (|leftRegularRepresentation| . 1122472) (|rightTraceMatrix| . 1121923)
+ (|leftTraceMatrix| . 1121374) (|rightDiscriminant| . 1120915)
+ (|leftDiscriminant| . 1120456) (|represents| . 1119219)
+ (|mergeFactors| . 1119067) (|isMult| . 1118830) (|applyQuote| . 1118115)
+ (|ground| . 1117860) (|ground?| . 1117542) (|exprToXXP| . 1116752)
+ (|exprToUPS| . 1115475) (|exprToGenUPS| . 1114198) (|localAbs| . 1112791)
+ (|universe| . 1112656) (|complement| . 1112518) (|cardinality| . 1112363)
+ (|internalIntegrate0| . 1111810) (|makeCos| . 1111536) (|makeSin| . 1111262)
+ (|iiGamma| . 1111096) (|iiabs| . 1110930) (|bringDown| . 1110362)
+ (|newReduc| . 1110146) (|logical?| . 1110056) (|character?| . 1109966)
+ (|doubleComplex?| . 1109876) (|complex?| . 1109786) (|double?| . 1109696)
+ (|ffactor| . 1109390) (|qfactor| . 1109014) (|UP2ifCan| . 1108529)
+ (|anfactor| . 1108102) (|fortranCharacter| . 1108057)
+ (|fortranDoubleComplex| . 1108012) (|fortranComplex| . 1107967)
+ (|fortranLogical| . 1107922) (|fortranInteger| . 1107877)
+ (|fortranDouble| . 1107832) (|fortranReal| . 1107787) (|external?| . 1107705)
+ (|dimensionsOf| . 1107590) (|scalarTypeOf| . 1107444) (|makeFR| . 1106831)
+ (|musserTrials| . 1106472) (|stopMusserTrials| . 1106113)
+ (|numberOfFactors| . 1105708) (|modularFactor| . 1105482)
+ (|useSingleFactorBound?| . 1105318) (|useSingleFactorBound| . 1105151)
+ (|useEisensteinCriterion?| . 1104987) (|useEisensteinCriterion| . 1104820)
+ (|eisensteinIrreducible?| . 1104653) (|tryFunctionalDecomposition?| . 1104489)
+ (|tryFunctionalDecomposition| . 1104322) (|btwFact| . 1103831)
+ (|beauzamyBound| . 1103387) (|bombieriNorm| . 1102518) (|rootBound| . 1102074)
+ (|singleFactorBound| . 1101139) (|quadraticNorm| . 1100723)
+ (|infinityNorm| . 1100307) (|scaleRoots| . 1100128) (|shiftRoots| . 1099949)
+ (|degreePartition| . 1099396) (|factorOfDegree| . 1097889)
+ (|factorsOfDegree| . 1097607) (|pascalTriangle| . 1097435)
+ (|rangePascalTriangle| . 1097158) (|sizePascalTriangle| . 1097020)
+ (|fillPascalTriangle| . 1096896) (|safeCeiling| . 1096724)
+ (|safeFloor| . 1096552) (|safetyMargin| . 1096177) (|sumSquares| . 1096025)
+ (|euclideanNormalForm| . 1095706) (|euclideanGroebner| . 1094699)
+ (|factorGroebnerBasis| . 1093881) (|groebnerFactorize| . 1092241)
+ (|credPol| . 1091934) (|redPol| . 1091627) (|gbasis| . 1091289)
+ (|critT| . 1090869) (|critM| . 1090569) (|critB| . 1090263)
+ (|critBonD| . 1089856) (|critMTonD1| . 1089452) (|critMonD1| . 1089045)
+ (|redPo| . 1088672) (|hMonic| . 1088403) (|updatF| . 1088003)
+ (|sPol| . 1087614) (|updatD| . 1087207) (|minGbasis| . 1086903)
+ (|lepol| . 1086606) (|prinshINFO| . 1086312) (|prindINFO| . 1085852)
+ (|fprindINFO| . 1085389) (|prinpolINFO| . 1085060) (|prinb| . 1084738)
+ (|critpOrder| . 1084315) (|makeCrit| . 1083808) (|virtualDegree| . 1083500)
+ (|lcm| . 1083369) (|conditionsForIdempotents| . 1081998)
+ (|genericRightDiscriminant| . 1081652) (|genericRightTraceForm| . 1081300)
+ (|genericLeftDiscriminant| . 1080954) (|genericLeftTraceForm| . 1080602)
+ (|genericRightNorm| . 1080253) (|genericRightTrace| . 1079904)
+ (|genericRightMinimalPolynomial| . 1079540) (|rightRankPolynomial| . 1078711)
+ (|genericLeftNorm| . 1078362) (|genericLeftTrace| . 1078013)
+ (|genericLeftMinimalPolynomial| . 1077649) (|leftRankPolynomial| . 1076820)
+ (|generic| . 1074956) (|rightUnits| . 1074327) (|leftUnits| . 1073698)
+ (|compBound| . 1073446) (|tablePow| . 1073158) (|solveid| . 1072912)
+ (|testModulus| . 1072678) (|HenselLift| . 1072336)
+ (|completeHensel| . 1072079) (|multMonom| . 1071494) (|build| . 1070909)
+ (|leadingIndex| . 1070330) (|leadingExponent| . 1069751)
+ (|GospersMethod| . 1069163) (|nextSubsetGray| . 1069014)
+ (|firstSubsetGray| . 1068861) (|clipPointsDefault| . 1068688)
+ (|drawToScale| . 1068515) (|adaptive| . 1068122) (|figureUnits| . 1067952)
+ (|putColorInfo| . 1067790) (|appendPoint| . 1067658) (|component| . 1067097)
+ (|ranges| . 1066604) (|pointLists| . 1066482) (|makeGraphImage| . 1065822)
+ (|graphImage| . 1065778) (|groebSolve| . 1065368) (|testDim| . 1065042)
+ (|genericPosition| . 1064561) (|lfunc| . 1064476) (|inHallBasis?| . 1064350)
+ (|reorder| . 1063586) (|parameters| . 1063385) (|headAst| . 1063250)
+ (|heap| . 1063130) (|gcdprim| . 1062978) (|gcdcofact| . 1062819)
+ (|gcdcofactprim| . 1062660) (|lintgcd| . 1062473) (|hex| . 1062360)
+ (|host| . 1062282) (|trueEqual| . 1062186) (|factorList| . 1061554)
+ (|listConjugateBases| . 1060943) (|matrixGcd| . 1060481)
+ (|divideIfCan!| . 1060027) (|leastPower| . 1059598) (|idealiser| . 1058757)
+ (|idealiserMatrix| . 1058337) (|moduleSum| . 1057848)
+ (|mapUnivariate| . 1057112) (|mapUnivariateIfCan| . 1056734)
+ (|mapMatrixIfCan| . 1056312) (|mapBivariate| . 1055904)
+ (|fullDisplay| . 1054990) (|relationsIdeal| . 1054512) (|saturate| . 1053961)
+ (|groebner?| . 1053675) (|groebnerIdeal| . 1053382) (|ideal| . 1052367)
+ (|leadingIdeal| . 1052109) (|backOldPos| . 1051712)
+ (|generalPosition| . 1051256) (|quotient| . 1050736) (|zeroDim?| . 1050128)
+ (|inRadical?| . 1049839) (|in?| . 1049550) (|element?| . 1049261)
+ (|zeroDimPrime?| . 1048676) (|zeroDimPrimary?| . 1048091)
+ (|radical| . 1047537) (|primaryDecomp| . 1046502) (|contract| . 1045473)
+ (|gensym| . 1045429) (|leadingSupport| . 1045275) (|combineWithIf| . 1045012)
+ (|term| . 1044867) (|shrinkable| . 1044580) (|physicalLength!| . 1044296)
+ (|physicalLength| . 1043987) (|flexibleArray| . 1043700)
+ (|elseBranch| . 1043624) (|thenBranch| . 1043548)
+ (|generalizedInverse| . 1043262) (|imports| . 1043171) (|sequence| . 1043095)
+ (|readBytes!| . 1042952) (|readUInt32!| . 1042845) (|readInt32!| . 1042739)
+ (|readUInt16!| . 1042632) (|readInt16!| . 1042526) (|readUInt8!| . 1042420)
+ (|readInt8!| . 1042315) (|readByte!| . 1042210) (|setFieldInfo| . 1041948)
+ (|pol| . 1041734) (|xn| . 1041504) (|dAndcExp| . 1041254) (|repSq| . 1041048)
+ (|expPot| . 1040844) (|qPot| . 1040649) (|lookup| . 1040362)
+ (|normal?| . 1039786) (|basis| . 1037944) (|normalElement| . 1037606)
+ (|minimalPolynomial| . 1036777) (|position!| . 1036680) (|eof?| . 1036592)
+ (|inputBinaryFile| . 1036418) (|increment| . 1036250)
+ (|incrementBy| . 1036079) (|charpol| . 1035784) (|solve1| . 1035488)
+ (|innerEigenvectors| . 1034930) (|compile| . 1034800) (|declare| . 1034673)
+ (|parseString| . 1034594) (|unparse| . 1034515) (|flatten| . 1034469)
+ (|lambda| . 1034376) (|binary| . 1034174) (|packageCall| . 1034016)
+ (|interpret| . 1033811) (|innerSolve1| . 1033219) (|innerSolve| . 1032863)
+ (|makeEq| . 1032509) (|modularGcdPrimitive| . 1032217)
+ (|modularGcd| . 1031925) (|reduction| . 1031318) (|signAround| . 1030543)
+ (|invmod| . 1030482) (|powmod| . 1030418) (|mulmod| . 1030354)
+ (|submod| . 1030290) (|addmod| . 1030226) (|mask| . 1030168) (|dec| . 1030110)
+ (|inc| . 1030052) (|symmetricRemainder| . 1029991)
+ (|positiveRemainder| . 1029930) (|bit?| . 1029833) (|algint| . 1029360)
+ (|algintegrate| . 1028757) (|palgintegrate| . 1028154)
+ (|palginfieldint| . 1027684) (|bitLength| . 1027602) (|bitCoef| . 1027515)
+ (|bitTruth| . 1027393) (|contains?| . 1027146) (|inf| . 1026937)
+ (|qinterval| . 1026725) (|interval| . 1026051) (|unit?| . 1025962)
+ (|associates?| . 1025870) (|unitCanonical| . 1025817) (|unitNormal| . 1025661)
+ (|lfextendedint| . 1025090) (|lflimitedint| . 1024395)
+ (|lfinfieldint| . 1023893) (|lfintegrate| . 1023317) (|lfextlimint| . 1022671)
+ (|BasicMethod| . 1022508) (|PollardSmallFactor| . 1022378)
+ (|palgint0| . 1021046) (|palgextint0| . 1019732) (|palglimint0| . 1018170)
+ (|palgRDE0| . 1016844) (|palgLODE0| . 1015200) (|chineseRemainder| . 1014131)
+ (|divisors| . 1013979) (|eulerPhi| . 1013871) (|fibonacci| . 1013763)
+ (|harmonic| . 1013607) (|jacobi| . 1013496) (|moebiusMu| . 1013388)
+ (|numberOfDivisors| . 1013280) (|sumOfDivisors| . 1013172)
+ (|sumOfKthPowerDivisors| . 1013022) (|HermiteIntegrate| . 1012178)
+ (|palgint| . 1011578) (|palgextint| . 1010983) (|palglimint| . 1010264)
+ (|palgRDE| . 1009659) (|palgLODE| . 1008872) (|splitConstant| . 1008325)
+ (|pmComplexintegrate| . 1007629) (|pmintegrate| . 1006263)
+ (|infieldint| . 1005956) (|extendedint| . 1005556) (|limitedint| . 1005040)
+ (|integerIfCan| . 1004891) (|internalIntegrate| . 1003942)
+ (|infieldIntegrate| . 1003630) (|limitedIntegrate| . 1003094)
+ (|extendedIntegrate| . 1002663) (|varselect| . 1002440) (|kmax| . 1002217)
+ (|ksec| . 1001954) (|vark| . 1001696) (|removeConstantTerm| . 1001468)
+ (|mkPrim| . 1001189) (|intPatternMatch| . 1000413) (|primintegrate| . 999907)
+ (|expintegrate| . 999378) (|tanintegrate| . 998901)
+ (|primextendedint| . 998344) (|expextendedint| . 997764)
+ (|primlimitedint| . 997099) (|explimitedint| . 996415)
+ (|primextintfrac| . 996076) (|primlimintfrac| . 995621)
+ (|primintfldpoly| . 995329) (|expintfldpoly| . 994977)
+ (|monomialIntegrate| . 994569) (|monomialIntPoly| . 994281)
+ (|inverseLaplace| . 993695) (|inputOutputBinaryFile| . 993509)
+ (|closed| . 993469) (|bothWays| . 993429) (|input| . 993121)
+ (|resolve| . 992989) (|bytes| . 992886) (|ip4Address| . 992806)
+ (|iprint| . 992682) (|elem?| . 992554) (|notelem| . 992380)
+ (|logpart| . 992069) (|ratpart| . 991976) (|mkAnswer| . 991581)
+ (|irDef| . 991429) (|irCtor| . 991280) (|irVar| . 991131)
+ (|perfectNthPower?| . 990945) (|perfectNthRoot| . 990589)
+ (|approxNthRoot| . 990431) (|perfectSquare?| . 990294)
+ (|perfectSqrt| . 990179) (|approxSqrt| . 990070)
+ (|generateIrredPoly| . 989849) (|complexExpand| . 989034)
+ (|complexIntegrate| . 988112)
+ (|dimensionOfIrreducibleRepresentation| . 987950)
+ (|irreducibleRepresentation| . 987333) (|checkRur| . 986829)
+ (|cAcsch| . 986653) (|cAsech| . 986477) (|cAcoth| . 986301)
+ (|cAtanh| . 986125) (|cAcosh| . 985949) (|cAsinh| . 985773) (|cCsch| . 985597)
+ (|cSech| . 985421) (|cCoth| . 985245) (|cTanh| . 985069) (|cCosh| . 984893)
+ (|cSinh| . 984717) (|cAcsc| . 984541) (|cAsec| . 984365) (|cAcot| . 984189)
+ (|cAtan| . 984013) (|cAcos| . 983837) (|cAsin| . 983661) (|cCsc| . 983485)
+ (|cSec| . 983309) (|cCot| . 983133) (|cTan| . 982957) (|cCos| . 982781)
+ (|cSin| . 982605) (|cLog| . 982429) (|cExp| . 982253)
+ (|cRationalPower| . 982055) (|cPower| . 981876)
+ (|seriesToOutputForm| . 981493) (|iCompose| . 981376)
+ (|taylorQuoByVar| . 981262) (|iExquo| . 981105) (|getStream| . 980911)
+ (|getRef| . 980726) (|makeSeries| . 980458) (|mappingMode| . 980341)
+ (|categoryMode| . 980291) (|voidMode| . 980241) (|noValueMode| . 980191)
+ (|jokerMode| . 980141) (GF2FG . 979613) (FG2F . 979123) (F2FG . 978633)
+ (|explogs2trigs| . 978112) (|trigs2explogs| . 977527) (|swap!| . 977296)
+ (|fill!| . 976874) (|minIndex| . 976706) (|maxIndex| . 976538)
+ (|entry?| . 976285) (|indices| . 976115) (|index?| . 975942)
+ (|entries| . 975772) (|categories| . 975540) (|jvmInterface| . 975488)
+ (|jvmSuper| . 975436) (|jvmNameAndTypeConstantTag| . 975388)
+ (|jvmInterfaceMethodConstantTag| . 975340)
+ (|jvmMethodrefConstantTag| . 975292) (|jvmFieldrefConstantTag| . 975244)
+ (|jvmStringConstantTag| . 975196) (|jvmClassConstantTag| . 975148)
+ (|jvmDoubleConstantTag| . 975100) (|jvmLongConstantTag| . 975052)
+ (|jvmFloatConstantTag| . 975004) (|jvmIntegerConstantTag| . 974956)
+ (|jvmUTF8ConstantTag| . 974908) (|jvmTransient| . 974860)
+ (|jvmVolatile| . 974812) (|jvmStrict| . 974763) (|jvmAbstract| . 974664)
+ (|jvmNative| . 974615) (|jvmSynchronized| . 974566) (|jvmFinal| . 974421)
+ (|jvmStatic| . 974326) (|jvmProtected| . 974231) (|jvmPrivate| . 974136)
+ (|jvmPublic| . 973991) (|search| . 973839) (|keys| . 973661) (|key?| . 973480)
+ (|symbolIfCan| . 973352) (|kernel| . 972787) (|argument| . 972394)
+ (|constantKernel| . 972222) (|constantIfCan| . 972041) (|kovacic| . 971085)
+ (|unknown| . 971031) (|laplace| . 970479) (|trailingCoefficient| . 970306)
+ (|normalizeIfCan| . 969851) (|polCase| . 969467) (|distFact| . 968724)
+ (|identification| . 968383) (|LyndonCoordinates| . 968030)
+ (|LyndonBasis| . 967656) (|zeroDimensional?| . 967164) (|fglmIfCan| . 966723)
+ (|groebner| . 965086) (|lexTriangular| . 964760)
+ (|squareFreeLexTriangular| . 963963) (|belong?| . 962175) (|erf| . 961837)
+ (|dilog| . 961499) (|li| . 961161) (|Ci| . 960823) (|Si| . 960485)
+ (|Ei| . 960147) (|linGenPos| . 959771) (|groebgen| . 959390)
+ (|totolex| . 959090) (|minPol| . 958387) (|computeBasis| . 958159)
+ (|coord| . 957482) (|anticoord| . 957149) (|intcompBasis| . 956869)
+ (|choosemon| . 956581) (|transform| . 956294) (|pack!| . 956148)
+ (|library| . 956069) (|complexLimit| . 954930) (|limit| . 952104)
+ (|linearlyDependent?| . 951853) (|linearDependence| . 951602)
+ (|solveLinear| . 951016) (|linearElement| . 950848) (|reducedSystem| . 950403)
+ (|leftReducedSystem| . 949988) (|linearForm| . 949830)
+ (|setDifference| . 949707) (|setIntersection| . 949584) (|setUnion| . 949461)
+ (|append| . 949381) (|null| . 949267) (|nil| . 949193) (|substitute| . 949079)
+ (|duplicates?| . 948943) (|mapGen| . 948238) (|mapExpon| . 947696)
+ (|commutativeEquality| . 947497) (|plus| . 947154) (|leftMult| . 946983)
+ (|rightMult| . 946812) (|makeUnit| . 946647) (|reverse!| . 946227)
+ (|reverse| . 945782) (|nthFactor| . 944979) (|nthExpon| . 944469)
+ (|makeMulti| . 944235) (|makeTerm| . 944064) (|listOfMonoms| . 943823)
+ (|insert| . 943559) (|delete| . 943280) (|symmetricSquare| . 943126)
+ (|factor1| . 942514) (|symmetricProduct| . 942120) (|symmetricPower| . 941634)
+ (|directSum| . 941240) (|\\/| . 941193) (|/\\| . 941146) (~ . 941102)
+ (|solveLinearPolynomialEquationByFractions| . 940834)
+ (|hasSolution?| . 940129) (|linSolve| . 939608) (|LyndonWordsList| . 939386)
+ (|LyndonWordsList1| . 939140) (|lyndonIfCan| . 938995) (|lyndon| . 938856)
+ (|lyndon?| . 938682) (|numberOfComputedEntries| . 938540) (|rst| . 938437)
+ (|frst| . 938334) (|lazyEvaluate| . 938231) (|lazy?| . 938100)
+ (|explicitlyEmpty?| . 937969) (|explicitEntries?| . 937838) (|iter| . 937635)
+ (|arg1| . 937478) (|arg2| . 937321) (|comp| . 937042) (|mappingAst| . 936912)
+ (|nullary| . 936777) (|fixedPoint| . 936417) (|id| . 936313)
+ (|recur| . 935921) (|const| . 935739) (|curry| . 935523) (|diag| . 935304)
+ (|curryRight| . 935038) (|curryLeft| . 934772) (|constantRight| . 934509)
+ (|constantLeft| . 934246) (|twist| . 933980) (|setsubMatrix!| . 933731)
+ (|subMatrix| . 933479) (|swapColumns!| . 933233) (|swapRows!| . 932987)
+ (|vertConcat| . 932779) (|horizConcat| . 932571) (|squareTop| . 932366)
+ (|elRow1!| . 932041) (|elRow2!| . 931713) (|elColumn2!| . 931385)
+ (|fractionFreeGauss!| . 931050) (|invertIfCan| . 930725) (|copy!| . 930578)
+ (|plus!| . 930428) (|minus!| . 930133) (|leftScalarTimes!| . 929983)
+ (|rightScalarTimes!| . 929833) (|times!| . 929683) (|power!| . 929481)
+ (|nothing| . 929375) (|just| . 929266) (|duplicates| . 929046)
+ (|removeDuplicates!| . 928801) (|linears| . 928623) (|ddFact| . 928366)
+ (|separateFactors| . 927775) (|exptMod| . 927357) (|meshPar2Var| . 926215)
+ (|meshFun2Var| . 925751) (|meshPar1Var| . 925384) (|ptFunc| . 925003)
+ (|rowEch| . 924852) (|rowEchLocal| . 924698) (|rowEchelonLocal| . 924541)
+ (|normalizedDivide| . 923930) (|binaryFunction| . 923624)
+ (|makeFloatFunction| . 923131) (|function| . 922366) (|makeRecord| . 922173)
+ (|unaryFunction| . 921908) (|compiledFunction| . 921330) (|corrPoly| . 920744)
+ (|lifting| . 920134) (|lifting1| . 919384) (|exprex| . 919262)
+ (|coerceL| . 919140) (|coerceS| . 919018) (|frobenius| . 918822)
+ (|computePowers| . 918610) (|pow| . 918398) (|An| . 918214)
+ (|UnVectorise| . 918030) (|Vectorise| . 917846) (|setPoly| . 917699)
+ (|index| . 916947) (|exponent| . 916187) (|exQuo| . 915173)
+ (|moebius| . 915072) (|rightRecip| . 914843) (|leftRecip| . 914614)
+ (|leftPower| . 914416) (|rightPower| . 914218)
+ (|derivationCoordinates| . 913904) (|generator| . 912721) (|one?| . 912198)
+ (|monoidOperation| . 912056) (|neutralValue| . 911945)
+ (|splitSquarefree| . 911609) (|normalDenom| . 911364) (|reshape| . 910553)
+ (|totalfract| . 909928) (|pushdterm| . 909345) (|pushucoef| . 908747)
+ (|pushuconst| . 908259) (|numberOfMonomials| . 907714) (|unique| . 907589)
+ (|multiset| . 907291) (|systemCommand| . 907169) (|mergeDifference| . 907040)
+ (|squareFreePrim| . 906734) (|compdegd| . 906304) (|univcase| . 905995)
+ (|consnewpol| . 905418) (|nsqfree| . 904726) (|intChoose| . 903930)
+ (|coefChoose| . 903593) (|myDegree| . 903127) (|normDeriv2| . 902765)
+ (|plenaryPower| . 902603) (|antiCommutator| . 902544) (|commutator| . 902440)
+ (|associator| . 902378) (|complexEigenvalues| . 902123)
+ (|complexEigenvectors| . 901727) (|isConnected?| . 901589)
+ (|connectTo| . 901214) (|shift| . 900801) (|normalizedAssociate| . 900450)
+ (|normalize| . 899062) (|outputArgs| . 898646) (|normInvertible?| . 898203)
+ (|normFactors| . 897816) (|npcoef| . 896977) (|listexp| . 896607)
+ (|characteristicPolynomial| . 894460) (|realEigenvalues| . 894232)
+ (|realEigenvectors| . 893875) (|halfExtendedResultant2| . 893605)
+ (|halfExtendedResultant1| . 893335) (|extendedResultant| . 893030)
+ (|subResultantsChain| . 892810) (|lazyPseudoQuotient| . 892696)
+ (|lazyPseudoRemainder| . 892582) (|bernoulliB| . 892344) (|eulerE| . 892106)
+ (|numeric| . 890387) (|complexNumeric| . 886345) (|numericIfCan| . 884912)
+ (|complexNumericIfCan| . 881711) (|FormatArabic| . 881583)
+ (|ScanArabic| . 881455) (|FormatRoman| . 881327) (|ScanRoman| . 881199)
+ (|ScanFloatIgnoreSpaces| . 881081) (|ScanFloatIgnoreSpacesIfCan| . 880957)
+ (|rk4| . 880339) (|rk4a| . 880026) (|rk4qc| . 879159) (|rk4f| . 878852)
+ (|aromberg| . 878510) (|asimpson| . 878168) (|atrapezoidal| . 877826)
+ (|romberg| . 877487) (|simpson| . 877148) (|trapezoidal| . 876809)
+ (|rombergo| . 876470) (|simpsono| . 876131) (|trapezoidalo| . 875792)
+ (|sup| . 875520) (|inv| . 874246) (|imagE| . 874135) (|imagk| . 874024)
+ (|imagj| . 873913) (|imagi| . 873802) (|octon| . 873534)
+ (|constDsolve| . 872818) (|expint| . 872271) (|diff| . 871686)
+ (|algDsolve| . 871002) (|denomLODE| . 869989) (|indicialEquations| . 867805)
+ (|indicialEquation| . 866805) (|denomRicDE| . 866304)
+ (|leadingCoefficientRicDE| . 865740) (|constantCoefficientRicDE| . 865109)
+ (|changeVar| . 864149) (|ratDsolve| . 861861)
+ (|indicialEquationAtInfinity| . 861037) (|reduceLODE| . 860572)
+ (|singRicDE| . 859060) (|polyRicDE| . 857632) (|ricDsolve| . 853334)
+ (|triangulate| . 852488) (|solveInField| . 851379)
+ (|wronskianMatrix| . 850878) (|variationOfParameters| . 850643)
+ (|lexico| . 850258) (|po| . 850086) (|op| . 849914) (|infinity| . 849704)
+ (|makeop| . 849372) (|opeval| . 849068) (|evaluateInverse| . 848771)
+ (|evaluate| . 847699) (|conjug| . 847393) (|adjoint| . 846250)
+ (|arity| . 846117) (|getDatabase| . 845980) (|whatInfinity| . 845833)
+ (|infinite?| . 845566) (|finite?| . 845214) (|minusInfinity| . 845006)
+ (|plusInfinity| . 844798) (|pureLex| . 844575) (|totalLex| . 844352)
+ (|reverseLex| . 844129) (|min| . 843599) (|leftLcm| . 843279)
+ (|rightExtendedGcd| . 843035) (|rightGcd| . 842888)
+ (|rightExactQuotient| . 842735) (|rightRemainder| . 842588)
+ (|rightQuotient| . 842441) (|rightLcm| . 842294) (|leftExtendedGcd| . 842050)
+ (|leftGcd| . 841730) (|leftExactQuotient| . 841402) (|leftRemainder| . 841082)
+ (|leftQuotient| . 840762) (|times| . 840491) (|apply| . 839674)
+ (|monicLeftDivide| . 839099) (|monicRightDivide| . 838524)
+ (|leftDivide| . 837719) (|rightDivide| . 837162) (|hermiteH| . 836991)
+ (|laguerreL| . 836648) (|legendreP| . 836415) (|outputList| . 836292)
+ (|writeBytes!| . 836148) (|writeUInt8!| . 836012) (|writeInt8!| . 835878)
+ (|writeByte!| . 835744) (|isOpen?| . 835477) (|outputBinaryFile| . 835301)
+ (|not| . 835205) (|or| . 835103) (|and| . 835001) (|quo| . 834840)
+ (|rem| . 834679) (|div| . 834429) (>= . 834292) (> . 834155) (~= . 834020)
+ (|blankSeparate| . 833925) (|semicolonSeparate| . 833830)
+ (|commaSeparate| . 833735) (|pile| . 833640) (|paren| . 833360)
+ (|bracket| . 833220) (|prod| . 833074) (|overlabel| . 833024)
+ (|overbar| . 832977) (|prime| . 832835) (|quote| . 832747)
+ (|supersub| . 832649) (|presuper| . 832599) (|presub| . 832549)
+ (|super| . 832499) (|sub| . 832449) (|rarrow| . 832399) (|assign| . 832349)
+ (|slash| . 832299) (|over| . 832249) (|zag| . 832199) (|box| . 832012)
+ (|label| . 831962) (|infix?| . 831881) (|postfix| . 831831) (|infix| . 831682)
+ (|prefix| . 831584) (|vconcat| . 831441) (|hconcat| . 831298)
+ (|rspace| . 831212) (|vspace| . 831131) (|hspace| . 831050)
+ (|superHeight| . 830969) (|subHeight| . 830888) (|height| . 829942)
+ (|width| . 829578) (|doubleFloatFormat| . 829498) (|messagePrint| . 829384)
+ (|message| . 829304) (|members| . 829068) (|padecf| . 828749)
+ (|pade| . 827790) (|root| . 827523) (|quotientByP| . 827461)
+ (|moduloP| . 827356) (|modulus| . 826080) (|digits| . 825389)
+ (|continuedFraction| . 824380) (|pair| . 824261) (|light| . 824185)
+ (|pastel| . 824109) (|bright| . 823813) (|dim| . 823737) (|dark| . 823661)
+ (|getSyntaxFormsFromFile| . 823540) (|surface| . 823442)
+ (|coordinate| . 823017) (|conjugates| . 822884) (|shuffle| . 822712)
+ (|shufflein| . 822540) (|sequences| . 822201) (|permutations| . 822041)
+ (|lists| . 821785) (|makeResult| . 821481) (|is?| . 820263) (|Is| . 818895)
+ (|addMatchRestricted| . 818704) (|insertMatch| . 818516) (|addMatch| . 818328)
+ (|getMatch| . 818141) (|failed| . 817801) (|failed?| . 817399)
+ (|optpair| . 817257) (|getBadValues| . 817128) (|resetBadValues| . 817039)
+ (|hasTopPredicate?| . 816915) (|topPredicate| . 816736)
+ (|setTopPredicate| . 816574) (|patternVariable| . 816414)
+ (|withPredicates| . 816282) (|setPredicates| . 816150) (|predicates| . 816021)
+ (|hasPredicate?| . 815897) (|optional?| . 815773) (|multiple?| . 815649)
+ (|generic?| . 815525) (|quoted?| . 815401) (|inR?| . 815277)
+ (|isList| . 815135) (|isQuotient| . 814957) (|isOp| . 814562)
+ (|Zero| . 814240) (|satisfy?| . 813581) (|addBadValue| . 813290)
+ (|badValues| . 813088) (|retractable?| . 812204) (|ListOfTerms| . 811453)
+ (|One| . 810976) (|leftFactor| . 810801) (|rightFactorCandidate| . 810589)
+ (D . 809257) (|ptree| . 809070) (|coerceImages| . 808942)
+ (|fixedPoints| . 808786) (|odd?| . 808423) (|even?| . 808060)
+ (|numberOfCycles| . 807921) (|cyclePartition| . 807791)
+ (|coerceListOfPairs| . 807654) (|coercePreimagesImages| . 807517)
+ (|listRepresentation| . 807332) (|permanent| . 807016) (|cycles| . 806869)
+ (|cycle| . 806731) (|initializeGroupForWordProblem| . 806432) (<= . 806161)
+ (< . 805751) (|support| . 805484) (|wordInGenerators| . 805286)
+ (|wordInStrongGenerators| . 805088) (|orbits| . 804941) (|orbit| . 804330)
+ (|permutationGroup| . 804174) (|wordsForStrongGenerators| . 804005)
+ (|strongGenerators| . 803849) (|base| . 803484) (|generators| . 803044)
+ (|bivariateSLPEBR| . 802627)
+ (|solveLinearPolynomialEquationByRecursion| . 801878)
+ (|factorByRecursion| . 801107) (|factorSquareFreeByRecursion| . 800336)
+ (|randomR| . 799535) (|factorSFBRlcUnit| . 798733) (|charthRoot| . 798417)
+ (|conditionP| . 798079) (|solveLinearPolynomialEquation| . 797041)
+ (|factorSquareFreePolynomial| . 796836) (|factorPolynomial| . 796331)
+ (|squareFreePolynomial| . 795826) (|gcdPolynomial| . 795221)
+ (|torsion?| . 794239) (|torsionIfCan| . 793225) (|getGoodPrime| . 792924)
+ (|badNum| . 792356) (|mix| . 792018) (|doubleDisc| . 791760)
+ (|polyred| . 791533) (|padicFraction| . 791425) (|padicallyExpand| . 791257)
+ (|numberOfFractionalTerms| . 791121) (|nthFractionalTerm| . 790982)
+ (|firstNumer| . 790874) (|firstDenom| . 790734) (|compactFraction| . 790626)
+ (|partialFraction| . 789926) (|gcdPrimitive| . 789037)
+ (|symmetricGroup| . 788702) (|alternatingGroup| . 788367)
+ (|abelianGroup| . 788190) (|cyclicGroup| . 787855) (|dihedralGroup| . 787520)
+ (|mathieu11| . 787231) (|mathieu12| . 786942) (|mathieu22| . 786653)
+ (|mathieu23| . 786364) (|mathieu24| . 786075) (|janko2| . 785786)
+ (|rubiksGroup| . 785664) (|youngGroup| . 785335) (|lexGroebner| . 785147)
+ (|totalGroebner| . 784959) (|expressIdealMember| . 784816)
+ (|principalIdeal| . 784634) (|LagrangeInterpolation| . 784423)
+ (|psolve| . 775850) (|wrregime| . 775020) (|rdregime| . 774134)
+ (|bsolve| . 772882) (|dmp2rfi| . 771591) (|se2rfi| . 771138)
+ (|pr2dmp| . 770750) (|hasoln| . 770238) (|ParCondList| . 769412)
+ (|redpps| . 768854) (|B1solve| . 768030) (|factorset| . 767648)
+ (|maxrank| . 766946) (|minrank| . 766244) (|minset| . 765853)
+ (|nextSublist| . 765415) (|overset?| . 764958) (|ParCond| . 764370)
+ (|redmat| . 763955) (|regime| . 762848) (|sqfree| . 762501)
+ (|inconsistent?| . 761654) (|debug| . 761579) (|numFunEvals| . 761507)
+ (|setAdaptive| . 761432) (|adaptive?| . 761360)
+ (|setScreenResolution| . 761285) (|screenResolution| . 761042)
+ (|setMaxPoints| . 760967) (|maxPoints| . 760724) (|setMinPoints| . 760649)
+ (|minPoints| . 760406) (|parametric?| . 760331) (|plotPolar| . 759649)
+ (|debug3D| . 759572) (|numFunEvals3D| . 759498) (|setAdaptive3D| . 759421)
+ (|adaptive3D?| . 759347) (|setScreenResolution3D| . 759270)
+ (|screenResolution3D| . 759196) (|setMaxPoints3D| . 759119)
+ (|maxPoints3D| . 759045) (|setMinPoints3D| . 758968) (|minPoints3D| . 758894)
+ (|tValues| . 758786) (|tRange| . 758600) (|plot| . 756598)
+ (|pointPlot| . 755893) (|calcRanges| . 755712) (|assert| . 755244)
+ (|optional| . 754941) (|multiple| . 754638) (|fixPredicate| . 754303)
+ (|patternMatch| . 749580) (|patternMatchTimes| . 749061)
+ (|bernoulli| . 748717) (|chebyshevT| . 748371) (|chebyshevU| . 748025)
+ (|cyclotomic| . 747503) (|euler| . 747207) (|fixedDivisor| . 747030)
+ (|laguerre| . 746853) (|legendre| . 746554) (|dmpToHdmp| . 746282)
+ (|hdmpToDmp| . 746010) (|pToHdmp| . 745771) (|hdmpToP| . 745532)
+ (|dmpToP| . 745304) (|pToDmp| . 745076) (|sylvesterSequence| . 744868)
+ (|sturmSequence| . 744663) (|boundOfCauchy| . 744452)
+ (|sturmVariationsOf| . 744167) (|lazyVariations| . 743841)
+ (|content| . 743082) (|primitiveMonomials| . 742860) (|totalDegree| . 742344)
+ (|minimumDegree| . 741368) (|monomials| . 740811) (|isPlus| . 739731)
+ (|isTimes| . 738658) (|isExpt| . 736827) (|isPower| . 735853)
+ (|rroot| . 735150) (|qroot| . 734399) (|froot| . 733657) (|nthr| . 732945)
+ (|port| . 732856) (|firstUncouplingMatrix| . 732582) (|integral| . 731472)
+ (|primitiveElement| . 729201) (|nextPrime| . 729084) (|prevPrime| . 728967)
+ (|primes| . 728819) (|print| . 728623) (|selectsecond| . 728490)
+ (|selectfirst| . 728357) (|makeprod| . 728221) (|property| . 727839)
+ (|disjunction| . 727727) (|conjunction| . 727615) (|isEquiv| . 727429)
+ (|isImplies| . 727243) (|isOr| . 727057) (|isAnd| . 726871) (|isNot| . 726701)
+ (|isAtom| . 726563) (|atoms| . 726112) (|dual| . 725680) (|equiv| . 725620)
+ (|implies| . 725560) (|false| . 725506) (|true| . 725452) (|merge!| . 725028)
+ (|max| . 724500) (|resultantEuclidean| . 724221)
+ (|semiResultantEuclidean2| . 723967) (|semiResultantEuclidean1| . 723713)
+ (|indiceSubResultant| . 723482) (|indiceSubResultantEuclidean| . 723151)
+ (|semiIndiceSubResultantEuclidean| . 722845) (|degreeSubResultant| . 722614)
+ (|degreeSubResultantEuclidean| . 722283)
+ (|semiDegreeSubResultantEuclidean| . 721977)
+ (|lastSubResultantEuclidean| . 721695)
+ (|semiLastSubResultantEuclidean| . 721438)
+ (|subResultantGcdEuclidean| . 721165)
+ (|semiSubResultantGcdEuclidean2| . 720917)
+ (|semiSubResultantGcdEuclidean1| . 720669) (|discriminantEuclidean| . 720390)
+ (|semiDiscriminantEuclidean| . 720136) (|chainSubResultants| . 719926)
+ (|schema| . 719689) (|resultantReduit| . 719475)
+ (|resultantReduitEuclidean| . 719140)
+ (|semiResultantReduitEuclidean| . 718848) (|divide| . 718099)
+ (|Lazard| . 717868) (|Lazard2| . 717634) (|nextsousResultant2| . 717446)
+ (|resultantnaif| . 717264) (|resultantEuclideannaif| . 716985)
+ (|semiResultantEuclideannaif| . 716731) (|pdct| . 716641) (|powers| . 716507)
+ (|partitions| . 716366) (|parts| . 716260) (|partition| . 716031)
+ (|complete| . 715394) (|pole?| . 715049) (|monomial| . 711798)
+ (|leadingMonomial| . 710546) (|zRange| . 710421) (|yRange| . 710173)
+ (|xRange| . 709925) (|listBranches| . 709645) (|triangular?| . 709307)
+ (|rewriteIdealWithRemainder| . 708959)
+ (|rewriteIdealWithHeadRemainder| . 708611) (|remainder| . 708207)
+ (|headRemainder| . 707830) (|roughUnitIdeal?| . 707492)
+ (|roughEqualIdeals?| . 707151) (|roughSubIdeal?| . 706810)
+ (|roughBase?| . 706472) (|trivialIdeal?| . 706171) (|sort| . 705372)
+ (|collectUpper| . 705103) (|collect| . 704834) (|collectUnder| . 704565)
+ (|mainVariable?| . 704261) (|mainVariables| . 703960)
+ (|removeSquaresIfCan| . 703636) (|unprotectedRemoveRedundantFactors| . 703316)
+ (|removeRedundantFactors| . 701642) (|certainlySubVariety?| . 701287)
+ (|possiblyNewVariety?| . 700895) (|probablyZeroDim?| . 700543)
+ (|selectPolynomials| . 700072) (|selectOrPolynomials| . 699592)
+ (|selectAndPolynomials| . 699112) (|quasiMonicPolynomials| . 698694)
+ (|univariate?| . 698377) (|univariatePolynomials| . 697959)
+ (|linear?| . 697642) (|linearPolynomials| . 697224) (|bivariate?| . 696907)
+ (|bivariatePolynomials| . 696489)
+ (|removeRoughlyRedundantFactorsInPols| . 695806)
+ (|removeRoughlyRedundantFactorsInPol| . 695479) (|interReduce| . 695155)
+ (|roughBasicSet| . 694720) (|crushedSet| . 694396)
+ (|rewriteSetByReducingWithParticularGenerators| . 693923)
+ (|rewriteIdealWithQuasiMonicGenerators| . 693496)
+ (|squareFreeFactors| . 693147) (|univariatePolynomialsGcds| . 692406)
+ (|removeRoughlyRedundantFactorsInContents| . 692047)
+ (|removeRedundantFactorsInContents| . 691688)
+ (|removeRedundantFactorsInPols| . 691329) (|irreducibleFactors| . 690912)
+ (|lazyIrreducibleFactors| . 690495)
+ (|removeIrreducibleRedundantFactors| . 690075) (|normalForm| . 689429)
+ (|changeBase| . 689208) (|companionBlocks| . 688936) (|xCoord| . 688813)
+ (|yCoord| . 688690) (|zCoord| . 688567) (|rCoord| . 688444)
+ (|thetaCoord| . 688321) (|phiCoord| . 688198) (|color| . 688001)
+ (|hue| . 687730) (|shade| . 687531) (|nthRootIfCan| . 687340)
+ (|expIfCan| . 687194) (|logIfCan| . 687048) (|sinIfCan| . 686902)
+ (|cosIfCan| . 686756) (|tanIfCan| . 686610) (|cotIfCan| . 686464)
+ (|secIfCan| . 686318) (|cscIfCan| . 686172) (|asinIfCan| . 686026)
+ (|acosIfCan| . 685880) (|atanIfCan| . 685734) (|acotIfCan| . 685588)
+ (|asecIfCan| . 685442) (|acscIfCan| . 685296) (|sinhIfCan| . 685150)
+ (|coshIfCan| . 685004) (|tanhIfCan| . 684858) (|cothIfCan| . 684712)
+ (|sechIfCan| . 684566) (|cschIfCan| . 684420) (|asinhIfCan| . 684274)
+ (|acoshIfCan| . 684128) (|atanhIfCan| . 683982) (|acothIfCan| . 683836)
+ (|asechIfCan| . 683690) (|acschIfCan| . 683544) (|pushdown| . 681931)
+ (|pushup| . 680318) (|reducedDiscriminant| . 680003)
+ (|idealSimplify| . 679747) (|definingInequation| . 679491)
+ (|definingEquations| . 679200) (|setStatus| . 678887)
+ (|quasiAlgebraicSet| . 678593) (|radicalSimplify| . 678065)
+ (|random| . 676734) (|denominator| . 676480) (|numerator| . 676236)
+ (|denom| . 674775) (|numer| . 673294) (|quadraticForm| . 673122)
+ (|back| . 673031) (|front| . 672940) (|rotate!| . 672849)
+ (|dequeue!| . 672758) (|enqueue!| . 672664) (|quatern| . 672542)
+ (|imagK| . 672320) (|imagJ| . 672098) (|imagI| . 671876)
+ (|conjugate| . 671337) (|queue| . 671215) (|nthRoot| . 670789)
+ (|fractRadix| . 670654) (|wholeRadix| . 670522) (|cycleRagits| . 670390)
+ (|prefixRagits| . 670258) (|fractRagits| . 670124) (|wholeRagits| . 669992)
+ (|radix| . 669830) (|randnum| . 669653) (|reseed| . 669530) (|seed| . 669442)
+ (|rational| . 667959) (|rational?| . 666607) (|rationalIfCan| . 665124)
+ (|setvalue!| . 664968) (|setchildren!| . 664777) (|node?| . 664612)
+ (|child?| . 664447) (|distance| . 664314) (|leaves| . 664184)
+ (|nodes| . 664054) (|rename| . 663958) (|rename!| . 663862)
+ (|mainValue| . 663737) (|mainDefiningPolynomial| . 663612)
+ (|mainForm| . 663506) (|sqrt| . 662992) (|rischDE| . 661915)
+ (|rischDEsys| . 661059) (|monomRDE| . 660590) (|baseRDE| . 660197)
+ (|polyRDE| . 659583) (|monomRDEsys| . 659076) (|baseRDEsys| . 658708)
+ (|weighted| . 658483) (|rdHack1| . 658227) (|midpoint| . 657958)
+ (|midpoints| . 657633) (|realZeros| . 655068)
+ (|mainCharacterization| . 654710) (|algebraicOf| . 654328)
+ (|ReduceOrder| . 653878) (|setref| . 653791) (|deref| . 653709)
+ (|ref| . 653627) (= . 653197) (|radicalEigenvectors| . 652804)
+ (|radicalEigenvector| . 652543) (|radicalEigenvalues| . 652346)
+ (|eigenMatrix| . 652142) (|normalise| . 652017) (|gramschmidt| . 651883)
+ (|orthonormalBasis| . 651675) (|antisymmetricTensors| . 651215)
+ (|createGenericMatrix| . 651013) (|symmetricTensors| . 650646)
+ (|tensorProduct| . 650092) (|permutationRepresentation| . 649228)
+ (|completeEchelonBasis| . 649046) (|createRandomElement| . 648863)
+ (|cyclicSubmodule| . 648587) (|standardBasisOfCyclicSubmodule| . 648329)
+ (|areEquivalent?| . 647593) (|isAbsolutelyIrreducible?| . 647145)
+ (|meatAxe| . 645933) (|scanOneDimSubspaces| . 645651) (|double| . 645399)
+ (|expt| . 645147) (|lift| . 643261) (|solveRetract| . 642884)
+ (|variables| . 640774) (|mainVariable| . 639885) (|univariate| . 636631)
+ (|multivariate| . 634617) (|uniform01| . 634525) (|normal01| . 634433)
+ (|exponential1| . 634341) (|chiSquare1| . 634200) (|normal| . 634057)
+ (|exponential| . 633692) (|chiSquare| . 633532) (F . 633369) (|t| . 633209)
+ (|factorFraction| . 632969) (|componentUpperBound| . 632866) (|blue| . 632723)
+ (|green| . 632580) (|red| . 632437) (|whitePoint| . 632334)
+ (|uniform| . 631857) (|binomial| . 631262) (|poisson| . 631111)
+ (|geometric| . 630960) (|ridHack1| . 630845) (|interpolate| . 630115)
+ (|nullSpace| . 628165) (|nullity| . 626838) (|rank| . 624009)
+ (|rowEchelon| . 622183) (|column| . 621649) (|row| . 621115) (|qelt| . 620264)
+ (|ncols| . 619714) (|nrows| . 619164) (|maxColIndex| . 618636)
+ (|minColIndex| . 618108) (|maxRowIndex| . 617580) (|minRowIndex| . 617052)
+ (|antisymmetric?| . 616544) (|symmetric?| . 616036) (|diagonal?| . 615528)
+ (|square?| . 615020) (|matrix| . 613898) (|rectangularMatrix| . 613675)
+ (|annihilate?| . 613596) (|characteristic| . 611709) (|round| . 611654)
+ (|fractionPart| . 610983) (|wholePart| . 610520) (|floor| . 610303)
+ (|ceiling| . 610086) (|norm| . 606222) (|mightHaveRoots| . 605975)
+ (|refine| . 604073) (|middle| . 603864) (|size| . 601861) (|right| . 601244)
+ (|left| . 600627) (|roman| . 600462) (|mainSquareFreePart| . 600227)
+ (|mainPrimitivePart| . 599992) (|mainContent| . 599757)
+ (|primitivePart!| . 599522) (|gcd| . 597232) (|nextsubResultant2| . 596983)
+ (|LazardQuotient2| . 596688) (|LazardQuotient| . 596396)
+ (|subResultantChain| . 596118) (|halfExtendedSubResultantGcd2| . 595536)
+ (|halfExtendedSubResultantGcd1| . 594954) (|extendedSubResultantGcd| . 594329)
+ (|exactQuotient!| . 593845) (|exactQuotient| . 593361)
+ (|primPartElseUnitCanonical!| . 593121) (|primPartElseUnitCanonical| . 592881)
+ (|retract| . 590344) (|retractIfCan| . 587356) (|lazyResidueClass| . 586751)
+ (|monicModulo| . 586433) (|lazyPseudoDivide| . 585413)
+ (|lazyPremWithDefault| . 584736) (|lazyPquo| . 584323) (|lazyPrem| . 583910)
+ (|pquo| . 583497) (|prem| . 583084) (|supRittWu?| . 582850)
+ (|RittWuCompare| . 582614) (|mainMonomials| . 582383)
+ (|mainCoefficients| . 582152) (|leastMonomial| . 581949)
+ (|mainMonomial| . 581746) (|quasiMonic?| . 581515) (|monic?| . 581082)
+ (|leadingCoefficient| . 578801) (|deepestInitial| . 578598)
+ (|iteratedInitials| . 578367) (|deepestTail| . 578164) (|head| . 577697)
+ (|mdeg| . 577448) (|mvar| . 576981) (|iterators| . 576800)
+ (|relativeApprox| . 576190) (|rootOf| . 574652) (|allRootsOf| . 573527)
+ (|definingPolynomial| . 572475) (|positive?| . 571896) (|negative?| . 571318)
+ (|zero?| . 570630) (|augment| . 569288) (|lastSubResultant| . 568352)
+ (|lastSubResultantElseSplit| . 568013) (|invertibleSet| . 567690)
+ (|invertible?| . 566989) (|invertibleElseSplit?| . 566644)
+ (|purelyAlgebraicLeadingMonomial?| . 566321)
+ (|algebraicCoefficients?| . 565998) (|purelyTranscendental?| . 565675)
+ (|purelyAlgebraic?| . 565034) (|prepareSubResAlgo| . 564578)
+ (|internalLastSubResultant| . 563578) (|integralLastSubResultant| . 563139)
+ (|toseLastSubResultant| . 562700) (|toseInvertible?| . 561853)
+ (|toseInvertibleSet| . 561457) (|toseSquareFreePart| . 561021)
+ (|expression| . 560544) (|quotedOperators| . 560083) (|pattern| . 559658)
+ (|suchThat| . 557441) (|rule| . 556562) (|rules| . 556091)
+ (|ruleset| . 555620) (|rur| . 553705) (|create| . 553650)
+ (|clearCache| . 553528) (|cache| . 553403) (|enterInCache| . 553110)
+ (|currentCategoryFrame| . 553071) (|currentScope| . 553032)
+ (|pushNewContour| . 552953) (|findBinding| . 552695) (|contours| . 552608)
+ (|structuralConstants| . 551263) (|coordinates| . 548591) (|bounds| . 548499)
+ (|equation| . 547965) (|incr| . 547838) (|high| . 547746) (|low| . 547654)
+ (|hi| . 547562) (|lo| . 547470) (BY . 547340) (|body| . 546420)
+ (|union| . 545767) (|subset?| . 545633) (|symmetricDifference| . 545527)
+ (|difference| . 545317) (|intersect| . 543291) (|set| . 543062)
+ (|brace| . 542695) (|part?| . 542561) (|latex| . 542476) (|hash| . 542384)
+ (|delta| . 542175) (|member?| . 541658) (|enumerate| . 541446)
+ (|setOfMinN| . 541246) (|elements| . 540954) (|replaceKthElement| . 540789)
+ (|incrementKthElement| . 540627) (|cdr| . 540355) (|car| . 540083)
+ (|expr| . 539811) (|float| . 539303) (|integer| . 538893) (|symbol| . 538621)
+ (|destruct| . 538101) (|float?| . 537801) (|integer?| . 537266)
+ (|symbol?| . 536844) (|string?| . 536544) (|list?| . 536244)
+ (|pair?| . 535944) (|atom?| . 535644) (|null?| . 535344) (|eq| . 534955)
+ (|startTable!| . 534119) (|stopTable!| . 533355)
+ (|supDimElseRittWu?| . 532573) (|algebraicSort| . 531797)
+ (|moreAlgebraic?| . 531015) (|subTriSet?| . 530233) (|subPolSet?| . 529395)
+ (|internalSubPolSet?| . 528557) (|internalInfRittWu?| . 527719)
+ (|internalSubQuasiComponent?| . 526965) (|subQuasiComponent?| . 525333)
+ (|removeSuperfluousQuasiComponents| . 524557) (|subCase?| . 523639)
+ (|removeSuperfluousCases| . 522807) (|prepareDecompose| . 521601)
+ (|branchIfCan| . 520567) (|startTableGcd!| . 519705)
+ (|stopTableGcd!| . 518915) (|startTableInvSet!| . 518053)
+ (|stopTableInvSet!| . 517263) (|stosePrepareSubResAlgo| . 516789)
+ (|stoseInternalLastSubResultant| . 515757)
+ (|stoseIntegralLastSubResultant| . 515300) (|stoseLastSubResultant| . 514843)
+ (|stoseInvertible?sqfreg| . 514372) (|stoseInvertibleSetsqfreg| . 513958)
+ (|stoseInvertible?reg| . 513487) (|stoseInvertibleSetreg| . 513073)
+ (|stoseInvertible?| . 512190) (|stoseInvertibleSet| . 511776)
+ (|stoseSquareFreePart| . 511322) (|coleman| . 511146)
+ (|inverseColeman| . 510970) (|listYoungTableaus| . 510783)
+ (|makeYoungTableau| . 510558) (|nextColeman| . 510382)
+ (|nextLatticePermutation| . 510172) (|nextPartition| . 509815)
+ (|numberOfImproperPartitions| . 509697) (|subSet| . 509532)
+ (|unrankImproperPartitions0| . 509367) (|unrankImproperPartitions1| . 509202)
+ (|semiGroupOperation| . 509060) (|subresultantSequence| . 508794)
+ (|SturmHabichtSequence| . 508528) (|SturmHabichtCoefficients| . 508290)
+ (|SturmHabicht| . 508052) (|countRealRoots| . 507817)
+ (|SturmHabichtMultiple| . 507540) (|countRealRootsMultiple| . 507266)
+ (|source| . 507086) (|target| . 506691) (|signature| . 506212)
+ (|signatureAst| . 506084) (|xor| . 505934) (|depth| . 505664) (|top| . 505573)
+ (|pop!| . 505482) (|push!| . 505388) (|map!| . 505235) (|minordet| . 504423)
+ (|determinant| . 503327) (|diagonalProduct| . 502685) (|trace| . 501784)
+ (|diagonal| . 501557) (|diagonalMatrix| . 500710) (|scalarMatrix| . 500231)
+ (|hermite| . 499778) (|completeHermite| . 499430) (|smith| . 499152)
+ (|completeSmith| . 498772) (|diophantineSystem| . 498364) (|csubst| . 498006)
+ (|particularSolution| . 496836) (|mapSolve| . 496293) (|linear| . 495610)
+ (|quadratic| . 494924) (|cubic| . 494235) (|quartic| . 493543)
+ (|aLinear| . 493230) (|aQuadratic| . 492914) (|aCubic| . 492595)
+ (|aQuartic| . 492273) (|radicalSolve| . 489909) (|radicalRoots| . 489314)
+ (|contractSolve| . 488571) (|decomposeFunc| . 488365) (|unvectorise| . 487879)
+ (|bubbleSort!| . 487197) (|insertionSort!| . 486515) (|check| . 485989)
+ (|objects| . 485640) (|lprop| . 485483) (|llprop| . 485317) (|lllp| . 485159)
+ (|lllip| . 484991) (|lp| . 484851) (|mesh?| . 484721) (|mesh| . 483315)
+ (|polygon?| . 483185) (|polygon| . 482626) (|closedCurve?| . 482496)
+ (|closedCurve| . 481937) (|curve?| . 481807) (|curve| . 481053)
+ (|point?| . 480923) (|enterPointData| . 480734) (|composites| . 480604)
+ (|components| . 480474) (|numberOfComposites| . 480333)
+ (|numberOfComponents| . 479514) (|create3Space| . 479288) (|parse| . 479163)
+ (|outputAsFortran| . 478744) (|outputAsScript| . 478481)
+ (|outputAsTex| . 478218) (|abs| . 477470) (|Beta| . 476792)
+ (|digamma| . 476336) (|polygamma| . 475783) (|Gamma| . 475051)
+ (|besselJ| . 474583) (|besselY| . 474115) (|besselI| . 473647)
+ (|besselK| . 473179) (|airyAi| . 472723) (|airyBi| . 472267)
+ (|subNode?| . 471988) (|infLex?| . 471658) (|setEmpty!| . 471466)
+ (|setStatus!| . 471243) (|setCondition!| . 471048) (|setValue!| . 470853)
+ (|copy| . 470271) (|status| . 469768) (|value| . 469238) (|empty?| . 468649)
+ (|splitNodeOf!| . 468087) (|remove!| . 466722) (|remove| . 465664)
+ (|subNodeOf?| . 465338) (|nodeOf?| . 465068) (|result| . 464801)
+ (|conditions| . 464581) (|updateStatus!| . 464389)
+ (|extractSplittingLeaf| . 464195) (|squareMatrix| . 464024)
+ (|transpose| . 463095) (|rightTrim| . 462895) (|leftTrim| . 462695)
+ (|trim| . 462495) (|split| . 460265) (|position| . 459306)
+ (|replace| . 459182) (|match?| . 459049) (|match| . 457596)
+ (|substring?| . 457465) (|suffix?| . 457372) (|prefix?| . 457279)
+ (|upperCase!| . 457225) (|upperCase| . 457081) (|lowerCase!| . 457027)
+ (|lowerCase| . 456883) (|KrullNumber| . 455931) (|numberOfVariables| . 454979)
+ (|algebraicDecompose| . 453767) (|transcendentalDecompose| . 451323)
+ (|internalDecompose| . 447540) (|decompose| . 444306)
+ (|upDateBranches| . 442872) (|printInfo| . 441868) (|preprocess| . 440802)
+ (|internalZeroSetSplit| . 439952) (|internalAugment| . 438547)
+ (|stack| . 438432) (|size?| . 438256) (|possiblyInfinite?| . 438129)
+ (|explicitlyFinite?| . 438002) (|nextItem| . 437915) (|init| . 437667)
+ (|step| . 437589) (|upperBound| . 437499) (|lowerBound| . 437421)
+ (|iterationVar| . 437263) (|infiniteProduct| . 436280)
+ (|evenInfiniteProduct| . 435297) (|oddInfiniteProduct| . 434314)
+ (|generalInfiniteProduct| . 433208) (|filterUntil| . 432935)
+ (|filterWhile| . 432662) (|generate| . 432134) (|showAll?| . 431987)
+ (|showAllElements| . 431834) (|output| . 431228) (|cons| . 431068)
+ (|delay| . 430938) (|findCycle| . 430674) (|repeating?| . 430486)
+ (|repeating| . 430370) (|exquo| . 428793) (|recip| . 426694)
+ (|integers| . 426510) (|oddintegers| . 426326) (|int| . 425490)
+ (|mapmult| . 425347) (|deriv| . 425207) (|gderiv| . 425014)
+ (|compose| . 424703) (|addiag| . 424515) (|lazyIntegrate| . 424261)
+ (|nlde| . 424011) (|powern| . 423787) (|mapdiv| . 423609)
+ (|lazyGintegrate| . 423336) (|power| . 423158) (|sincos| . 422903)
+ (|sinhcosh| . 422638) (|asin| . 421350) (|acos| . 420062) (|atan| . 418682)
+ (|acot| . 417394) (|asec| . 416106) (|acsc| . 414818) (|sinh| . 413536)
+ (|cosh| . 412254) (|tanh| . 410972) (|coth| . 409690) (|sech| . 408408)
+ (|csch| . 407126) (|asinh| . 405841) (|acosh| . 404556) (|atanh| . 403271)
+ (|acoth| . 401986) (|asech| . 400701) (|acsch| . 399416)
+ (|subresultantVector| . 399193) (|primitivePart| . 397918)
+ (|pointData| . 397753) (|parent| . 397626) (|level| . 397377)
+ (|extractProperty| . 397197) (|extractClosed| . 397042)
+ (|extractIndex| . 396869) (|extractPoint| . 396713) (|traverse| . 396528)
+ (|defineProperty| . 396287) (|closeComponent| . 396071)
+ (|modifyPoint| . 395416) (|addPointLast| . 395205) (|addPoint2| . 395046)
+ (|addPoint| . 394394) (|merge| . 393450) (|deepCopy| . 393323)
+ (|shallowCopy| . 393196) (|numberOfChildren| . 393023) (|children| . 392717)
+ (|child| . 392541) (|birth| . 392414) (|internal?| . 392259)
+ (|root?| . 392104) (|leaf?| . 391821) (|rhs| . 390815) (|lhs| . 389809)
+ (|construct| . 384954) (|predicate| . 384657) (|sum| . 381477)
+ (|outputForm| . 380476) (|list| . 380301) (|string| . 379678)
+ (|argscript| . 379584) (|superscript| . 379490) (|subscript| . 379396)
+ (|script| . 378954) (|scripts| . 378527) (|scripted?| . 378450)
+ (|name| . 377366) (|resetNew| . 377295) (|symFunc| . 376963)
+ (|symbolTableOf| . 376835) (|argumentListOf| . 376703)
+ (|returnTypeOf| . 376512) (|printHeader| . 376198) (|returnType!| . 375596)
+ (|argumentList!| . 375156) (|endSubProgram| . 375075)
+ (|currentSubProgram| . 374994) (|newSubProgram| . 374876)
+ (|clearTheSymbolTable| . 374681) (|showTheSymbolTable| . 374633)
+ (|symbolTable| . 374478) (|printTypes| . 374283) (|newTypeLists| . 374195)
+ (|typeLists| . 373876) (|externalList| . 373784) (|typeList| . 373411)
+ (|parametersOf| . 373319) (|fortranTypeOf| . 373194) (|declare!| . 372376)
+ (|empty| . 371682) (|case| . 365564) (|compound?| . 365487)
+ (|getOperands| . 365274) (|getOperator| . 365015) (|nil?| . 364938)
+ (|buildSyntax| . 364722) (|autoCoerce| . 361212) (|solve| . 344140)
+ (|triangularSystems| . 343869) (|loadNativeModule| . 343759)
+ (|nativeModuleExtension| . 343686) (|hostByteOrder| . 343610)
+ (|hostPlatform| . 343537) (|rootDirectory| . 343464) (|bumprow| . 343144)
+ (|bumptab| . 342901) (|bumptab1| . 342714) (|untab| . 342518)
+ (|bat1| . 342318) (|bat| . 342131) (|tab1| . 341931) (|tab| . 341760)
+ (|lex| . 341620) (|slex| . 341452) (|inverse| . 339623) (|maxrow| . 339285)
+ (|mr| . 338937) (|tableau| . 338804) (|listOfLists| . 338147)
+ (|operator| . 335804) (|tanSum| . 335676) (|tanAn| . 335480)
+ (|tanNa| . 335349) (|table| . 334995) (|initTable!| . 334813)
+ (|printInfo!| . 334598) (|startStats!| . 334386) (|printStats!| . 334204)
+ (|clearTable!| . 334022) (|usingTable?| . 333837) (|printingInfo?| . 333652)
+ (|makingStats?| . 333467) (|extractIfCan| . 333305) (|insert!| . 332365)
+ (|setPrologue!| . 332272) (|setTex!| . 332179) (|setEpilogue!| . 332086)
+ (|prologue| . 331996) (|new| . 330595) (|tex| . 330505) (|epilogue| . 330415)
+ (|display| . 329244) (|endOfFile?| . 329165) (|readIfCan!| . 328978)
+ (|readLineIfCan!| . 328888) (|readLine!| . 328810) (|writeLine!| . 328653)
+ (|sign| . 325825) (|nonQsign| . 325697) (|direction| . 325548)
+ (|createThreeSpace| . 325434) (|pi| . 325151) (|cyclicParents| . 325021)
+ (|cyclicEqual?| . 324897) (|cyclicEntries| . 324767) (|cyclicCopy| . 324681)
+ (|tree| . 324345) (|cyclic?| . 324096) (|cos| . 322709) (|cot| . 321424)
+ (|csc| . 320139) (|sec| . 318854) (|sin| . 317467) (|tan| . 316182)
+ (|complexNormalize| . 314493) (|complexElementary| . 312804)
+ (|trigs| . 312027) (|real| . 310885) (|imag| . 309963) (|real?| . 309036)
+ (|complexForm| . 308176) (|UpTriBddDenomInv| . 307885)
+ (|LowTriBddDenomInv| . 307594) (|simplify| . 306649) (|htrigs| . 306392)
+ (|simplifyExp| . 306135) (|simplifyLog| . 305878) (|expandPower| . 305621)
+ (|expandLog| . 305364) (|cos2sec| . 305107) (|cosh2sech| . 304850)
+ (|cot2trig| . 304593) (|coth2trigh| . 304336) (|csc2sin| . 304079)
+ (|csch2sinh| . 303822) (|sec2cos| . 303565) (|sech2cosh| . 303308)
+ (|sin2csc| . 303051) (|sinh2csch| . 302794) (|tan2trig| . 302537)
+ (|tanh2trigh| . 302280) (|tan2cot| . 302023) (|tanh2coth| . 301766)
+ (|cot2tan| . 301509) (|coth2tanh| . 301252) (|removeCosSq| . 300995)
+ (|removeSinSq| . 300738) (|removeCoshSq| . 300481) (|removeSinhSq| . 300224)
+ (|expandTrigProducts| . 299753) (|fintegrate| . 299135)
+ (|coefficient| . 295891) (|coHeight| . 295533) (|extendIfCan| . 295253)
+ (|algebraicVariables| . 294935) (|zeroSetSplitIntoTriangularSystems| . 294524)
+ (|zeroSetSplit| . 290117) (|reduceByQuasiMonic| . 289831)
+ (|collectQuasiMonic| . 289548) (|removeZero| . 289262)
+ (|initiallyReduce| . 288772) (|headReduce| . 288282)
+ (|stronglyReduce| . 287996) (|rewriteSetWithReduction| . 287579)
+ (|autoReduced?| . 287196) (|initiallyReduced?| . 286060)
+ (|headReduced?| . 284924) (|stronglyReduced?| . 284287) (|reduced?| . 283411)
+ (|normalized?| . 282275) (|quasiComponent| . 281899) (|initials| . 281581)
+ (|basicSet| . 280676) (|infRittWu?| . 279287) (|getCurve| . 279174)
+ (|listLoops| . 278994) (|closed?| . 278750) (|open?| . 278609)
+ (|setClosed| . 278465) (|tube| . 278028) (|point| . 276933)
+ (|unitVector| . 276073) (|cosSinInfo| . 275923) (|loopPoints| . 275690)
+ (|select| . 274804) (|generalTwoFactor| . 274481) (|generalSqFr| . 274158)
+ (|twoFactor| . 273804) (|setOrder| . 273453) (|getOrder| . 273263)
+ (|less?| . 272734) (|userOrdered?| . 272587) (|largest| . 272200)
+ (|more?| . 271840) (|setVariableOrder| . 271559) (|getVariableOrder| . 271374)
+ (|resetVariableOrder| . 271273) (|prime?| . 270294) (|sample| . 269419)
+ (|bitior| . 269086) (|bitand| . 268753) (|rationalFunction| . 268264)
+ (|taylorIfCan| . 268067) (|taylor| . 262903) (|removeZeroes| . 261729)
+ (|taylorRep| . 261537) (|factor| . 248774) (|factorSquareFree| . 247031)
+ (|henselFact| . 246265) (|hasHi| . 246139) (|segment| . 245694)
+ (SEGMENT . 245417) (|fmecg| . 244422) (|commonDenominator| . 243461)
+ (|clearDenominator| . 242470) (|splitDenominator| . 240648)
+ (|monicRightFactorIfCan| . 240373) (|rightFactorIfCan| . 240095)
+ (|leftFactorIfCan| . 239859) (|monicDecomposeIfCan| . 239563)
+ (|monicCompleteDecompose| . 239300) (|divideIfCan| . 239033)
+ (|noKaratsuba| . 238843) (|karatsubaOnce| . 238653) (|karatsuba| . 238418)
+ (|separate| . 237642) (|pseudoDivide| . 236833) (|pseudoQuotient| . 236681)
+ (|composite| . 236204) (|subResultantGcd| . 235631) (|resultant| . 234821)
+ (|discriminant| . 233295) (|differentiate| . 231204)
+ (|pseudoRemainder| . 231089) (|shiftLeft| . 230928) (|shiftRight| . 230767)
+ (|karatsubaDivide| . 230538) (|monicDivide| . 230075)
+ (|divideExponents| . 229912) (|unmakeSUP| . 229743) (|makeSUP| . 229574)
+ (|vectorise| . 229383) (|eval| . 222403) (|extend| . 219915)
+ (|approximate| . 218659) (|truncate| . 218281) (|order| . 213533)
+ (|center| . 212959) (|terms| . 212073) (|squareFreePart| . 211087)
+ (|BumInSepFFE| . 210650) (|multiplyExponents| . 210122)
+ (|laurentIfCan| . 209924) (|laurent| . 205744) (|laurentRep| . 205551)
+ (|rationalPower| . 205310) (|puiseux| . 201129) (|dominantTerm| . 200139)
+ (|limitPlus| . 199022) (|split!| . 198819) (|setlast!| . 198651)
+ (|setrest!| . 198363) (|setelt| . 196130) (|setfirst!| . 195962)
+ (|cycleSplit!| . 195797) (|concat!| . 195079) (|cycleTail| . 194972)
+ (|cycleLength| . 194826) (|cycleEntry| . 194719) (|third| . 194612)
+ (|second| . 194391) (|tail| . 193980) (|last| . 193261) (|rest| . 192421)
+ (|elt| . 184870) (|first| . 183702) (|concat| . 182913)
+ (|invmultisect| . 182541) (|multisect| . 182169) (|revert| . 181879)
+ (|generalLambert| . 181507) (|evenlambert| . 181217) (|oddlambert| . 180927)
+ (|lambert| . 180637) (|lagrange| . 180347) (|univariatePolynomial| . 179833)
+ (|integrate| . 168294) (** . 162445) (|polynomial| . 161567)
+ (|multiplyCoefficients| . 161076) (|quoByVar| . 160962)
+ (|coefficients| . 160053) (|series| . 152618) (|stFunc1| . 152307)
+ (|stFunc2| . 151979) (|stFuncN| . 151650) (|fixedPointExquo| . 151440)
+ (|ode1| . 151189) (|ode2| . 150932) (|ode| . 150644) (|mpsode| . 150305)
+ (UP2UTS . 150004) (UTS2UP . 149661) (LODO2FUN . 149310) (RF2UTS . 148933)
+ (|variable| . 148017) (|magnitude| . 147854) (|length| . 146391)
+ (|cross| . 146064) (|outerProduct| . 145906) (|dot| . 145362) (- . 143102)
+ (|zero| . 142670) (+ . 140351) (|vector| . 140235) (|scan| . 138036)
+ (|reduce| . 131196) (|map| . 106269) (|graphCurves| . 105619)
+ (|drawCurves| . 105087) (|update| . 104915) (|show| . 104747)
+ (|scale| . 104219) (|connect| . 104051) (|region| . 103883)
+ (|points| . 103715) (|units| . 103046) (|getGraph| . 102902)
+ (|putGraph| . 102730) (|graphs| . 102419) (|graphStates| . 101878)
+ (|graphState| . 101609) (|makeViewport2D| . 101404) (|viewport2D| . 101348)
+ (|getPickedPoints| . 101223) (|key| . 100947) (|close| . 100657)
+ (|write| . 99967) (|colorDef| . 99834) (|reset| . 99650) (|intensity| . 99520)
+ (|lighting| . 99384) (|clipSurface| . 99253) (|showClipRegion| . 99122)
+ (|showRegion| . 98991) (|hitherPlane| . 98861) (|eyeDistance| . 98731)
+ (|perspective| . 98600) (|translate| . 98124) (|zoom| . 97567)
+ (|rotate| . 97301) (|drawStyle| . 97170) (|outlineRender| . 97039)
+ (|diagonals| . 96908) (|axes| . 96444) (|controlPanel| . 96186)
+ (|viewpoint| . 93999) (|dimensions| . 93613) (|title| . 93137)
+ (|resize| . 92855) (|move| . 92567) (|options| . 92107)
+ (|modifyPointData| . 91738) (|subspace| . 91235) (|makeViewport3D| . 90845)
+ (|viewport3D| . 90787) (|viewDeltaYDefault| . 90602)
+ (|viewDeltaXDefault| . 90417) (|viewZoomDefault| . 90232)
+ (|viewPhiDefault| . 90047) (|viewThetaDefault| . 89862)
+ (|pointColorDefault| . 89683) (|lineColorDefault| . 89504)
+ (|axesColorDefault| . 89325) (|unitsColorDefault| . 89146)
+ (|pointSizeDefault| . 88937) (|viewPosDefault| . 88704)
+ (|viewSizeDefault| . 88477) (|viewDefaults| . 88391)
+ (|viewWriteDefault| . 88182) (|viewWriteAvailable| . 88078)
+ (|var1StepsDefault| . 87869) (|var2StepsDefault| . 87660)
+ (|tubePointsDefault| . 87451) (|tubeRadiusDefault| . 87224) (|void| . 87186)
+ (|dimension| . 85682) (|crest| . 85430) (|cfirst| . 85178)
+ (|sts2stst| . 84928) (|clikeUniv| . 84660) (|weierstrass| . 84430)
+ (|qqq| . 84144) (|integralBasis| . 82082) (|localIntegralBasis| . 80335)
+ (|qualifier| . 80256) (|mainExpression| . 80177) (|condition| . 79834)
+ (|changeWeightLevel| . 79145) (|characteristicSerie| . 78268)
+ (|characteristicSet| . 77561) (|medialSet| . 76854) (|Hausdorff| . 76559)
+ (|Frobenius| . 75906) (|transcendenceDegree| . 75559)
+ (|extensionDegree| . 74811) (|inGroundField?| . 74684)
+ (|transcendent?| . 74557) (|algebraic?| . 74111) (|varList| . 72924)
+ (|sh| . 72520) (|mirror| . 71770) (|monomial?| . 70774) (|monom| . 70280)
+ (|rquo| . 69403) (|lquo| . 68526) (|mindegTerm| . 68304) (|log| . 65893)
+ (|exp| . 63580) (|product| . 62424) (|LiePolyIfCan| . 62034)
+ (|coerce| . 45955) (|trunc| . 45579) (|degree| . 41157) (/ . 37324)
+ (|quasiRegular| . 37058) (|quasiRegular?| . 36729) (|constant| . 35944)
+ (|constant?| . 35402) (|coef| . 34749) (|mindeg| . 34435) (|maxdeg| . 34118)
+ (|#| . 33308) (|reductum| . 31131) (* . 23431) (|RemainderList| . 23017)
+ (|unexpand| . 22675) (|expand| . 20495) (|shape| . 20408)
+ (|youngDiagram| . 20299) (Y . 19838) (|triangSolve| . 18514)
+ (|univariateSolve| . 15694) (|realSolve| . 13158) (|positiveSolve| . 11340)
+ (|squareFree| . 8213) (|convert| . 795) (|linearlyDependentOverZ?| . 518)
+ (|linearDependenceOverZ| . 282) (|solveLinearlyOverQ| . 30)) \ No newline at end of file